metadata
dataset_info:
- config_name: librispeech-asr-tts
features:
- name: id
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: test
num_bytes: 14023156
num_examples: 5240
download_size: 2510708
dataset_size: 14023156
configs:
- config_name: librispeech-asr-tts
data_files:
- split: test
path: librispeech-asr-tts/test-*
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
- zh
tags:
- Omni-modal-LLM
- Multi-modal-LLM
- Emotional-spoken-dialogue
EMOVA-ASR-TTS-Eval
π€ EMOVA-Models | π€ EMOVA-Datasets | π€ EMOVA-Demo
π Paper | π Project-Page | π» Github | π» EMOVA-Speech-Tokenizer-Github
Overview
EMOVA-ASR-TTS-Eval is a dataset designed for evaluating the ASR and TTS performance of Omni-modal LLMs. It is derived from the test-clean set of the LibriSpeech dataset. This dataset is part of the EMOVA-Datasets collection. We extract the speech units using the EMOVA Speech Tokenizer.
Structure
This dataset contains two types of data samples:
- Automated Speech Recognition (ASR): recognize the corresponding plain texts given speech unit inputs.
- Text-to-Speech (TTS): generate speech units given the plain text inputs.
Getting Started
This dataset is organized in the official LLaVA data format and can be accessed with the HuggingFace datasets API. For more details on evaluating EMOVA with this dataset, check our github repo.
from datasets import load_dataset
dataset = load_dataset("Emova-ollm/emova-asr-tts-eval", name="librispeech-asr-tts", split='test')
# should be a dictionary containing
# {"id": sample identification, 'conversations': containing speech units}
for data in dataset:
print(data)
Citation
@article{chen2024emova,
title={Emova: Empowering language models to see, hear and speak with vivid emotions},
author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others},
journal={arXiv preprint arXiv:2409.18042},
year={2024}
}