text
stringlengths
0
211k
p_mZ(X, S10,P4, S8,P4, C4);
getchar();
clrscrn();
printf(" b1 b2 ... bn");
p_mZ(B, S6,P0, S3,P0, C6);
printf(" Ax1 Ax2 ... Axn");
mul_mZ(A,X,T);
p_mZ(T, S6,P0, S3,P0, C6);
f_mZ(T);
f_mZ(X);
f_mZ(B);
f_mZ(Inv);
f_mZ(A);
stop();
return 0;
/* ------------------------------------ */
Exemple de sortie écran :
We want to find X such as,
AX = B
If A is a square matrix and,
If A has an inverse matrix,
you can find X by this method
X = inv(A) B
To verify the result you can
multiply the matrix A by X.
You must refind B.
----------------------------------
A :
+1 +2i +3 +4i +5 +6i
+5 +4i +1 +3i +6 +8i
+7 +2i +5 +1i +1 +1i
b1 b2 ... bn
+1 +2i +2 +3i +3 +5i
+3 +4i +2 +4i +3 +4i
+5 +6i +2 +5i +3 +3i
----------------------------------
inv(A) :
-1.2917e-01 +8.1007e-02i +8.5597e-02 -6.6602e-02i +8.5160e-02 -3.3778e-04i
+1.8258e-01 -8.6352e-02i -1.5122e-01 +8.1911e-02i +9.3058e-02 -3.8517e-02i
+3.7156e-03 -6.3244e-02i +7.1142e-02 -3.4463e-02i -8.4514e-02 +1.6084e-02i
X = inv(A) * B :
x1 x2 ... xn
+0.6598 +0.4745i +0.1082 +0.4088i -0.0129 -0.0058i
+0.2704 +0.2854i +0.3728 +0.3222i +0.5929 +0.4583i
-0.0376 -0.3013i +0.2279 -0.2901i +0.3769 -0.1953i
b1 b2 ... bn
+1 +2i +2 +3i +3 +5i
+3 +4i +2 +4i +3 +4i
+5 +6i +2 +5i +3 +3i
Ax1 Ax2 ... Axn
+1 +2i +2 +3i +3 +5i
+3 +4i +2 +4i +3 +4i
+5 +6i +2 +5i +3 +3i
Press return to continue.
Mathc matrices/a187
Application
Installer et compiler ces fichiers dans votre répertoire de travail.
/* Save as : c00a.c */
int main(void)
double a[RA*CA] ={ 4,2,3,
5,3,1,
8,2,2};
double **A = ca_A_mR(a,i_mR(RA,CA));
double **Minor = i_mR(RA-C1,CA-C1);
int minor_r = R1;
int minor_c = C1;
clrscrn();
printf(" A :");
p_mR(A,S5,P0,C6);
printf(" Minor(R%d,C%d) %.4e \n\n\n",
minor_r,
minor_c,
minor_R(A,minor_r, minor_c));
printf(" Copy/Past into the octave window.\n\n");
p_Octave_mR(minor_mR(A, Minor, minor_r, minor_c),"Minor",P0);
printf(" det(Minor)\n\n\n");
stop();
f_mR(A);
f_mR(Minor);
return 0;
/* ------------------------------------ */
Exemple de sortie écran :
A :
+4 +2 +3
+5 +3 +1
+8 +2 +2
Minor(R1,C1) 4.0000e+00
Copy/Past into the octave window.
Minor=[
+3,+1;
+2,+2]
det(Minor)
Press return to continue.