MathiasExorde commited on
Commit
84a7a99
·
verified ·
1 Parent(s): f0f3248

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +285 -3
README.md CHANGED
@@ -1,3 +1,285 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ license: mit
5
+ annotations_creators:
6
+ - machine-generated
7
+ language_creators:
8
+ - found
9
+ size_categories:
10
+ - 100M<n<1B
11
+ source_datasets:
12
+ - original
13
+ task_categories:
14
+ - text-classification
15
+ - summarization
16
+ - text-retrieval
17
+ pretty_name: Exorde Social Media Dataset December 2024 Week 1
18
+ tags:
19
+ - social-media
20
+ - multi-lingual
21
+ - sentiment-analysis
22
+ - emotion-detection
23
+ - text
24
+ ---
25
+ ---
26
+
27
+
28
+
29
+ # Multi-Source, Multi-Language Social Media Dataset (1 Week Sample)
30
+
31
+
32
+
33
+ This dataset represents a rich, diverse snapshot of global online discourse, collected over a one-week period from December 1, 2024, to December 7, 2024. It comprises 65,542,211 entries from various social media platforms, blogs, and news articles, all precisely timestamped at the moment of posting. This dataset is procuded by Exorde Labs. www.exordelabs.com/.
34
+ This dataset includes many conversations around Black Friday, Post US Elections, European financial & political changes, the collapse of the Syrian regime, the killing of the UnitedHealth CEO, and many other topics. The potential is wide.
35
+ All items in this dataset are captured publicly, in near real-time, allowing post-deletion & retrospective analyses.
36
+
37
+
38
+
39
+ ## Dataset Highlights
40
+
41
+
42
+
43
+ - **Multi-Source**: Captures content from a wide range of online platforms
44
+
45
+ - **Multi-Language**: Covers 122 different languages
46
+
47
+ - **High-Resolution Temporal Data**: Each entry is timestamped to the exact moment of posting
48
+
49
+ - **Rich Metadata**: Includes sentiment analysis, emotion detection, and thematic categorization
50
+
51
+ - **Large Scale**: 65,542,211 entries collected over just one week
52
+
53
+ - **Diverse Content**: Social media posts, blog entries, news articles, and more
54
+
55
+
56
+ ## Dataset Schema
57
+
58
+ - **date**: string (exact timestamp of post)
59
+ - **original_text**: string
60
+ - **url**: string
61
+ - **author_hash**: string (SHA-1 hash for privacy)
62
+ - **language**: string
63
+ - **primary_theme**: string
64
+ - **english_keywords**: string
65
+ - **sentiment**: double
66
+ - **main_emotion**: string
67
+ - **secondary_themes**: list<element: int64>
68
+
69
+
70
+
71
+ ## Attributes description
72
+
73
+ - **original_text** is the exact original text of the item/post, as it was collected. It should match the original content before any
74
+ deletion/edition.
75
+ - **author_hash** is a SHA-1 Hash of the author username on a given platform, when provided. Many items have None Author_hash.
76
+ - **language** is detected by a fasttext-langdetect model. Isocode ISO 639.
77
+ - **primary_theme** is the output of MoritzLaurer/deberta-v3-xsmall-zeroshot-v1.1-all-33, on on the
78
+ classes below.
79
+ - **secondary_themes** are the same theme classes with a mapping:
80
+
81
+
82
+ > 1. Economy
83
+ > 2. Technology
84
+ > 3. Investing
85
+ > 4. Business
86
+ > 5. Cryptocurrency
87
+ > 6. Social
88
+ > 7. Politics
89
+ > 8. Finance
90
+ > 9. Entertainment
91
+ > 10. Health
92
+ > 11. Law
93
+ > 12. Sports
94
+ > 13. Science
95
+ > 14. Environment
96
+ > 15. People
97
+
98
+
99
+
100
+ - **main_emotion** is computed from an emotion scoring Language model, fine-tuned on social media data.
101
+
102
+ - **english_keywords** is a powerful attribute, computed from an English translation of the original text. These keywords represent the core content (relevant keywords) of the text. They are produced from KeyBert & statistical algorithms. They should be mostly in English except when translation was faulty, in that case they will be in the original language.
103
+
104
+ - **Sentiment** is computed & aggregated from several models, including deep learning models. It is a value between -1 and 1. -1 being negative, 0 neutral and 1 positive.
105
+
106
+
107
+
108
+
109
+ ## Key Statistics
110
+
111
+ - **Total entries**: 269,403,210 (543 files, 496138 average rows per file)
112
+
113
+ - **Date range**: 2024-11-14 to 2024-12-11 (included)
114
+
115
+ - **Unique authors**: 21 104 502
116
+
117
+ - **Languages**: 122
118
+
119
+ - **Primary themes**: 16
120
+
121
+ - **Main emotions**: 26
122
+
123
+ - **Average sentiment**: 0.043
124
+
125
+ - **Most common emotion**: Neutral
126
+
127
+
128
+
129
+ ### Top 20 Sources
130
+
131
+ x.com 179,375,295
132
+ reddit.com 52,639,009
133
+ bsky.app 24,893,642
134
+ youtube.com 7,851,888
135
+ 4channel.org 1,077,691
136
+ jeuxvideo.com 280,376
137
+ forocoches.com 226,300
138
+ mastodon.social 225,319
139
+ news.ycombinator.com 132,079
140
+ lemmy.world 120,941
141
+ investing.com 113,480
142
+ tribunnews.com 89,057
143
+ threads.net 55,838
144
+ yahoo.co.jp 54,662
145
+ yahoo.com 38,665
146
+ indiatimes.com 38,006
147
+ news18.com 33,241
148
+ bhaskar.com 30,653
149
+ chosun.com 28,692
150
+ tradingview.com 28,261
151
+ +6000 others
152
+
153
+
154
+ [Full source distribution](https://gist.githubusercontent.com/MathiasExorde/53eea5617640487bdd1e8d124b2df5e4/raw/5bb9a4cd9b477216d64af65e3a0918879f806e8b/gistfile1.txt)
155
+
156
+
157
+
158
+ ### Top 10 Languages
159
+
160
+ 1. English (en): 190,190,353
161
+ 2. Spanish (es): 184,04,746
162
+ 3. Japanese (ja): 14,034,642
163
+ 4. Portuguese (pt): 12,395,668
164
+ 5. French (fr): 5,910,246
165
+ 6. German (de): 4,618,554
166
+ 7. Arabic (ar): 3,777537
167
+ 8. Turkish (tr): 2,922,411
168
+ 9. Italian (it): 2,425,941
169
+
170
+
171
+
172
+ [Full language distribution](https://gist.github.com/MathiasExorde/bded85ba620de095705bb20507fcf6f1#file-gistfile1-txt)
173
+
174
+
175
+
176
+ ## About Exorde Labs
177
+
178
+
179
+
180
+ Exorde Labs is pioneering a novel collective distributed data DePIN (Decentralized Physical Infrastructure Network). Our mission is to produce a representative view of the web, minute by minute. Since our inception in July 2023, we have achieved:
181
+
182
+
183
+ - Current capacity: Processing up to 4 billion elements annually
184
+ - Growth rate: 20% monthly increase in data volume
185
+ - Coverage: A comprehensive, real-time snapshot of global online discourse
186
+ - More than 10 Million data points are processed daily, half a million per hour in near real-time
187
+
188
+
189
+ This dataset is a small sample of our capabilities, offering researchers and developers a glimpse into the rich, multi-faceted data we collect and analyze.
190
+
191
+
192
+
193
+ For more information about our work and services, visit:
194
+
195
+
196
+
197
+ - [Exorde Labs Website](https://www.exordelabs.com/)
198
+
199
+ - [Social Media Data](https://www.exordelabs.com/social-media-data)
200
+
201
+ - [Exorde Labs API](https://www.exordelabs.com/api)
202
+
203
+
204
+
205
+ ## Use Cases
206
+
207
+
208
+
209
+ This dataset is invaluable for a wide range of applications, including but not limited to:
210
+
211
+
212
+
213
+ - Real-time trend analysis
214
+
215
+ - Cross-platform social media research
216
+
217
+ - Multi-lingual sentiment analysis
218
+
219
+ - Emotion detection across cultures
220
+
221
+ - Thematic analysis of global discourse
222
+
223
+ - Event detection and tracking
224
+
225
+ - Influence mapping and network analysis
226
+
227
+
228
+
229
+ ## Citation Information
230
+
231
+
232
+
233
+ If you use this dataset in your research or applications, please cite it as follows:
234
+
235
+
236
+
237
+ `Exorde Labs. (2024). Multi-Source, Multi-Language Social Media Dataset (1 Week Sample) [Data set]. Exorde Labs. https://www.exordelabs.com/`
238
+
239
+
240
+
241
+ ## Acknowledgments
242
+
243
+
244
+
245
+ We would like to thank the open-source community for their continued support and feedback. Special thanks to all the platforms and users whose public data has contributed to this dataset.
246
+
247
+ Massive thanks to the Exorde Network and its data enthusiast community, unique of its kind.
248
+
249
+
250
+
251
+ ## Licensing Information
252
+
253
+
254
+
255
+ This dataset is released under the MIT license.
256
+
257
+
258
+
259
+ ## Contact Information
260
+
261
+
262
+
263
+ For questions, feedback, or more information about this dataset or Exorde Labs' services, please contact us at:
264
+
265
+
266
+
267
+ - Email: [[email protected]](mailto:[email protected])
268
+
269
+ - Twitter: [@ExordeLabs](https://twitter.com/ExordeLabs)
270
+
271
+ - GitHub: [Exorde Labs](https://github.com/exorde-labs)
272
+
273
+
274
+
275
+ We are committed to supporting the open-source community by providing high-quality, diverse datasets for cutting-edge research and development. If you find this dataset useful, consider exploring our API for real-time access to our full range of social media data.
276
+
277
+
278
+
279
+
280
+ ![Exorde Labs Logo](https://cdn.prod.website-files.com/620398f412d5829aa28fbb86/62278ca0202d025e97b76555_portrait-logo-color.png)
281
+
282
+
283
+
284
+
285
+ ---