Datasets:

ArXiv:
Libraries:
License:
OpenMaterial / README.md
Christy61's picture
Update README.md
aae5c19 verified
---
configs:
- config_name: default
license: cc-by-nc-4.0
tags:
- croissant
size_categories:
- 1K<n<10K
task_categories:
- image-to-3d
---
# OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Zheng Dang<sup>1</sup> · Jialu Huang<sup>2</sup> · Fei Wang<sup>2</sup> · Mathieu Salzmann<sup>1</sup>
<sup>1</sup>EPFL CVLAb, Switzerland <sup>2</sup> Xi'an Jiaotong University, China
[Paper](https://arxiv.org/abs/2406.08894)
[WebPage](https://christy61.github.io/openmaterial.github.io/)
<img src="https://cdn-uploads.huggingface.co/production/uploads/665def1b1d30854dbbde3e87/PBaPM9PAickSO8LnmWF9z.png" width="92%"/>
---
## **📌 Update log**
### 🗓️ March 2025
- Updated **degnosie scripts** to identify and address rare missing cases caused by server-side cluster fluctuations.
- Refined benchmark results for selected algorithms (_NeRO_, _GES_, _GaussianShader_) on the **Ablation Dataset**.
- ⚠️ Note: Main benchmark results remain **unaffected**.
- 🔗 Updated results available at: [https://christy61.github.io/openmaterial.github.io/]
---
### 🗓️ November 2024
- Released **benchmark results** on the **Ablation Dataset**, with strict control over **shape**, **material**, and **lighting** variables.
- Benchmarked a set of representative algorithms across two tasks:
- _Novel View Synthesis_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader
- _3D Reconstruction_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO
- Updated evaluation scripts to **incorporate new algorithms** and support the **Ablation Dataset benchmarking format**.
- Improved **evaluation code** to better visualize benchmarking comparisons.
- 🔗 Full results available at: [https://christy61.github.io/openmaterial.github.io/]
### 🗓️ October 2024
- Released extended **benchmark results** on the **Main Dataset**:
- _7 Novel View Synthesis methods_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader
- _6 3D Reconstruction methods_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO, NeRRF
- Highlighted algorithms specialized for **challenging materials**: NeRO, NeRRF, GSDR, GaussianShader
- Updated evaluation scripts to **incorporate new algorithms**.
### 🗓️ September 2024
- Introduced a new **Ablation Dataset** for controlled analysis of 3D reconstruction and view synthesis.
- Controlled variables:
- **Objects**: Vase, Snail, Boat, Motor Bike, Statue
- **Lighting**: Indoor, Daytime Garden, Nighttime Street
- **Materials**: Conductor, Dielectric Plastic, Rough Conductor, Rough Dielectric, Rough Plastic, Diffuse
- Total: **105 unique scenes** (5 × 3 × 7)
- 🔗 Data is now available.
### 🗓️ July 2024
- Dataset restructured for **flexible material-type-based downloading**.
- Users can now download subsets of data focusing on specific material categories (e.g., _diffuse_, _conductor_, _dielectric_, _plastic_).
- 📦 Updated **download scripts** included.
### 🗓️ May 2024
- Released **OpenMaterial**, a semi-synthetic dataset featuring:
- **1001 unique shapes**, **295 materials** with lab-measured IOR spectra
- **723 lighting conditions**
- High-res images (1600×1200), camera poses, depth, 3D models, masks
- Stored in standard **COLMAP** format
- Released a **new benchmark** including a novel evaluation dimension: **material type**
- Benchmarked methods: Instant-NeuS, NeuS2, Gaussian Splatting, Instant-NGP
## Dataset
[+] 1001 unique shapes
[+] 295 material types with laboratory measured IOR
[+] 723 lighting conditions
[+] Physical based rendering with costomized BSDF for each material type
[+] 1001 uniques scenes, for each scene 90 images (50 for training, 40 for testing) with object mask, depth, camera pose, materail type annotations.
## Example Images
<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/dlFmsdbJqFKnDUN3yg_S1.png" style="width:40%;" alt="Example 1"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/A9mmqEVW_3BgMWey5cPrC.png" style="width:40%;" alt="Example 2"/>
</div>
<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%; margin-top:-2em;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/1k_zGTTZAYyJtcIDo0FOO.png" style="width:40%;" alt="Example 3"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/w5P_MvlTXt6FMwEDMwPwe.png" style="width:40%;" alt="Example 4"/>
</div>
## Data structure
```
.
├── name_of_object/[lighing_condition_name]-[material_type]-[material_name]
│ ├── train
│ │ ├── images
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── mask
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── depth
│ │ ├── 000000.png
│ │ |-- ...
│ ├── test
│ │ ├── images
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── mask
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── depth
│ │ ├── 000000.png
│ │ |-- ...
│ └── transformas_train.json
│ └── transformas_test.json
```
## Usage
Check out our [`Example Code`](https://github.com/Christy61/OpenMaterial) for implementation details!
<!-- ## Citation
If you find our work useful in your research, please cite:
```
@article{Dang24,
title={OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction},
author={Zheng Dang and Jialu Huang and Fei Wang and Mathieu Salzmann},
journal={arXiv preprint arXiv:2406.08894},
year={2024}
}
-->
```