text
stringlengths 0
211k
|
---|
double v[RU*C2] = {+1,+0,+0}; |
double **V = ca_A_mZ(v,i_mZ(RU,C1)); |
int c; |
clrscrn(); |
for(c=C0; c<TAB; c++) |
U[c] = ca_A_mZ( u[c],i_mZ(RU,C1)); |
c_c_mZ(U[c],C1, B,c+C1); |
printf(" Three U vectors in the Standard Basis \n\n" |
" U[0] U[1] U[2] :"); |
p_mZ(B,S6,P0,S3,P0,C10); |
printf(" The V vector in the base U : "); |
p_mZ(V,S6,P0,S3,P0,C10); |
stop(); |
for(c=C0; c<TAB; c++) |
f_mZ(U[c]); |
f_mZ(B); |
f_mZ(V); |
/* ------------------------------------ */ |
int main(void) |
fun(); |
return 0; |
/* ------------------------------------ */ |
Introduction du vecteur V. |
Exemple de sortie écran : |
Three U vectors in the Standard Basis |
U[0] U[1] U[2] : |
+2 +3i +1 +2i +4 +1i |
+2 +5i +5 +2i +3 +2i |
+6 +1i +3 +3i +2 +3i |
The V vector in the base U : |
+1 +0i |
+0 +0i |
+0 +0i |
Press return to continue. |
Mathc complexes/a185 |
Application |
Installer et compiler ce fichier dans votre répertoire de travail. |
/* ------------------------------------ */ |
/* Save as : c00a.c */ |
/* ------------------------------------ */ |
/* ------------------------------------ */ |
void fun(void) |
double u[TAB][RU*C2]=; |
double **U[TAB]; |
double **B = i_mZ(RU,RU); |
double v[RU*C2] = {+1,0, +0,0, +0,0}; |
double **V = ca_A_mZ(v,i_mZ(RU,C1)); |
double **BV = i_mZ(RU,C1); |
int c; |
clrscrn(); |
for(c=C0; c<TAB; c++) |
U[c] = ca_A_mZ( u[c],i_mZ(RU,C1)); |
c_c_mZ(U[c],C1, B,c+C1); |
printf(" Three U vectors in the Standard Basis \n\n" |
" U[0] U[1] U[2] :"); |
p_mZ(B,S6,P0,S3,P0,C10); |
printf(" The V vector in the base U : "); |
p_mZ(V,S6,P0,S3,P0,C10); |
printf(" Find the coordinate of V into the standard basis"); |
mul_mZ(B,V,BV); |
p_mZ(BV,S6,P0,S3,P0,C10); |
stop(); |
for(c=C0; c<TAB; c++) |
f_mZ(U[c]); |
f_mZ(B); |
f_mZ(V); |
f_mZ(BV); |
/* ------------------------------------ */ |
int main(void) |
fun(); |
return 0; |
/* ------------------------------------ */ |
Introduction du vecteur V. |
Exemple de sortie écran : |
Three U vectors in the Standard Basis |
U[0] U[1] U[2] : |
+2 +3i +1 +2i +4 +1i |
+2 +5i +5 +2i +3 +2i |
+6 +1i +3 +3i +2 +3i |
The V vector in the base U : |
+1 +0i |
+0 +0i |
+0 +0i |
Find the coordinate of V into the standard basis |
+2 +3i |
+2 +5i |
+6 +1i |
Press return to continue. |
Mathc complexes/a186 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.