Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
phucdev commited on
Commit
cb85ca4
·
verified ·
1 Parent(s): 60d23c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md CHANGED
@@ -98,4 +98,176 @@ configs:
98
  path: raw/validation-*
99
  - split: test
100
  path: raw/test-*
 
 
 
 
 
 
 
 
101
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  path: raw/validation-*
99
  - split: test
100
  path: raw/test-*
101
+ language:
102
+ - en
103
+ tags:
104
+ - news
105
+ - relation-extraction
106
+ pretty_name: NYT-multi
107
+ size_categories:
108
+ - 10K<n<100K
109
  ---
110
+ # Dataset Card for NYT-multi
111
+
112
+ ## Dataset Description
113
+
114
+ - **Repository:** https://github.com/xiangrongzeng/copy_re
115
+ - **Paper:** https://aclanthology.org/P18-1047/
116
+
117
+ #### Dataset Summary
118
+
119
+ <!-- Provide a quick summary of the dataset. -->
120
+
121
+ The original NYT dataset by Riedel et al. (2010) consists of New York Times news articles from 1987-2007 that was distantly annotated with relations using FreeBase. The original dataset consisted of 1.18M sentences. It is available here: https://iesl.cs.umass.edu/riedel/ecml/
122
+
123
+ The version here is mainly based on the work by Zeng et al. (2018) that filtered out sentences with more than 100 words and sentences without an active relation, leaving 66195 sentences.
124
+ They randomly selected 5000 sentences from it as the test set, 5000 sentences as the validation set and the rest 56195 sentences are used as train set.
125
+ The resulting dataset called NYT-multi features overlapping entities across three entity types and 24 relation types.
126
+ The data is available here: https://github.com/xiangrongzeng/copy_re
127
+
128
+ The data was further pre-processed with the StanfordCoreNLP by Yu et al. (2020): https://github.com/yubowen-ph/JointER
129
+
130
+ We converted the data into a more readable JSON format. You can access the raw version from Zeng et al. (2018) using `datasets.load_dataset("DFKI-SLT/nyt-multi", config="raw")`.
131
+
132
+ ### Languages
133
+
134
+ The language in the dataset is English.
135
+
136
+
137
+ ## Dataset Structure
138
+
139
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
140
+
141
+ ### Dataset Instances
142
+
143
+ #### default
144
+ An example of 'train' looks as follows:
145
+ ```json
146
+ {
147
+ "tokens": ["Massachusetts", "ASTON", "MAGNA", "Great", "Barrington", ";", "also", "at", "Bard", "College", ",", "Annandale-on-Hudson", ",", "N.Y.", ",", "July", "1-Aug", "."],
148
+ "spo_list": [["Annandale-on-Hudson", "/location/location/contains", "Bard College"]],
149
+ "pos_tags": ["NNP", "NNP", "NNP", "NNP", "NNP", ":", "RB", "IN", "NNP", "NNP", ",", "NNP", ",", "NNP", ",", "NNP", "NNP", "."],
150
+ "relations": [
151
+ {
152
+ "h": {"text": "Annandale-on-Hudson", "start": 11, "end": 12, "type": "LOCATION"},
153
+ "t": {"text": "Bard College", "start": 8, "end": 10, "type": "ORGANIZATION"},
154
+ "type": "/location/location/contains"
155
+ }
156
+ ]
157
+ }
158
+ ```
159
+
160
+ ### raw
161
+ An example of 'train' looks as follows:
162
+ ```json
163
+ {
164
+ "sentText": "Massachusetts ASTON MAGNA Great Barrington ; also at Bard College , Annandale-on-Hudson , N.Y. , July 1-Aug .",
165
+ "articleId": "/m/vinci8/data1/riedel/projects/relation/kb/nyt1/docstore/nyt-2005-2006.backup/1669365.xml.pb",
166
+ "relationMentions": [
167
+ {"em1Text": "Annandale-on-Hudson", "em2Text": "Bard College", "label": "/location/location/contains"}
168
+ ],
169
+ "entityMentions": [
170
+ {"start": 1, "label": "ORGANIZATION", "text": "Bard College"},
171
+ {"start": 2, "label": "LOCATION", "text": "Annandale-on-Hudson"}
172
+ ],
173
+ "sentId": "1"
174
+ }
175
+ ```
176
+
177
+ ### Data Fields
178
+
179
+ ### default
180
+ - `tokens`: the tokenized text of this example, a `list` of `string` features.
181
+ - `spo_list`: the relation triplets (head entity text, relation type, tail entity text), a `list` of `list`s containing `string` features.
182
+ - `pos_tags`: the part-of-speech tags of this example, a `list` of `string` features.
183
+ - `relations`: list of relations
184
+ - `h`: the head entity
185
+ - `text`: the entity text, a `string` feature.
186
+ - `start`: start index of the head entity, a `int32` feature.
187
+ - `end`: end index of the head entity, a `int32` feature.
188
+ - `type`: the entity type, a `string` feature.
189
+ - `t`: the tail entity
190
+ - `text`: the entity text, a `string` feature.
191
+ - `start`: start index of the tail entity, a `int32` feature.
192
+ - `end`: end index of the tail entity, a `int32` feature.
193
+ - `type`: the entity type, a `string` feature.
194
+ - `type`: relation type, a `string` feature.
195
+
196
+ ### raw
197
+ - `sentText`: the text of this example, a `string` feature.
198
+ - `articleId`: the id of the article, a `string` feature.
199
+ - `relationMentions`: list of relation mentions
200
+ - `em1Text`: the head entity text, a `string` feature.
201
+ - `em2Text`: the tail entity text, a `string` feature.
202
+ - `label`: relation type, a `string` feature.
203
+ - `entityMentions`: list of entity mentions
204
+ - `start`: start index of the tail entity, a `int32` feature.
205
+ - `label`: the entity type, a `string` feature.
206
+ - `text`: the entity text, a `string` feature.
207
+ - `sentId`: index of the sentence, a `string` feature
208
+
209
+ ## Citation
210
+
211
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
212
+
213
+ **BibTeX:**
214
+
215
+ ```
216
+ @inproceedings{zeng-etal-2018-extracting,
217
+ title = "Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism",
218
+ author = "Zeng, Xiangrong and
219
+ Zeng, Daojian and
220
+ He, Shizhu and
221
+ Liu, Kang and
222
+ Zhao, Jun",
223
+ editor = "Gurevych, Iryna and
224
+ Miyao, Yusuke",
225
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
226
+ month = jul,
227
+ year = "2018",
228
+ address = "Melbourne, Australia",
229
+ publisher = "Association for Computational Linguistics",
230
+ url = "https://aclanthology.org/P18-1047",
231
+ doi = "10.18653/v1/P18-1047",
232
+ pages = "506--514",
233
+ abstract = "The relational facts in sentences are often complicated. Different relational triplets may have overlaps in a sentence. We divided the sentences into three types according to triplet overlap degree, including Normal, EntityPairOverlap and SingleEntiyOverlap. Existing methods mainly focus on Normal class and fail to extract relational triplets precisely. In this paper, we propose an end-to-end model based on sequence-to-sequence learning with copy mechanism, which can jointly extract relational facts from sentences of any of these classes. We adopt two different strategies in decoding process: employing only one united decoder or applying multiple separated decoders. We test our models in two public datasets and our model outperform the baseline method significantly.",
234
+ }
235
+ @article{yu-etal-2019-joint,
236
+ author = {Bowen Yu and
237
+ Zhenyu Zhang and
238
+ Jianlin Su and
239
+ Yubin Wang and
240
+ Tingwen Liu and
241
+ Bin Wang and
242
+ Sujian Li},
243
+ title = {Joint Extraction of Entities and Relations Based on a Novel Decomposition
244
+ Strategy},
245
+ journal = {CoRR},
246
+ volume = {abs/1909.04273},
247
+ year = {2019},
248
+ url = {http://arxiv.org/abs/1909.04273},
249
+ eprinttype = {arXiv},
250
+ eprint = {1909.04273},
251
+ timestamp = {Mon, 24 Aug 2020 08:57:29 +0200},
252
+ biburl = {https://dblp.org/rec/journals/corr/abs-1909-04273.bib},
253
+ bibsource = {dblp computer science bibliography, https://dblp.org}
254
+ }
255
+ @inproceedings{riedel2010modeling,
256
+ title={Modeling relations and their mentions without labeled text},
257
+ author={Riedel, Sebastian and Yao, Limin and McCallum, Andrew},
258
+ booktitle={Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21},
259
+ pages={148--163},
260
+ year={2010},
261
+ organization={Springer}
262
+ }
263
+ ```
264
+
265
+ **APA:**
266
+
267
+ - Zeng, X., Zeng, D., He, S., Liu, K., & Zhao, J. (2018, July). Extracting relational facts by an end-to-end neural model with copy mechanism. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 506-514).
268
+ - Yu, B., Zhang, Z., Su, J., Wang, Y., Liu, T., Wang, B., & Li, S. (2019). Joint extraction of entities and relations based on a novel decomposition strategy. CoRR, abs/1909.04273. Retrieved from http://arxiv.org/abs/1909.04273
269
+ - Riedel, S., Yao, L., & McCallum, A. (2010). Modeling relations and their mentions without labeled text. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21 (pp. 148-163). Springer Berlin Heidelberg.
270
+
271
+ ## Dataset Card Authors
272
+
273
+ [@phucdev](https://github.com/phucdev)