|
import os |
|
import json |
|
import shutil |
|
import datasets |
|
import tifffile |
|
|
|
import pandas as pd |
|
import numpy as np |
|
|
|
from torchgeo.datasets.cdl import CDL |
|
from torchgeo.datasets.nlcd import NLCD |
|
|
|
CMAPS = { |
|
'nlcd': NLCD.cmap, |
|
'cdl': CDL.cmap, |
|
} |
|
|
|
S2_MEAN = [752.40087073, 884.29673756, 1144.16202635, 1297.47289228, 1624.90992062, 2194.6423161, 2422.21248945, 2581.64687018, 2368.51236873, 1805.06846033] |
|
|
|
S2_STD = [1108.02887453, 1155.15170768, 1183.6292542, 1368.11351514, 1370.265037, 1355.55390699, 1416.51487101, 1439.3086061, 1455.52084939, 1343.48379601] |
|
|
|
subset_names = ["etm_sr_cdl", "etm_sr_nlcd", "etm_toa_cdl", "etm_toa_nlcd", "oli_sr_cdl", "oli_sr_nlcd", "oli_tirs_toa_cdl", "oli_tirs_toa_nlcd", "etm_oli_toa_cdl", "etm_oli_toa_nlcd"] |
|
|
|
num_classes = { |
|
'etm_sr_cdl': 134, |
|
'etm_sr_nlcd': 21, |
|
'etm_toa_cdl': 134, |
|
'etm_toa_nlcd': 21, |
|
'oli_sr_cdl': 134, |
|
'oli_sr_nlcd': 21, |
|
'oli_tirs_toa_cdl': 134, |
|
'oli_tirs_toa_nlcd': 21, |
|
"etm_oli_toa_nlcd": 21, |
|
"etm_oli_toa_cdl": 134, |
|
} |
|
|
|
num_channels = { |
|
'etm_sr_cdl': 6, |
|
'etm_sr_nlcd': 6, |
|
'etm_toa_cdl': 9, |
|
'etm_toa_nlcd': 9, |
|
'oli_sr_cdl': 7, |
|
'oli_sr_nlcd': 7, |
|
'oli_tirs_toa_cdl': 11, |
|
'oli_tirs_toa_nlcd': 11, |
|
"etm_oli_toa_nlcd": 20, |
|
"etm_oli_toa_cdl": 20, |
|
} |
|
|
|
MEAN = [0] |
|
STD = [255] |
|
|
|
metadata = { |
|
'etm_sr_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B7"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 2220.0], "mean": MEAN * 6, 'std': STD * 6}, |
|
'etm_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B7"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 2220.0], "mean": MEAN * 6, 'std': STD * 6}, |
|
'etm_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6L", "B6H", "B7", "B8"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0], "mean": MEAN * 9, 'std': STD * 9}, |
|
'etm_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6L", "B6H", "B7", "B8"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0], "mean": MEAN * 9, 'std': STD * 9}, |
|
'oli_sr_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7}, |
|
'oli_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7}, |
|
'oli_tirs_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11}, |
|
'oli_tirs_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11}, |
|
"etm_oli_toa_nlcd": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20}, |
|
"etm_oli_toa_cdl": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20}, |
|
} |
|
|
|
class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/SSL4EO-L-Benchmark/resolve/main/SSL4EOLBenchmark.zip" |
|
|
|
SIZE = HEIGHT = WIDTH = 264 |
|
|
|
spatial_resolution = 30 |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default"), |
|
*[datasets.BuilderConfig(name=name) for name in subset_names] |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "oli_tirs_toa_nlcd" |
|
|
|
def __init__(self, *args, **kwargs): |
|
name = kwargs.get('config_name', None) |
|
self.NUM_CLASSES = num_classes[name] if name and name != "default" else num_classes['oli_tirs_toa_nlcd'] |
|
self.NUM_CHANNELS = num_channels[name] if name and name != "default" else num_channels['oli_tirs_toa_nlcd'] |
|
self.metadata = metadata[name] if name and name != "default" else metadata['oli_tirs_toa_nlcd'] |
|
|
|
name = "oli_tirs_toa_nlcd" if name is None or name == "default" else name |
|
product = name.split('_')[-1] |
|
cmap = CMAPS[product] |
|
classes = list(cmap.keys()) |
|
self.ordinal_map = np.zeros(max(cmap.keys()) + 1, dtype=np.int64) |
|
for v, k in enumerate(classes): |
|
self.ordinal_map[k] = v |
|
|
|
super().__init__(*args, **kwargs) |
|
|
|
def _info(self): |
|
metadata = self.metadata |
|
metadata['size'] = self.SIZE |
|
metadata['num_classes'] = self.NUM_CLASSES |
|
metadata['spatial_resolution'] = self.spatial_resolution |
|
return datasets.DatasetInfo( |
|
description=json.dumps(metadata), |
|
features=datasets.Features({ |
|
"optical": datasets.Array3D(shape=(self.NUM_CHANNELS, self.HEIGHT, self.WIDTH), dtype="float32"), |
|
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), |
|
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")), |
|
"spatial_resolution": datasets.Value("int32"), |
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if isinstance(self.DATA_URL, list): |
|
downloaded_files = dl_manager.download(self.DATA_URL) |
|
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") |
|
with open(combined_file, 'wb') as outfile: |
|
for part_file in downloaded_files: |
|
with open(part_file, 'rb') as infile: |
|
shutil.copyfileobj(infile, outfile) |
|
data_dir = dl_manager.extract(combined_file) |
|
os.remove(combined_file) |
|
else: |
|
data_dir = dl_manager.download_and_extract(self.DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"split": 'train', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="val", |
|
gen_kwargs={ |
|
"split": 'val', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"split": 'test', |
|
"data_dir": data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
optical_channel_wv = self.metadata["channel_wv"] |
|
spatial_resolution = self.spatial_resolution |
|
|
|
data_dir = os.path.join(data_dir, "SSL4EOLBenchmark") |
|
if self.config.name in ["etm_oli_toa_nlcd", "etm_oli_toa_cdl"]: |
|
product = self.config.name.split('_')[-1] |
|
metadata_oli = pd.read_csv(os.path.join(data_dir, f"metadata_oli_tirs_toa_{product}.csv")) |
|
metadata_etm = pd.read_csv(os.path.join(data_dir, f"metadata_etm_toa_{product}.csv")) |
|
|
|
metadata = self.sort_and_create_new_csv(metadata_oli, metadata_etm) |
|
else: |
|
metadata = pd.read_csv(os.path.join(data_dir, f"metadata_{self.config.name}.csv")) |
|
|
|
metadata = metadata[metadata["split"] == split].reset_index(drop=True) |
|
|
|
for index, row in metadata.iterrows(): |
|
optical_path = os.path.join(data_dir, row.optical_path) |
|
optical = self._read_image(optical_path).astype(np.float32) |
|
|
|
try: |
|
optical_path_etm = os.path.join(data_dir, row.optical_path_etm) |
|
optical_etm = self._read_image(optical_path_etm).astype(np.float32) |
|
optical = np.concatenate((optical_etm, optical), axis=0) |
|
except: |
|
pass |
|
|
|
label_path = os.path.join(data_dir, row.label_path) |
|
label = self._read_image(label_path).astype(np.int32) |
|
label = self.ordinal_map[label] |
|
|
|
sample = { |
|
"optical": optical, |
|
"label": label, |
|
"optical_channel_wv": optical_channel_wv, |
|
"spatial_resolution": spatial_resolution, |
|
} |
|
|
|
yield f"{index}", sample |
|
|
|
def _read_image(self, image_path): |
|
"""Read tiff image from image_path |
|
Args: |
|
image_path: |
|
Image path to read from |
|
|
|
Return: |
|
image: |
|
C, H, W numpy array image |
|
""" |
|
image = tifffile.imread(image_path) |
|
if len(image.shape) == 3: |
|
image = np.transpose(image, (2, 0, 1)) |
|
|
|
return image |
|
|
|
def sort_and_create_new_csv(self, metadata_oli, metadata_etm): |
|
def extract_number(optical_path): |
|
return optical_path.split('/')[1] |
|
|
|
metadata_oli['number'] = metadata_oli['optical_path'].apply(extract_number) |
|
metadata_etm['number'] = metadata_etm['optical_path'].apply(extract_number) |
|
|
|
metadata_oli = metadata_oli.sort_values('number').reset_index(drop=True) |
|
metadata_etm = metadata_etm.sort_values('number').reset_index(drop=True) |
|
|
|
new_rows = [] |
|
|
|
i, j = 0, 0 |
|
while i < len(metadata_oli) and j < len(metadata_etm): |
|
if metadata_oli.loc[i, 'number'] == metadata_etm.loc[j, 'number']: |
|
new_rows.append({ |
|
'split': metadata_oli.loc[i, 'split'], |
|
'optical_path_etm': metadata_etm.loc[j, 'optical_path'], |
|
'optical_path': metadata_oli.loc[i, 'optical_path'], |
|
'label_path': metadata_oli.loc[i, 'label_path'] |
|
}) |
|
i += 1 |
|
j += 1 |
|
elif metadata_oli.loc[i, 'number'] < metadata_etm.loc[j, 'number']: |
|
i += 1 |
|
else: |
|
j += 1 |
|
|
|
new_df = pd.DataFrame(new_rows, columns=['split', 'optical_path_etm', 'optical_path', 'label_path']) |
|
return new_df |