File size: 10,287 Bytes
859a923 60d23c0 859a923 60d23c0 859a923 60d23c0 cb85ca4 859a923 cb85ca4 c4cdfe1 cb85ca4 c4cdfe1 cb85ca4 c4cdfe1 cb85ca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
dataset_info:
- config_name: default
features:
- name: tokens
sequence: string
- name: spo_list
sequence:
sequence: string
- name: pos_tags
sequence: string
- name: relations
list:
- name: h
struct:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: type
dtype: string
- name: t
struct:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: type
dtype: string
- name: type
dtype: string
splits:
- name: train
num_bytes: 48934795
num_examples: 56196
- name: validation
num_bytes: 4369341
num_examples: 5000
- name: test
num_bytes: 4395817
num_examples: 5000
download_size: 14425744
dataset_size: 57699953
- config_name: raw
features:
- name: sentText
dtype: string
- name: articleId
dtype: string
- name: relationMentions
list:
- name: em1Text
dtype: string
- name: em2Text
dtype: string
- name: label
dtype: string
- name: entityMentions
list:
- name: start
dtype: int64
- name: label
dtype: string
- name: text
dtype: string
- name: sentId
dtype: string
splits:
- name: train
num_bytes: 29397404
num_examples: 56196
- name: validation
num_bytes: 2625955
num_examples: 5000
- name: test
num_bytes: 2629885
num_examples: 5000
download_size: 13342957
dataset_size: 34653244
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: raw
data_files:
- split: train
path: raw/train-*
- split: validation
path: raw/validation-*
- split: test
path: raw/test-*
language:
- en
tags:
- news
- relation-extraction
pretty_name: NYT-multi
size_categories:
- 10K<n<100K
---
# Dataset Card for NYT-multi
## Dataset Description
- **Repository:** https://github.com/xiangrongzeng/copy_re
- **Paper:** https://aclanthology.org/P18-1047/
#### Dataset Summary
<!-- Provide a quick summary of the dataset. -->
The original NYT dataset by Riedel et al. (2010) consists of New York Times news articles from 1987-2007 that was distantly annotated with relations using FreeBase. The original dataset consisted of 1.18M sentences. It is available here: https://iesl.cs.umass.edu/riedel/ecml/
Zeng et al. (2018) that filtered out sentences with more than 100 words and sentences without an active relation, leaving 66195 sentences.
They randomly selected 5000 sentences from it as the test set, 5000 sentences as the validation set and the rest 56195 sentences are used as train set.
The resulting dataset called NYT-multi features overlapping entities across three entity types and 24 relation types.
You can access the raw version from Zeng et al. (2018) using `datasets.load_dataset("DFKI-SLT/nyt-multi", config="raw")`.
The original data is available here: https://github.com/xiangrongzeng/copy_re
The data was further pre-processed with the StanfordCoreNLP by Yu et al. (2020): https://github.com/yubowen-ph/JointER
We converted the data into a more readable JSON format and used it for the default version of the dataset.
### Languages
The language in the dataset is English.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
### Dataset Instances
#### default
An example of 'train' looks as follows:
```json
{
"tokens": ["Massachusetts", "ASTON", "MAGNA", "Great", "Barrington", ";", "also", "at", "Bard", "College", ",", "Annandale-on-Hudson", ",", "N.Y.", ",", "July", "1-Aug", "."],
"spo_list": [["Annandale-on-Hudson", "/location/location/contains", "Bard College"]],
"pos_tags": ["NNP", "NNP", "NNP", "NNP", "NNP", ":", "RB", "IN", "NNP", "NNP", ",", "NNP", ",", "NNP", ",", "NNP", "NNP", "."],
"relations": [
{
"h": {"text": "Annandale-on-Hudson", "start": 11, "end": 12, "type": "LOCATION"},
"t": {"text": "Bard College", "start": 8, "end": 10, "type": "ORGANIZATION"},
"type": "/location/location/contains"
}
]
}
```
### raw
An example of 'train' looks as follows:
```json
{
"sentText": "Massachusetts ASTON MAGNA Great Barrington ; also at Bard College , Annandale-on-Hudson , N.Y. , July 1-Aug .",
"articleId": "/m/vinci8/data1/riedel/projects/relation/kb/nyt1/docstore/nyt-2005-2006.backup/1669365.xml.pb",
"relationMentions": [
{"em1Text": "Annandale-on-Hudson", "em2Text": "Bard College", "label": "/location/location/contains"}
],
"entityMentions": [
{"start": 1, "label": "ORGANIZATION", "text": "Bard College"},
{"start": 2, "label": "LOCATION", "text": "Annandale-on-Hudson"}
],
"sentId": "1"
}
```
### Data Fields
### default
- `tokens`: the tokenized text of this example, a `list` of `string` features.
- `spo_list`: the relation triplets (head entity text, relation type, tail entity text), a `list` of `list`s containing `string` features.
- `pos_tags`: the part-of-speech tags of this example, a `list` of `string` features.
- `relations`: list of relations
- `h`: the head entity
- `text`: the entity text, a `string` feature.
- `start`: start index of the head entity, a `int32` feature.
- `end`: end index of the head entity, a `int32` feature.
- `type`: the entity type, a `string` feature.
- `t`: the tail entity
- `text`: the entity text, a `string` feature.
- `start`: start index of the tail entity, a `int32` feature.
- `end`: end index of the tail entity, a `int32` feature.
- `type`: the entity type, a `string` feature.
- `type`: relation type, a `string` feature.
### raw
- `sentText`: the text of this example, a `string` feature.
- `articleId`: the id of the article, a `string` feature.
- `relationMentions`: list of relation mentions
- `em1Text`: the head entity text, a `string` feature.
- `em2Text`: the tail entity text, a `string` feature.
- `label`: relation type, a `string` feature.
- `entityMentions`: list of entity mentions
- `start`: start index of the tail entity, a `int32` feature.
- `label`: the entity type, a `string` feature.
- `text`: the entity text, a `string` feature.
- `sentId`: index of the sentence, a `string` feature
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{zeng-etal-2018-extracting,
title = "Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism",
author = "Zeng, Xiangrong and
Zeng, Daojian and
He, Shizhu and
Liu, Kang and
Zhao, Jun",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1047",
doi = "10.18653/v1/P18-1047",
pages = "506--514",
abstract = "The relational facts in sentences are often complicated. Different relational triplets may have overlaps in a sentence. We divided the sentences into three types according to triplet overlap degree, including Normal, EntityPairOverlap and SingleEntiyOverlap. Existing methods mainly focus on Normal class and fail to extract relational triplets precisely. In this paper, we propose an end-to-end model based on sequence-to-sequence learning with copy mechanism, which can jointly extract relational facts from sentences of any of these classes. We adopt two different strategies in decoding process: employing only one united decoder or applying multiple separated decoders. We test our models in two public datasets and our model outperform the baseline method significantly.",
}
@article{yu-etal-2019-joint,
author = {Bowen Yu and
Zhenyu Zhang and
Jianlin Su and
Yubin Wang and
Tingwen Liu and
Bin Wang and
Sujian Li},
title = {Joint Extraction of Entities and Relations Based on a Novel Decomposition
Strategy},
journal = {CoRR},
volume = {abs/1909.04273},
year = {2019},
url = {http://arxiv.org/abs/1909.04273},
eprinttype = {arXiv},
eprint = {1909.04273},
timestamp = {Mon, 24 Aug 2020 08:57:29 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-04273.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{riedel2010modeling,
title={Modeling relations and their mentions without labeled text},
author={Riedel, Sebastian and Yao, Limin and McCallum, Andrew},
booktitle={Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21},
pages={148--163},
year={2010},
organization={Springer}
}
```
**APA:**
- Zeng, X., Zeng, D., He, S., Liu, K., & Zhao, J. (2018, July). Extracting relational facts by an end-to-end neural model with copy mechanism. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 506-514).
- Yu, B., Zhang, Z., Su, J., Wang, Y., Liu, T., Wang, B., & Li, S. (2019). Joint extraction of entities and relations based on a novel decomposition strategy. CoRR, abs/1909.04273. Retrieved from http://arxiv.org/abs/1909.04273
- Riedel, S., Yao, L., & McCallum, A. (2010). Modeling relations and their mentions without labeled text. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21 (pp. 148-163). Springer Berlin Heidelberg.
## Dataset Card Authors
[@phucdev](https://github.com/phucdev) |