File size: 10,645 Bytes
3532fee 2349369 3532fee 45a49ec 3532fee 45a49ec 3532fee d84e45e 3532fee 3ae32f9 45a49ec 3532fee 0456256 3532fee e12dca8 3532fee 0456256 3532fee 1cd7c81 3532fee 0567830 3532fee 0567830 3532fee 45a49ec 3532fee 45a49ec 3532fee 0567830 3532fee 45a49ec 360d4b1 45a49ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import json
import shutil
import datasets
import tifffile
import pandas as pd
import numpy as np
from torchgeo.datasets.cdl import CDL
from torchgeo.datasets.nlcd import NLCD
CMAPS = {
'nlcd': NLCD.cmap,
'cdl': CDL.cmap,
}
S2_MEAN = [752.40087073, 884.29673756, 1144.16202635, 1297.47289228, 1624.90992062, 2194.6423161, 2422.21248945, 2581.64687018, 2368.51236873, 1805.06846033]
S2_STD = [1108.02887453, 1155.15170768, 1183.6292542, 1368.11351514, 1370.265037, 1355.55390699, 1416.51487101, 1439.3086061, 1455.52084939, 1343.48379601]
subset_names = ["etm_sr_cdl", "etm_sr_nlcd", "etm_toa_cdl", "etm_toa_nlcd", "oli_sr_cdl", "oli_sr_nlcd", "oli_tirs_toa_cdl", "oli_tirs_toa_nlcd", "etm_oli_toa_cdl", "etm_oli_toa_nlcd"]
num_classes = {
'etm_sr_cdl': 134,
'etm_sr_nlcd': 21,
'etm_toa_cdl': 134,
'etm_toa_nlcd': 21,
'oli_sr_cdl': 134,
'oli_sr_nlcd': 21,
'oli_tirs_toa_cdl': 134,
'oli_tirs_toa_nlcd': 21,
"etm_oli_toa_nlcd": 21,
"etm_oli_toa_cdl": 134,
}
num_channels = {
'etm_sr_cdl': 6,
'etm_sr_nlcd': 6,
'etm_toa_cdl': 9,
'etm_toa_nlcd': 9,
'oli_sr_cdl': 7,
'oli_sr_nlcd': 7,
'oli_tirs_toa_cdl': 11,
'oli_tirs_toa_nlcd': 11,
"etm_oli_toa_nlcd": 20,
"etm_oli_toa_cdl": 20,
}
MEAN = [0]
STD = [255]
metadata = { # TODO: check if info below is correct or not
'etm_sr_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B7"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 2220.0], "mean": MEAN * 6, 'std': STD * 6}, # B6 (Thermal Band) and B8 (Panchromatic Band) are excluded
'etm_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B7"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 2220.0], "mean": MEAN * 6, 'std': STD * 6},
'etm_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6L", "B6H", "B7", "B8"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0], "mean": MEAN * 9, 'std': STD * 9},
'etm_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6L", "B6H", "B7", "B8"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0], "mean": MEAN * 9, 'std': STD * 9},
'oli_sr_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7},
'oli_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7},
'oli_tirs_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
'oli_tirs_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
"etm_oli_toa_nlcd": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20},
"etm_oli_toa_cdl": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20},
}
class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/SSL4EO-L-Benchmark/resolve/main/SSL4EOLBenchmark.zip"
SIZE = HEIGHT = WIDTH = 264
spatial_resolution = 30
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default"),
*[datasets.BuilderConfig(name=name) for name in subset_names]
]
DEFAULT_CONFIG_NAME = "oli_tirs_toa_nlcd"
def __init__(self, *args, **kwargs):
name = kwargs.get('config_name', None)
self.NUM_CLASSES = num_classes[name] if name and name != "default" else num_classes['oli_tirs_toa_nlcd']
self.NUM_CHANNELS = num_channels[name] if name and name != "default" else num_channels['oli_tirs_toa_nlcd']
self.metadata = metadata[name] if name and name != "default" else metadata['oli_tirs_toa_nlcd']
name = "oli_tirs_toa_nlcd" if name is None or name == "default" else name
product = name.split('_')[-1]
cmap = CMAPS[product]
classes = list(cmap.keys())
self.ordinal_map = np.zeros(max(cmap.keys()) + 1, dtype=np.int64)
for v, k in enumerate(classes):
self.ordinal_map[k] = v
super().__init__(*args, **kwargs)
def _info(self):
metadata = self.metadata
metadata['size'] = self.SIZE
metadata['num_classes'] = self.NUM_CLASSES
metadata['spatial_resolution'] = self.spatial_resolution
return datasets.DatasetInfo(
description=json.dumps(metadata),
features=datasets.Features({
"optical": datasets.Array3D(shape=(self.NUM_CHANNELS, self.HEIGHT, self.WIDTH), dtype="float32"),
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"),
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
"spatial_resolution": datasets.Value("int32"),
}),
)
def _split_generators(self, dl_manager):
if isinstance(self.DATA_URL, list):
downloaded_files = dl_manager.download(self.DATA_URL)
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
with open(combined_file, 'wb') as outfile:
for part_file in downloaded_files:
with open(part_file, 'rb') as infile:
shutil.copyfileobj(infile, outfile)
data_dir = dl_manager.extract(combined_file)
os.remove(combined_file)
else:
data_dir = dl_manager.download_and_extract(self.DATA_URL)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"split": 'train',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="val",
gen_kwargs={
"split": 'val',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"split": 'test',
"data_dir": data_dir,
},
)
]
def _generate_examples(self, split, data_dir):
optical_channel_wv = self.metadata["channel_wv"]
spatial_resolution = self.spatial_resolution
data_dir = os.path.join(data_dir, "SSL4EOLBenchmark")
if self.config.name in ["etm_oli_toa_nlcd", "etm_oli_toa_cdl"]:
product = self.config.name.split('_')[-1] # nlcd / cdl
metadata_oli = pd.read_csv(os.path.join(data_dir, f"metadata_oli_tirs_toa_{product}.csv"))
metadata_etm = pd.read_csv(os.path.join(data_dir, f"metadata_etm_toa_{product}.csv"))
metadata = self.sort_and_create_new_csv(metadata_oli, metadata_etm)
else:
metadata = pd.read_csv(os.path.join(data_dir, f"metadata_{self.config.name}.csv"))
metadata = metadata[metadata["split"] == split].reset_index(drop=True)
for index, row in metadata.iterrows():
optical_path = os.path.join(data_dir, row.optical_path)
optical = self._read_image(optical_path).astype(np.float32) # CxHxW
try:
optical_path_etm = os.path.join(data_dir, row.optical_path_etm)
optical_etm = self._read_image(optical_path_etm).astype(np.float32)
optical = np.concatenate((optical_etm, optical), axis=0)
except:
pass
label_path = os.path.join(data_dir, row.label_path)
label = self._read_image(label_path).astype(np.int32)
label = self.ordinal_map[label]
sample = {
"optical": optical,
"label": label,
"optical_channel_wv": optical_channel_wv,
"spatial_resolution": spatial_resolution,
}
yield f"{index}", sample
def _read_image(self, image_path):
"""Read tiff image from image_path
Args:
image_path:
Image path to read from
Return:
image:
C, H, W numpy array image
"""
image = tifffile.imread(image_path)
if len(image.shape) == 3:
image = np.transpose(image, (2, 0, 1))
return image
def sort_and_create_new_csv(self, metadata_oli, metadata_etm):
def extract_number(optical_path):
return optical_path.split('/')[1]
metadata_oli['number'] = metadata_oli['optical_path'].apply(extract_number) # a number
metadata_etm['number'] = metadata_etm['optical_path'].apply(extract_number) # a number
metadata_oli = metadata_oli.sort_values('number').reset_index(drop=True)
metadata_etm = metadata_etm.sort_values('number').reset_index(drop=True)
new_rows = []
i, j = 0, 0
while i < len(metadata_oli) and j < len(metadata_etm):
if metadata_oli.loc[i, 'number'] == metadata_etm.loc[j, 'number']:
new_rows.append({
'split': metadata_oli.loc[i, 'split'],
'optical_path_etm': metadata_etm.loc[j, 'optical_path'],
'optical_path': metadata_oli.loc[i, 'optical_path'],
'label_path': metadata_oli.loc[i, 'label_path']
})
i += 1
j += 1
elif metadata_oli.loc[i, 'number'] < metadata_etm.loc[j, 'number']:
i += 1
else:
j += 1
new_df = pd.DataFrame(new_rows, columns=['split', 'optical_path_etm', 'optical_path', 'label_path'])
return new_df |