layer
uint8
0
35
neuron
uint16
0
20.5k
rank
uint8
0
63
activation
float32
-0
61.8
position
uint8
0
15
text
stringlengths
1
1.74k
id0
uint16
0
50.3k
id1
uint16
0
50.3k
id2
uint16
0
50.3k
id3
uint16
0
50.3k
id4
uint16
0
50.3k
id5
uint16
0
50.3k
id6
uint16
0
50.3k
id7
uint16
0
50.3k
id8
uint16
0
50.3k
id9
uint16
0
50.3k
id10
uint16
0
50.3k
id11
uint16
0
50.3k
id12
uint16
0
50.3k
id13
uint16
0
50.3k
id14
uint16
0
50.3k
id15
uint16
0
50.3k
0
150
0
2.546875
4
^2,$$ where $\|\
63
19
11,227
835
47,183
3,830
28,876
39
5
310
253
25,847
7,564
3,750
5,222
15
0
150
1
2.546875
3
:** Note that $\|\
6,098
5,838
326
47,183
8,752
2,386
6,190
464
3,342
411
599
17,738
6,190
464
42,612
25,169
0
150
2
2.546875
6
}}) \}.$$ We denote by $\|\
12,104
31,858
18,822
844
9,173
407
47,183
3,830
17,092
37
16,746
1,588
418
599
10,392
253
0
150
3
2.546875
2
$, $\|\
5
1,157
47,183
3,830
6,087
13
1,926
1,991
92
35
4,018
253
13,434
1,885
13
253
0
150
4
2.546875
15
.$$ Because we started with a Hermitian connection on $E$ we get $\|\
18,822
4,923
359
3,053
342
247
19,423
34,851
4,602
327
370
38
5
359
755
47,183
0
150
5
2.546875
12
equation and Definition \[def:15\]). Let us denote $\|\
29,813
285
23,709
575
1,447
1,545
27
1,010
8,001
1,281
441
9,173
47,183
4,642
92
78
0
150
6
2.546875
10
for $\vec{m}$ satisfying, one has $\|\
323
669
4,642
92
78
724
14,127
1,157
581
556
47,183
4,642
92
78
889
24,167
0
150
7
2.546875
11
by the number of vectors $\vec{m}$ satisfying $\|\
407
253
1,180
273
11,390
669
4,642
92
78
724
14,127
47,183
4,642
92
78
889
0
150
8
2.546875
14
Due to the Lipshitz condition, the matrix coefficients are bounded by $\|\
12,571
281
253
22,609
1,200
5,432
1,617
13
253
4,315
10,303
403
11,542
407
47,183
2,260
0
150
9
2.546875
6
lambda$ is increasing, and $\|\
2,260
5
310
3,629
13
285
47,183
4,642
92
78
889
24,167
18
61
3,040
9,153
0
150
10
2.546875
3
, denoted by $\|\
13
17,007
407
47,183
2,733
28,876
18
1,366
310
253
2,020
273
253
7,880
1,318
273
0
150
11
2.546875
0
$\|\
47,183
3,830
6,087
2,253
3,214
5
3,091
9,173
370
42,972
578
57
13
393
59
724
0
150
12
2.546875
1
and $\|\
285
47,183
3,830
11,045
1,126
3,214
13
393
59
3,363
1,198
7,234
273
1,543
359
897
0
150
13
2.546875
1
that $\|\
326
47,183
1,906
28,876
18
61
3,040
401
55
64
57
5,081
3,577
2,733
28,876
18
0
150
14
2.546875
0
$\|\
47,183
1,906
28,876
18
2,029
3,577
2,733
6,087
2,253
3,214
13,355
2,635
669
1,906
5
310
0
150
15
2.546875
14
a special $2$-chain based at $e$, and in particular $\|\
247
2,714
370
19
2,911
10,050
1,754
387
370
70
1,366
285
275
1,798
47,183
1,906
0
150
16
2.546875
13
\Z)$, $\epsilon_i= \pm 1$, and $\|\
393
59
4,244
669
4,259
64
74
30
393
2,617
337
1,366
285
47,183
1,906
28,876
0
150
17
2.546875
10
i f_i \right )$. Since $\|\
74
50,274
71
64
74
393
918
209
3,822
3,932
47,183
1,906
28,876
18
2,029
3,577
0
150
18
2.546875
11
is a $1$-cycle induced by a circuit and $\|\
310
247
370
18
2,911
16,441
5,802
407
247
5,049
285
47,183
2,733
28,876
18
426
0
150
19
2.546875
9
the boundary maps. In particular, the norm $\|\
253
7,548
8,115
15
496
1,798
13
253
5,222
47,183
3,830
6,087
2,253
3,214
5
327
0
150
20
2.546875
2
property: $\|\
2,867
27
47,183
1,637
6,087
2,253
3,214
393
3,040
378
64
79
5
323
1,046
370
0
150
21
2.546875
8
1$-cycle $\alpha$ such that $\|\
18
2,911
16,441
669
1,637
5
824
326
47,183
1,637
28,876
18
61
3,040
295
5
0
150
22
2.546875
6
of $X$ such that $\|\
273
370
57
5
824
326
47,183
2,733
28,876
18
61
3,040
295
1,352
17,595
3,136
0
150
23
2.546875
1
that $\|\
326
47,183
2,733
28,876
18
2,029
3,577
2,733
64
18
28,876
18
12
393
7,718
559
0
150
24
2.546875
0
$\|\
47,183
2,733
6,087
2,253
3,214
393
3,040
33,401
2,733
64
18
6,087
2,253
3,214
12
393
0
150
25
2.546875
13
cdots + \|\gamma_k\|_\partial$. It follows that $\|\
7,718
559
33,401
2,733
64
76
6,087
2,253
3,214
1,352
733
3,637
326
47,183
2,733
6,087
0
150
26
2.546875
5
$X$ such that $\|\
370
57
5
824
326
47,183
2,733
28,876
18
30
79
1,352
2,896
8,755
575
1,447
0
150
27
2.546875
15
1$-cycle represented by a closed path $P_i$ such that $\|\
18
2,911
16,441
6,607
407
247
4,581
1,854
370
49
64
74
5
824
326
47,183
0
150
28
2.546875
6
_k\|_1$ and $\|\
64
76
28,876
18
5
285
47,183
2,733
64
74
28,876
18
30
93
49
64
0
150
29
2.546875
14
$\partial \mu_i = \gamma_i$. Since $\|\
669
3,214
393
1,906
64
74
426
50,276
61
2,733
64
74
1,352
3,932
47,183
2,733
0
150
30
2.546875
14
i|) = f(\|\gamma_i\|_1)$, and $\|\
74
93
10
426
269
1,035
3,577
2,733
64
74
28,876
18
4,244
285
47,183
2,733
0
150
31
2.546875
0
$\|\
47,183
2,733
6,087
2,253
3,214
426
33,401
2,461
28,876
18
1,352
1,281
370
47
5
320
0
150
32
2.546875
9
1$-cycle induced by $c$ and $\|\
18
2,911
16,441
5,802
407
370
68
5
285
47,183
2,461
28,876
18
393
3,040
329
0
150
33
2.546875
12
$ is a $1$-cycle induced by a circuit and $\|\
5
310
247
370
18
2,911
16,441
5,802
407
247
5,049
285
47,183
2,733
28,876
18
0
150
34
2.546875
6
of expression, we have that $\|\
273
2,048
13
359
452
326
47,183
2,733
6,087
2,253
3,214
393
3,040
393
2,204
578
0
150
35
2.546875
4
\alpha$ and $\|\
61
1,637
5
285
47,183
2,461
28,876
18
393
3,040
401
55
578
57
13
393
0
150
36
2.546875
11
partial \frac1m \beta =\alpha$ and $\|\
3,214
393
1,124
18
78
393
2,461
14,680
1,637
5
285
47,183
1,124
18
78
393
0
150
37
2.546875
13
)$ such that $\partial \mu =\partial \nu$ and $\|\
1,009
824
326
669
3,214
393
1,906
14,680
3,214
393
3,023
5
285
47,183
3,023
28,876
0
150
38
2.546875
14
2,0}(T)$. Note that due to the interpolation $\|\
19
13
17
1,603
53
3,822
187
187
8,497
326
1,955
281
253
30,370
47,183
2,981
0
150
39
2.546875
5
\cT$ then $\|\
61
68
53
5
840
47,183
4,144
64
17
43,654
5,764
13
85
94
393
9,540
0
150
40
2.546875
11
D_{\Lambda,t}}$ on the sphere of radius $\|\
37
1,126
5,764
13
85
4,018
327
253
15,269
273
9,941
47,183
4,144
64
17
43,654
0
150
41
2.546875
9
Lambda,t}$. As we have shown that $\|\
5,764
13
85
3,363
1,284
359
452
2,011
326
47,183
4,144
64
17
43,654
5,764
13
0
150
42
2.546875
2
closed, $\|\
4,581
13
47,183
3,830
33,354
19
5
310
1,463
327
370
40
61
3,830
61
700
0
150
43
2.546875
1
norm $\|\
5,222
47,183
3,830
6,087
5
327
370
55
1,366
627
403
14,637
370
68
64
17
0
150
44
2.546875
14
X)$$ for all $X\in W\setminus C$ where $\|\
57
11,189
323
512
370
57
61
249
411
61
12,750
330
5
835
47,183
3,830
0
150
45
2.546875
2
the norm $\|\
253
5,222
47,183
3,830
6,087
5
5,802
407
253
370
44
2,911
25,168
6,703
14
7,509
0
150
46
2.546875
10
$X$ be a separable Hilbert space with norm $\|\
370
57
5
320
247
39,690
23,326
2,317
342
5,222
47,183
3,830
28,876
57
1,352
44,092
0
150
47
2.546875
7
{F}},P)$ such that $\|\
92
39
8,503
49
1,009
824
326
47,183
2,981
17,092
45
63
19
1,035
4,153
11,400
0
150
48
2.546875
12
of $H$ and $V$, respectively. Denote by $\|\
273
370
41
5
285
370
55
1,366
2,975
15
44,092
407
47,183
3,830
17,092
55
0
150
49
2.546875
7
},\|\cdot\|_{H}$ and $\|\
5,548
3,577
3,830
17,092
41
724
285
47,183
3,830
17,092
55
3,503
724
253
22,429
273
0
150
50
2.546875
6
exponential-bound}$$ where $\|\
4,347
45,426
14
9,458
2,138
835
47,183
3,830
6,087
5
12,853
253
4,315
5,222
5,802
432
0
150
51
2.546875
6
(T,w)$$ satisfies $\|\
9
53
13
88
11,189
12,310
47,183
2,407
92
39
2,306
79
9
53
13
88
0
150
52
2.546875
0
$\|\
47,183
2,162
64
79
2,249
2,162
28,876
18
393
936
187
17
5
347
370
79
0
150
53
2.546875
9
H$ be a Hilbert space, with norm $\|\
41
5
320
247
23,326
2,317
13
342
5,222
47,183
3,830
6,087
1,352
1,281
3,019
89
0
150
54
2.546875
6
s\to 0,$$ where $\|\
256
61
936
470
11,227
835
47,183
3,830
6,087
5
12,853
253
6,447
313
263
25,937
0
150
55
2.546875
11
fact holds for all $l \in \ss$, $\|\
958
6,556
323
512
370
77
393
249
393
859
1,366
47,183
4,144
578
17
8,814
0
150
56
2.546875
9
the appendix. Here and throughout, we use $\|\
253
30,762
15
3,856
285
4,768
13
359
897
47,183
3,830
28,876
19
5
285
47,183
0
150
57
2.546875
15
the appendix. Here and throughout, we use $\|\cdot\|_2$ and $\|\
253
30,762
15
3,856
285
4,768
13
359
897
47,183
3,830
28,876
19
5
285
47,183
0
150
58
2.546875
13
ces well the local properties of all nearest neighbor reduced density operators: $\|\
707
973
253
1,980
3,607
273
512
5,275
6,346
3,777
4,038
9,158
27
47,183
2,859
578
0
150
59
2.546875
0
$\|\
47,183
67
49
578
74
25,075
85
7,398
67
49
578
75
25,075
85
3,117
1,743
0
150
60
2.546875
3
bY$: $\|\
67
58
18,965
47,183
67
57
2,249
67
58
28,876
39
63
19
5,624
19
78
0
150
61
2.546875
1
$, $\|\
1,366
47,183
67
57
2,249
67
58
28,876
39
2,029
3,577
67
57
61
67
59
0
150
62
2.546875
6
establish the desired upper bound of $\|\
5,100
253
6,799
5,170
3,033
273
47,183
67
34
1,126
1,156
92
4,478
2,023
9
18
0
150
63
2.546875
6
<1$, the fact that $\|\
29
18
1,366
253
958
326
47,183
67
57
2,249
67
58
28,876
39
63
19
0
151
0
2.152344
13
ate0(org.apache.commons.math.distribution.Bin
366
17
9
2,061
15
8,418
15
34,870
15
679
15
35,360
15
38,601
28,261
35,207
0
151
1
2.152344
3
.distribution.Bin
15
35,360
15
38,601
28,261
35,207
5,089
10
187
2,566
37
561
1,005
9
2,061
15
0
151
2
2.152344
8
apache.commons.math.distribution.Bin
8,418
15
34,870
15
679
15
35,360
15
38,601
28,261
35,207
5,089
10
187
2,566
688
0
151
3
2.152344
1
.Bin
15
38,601
28,261
35,207
5,089
10
187
2,566
36
360
12,581
40,235
6,720
9
2,061
15
0
151
4
2.152344
8
apache.commons.math.distribution.Bin
8,418
15
34,870
15
679
15
35,360
15
38,601
28,261
35,207
5,089
10
187
2,566
18,656
0
151
5
2.152344
13
legalArguments(org.apache.commons.math.distribution.Bin
7,685
39,988
9
2,061
15
8,418
15
34,870
15
679
15
35,360
15
38,601
28,261
35,207
0
151
6
2.152344
8
.DistributionFactoryImplTest) testBin
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
28,261
35,207
40,385
40,385
9
2,061
15
0
151
7
2.152344
15
apache.commons.math.distribution.DistributionFactoryImplTest) testBin
8,418
15
34,870
15
679
15
35,360
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
0
151
8
2.152344
14
.commons.math.distribution.DistributionFactoryImplTest) testBin
15
34,870
15
679
15
35,360
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
28,261
0
151
9
2.152344
9
distribution.DistributionFactoryImplTest) testBin
35,360
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
28,261
35,207
41,263
40,385
9
2,061
0
151
10
2.152344
13
commons.math.distribution.DistributionFactoryImplTest) testBin
34,870
15
679
15
35,360
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
28,261
35,207
0
151
11
2.152344
4
Test) testBin
5,089
10
187
2,566
38,601
28,261
35,207
40,385
4,041
9
2,061
15
8,418
15
34,870
15
0
151
12
2.152344
11
math.distribution.DistributionFactoryImplTest) testBin
679
15
35,360
15
35,207
11,749
14,560
5,089
10
187
2,566
38,601
28,261
35,207
40,385
7,910
0
151
13
2.152344
6
TransformerTest) testBin
6,189
19,946
5,089
10
187
2,566
38,601
28,261
36
3,703
2,276
9
2,061
15
8,418
15
0
151
14
2.152344
3
) testBin
10
187
2,566
38,601
28,261
36
3,703
2,276
44,416
9
2,061
15
8,418
15
34,870
15
0
151
15
2.152344
1
(Bin
313
38,601
4,611
1,162
355
904
6,752
582
7,529
5,145
27,387
342
9,978
2,069
313
44
0
151
16
2.152344
4
elif entry == 'Bin
44,779
5,857
2,295
686
38,601
593
5,295
187
50,270
2,309
27,036
15
36,402
19,320
187
50,274
0
151
17
2.152344
12
trails rivals Mercedes and Red Bull in this area. Bin
27,192
28,851
35,512
285
4,410
17,346
275
436
2,170
15
187
187
38,601
36,144
13
2,299
0
151
18
2.152344
9
can improve and we should improve.” Bin
476
3,157
285
359
943
3,157
1,425
187
187
38,601
36,144
8,176
352
369
773
12,311
0
151
19
2.152344
4
Stop dwelling on „Bin
21,305
31,824
327
16,724
38,601
40,858
11,679
84
4,857
1,628
390
253
16,724
1,619
7,223
1,628
0
151
20
2.152344
8
the buffer is returned as a binary ValueBin
253
6,391
310
4,895
347
247
8,985
11,740
38,601
13
187
2,811
512
2,193
403
25,175
0
151
21
2.152344
10
{raw, Protocol, OptionNum, ValueBin
187
92
2,040
13
26,010
13
27,357
12,753
13
11,740
38,601
94
187
187
5,035
2,708
0
151
22
2.152344
2
Bin
187
187
38,601
45
12,670
187
187
3,726
943
2,086
253
14,980
594
352
43,341
253
0
151
23
2.152344
1
,Bin
13
38,601
31,125
690
10
5,204
187
50,274
87
2,399
64
6,553
64
43,451
47,928
5,990
0
151
24
2.152344
14
Edges = Edges0 end, Bin
996
50,274
3,996
2,510
426
3,619
2,510
17
187
50,274
423
13
187
50,274
38,601
426
0
151
25
2.152344
2
<<Bin
50,254
14,193
38,601
16
26,458
13
57
18
27
32
39
1,237
13
58
18
27
0
151
26
2.152344
15
_we=We,vab=#vab{face_vs=Bin
64
664
30
1,231
13
87
357
18,350
87
357
92
1,664
64
10,936
30
38,601
0
151
27
2.152344
6
add_quad(Bin
187
187
1,911
64
3,362
9
38,601
13
551
47
57
13
20,604
13
47
59
0
151
28
2.152344
12
,Y4,Z4}]) -> <<Bin
13
58
21
13
59
21
94
3,291
5,204
187
50,274
14,193
38,601
16
26,458
13
0
151
29
2.152344
13
?F32>>. add_quad_uv(Bin
32
39
1,237
5,064
15
187
187
1,911
64
3,362
64
8,962
9
38,601
13
551
0
151
30
2.152344
0
Bin
38,601
16
26,458
13
187
50,273
57
18
27
32
39
1,237
13
58
18
27
0
151
31
2.152344
0
Bin
38,601
13
427
13
19,353
13
795
10
5,204
187
50,274
59
426
551
17
15
0
151
32
2.152344
14
0,0.0}, add_quad_uv(Bin
17
13
17
15
17
2,023
187
50,274
1,911
64
3,362
64
8,962
9
38,601
13
0
151
33
2.152344
5
_quad_col(Bin
64
3,362
64
2,052
9
38,601
13
551
47
57
13
20,604
13
47
59
2,023
0
151
34
2.152344
4
-> <<Bin
5,204
187
50,274
14,193
38,601
16
26,458
13
187
50,273
57
18
27
32
39
1,237
0
151
35
2.152344
0
Bin
38,601
13
427
13
19,353
13
2,065
84
17
10
5,204
187
50,274
2,973
84
426