Datasets:

ArXiv:
yuxuanw8 commited on
Commit
45a49ec
·
verified ·
1 Parent(s): 6b623b2

Update SSL4EO-L-Benchmark.py

Browse files
Files changed (1) hide show
  1. SSL4EO-L-Benchmark.py +54 -2
SSL4EO-L-Benchmark.py CHANGED
@@ -30,6 +30,8 @@ num_classes = {
30
  'oli_sr_nlcd': 21,
31
  'oli_tirs_toa_cdl': 134,
32
  'oli_tirs_toa_nlcd': 21,
 
 
33
  }
34
 
35
  num_channels = {
@@ -41,6 +43,8 @@ num_channels = {
41
  'oli_sr_nlcd': 7,
42
  'oli_tirs_toa_cdl': 11,
43
  'oli_tirs_toa_nlcd': 11,
 
 
44
  }
45
 
46
  MEAN = [0]
@@ -55,6 +59,8 @@ metadata = { # TODO: check if info below is correct or not
55
  'oli_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7},
56
  'oli_tirs_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
57
  'oli_tirs_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
 
 
58
  }
59
 
60
  class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder):
@@ -146,13 +152,28 @@ class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder):
146
  spatial_resolution = self.spatial_resolution
147
 
148
  data_dir = os.path.join(data_dir, "SSL4EOLBenchmark")
149
- metadata = pd.read_csv(os.path.join(data_dir, f"metadata_{self.config.name}.csv"))
 
 
 
 
 
 
 
 
150
  metadata = metadata[metadata["split"] == split].reset_index(drop=True)
151
 
152
  for index, row in metadata.iterrows():
153
  optical_path = os.path.join(data_dir, row.optical_path)
154
  optical = self._read_image(optical_path).astype(np.float32) # CxHxW
155
 
 
 
 
 
 
 
 
156
  label_path = os.path.join(data_dir, row.label_path)
157
  label = self._read_image(label_path).astype(np.int32)
158
  label = self.ordinal_map[label]
@@ -180,4 +201,35 @@ class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder):
180
  if len(image.shape) == 3:
181
  image = np.transpose(image, (2, 0, 1))
182
 
183
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  'oli_sr_nlcd': 21,
31
  'oli_tirs_toa_cdl': 134,
32
  'oli_tirs_toa_nlcd': 21,
33
+ "etm_oli_toa_nlcd": 21,
34
+ "etm_oli_toa_cdl": 134,
35
  }
36
 
37
  num_channels = {
 
43
  'oli_sr_nlcd': 7,
44
  'oli_tirs_toa_cdl': 11,
45
  'oli_tirs_toa_nlcd': 11,
46
+ "etm_oli_toa_nlcd": 20,
47
+ "etm_oli_toa_cdl": 20,
48
  }
49
 
50
  MEAN = [0]
 
59
  'oli_sr_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0], "mean": MEAN * 7, 'std': STD * 7},
60
  'oli_tirs_toa_cdl': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
61
  'oli_tirs_toa_nlcd': {"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"], "channel_wv": [443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 11, 'std': STD * 11},
62
+ "etm_oli_toa_nlcd": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20},
63
+ "etm_oli_toa_cdl": {"bands":["B1E", "B2E", "B3E", "B4E", "B5E", "B6LE", "B6HE", "B7E", "B8E", "B1O", "B2O", "B3O", "B4O", "B5O", "B6O", "B7O", "B8O", "B9O", "B10O", "B11O"], "channel_wv": [485.0, 560.0, 660.0, 835.0, 1650.0, 10900.0, 10900.0, 2220.0, 710.0, 443.0, 482.0, 562.0, 655.0, 865.0, 1610.0, 2200.0, 590.0, 1735.0, 10800.0, 12000.0], "mean": MEAN * 20, 'std': STD * 20},
64
  }
65
 
66
  class SSL4EOLBenchmarkDataset(datasets.GeneratorBasedBuilder):
 
152
  spatial_resolution = self.spatial_resolution
153
 
154
  data_dir = os.path.join(data_dir, "SSL4EOLBenchmark")
155
+ if self.config.name in ["etm_oli_toa_nlcd", "etm_oli_toa_cdl"]:
156
+ product = self.config.name.split('_')[-1] # nlcd / cdl
157
+ metadata_oli = pd.read_csv(os.path.join(data_dir, f"metadata_oli_tirs_toa_{product}.csv"))
158
+ metadata_etm = pd.read_csv(os.path.join(data_dir, f"metadata_etm_toa_{product}.csv"))
159
+
160
+ metadata = self.sort_and_create_new_csv(metadata_oli, metadata_etm)
161
+ else:
162
+ metadata = pd.read_csv(os.path.join(data_dir, f"metadata_{self.config.name}.csv"))
163
+
164
  metadata = metadata[metadata["split"] == split].reset_index(drop=True)
165
 
166
  for index, row in metadata.iterrows():
167
  optical_path = os.path.join(data_dir, row.optical_path)
168
  optical = self._read_image(optical_path).astype(np.float32) # CxHxW
169
 
170
+ try:
171
+ optical_path_etm = os.path.join(data_dir, row.optical_path_etm)
172
+ optical_etm = self._read_image(optical_path_etm).astype(np.float32)
173
+ optical = np.concatenate((optical_etm, optical), axis=0)
174
+ except:
175
+ pass
176
+
177
  label_path = os.path.join(data_dir, row.label_path)
178
  label = self._read_image(label_path).astype(np.int32)
179
  label = self.ordinal_map[label]
 
201
  if len(image.shape) == 3:
202
  image = np.transpose(image, (2, 0, 1))
203
 
204
+ return image
205
+
206
+ def sort_and_create_new_csv(metadata_oli, metadata_etm):
207
+ def extract_number(optical_path):
208
+ return optical_path.split('/')[1]
209
+
210
+ metadata_oli['number'] = metadata_oli['optical_path'].apply(extract_number) # a number
211
+ metadata_etm['number'] = metadata_etm['optical_path'].apply(extract_number) # a number
212
+
213
+ metadata_oli = metadata_oli.sort_values('number').reset_index(drop=True)
214
+ metadata_etm = metadata_etm.sort_values('number').reset_index(drop=True)
215
+
216
+ new_rows = []
217
+
218
+ i, j = 0, 0
219
+ while i < len(metadata_oli) and j < len(metadata_etm):
220
+ if metadata_oli.loc[i, 'number'] == metadata_etm.loc[j, 'number']:
221
+ new_rows.append({
222
+ 'split': metadata_oli.loc[i, 'split'],
223
+ 'optical_path_etm': metadata_etm.loc[j, 'optical_path'],
224
+ 'optical_path': metadata_oli.loc[i, 'optical_path'],
225
+ 'label_path': metadata_oli.loc[i, 'label_path']
226
+ })
227
+ i += 1
228
+ j += 1
229
+ elif metadata_oli.loc[i, 'number'] < metadata_etm.loc[j, 'number']:
230
+ i += 1
231
+ else:
232
+ j += 1
233
+
234
+ new_df = pd.DataFrame(new_rows, columns=['split', 'optical_path_etm', 'optical_path', 'label_path'])
235
+ return new_df