Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'median_relative_size_after_cropping', 'spacings', 'foreground_intensity_properties_per_channel', 'shapes_after_crop'}) and 12 missing columns ({'labels', 'reference', 'training', 'channel_names', 'name', 'numTraining', 'description', 'release', 'numTest', 'tensorImageSize', 'licence', 'file_ending'}).

This happened while the json dataset builder was generating data using

hf://datasets/KagglingFace/nnUNetPlans_3d_lowres_KiTS19/dataset_fingerprint.json (at revision 4b105883db2738f6c7b2fef349d2918c3a7e1610)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              foreground_intensity_properties_per_channel: struct<0: struct<max: double, mean: double, median: double, min: double, percentile_00_5: double, percentile_99_5: double, std: double>>
                child 0, 0: struct<max: double, mean: double, median: double, min: double, percentile_00_5: double, percentile_99_5: double, std: double>
                    child 0, max: double
                    child 1, mean: double
                    child 2, median: double
                    child 3, min: double
                    child 4, percentile_00_5: double
                    child 5, percentile_99_5: double
                    child 6, std: double
              median_relative_size_after_cropping: double
              shapes_after_crop: list<item: list<item: int64>>
                child 0, item: list<item: int64>
                    child 0, item: int64
              spacings: list<item: list<item: double>>
                child 0, item: list<item: double>
                    child 0, item: double
              to
              {'channel_names': {'0': Value(dtype='string', id=None)}, 'description': Value(dtype='string', id=None), 'file_ending': Value(dtype='string', id=None), 'labels': {'Kidney': Value(dtype='string', id=None), 'Tumor': Value(dtype='string', id=None), 'background': Value(dtype='string', id=None)}, 'licence': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None), 'numTest': Value(dtype='int64', id=None), 'numTraining': Value(dtype='int64', id=None), 'reference': Value(dtype='string', id=None), 'release': Value(dtype='string', id=None), 'tensorImageSize': Value(dtype='string', id=None), 'training': [{'image': Value(dtype='string', id=None), 'label': Value(dtype='string', id=None)}]}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'median_relative_size_after_cropping', 'spacings', 'foreground_intensity_properties_per_channel', 'shapes_after_crop'}) and 12 missing columns ({'labels', 'reference', 'training', 'channel_names', 'name', 'numTraining', 'description', 'release', 'numTest', 'tensorImageSize', 'licence', 'file_ending'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/KagglingFace/nnUNetPlans_3d_lowres_KiTS19/dataset_fingerprint.json (at revision 4b105883db2738f6c7b2fef349d2918c3a7e1610)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

channel_names
dict
description
string
file_ending
string
labels
dict
licence
string
name
string
numTest
int64
numTraining
int64
reference
string
release
string
tensorImageSize
string
training
list
foreground_intensity_properties_per_channel
dict
median_relative_size_after_cropping
float64
shapes_after_crop
sequence
spacings
sequence
dataset_name
string
plans_name
string
original_median_spacing_after_transp
sequence
original_median_shape_after_transp
sequence
image_reader_writer
string
transpose_forward
sequence
transpose_backward
sequence
configurations
dict
experiment_planner_used
string
label_manager
string
{ "0": "CT" }
kidney and kidney tumor segmentation
.nii.gz
{ "Kidney": "1", "Tumor": "2", "background": "0" }
KiTS
0
210
KiTS data for nnunet
0.0
4D
[ { "image": "./imagesTr/case_00000.nii.gz", "label": "./labelsTr/case_00000.nii.gz" }, { "image": "./imagesTr/case_00001.nii.gz", "label": "./labelsTr/case_00001.nii.gz" }, { "image": "./imagesTr/case_00002.nii.gz", "label": "./labelsTr/case_00002.nii.gz" }, { "image": "./imagesTr/case_00003.nii.gz", "label": "./labelsTr/case_00003.nii.gz" }, { "image": "./imagesTr/case_00004.nii.gz", "label": "./labelsTr/case_00004.nii.gz" }, { "image": "./imagesTr/case_00005.nii.gz", "label": "./labelsTr/case_00005.nii.gz" }, { "image": "./imagesTr/case_00006.nii.gz", "label": "./labelsTr/case_00006.nii.gz" }, { "image": "./imagesTr/case_00007.nii.gz", "label": "./labelsTr/case_00007.nii.gz" }, { "image": "./imagesTr/case_00008.nii.gz", "label": "./labelsTr/case_00008.nii.gz" }, { "image": "./imagesTr/case_00009.nii.gz", "label": "./labelsTr/case_00009.nii.gz" }, { "image": "./imagesTr/case_00010.nii.gz", "label": "./labelsTr/case_00010.nii.gz" }, { "image": "./imagesTr/case_00011.nii.gz", "label": "./labelsTr/case_00011.nii.gz" }, { "image": "./imagesTr/case_00012.nii.gz", "label": "./labelsTr/case_00012.nii.gz" }, { "image": "./imagesTr/case_00013.nii.gz", "label": "./labelsTr/case_00013.nii.gz" }, { "image": "./imagesTr/case_00014.nii.gz", "label": "./labelsTr/case_00014.nii.gz" }, { "image": "./imagesTr/case_00015.nii.gz", "label": "./labelsTr/case_00015.nii.gz" }, { "image": "./imagesTr/case_00016.nii.gz", "label": "./labelsTr/case_00016.nii.gz" }, { "image": "./imagesTr/case_00017.nii.gz", "label": "./labelsTr/case_00017.nii.gz" }, { "image": "./imagesTr/case_00018.nii.gz", "label": "./labelsTr/case_00018.nii.gz" }, { "image": "./imagesTr/case_00019.nii.gz", "label": "./labelsTr/case_00019.nii.gz" }, { "image": "./imagesTr/case_00020.nii.gz", "label": "./labelsTr/case_00020.nii.gz" }, { "image": "./imagesTr/case_00021.nii.gz", "label": "./labelsTr/case_00021.nii.gz" }, { "image": "./imagesTr/case_00022.nii.gz", "label": "./labelsTr/case_00022.nii.gz" }, { "image": "./imagesTr/case_00023.nii.gz", "label": "./labelsTr/case_00023.nii.gz" }, { "image": "./imagesTr/case_00024.nii.gz", "label": "./labelsTr/case_00024.nii.gz" }, { "image": "./imagesTr/case_00025.nii.gz", "label": "./labelsTr/case_00025.nii.gz" }, { "image": "./imagesTr/case_00026.nii.gz", "label": "./labelsTr/case_00026.nii.gz" }, { "image": "./imagesTr/case_00027.nii.gz", "label": "./labelsTr/case_00027.nii.gz" }, { "image": "./imagesTr/case_00028.nii.gz", "label": "./labelsTr/case_00028.nii.gz" }, { "image": "./imagesTr/case_00029.nii.gz", "label": "./labelsTr/case_00029.nii.gz" }, { "image": "./imagesTr/case_00030.nii.gz", "label": "./labelsTr/case_00030.nii.gz" }, { "image": "./imagesTr/case_00031.nii.gz", "label": "./labelsTr/case_00031.nii.gz" }, { "image": "./imagesTr/case_00032.nii.gz", "label": "./labelsTr/case_00032.nii.gz" }, { "image": "./imagesTr/case_00033.nii.gz", "label": "./labelsTr/case_00033.nii.gz" }, { "image": "./imagesTr/case_00034.nii.gz", "label": "./labelsTr/case_00034.nii.gz" }, { "image": "./imagesTr/case_00035.nii.gz", "label": "./labelsTr/case_00035.nii.gz" }, { "image": "./imagesTr/case_00036.nii.gz", "label": "./labelsTr/case_00036.nii.gz" }, { "image": "./imagesTr/case_00037.nii.gz", "label": "./labelsTr/case_00037.nii.gz" }, { "image": "./imagesTr/case_00038.nii.gz", "label": "./labelsTr/case_00038.nii.gz" }, { "image": "./imagesTr/case_00039.nii.gz", "label": "./labelsTr/case_00039.nii.gz" }, { "image": "./imagesTr/case_00040.nii.gz", "label": "./labelsTr/case_00040.nii.gz" }, { "image": "./imagesTr/case_00041.nii.gz", "label": "./labelsTr/case_00041.nii.gz" }, { "image": "./imagesTr/case_00042.nii.gz", "label": "./labelsTr/case_00042.nii.gz" }, { "image": "./imagesTr/case_00043.nii.gz", "label": "./labelsTr/case_00043.nii.gz" }, { "image": "./imagesTr/case_00044.nii.gz", "label": "./labelsTr/case_00044.nii.gz" }, { "image": "./imagesTr/case_00045.nii.gz", "label": "./labelsTr/case_00045.nii.gz" }, { "image": "./imagesTr/case_00046.nii.gz", "label": "./labelsTr/case_00046.nii.gz" }, { "image": "./imagesTr/case_00047.nii.gz", "label": "./labelsTr/case_00047.nii.gz" }, { "image": "./imagesTr/case_00048.nii.gz", "label": "./labelsTr/case_00048.nii.gz" }, { "image": "./imagesTr/case_00049.nii.gz", "label": "./labelsTr/case_00049.nii.gz" }, { "image": "./imagesTr/case_00050.nii.gz", "label": "./labelsTr/case_00050.nii.gz" }, { "image": "./imagesTr/case_00051.nii.gz", "label": "./labelsTr/case_00051.nii.gz" }, { "image": "./imagesTr/case_00052.nii.gz", "label": "./labelsTr/case_00052.nii.gz" }, { "image": "./imagesTr/case_00053.nii.gz", "label": "./labelsTr/case_00053.nii.gz" }, { "image": "./imagesTr/case_00054.nii.gz", "label": "./labelsTr/case_00054.nii.gz" }, { "image": "./imagesTr/case_00055.nii.gz", "label": "./labelsTr/case_00055.nii.gz" }, { "image": "./imagesTr/case_00056.nii.gz", "label": "./labelsTr/case_00056.nii.gz" }, { "image": "./imagesTr/case_00057.nii.gz", "label": "./labelsTr/case_00057.nii.gz" }, { "image": "./imagesTr/case_00058.nii.gz", "label": "./labelsTr/case_00058.nii.gz" }, { "image": "./imagesTr/case_00059.nii.gz", "label": "./labelsTr/case_00059.nii.gz" }, { "image": "./imagesTr/case_00060.nii.gz", "label": "./labelsTr/case_00060.nii.gz" }, { "image": "./imagesTr/case_00061.nii.gz", "label": "./labelsTr/case_00061.nii.gz" }, { "image": "./imagesTr/case_00062.nii.gz", "label": "./labelsTr/case_00062.nii.gz" }, { "image": "./imagesTr/case_00063.nii.gz", "label": "./labelsTr/case_00063.nii.gz" }, { "image": "./imagesTr/case_00064.nii.gz", "label": "./labelsTr/case_00064.nii.gz" }, { "image": "./imagesTr/case_00065.nii.gz", "label": "./labelsTr/case_00065.nii.gz" }, { "image": "./imagesTr/case_00066.nii.gz", "label": "./labelsTr/case_00066.nii.gz" }, { "image": "./imagesTr/case_00067.nii.gz", "label": "./labelsTr/case_00067.nii.gz" }, { "image": "./imagesTr/case_00068.nii.gz", "label": "./labelsTr/case_00068.nii.gz" }, { "image": "./imagesTr/case_00069.nii.gz", "label": "./labelsTr/case_00069.nii.gz" }, { "image": "./imagesTr/case_00070.nii.gz", "label": "./labelsTr/case_00070.nii.gz" }, { "image": "./imagesTr/case_00071.nii.gz", "label": "./labelsTr/case_00071.nii.gz" }, { "image": "./imagesTr/case_00072.nii.gz", "label": "./labelsTr/case_00072.nii.gz" }, { "image": "./imagesTr/case_00073.nii.gz", "label": "./labelsTr/case_00073.nii.gz" }, { "image": "./imagesTr/case_00074.nii.gz", "label": "./labelsTr/case_00074.nii.gz" }, { "image": "./imagesTr/case_00075.nii.gz", "label": "./labelsTr/case_00075.nii.gz" }, { "image": "./imagesTr/case_00076.nii.gz", "label": "./labelsTr/case_00076.nii.gz" }, { "image": "./imagesTr/case_00077.nii.gz", "label": "./labelsTr/case_00077.nii.gz" }, { "image": "./imagesTr/case_00078.nii.gz", "label": "./labelsTr/case_00078.nii.gz" }, { "image": "./imagesTr/case_00079.nii.gz", "label": "./labelsTr/case_00079.nii.gz" }, { "image": "./imagesTr/case_00080.nii.gz", "label": "./labelsTr/case_00080.nii.gz" }, { "image": "./imagesTr/case_00081.nii.gz", "label": "./labelsTr/case_00081.nii.gz" }, { "image": "./imagesTr/case_00082.nii.gz", "label": "./labelsTr/case_00082.nii.gz" }, { "image": "./imagesTr/case_00083.nii.gz", "label": "./labelsTr/case_00083.nii.gz" }, { "image": "./imagesTr/case_00084.nii.gz", "label": "./labelsTr/case_00084.nii.gz" }, { "image": "./imagesTr/case_00085.nii.gz", "label": "./labelsTr/case_00085.nii.gz" }, { "image": "./imagesTr/case_00086.nii.gz", "label": "./labelsTr/case_00086.nii.gz" }, { "image": "./imagesTr/case_00087.nii.gz", "label": "./labelsTr/case_00087.nii.gz" }, { "image": "./imagesTr/case_00088.nii.gz", "label": "./labelsTr/case_00088.nii.gz" }, { "image": "./imagesTr/case_00089.nii.gz", "label": "./labelsTr/case_00089.nii.gz" }, { "image": "./imagesTr/case_00090.nii.gz", "label": "./labelsTr/case_00090.nii.gz" }, { "image": "./imagesTr/case_00091.nii.gz", "label": "./labelsTr/case_00091.nii.gz" }, { "image": "./imagesTr/case_00092.nii.gz", "label": "./labelsTr/case_00092.nii.gz" }, { "image": "./imagesTr/case_00093.nii.gz", "label": "./labelsTr/case_00093.nii.gz" }, { "image": "./imagesTr/case_00094.nii.gz", "label": "./labelsTr/case_00094.nii.gz" }, { "image": "./imagesTr/case_00095.nii.gz", "label": "./labelsTr/case_00095.nii.gz" }, { "image": "./imagesTr/case_00096.nii.gz", "label": "./labelsTr/case_00096.nii.gz" }, { "image": "./imagesTr/case_00097.nii.gz", "label": "./labelsTr/case_00097.nii.gz" }, { "image": "./imagesTr/case_00098.nii.gz", "label": "./labelsTr/case_00098.nii.gz" }, { "image": "./imagesTr/case_00099.nii.gz", "label": "./labelsTr/case_00099.nii.gz" }, { "image": "./imagesTr/case_00100.nii.gz", "label": "./labelsTr/case_00100.nii.gz" }, { "image": "./imagesTr/case_00101.nii.gz", "label": "./labelsTr/case_00101.nii.gz" }, { "image": "./imagesTr/case_00102.nii.gz", "label": "./labelsTr/case_00102.nii.gz" }, { "image": "./imagesTr/case_00103.nii.gz", "label": "./labelsTr/case_00103.nii.gz" }, { "image": "./imagesTr/case_00104.nii.gz", "label": "./labelsTr/case_00104.nii.gz" }, { "image": "./imagesTr/case_00105.nii.gz", "label": "./labelsTr/case_00105.nii.gz" }, { "image": "./imagesTr/case_00106.nii.gz", "label": "./labelsTr/case_00106.nii.gz" }, { "image": "./imagesTr/case_00107.nii.gz", "label": "./labelsTr/case_00107.nii.gz" }, { "image": "./imagesTr/case_00108.nii.gz", "label": "./labelsTr/case_00108.nii.gz" }, { "image": "./imagesTr/case_00109.nii.gz", "label": "./labelsTr/case_00109.nii.gz" }, { "image": "./imagesTr/case_00110.nii.gz", "label": "./labelsTr/case_00110.nii.gz" }, { "image": "./imagesTr/case_00111.nii.gz", "label": "./labelsTr/case_00111.nii.gz" }, { "image": "./imagesTr/case_00112.nii.gz", "label": "./labelsTr/case_00112.nii.gz" }, { "image": "./imagesTr/case_00113.nii.gz", "label": "./labelsTr/case_00113.nii.gz" }, { "image": "./imagesTr/case_00114.nii.gz", "label": "./labelsTr/case_00114.nii.gz" }, { "image": "./imagesTr/case_00115.nii.gz", "label": "./labelsTr/case_00115.nii.gz" }, { "image": "./imagesTr/case_00116.nii.gz", "label": "./labelsTr/case_00116.nii.gz" }, { "image": "./imagesTr/case_00117.nii.gz", "label": "./labelsTr/case_00117.nii.gz" }, { "image": "./imagesTr/case_00118.nii.gz", "label": "./labelsTr/case_00118.nii.gz" }, { "image": "./imagesTr/case_00119.nii.gz", "label": "./labelsTr/case_00119.nii.gz" }, { "image": "./imagesTr/case_00120.nii.gz", "label": "./labelsTr/case_00120.nii.gz" }, { "image": "./imagesTr/case_00121.nii.gz", "label": "./labelsTr/case_00121.nii.gz" }, { "image": "./imagesTr/case_00122.nii.gz", "label": "./labelsTr/case_00122.nii.gz" }, { "image": "./imagesTr/case_00123.nii.gz", "label": "./labelsTr/case_00123.nii.gz" }, { "image": "./imagesTr/case_00124.nii.gz", "label": "./labelsTr/case_00124.nii.gz" }, { "image": "./imagesTr/case_00125.nii.gz", "label": "./labelsTr/case_00125.nii.gz" }, { "image": "./imagesTr/case_00126.nii.gz", "label": "./labelsTr/case_00126.nii.gz" }, { "image": "./imagesTr/case_00127.nii.gz", "label": "./labelsTr/case_00127.nii.gz" }, { "image": "./imagesTr/case_00128.nii.gz", "label": "./labelsTr/case_00128.nii.gz" }, { "image": "./imagesTr/case_00129.nii.gz", "label": "./labelsTr/case_00129.nii.gz" }, { "image": "./imagesTr/case_00130.nii.gz", "label": "./labelsTr/case_00130.nii.gz" }, { "image": "./imagesTr/case_00131.nii.gz", "label": "./labelsTr/case_00131.nii.gz" }, { "image": "./imagesTr/case_00132.nii.gz", "label": "./labelsTr/case_00132.nii.gz" }, { "image": "./imagesTr/case_00133.nii.gz", "label": "./labelsTr/case_00133.nii.gz" }, { "image": "./imagesTr/case_00134.nii.gz", "label": "./labelsTr/case_00134.nii.gz" }, { "image": "./imagesTr/case_00135.nii.gz", "label": "./labelsTr/case_00135.nii.gz" }, { "image": "./imagesTr/case_00136.nii.gz", "label": "./labelsTr/case_00136.nii.gz" }, { "image": "./imagesTr/case_00137.nii.gz", "label": "./labelsTr/case_00137.nii.gz" }, { "image": "./imagesTr/case_00138.nii.gz", "label": "./labelsTr/case_00138.nii.gz" }, { "image": "./imagesTr/case_00139.nii.gz", "label": "./labelsTr/case_00139.nii.gz" }, { "image": "./imagesTr/case_00140.nii.gz", "label": "./labelsTr/case_00140.nii.gz" }, { "image": "./imagesTr/case_00141.nii.gz", "label": "./labelsTr/case_00141.nii.gz" }, { "image": "./imagesTr/case_00142.nii.gz", "label": "./labelsTr/case_00142.nii.gz" }, { "image": "./imagesTr/case_00143.nii.gz", "label": "./labelsTr/case_00143.nii.gz" }, { "image": "./imagesTr/case_00144.nii.gz", "label": "./labelsTr/case_00144.nii.gz" }, { "image": "./imagesTr/case_00145.nii.gz", "label": "./labelsTr/case_00145.nii.gz" }, { "image": "./imagesTr/case_00146.nii.gz", "label": "./labelsTr/case_00146.nii.gz" }, { "image": "./imagesTr/case_00147.nii.gz", "label": "./labelsTr/case_00147.nii.gz" }, { "image": "./imagesTr/case_00148.nii.gz", "label": "./labelsTr/case_00148.nii.gz" }, { "image": "./imagesTr/case_00149.nii.gz", "label": "./labelsTr/case_00149.nii.gz" }, { "image": "./imagesTr/case_00150.nii.gz", "label": "./labelsTr/case_00150.nii.gz" }, { "image": "./imagesTr/case_00151.nii.gz", "label": "./labelsTr/case_00151.nii.gz" }, { "image": "./imagesTr/case_00152.nii.gz", "label": "./labelsTr/case_00152.nii.gz" }, { "image": "./imagesTr/case_00153.nii.gz", "label": "./labelsTr/case_00153.nii.gz" }, { "image": "./imagesTr/case_00154.nii.gz", "label": "./labelsTr/case_00154.nii.gz" }, { "image": "./imagesTr/case_00155.nii.gz", "label": "./labelsTr/case_00155.nii.gz" }, { "image": "./imagesTr/case_00156.nii.gz", "label": "./labelsTr/case_00156.nii.gz" }, { "image": "./imagesTr/case_00157.nii.gz", "label": "./labelsTr/case_00157.nii.gz" }, { "image": "./imagesTr/case_00158.nii.gz", "label": "./labelsTr/case_00158.nii.gz" }, { "image": "./imagesTr/case_00159.nii.gz", "label": "./labelsTr/case_00159.nii.gz" }, { "image": "./imagesTr/case_00160.nii.gz", "label": "./labelsTr/case_00160.nii.gz" }, { "image": "./imagesTr/case_00161.nii.gz", "label": "./labelsTr/case_00161.nii.gz" }, { "image": "./imagesTr/case_00162.nii.gz", "label": "./labelsTr/case_00162.nii.gz" }, { "image": "./imagesTr/case_00163.nii.gz", "label": "./labelsTr/case_00163.nii.gz" }, { "image": "./imagesTr/case_00164.nii.gz", "label": "./labelsTr/case_00164.nii.gz" }, { "image": "./imagesTr/case_00165.nii.gz", "label": "./labelsTr/case_00165.nii.gz" }, { "image": "./imagesTr/case_00166.nii.gz", "label": "./labelsTr/case_00166.nii.gz" }, { "image": "./imagesTr/case_00167.nii.gz", "label": "./labelsTr/case_00167.nii.gz" }, { "image": "./imagesTr/case_00168.nii.gz", "label": "./labelsTr/case_00168.nii.gz" }, { "image": "./imagesTr/case_00169.nii.gz", "label": "./labelsTr/case_00169.nii.gz" }, { "image": "./imagesTr/case_00170.nii.gz", "label": "./labelsTr/case_00170.nii.gz" }, { "image": "./imagesTr/case_00171.nii.gz", "label": "./labelsTr/case_00171.nii.gz" }, { "image": "./imagesTr/case_00172.nii.gz", "label": "./labelsTr/case_00172.nii.gz" }, { "image": "./imagesTr/case_00173.nii.gz", "label": "./labelsTr/case_00173.nii.gz" }, { "image": "./imagesTr/case_00174.nii.gz", "label": "./labelsTr/case_00174.nii.gz" }, { "image": "./imagesTr/case_00175.nii.gz", "label": "./labelsTr/case_00175.nii.gz" }, { "image": "./imagesTr/case_00176.nii.gz", "label": "./labelsTr/case_00176.nii.gz" }, { "image": "./imagesTr/case_00177.nii.gz", "label": "./labelsTr/case_00177.nii.gz" }, { "image": "./imagesTr/case_00178.nii.gz", "label": "./labelsTr/case_00178.nii.gz" }, { "image": "./imagesTr/case_00179.nii.gz", "label": "./labelsTr/case_00179.nii.gz" }, { "image": "./imagesTr/case_00180.nii.gz", "label": "./labelsTr/case_00180.nii.gz" }, { "image": "./imagesTr/case_00181.nii.gz", "label": "./labelsTr/case_00181.nii.gz" }, { "image": "./imagesTr/case_00182.nii.gz", "label": "./labelsTr/case_00182.nii.gz" }, { "image": "./imagesTr/case_00183.nii.gz", "label": "./labelsTr/case_00183.nii.gz" }, { "image": "./imagesTr/case_00184.nii.gz", "label": "./labelsTr/case_00184.nii.gz" }, { "image": "./imagesTr/case_00185.nii.gz", "label": "./labelsTr/case_00185.nii.gz" }, { "image": "./imagesTr/case_00186.nii.gz", "label": "./labelsTr/case_00186.nii.gz" }, { "image": "./imagesTr/case_00187.nii.gz", "label": "./labelsTr/case_00187.nii.gz" }, { "image": "./imagesTr/case_00188.nii.gz", "label": "./labelsTr/case_00188.nii.gz" }, { "image": "./imagesTr/case_00189.nii.gz", "label": "./labelsTr/case_00189.nii.gz" }, { "image": "./imagesTr/case_00190.nii.gz", "label": "./labelsTr/case_00190.nii.gz" }, { "image": "./imagesTr/case_00191.nii.gz", "label": "./labelsTr/case_00191.nii.gz" }, { "image": "./imagesTr/case_00192.nii.gz", "label": "./labelsTr/case_00192.nii.gz" }, { "image": "./imagesTr/case_00193.nii.gz", "label": "./labelsTr/case_00193.nii.gz" }, { "image": "./imagesTr/case_00194.nii.gz", "label": "./labelsTr/case_00194.nii.gz" }, { "image": "./imagesTr/case_00195.nii.gz", "label": "./labelsTr/case_00195.nii.gz" }, { "image": "./imagesTr/case_00196.nii.gz", "label": "./labelsTr/case_00196.nii.gz" }, { "image": "./imagesTr/case_00197.nii.gz", "label": "./labelsTr/case_00197.nii.gz" }, { "image": "./imagesTr/case_00198.nii.gz", "label": "./labelsTr/case_00198.nii.gz" }, { "image": "./imagesTr/case_00199.nii.gz", "label": "./labelsTr/case_00199.nii.gz" }, { "image": "./imagesTr/case_00200.nii.gz", "label": "./labelsTr/case_00200.nii.gz" }, { "image": "./imagesTr/case_00201.nii.gz", "label": "./labelsTr/case_00201.nii.gz" }, { "image": "./imagesTr/case_00202.nii.gz", "label": "./labelsTr/case_00202.nii.gz" }, { "image": "./imagesTr/case_00203.nii.gz", "label": "./labelsTr/case_00203.nii.gz" }, { "image": "./imagesTr/case_00204.nii.gz", "label": "./labelsTr/case_00204.nii.gz" }, { "image": "./imagesTr/case_00205.nii.gz", "label": "./labelsTr/case_00205.nii.gz" }, { "image": "./imagesTr/case_00206.nii.gz", "label": "./labelsTr/case_00206.nii.gz" }, { "image": "./imagesTr/case_00207.nii.gz", "label": "./labelsTr/case_00207.nii.gz" }, { "image": "./imagesTr/case_00208.nii.gz", "label": "./labelsTr/case_00208.nii.gz" }, { "image": "./imagesTr/case_00209.nii.gz", "label": "./labelsTr/case_00209.nii.gz" }, { "image": "./imagesTr/case_00210.nii.gz", "label": "./labelsTr/case_00210.nii.gz" }, { "image": "./imagesTr/case_00211.nii.gz", "label": "./labelsTr/case_00211.nii.gz" }, { "image": "./imagesTr/case_00212.nii.gz", "label": "./labelsTr/case_00212.nii.gz" }, { "image": "./imagesTr/case_00213.nii.gz", "label": "./labelsTr/case_00213.nii.gz" }, { "image": "./imagesTr/case_00214.nii.gz", "label": "./labelsTr/case_00214.nii.gz" }, { "image": "./imagesTr/case_00215.nii.gz", "label": "./labelsTr/case_00215.nii.gz" }, { "image": "./imagesTr/case_00216.nii.gz", "label": "./labelsTr/case_00216.nii.gz" }, { "image": "./imagesTr/case_00217.nii.gz", "label": "./labelsTr/case_00217.nii.gz" }, { "image": "./imagesTr/case_00218.nii.gz", "label": "./labelsTr/case_00218.nii.gz" }, { "image": "./imagesTr/case_00219.nii.gz", "label": "./labelsTr/case_00219.nii.gz" }, { "image": "./imagesTr/case_00220.nii.gz", "label": "./labelsTr/case_00220.nii.gz" }, { "image": "./imagesTr/case_00221.nii.gz", "label": "./labelsTr/case_00221.nii.gz" }, { "image": "./imagesTr/case_00222.nii.gz", "label": "./labelsTr/case_00222.nii.gz" }, { "image": "./imagesTr/case_00223.nii.gz", "label": "./labelsTr/case_00223.nii.gz" }, { "image": "./imagesTr/case_00224.nii.gz", "label": "./labelsTr/case_00224.nii.gz" }, { "image": "./imagesTr/case_00225.nii.gz", "label": "./labelsTr/case_00225.nii.gz" }, { "image": "./imagesTr/case_00226.nii.gz", "label": "./labelsTr/case_00226.nii.gz" }, { "image": "./imagesTr/case_00227.nii.gz", "label": "./labelsTr/case_00227.nii.gz" }, { "image": "./imagesTr/case_00228.nii.gz", "label": "./labelsTr/case_00228.nii.gz" }, { "image": "./imagesTr/case_00229.nii.gz", "label": "./labelsTr/case_00229.nii.gz" }, { "image": "./imagesTr/case_00230.nii.gz", "label": "./labelsTr/case_00230.nii.gz" }, { "image": "./imagesTr/case_00231.nii.gz", "label": "./labelsTr/case_00231.nii.gz" }, { "image": "./imagesTr/case_00232.nii.gz", "label": "./labelsTr/case_00232.nii.gz" }, { "image": "./imagesTr/case_00233.nii.gz", "label": "./labelsTr/case_00233.nii.gz" }, { "image": "./imagesTr/case_00234.nii.gz", "label": "./labelsTr/case_00234.nii.gz" }, { "image": "./imagesTr/case_00235.nii.gz", "label": "./labelsTr/case_00235.nii.gz" }, { "image": "./imagesTr/case_00236.nii.gz", "label": "./labelsTr/case_00236.nii.gz" }, { "image": "./imagesTr/case_00237.nii.gz", "label": "./labelsTr/case_00237.nii.gz" }, { "image": "./imagesTr/case_00238.nii.gz", "label": "./labelsTr/case_00238.nii.gz" }, { "image": "./imagesTr/case_00239.nii.gz", "label": "./labelsTr/case_00239.nii.gz" }, { "image": "./imagesTr/case_00240.nii.gz", "label": "./labelsTr/case_00240.nii.gz" }, { "image": "./imagesTr/case_00241.nii.gz", "label": "./labelsTr/case_00241.nii.gz" }, { "image": "./imagesTr/case_00242.nii.gz", "label": "./labelsTr/case_00242.nii.gz" }, { "image": "./imagesTr/case_00243.nii.gz", "label": "./labelsTr/case_00243.nii.gz" }, { "image": "./imagesTr/case_00244.nii.gz", "label": "./labelsTr/case_00244.nii.gz" }, { "image": "./imagesTr/case_00245.nii.gz", "label": "./labelsTr/case_00245.nii.gz" }, { "image": "./imagesTr/case_00246.nii.gz", "label": "./labelsTr/case_00246.nii.gz" }, { "image": "./imagesTr/case_00247.nii.gz", "label": "./labelsTr/case_00247.nii.gz" }, { "image": "./imagesTr/case_00248.nii.gz", "label": "./labelsTr/case_00248.nii.gz" }, { "image": "./imagesTr/case_00249.nii.gz", "label": "./labelsTr/case_00249.nii.gz" }, { "image": "./imagesTr/case_00250.nii.gz", "label": "./labelsTr/case_00250.nii.gz" }, { "image": "./imagesTr/case_00251.nii.gz", "label": "./labelsTr/case_00251.nii.gz" }, { "image": "./imagesTr/case_00252.nii.gz", "label": "./labelsTr/case_00252.nii.gz" }, { "image": "./imagesTr/case_00253.nii.gz", "label": "./labelsTr/case_00253.nii.gz" }, { "image": "./imagesTr/case_00254.nii.gz", "label": "./labelsTr/case_00254.nii.gz" }, { "image": "./imagesTr/case_00255.nii.gz", "label": "./labelsTr/case_00255.nii.gz" }, { "image": "./imagesTr/case_00256.nii.gz", "label": "./labelsTr/case_00256.nii.gz" }, { "image": "./imagesTr/case_00257.nii.gz", "label": "./labelsTr/case_00257.nii.gz" }, { "image": "./imagesTr/case_00258.nii.gz", "label": "./labelsTr/case_00258.nii.gz" }, { "image": "./imagesTr/case_00259.nii.gz", "label": "./labelsTr/case_00259.nii.gz" }, { "image": "./imagesTr/case_00260.nii.gz", "label": "./labelsTr/case_00260.nii.gz" }, { "image": "./imagesTr/case_00261.nii.gz", "label": "./labelsTr/case_00261.nii.gz" }, { "image": "./imagesTr/case_00262.nii.gz", "label": "./labelsTr/case_00262.nii.gz" }, { "image": "./imagesTr/case_00263.nii.gz", "label": "./labelsTr/case_00263.nii.gz" }, { "image": "./imagesTr/case_00264.nii.gz", "label": "./labelsTr/case_00264.nii.gz" }, { "image": "./imagesTr/case_00265.nii.gz", "label": "./labelsTr/case_00265.nii.gz" }, { "image": "./imagesTr/case_00266.nii.gz", "label": "./labelsTr/case_00266.nii.gz" }, { "image": "./imagesTr/case_00267.nii.gz", "label": "./labelsTr/case_00267.nii.gz" }, { "image": "./imagesTr/case_00268.nii.gz", "label": "./labelsTr/case_00268.nii.gz" }, { "image": "./imagesTr/case_00269.nii.gz", "label": "./labelsTr/case_00269.nii.gz" }, { "image": "./imagesTr/case_00270.nii.gz", "label": "./labelsTr/case_00270.nii.gz" }, { "image": "./imagesTr/case_00271.nii.gz", "label": "./labelsTr/case_00271.nii.gz" }, { "image": "./imagesTr/case_00272.nii.gz", "label": "./labelsTr/case_00272.nii.gz" }, { "image": "./imagesTr/case_00273.nii.gz", "label": "./labelsTr/case_00273.nii.gz" }, { "image": "./imagesTr/case_00274.nii.gz", "label": "./labelsTr/case_00274.nii.gz" }, { "image": "./imagesTr/case_00275.nii.gz", "label": "./labelsTr/case_00275.nii.gz" }, { "image": "./imagesTr/case_00276.nii.gz", "label": "./labelsTr/case_00276.nii.gz" }, { "image": "./imagesTr/case_00277.nii.gz", "label": "./labelsTr/case_00277.nii.gz" }, { "image": "./imagesTr/case_00278.nii.gz", "label": "./labelsTr/case_00278.nii.gz" }, { "image": "./imagesTr/case_00279.nii.gz", "label": "./labelsTr/case_00279.nii.gz" }, { "image": "./imagesTr/case_00280.nii.gz", "label": "./labelsTr/case_00280.nii.gz" }, { "image": "./imagesTr/case_00281.nii.gz", "label": "./labelsTr/case_00281.nii.gz" }, { "image": "./imagesTr/case_00282.nii.gz", "label": "./labelsTr/case_00282.nii.gz" }, { "image": "./imagesTr/case_00283.nii.gz", "label": "./labelsTr/case_00283.nii.gz" }, { "image": "./imagesTr/case_00284.nii.gz", "label": "./labelsTr/case_00284.nii.gz" }, { "image": "./imagesTr/case_00285.nii.gz", "label": "./labelsTr/case_00285.nii.gz" }, { "image": "./imagesTr/case_00286.nii.gz", "label": "./labelsTr/case_00286.nii.gz" }, { "image": "./imagesTr/case_00287.nii.gz", "label": "./labelsTr/case_00287.nii.gz" }, { "image": "./imagesTr/case_00288.nii.gz", "label": "./labelsTr/case_00288.nii.gz" }, { "image": "./imagesTr/case_00289.nii.gz", "label": "./labelsTr/case_00289.nii.gz" }, { "image": "./imagesTr/case_00290.nii.gz", "label": "./labelsTr/case_00290.nii.gz" }, { "image": "./imagesTr/case_00291.nii.gz", "label": "./labelsTr/case_00291.nii.gz" }, { "image": "./imagesTr/case_00292.nii.gz", "label": "./labelsTr/case_00292.nii.gz" }, { "image": "./imagesTr/case_00293.nii.gz", "label": "./labelsTr/case_00293.nii.gz" }, { "image": "./imagesTr/case_00294.nii.gz", "label": "./labelsTr/case_00294.nii.gz" }, { "image": "./imagesTr/case_00295.nii.gz", "label": "./labelsTr/case_00295.nii.gz" }, { "image": "./imagesTr/case_00296.nii.gz", "label": "./labelsTr/case_00296.nii.gz" }, { "image": "./imagesTr/case_00297.nii.gz", "label": "./labelsTr/case_00297.nii.gz" }, { "image": "./imagesTr/case_00298.nii.gz", "label": "./labelsTr/case_00298.nii.gz" }, { "image": "./imagesTr/case_00299.nii.gz", "label": "./labelsTr/case_00299.nii.gz" } ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "0": { "max": 3071, "mean": 102.5714111328125, "median": 103, "min": -1015, "percentile_00_5": -75, "percentile_99_5": 295, "std": 73.64986419677734 } }
1
[ [ 512, 512, 611 ], [ 512, 512, 602 ], [ 512, 512, 261 ], [ 512, 512, 270 ], [ 512, 512, 64 ], [ 512, 512, 834 ], [ 512, 512, 157 ], [ 512, 512, 61 ], [ 512, 512, 227 ], [ 512, 512, 77 ], [ 512, 512, 50 ], [ 512, 512, 80 ], [ 512, 512, 89 ], [ 512, 512, 92 ], [ 512, 512, 439 ], [ 512, 512, 75 ], [ 512, 512, 178 ], [ 512, 512, 97 ], [ 512, 512, 121 ], [ 512, 512, 129 ], [ 512, 512, 96 ], [ 512, 512, 38 ], [ 512, 512, 541 ], [ 512, 512, 107 ], [ 512, 512, 85 ], [ 512, 512, 103 ], [ 512, 512, 302 ], [ 512, 512, 723 ], [ 512, 512, 98 ], [ 512, 512, 131 ], [ 512, 512, 38 ], [ 512, 512, 117 ], [ 512, 512, 189 ], [ 512, 512, 423 ], [ 512, 512, 110 ], [ 512, 512, 98 ], [ 512, 512, 163 ], [ 512, 512, 97 ], [ 512, 512, 32 ], [ 512, 512, 90 ], [ 512, 512, 207 ], [ 512, 512, 52 ], [ 512, 512, 301 ], [ 512, 512, 172 ], [ 512, 512, 101 ], [ 512, 512, 62 ], [ 512, 512, 159 ], [ 512, 512, 142 ], [ 512, 512, 85 ], [ 512, 512, 670 ], [ 512, 512, 96 ], [ 512, 512, 68 ], [ 512, 512, 673 ], [ 512, 512, 553 ], [ 512, 512, 104 ], [ 512, 512, 101 ], [ 512, 512, 90 ], [ 512, 512, 80 ], [ 512, 512, 103 ], [ 512, 512, 738 ], [ 512, 512, 145 ], [ 512, 512, 29 ], [ 512, 512, 86 ], [ 512, 512, 527 ], [ 512, 512, 53 ], [ 512, 512, 103 ], [ 512, 512, 445 ], [ 512, 512, 285 ], [ 512, 512, 626 ], [ 512, 512, 90 ], [ 512, 512, 57 ], [ 512, 512, 612 ], [ 512, 512, 164 ], [ 512, 512, 145 ], [ 512, 512, 80 ], [ 512, 512, 90 ], [ 512, 512, 66 ], [ 512, 512, 88 ], [ 512, 512, 326 ], [ 512, 512, 124 ], [ 512, 512, 88 ], [ 512, 512, 151 ], [ 512, 512, 129 ], [ 512, 512, 94 ], [ 512, 512, 274 ], [ 512, 512, 87 ], [ 512, 512, 199 ], [ 512, 512, 49 ], [ 512, 512, 99 ], [ 512, 512, 55 ], [ 512, 512, 76 ], [ 512, 512, 735 ], [ 512, 512, 98 ], [ 512, 512, 787 ], [ 512, 512, 43 ], [ 512, 512, 314 ], [ 512, 512, 683 ], [ 512, 512, 85 ], [ 512, 512, 234 ], [ 512, 512, 105 ], [ 512, 512, 470 ], [ 512, 512, 512 ], [ 512, 512, 316 ], [ 512, 512, 665 ], [ 512, 512, 114 ], [ 512, 512, 153 ], [ 512, 512, 102 ], [ 512, 512, 84 ], [ 512, 512, 51 ], [ 512, 512, 76 ], [ 512, 512, 34 ], [ 512, 512, 186 ], [ 512, 512, 113 ], [ 512, 512, 43 ], [ 512, 512, 304 ], [ 512, 512, 325 ], [ 512, 512, 433 ], [ 512, 512, 69 ], [ 512, 512, 673 ], [ 512, 512, 91 ], [ 512, 512, 285 ], [ 512, 512, 79 ], [ 512, 512, 50 ], [ 512, 512, 389 ], [ 512, 512, 262 ], [ 512, 512, 171 ], [ 512, 512, 107 ], [ 512, 512, 105 ], [ 512, 512, 206 ], [ 512, 512, 48 ], [ 512, 512, 53 ], [ 512, 512, 159 ], [ 512, 512, 532 ], [ 512, 512, 186 ], [ 512, 512, 61 ], [ 512, 512, 634 ], [ 512, 512, 101 ], [ 512, 512, 109 ], [ 512, 512, 76 ], [ 512, 512, 103 ], [ 512, 512, 279 ], [ 512, 512, 581 ], [ 512, 512, 274 ], [ 512, 512, 92 ], [ 512, 512, 197 ], [ 512, 512, 86 ], [ 512, 512, 591 ], [ 512, 512, 70 ], [ 512, 512, 36 ], [ 512, 512, 97 ], [ 512, 512, 106 ], [ 512, 512, 1059 ], [ 512, 512, 38 ], [ 512, 512, 69 ], [ 512, 512, 470 ], [ 512, 512, 538 ], [ 512, 512, 987 ], [ 512, 512, 548 ], [ 512, 512, 705 ], [ 512, 512, 719 ], [ 796, 512, 252 ], [ 512, 512, 59 ], [ 512, 512, 94 ], [ 512, 512, 99 ], [ 512, 512, 88 ], [ 512, 512, 734 ], [ 512, 512, 103 ], [ 512, 512, 103 ], [ 512, 512, 83 ], [ 512, 512, 101 ], [ 512, 512, 345 ], [ 512, 512, 131 ], [ 512, 512, 91 ], [ 512, 512, 97 ], [ 512, 512, 69 ], [ 512, 512, 107 ], [ 512, 512, 102 ], [ 512, 512, 88 ], [ 512, 512, 88 ], [ 512, 512, 99 ], [ 512, 512, 137 ], [ 512, 512, 99 ], [ 512, 512, 93 ], [ 512, 512, 195 ], [ 512, 512, 146 ], [ 512, 512, 235 ], [ 512, 512, 143 ], [ 512, 512, 82 ], [ 512, 512, 365 ], [ 512, 512, 146 ], [ 512, 512, 161 ], [ 512, 512, 349 ], [ 512, 512, 133 ], [ 512, 512, 233 ], [ 512, 512, 135 ], [ 512, 512, 98 ], [ 512, 512, 178 ], [ 512, 512, 162 ], [ 512, 512, 269 ], [ 512, 512, 121 ], [ 512, 512, 103 ], [ 512, 512, 96 ], [ 512, 512, 383 ], [ 512, 512, 620 ], [ 512, 512, 75 ], [ 512, 512, 93 ], [ 512, 512, 60 ], [ 512, 512, 140 ], [ 512, 512, 89 ], [ 512, 512, 102 ] ]
[ [ 0.919921875, 0.919921875, 0.5 ], [ 0.798828125, 0.798828125, 0.5 ], [ 0.939453125, 0.939453125, 1 ], [ 0.85546875, 0.85546875, 1 ], [ 0.9765625, 0.9765625, 4 ], [ 0.9765625, 0.9765625, 0.5 ], [ 0.7421875, 0.7421875, 3 ], [ 0.939453125, 0.939453125, 3 ], [ 0.81640625, 0.81640625, 3 ], [ 0.80859375, 0.80859375, 3 ], [ 0.7578125, 0.7578125, 3 ], [ 0.703125, 0.703125, 5 ], [ 0.751953125, 0.751953125, 5 ], [ 0.68359375, 0.68359375, 3 ], [ 0.849609375, 0.849609375, 1 ], [ 0.705078125, 0.705078125, 3 ], [ 0.650390625, 0.650390625, 2.5 ], [ 0.6640625, 0.6640625, 5 ], [ 0.8613280057907104, 0.8613280057907104, 2.5 ], [ 0.9375, 0.9375, 3.75 ], [ 0.83984375, 0.83984375, 5 ], [ 0.822265625, 0.822265625, 5 ], [ 0.833984375, 0.833984375, 0.5 ], [ 0.7820000052452087, 0.7820000052452087, 3 ], [ 0.6640625, 0.6640625, 5 ], [ 0.7363280057907104, 0.7363280057907104, 2.5 ], [ 0.875, 0.875, 2.5 ], [ 0.89453125, 0.89453125, 0.5 ], [ 0.83984375, 0.83984375, 5 ], [ 0.75390625, 0.75390625, 5 ], [ 0.73046875, 0.73046875, 5 ], [ 0.5180000066757202, 0.5180000066757202, 3 ], [ 0.7792969942092896, 0.7792969942092896, 2.5 ], [ 0.80859375, 0.80859375, 1 ], [ 0.8359375, 0.8359375, 5 ], [ 0.96484375, 0.96484375, 5 ], [ 0.798828125, 0.798828125, 3 ], [ 0.9375, 0.9375, 5 ], [ 0.779296875, 0.779296875, 5 ], [ 0.703125, 0.703125, 5 ], [ 0.7409999966621399, 0.7409999966621399, 2 ], [ 0.677734375, 0.677734375, 3 ], [ 0.859375, 0.859375, 1 ], [ 0.7379999756813049, 0.7379999756813049, 3 ], [ 0.966796875, 0.966796875, 5 ], [ 0.7409999966621399, 0.7409999966621399, 3 ], [ 0.9765625, 0.9765625, 3 ], [ 0.85546875, 0.85546875, 5 ], [ 1.0410000085830688, 1.0410000085830688, 5 ], [ 0.861328125, 0.861328125, 0.5 ], [ 0.6894530057907104, 0.6894530057907104, 2.5 ], [ 0.9609375, 0.9609375, 2.5 ], [ 0.95703125, 0.95703125, 0.5 ], [ 0.7734375, 0.7734375, 0.5 ], [ 0.9765625, 0.9765625, 5 ], [ 0.87890625, 0.87890625, 5 ], [ 0.78125, 0.78125, 5 ], [ 0.822265625, 0.822265625, 3 ], [ 0.951171875, 0.951171875, 5 ], [ 0.7890625, 0.7890625, 0.5 ], [ 0.833984375, 0.833984375, 3 ], [ 0.9765620231628418, 0.9765620231628418, 5 ], [ 0.9765625, 0.9765625, 5 ], [ 0.859375, 0.859375, 0.5 ], [ 0.703125, 0.703125, 5 ], [ 0.8203120231628418, 0.8203120231628418, 2.5 ], [ 0.8632810115814209, 0.8632810115814209, 1.25 ], [ 0.76171875, 0.76171875, 1 ], [ 0.703125, 0.703125, 0.5 ], [ 0.68359375, 0.68359375, 5 ], [ 0.732421875, 0.732421875, 5 ], [ 0.703125, 0.703125, 0.5 ], [ 0.6640625, 0.6640625, 2.5 ], [ 0.859375, 0.859375, 5 ], [ 0.6484375, 0.6484375, 5 ], [ 0.70703125, 0.70703125, 5 ], [ 0.677734375, 0.677734375, 5 ], [ 0.705078125, 0.705078125, 5 ], [ 0.962890625, 0.962890625, 1 ], [ 0.64453125, 0.64453125, 5 ], [ 0.72265625, 0.72265625, 5 ], [ 0.984000027179718, 0.984000027179718, 3 ], [ 0.779296875, 0.779296875, 3 ], [ 0.9765625, 0.9765625, 3 ], [ 0.9765625, 0.9765625, 2 ], [ 0.8119999766349792, 0.8119999766349792, 5 ], [ 0.7890620231628418, 0.7890620231628418, 2.5 ], [ 0.69140625, 0.69140625, 5 ], [ 0.4375, 0.4375, 3 ], [ 0.908203125, 0.908203125, 5 ], [ 0.767578125, 0.767578125, 3 ], [ 0.7890625, 0.7890625, 0.5 ], [ 0.703125, 0.703125, 5 ], [ 0.91015625, 0.91015625, 0.5 ], [ 0.703125, 0.703125, 5 ], [ 0.93359375, 0.93359375, 1.5 ], [ 0.73828125, 0.73828125, 0.5 ], [ 0.7409999966621399, 0.7409999966621399, 5 ], [ 0.69921875, 0.69921875, 1 ], [ 0.7070310115814209, 0.7070310115814209, 5 ], [ 0.82421875, 0.82421875, 1 ], [ 0.771484375, 0.771484375, 0.5 ], [ 0.83984375, 0.83984375, 1 ], [ 0.828125, 0.828125, 0.5 ], [ 0.78125, 0.78125, 5 ], [ 0.892578125, 0.892578125, 3 ], [ 0.806640625, 0.806640625, 5 ], [ 0.7167969942092896, 0.7167969942092896, 5 ], [ 0.865234375, 0.865234375, 5 ], [ 0.5859379768371582, 0.5859379768371582, 2.5 ], [ 0.830078125, 0.830078125, 5 ], [ 0.7421879768371582, 0.7421879768371582, 2.5 ], [ 0.7421875, 0.7421875, 2 ], [ 0.701171875, 0.701171875, 5 ], [ 0.80859375, 0.80859375, 1 ], [ 0.703125, 0.703125, 0.5 ], [ 0.671875, 0.671875, 0.5 ], [ 0.8457030057907104, 0.8457030057907104, 2.5 ], [ 0.85546875, 0.85546875, 0.5 ], [ 0.76171875, 0.76171875, 5 ], [ 0.83203125, 0.83203125, 1 ], [ 0.6859999895095825, 0.6859999895095825, 5 ], [ 0.72265625, 0.72265625, 5 ], [ 0.8691409826278687, 0.8691409826278687, 1.25 ], [ 0.703125, 0.703125, 2.5 ], [ 0.9765625, 0.9765625, 3 ], [ 0.94140625, 0.94140625, 5 ], [ 0.9765625, 0.9765625, 3 ], [ 0.8789060115814209, 0.8789060115814209, 2.5 ], [ 0.736328125, 0.736328125, 5 ], [ 0.546875, 0.546875, 3 ], [ 0.6679999828338623, 0.6679999828338623, 3 ], [ 0.712890625, 0.712890625, 0.5 ], [ 0.8496090173721313, 0.8496090173721313, 2.5 ], [ 0.947265625, 0.947265625, 3 ], [ 0.837890625, 0.837890625, 0.5 ], [ 0.68359375, 0.68359375, 5 ], [ 0.7421875, 0.7421875, 2.5 ], [ 0.68359375, 0.68359375, 3 ], [ 0.80078125, 0.80078125, 5 ], [ 0.82421875, 0.82421875, 1 ], [ 0.712890625, 0.712890625, 0.5 ], [ 0.80859375, 0.80859375, 1 ], [ 0.91796875, 0.91796875, 5 ], [ 0.791015625, 0.791015625, 2.5 ], [ 0.9765625, 0.9765625, 3 ], [ 0.703125, 0.703125, 0.5 ], [ 0.9765625, 0.9765625, 5 ], [ 0.90625, 0.90625, 5 ], [ 0.796875, 0.796875, 3 ], [ 0.7421879768371582, 0.7421879768371582, 2.5 ], [ 0.810546875, 0.810546875, 0.5 ], [ 0.72265625, 0.72265625, 5 ], [ 0.6640625, 0.6640625, 3 ], [ 0.9375, 0.9375, 0.5 ], [ 0.810546875, 0.810546875, 0.5 ], [ 0.9765625, 0.9765625, 0.5 ], [ 0.8515625, 0.8515625, 0.5 ], [ 0.703125, 0.703125, 0.5 ], [ 0.765625, 0.765625, 0.5 ], [ 0.451171875, 0.451171875, 1 ], [ 0.87109375, 0.87109375, 5 ], [ 0.55078125, 0.55078125, 5 ], [ 0.9375, 0.9375, 5 ], [ 0.69140625, 0.69140625, 5 ], [ 0.970703125, 0.970703125, 1 ], [ 0.7139999866485596, 0.7139999866485596, 3 ], [ 0.8730000257492065, 0.8730000257492065, 5 ], [ 0.7753909826278687, 0.7753909826278687, 5 ], [ 0.7549999952316284, 0.7549999952316284, 5 ], [ 0.9765625, 0.9765625, 2 ], [ 0.759765625, 0.759765625, 5 ], [ 0.765999972820282, 0.765999972820282, 5 ], [ 0.82421875, 0.82421875, 5 ], [ 0.736328125, 0.736328125, 3 ], [ 0.73046875, 0.73046875, 5 ], [ 0.9765625, 0.9765625, 5 ], [ 0.673828125, 0.673828125, 5 ], [ 0.865234375, 0.865234375, 5 ], [ 0.7421875, 0.7421875, 5 ], [ 0.7409999966621399, 0.7409999966621399, 3 ], [ 0.693359375, 0.693359375, 5 ], [ 0.9375, 0.9375, 5 ], [ 0.70703125, 0.70703125, 1.5 ], [ 0.83984375, 0.83984375, 5 ], [ 0.9121090173721313, 0.9121090173721313, 2.5 ], [ 0.734375, 0.734375, 5 ], [ 0.625, 0.625, 5 ], [ 0.6796875, 0.6796875, 1 ], [ 0.7421875, 0.7421875, 5 ], [ 0.72265625, 0.72265625, 3 ], [ 0.7421879768371582, 0.7421879768371582, 1.25 ], [ 0.78125, 0.78125, 5 ], [ 0.703125, 0.703125, 1.25 ], [ 0.75, 0.75, 5 ], [ 0.763671875, 0.763671875, 5 ], [ 0.818359375, 0.818359375, 3 ], [ 0.873046875, 0.873046875, 3 ], [ 0.732421875, 0.732421875, 2.5 ], [ 0.7421879768371582, 0.7421879768371582, 2.5 ], [ 0.7421875, 0.7421875, 4 ], [ 0.78125, 0.78125, 2.5 ], [ 0.8984379768371582, 0.8984379768371582, 1.25 ], [ 0.63671875, 0.63671875, 1 ], [ 0.875, 0.875, 3 ], [ 0.78125, 0.78125, 5 ], [ 0.970703125, 0.970703125, 5 ], [ 0.75390625, 0.75390625, 5 ], [ 0.884765625, 0.884765625, 5 ], [ 0.78125, 0.78125, 5 ] ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "0": { "max": 3071, "mean": 102.5714111328125, "median": 103, "min": -1015, "percentile_00_5": -75, "percentile_99_5": 295, "std": 73.64986419677734 } }
null
null
null
Dataset040_KiTS
nnUNetPlans
[ 3, 0.78125, 0.78125 ]
[ 108, 512, 512 ]
SimpleITKIO
[ 2, 0, 1 ]
[ 1, 2, 0 ]
{ "2d": { "data_identifier": "nnUNetPlans_2d", "preprocessor_name": "DefaultPreprocessor", "batch_size": 12, "patch_size": [ 512, 512 ], "median_image_size_in_voxels": [ 512, 512 ], "spacing": [ 0.78125, 0.78125 ], "normalization_schemes": [ "CTNormalization" ], "use_mask_for_norm": [ false ], "resampling_fn_data": "resample_data_or_seg_to_shape", "resampling_fn_seg": "resample_data_or_seg_to_shape", "resampling_fn_data_kwargs": { "is_seg": false, "order": 3, "order_z": 0, "force_separate_z": null }, "resampling_fn_seg_kwargs": { "is_seg": true, "order": 1, "order_z": 0, "force_separate_z": null }, "resampling_fn_probabilities": "resample_data_or_seg_to_shape", "resampling_fn_probabilities_kwargs": { "is_seg": false, "order": 1, "order_z": 0, "force_separate_z": null }, "architecture": { "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet", "arch_kwargs": { "n_stages": 8, "features_per_stage": [ 32, 64, 128, 256, 512, 512, 512, 512 ], "conv_op": "torch.nn.modules.conv.Conv2d", "kernel_sizes": [ [ 3, 3 ], [ 3, 3 ], [ 3, 3 ], [ 3, 3 ], [ 3, 3 ], [ 3, 3 ], [ 3, 3 ], [ 3, 3 ] ], "strides": [ [ 1, 1 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ] ], "n_conv_per_stage": [ 2, 2, 2, 2, 2, 2, 2, 2 ], "n_conv_per_stage_decoder": [ 2, 2, 2, 2, 2, 2, 2 ], "conv_bias": true, "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d", "norm_op_kwargs": { "eps": 0.00001, "affine": true }, "dropout_op": null, "dropout_op_kwargs": null, "nonlin": "torch.nn.LeakyReLU", "nonlin_kwargs": { "inplace": true } }, "_kw_requires_import": [ "conv_op", "norm_op", "dropout_op", "nonlin" ] }, "batch_dice": true }, "3d_lowres": { "data_identifier": "nnUNetPlans_3d_lowres", "preprocessor_name": "DefaultPreprocessor", "batch_size": 2, "patch_size": [ 128, 128, 128 ], "median_image_size_in_voxels": [ 204, 199, 199 ], "spacing": [ 2.0118091537065514, 2.0117834028789936, 2.0117834028789936 ], "normalization_schemes": [ "CTNormalization" ], "use_mask_for_norm": [ false ], "resampling_fn_data": "resample_data_or_seg_to_shape", "resampling_fn_seg": "resample_data_or_seg_to_shape", "resampling_fn_data_kwargs": { "is_seg": false, "order": 3, "order_z": 0, "force_separate_z": null }, "resampling_fn_seg_kwargs": { "is_seg": true, "order": 1, "order_z": 0, "force_separate_z": null }, "resampling_fn_probabilities": "resample_data_or_seg_to_shape", "resampling_fn_probabilities_kwargs": { "is_seg": false, "order": 1, "order_z": 0, "force_separate_z": null }, "architecture": { "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet", "arch_kwargs": { "n_stages": 6, "features_per_stage": [ 32, 64, 128, 256, 320, 320 ], "conv_op": "torch.nn.modules.conv.Conv3d", "kernel_sizes": [ [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ] ], "strides": [ [ 1, 1, 1 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ] ], "n_conv_per_stage": [ 2, 2, 2, 2, 2, 2 ], "n_conv_per_stage_decoder": [ 2, 2, 2, 2, 2 ], "conv_bias": true, "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d", "norm_op_kwargs": { "eps": 0.00001, "affine": true }, "dropout_op": null, "dropout_op_kwargs": null, "nonlin": "torch.nn.LeakyReLU", "nonlin_kwargs": { "inplace": true } }, "_kw_requires_import": [ "conv_op", "norm_op", "dropout_op", "nonlin" ] }, "batch_dice": false, "next_stage": "3d_cascade_fullres" }, "3d_fullres": { "data_identifier": "nnUNetPlans_3d_fullres", "preprocessor_name": "DefaultPreprocessor", "batch_size": 2, "patch_size": [ 128, 128, 128 ], "median_image_size_in_voxels": [ 525.5, 512, 512 ], "spacing": [ 0.78126, 0.78125, 0.78125 ], "normalization_schemes": [ "CTNormalization" ], "use_mask_for_norm": [ false ], "resampling_fn_data": "resample_data_or_seg_to_shape", "resampling_fn_seg": "resample_data_or_seg_to_shape", "resampling_fn_data_kwargs": { "is_seg": false, "order": 3, "order_z": 0, "force_separate_z": null }, "resampling_fn_seg_kwargs": { "is_seg": true, "order": 1, "order_z": 0, "force_separate_z": null }, "resampling_fn_probabilities": "resample_data_or_seg_to_shape", "resampling_fn_probabilities_kwargs": { "is_seg": false, "order": 1, "order_z": 0, "force_separate_z": null }, "architecture": { "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet", "arch_kwargs": { "n_stages": 6, "features_per_stage": [ 32, 64, 128, 256, 320, 320 ], "conv_op": "torch.nn.modules.conv.Conv3d", "kernel_sizes": [ [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ], [ 3, 3, 3 ] ], "strides": [ [ 1, 1, 1 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ] ], "n_conv_per_stage": [ 2, 2, 2, 2, 2, 2 ], "n_conv_per_stage_decoder": [ 2, 2, 2, 2, 2 ], "conv_bias": true, "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d", "norm_op_kwargs": { "eps": 0.00001, "affine": true }, "dropout_op": null, "dropout_op_kwargs": null, "nonlin": "torch.nn.LeakyReLU", "nonlin_kwargs": { "inplace": true } }, "_kw_requires_import": [ "conv_op", "norm_op", "dropout_op", "nonlin" ] }, "batch_dice": true }, "3d_cascade_fullres": { "inherits_from": "3d_fullres", "previous_stage": "3d_lowres" } }
ExperimentPlanner
LabelManager

Please cite the following paper when using nnU-Net: Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.

Downloads last month
40