File size: 7,960 Bytes
7e79098
84a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8552bf4
84a7a99
8552bf4
84a7a99
3efc949
 
 
84a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
3efc949
84a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0895e0
7e79098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0895e0
84a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35b013
84a7a99
 
 
d35b013
84a7a99
d35b013
84a7a99
 
 
d35b013
84a7a99
 
 
d35b013
84a7a99
d35b013
84a7a99
 
 
d35b013
84a7a99
 
 
d35b013
84a7a99
 
d35b013
84a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

---
language:
- multilingual
license: mit
annotations_creators:
- machine-generated
language_creators:
- found
size_categories:
- 100M<n<1B
source_datasets:
- original
task_categories:
- text-classification
- summarization
- text-retrieval
pretty_name: Exorde Social Media Dataset December 2024 Week 1
tags:
- social-media
- multi-lingual
- sentiment-analysis
- emotion-detection
- text
---
---

  

# Multi-Source, Multi-Language Social Media Dataset (1 Week Sample)

  

This dataset represents a rich, diverse snapshot of global online discourse, collected over nearly one month from November 14, 2024, to December 12, 2024. It comprises 269 million unique social media posts & articles from various social media platforms, blogs, and news articles, all precisely timestamped at the moment of posting. This dataset is procuded by Exorde Labs. www.exordelabs.com/.
This dataset includes many conversations around Black Friday, Post US Elections, European financial & political changes, the collapse of the Syrian regime, the killing of the UnitedHealth CEO, and many other topics. The potential is wide.
All items in this dataset are captured publicly, in near real-time, allowing post-deletion & retrospective analyses. This dataset is an extract of the full stream produced by Exorde.

## Methodology: Total sampling of the web, statistical capture of all topics


  

## Dataset Highlights

  

- **Multi-Source**:  Captures content from a wide range of online platforms

- **Multi-Language**:  Covers 122 different languages

- **High-Resolution  Temporal Data**: Each entry is timestamped to the exact moment of posting

- **Rich  Metadata**: Includes sentiment analysis, emotion detection, and thematic categorization

- **Large  Scale**: 270 million unique entries collected in near real-time

- **Diverse  Content**: Social media posts, blog entries, news articles, and more


## Dataset Schema

- **date**:  string (exact timestamp of post)
- **original_text**:  string
- **url**:  string
- **author_hash**:  string (SHA-1 hash for privacy)
- **language**:  string
- **primary_theme**:  string
- **english_keywords**:  string
- **sentiment**:  double
- **main_emotion**:  string
- **secondary_themes**:  list<element: int64>

  

## Attributes description

 - **original_text** is the exact original text of the item/post, as it was collected. It should match the original content before any
   deletion/edition.
-   **author_hash** is a SHA-1 Hash of the author username on a given platform, when provided. Many items have None Author_hash.
-   **language** is detected by a fasttext-langdetect model. Isocode ISO 639.
 -  **primary_theme** is the output of MoritzLaurer/deberta-v3-xsmall-zeroshot-v1.1-all-33, on on the
   classes below.
  - **secondary_themes** are the same theme classes with a mapping:
   

>        1. Economy
>        2. Technology
>        3. Investing
>        4. Business
>        5. Cryptocurrency
>        6. Social
>        7. Politics
>        8. Finance
>        9. Entertainment
>        10. Health
>        11. Law
>        12. Sports
>        13. Science
>        14. Environment
>        15. People

      
   
-    **main_emotion** is computed from an emotion scoring Language model, fine-tuned on social media data.
   
 -  **english_keywords** is a powerful attribute, computed from an English translation of the original text. These keywords represent the core content (relevant keywords) of the text. They are produced from KeyBert & statistical algorithms.   They should be mostly in English except when translation was faulty, in that case they will be in the original language.
   
-   **Sentiment** is computed & aggregated from several models, including deep learning models. It is a value between -1 and 1. -1 being negative, 0 neutral and 1 positive.

  
  

## Key Statistics

- **Total  entries**: 269,403,210 (543 files, 496138 average rows per file)

- **Date  range**: 2024-11-14 to 2024-12-11 (included)

- **Unique  authors**: 21 104 502

- **Languages**:  122

- **Primary  themes**: 16

- **Main  emotions**: 26

- **Average  sentiment**: 0.043

- **Most  common emotion**: Neutral

  

### Top 20 Sources


- x.com	179,375,295
- reddit.com	52,639,009
- bsky.app	24,893,642
- youtube.com	7,851,888
- 4channel.org	1,077,691
- jeuxvideo.com	280,376
- forocoches.com	226,300
- mastodon.social	225,319
- news.ycombinator.com	132,079
- lemmy.world	120,941
- investing.com	113,480
- tribunnews.com	89,057
- threads.net	55,838
- yahoo.co.jp	54,662
- yahoo.com	38,665
- indiatimes.com	38,006
- news18.com	33,241
- bhaskar.com	30,653
- chosun.com	28,692
- tradingview.com	28,261
- +5000 others
  
  

[Full source distribution](https://gist.githubusercontent.com/MathiasExorde/53eea5617640487bdd1e8d124b2df5e4/raw/5bb9a4cd9b477216d64af65e3a0918879f806e8b/gistfile1.txt)

  

### Top 10 Languages

1. English (en): 190,190,353
2. Spanish (es): 184,04,746
3. Japanese (ja): 14,034,642
4. Portuguese (pt): 12,395,668
5. French (fr): 5,910,246
6. German (de): 4,618,554
7. Arabic (ar): 3,777537
8. Turkish (tr): 2,922,411
9. Italian (it): 2,425,941

  

[Full language distribution](https://gist.github.com/MathiasExorde/bded85ba620de095705bb20507fcf6f1#file-gistfile1-txt)

  

## About Exorde Labs

  

Exorde Labs is pioneering a novel collective distributed data DePIN (Decentralized Physical Infrastructure Network). Our mission is to produce a representative view of the web, minute by minute. Since our inception in July 2023, we have achieved:


- Current capacity: Processing up to 4 billion elements annually
- Growth rate: 20% monthly increase in data volume
- Coverage: A comprehensive, real-time snapshot of global online discourse
- More than 10 Million data points are processed daily, half a million per hour in near real-time


This dataset is a small sample of our capabilities, offering researchers and developers a glimpse into the rich, multi-faceted data we collect and analyze.

  

For more information about our work and services, visit:

  

- [Exorde Labs Website](https://www.exordelabs.com/)

- [Social Media Data](https://www.exordelabs.com/social-media-data)

- [Exorde Labs API](https://www.exordelabs.com/api)

  

## Use Cases

  

This dataset is invaluable for a wide range of applications, including but not limited to:

  

- Real-time trend analysis

- Cross-platform social media research

- Multi-lingual sentiment analysis

- Emotion detection across cultures

- Thematic analysis of global discourse

- Event detection and tracking

- Influence mapping and network analysis

  

## Acknowledgments

  

We would like to thank the open-source community for their continued support and feedback. Special thanks to all the platforms and users whose public data has contributed to this dataset.

Massive thanks to the Exorde Network and its data enthusiast community, unique of its kind.

  

## Licensing Information

  

This dataset is released under the MIT license.

## Citation Information

  

If you use this dataset in your research or applications, please cite it as follows:

  

`Exorde Labs. (2024). Multi-Source, Multi-Language Social Media Dataset [Data set]. Exorde Labs. https://www.exordelabs.com/`

  
  

## Contact Information

  

For questions, feedback, or more information about this dataset or Exorde Labs' services, please contact us at:

  

- Email: [[email protected]](mailto:[email protected])

- Twitter: [@ExordeLabs](https://twitter.com/ExordeLabs)

- GitHub: [Exorde Labs](https://github.com/exorde-labs)

  

We are committed to supporting the open-source community by providing high-quality, diverse datasets for cutting-edge research and development. If you find this dataset useful, consider exploring our API for real-time access to our full range of social media data.

  
  

![Exorde  Labs Logo](https://cdn.prod.website-files.com/620398f412d5829aa28fbb86/62278ca0202d025e97b76555_portrait-logo-color.png)

  
  

---