using JuMP using PowerModels using PGLib using Ipopt ipopt = Ipopt.Optimizer network_formulation = ACPPowerModel # ACPPowerModel SOCWRConicPowerModel DCPPowerModel matpower_case_name = "pglib_opf_case5_pjm" network_data = make_basic_network(pglib(matpower_case_name)) # The problem to iterate over model = JuMP.Model() num_loads = length(network_data["load"]) @variable(model, load_scaler[i = 1:num_loads] in MOI.Parameter.(1.0)) for (str_i, l) in network_data["load"] i = parse(Int, str_i) l["pd"] = load_scaler[i] * l["pd"] l["qd"] = load_scaler[i] * l["qd"] end pm = instantiate_model( network_data, network_formulation, PowerModels.build_opf; setting = Dict("output" => Dict("branch_flows" => true, "duals" => true)), jump_model = model, ) # Check it works JuMP.optimize!(model) JuMP.termination_status(model) JuMP.objective_value(model) # Save the model to a file write_to_file(model, "$(matpower_case_name)_$(network_formulation)_POI_load.mof.json") # Check if the file was written correctly model_test = read_from_file("$(matpower_case_name)_$(network_formulation)_POI_load.mof.json"; use_nlp_block = false) set_optimizer(model_test, optimizer_with_attributes(Ipopt.Optimizer, "print_level" => 0)) JuMP.optimize!(model_test)