layer
uint8 0
35
| neuron
uint16 0
20.5k
| rank
uint8 0
63
| activation
float32 -0
61.8
| position
uint8 0
15
| text
stringlengths 1
1.74k
| id0
uint16 0
50.3k
| id1
uint16 0
50.3k
| id2
uint16 0
50.3k
| id3
uint16 0
50.3k
| id4
uint16 0
50.3k
| id5
uint16 0
50.3k
| id6
uint16 0
50.3k
| id7
uint16 0
50.3k
| id8
uint16 0
50.3k
| id9
uint16 0
50.3k
| id10
uint16 0
50.3k
| id11
uint16 0
50.3k
| id12
uint16 0
50.3k
| id13
uint16 0
50.3k
| id14
uint16 0
50.3k
| id15
uint16 0
50.3k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 150 | 0 | 2.546875 | 4 | ^2,$$ where $\|\ | 63 | 19 | 11,227 | 835 | 47,183 | 3,830 | 28,876 | 39 | 5 | 310 | 253 | 25,847 | 7,564 | 3,750 | 5,222 | 15 |
0 | 150 | 1 | 2.546875 | 3 | :** Note that $\|\ | 6,098 | 5,838 | 326 | 47,183 | 8,752 | 2,386 | 6,190 | 464 | 3,342 | 411 | 599 | 17,738 | 6,190 | 464 | 42,612 | 25,169 |
0 | 150 | 2 | 2.546875 | 6 | }}) \}.$$ We denote by $\|\ | 12,104 | 31,858 | 18,822 | 844 | 9,173 | 407 | 47,183 | 3,830 | 17,092 | 37 | 16,746 | 1,588 | 418 | 599 | 10,392 | 253 |
0 | 150 | 3 | 2.546875 | 2 | $, $\|\ | 5 | 1,157 | 47,183 | 3,830 | 6,087 | 13 | 1,926 | 1,991 | 92 | 35 | 4,018 | 253 | 13,434 | 1,885 | 13 | 253 |
0 | 150 | 4 | 2.546875 | 15 | .$$ Because we started with a Hermitian connection on $E$ we get $\|\ | 18,822 | 4,923 | 359 | 3,053 | 342 | 247 | 19,423 | 34,851 | 4,602 | 327 | 370 | 38 | 5 | 359 | 755 | 47,183 |
0 | 150 | 5 | 2.546875 | 12 | equation and Definition \[def:15\]). Let us denote $\|\ | 29,813 | 285 | 23,709 | 575 | 1,447 | 1,545 | 27 | 1,010 | 8,001 | 1,281 | 441 | 9,173 | 47,183 | 4,642 | 92 | 78 |
0 | 150 | 6 | 2.546875 | 10 | for $\vec{m}$ satisfying, one has $\|\ | 323 | 669 | 4,642 | 92 | 78 | 724 | 14,127 | 1,157 | 581 | 556 | 47,183 | 4,642 | 92 | 78 | 889 | 24,167 |
0 | 150 | 7 | 2.546875 | 11 | by the number of vectors $\vec{m}$ satisfying $\|\ | 407 | 253 | 1,180 | 273 | 11,390 | 669 | 4,642 | 92 | 78 | 724 | 14,127 | 47,183 | 4,642 | 92 | 78 | 889 |
0 | 150 | 8 | 2.546875 | 14 | Due to the Lipshitz condition, the matrix coefficients are bounded by $\|\ | 12,571 | 281 | 253 | 22,609 | 1,200 | 5,432 | 1,617 | 13 | 253 | 4,315 | 10,303 | 403 | 11,542 | 407 | 47,183 | 2,260 |
0 | 150 | 9 | 2.546875 | 6 | lambda$ is increasing, and $\|\ | 2,260 | 5 | 310 | 3,629 | 13 | 285 | 47,183 | 4,642 | 92 | 78 | 889 | 24,167 | 18 | 61 | 3,040 | 9,153 |
0 | 150 | 10 | 2.546875 | 3 | , denoted by $\|\ | 13 | 17,007 | 407 | 47,183 | 2,733 | 28,876 | 18 | 1,366 | 310 | 253 | 2,020 | 273 | 253 | 7,880 | 1,318 | 273 |
0 | 150 | 11 | 2.546875 | 0 | $\|\ | 47,183 | 3,830 | 6,087 | 2,253 | 3,214 | 5 | 3,091 | 9,173 | 370 | 42,972 | 578 | 57 | 13 | 393 | 59 | 724 |
0 | 150 | 12 | 2.546875 | 1 | and $\|\ | 285 | 47,183 | 3,830 | 11,045 | 1,126 | 3,214 | 13 | 393 | 59 | 3,363 | 1,198 | 7,234 | 273 | 1,543 | 359 | 897 |
0 | 150 | 13 | 2.546875 | 1 | that $\|\ | 326 | 47,183 | 1,906 | 28,876 | 18 | 61 | 3,040 | 401 | 55 | 64 | 57 | 5,081 | 3,577 | 2,733 | 28,876 | 18 |
0 | 150 | 14 | 2.546875 | 0 | $\|\ | 47,183 | 1,906 | 28,876 | 18 | 2,029 | 3,577 | 2,733 | 6,087 | 2,253 | 3,214 | 13,355 | 2,635 | 669 | 1,906 | 5 | 310 |
0 | 150 | 15 | 2.546875 | 14 | a special $2$-chain based at $e$, and in particular $\|\ | 247 | 2,714 | 370 | 19 | 2,911 | 10,050 | 1,754 | 387 | 370 | 70 | 1,366 | 285 | 275 | 1,798 | 47,183 | 1,906 |
0 | 150 | 16 | 2.546875 | 13 | \Z)$, $\epsilon_i= \pm 1$, and $\|\ | 393 | 59 | 4,244 | 669 | 4,259 | 64 | 74 | 30 | 393 | 2,617 | 337 | 1,366 | 285 | 47,183 | 1,906 | 28,876 |
0 | 150 | 17 | 2.546875 | 10 | i f_i \right )$. Since $\|\ | 74 | 50,274 | 71 | 64 | 74 | 393 | 918 | 209 | 3,822 | 3,932 | 47,183 | 1,906 | 28,876 | 18 | 2,029 | 3,577 |
0 | 150 | 18 | 2.546875 | 11 | is a $1$-cycle induced by a circuit and $\|\ | 310 | 247 | 370 | 18 | 2,911 | 16,441 | 5,802 | 407 | 247 | 5,049 | 285 | 47,183 | 2,733 | 28,876 | 18 | 426 |
0 | 150 | 19 | 2.546875 | 9 | the boundary maps. In particular, the norm $\|\ | 253 | 7,548 | 8,115 | 15 | 496 | 1,798 | 13 | 253 | 5,222 | 47,183 | 3,830 | 6,087 | 2,253 | 3,214 | 5 | 327 |
0 | 150 | 20 | 2.546875 | 2 | property: $\|\ | 2,867 | 27 | 47,183 | 1,637 | 6,087 | 2,253 | 3,214 | 393 | 3,040 | 378 | 64 | 79 | 5 | 323 | 1,046 | 370 |
0 | 150 | 21 | 2.546875 | 8 | 1$-cycle $\alpha$ such that $\|\ | 18 | 2,911 | 16,441 | 669 | 1,637 | 5 | 824 | 326 | 47,183 | 1,637 | 28,876 | 18 | 61 | 3,040 | 295 | 5 |
0 | 150 | 22 | 2.546875 | 6 | of $X$ such that $\|\ | 273 | 370 | 57 | 5 | 824 | 326 | 47,183 | 2,733 | 28,876 | 18 | 61 | 3,040 | 295 | 1,352 | 17,595 | 3,136 |
0 | 150 | 23 | 2.546875 | 1 | that $\|\ | 326 | 47,183 | 2,733 | 28,876 | 18 | 2,029 | 3,577 | 2,733 | 64 | 18 | 28,876 | 18 | 12 | 393 | 7,718 | 559 |
0 | 150 | 24 | 2.546875 | 0 | $\|\ | 47,183 | 2,733 | 6,087 | 2,253 | 3,214 | 393 | 3,040 | 33,401 | 2,733 | 64 | 18 | 6,087 | 2,253 | 3,214 | 12 | 393 |
0 | 150 | 25 | 2.546875 | 13 | cdots + \|\gamma_k\|_\partial$. It follows that $\|\ | 7,718 | 559 | 33,401 | 2,733 | 64 | 76 | 6,087 | 2,253 | 3,214 | 1,352 | 733 | 3,637 | 326 | 47,183 | 2,733 | 6,087 |
0 | 150 | 26 | 2.546875 | 5 | $X$ such that $\|\ | 370 | 57 | 5 | 824 | 326 | 47,183 | 2,733 | 28,876 | 18 | 30 | 79 | 1,352 | 2,896 | 8,755 | 575 | 1,447 |
0 | 150 | 27 | 2.546875 | 15 | 1$-cycle represented by a closed path $P_i$ such that $\|\ | 18 | 2,911 | 16,441 | 6,607 | 407 | 247 | 4,581 | 1,854 | 370 | 49 | 64 | 74 | 5 | 824 | 326 | 47,183 |
0 | 150 | 28 | 2.546875 | 6 | _k\|_1$ and $\|\ | 64 | 76 | 28,876 | 18 | 5 | 285 | 47,183 | 2,733 | 64 | 74 | 28,876 | 18 | 30 | 93 | 49 | 64 |
0 | 150 | 29 | 2.546875 | 14 | $\partial \mu_i = \gamma_i$. Since $\|\ | 669 | 3,214 | 393 | 1,906 | 64 | 74 | 426 | 50,276 | 61 | 2,733 | 64 | 74 | 1,352 | 3,932 | 47,183 | 2,733 |
0 | 150 | 30 | 2.546875 | 14 | i|) = f(\|\gamma_i\|_1)$, and $\|\ | 74 | 93 | 10 | 426 | 269 | 1,035 | 3,577 | 2,733 | 64 | 74 | 28,876 | 18 | 4,244 | 285 | 47,183 | 2,733 |
0 | 150 | 31 | 2.546875 | 0 | $\|\ | 47,183 | 2,733 | 6,087 | 2,253 | 3,214 | 426 | 33,401 | 2,461 | 28,876 | 18 | 1,352 | 1,281 | 370 | 47 | 5 | 320 |
0 | 150 | 32 | 2.546875 | 9 | 1$-cycle induced by $c$ and $\|\ | 18 | 2,911 | 16,441 | 5,802 | 407 | 370 | 68 | 5 | 285 | 47,183 | 2,461 | 28,876 | 18 | 393 | 3,040 | 329 |
0 | 150 | 33 | 2.546875 | 12 | $ is a $1$-cycle induced by a circuit and $\|\ | 5 | 310 | 247 | 370 | 18 | 2,911 | 16,441 | 5,802 | 407 | 247 | 5,049 | 285 | 47,183 | 2,733 | 28,876 | 18 |
0 | 150 | 34 | 2.546875 | 6 | of expression, we have that $\|\ | 273 | 2,048 | 13 | 359 | 452 | 326 | 47,183 | 2,733 | 6,087 | 2,253 | 3,214 | 393 | 3,040 | 393 | 2,204 | 578 |
0 | 150 | 35 | 2.546875 | 4 | \alpha$ and $\|\ | 61 | 1,637 | 5 | 285 | 47,183 | 2,461 | 28,876 | 18 | 393 | 3,040 | 401 | 55 | 578 | 57 | 13 | 393 |
0 | 150 | 36 | 2.546875 | 11 | partial \frac1m \beta =\alpha$ and $\|\ | 3,214 | 393 | 1,124 | 18 | 78 | 393 | 2,461 | 14,680 | 1,637 | 5 | 285 | 47,183 | 1,124 | 18 | 78 | 393 |
0 | 150 | 37 | 2.546875 | 13 | )$ such that $\partial \mu =\partial \nu$ and $\|\ | 1,009 | 824 | 326 | 669 | 3,214 | 393 | 1,906 | 14,680 | 3,214 | 393 | 3,023 | 5 | 285 | 47,183 | 3,023 | 28,876 |
0 | 150 | 38 | 2.546875 | 14 | 2,0}(T)$.
Note that due to the interpolation $\|\ | 19 | 13 | 17 | 1,603 | 53 | 3,822 | 187 | 187 | 8,497 | 326 | 1,955 | 281 | 253 | 30,370 | 47,183 | 2,981 |
0 | 150 | 39 | 2.546875 | 5 | \cT$ then $\|\ | 61 | 68 | 53 | 5 | 840 | 47,183 | 4,144 | 64 | 17 | 43,654 | 5,764 | 13 | 85 | 94 | 393 | 9,540 |
0 | 150 | 40 | 2.546875 | 11 | D_{\Lambda,t}}$ on the sphere of radius $\|\ | 37 | 1,126 | 5,764 | 13 | 85 | 4,018 | 327 | 253 | 15,269 | 273 | 9,941 | 47,183 | 4,144 | 64 | 17 | 43,654 |
0 | 150 | 41 | 2.546875 | 9 | Lambda,t}$. As we have shown that $\|\ | 5,764 | 13 | 85 | 3,363 | 1,284 | 359 | 452 | 2,011 | 326 | 47,183 | 4,144 | 64 | 17 | 43,654 | 5,764 | 13 |
0 | 150 | 42 | 2.546875 | 2 | closed, $\|\ | 4,581 | 13 | 47,183 | 3,830 | 33,354 | 19 | 5 | 310 | 1,463 | 327 | 370 | 40 | 61 | 3,830 | 61 | 700 |
0 | 150 | 43 | 2.546875 | 1 | norm $\|\ | 5,222 | 47,183 | 3,830 | 6,087 | 5 | 327 | 370 | 55 | 1,366 | 627 | 403 | 14,637 | 370 | 68 | 64 | 17 |
0 | 150 | 44 | 2.546875 | 14 | X)$$ for all $X\in W\setminus C$ where $\|\ | 57 | 11,189 | 323 | 512 | 370 | 57 | 61 | 249 | 411 | 61 | 12,750 | 330 | 5 | 835 | 47,183 | 3,830 |
0 | 150 | 45 | 2.546875 | 2 | the norm $\|\ | 253 | 5,222 | 47,183 | 3,830 | 6,087 | 5 | 5,802 | 407 | 253 | 370 | 44 | 2,911 | 25,168 | 6,703 | 14 | 7,509 |
0 | 150 | 46 | 2.546875 | 10 | $X$ be a separable Hilbert space with norm $\|\ | 370 | 57 | 5 | 320 | 247 | 39,690 | 23,326 | 2,317 | 342 | 5,222 | 47,183 | 3,830 | 28,876 | 57 | 1,352 | 44,092 |
0 | 150 | 47 | 2.546875 | 7 | {F}},P)$ such that $\|\ | 92 | 39 | 8,503 | 49 | 1,009 | 824 | 326 | 47,183 | 2,981 | 17,092 | 45 | 63 | 19 | 1,035 | 4,153 | 11,400 |
0 | 150 | 48 | 2.546875 | 12 | of $H$ and $V$, respectively. Denote by $\|\ | 273 | 370 | 41 | 5 | 285 | 370 | 55 | 1,366 | 2,975 | 15 | 44,092 | 407 | 47,183 | 3,830 | 17,092 | 55 |
0 | 150 | 49 | 2.546875 | 7 | },\|\cdot\|_{H}$ and $\|\ | 5,548 | 3,577 | 3,830 | 17,092 | 41 | 724 | 285 | 47,183 | 3,830 | 17,092 | 55 | 3,503 | 724 | 253 | 22,429 | 273 |
0 | 150 | 50 | 2.546875 | 6 | exponential-bound}$$ where $\|\ | 4,347 | 45,426 | 14 | 9,458 | 2,138 | 835 | 47,183 | 3,830 | 6,087 | 5 | 12,853 | 253 | 4,315 | 5,222 | 5,802 | 432 |
0 | 150 | 51 | 2.546875 | 6 | (T,w)$$ satisfies $\|\ | 9 | 53 | 13 | 88 | 11,189 | 12,310 | 47,183 | 2,407 | 92 | 39 | 2,306 | 79 | 9 | 53 | 13 | 88 |
0 | 150 | 52 | 2.546875 | 0 | $\|\ | 47,183 | 2,162 | 64 | 79 | 2,249 | 2,162 | 28,876 | 18 | 393 | 936 | 187 | 17 | 5 | 347 | 370 | 79 |
0 | 150 | 53 | 2.546875 | 9 | H$ be a Hilbert space, with norm $\|\ | 41 | 5 | 320 | 247 | 23,326 | 2,317 | 13 | 342 | 5,222 | 47,183 | 3,830 | 6,087 | 1,352 | 1,281 | 3,019 | 89 |
0 | 150 | 54 | 2.546875 | 6 | s\to 0,$$ where $\|\ | 256 | 61 | 936 | 470 | 11,227 | 835 | 47,183 | 3,830 | 6,087 | 5 | 12,853 | 253 | 6,447 | 313 | 263 | 25,937 |
0 | 150 | 55 | 2.546875 | 11 | fact holds for all $l \in \ss$, $\|\ | 958 | 6,556 | 323 | 512 | 370 | 77 | 393 | 249 | 393 | 859 | 1,366 | 47,183 | 4,144 | 578 | 17 | 8,814 |
0 | 150 | 56 | 2.546875 | 9 | the appendix. Here and throughout, we use $\|\ | 253 | 30,762 | 15 | 3,856 | 285 | 4,768 | 13 | 359 | 897 | 47,183 | 3,830 | 28,876 | 19 | 5 | 285 | 47,183 |
0 | 150 | 57 | 2.546875 | 15 | the appendix. Here and throughout, we use $\|\cdot\|_2$ and $\|\ | 253 | 30,762 | 15 | 3,856 | 285 | 4,768 | 13 | 359 | 897 | 47,183 | 3,830 | 28,876 | 19 | 5 | 285 | 47,183 |
0 | 150 | 58 | 2.546875 | 13 | ces well the local properties of all nearest neighbor reduced density operators: $\|\ | 707 | 973 | 253 | 1,980 | 3,607 | 273 | 512 | 5,275 | 6,346 | 3,777 | 4,038 | 9,158 | 27 | 47,183 | 2,859 | 578 |
0 | 150 | 59 | 2.546875 | 0 | $\|\ | 47,183 | 67 | 49 | 578 | 74 | 25,075 | 85 | 7,398 | 67 | 49 | 578 | 75 | 25,075 | 85 | 3,117 | 1,743 |
0 | 150 | 60 | 2.546875 | 3 | bY$: $\|\ | 67 | 58 | 18,965 | 47,183 | 67 | 57 | 2,249 | 67 | 58 | 28,876 | 39 | 63 | 19 | 5,624 | 19 | 78 |
0 | 150 | 61 | 2.546875 | 1 | $, $\|\ | 1,366 | 47,183 | 67 | 57 | 2,249 | 67 | 58 | 28,876 | 39 | 2,029 | 3,577 | 67 | 57 | 61 | 67 | 59 |
0 | 150 | 62 | 2.546875 | 6 | establish the desired upper bound of $\|\ | 5,100 | 253 | 6,799 | 5,170 | 3,033 | 273 | 47,183 | 67 | 34 | 1,126 | 1,156 | 92 | 4,478 | 2,023 | 9 | 18 |
0 | 150 | 63 | 2.546875 | 6 | <1$, the fact that $\|\ | 29 | 18 | 1,366 | 253 | 958 | 326 | 47,183 | 67 | 57 | 2,249 | 67 | 58 | 28,876 | 39 | 63 | 19 |
0 | 151 | 0 | 2.152344 | 13 | ate0(org.apache.commons.math.distribution.Bin | 366 | 17 | 9 | 2,061 | 15 | 8,418 | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 38,601 | 28,261 | 35,207 |
0 | 151 | 1 | 2.152344 | 3 | .distribution.Bin | 15 | 35,360 | 15 | 38,601 | 28,261 | 35,207 | 5,089 | 10 | 187 | 2,566 | 37 | 561 | 1,005 | 9 | 2,061 | 15 |
0 | 151 | 2 | 2.152344 | 8 | apache.commons.math.distribution.Bin | 8,418 | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 38,601 | 28,261 | 35,207 | 5,089 | 10 | 187 | 2,566 | 688 |
0 | 151 | 3 | 2.152344 | 1 | .Bin | 15 | 38,601 | 28,261 | 35,207 | 5,089 | 10 | 187 | 2,566 | 36 | 360 | 12,581 | 40,235 | 6,720 | 9 | 2,061 | 15 |
0 | 151 | 4 | 2.152344 | 8 | apache.commons.math.distribution.Bin | 8,418 | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 38,601 | 28,261 | 35,207 | 5,089 | 10 | 187 | 2,566 | 18,656 |
0 | 151 | 5 | 2.152344 | 13 | legalArguments(org.apache.commons.math.distribution.Bin | 7,685 | 39,988 | 9 | 2,061 | 15 | 8,418 | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 38,601 | 28,261 | 35,207 |
0 | 151 | 6 | 2.152344 | 8 | .DistributionFactoryImplTest)
testBin | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 35,207 | 40,385 | 40,385 | 9 | 2,061 | 15 |
0 | 151 | 7 | 2.152344 | 15 | apache.commons.math.distribution.DistributionFactoryImplTest)
testBin | 8,418 | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 |
0 | 151 | 8 | 2.152344 | 14 | .commons.math.distribution.DistributionFactoryImplTest)
testBin | 15 | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 |
0 | 151 | 9 | 2.152344 | 9 | distribution.DistributionFactoryImplTest)
testBin | 35,360 | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 35,207 | 41,263 | 40,385 | 9 | 2,061 |
0 | 151 | 10 | 2.152344 | 13 | commons.math.distribution.DistributionFactoryImplTest)
testBin | 34,870 | 15 | 679 | 15 | 35,360 | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 35,207 |
0 | 151 | 11 | 2.152344 | 4 | Test)
testBin | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 35,207 | 40,385 | 4,041 | 9 | 2,061 | 15 | 8,418 | 15 | 34,870 | 15 |
0 | 151 | 12 | 2.152344 | 11 | math.distribution.DistributionFactoryImplTest)
testBin | 679 | 15 | 35,360 | 15 | 35,207 | 11,749 | 14,560 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 35,207 | 40,385 | 7,910 |
0 | 151 | 13 | 2.152344 | 6 | TransformerTest)
testBin | 6,189 | 19,946 | 5,089 | 10 | 187 | 2,566 | 38,601 | 28,261 | 36 | 3,703 | 2,276 | 9 | 2,061 | 15 | 8,418 | 15 |
0 | 151 | 14 | 2.152344 | 3 | )
testBin | 10 | 187 | 2,566 | 38,601 | 28,261 | 36 | 3,703 | 2,276 | 44,416 | 9 | 2,061 | 15 | 8,418 | 15 | 34,870 | 15 |
0 | 151 | 15 | 2.152344 | 1 | (Bin | 313 | 38,601 | 4,611 | 1,162 | 355 | 904 | 6,752 | 582 | 7,529 | 5,145 | 27,387 | 342 | 9,978 | 2,069 | 313 | 44 |
0 | 151 | 16 | 2.152344 | 4 | elif entry == 'Bin | 44,779 | 5,857 | 2,295 | 686 | 38,601 | 593 | 5,295 | 187 | 50,270 | 2,309 | 27,036 | 15 | 36,402 | 19,320 | 187 | 50,274 |
0 | 151 | 17 | 2.152344 | 12 | trails rivals Mercedes and Red Bull in this area.
Bin | 27,192 | 28,851 | 35,512 | 285 | 4,410 | 17,346 | 275 | 436 | 2,170 | 15 | 187 | 187 | 38,601 | 36,144 | 13 | 2,299 |
0 | 151 | 18 | 2.152344 | 9 | can improve and we should improve.”
Bin | 476 | 3,157 | 285 | 359 | 943 | 3,157 | 1,425 | 187 | 187 | 38,601 | 36,144 | 8,176 | 352 | 369 | 773 | 12,311 |
0 | 151 | 19 | 2.152344 | 4 | Stop dwelling on „Bin | 21,305 | 31,824 | 327 | 16,724 | 38,601 | 40,858 | 11,679 | 84 | 4,857 | 1,628 | 390 | 253 | 16,724 | 1,619 | 7,223 | 1,628 |
0 | 151 | 20 | 2.152344 | 8 | the buffer is returned as a binary ValueBin | 253 | 6,391 | 310 | 4,895 | 347 | 247 | 8,985 | 11,740 | 38,601 | 13 | 187 | 2,811 | 512 | 2,193 | 403 | 25,175 |
0 | 151 | 21 | 2.152344 | 10 |
{raw, Protocol, OptionNum, ValueBin | 187 | 92 | 2,040 | 13 | 26,010 | 13 | 27,357 | 12,753 | 13 | 11,740 | 38,601 | 94 | 187 | 187 | 5,035 | 2,708 |
0 | 151 | 22 | 2.152344 | 2 |
Bin | 187 | 187 | 38,601 | 45 | 12,670 | 187 | 187 | 3,726 | 943 | 2,086 | 253 | 14,980 | 594 | 352 | 43,341 | 253 |
0 | 151 | 23 | 2.152344 | 1 | ,Bin | 13 | 38,601 | 31,125 | 690 | 10 | 5,204 | 187 | 50,274 | 87 | 2,399 | 64 | 6,553 | 64 | 43,451 | 47,928 | 5,990 |
0 | 151 | 24 | 2.152344 | 14 |
Edges = Edges0
end,
Bin | 996 | 50,274 | 3,996 | 2,510 | 426 | 3,619 | 2,510 | 17 | 187 | 50,274 | 423 | 13 | 187 | 50,274 | 38,601 | 426 |
0 | 151 | 25 | 2.152344 | 2 | <<Bin | 50,254 | 14,193 | 38,601 | 16 | 26,458 | 13 | 57 | 18 | 27 | 32 | 39 | 1,237 | 13 | 58 | 18 | 27 |
0 | 151 | 26 | 2.152344 | 15 | _we=We,vab=#vab{face_vs=Bin | 64 | 664 | 30 | 1,231 | 13 | 87 | 357 | 18,350 | 87 | 357 | 92 | 1,664 | 64 | 10,936 | 30 | 38,601 |
0 | 151 | 27 | 2.152344 | 6 |
add_quad(Bin | 187 | 187 | 1,911 | 64 | 3,362 | 9 | 38,601 | 13 | 551 | 47 | 57 | 13 | 20,604 | 13 | 47 | 59 |
0 | 151 | 28 | 2.152344 | 12 | ,Y4,Z4}]) ->
<<Bin | 13 | 58 | 21 | 13 | 59 | 21 | 94 | 3,291 | 5,204 | 187 | 50,274 | 14,193 | 38,601 | 16 | 26,458 | 13 |
0 | 151 | 29 | 2.152344 | 13 | ?F32>>.
add_quad_uv(Bin | 32 | 39 | 1,237 | 5,064 | 15 | 187 | 187 | 1,911 | 64 | 3,362 | 64 | 8,962 | 9 | 38,601 | 13 | 551 |
0 | 151 | 30 | 2.152344 | 0 | Bin | 38,601 | 16 | 26,458 | 13 | 187 | 50,273 | 57 | 18 | 27 | 32 | 39 | 1,237 | 13 | 58 | 18 | 27 |
0 | 151 | 31 | 2.152344 | 0 | Bin | 38,601 | 13 | 427 | 13 | 19,353 | 13 | 795 | 10 | 5,204 | 187 | 50,274 | 59 | 426 | 551 | 17 | 15 |
0 | 151 | 32 | 2.152344 | 14 | 0,0.0},
add_quad_uv(Bin | 17 | 13 | 17 | 15 | 17 | 2,023 | 187 | 50,274 | 1,911 | 64 | 3,362 | 64 | 8,962 | 9 | 38,601 | 13 |
0 | 151 | 33 | 2.152344 | 5 | _quad_col(Bin | 64 | 3,362 | 64 | 2,052 | 9 | 38,601 | 13 | 551 | 47 | 57 | 13 | 20,604 | 13 | 47 | 59 | 2,023 |
0 | 151 | 34 | 2.152344 | 4 | ->
<<Bin | 5,204 | 187 | 50,274 | 14,193 | 38,601 | 16 | 26,458 | 13 | 187 | 50,273 | 57 | 18 | 27 | 32 | 39 | 1,237 |
0 | 151 | 35 | 2.152344 | 0 | Bin | 38,601 | 13 | 427 | 13 | 19,353 | 13 | 2,065 | 84 | 17 | 10 | 5,204 | 187 | 50,274 | 2,973 | 84 | 426 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.