eurlex / README.md
Samoed's picture
Upload dataset
2f45f5e verified
---
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 380277965
num_examples: 53203
- name: validation
num_bytes: 40200731
num_examples: 4834
- name: test
num_bytes: 57450762
num_examples: 4774
download_size: 389851249
dataset_size: 477929458
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: 'null'
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 220
num_examples: 11
download_size: 3329
dataset_size: 220
- config_name: intentsqwen3-32b
features:
- name: id
dtype: int64
- name: name
dtype: 'null'
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: string
splits:
- name: intents
num_bytes: 1560
num_examples: 11
download_size: 4185
dataset_size: 1560
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
- config_name: intentsqwen3-32b
data_files:
- split: intents
path: intentsqwen3-32b/intents-*
task_categories:
- text-classification
language:
- en
---
# eurlex
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
## Usage
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
from autointent import Dataset
eurlex = Dataset.from_hub("AutoIntent/eurlex")
```
## Source
This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
import datasets
from autointent import Dataset
def get_number_of_classes(ds: datasets.Dataset) -> int:
return len(set(i for example in ds for labels in example for i in labels))
def parse(ds: datasets.Dataset, n_classes: int) -> datasets.Dataset:
def transform(example: dict):
return {"utterance": example["text"], "label": [int(i in example["labels"]) for i in range(n_classes)]}
return ds.map(transform, remove_columns=ds.features.keys())
def get_low_resource_classes_mask(ds: datasets.Dataset, n_classes: int, fraction_thresh: float = 0.01) -> list[bool]:
res = [0] * n_classes
for sample in ds:
for i, indicator in enumerate(sample["label"]):
res[i] += indicator
for i in range(n_classes):
res[i] /= len(ds)
return [(frac < fraction_thresh) for frac in res]
def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
res = []
for sample in ds:
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
continue
sample["label"] = [
indicator for indicator, low_resource in
zip(sample["label"], mask, strict=True) if not low_resource
]
res.append(sample)
return res
def remove_oos(ds: list[dict]):
return [sample for sample in ds if sum(sample["label"]) != 0]
if __name__ == "__main__":
eurlex = datasets.load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
n_classes = get_number_of_classes(eurlex["train"])
train = parse(eurlex["train"], n_classes)
test = parse(eurlex["test"], n_classes)
validation = parse(eurlex["validation"], n_classes)
mask = get_low_resource_classes_mask(train, n_classes)
train = remove_oos(remove_low_resource_classes(train, mask))
test = remove_oos(remove_low_resource_classes(test, mask))
validation = remove_oos(remove_low_resource_classes(validation, mask))
eurlex_converted = Dataset.from_dict({
"train": train,
"test": test,
"validation": validation,
})
```