using JuMP | |
using PowerModels | |
using PGLib | |
using Ipopt | |
ipopt = Ipopt.Optimizer | |
network_formulation = ACPPowerModel # ACPPowerModel SOCWRConicPowerModel DCPPowerModel | |
matpower_case_name = "pglib_opf_case5_pjm" | |
network_data = make_basic_network(pglib(matpower_case_name)) | |
# The problem to iterate over | |
model = JuMP.Model() | |
num_loads = length(network_data["load"]) | |
1:num_loads] in MOI.Parameter.(1.0)) | (model, load_scaler[i =|
for (str_i, l) in network_data["load"] | |
i = parse(Int, str_i) | |
l["pd"] = load_scaler[i] * l["pd"] | |
l["qd"] = load_scaler[i] * l["qd"] | |
end | |
pm = instantiate_model( | |
network_data, | |
network_formulation, | |
PowerModels.build_opf; | |
setting = Dict("output" => Dict("branch_flows" => true, "duals" => true)), | |
jump_model = model, | |
) | |
# Check it works | |
JuMP.optimize!(model) | |
JuMP.termination_status(model) | |
JuMP.objective_value(model) | |
# Save the model to a file | |
write_to_file(model, "$(matpower_case_name)_$(network_formulation)_POI_load.mof.json") | |
# Check if the file was written correctly | |
model_test = read_from_file("$(matpower_case_name)_$(network_formulation)_POI_load.mof.json"; use_nlp_block = false) | |
set_optimizer(model_test, optimizer_with_attributes(Ipopt.Optimizer, "print_level" => 0)) | |
JuMP.optimize!(model_test) |