Search is not available for this dataset
Timestamp
unknown
DcDiffAvg
int64
695k
801k
"2024-10-31T19:13:46.454000"
780,472
"2024-10-31T19:13:46.584000"
783,309
"2024-10-31T19:13:46.693000"
785,026
"2024-10-31T19:13:46.803000"
786,223
"2024-10-31T19:13:46.913000"
787,620
"2024-10-31T19:13:47.022000"
789,378
"2024-10-31T19:13:47.130000"
791,095
"2024-10-31T19:13:47.240000"
792,853
"2024-10-31T19:13:47.350000"
794,250
"2024-10-31T19:13:47.460000"
795,808
"2024-10-31T19:13:47.569000"
697,485
"2024-10-31T19:13:47.678000"
699,122
"2024-10-31T19:13:47.788000"
700,640
"2024-10-31T19:13:47.897000"
701,797
"2024-10-31T19:13:48.005000"
703,155
"2024-10-31T19:13:48.115000"
705,512
"2024-10-31T19:13:48.224000"
706,709
"2024-10-31T19:13:48.332000"
708,426
"2024-10-31T19:13:48.444000"
710,304
"2024-10-31T19:13:48.553000"
711,941
"2024-10-31T19:13:48.662000"
713,059
"2024-10-31T19:13:48.772000"
715,016
"2024-10-31T19:13:48.881000"
716,534
"2024-10-31T19:13:48.990000"
717,771
"2024-10-31T19:13:49.100000"
719,769
"2024-10-31T19:13:49.209000"
721,325
"2024-10-31T19:13:49.318000"
722,603
"2024-10-31T19:13:49.429000"
724,000
"2024-10-31T19:13:49.537000"
725,918
"2024-10-31T19:13:49.646000"
727,475
"2024-10-31T19:13:49.756000"
729,233
"2024-10-31T19:13:49.866000"
730,950
"2024-10-31T19:13:49.975000"
732,148
"2024-10-31T19:13:50.084000"
733,945
"2024-10-31T19:13:50.193000"
735,263
"2024-10-31T19:13:50.303000"
737,059
"2024-10-31T19:13:50.412000"
738,977
"2024-10-31T19:13:50.522000"
740,214
"2024-10-31T19:13:50.632000"
741,812
"2024-10-31T19:13:50.741000"
743,209
"2024-10-31T19:13:50.850000"
744,967
"2024-10-31T19:13:50.960000"
746,684
"2024-10-31T19:13:51.068000"
748,122
"2024-10-31T19:13:51.179000"
749,919
"2024-10-31T19:13:51.288000"
751,516
"2024-10-31T19:13:51.397000"
752,993
"2024-10-31T19:13:51.506000"
754,671
"2024-10-31T19:13:51.615000"
756,068
"2024-10-31T19:13:51.725000"
757,826
"2024-10-31T19:13:51.834000"
759,503
"2024-10-31T19:13:51.944000"
760,941
"2024-10-31T19:13:52.051000"
762,658
"2024-10-31T19:13:52.161000"
764,176
"2024-10-31T19:13:52.271000"
765,733
"2024-10-31T19:13:52.380000"
767,330
"2024-10-31T19:13:52.490000"
768,567
"2024-10-31T19:13:52.600000"
770,605
"2024-10-31T19:13:52.709000"
771,722
"2024-10-31T19:13:52.821000"
773,120
"2024-10-31T19:13:52.932000"
775,437
"2024-10-31T19:13:53.042000"
776,515
"2024-10-31T19:13:53.153000"
778,512
"2024-10-31T19:13:53.261000"
779,590
"2024-10-31T19:13:53.372000"
781,746
"2024-10-31T19:13:53.482000"
783,384
"2024-10-31T19:13:53.606000"
785,221
"2024-10-31T19:13:53.716000"
786,938
"2024-10-31T19:13:53.842000"
788,256
"2024-10-31T19:13:53.968000"
790,332
"2024-10-31T19:13:54.092000"
795,689
"2024-10-31T19:13:54.203000"
793,407
"2024-10-31T19:13:54.313000"
795,124
"2024-10-31T19:13:54.423000"
796,402
"2024-10-31T19:13:54.533000"
698,079
"2024-10-31T19:13:54.644000"
699,516
"2024-10-31T19:13:54.754000"
700,674
"2024-10-31T19:13:54.865000"
703,031
"2024-10-31T19:13:54.975000"
704,269
"2024-10-31T19:13:55.083000"
705,986
"2024-10-31T19:13:55.190000"
707,664
"2024-10-31T19:13:55.302000"
709,140
"2024-10-31T19:13:55.412000"
710,618
"2024-10-31T19:13:55.523000"
712,296
"2024-10-31T19:13:55.633000"
713,693
"2024-10-31T19:13:55.740000"
715,371
"2024-10-31T19:13:55.849000"
716,448
"2024-10-31T19:13:55.960000"
718,845
"2024-10-31T19:13:56.068000"
720,243
"2024-10-31T19:13:56.178000"
721,679
"2024-10-31T19:13:56.289000"
723,317
"2024-10-31T19:13:56.396000"
724,915
"2024-10-31T19:13:56.506000"
726,712
"2024-10-31T19:13:56.615000"
728,069
"2024-10-31T19:13:56.726000"
729,947
"2024-10-31T19:13:56.835000"
731,624
"2024-10-31T19:13:56.947000"
733,182
"2024-10-31T19:13:57.056000"
735,099
"2024-10-31T19:13:57.165000"
736,256
"2024-10-31T19:13:57.276000"
739,853
"2024-10-31T19:13:57.384000"
739,571

Dataset Card for Dataset Name

This dataset card aims to train an LSTM autoencoder model to detect anomalies of DC diff statistics calculated by the WMX Ethercat master.

Dataset Details

The data frame has two columns consisting of "Timestamp" and "DcDiffAvg".

Every cycle is done, the average time interval to the next DC clock for each cycle is cacluated in ns, and this value shows a peculiar sawtooth pattern as follows. Using this dataset the autoencoder model can be trained to detect anomalies in case of unstable communication between the master(Main device) and sub-devices.

For detail information and source code, find the following link. https://github.com/kyoungje/WMXAnomalyDetection/tree/main

Dataset Description

Uses

Add Github notebook link

Downloads last month
36