|
--- |
|
dataset_info: |
|
features: |
|
- name: latents |
|
sequence: |
|
sequence: |
|
sequence: float32 |
|
- name: label_latent |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 21682470308 |
|
num_examples: 1281167 |
|
- name: validation |
|
num_bytes: 846200000 |
|
num_examples: 50000 |
|
- name: test |
|
num_bytes: 1692400000 |
|
num_examples: 100000 |
|
download_size: 24417155228 |
|
dataset_size: 24221070308 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
> [!WARNING] |
|
> **Better latent**: I advise you to use another dataset https://huggingface.co/datasets/cloneofsimo/imagenet.int8 which is already compressed (5Go only) and use a better latent model (SDXL) |
|
|
|
This dataset is the latent representation of the imagenet dataset using the stability VAE stabilityai/sd-vae-ft-ema. |
|
|
|
Every image_latent is of shape (4, 32, 32). |
|
|
|
If you want to retrieve the original image you have to use the model used to create the latent image : |
|
|
|
```python |
|
vae_model = "stabilityai/sd-vae-ft-ema" |
|
vae = AutoencoderKL.from_pretrained(vae_model) |
|
vae.eval() |
|
``` |
|
|
|
The images have been encoded using : |
|
|
|
```python |
|
images = [DEFAULT_TRANSFORM(image.convert("RGB")) for image in examples["image"]] |
|
images = torch.stack(images) |
|
images = vaeprocess.preprocess(images) |
|
images = images.to(device="cuda", dtype=torch.float) |
|
with torch.no_grad(): |
|
latents = vae.encode(images).latent_dist.sample() |
|
``` |
|
|
|
With DEFAULT_TRANSFORM being : |
|
|
|
```python |
|
DEFAULT_IMAGE_SIZE = 256 |
|
|
|
DEFAULT_TRANSFORM = transforms.Compose( |
|
[ |
|
transforms.Resize((DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE)), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
``` |
|
|
|
The images can be decoded using : |
|
|
|
``` |
|
import datasets |
|
|
|
latent_dataset = datasets.load_dataset( |
|
"Forbu14/imagenet-1k-latent" |
|
) |
|
|
|
latent = torch.tensor(latent_dataset["train"][0]["latents"]) |
|
image = vae.decode(latent).sample |
|
``` |
|
|