Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'median_relative_size_after_cropping', 'spacings', 'foreground_intensity_properties_per_channel', 'shapes_after_crop'}) and 12 missing columns ({'labels', 'reference', 'training', 'channel_names', 'name', 'numTraining', 'description', 'release', 'numTest', 'tensorImageSize', 'licence', 'file_ending'}). This happened while the json dataset builder was generating data using hf://datasets/KagglingFace/nnUNetPlans_3d_lowres_KiTS19/dataset_fingerprint.json (at revision 4b105883db2738f6c7b2fef349d2918c3a7e1610) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast foreground_intensity_properties_per_channel: struct<0: struct<max: double, mean: double, median: double, min: double, percentile_00_5: double, percentile_99_5: double, std: double>> child 0, 0: struct<max: double, mean: double, median: double, min: double, percentile_00_5: double, percentile_99_5: double, std: double> child 0, max: double child 1, mean: double child 2, median: double child 3, min: double child 4, percentile_00_5: double child 5, percentile_99_5: double child 6, std: double median_relative_size_after_cropping: double shapes_after_crop: list<item: list<item: int64>> child 0, item: list<item: int64> child 0, item: int64 spacings: list<item: list<item: double>> child 0, item: list<item: double> child 0, item: double to {'channel_names': {'0': Value(dtype='string', id=None)}, 'description': Value(dtype='string', id=None), 'file_ending': Value(dtype='string', id=None), 'labels': {'Kidney': Value(dtype='string', id=None), 'Tumor': Value(dtype='string', id=None), 'background': Value(dtype='string', id=None)}, 'licence': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None), 'numTest': Value(dtype='int64', id=None), 'numTraining': Value(dtype='int64', id=None), 'reference': Value(dtype='string', id=None), 'release': Value(dtype='string', id=None), 'tensorImageSize': Value(dtype='string', id=None), 'training': [{'image': Value(dtype='string', id=None), 'label': Value(dtype='string', id=None)}]} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'median_relative_size_after_cropping', 'spacings', 'foreground_intensity_properties_per_channel', 'shapes_after_crop'}) and 12 missing columns ({'labels', 'reference', 'training', 'channel_names', 'name', 'numTraining', 'description', 'release', 'numTest', 'tensorImageSize', 'licence', 'file_ending'}). This happened while the json dataset builder was generating data using hf://datasets/KagglingFace/nnUNetPlans_3d_lowres_KiTS19/dataset_fingerprint.json (at revision 4b105883db2738f6c7b2fef349d2918c3a7e1610) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
channel_names
dict | description
string | file_ending
string | labels
dict | licence
string | name
string | numTest
int64 | numTraining
int64 | reference
string | release
string | tensorImageSize
string | training
list | foreground_intensity_properties_per_channel
dict | median_relative_size_after_cropping
float64 | shapes_after_crop
sequence | spacings
sequence | dataset_name
string | plans_name
string | original_median_spacing_after_transp
sequence | original_median_shape_after_transp
sequence | image_reader_writer
string | transpose_forward
sequence | transpose_backward
sequence | configurations
dict | experiment_planner_used
string | label_manager
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{
"0": "CT"
} | kidney and kidney tumor segmentation | .nii.gz | {
"Kidney": "1",
"Tumor": "2",
"background": "0"
} | KiTS | 0 | 210 | KiTS data for nnunet | 0.0 | 4D | [
{
"image": "./imagesTr/case_00000.nii.gz",
"label": "./labelsTr/case_00000.nii.gz"
},
{
"image": "./imagesTr/case_00001.nii.gz",
"label": "./labelsTr/case_00001.nii.gz"
},
{
"image": "./imagesTr/case_00002.nii.gz",
"label": "./labelsTr/case_00002.nii.gz"
},
{
"image": "./imagesTr/case_00003.nii.gz",
"label": "./labelsTr/case_00003.nii.gz"
},
{
"image": "./imagesTr/case_00004.nii.gz",
"label": "./labelsTr/case_00004.nii.gz"
},
{
"image": "./imagesTr/case_00005.nii.gz",
"label": "./labelsTr/case_00005.nii.gz"
},
{
"image": "./imagesTr/case_00006.nii.gz",
"label": "./labelsTr/case_00006.nii.gz"
},
{
"image": "./imagesTr/case_00007.nii.gz",
"label": "./labelsTr/case_00007.nii.gz"
},
{
"image": "./imagesTr/case_00008.nii.gz",
"label": "./labelsTr/case_00008.nii.gz"
},
{
"image": "./imagesTr/case_00009.nii.gz",
"label": "./labelsTr/case_00009.nii.gz"
},
{
"image": "./imagesTr/case_00010.nii.gz",
"label": "./labelsTr/case_00010.nii.gz"
},
{
"image": "./imagesTr/case_00011.nii.gz",
"label": "./labelsTr/case_00011.nii.gz"
},
{
"image": "./imagesTr/case_00012.nii.gz",
"label": "./labelsTr/case_00012.nii.gz"
},
{
"image": "./imagesTr/case_00013.nii.gz",
"label": "./labelsTr/case_00013.nii.gz"
},
{
"image": "./imagesTr/case_00014.nii.gz",
"label": "./labelsTr/case_00014.nii.gz"
},
{
"image": "./imagesTr/case_00015.nii.gz",
"label": "./labelsTr/case_00015.nii.gz"
},
{
"image": "./imagesTr/case_00016.nii.gz",
"label": "./labelsTr/case_00016.nii.gz"
},
{
"image": "./imagesTr/case_00017.nii.gz",
"label": "./labelsTr/case_00017.nii.gz"
},
{
"image": "./imagesTr/case_00018.nii.gz",
"label": "./labelsTr/case_00018.nii.gz"
},
{
"image": "./imagesTr/case_00019.nii.gz",
"label": "./labelsTr/case_00019.nii.gz"
},
{
"image": "./imagesTr/case_00020.nii.gz",
"label": "./labelsTr/case_00020.nii.gz"
},
{
"image": "./imagesTr/case_00021.nii.gz",
"label": "./labelsTr/case_00021.nii.gz"
},
{
"image": "./imagesTr/case_00022.nii.gz",
"label": "./labelsTr/case_00022.nii.gz"
},
{
"image": "./imagesTr/case_00023.nii.gz",
"label": "./labelsTr/case_00023.nii.gz"
},
{
"image": "./imagesTr/case_00024.nii.gz",
"label": "./labelsTr/case_00024.nii.gz"
},
{
"image": "./imagesTr/case_00025.nii.gz",
"label": "./labelsTr/case_00025.nii.gz"
},
{
"image": "./imagesTr/case_00026.nii.gz",
"label": "./labelsTr/case_00026.nii.gz"
},
{
"image": "./imagesTr/case_00027.nii.gz",
"label": "./labelsTr/case_00027.nii.gz"
},
{
"image": "./imagesTr/case_00028.nii.gz",
"label": "./labelsTr/case_00028.nii.gz"
},
{
"image": "./imagesTr/case_00029.nii.gz",
"label": "./labelsTr/case_00029.nii.gz"
},
{
"image": "./imagesTr/case_00030.nii.gz",
"label": "./labelsTr/case_00030.nii.gz"
},
{
"image": "./imagesTr/case_00031.nii.gz",
"label": "./labelsTr/case_00031.nii.gz"
},
{
"image": "./imagesTr/case_00032.nii.gz",
"label": "./labelsTr/case_00032.nii.gz"
},
{
"image": "./imagesTr/case_00033.nii.gz",
"label": "./labelsTr/case_00033.nii.gz"
},
{
"image": "./imagesTr/case_00034.nii.gz",
"label": "./labelsTr/case_00034.nii.gz"
},
{
"image": "./imagesTr/case_00035.nii.gz",
"label": "./labelsTr/case_00035.nii.gz"
},
{
"image": "./imagesTr/case_00036.nii.gz",
"label": "./labelsTr/case_00036.nii.gz"
},
{
"image": "./imagesTr/case_00037.nii.gz",
"label": "./labelsTr/case_00037.nii.gz"
},
{
"image": "./imagesTr/case_00038.nii.gz",
"label": "./labelsTr/case_00038.nii.gz"
},
{
"image": "./imagesTr/case_00039.nii.gz",
"label": "./labelsTr/case_00039.nii.gz"
},
{
"image": "./imagesTr/case_00040.nii.gz",
"label": "./labelsTr/case_00040.nii.gz"
},
{
"image": "./imagesTr/case_00041.nii.gz",
"label": "./labelsTr/case_00041.nii.gz"
},
{
"image": "./imagesTr/case_00042.nii.gz",
"label": "./labelsTr/case_00042.nii.gz"
},
{
"image": "./imagesTr/case_00043.nii.gz",
"label": "./labelsTr/case_00043.nii.gz"
},
{
"image": "./imagesTr/case_00044.nii.gz",
"label": "./labelsTr/case_00044.nii.gz"
},
{
"image": "./imagesTr/case_00045.nii.gz",
"label": "./labelsTr/case_00045.nii.gz"
},
{
"image": "./imagesTr/case_00046.nii.gz",
"label": "./labelsTr/case_00046.nii.gz"
},
{
"image": "./imagesTr/case_00047.nii.gz",
"label": "./labelsTr/case_00047.nii.gz"
},
{
"image": "./imagesTr/case_00048.nii.gz",
"label": "./labelsTr/case_00048.nii.gz"
},
{
"image": "./imagesTr/case_00049.nii.gz",
"label": "./labelsTr/case_00049.nii.gz"
},
{
"image": "./imagesTr/case_00050.nii.gz",
"label": "./labelsTr/case_00050.nii.gz"
},
{
"image": "./imagesTr/case_00051.nii.gz",
"label": "./labelsTr/case_00051.nii.gz"
},
{
"image": "./imagesTr/case_00052.nii.gz",
"label": "./labelsTr/case_00052.nii.gz"
},
{
"image": "./imagesTr/case_00053.nii.gz",
"label": "./labelsTr/case_00053.nii.gz"
},
{
"image": "./imagesTr/case_00054.nii.gz",
"label": "./labelsTr/case_00054.nii.gz"
},
{
"image": "./imagesTr/case_00055.nii.gz",
"label": "./labelsTr/case_00055.nii.gz"
},
{
"image": "./imagesTr/case_00056.nii.gz",
"label": "./labelsTr/case_00056.nii.gz"
},
{
"image": "./imagesTr/case_00057.nii.gz",
"label": "./labelsTr/case_00057.nii.gz"
},
{
"image": "./imagesTr/case_00058.nii.gz",
"label": "./labelsTr/case_00058.nii.gz"
},
{
"image": "./imagesTr/case_00059.nii.gz",
"label": "./labelsTr/case_00059.nii.gz"
},
{
"image": "./imagesTr/case_00060.nii.gz",
"label": "./labelsTr/case_00060.nii.gz"
},
{
"image": "./imagesTr/case_00061.nii.gz",
"label": "./labelsTr/case_00061.nii.gz"
},
{
"image": "./imagesTr/case_00062.nii.gz",
"label": "./labelsTr/case_00062.nii.gz"
},
{
"image": "./imagesTr/case_00063.nii.gz",
"label": "./labelsTr/case_00063.nii.gz"
},
{
"image": "./imagesTr/case_00064.nii.gz",
"label": "./labelsTr/case_00064.nii.gz"
},
{
"image": "./imagesTr/case_00065.nii.gz",
"label": "./labelsTr/case_00065.nii.gz"
},
{
"image": "./imagesTr/case_00066.nii.gz",
"label": "./labelsTr/case_00066.nii.gz"
},
{
"image": "./imagesTr/case_00067.nii.gz",
"label": "./labelsTr/case_00067.nii.gz"
},
{
"image": "./imagesTr/case_00068.nii.gz",
"label": "./labelsTr/case_00068.nii.gz"
},
{
"image": "./imagesTr/case_00069.nii.gz",
"label": "./labelsTr/case_00069.nii.gz"
},
{
"image": "./imagesTr/case_00070.nii.gz",
"label": "./labelsTr/case_00070.nii.gz"
},
{
"image": "./imagesTr/case_00071.nii.gz",
"label": "./labelsTr/case_00071.nii.gz"
},
{
"image": "./imagesTr/case_00072.nii.gz",
"label": "./labelsTr/case_00072.nii.gz"
},
{
"image": "./imagesTr/case_00073.nii.gz",
"label": "./labelsTr/case_00073.nii.gz"
},
{
"image": "./imagesTr/case_00074.nii.gz",
"label": "./labelsTr/case_00074.nii.gz"
},
{
"image": "./imagesTr/case_00075.nii.gz",
"label": "./labelsTr/case_00075.nii.gz"
},
{
"image": "./imagesTr/case_00076.nii.gz",
"label": "./labelsTr/case_00076.nii.gz"
},
{
"image": "./imagesTr/case_00077.nii.gz",
"label": "./labelsTr/case_00077.nii.gz"
},
{
"image": "./imagesTr/case_00078.nii.gz",
"label": "./labelsTr/case_00078.nii.gz"
},
{
"image": "./imagesTr/case_00079.nii.gz",
"label": "./labelsTr/case_00079.nii.gz"
},
{
"image": "./imagesTr/case_00080.nii.gz",
"label": "./labelsTr/case_00080.nii.gz"
},
{
"image": "./imagesTr/case_00081.nii.gz",
"label": "./labelsTr/case_00081.nii.gz"
},
{
"image": "./imagesTr/case_00082.nii.gz",
"label": "./labelsTr/case_00082.nii.gz"
},
{
"image": "./imagesTr/case_00083.nii.gz",
"label": "./labelsTr/case_00083.nii.gz"
},
{
"image": "./imagesTr/case_00084.nii.gz",
"label": "./labelsTr/case_00084.nii.gz"
},
{
"image": "./imagesTr/case_00085.nii.gz",
"label": "./labelsTr/case_00085.nii.gz"
},
{
"image": "./imagesTr/case_00086.nii.gz",
"label": "./labelsTr/case_00086.nii.gz"
},
{
"image": "./imagesTr/case_00087.nii.gz",
"label": "./labelsTr/case_00087.nii.gz"
},
{
"image": "./imagesTr/case_00088.nii.gz",
"label": "./labelsTr/case_00088.nii.gz"
},
{
"image": "./imagesTr/case_00089.nii.gz",
"label": "./labelsTr/case_00089.nii.gz"
},
{
"image": "./imagesTr/case_00090.nii.gz",
"label": "./labelsTr/case_00090.nii.gz"
},
{
"image": "./imagesTr/case_00091.nii.gz",
"label": "./labelsTr/case_00091.nii.gz"
},
{
"image": "./imagesTr/case_00092.nii.gz",
"label": "./labelsTr/case_00092.nii.gz"
},
{
"image": "./imagesTr/case_00093.nii.gz",
"label": "./labelsTr/case_00093.nii.gz"
},
{
"image": "./imagesTr/case_00094.nii.gz",
"label": "./labelsTr/case_00094.nii.gz"
},
{
"image": "./imagesTr/case_00095.nii.gz",
"label": "./labelsTr/case_00095.nii.gz"
},
{
"image": "./imagesTr/case_00096.nii.gz",
"label": "./labelsTr/case_00096.nii.gz"
},
{
"image": "./imagesTr/case_00097.nii.gz",
"label": "./labelsTr/case_00097.nii.gz"
},
{
"image": "./imagesTr/case_00098.nii.gz",
"label": "./labelsTr/case_00098.nii.gz"
},
{
"image": "./imagesTr/case_00099.nii.gz",
"label": "./labelsTr/case_00099.nii.gz"
},
{
"image": "./imagesTr/case_00100.nii.gz",
"label": "./labelsTr/case_00100.nii.gz"
},
{
"image": "./imagesTr/case_00101.nii.gz",
"label": "./labelsTr/case_00101.nii.gz"
},
{
"image": "./imagesTr/case_00102.nii.gz",
"label": "./labelsTr/case_00102.nii.gz"
},
{
"image": "./imagesTr/case_00103.nii.gz",
"label": "./labelsTr/case_00103.nii.gz"
},
{
"image": "./imagesTr/case_00104.nii.gz",
"label": "./labelsTr/case_00104.nii.gz"
},
{
"image": "./imagesTr/case_00105.nii.gz",
"label": "./labelsTr/case_00105.nii.gz"
},
{
"image": "./imagesTr/case_00106.nii.gz",
"label": "./labelsTr/case_00106.nii.gz"
},
{
"image": "./imagesTr/case_00107.nii.gz",
"label": "./labelsTr/case_00107.nii.gz"
},
{
"image": "./imagesTr/case_00108.nii.gz",
"label": "./labelsTr/case_00108.nii.gz"
},
{
"image": "./imagesTr/case_00109.nii.gz",
"label": "./labelsTr/case_00109.nii.gz"
},
{
"image": "./imagesTr/case_00110.nii.gz",
"label": "./labelsTr/case_00110.nii.gz"
},
{
"image": "./imagesTr/case_00111.nii.gz",
"label": "./labelsTr/case_00111.nii.gz"
},
{
"image": "./imagesTr/case_00112.nii.gz",
"label": "./labelsTr/case_00112.nii.gz"
},
{
"image": "./imagesTr/case_00113.nii.gz",
"label": "./labelsTr/case_00113.nii.gz"
},
{
"image": "./imagesTr/case_00114.nii.gz",
"label": "./labelsTr/case_00114.nii.gz"
},
{
"image": "./imagesTr/case_00115.nii.gz",
"label": "./labelsTr/case_00115.nii.gz"
},
{
"image": "./imagesTr/case_00116.nii.gz",
"label": "./labelsTr/case_00116.nii.gz"
},
{
"image": "./imagesTr/case_00117.nii.gz",
"label": "./labelsTr/case_00117.nii.gz"
},
{
"image": "./imagesTr/case_00118.nii.gz",
"label": "./labelsTr/case_00118.nii.gz"
},
{
"image": "./imagesTr/case_00119.nii.gz",
"label": "./labelsTr/case_00119.nii.gz"
},
{
"image": "./imagesTr/case_00120.nii.gz",
"label": "./labelsTr/case_00120.nii.gz"
},
{
"image": "./imagesTr/case_00121.nii.gz",
"label": "./labelsTr/case_00121.nii.gz"
},
{
"image": "./imagesTr/case_00122.nii.gz",
"label": "./labelsTr/case_00122.nii.gz"
},
{
"image": "./imagesTr/case_00123.nii.gz",
"label": "./labelsTr/case_00123.nii.gz"
},
{
"image": "./imagesTr/case_00124.nii.gz",
"label": "./labelsTr/case_00124.nii.gz"
},
{
"image": "./imagesTr/case_00125.nii.gz",
"label": "./labelsTr/case_00125.nii.gz"
},
{
"image": "./imagesTr/case_00126.nii.gz",
"label": "./labelsTr/case_00126.nii.gz"
},
{
"image": "./imagesTr/case_00127.nii.gz",
"label": "./labelsTr/case_00127.nii.gz"
},
{
"image": "./imagesTr/case_00128.nii.gz",
"label": "./labelsTr/case_00128.nii.gz"
},
{
"image": "./imagesTr/case_00129.nii.gz",
"label": "./labelsTr/case_00129.nii.gz"
},
{
"image": "./imagesTr/case_00130.nii.gz",
"label": "./labelsTr/case_00130.nii.gz"
},
{
"image": "./imagesTr/case_00131.nii.gz",
"label": "./labelsTr/case_00131.nii.gz"
},
{
"image": "./imagesTr/case_00132.nii.gz",
"label": "./labelsTr/case_00132.nii.gz"
},
{
"image": "./imagesTr/case_00133.nii.gz",
"label": "./labelsTr/case_00133.nii.gz"
},
{
"image": "./imagesTr/case_00134.nii.gz",
"label": "./labelsTr/case_00134.nii.gz"
},
{
"image": "./imagesTr/case_00135.nii.gz",
"label": "./labelsTr/case_00135.nii.gz"
},
{
"image": "./imagesTr/case_00136.nii.gz",
"label": "./labelsTr/case_00136.nii.gz"
},
{
"image": "./imagesTr/case_00137.nii.gz",
"label": "./labelsTr/case_00137.nii.gz"
},
{
"image": "./imagesTr/case_00138.nii.gz",
"label": "./labelsTr/case_00138.nii.gz"
},
{
"image": "./imagesTr/case_00139.nii.gz",
"label": "./labelsTr/case_00139.nii.gz"
},
{
"image": "./imagesTr/case_00140.nii.gz",
"label": "./labelsTr/case_00140.nii.gz"
},
{
"image": "./imagesTr/case_00141.nii.gz",
"label": "./labelsTr/case_00141.nii.gz"
},
{
"image": "./imagesTr/case_00142.nii.gz",
"label": "./labelsTr/case_00142.nii.gz"
},
{
"image": "./imagesTr/case_00143.nii.gz",
"label": "./labelsTr/case_00143.nii.gz"
},
{
"image": "./imagesTr/case_00144.nii.gz",
"label": "./labelsTr/case_00144.nii.gz"
},
{
"image": "./imagesTr/case_00145.nii.gz",
"label": "./labelsTr/case_00145.nii.gz"
},
{
"image": "./imagesTr/case_00146.nii.gz",
"label": "./labelsTr/case_00146.nii.gz"
},
{
"image": "./imagesTr/case_00147.nii.gz",
"label": "./labelsTr/case_00147.nii.gz"
},
{
"image": "./imagesTr/case_00148.nii.gz",
"label": "./labelsTr/case_00148.nii.gz"
},
{
"image": "./imagesTr/case_00149.nii.gz",
"label": "./labelsTr/case_00149.nii.gz"
},
{
"image": "./imagesTr/case_00150.nii.gz",
"label": "./labelsTr/case_00150.nii.gz"
},
{
"image": "./imagesTr/case_00151.nii.gz",
"label": "./labelsTr/case_00151.nii.gz"
},
{
"image": "./imagesTr/case_00152.nii.gz",
"label": "./labelsTr/case_00152.nii.gz"
},
{
"image": "./imagesTr/case_00153.nii.gz",
"label": "./labelsTr/case_00153.nii.gz"
},
{
"image": "./imagesTr/case_00154.nii.gz",
"label": "./labelsTr/case_00154.nii.gz"
},
{
"image": "./imagesTr/case_00155.nii.gz",
"label": "./labelsTr/case_00155.nii.gz"
},
{
"image": "./imagesTr/case_00156.nii.gz",
"label": "./labelsTr/case_00156.nii.gz"
},
{
"image": "./imagesTr/case_00157.nii.gz",
"label": "./labelsTr/case_00157.nii.gz"
},
{
"image": "./imagesTr/case_00158.nii.gz",
"label": "./labelsTr/case_00158.nii.gz"
},
{
"image": "./imagesTr/case_00159.nii.gz",
"label": "./labelsTr/case_00159.nii.gz"
},
{
"image": "./imagesTr/case_00160.nii.gz",
"label": "./labelsTr/case_00160.nii.gz"
},
{
"image": "./imagesTr/case_00161.nii.gz",
"label": "./labelsTr/case_00161.nii.gz"
},
{
"image": "./imagesTr/case_00162.nii.gz",
"label": "./labelsTr/case_00162.nii.gz"
},
{
"image": "./imagesTr/case_00163.nii.gz",
"label": "./labelsTr/case_00163.nii.gz"
},
{
"image": "./imagesTr/case_00164.nii.gz",
"label": "./labelsTr/case_00164.nii.gz"
},
{
"image": "./imagesTr/case_00165.nii.gz",
"label": "./labelsTr/case_00165.nii.gz"
},
{
"image": "./imagesTr/case_00166.nii.gz",
"label": "./labelsTr/case_00166.nii.gz"
},
{
"image": "./imagesTr/case_00167.nii.gz",
"label": "./labelsTr/case_00167.nii.gz"
},
{
"image": "./imagesTr/case_00168.nii.gz",
"label": "./labelsTr/case_00168.nii.gz"
},
{
"image": "./imagesTr/case_00169.nii.gz",
"label": "./labelsTr/case_00169.nii.gz"
},
{
"image": "./imagesTr/case_00170.nii.gz",
"label": "./labelsTr/case_00170.nii.gz"
},
{
"image": "./imagesTr/case_00171.nii.gz",
"label": "./labelsTr/case_00171.nii.gz"
},
{
"image": "./imagesTr/case_00172.nii.gz",
"label": "./labelsTr/case_00172.nii.gz"
},
{
"image": "./imagesTr/case_00173.nii.gz",
"label": "./labelsTr/case_00173.nii.gz"
},
{
"image": "./imagesTr/case_00174.nii.gz",
"label": "./labelsTr/case_00174.nii.gz"
},
{
"image": "./imagesTr/case_00175.nii.gz",
"label": "./labelsTr/case_00175.nii.gz"
},
{
"image": "./imagesTr/case_00176.nii.gz",
"label": "./labelsTr/case_00176.nii.gz"
},
{
"image": "./imagesTr/case_00177.nii.gz",
"label": "./labelsTr/case_00177.nii.gz"
},
{
"image": "./imagesTr/case_00178.nii.gz",
"label": "./labelsTr/case_00178.nii.gz"
},
{
"image": "./imagesTr/case_00179.nii.gz",
"label": "./labelsTr/case_00179.nii.gz"
},
{
"image": "./imagesTr/case_00180.nii.gz",
"label": "./labelsTr/case_00180.nii.gz"
},
{
"image": "./imagesTr/case_00181.nii.gz",
"label": "./labelsTr/case_00181.nii.gz"
},
{
"image": "./imagesTr/case_00182.nii.gz",
"label": "./labelsTr/case_00182.nii.gz"
},
{
"image": "./imagesTr/case_00183.nii.gz",
"label": "./labelsTr/case_00183.nii.gz"
},
{
"image": "./imagesTr/case_00184.nii.gz",
"label": "./labelsTr/case_00184.nii.gz"
},
{
"image": "./imagesTr/case_00185.nii.gz",
"label": "./labelsTr/case_00185.nii.gz"
},
{
"image": "./imagesTr/case_00186.nii.gz",
"label": "./labelsTr/case_00186.nii.gz"
},
{
"image": "./imagesTr/case_00187.nii.gz",
"label": "./labelsTr/case_00187.nii.gz"
},
{
"image": "./imagesTr/case_00188.nii.gz",
"label": "./labelsTr/case_00188.nii.gz"
},
{
"image": "./imagesTr/case_00189.nii.gz",
"label": "./labelsTr/case_00189.nii.gz"
},
{
"image": "./imagesTr/case_00190.nii.gz",
"label": "./labelsTr/case_00190.nii.gz"
},
{
"image": "./imagesTr/case_00191.nii.gz",
"label": "./labelsTr/case_00191.nii.gz"
},
{
"image": "./imagesTr/case_00192.nii.gz",
"label": "./labelsTr/case_00192.nii.gz"
},
{
"image": "./imagesTr/case_00193.nii.gz",
"label": "./labelsTr/case_00193.nii.gz"
},
{
"image": "./imagesTr/case_00194.nii.gz",
"label": "./labelsTr/case_00194.nii.gz"
},
{
"image": "./imagesTr/case_00195.nii.gz",
"label": "./labelsTr/case_00195.nii.gz"
},
{
"image": "./imagesTr/case_00196.nii.gz",
"label": "./labelsTr/case_00196.nii.gz"
},
{
"image": "./imagesTr/case_00197.nii.gz",
"label": "./labelsTr/case_00197.nii.gz"
},
{
"image": "./imagesTr/case_00198.nii.gz",
"label": "./labelsTr/case_00198.nii.gz"
},
{
"image": "./imagesTr/case_00199.nii.gz",
"label": "./labelsTr/case_00199.nii.gz"
},
{
"image": "./imagesTr/case_00200.nii.gz",
"label": "./labelsTr/case_00200.nii.gz"
},
{
"image": "./imagesTr/case_00201.nii.gz",
"label": "./labelsTr/case_00201.nii.gz"
},
{
"image": "./imagesTr/case_00202.nii.gz",
"label": "./labelsTr/case_00202.nii.gz"
},
{
"image": "./imagesTr/case_00203.nii.gz",
"label": "./labelsTr/case_00203.nii.gz"
},
{
"image": "./imagesTr/case_00204.nii.gz",
"label": "./labelsTr/case_00204.nii.gz"
},
{
"image": "./imagesTr/case_00205.nii.gz",
"label": "./labelsTr/case_00205.nii.gz"
},
{
"image": "./imagesTr/case_00206.nii.gz",
"label": "./labelsTr/case_00206.nii.gz"
},
{
"image": "./imagesTr/case_00207.nii.gz",
"label": "./labelsTr/case_00207.nii.gz"
},
{
"image": "./imagesTr/case_00208.nii.gz",
"label": "./labelsTr/case_00208.nii.gz"
},
{
"image": "./imagesTr/case_00209.nii.gz",
"label": "./labelsTr/case_00209.nii.gz"
},
{
"image": "./imagesTr/case_00210.nii.gz",
"label": "./labelsTr/case_00210.nii.gz"
},
{
"image": "./imagesTr/case_00211.nii.gz",
"label": "./labelsTr/case_00211.nii.gz"
},
{
"image": "./imagesTr/case_00212.nii.gz",
"label": "./labelsTr/case_00212.nii.gz"
},
{
"image": "./imagesTr/case_00213.nii.gz",
"label": "./labelsTr/case_00213.nii.gz"
},
{
"image": "./imagesTr/case_00214.nii.gz",
"label": "./labelsTr/case_00214.nii.gz"
},
{
"image": "./imagesTr/case_00215.nii.gz",
"label": "./labelsTr/case_00215.nii.gz"
},
{
"image": "./imagesTr/case_00216.nii.gz",
"label": "./labelsTr/case_00216.nii.gz"
},
{
"image": "./imagesTr/case_00217.nii.gz",
"label": "./labelsTr/case_00217.nii.gz"
},
{
"image": "./imagesTr/case_00218.nii.gz",
"label": "./labelsTr/case_00218.nii.gz"
},
{
"image": "./imagesTr/case_00219.nii.gz",
"label": "./labelsTr/case_00219.nii.gz"
},
{
"image": "./imagesTr/case_00220.nii.gz",
"label": "./labelsTr/case_00220.nii.gz"
},
{
"image": "./imagesTr/case_00221.nii.gz",
"label": "./labelsTr/case_00221.nii.gz"
},
{
"image": "./imagesTr/case_00222.nii.gz",
"label": "./labelsTr/case_00222.nii.gz"
},
{
"image": "./imagesTr/case_00223.nii.gz",
"label": "./labelsTr/case_00223.nii.gz"
},
{
"image": "./imagesTr/case_00224.nii.gz",
"label": "./labelsTr/case_00224.nii.gz"
},
{
"image": "./imagesTr/case_00225.nii.gz",
"label": "./labelsTr/case_00225.nii.gz"
},
{
"image": "./imagesTr/case_00226.nii.gz",
"label": "./labelsTr/case_00226.nii.gz"
},
{
"image": "./imagesTr/case_00227.nii.gz",
"label": "./labelsTr/case_00227.nii.gz"
},
{
"image": "./imagesTr/case_00228.nii.gz",
"label": "./labelsTr/case_00228.nii.gz"
},
{
"image": "./imagesTr/case_00229.nii.gz",
"label": "./labelsTr/case_00229.nii.gz"
},
{
"image": "./imagesTr/case_00230.nii.gz",
"label": "./labelsTr/case_00230.nii.gz"
},
{
"image": "./imagesTr/case_00231.nii.gz",
"label": "./labelsTr/case_00231.nii.gz"
},
{
"image": "./imagesTr/case_00232.nii.gz",
"label": "./labelsTr/case_00232.nii.gz"
},
{
"image": "./imagesTr/case_00233.nii.gz",
"label": "./labelsTr/case_00233.nii.gz"
},
{
"image": "./imagesTr/case_00234.nii.gz",
"label": "./labelsTr/case_00234.nii.gz"
},
{
"image": "./imagesTr/case_00235.nii.gz",
"label": "./labelsTr/case_00235.nii.gz"
},
{
"image": "./imagesTr/case_00236.nii.gz",
"label": "./labelsTr/case_00236.nii.gz"
},
{
"image": "./imagesTr/case_00237.nii.gz",
"label": "./labelsTr/case_00237.nii.gz"
},
{
"image": "./imagesTr/case_00238.nii.gz",
"label": "./labelsTr/case_00238.nii.gz"
},
{
"image": "./imagesTr/case_00239.nii.gz",
"label": "./labelsTr/case_00239.nii.gz"
},
{
"image": "./imagesTr/case_00240.nii.gz",
"label": "./labelsTr/case_00240.nii.gz"
},
{
"image": "./imagesTr/case_00241.nii.gz",
"label": "./labelsTr/case_00241.nii.gz"
},
{
"image": "./imagesTr/case_00242.nii.gz",
"label": "./labelsTr/case_00242.nii.gz"
},
{
"image": "./imagesTr/case_00243.nii.gz",
"label": "./labelsTr/case_00243.nii.gz"
},
{
"image": "./imagesTr/case_00244.nii.gz",
"label": "./labelsTr/case_00244.nii.gz"
},
{
"image": "./imagesTr/case_00245.nii.gz",
"label": "./labelsTr/case_00245.nii.gz"
},
{
"image": "./imagesTr/case_00246.nii.gz",
"label": "./labelsTr/case_00246.nii.gz"
},
{
"image": "./imagesTr/case_00247.nii.gz",
"label": "./labelsTr/case_00247.nii.gz"
},
{
"image": "./imagesTr/case_00248.nii.gz",
"label": "./labelsTr/case_00248.nii.gz"
},
{
"image": "./imagesTr/case_00249.nii.gz",
"label": "./labelsTr/case_00249.nii.gz"
},
{
"image": "./imagesTr/case_00250.nii.gz",
"label": "./labelsTr/case_00250.nii.gz"
},
{
"image": "./imagesTr/case_00251.nii.gz",
"label": "./labelsTr/case_00251.nii.gz"
},
{
"image": "./imagesTr/case_00252.nii.gz",
"label": "./labelsTr/case_00252.nii.gz"
},
{
"image": "./imagesTr/case_00253.nii.gz",
"label": "./labelsTr/case_00253.nii.gz"
},
{
"image": "./imagesTr/case_00254.nii.gz",
"label": "./labelsTr/case_00254.nii.gz"
},
{
"image": "./imagesTr/case_00255.nii.gz",
"label": "./labelsTr/case_00255.nii.gz"
},
{
"image": "./imagesTr/case_00256.nii.gz",
"label": "./labelsTr/case_00256.nii.gz"
},
{
"image": "./imagesTr/case_00257.nii.gz",
"label": "./labelsTr/case_00257.nii.gz"
},
{
"image": "./imagesTr/case_00258.nii.gz",
"label": "./labelsTr/case_00258.nii.gz"
},
{
"image": "./imagesTr/case_00259.nii.gz",
"label": "./labelsTr/case_00259.nii.gz"
},
{
"image": "./imagesTr/case_00260.nii.gz",
"label": "./labelsTr/case_00260.nii.gz"
},
{
"image": "./imagesTr/case_00261.nii.gz",
"label": "./labelsTr/case_00261.nii.gz"
},
{
"image": "./imagesTr/case_00262.nii.gz",
"label": "./labelsTr/case_00262.nii.gz"
},
{
"image": "./imagesTr/case_00263.nii.gz",
"label": "./labelsTr/case_00263.nii.gz"
},
{
"image": "./imagesTr/case_00264.nii.gz",
"label": "./labelsTr/case_00264.nii.gz"
},
{
"image": "./imagesTr/case_00265.nii.gz",
"label": "./labelsTr/case_00265.nii.gz"
},
{
"image": "./imagesTr/case_00266.nii.gz",
"label": "./labelsTr/case_00266.nii.gz"
},
{
"image": "./imagesTr/case_00267.nii.gz",
"label": "./labelsTr/case_00267.nii.gz"
},
{
"image": "./imagesTr/case_00268.nii.gz",
"label": "./labelsTr/case_00268.nii.gz"
},
{
"image": "./imagesTr/case_00269.nii.gz",
"label": "./labelsTr/case_00269.nii.gz"
},
{
"image": "./imagesTr/case_00270.nii.gz",
"label": "./labelsTr/case_00270.nii.gz"
},
{
"image": "./imagesTr/case_00271.nii.gz",
"label": "./labelsTr/case_00271.nii.gz"
},
{
"image": "./imagesTr/case_00272.nii.gz",
"label": "./labelsTr/case_00272.nii.gz"
},
{
"image": "./imagesTr/case_00273.nii.gz",
"label": "./labelsTr/case_00273.nii.gz"
},
{
"image": "./imagesTr/case_00274.nii.gz",
"label": "./labelsTr/case_00274.nii.gz"
},
{
"image": "./imagesTr/case_00275.nii.gz",
"label": "./labelsTr/case_00275.nii.gz"
},
{
"image": "./imagesTr/case_00276.nii.gz",
"label": "./labelsTr/case_00276.nii.gz"
},
{
"image": "./imagesTr/case_00277.nii.gz",
"label": "./labelsTr/case_00277.nii.gz"
},
{
"image": "./imagesTr/case_00278.nii.gz",
"label": "./labelsTr/case_00278.nii.gz"
},
{
"image": "./imagesTr/case_00279.nii.gz",
"label": "./labelsTr/case_00279.nii.gz"
},
{
"image": "./imagesTr/case_00280.nii.gz",
"label": "./labelsTr/case_00280.nii.gz"
},
{
"image": "./imagesTr/case_00281.nii.gz",
"label": "./labelsTr/case_00281.nii.gz"
},
{
"image": "./imagesTr/case_00282.nii.gz",
"label": "./labelsTr/case_00282.nii.gz"
},
{
"image": "./imagesTr/case_00283.nii.gz",
"label": "./labelsTr/case_00283.nii.gz"
},
{
"image": "./imagesTr/case_00284.nii.gz",
"label": "./labelsTr/case_00284.nii.gz"
},
{
"image": "./imagesTr/case_00285.nii.gz",
"label": "./labelsTr/case_00285.nii.gz"
},
{
"image": "./imagesTr/case_00286.nii.gz",
"label": "./labelsTr/case_00286.nii.gz"
},
{
"image": "./imagesTr/case_00287.nii.gz",
"label": "./labelsTr/case_00287.nii.gz"
},
{
"image": "./imagesTr/case_00288.nii.gz",
"label": "./labelsTr/case_00288.nii.gz"
},
{
"image": "./imagesTr/case_00289.nii.gz",
"label": "./labelsTr/case_00289.nii.gz"
},
{
"image": "./imagesTr/case_00290.nii.gz",
"label": "./labelsTr/case_00290.nii.gz"
},
{
"image": "./imagesTr/case_00291.nii.gz",
"label": "./labelsTr/case_00291.nii.gz"
},
{
"image": "./imagesTr/case_00292.nii.gz",
"label": "./labelsTr/case_00292.nii.gz"
},
{
"image": "./imagesTr/case_00293.nii.gz",
"label": "./labelsTr/case_00293.nii.gz"
},
{
"image": "./imagesTr/case_00294.nii.gz",
"label": "./labelsTr/case_00294.nii.gz"
},
{
"image": "./imagesTr/case_00295.nii.gz",
"label": "./labelsTr/case_00295.nii.gz"
},
{
"image": "./imagesTr/case_00296.nii.gz",
"label": "./labelsTr/case_00296.nii.gz"
},
{
"image": "./imagesTr/case_00297.nii.gz",
"label": "./labelsTr/case_00297.nii.gz"
},
{
"image": "./imagesTr/case_00298.nii.gz",
"label": "./labelsTr/case_00298.nii.gz"
},
{
"image": "./imagesTr/case_00299.nii.gz",
"label": "./labelsTr/case_00299.nii.gz"
}
] | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
|
null | null | null | null | null | null | null | null | null | null | null | null | {
"0": {
"max": 3071,
"mean": 102.5714111328125,
"median": 103,
"min": -1015,
"percentile_00_5": -75,
"percentile_99_5": 295,
"std": 73.64986419677734
}
} | 1 | [
[
512,
512,
611
],
[
512,
512,
602
],
[
512,
512,
261
],
[
512,
512,
270
],
[
512,
512,
64
],
[
512,
512,
834
],
[
512,
512,
157
],
[
512,
512,
61
],
[
512,
512,
227
],
[
512,
512,
77
],
[
512,
512,
50
],
[
512,
512,
80
],
[
512,
512,
89
],
[
512,
512,
92
],
[
512,
512,
439
],
[
512,
512,
75
],
[
512,
512,
178
],
[
512,
512,
97
],
[
512,
512,
121
],
[
512,
512,
129
],
[
512,
512,
96
],
[
512,
512,
38
],
[
512,
512,
541
],
[
512,
512,
107
],
[
512,
512,
85
],
[
512,
512,
103
],
[
512,
512,
302
],
[
512,
512,
723
],
[
512,
512,
98
],
[
512,
512,
131
],
[
512,
512,
38
],
[
512,
512,
117
],
[
512,
512,
189
],
[
512,
512,
423
],
[
512,
512,
110
],
[
512,
512,
98
],
[
512,
512,
163
],
[
512,
512,
97
],
[
512,
512,
32
],
[
512,
512,
90
],
[
512,
512,
207
],
[
512,
512,
52
],
[
512,
512,
301
],
[
512,
512,
172
],
[
512,
512,
101
],
[
512,
512,
62
],
[
512,
512,
159
],
[
512,
512,
142
],
[
512,
512,
85
],
[
512,
512,
670
],
[
512,
512,
96
],
[
512,
512,
68
],
[
512,
512,
673
],
[
512,
512,
553
],
[
512,
512,
104
],
[
512,
512,
101
],
[
512,
512,
90
],
[
512,
512,
80
],
[
512,
512,
103
],
[
512,
512,
738
],
[
512,
512,
145
],
[
512,
512,
29
],
[
512,
512,
86
],
[
512,
512,
527
],
[
512,
512,
53
],
[
512,
512,
103
],
[
512,
512,
445
],
[
512,
512,
285
],
[
512,
512,
626
],
[
512,
512,
90
],
[
512,
512,
57
],
[
512,
512,
612
],
[
512,
512,
164
],
[
512,
512,
145
],
[
512,
512,
80
],
[
512,
512,
90
],
[
512,
512,
66
],
[
512,
512,
88
],
[
512,
512,
326
],
[
512,
512,
124
],
[
512,
512,
88
],
[
512,
512,
151
],
[
512,
512,
129
],
[
512,
512,
94
],
[
512,
512,
274
],
[
512,
512,
87
],
[
512,
512,
199
],
[
512,
512,
49
],
[
512,
512,
99
],
[
512,
512,
55
],
[
512,
512,
76
],
[
512,
512,
735
],
[
512,
512,
98
],
[
512,
512,
787
],
[
512,
512,
43
],
[
512,
512,
314
],
[
512,
512,
683
],
[
512,
512,
85
],
[
512,
512,
234
],
[
512,
512,
105
],
[
512,
512,
470
],
[
512,
512,
512
],
[
512,
512,
316
],
[
512,
512,
665
],
[
512,
512,
114
],
[
512,
512,
153
],
[
512,
512,
102
],
[
512,
512,
84
],
[
512,
512,
51
],
[
512,
512,
76
],
[
512,
512,
34
],
[
512,
512,
186
],
[
512,
512,
113
],
[
512,
512,
43
],
[
512,
512,
304
],
[
512,
512,
325
],
[
512,
512,
433
],
[
512,
512,
69
],
[
512,
512,
673
],
[
512,
512,
91
],
[
512,
512,
285
],
[
512,
512,
79
],
[
512,
512,
50
],
[
512,
512,
389
],
[
512,
512,
262
],
[
512,
512,
171
],
[
512,
512,
107
],
[
512,
512,
105
],
[
512,
512,
206
],
[
512,
512,
48
],
[
512,
512,
53
],
[
512,
512,
159
],
[
512,
512,
532
],
[
512,
512,
186
],
[
512,
512,
61
],
[
512,
512,
634
],
[
512,
512,
101
],
[
512,
512,
109
],
[
512,
512,
76
],
[
512,
512,
103
],
[
512,
512,
279
],
[
512,
512,
581
],
[
512,
512,
274
],
[
512,
512,
92
],
[
512,
512,
197
],
[
512,
512,
86
],
[
512,
512,
591
],
[
512,
512,
70
],
[
512,
512,
36
],
[
512,
512,
97
],
[
512,
512,
106
],
[
512,
512,
1059
],
[
512,
512,
38
],
[
512,
512,
69
],
[
512,
512,
470
],
[
512,
512,
538
],
[
512,
512,
987
],
[
512,
512,
548
],
[
512,
512,
705
],
[
512,
512,
719
],
[
796,
512,
252
],
[
512,
512,
59
],
[
512,
512,
94
],
[
512,
512,
99
],
[
512,
512,
88
],
[
512,
512,
734
],
[
512,
512,
103
],
[
512,
512,
103
],
[
512,
512,
83
],
[
512,
512,
101
],
[
512,
512,
345
],
[
512,
512,
131
],
[
512,
512,
91
],
[
512,
512,
97
],
[
512,
512,
69
],
[
512,
512,
107
],
[
512,
512,
102
],
[
512,
512,
88
],
[
512,
512,
88
],
[
512,
512,
99
],
[
512,
512,
137
],
[
512,
512,
99
],
[
512,
512,
93
],
[
512,
512,
195
],
[
512,
512,
146
],
[
512,
512,
235
],
[
512,
512,
143
],
[
512,
512,
82
],
[
512,
512,
365
],
[
512,
512,
146
],
[
512,
512,
161
],
[
512,
512,
349
],
[
512,
512,
133
],
[
512,
512,
233
],
[
512,
512,
135
],
[
512,
512,
98
],
[
512,
512,
178
],
[
512,
512,
162
],
[
512,
512,
269
],
[
512,
512,
121
],
[
512,
512,
103
],
[
512,
512,
96
],
[
512,
512,
383
],
[
512,
512,
620
],
[
512,
512,
75
],
[
512,
512,
93
],
[
512,
512,
60
],
[
512,
512,
140
],
[
512,
512,
89
],
[
512,
512,
102
]
] | [
[
0.919921875,
0.919921875,
0.5
],
[
0.798828125,
0.798828125,
0.5
],
[
0.939453125,
0.939453125,
1
],
[
0.85546875,
0.85546875,
1
],
[
0.9765625,
0.9765625,
4
],
[
0.9765625,
0.9765625,
0.5
],
[
0.7421875,
0.7421875,
3
],
[
0.939453125,
0.939453125,
3
],
[
0.81640625,
0.81640625,
3
],
[
0.80859375,
0.80859375,
3
],
[
0.7578125,
0.7578125,
3
],
[
0.703125,
0.703125,
5
],
[
0.751953125,
0.751953125,
5
],
[
0.68359375,
0.68359375,
3
],
[
0.849609375,
0.849609375,
1
],
[
0.705078125,
0.705078125,
3
],
[
0.650390625,
0.650390625,
2.5
],
[
0.6640625,
0.6640625,
5
],
[
0.8613280057907104,
0.8613280057907104,
2.5
],
[
0.9375,
0.9375,
3.75
],
[
0.83984375,
0.83984375,
5
],
[
0.822265625,
0.822265625,
5
],
[
0.833984375,
0.833984375,
0.5
],
[
0.7820000052452087,
0.7820000052452087,
3
],
[
0.6640625,
0.6640625,
5
],
[
0.7363280057907104,
0.7363280057907104,
2.5
],
[
0.875,
0.875,
2.5
],
[
0.89453125,
0.89453125,
0.5
],
[
0.83984375,
0.83984375,
5
],
[
0.75390625,
0.75390625,
5
],
[
0.73046875,
0.73046875,
5
],
[
0.5180000066757202,
0.5180000066757202,
3
],
[
0.7792969942092896,
0.7792969942092896,
2.5
],
[
0.80859375,
0.80859375,
1
],
[
0.8359375,
0.8359375,
5
],
[
0.96484375,
0.96484375,
5
],
[
0.798828125,
0.798828125,
3
],
[
0.9375,
0.9375,
5
],
[
0.779296875,
0.779296875,
5
],
[
0.703125,
0.703125,
5
],
[
0.7409999966621399,
0.7409999966621399,
2
],
[
0.677734375,
0.677734375,
3
],
[
0.859375,
0.859375,
1
],
[
0.7379999756813049,
0.7379999756813049,
3
],
[
0.966796875,
0.966796875,
5
],
[
0.7409999966621399,
0.7409999966621399,
3
],
[
0.9765625,
0.9765625,
3
],
[
0.85546875,
0.85546875,
5
],
[
1.0410000085830688,
1.0410000085830688,
5
],
[
0.861328125,
0.861328125,
0.5
],
[
0.6894530057907104,
0.6894530057907104,
2.5
],
[
0.9609375,
0.9609375,
2.5
],
[
0.95703125,
0.95703125,
0.5
],
[
0.7734375,
0.7734375,
0.5
],
[
0.9765625,
0.9765625,
5
],
[
0.87890625,
0.87890625,
5
],
[
0.78125,
0.78125,
5
],
[
0.822265625,
0.822265625,
3
],
[
0.951171875,
0.951171875,
5
],
[
0.7890625,
0.7890625,
0.5
],
[
0.833984375,
0.833984375,
3
],
[
0.9765620231628418,
0.9765620231628418,
5
],
[
0.9765625,
0.9765625,
5
],
[
0.859375,
0.859375,
0.5
],
[
0.703125,
0.703125,
5
],
[
0.8203120231628418,
0.8203120231628418,
2.5
],
[
0.8632810115814209,
0.8632810115814209,
1.25
],
[
0.76171875,
0.76171875,
1
],
[
0.703125,
0.703125,
0.5
],
[
0.68359375,
0.68359375,
5
],
[
0.732421875,
0.732421875,
5
],
[
0.703125,
0.703125,
0.5
],
[
0.6640625,
0.6640625,
2.5
],
[
0.859375,
0.859375,
5
],
[
0.6484375,
0.6484375,
5
],
[
0.70703125,
0.70703125,
5
],
[
0.677734375,
0.677734375,
5
],
[
0.705078125,
0.705078125,
5
],
[
0.962890625,
0.962890625,
1
],
[
0.64453125,
0.64453125,
5
],
[
0.72265625,
0.72265625,
5
],
[
0.984000027179718,
0.984000027179718,
3
],
[
0.779296875,
0.779296875,
3
],
[
0.9765625,
0.9765625,
3
],
[
0.9765625,
0.9765625,
2
],
[
0.8119999766349792,
0.8119999766349792,
5
],
[
0.7890620231628418,
0.7890620231628418,
2.5
],
[
0.69140625,
0.69140625,
5
],
[
0.4375,
0.4375,
3
],
[
0.908203125,
0.908203125,
5
],
[
0.767578125,
0.767578125,
3
],
[
0.7890625,
0.7890625,
0.5
],
[
0.703125,
0.703125,
5
],
[
0.91015625,
0.91015625,
0.5
],
[
0.703125,
0.703125,
5
],
[
0.93359375,
0.93359375,
1.5
],
[
0.73828125,
0.73828125,
0.5
],
[
0.7409999966621399,
0.7409999966621399,
5
],
[
0.69921875,
0.69921875,
1
],
[
0.7070310115814209,
0.7070310115814209,
5
],
[
0.82421875,
0.82421875,
1
],
[
0.771484375,
0.771484375,
0.5
],
[
0.83984375,
0.83984375,
1
],
[
0.828125,
0.828125,
0.5
],
[
0.78125,
0.78125,
5
],
[
0.892578125,
0.892578125,
3
],
[
0.806640625,
0.806640625,
5
],
[
0.7167969942092896,
0.7167969942092896,
5
],
[
0.865234375,
0.865234375,
5
],
[
0.5859379768371582,
0.5859379768371582,
2.5
],
[
0.830078125,
0.830078125,
5
],
[
0.7421879768371582,
0.7421879768371582,
2.5
],
[
0.7421875,
0.7421875,
2
],
[
0.701171875,
0.701171875,
5
],
[
0.80859375,
0.80859375,
1
],
[
0.703125,
0.703125,
0.5
],
[
0.671875,
0.671875,
0.5
],
[
0.8457030057907104,
0.8457030057907104,
2.5
],
[
0.85546875,
0.85546875,
0.5
],
[
0.76171875,
0.76171875,
5
],
[
0.83203125,
0.83203125,
1
],
[
0.6859999895095825,
0.6859999895095825,
5
],
[
0.72265625,
0.72265625,
5
],
[
0.8691409826278687,
0.8691409826278687,
1.25
],
[
0.703125,
0.703125,
2.5
],
[
0.9765625,
0.9765625,
3
],
[
0.94140625,
0.94140625,
5
],
[
0.9765625,
0.9765625,
3
],
[
0.8789060115814209,
0.8789060115814209,
2.5
],
[
0.736328125,
0.736328125,
5
],
[
0.546875,
0.546875,
3
],
[
0.6679999828338623,
0.6679999828338623,
3
],
[
0.712890625,
0.712890625,
0.5
],
[
0.8496090173721313,
0.8496090173721313,
2.5
],
[
0.947265625,
0.947265625,
3
],
[
0.837890625,
0.837890625,
0.5
],
[
0.68359375,
0.68359375,
5
],
[
0.7421875,
0.7421875,
2.5
],
[
0.68359375,
0.68359375,
3
],
[
0.80078125,
0.80078125,
5
],
[
0.82421875,
0.82421875,
1
],
[
0.712890625,
0.712890625,
0.5
],
[
0.80859375,
0.80859375,
1
],
[
0.91796875,
0.91796875,
5
],
[
0.791015625,
0.791015625,
2.5
],
[
0.9765625,
0.9765625,
3
],
[
0.703125,
0.703125,
0.5
],
[
0.9765625,
0.9765625,
5
],
[
0.90625,
0.90625,
5
],
[
0.796875,
0.796875,
3
],
[
0.7421879768371582,
0.7421879768371582,
2.5
],
[
0.810546875,
0.810546875,
0.5
],
[
0.72265625,
0.72265625,
5
],
[
0.6640625,
0.6640625,
3
],
[
0.9375,
0.9375,
0.5
],
[
0.810546875,
0.810546875,
0.5
],
[
0.9765625,
0.9765625,
0.5
],
[
0.8515625,
0.8515625,
0.5
],
[
0.703125,
0.703125,
0.5
],
[
0.765625,
0.765625,
0.5
],
[
0.451171875,
0.451171875,
1
],
[
0.87109375,
0.87109375,
5
],
[
0.55078125,
0.55078125,
5
],
[
0.9375,
0.9375,
5
],
[
0.69140625,
0.69140625,
5
],
[
0.970703125,
0.970703125,
1
],
[
0.7139999866485596,
0.7139999866485596,
3
],
[
0.8730000257492065,
0.8730000257492065,
5
],
[
0.7753909826278687,
0.7753909826278687,
5
],
[
0.7549999952316284,
0.7549999952316284,
5
],
[
0.9765625,
0.9765625,
2
],
[
0.759765625,
0.759765625,
5
],
[
0.765999972820282,
0.765999972820282,
5
],
[
0.82421875,
0.82421875,
5
],
[
0.736328125,
0.736328125,
3
],
[
0.73046875,
0.73046875,
5
],
[
0.9765625,
0.9765625,
5
],
[
0.673828125,
0.673828125,
5
],
[
0.865234375,
0.865234375,
5
],
[
0.7421875,
0.7421875,
5
],
[
0.7409999966621399,
0.7409999966621399,
3
],
[
0.693359375,
0.693359375,
5
],
[
0.9375,
0.9375,
5
],
[
0.70703125,
0.70703125,
1.5
],
[
0.83984375,
0.83984375,
5
],
[
0.9121090173721313,
0.9121090173721313,
2.5
],
[
0.734375,
0.734375,
5
],
[
0.625,
0.625,
5
],
[
0.6796875,
0.6796875,
1
],
[
0.7421875,
0.7421875,
5
],
[
0.72265625,
0.72265625,
3
],
[
0.7421879768371582,
0.7421879768371582,
1.25
],
[
0.78125,
0.78125,
5
],
[
0.703125,
0.703125,
1.25
],
[
0.75,
0.75,
5
],
[
0.763671875,
0.763671875,
5
],
[
0.818359375,
0.818359375,
3
],
[
0.873046875,
0.873046875,
3
],
[
0.732421875,
0.732421875,
2.5
],
[
0.7421879768371582,
0.7421879768371582,
2.5
],
[
0.7421875,
0.7421875,
4
],
[
0.78125,
0.78125,
2.5
],
[
0.8984379768371582,
0.8984379768371582,
1.25
],
[
0.63671875,
0.63671875,
1
],
[
0.875,
0.875,
3
],
[
0.78125,
0.78125,
5
],
[
0.970703125,
0.970703125,
5
],
[
0.75390625,
0.75390625,
5
],
[
0.884765625,
0.884765625,
5
],
[
0.78125,
0.78125,
5
]
] | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | {
"0": {
"max": 3071,
"mean": 102.5714111328125,
"median": 103,
"min": -1015,
"percentile_00_5": -75,
"percentile_99_5": 295,
"std": 73.64986419677734
}
} | null | null | null | Dataset040_KiTS | nnUNetPlans | [
3,
0.78125,
0.78125
] | [
108,
512,
512
] | SimpleITKIO | [
2,
0,
1
] | [
1,
2,
0
] | {
"2d": {
"data_identifier": "nnUNetPlans_2d",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 12,
"patch_size": [
512,
512
],
"median_image_size_in_voxels": [
512,
512
],
"spacing": [
0.78125,
0.78125
],
"normalization_schemes": [
"CTNormalization"
],
"use_mask_for_norm": [
false
],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_seg_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {
"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"architecture": {
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
"arch_kwargs": {
"n_stages": 8,
"features_per_stage": [
32,
64,
128,
256,
512,
512,
512,
512
],
"conv_op": "torch.nn.modules.conv.Conv2d",
"kernel_sizes": [
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
]
],
"strides": [
[
1,
1
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
]
],
"n_conv_per_stage": [
2,
2,
2,
2,
2,
2,
2,
2
],
"n_conv_per_stage_decoder": [
2,
2,
2,
2,
2,
2,
2
],
"conv_bias": true,
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
"norm_op_kwargs": {
"eps": 0.00001,
"affine": true
},
"dropout_op": null,
"dropout_op_kwargs": null,
"nonlin": "torch.nn.LeakyReLU",
"nonlin_kwargs": {
"inplace": true
}
},
"_kw_requires_import": [
"conv_op",
"norm_op",
"dropout_op",
"nonlin"
]
},
"batch_dice": true
},
"3d_lowres": {
"data_identifier": "nnUNetPlans_3d_lowres",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 2,
"patch_size": [
128,
128,
128
],
"median_image_size_in_voxels": [
204,
199,
199
],
"spacing": [
2.0118091537065514,
2.0117834028789936,
2.0117834028789936
],
"normalization_schemes": [
"CTNormalization"
],
"use_mask_for_norm": [
false
],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_seg_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {
"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"architecture": {
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
"arch_kwargs": {
"n_stages": 6,
"features_per_stage": [
32,
64,
128,
256,
320,
320
],
"conv_op": "torch.nn.modules.conv.Conv3d",
"kernel_sizes": [
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
]
],
"strides": [
[
1,
1,
1
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
]
],
"n_conv_per_stage": [
2,
2,
2,
2,
2,
2
],
"n_conv_per_stage_decoder": [
2,
2,
2,
2,
2
],
"conv_bias": true,
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
"norm_op_kwargs": {
"eps": 0.00001,
"affine": true
},
"dropout_op": null,
"dropout_op_kwargs": null,
"nonlin": "torch.nn.LeakyReLU",
"nonlin_kwargs": {
"inplace": true
}
},
"_kw_requires_import": [
"conv_op",
"norm_op",
"dropout_op",
"nonlin"
]
},
"batch_dice": false,
"next_stage": "3d_cascade_fullres"
},
"3d_fullres": {
"data_identifier": "nnUNetPlans_3d_fullres",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 2,
"patch_size": [
128,
128,
128
],
"median_image_size_in_voxels": [
525.5,
512,
512
],
"spacing": [
0.78126,
0.78125,
0.78125
],
"normalization_schemes": [
"CTNormalization"
],
"use_mask_for_norm": [
false
],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_seg_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {
"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"architecture": {
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
"arch_kwargs": {
"n_stages": 6,
"features_per_stage": [
32,
64,
128,
256,
320,
320
],
"conv_op": "torch.nn.modules.conv.Conv3d",
"kernel_sizes": [
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
]
],
"strides": [
[
1,
1,
1
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
]
],
"n_conv_per_stage": [
2,
2,
2,
2,
2,
2
],
"n_conv_per_stage_decoder": [
2,
2,
2,
2,
2
],
"conv_bias": true,
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
"norm_op_kwargs": {
"eps": 0.00001,
"affine": true
},
"dropout_op": null,
"dropout_op_kwargs": null,
"nonlin": "torch.nn.LeakyReLU",
"nonlin_kwargs": {
"inplace": true
}
},
"_kw_requires_import": [
"conv_op",
"norm_op",
"dropout_op",
"nonlin"
]
},
"batch_dice": true
},
"3d_cascade_fullres": {
"inherits_from": "3d_fullres",
"previous_stage": "3d_lowres"
}
} | ExperimentPlanner | LabelManager |
Please cite the following paper when using nnU-Net: Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
- Downloads last month
- 40