|
# Sentence Position Prediction Dataset |
|
|
|
### Data Example |
|
|
|
``` |
|
{ |
|
"story": |
|
"为了证明自己看见了这一切,路过银树林时,守望星折了一根小树枝。[MASK]丽娜听到树枝折断的声音时,回头问:“什么声音?”[MASK]“什么声音也没有。”[MASK]她的大姐说,“可能是哪座城堡的塔楼里,猫头鹰在叫唤。”[MASK]她讲话的时候,迈克悄悄地溜到前头,上了楼梯,第一个进了公主们的房间。[MASK]他推开窗户,顺着藤条滑了下去。[MASK]到花园的时候,太阳刚刚开始升起,他要开始工作了。[MASK]这一天,迈克捆扎鲜花的时候,故意把那根银色的树枝扎进了献给小公主的花里。[MASK]不过,她没有告诉姐姐们。", |
|
"sentence": |
|
"丽娜发现银树枝时,吃惊极了。", |
|
"label": |
|
8 |
|
} |
|
``` |
|
|
|
- "Story" (`str`):input story,`<MASK>` means the candidate position |
|
- "sentence" (`str`):the removed sentence |
|
- "label" (`int`): label=$l$ means the $l$-th position is correct. |
|
|
|
|
|
|
|
### Evaluation |
|
|
|
The prediction result should have the same format with `test.jsonl` |
|
|
|
```shell |
|
python eval.py prediction_file test.jsonl |
|
``` |
|
|
|
|
|
|
|
We use accuracy as the evaluation metric. The output of the script `eval.py` is a dictionary as follows: |
|
|
|
```python |
|
{"accuracy": _} |
|
``` |
|
|
|
|