layer
uint8 0
35
| neuron
uint16 0
20.5k
| rank
uint8 0
63
| activation
float32 -0
61.8
| position
uint8 0
15
| text
stringlengths 1
1.74k
| id0
uint16 0
50.3k
| id1
uint16 0
50.3k
| id2
uint16 0
50.3k
| id3
uint16 0
50.3k
| id4
uint16 0
50.3k
| id5
uint16 0
50.3k
| id6
uint16 0
50.3k
| id7
uint16 0
50.3k
| id8
uint16 0
50.3k
| id9
uint16 0
50.3k
| id10
uint16 0
50.3k
| id11
uint16 0
50.3k
| id12
uint16 0
50.3k
| id13
uint16 0
50.3k
| id14
uint16 0
50.3k
| id15
uint16 0
50.3k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35 | 20,437 | 32 | 6.636719 | 0 | oof | 49,912 | 5,903 | 254 | 14,637 | 281 | 14,741 | 20,477 | 1,738 | 187 | 186 | 1,033 | 49,912 | 5,903 | 254 | 64 | 15,905 |
35 | 20,437 | 33 | 6.636719 | 0 | oof | 49,912 | 432 | 19,040 | 13,260 | 347 | 281 | 697 | 3,753 | 13 | 7,866 | 1,480 | 432 | 247 | 1,643 | 1,077 | 2,087 |
35 | 20,437 | 34 | 6.636719 | 0 | oof | 49,912 | 3,354 | 546 | 810 | 254 | 723 | 282 | 5,852 | 372 | 8,363 | 85 | 423 | 3,889 | 372 | 13,660 | 13,616 |
35 | 20,437 | 35 | 6.636719 | 0 | oof | 49,912 | 275 | 362 | 23,151 | 22,252 | 546 | 14,374 | 489 | 282 | 294 | 43,340 | 15 | 12,793 | 310 | 259 | 9,314 |
35 | 20,437 | 36 | 6.636719 | 0 | oof | 49,912 | 615 | 28,045 | 2,072 | 295 | 9,623 | 395 | 2,856 | 16,465 | 10,814 | 30,687 | 3,889 | 1,499 | 6,533 | 1,182 | 276 |
35 | 20,437 | 37 | 6.636719 | 0 | oof | 49,912 | 33,533 | 6,105 | 13 | 19,605 | 1,024 | 13 | 651 | 417 | 7,156 | 273 | 19,693 | 247 | 2,329 | 90 | 275 |
35 | 20,437 | 38 | 6.636719 | 0 | oof | 49,912 | 13 | 816 | 751 | 326 | 15 | 309 | 452 | 23,928 | 898 | 1,107 | 273 | 731 | 7,963 | 9,809 | 327 |
35 | 20,437 | 39 | 6.636719 | 0 | oof | 49,912 | 1,255 | 285 | 3,809 | 301 | 35,715 | 285 | 385 | 26,500 | 6,988 | 37,171 | 25,443 | 13 | 369 | 671 | 13 |
35 | 20,437 | 40 | 6.636719 | 0 | oof | 49,912 | 15 | 24,531 | 279 | 273 | 253 | 278 | 486 | 38,731 | 736 | 21,733 | 76 | 13 | 18,588 | 273 | 253 |
35 | 20,437 | 41 | 6.636719 | 0 | oof | 49,912 | 264 | 15 | 388 | 2,310 | 2,205 | 4,571 | 626 | 3,553 | 352 | 3,815 | 15 | 496 | 2,314 | 8,098 | 13 |
35 | 20,437 | 42 | 6.554688 | 1 | "[ | 50,254 | 39,258 | 683 | 19,589 | 15 | 20,226 | 5,023 | 25,804 | 5,023 | 29,064 | 9,502 | 995 | 187 | 50,254 | 3 | 17 |
35 | 20,437 | 43 | 6.539063 | 1 | http | 50,254 | 2,413 | 6,825 | 6,074 | 15 | 1,178 | 6,825 | 6,942 | 1,587 | 9,278 | 3,287 | 187 | 50,254 | 2,413 | 6,825 | 6,074 |
35 | 20,437 | 44 | 6.453125 | 0 | ,, | 19,396 | 367 | 606 | 3,358 | 13 | 18,633 | 2,462 | 8,662 | 6 | 310 | 5,816 | 2 | 187 | 50,266 | 15,968 | 187 |
35 | 20,437 | 45 | 6.453125 | 0 | ,, | 19,396 | 89 | 578 | 480 | 74 | 1,990 | 81 | 889 | 10 | 559 | 3,353 | 3,005 | 3,202 | 3,830 | 3,202 | 2,162 |
35 | 20,437 | 46 | 6.453125 | 0 | ,, | 19,396 | 89 | 578 | 891 | 75 | 1,990 | 81 | 2,023 | 89 | 578 | 480 | 74 | 1,990 | 18 | 39,115 | 7,718 |
35 | 20,437 | 47 | 6.453125 | 0 | ,, | 19,396 | 19,396 | 13 | 187 | 187 | 48,144 | 434 | 9,792 | 9,870 | 496 | 1,157 | 19,396 | 19,396 | 19,396 | 38,742 | 8 |
35 | 20,437 | 48 | 6.453125 | 1 | ,,,, | 19,396 | 19,396 | 13 | 187 | 187 | 48,144 | 434 | 9,792 | 9,870 | 496 | 1,157 | 19,396 | 19,396 | 19,396 | 38,742 | 8 |
35 | 20,437 | 49 | 6.453125 | 0 | ,, | 19,396 | 13 | 187 | 187 | 13,745 | 16,560 | 264 | 187 | 187 | 1,394 | 476 | 8,046 | 4,318 | 13,896 | 281 | 789 |
35 | 20,437 | 50 | 6.453125 | 0 | ,, | 19,396 | 533 | 1,384 | 1,107 | 329 | 10,993 | 537 | 2,598 | 7,422 | 310 | 3,563 | 374 | 8,007 | 537 | 249 | 436 |
35 | 20,437 | 51 | 6.453125 | 0 | ,, | 19,396 | 513 | 64 | 39,894 | 64 | 14,382 | 9 | 12,540 | 13 | 331 | 6,917 | 1,228 | 187 | 187 | 24,582 | 4,228 |
35 | 20,437 | 52 | 6.453125 | 0 | ,, | 19,396 | 835 | 247 | 1,566 | 310 | 327 | 3,148 | 15 | 380 | 4,376 | 273 | 253 | 17,052 | 398 | 310 | 370 |
35 | 20,437 | 53 | 6.453125 | 0 | ,, | 19,396 | 13 | 22,641 | 27 | 309 | 651 | 4,489 | 436 | 11,959 | 969 | 13 | 533 | 3,164 | 1,912 | 626 | 452 |
35 | 20,437 | 54 | 6.453125 | 0 | ,, | 19,396 | 50,276 | 29 | 283 | 209 | 24,893 | 27,896 | 41,351 | 28,154 | 20,326 | 346 | 12,361 | 3 | 187 | 50,274 | 2,364 |
35 | 20,437 | 55 | 6.453125 | 0 | ,, | 19,396 | 18,365 | 473 | 5,211 | 9,331 | 1,157 | 473 | 3,309 | 6,868 | 273 | 13,187 | 2,866 | 1,425 | 1,108 | 27,477 | 1,889 |
35 | 20,437 | 56 | 6.453125 | 0 | ,, | 19,396 | 13 | 20 | 15 | 26 | 187 | 187 | 29,255 | 20,837 | 2,866 | 1,012 | 2,904 | 15 | 4,196 | 5,770 | 2,866 |
35 | 20,437 | 57 | 6.453125 | 0 | ,, | 19,396 | 1,397 | 76 | 8,340 | 62 | 187 | 186 | 15 | 7,173 | 277 | 3,319 | 68 | 13 | 66 | 186 | 28 |
35 | 20,437 | 58 | 6.453125 | 0 | ,, | 19,396 | 19,921 | 60 | 21 | 3,291 | 5,264 | 3,233 | 187 | 50,272 | 859 | 27 | 2,548 | 568 | 4,756 | 1,138 | 4 |
35 | 20,437 | 59 | 6.453125 | 0 | ,, | 19,396 | 27 | 26,673 | 322 | 15 | 56 | 15 | 20 | 69 | 25,305 | 50,256 | 20 | 187 | 92 | 10,685 | 15 |
35 | 20,437 | 60 | 6.453125 | 0 | ,, | 19,396 | 4,117 | 3,291 | 187 | 62 | 187 | 187 | 7,229 | 19 | 25,265 | 64 | 42,429 | 426 | 544 | 187 | 50,274 |
35 | 20,437 | 61 | 6.453125 | 0 | ,, | 19,396 | 597 | 452 | 2,218 | 2,717 | 533 | 4,710 | 625 | 285 | 625 | 952 | 562 | 273 | 789 | 13 | 762 |
35 | 20,437 | 62 | 6.453125 | 0 | ,, | 19,396 | 368 | 476 | 897 | 32,911 | 12,636 | 290 | 281 | 1,078 | 20,864 | 747 | 34,413 | 40,840 | 10,865 | 15 | 1,737 |
35 | 20,437 | 63 | 6.453125 | 0 | ,, | 19,396 | 329 | 48,583 | 19,039 | 13 | 38,859 | 11,759 | 27 | 831 | 5,382 | 310 | 417 | 12,482 | 949 | 253 | 13,126 |
35 | 20,438 | 0 | 7.730469 | 13 | }$ and, in particular, holds with the sensitivities $\widetilde{\ | 724 | 285 | 13 | 275 | 1,798 | 13 | 6,556 | 342 | 253 | 21,750 | 16,762 | 669 | 6,796 | 464 | 6,165 | 4,689 |
35 | 20,438 | 1 | 7.308594 | 7 | \] $\operatorname{lip}\bigl(\ | 696 | 669 | 4,820 | 92 | 20,844 | 889 | 17,896 | 1,035 | 6,526 | 1,126 | 2,407 | 92 | 89 | 599 | 393 | 437 |
35 | 20,438 | 2 | 7.207031 | 14 | }$ $\hat{\beta}_{u,\widehat{J}}$ $\ | 724 | 50,275 | 1,202 | 700 | 464 | 2,461 | 2,026 | 86 | 1,337 | 8,752 | 92 | 43 | 4,018 | 50,275 | 1,202 | 700 |
35 | 20,438 | 3 | 7.195313 | 6 | that $I(\hat A,\ | 326 | 370 | 42 | 1,035 | 700 | 329 | 1,337 | 700 | 378 | 10 | 21,846 | 50,276 | 29 | 21,846 | 50,276 | 18 |
35 | 20,438 | 4 | 7.164063 | 13 | mathbb{I}}_{\textnormal{loc}}}^{-1} \left(\ | 1,991 | 92 | 42 | 14,024 | 28,975 | 92 | 9,450 | 599 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 1,124 | 92 |
35 | 20,438 | 5 | 7.148438 | 7 | beta^*)\right)\ge 1-\ | 2,461 | 3,503 | 1,572 | 918 | 1,572 | 463 | 337 | 2,249 | 2,733 | 64 | 20 | 4,700 | 187 | 187 | 1,231 | 873 |
35 | 20,438 | 6 | 7.144531 | 11 | using the estimator of the gradient in, of the form $$\ | 970 | 253 | 29,107 | 273 | 253 | 11,786 | 275 | 1,157 | 273 | 253 | 830 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,438 | 7 | 7.144531 | 11 | From this, using the definition of the sensitivity $\widetilde{\ | 4,325 | 436 | 13 | 970 | 253 | 5,426 | 273 | 253 | 7,340 | 669 | 6,796 | 464 | 6,165 | 2,026 | 81 | 13 |
35 | 20,438 | 8 | 7.078125 | 15 | 1:jhat}
J(\theta^*) \subseteq J(\ | 18 | 27 | 75 | 700 | 94 | 187 | 50,274 | 43 | 1,035 | 3,124 | 3,503 | 10 | 393 | 11,861 | 500 | 1,035 |
35 | 20,438 | 9 | 7.0625 | 14 | _0\subset\{1,\hdots,K\}$ $$\widetilde{\ | 64 | 17 | 61 | 6,040 | 6,921 | 18 | 1,337 | 73 | 6,768 | 13 | 44 | 10,952 | 1,764 | 6,796 | 464 | 6,165 |
35 | 20,438 | 10 | 7.054688 | 10 | D_X}^{-1} \left(\widehat{\ | 399 | 64 | 57 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 8,752 | 464 | 2,461 | 10,780 | 2,461 | 24,638 | 918 |
35 | 20,438 | 11 | 7.050781 | 15 | {y})$, $\widehat{\mathsf{S}}_T(\theta')$ and $\ | 92 | 90 | 19,446 | 669 | 8,752 | 464 | 9,501 | 92 | 52 | 5,000 | 53 | 1,035 | 3,124 | 31,807 | 285 | 669 |
35 | 20,438 | 12 | 7.050781 | 11 | ^{- U(\hat y)/2} e^{-T(\ | 2,497 | 530 | 1,035 | 700 | 340 | 1,933 | 19 | 94 | 299 | 2,497 | 53 | 1,035 | 700 | 465 | 3,117 | 299 |
35 | 20,438 | 13 | 7.050781 | 14 | \log\frac{1}{\epsilon}(1+\lambda_{1}(\ | 61 | 2,808 | 61 | 1,124 | 92 | 18 | 2,704 | 4,259 | 1,603 | 18 | 2,766 | 2,260 | 578 | 18 | 3,713 | 4,153 |
35 | 20,438 | 14 | 7.027344 | 8 | Then, $$\operatorname{lip}\bigl(\ | 2,635 | 13 | 1,764 | 4,820 | 92 | 20,844 | 889 | 17,896 | 1,035 | 6,526 | 2,253 | 2,407 | 92 | 89 | 94 | 393 |
35 | 20,438 | 15 | 7.019531 | 7 | E\left[\Phi\left(\ | 38 | 61 | 1,274 | 5,709 | 6,065 | 61 | 1,274 | 1,035 | 1,124 | 92 | 54 | 18,958 | 47 | 64 | 19 | 2,497 |
35 | 20,438 | 16 | 7.015625 | 10 | U}-\theta^*\right|_\infty +\left|\ | 54 | 10,780 | 3,124 | 24,638 | 918 | 93 | 2,253 | 3,259 | 14,030 | 1,274 | 3,577 | 1,124 | 18 | 79 | 464 | 3,342 |
35 | 20,438 | 17 | 7.007813 | 14 | obtain that $$\begin{aligned}
\Delta_r \left(\ | 4,044 | 326 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 3,442 | 64 | 83 | 393 | 1,274 | 1,035 | 1,124 |
35 | 20,438 | 18 | 7.007813 | 5 | L}}}(\hat{\beta},\ | 45 | 39,111 | 700 | 464 | 2,461 | 5,548 | 2,461 | 3,503 | 11,127 | 13,658 | 13 | 359 | 3,091 | 1,908 | 253 | 669 |
35 | 20,438 | 19 | 7.003906 | 14 | {\mathbb{V}}_{\textnormal{loc}}}^{-1} \left(\ | 464 | 1,991 | 92 | 55 | 14,024 | 28,975 | 92 | 9,450 | 599 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 1,274 |
35 | 20,438 | 20 | 6.992188 | 10 | \\
&\le
r\left(\widehat{\ | 3,353 | 187 | 5,977 | 282 | 187 | 83 | 61 | 1,274 | 1,035 | 8,752 | 464 | 2,592 | 9,213 | 2,609 | 464 | 8,752 |
35 | 20,438 | 21 | 6.988281 | 4 | {conv}}\left\{\ | 92 | 13,118 | 3,080 | 1,274 | 17,567 | 2,204 | 578 | 74 | 393 | 249 | 378 | 94 | 299 | 64 | 74 | 28,511 |
35 | 20,438 | 22 | 6.988281 | 8 | }\left\{d_1\left(\ | 889 | 1,274 | 6,921 | 69 | 64 | 18 | 61 | 1,274 | 1,035 | 6,796 | 92 | 54 | 9,213 | 1,124 | 92 | 18 |
35 | 20,438 | 23 | 6.984375 | 12 | ]&\leq\frac{36L_{\lambda}\left(\ | 62 | 5,977 | 3,040 | 61 | 1,124 | 92 | 1,812 | 45 | 1,126 | 2,260 | 889 | 1,274 | 1,035 | 85 | 6,065 | 1,126 |
35 | 20,438 | 24 | 6.984375 | 8 | }|_2} \ge\widetilde{\ | 8,589 | 64 | 19 | 94 | 393 | 463 | 61 | 6,796 | 464 | 6,165 | 2,138 | 323 | 690 | 669 | 6,796 | 464 |
35 | 20,438 | 25 | 6.976563 | 11 | V}}_{\textnormal{loc}}}^{-1} \left(\ | 55 | 14,024 | 28,975 | 92 | 9,450 | 599 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 1,124 | 464 | 3,214 | 2,704 |
35 | 20,438 | 26 | 6.96875 | 10 | begin{aligned}&\Vert \mathrm {sdist}(\ | 2,043 | 92 | 2,132 | 41,915 | 7,994 | 393 | 2,690 | 551 | 84 | 8,155 | 3,713 | 3,830 | 19,049 | 2,592 | 8,454 | 83 |
35 | 20,438 | 27 | 6.957031 | 7 |
I(\hat S_{1},\ | 187 | 42 | 1,035 | 700 | 322 | 578 | 18 | 5,548 | 700 | 322 | 578 | 19 | 2,311 | 708 | 426 | 708 |
35 | 20,438 | 28 | 6.957031 | 14 | {J}}$ $\hat{\beta}_{u,SC}$ $\ | 92 | 43 | 4,018 | 50,275 | 1,202 | 700 | 464 | 2,461 | 2,026 | 86 | 13 | 4,061 | 724 | 50,275 | 1,202 | 6,165 |
35 | 20,438 | 29 | 6.957031 | 4 | empirical risk function as $$\ | 16,774 | 2,495 | 1,159 | 347 | 1,764 | 1,968 | 92 | 2,574 | 27 | 358 | 5,378 | 474 | 14 | 16,272 | 14 | 7,265 |
35 | 20,438 | 30 | 6.957031 | 7 | neq\emptyset],$$ $$1-\ | 9,540 | 61 | 20,760 | 1,092 | 1,890 | 3,318 | 18 | 2,249 | 4,347 | 1,035 | 2,260 | 9 | 90 | 17,990 | 2,260 | 6,263 |
35 | 20,438 | 31 | 6.953125 | 12 | estimator of, $$\begin{aligned}
\widehat{\ | 29,107 | 273 | 1,157 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 61 | 8,752 | 464 | 9,501 | 92 | 52 |
35 | 20,438 | 32 | 6.953125 | 14 | {\sigma}+\sqrt{\widehat{Q}(\beta^*)}-\sqrt{\ | 464 | 2,592 | 9,213 | 2,609 | 464 | 8,752 | 92 | 50 | 3,713 | 2,461 | 3,503 | 3,117 | 2,249 | 2,609 | 464 | 8,752 |
35 | 20,438 | 33 | 6.945313 | 6 | ),\\
\left(\widetilde{\ | 46,865 | 187 | 61 | 1,274 | 1,035 | 6,796 | 464 | 4,535 | 11,110 | 70 | 12 | 90 | 2,850 | 505 | 428 | 187 |
35 | 20,438 | 34 | 6.9375 | 11 | ^{- U(\hat x)/2} e^{- T(\ | 2,497 | 530 | 1,035 | 700 | 1,269 | 1,933 | 19 | 94 | 299 | 2,497 | 308 | 1,035 | 700 | 268 | 3,117 | 299 |
35 | 20,438 | 35 | 6.9375 | 11 | } e^{- T(\hat p)} e^{- U(\ | 94 | 299 | 2,497 | 308 | 1,035 | 700 | 268 | 3,117 | 299 | 2,497 | 530 | 1,035 | 700 | 1,269 | 1,933 | 19 |
35 | 20,438 | 36 | 6.9375 | 5 | ,\epsilon} \left(\ | 1,337 | 4,259 | 94 | 393 | 1,274 | 1,035 | 3,582 | 444 | 63 | 79 | 1,126 | 2,461 | 1,337 | 2,059 | 61 | 2,059 |
35 | 20,438 | 37 | 6.9375 | 13 | sqrt{1-\delta} \le \sigma_{\min} (\ | 2,609 | 92 | 18 | 2,249 | 3,005 | 94 | 393 | 282 | 393 | 2,592 | 1,126 | 1,222 | 94 | 5,081 | 6,065 | 64 |
35 | 20,438 | 38 | 6.9375 | 12 | admissible perturbation of $\Omega$;
2. $\ | 324 | 13,038 | 20,452 | 273 | 669 | 4,153 | 16,446 | 187 | 187 | 19 | 15 | 50,276 | 1,202 | 4,153 | 5 | 310 |
35 | 20,438 | 39 | 6.925781 | 11 | have: $$J(\beta^*) \subseteq J(\ | 452 | 27 | 3,318 | 43 | 1,035 | 2,461 | 3,503 | 10 | 393 | 11,861 | 500 | 1,035 | 8,752 | 61 | 2,461 | 11,127 |
35 | 20,438 | 40 | 6.921875 | 15 | )) &\geq \min\limits_{j\geq 1} \Big\{\ | 1,228 | 9,443 | 5,090 | 393 | 1,222 | 61 | 10,423 | 578 | 75 | 61 | 5,090 | 337 | 94 | 393 | 5,178 | 17,567 |
35 | 20,438 | 41 | 6.914063 | 14 | t:6\] above) the upper bound on $H_\theta (\ | 85 | 27 | 23 | 696 | 1,840 | 10 | 253 | 5,170 | 3,033 | 327 | 370 | 41 | 2,253 | 3,124 | 5,081 | 2,592 |
35 | 20,438 | 42 | 6.910156 | 11 | \Delta_n^{m-1} \left (\ | 61 | 3,442 | 64 | 79 | 768 | 78 | 14 | 18 | 94 | 393 | 1,274 | 5,081 | 1,124 | 92 | 34 | 64 |
35 | 20,438 | 43 | 6.90625 | 7 | where $I(\hat X^{+},\ | 835 | 370 | 42 | 1,035 | 700 | 1,594 | 13,566 | 5,548 | 700 | 1,594 | 2,497 | 8,395 | 2 | 2,029 | 2 | 42 |
35 | 20,438 | 44 | 6.90625 | 13 | can replace there $|J(\theta^*)|$ by $|J(\ | 476 | 8,171 | 627 | 10,493 | 43 | 1,035 | 3,124 | 3,503 | 8,579 | 5 | 407 | 10,493 | 43 | 1,035 | 8,752 | 61 |
35 | 20,438 | 45 | 6.902344 | 4 | \mu}}\left (\ | 61 | 1,906 | 3,080 | 1,274 | 5,081 | 2,043 | 92 | 3,728 | 1,217 | 68 | 94 | 1,926 | 1,109 | 309 | 2,000 | 81 |
35 | 20,438 | 46 | 6.898438 | 10 | \\
&\le \operatorname{lip}\bigl(\ | 3,202 | 187 | 5,977 | 282 | 393 | 4,820 | 92 | 20,844 | 889 | 17,896 | 1,035 | 6,526 | 2,253 | 2,407 | 92 | 89 |
35 | 20,438 | 47 | 6.894531 | 11 | = Nr(\hat{\theta})'[R(\ | 426 | 427 | 83 | 1,035 | 700 | 464 | 3,124 | 2,311 | 8 | 60 | 51 | 1,035 | 700 | 464 | 3,124 | 2,311 |
35 | 20,438 | 48 | 6.886719 | 13 | \right|_{\infty}\quad {\rm and}\quad \widetilde{\ | 61 | 918 | 34,813 | 3,259 | 889 | 3,362 | 1,926 | 1,109 | 285 | 889 | 3,362 | 393 | 6,796 | 464 | 6,165 | 2,026 |
35 | 20,438 | 49 | 6.886719 | 6 | ;t}+\max \left(\ | 28 | 85 | 9,213 | 4,090 | 393 | 1,274 | 1,035 | 20,999 | 464 | 2,204 | 889 | 10,423 | 578 | 74 | 30 | 18 |
35 | 20,438 | 50 | 6.882813 | 10 | estimator of, $$\begin{aligned}
\ | 29,107 | 273 | 1,157 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 61 | 8,752 | 464 | 9,501 | 92 | 52 |
35 | 20,438 | 51 | 6.882813 | 8 | }^T\left(\bold{Y}-\ | 2,306 | 53 | 61 | 1,274 | 1,035 | 12,509 | 92 | 58 | 10,780 | 12,509 | 92 | 57 | 889 | 2,461 | 61 | 918 |
35 | 20,438 | 52 | 6.875 | 8 | }}}^{-1} \left(\left(\ | 599 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 1,274 | 1,035 | 1,124 | 464 | 3,214 | 2,704 | 3,214 | 391 | 94 |
35 | 20,438 | 53 | 6.871094 | 3 | left(\widetilde{\ | 1,274 | 1,035 | 6,796 | 464 | 4,535 | 11,110 | 70 | 12 | 90 | 2,850 | 505 | 428 | 393 | 6,796 | 92 | 90 |
35 | 20,438 | 54 | 6.867188 | 10 | {loc}}}^{-1} \left(\left(\ | 92 | 9,450 | 599 | 11,444 | 18 | 94 | 393 | 1,274 | 1,035 | 1,274 | 1,035 | 1,124 | 464 | 3,214 | 2,704 | 3,214 |
35 | 20,438 | 55 | 6.867188 | 10 | begin{aligned}
\Phi\left(\ | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 61 | 6,065 | 61 | 1,274 | 1,035 | 11,765 | 92 | 83 | 889 | 918 |
35 | 20,438 | 56 | 6.863281 | 2 | }\left (\ | 889 | 1,274 | 5,081 | 1,588 | 92 | 38 | 35,420 | 38,013 | 6,394 | 87 | 22,254 | 79 | 599 | 1,157 | 2,386 | 38,013 |
35 | 20,438 | 57 | 6.847656 | 9 | ^{k_1}\\
&(\widetilde{\ | 768 | 76 | 64 | 18 | 11,054 | 187 | 7 | 1,035 | 6,796 | 464 | 11,920 | 92 | 51 | 25 | 8 | 27,927 |
35 | 20,438 | 58 | 6.847656 | 9 | P}}({\mathcal{Y}}^n)}\left(\ | 49 | 19,753 | 1,588 | 92 | 58 | 7,294 | 79 | 7,398 | 1,274 | 1,035 | 2,808 | 393 | 2,859 | 2,249 | 2,808 | 393 |
35 | 20,438 | 59 | 6.84375 | 7 | mathcal{L}}}(\hat{\beta},\ | 1,588 | 92 | 45 | 39,111 | 700 | 464 | 2,461 | 5,548 | 2,461 | 3,503 | 4,244 | 534 | 6,125 | 253 | 2,957 | 23,122 |
35 | 20,438 | 60 | 6.84375 | 15 | {aligned}$$ then $$\begin{aligned}
\Gamma(\theta,\ | 92 | 2,132 | 2,138 | 840 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,270 | 61 | 4,220 | 1,035 | 3,124 | 1,337 |
35 | 20,438 | 61 | 6.839844 | 11 | }_{\theta_0}(\mathbf{y})$, $\widehat{\ | 4,689 | 3,124 | 64 | 17 | 3,713 | 2,407 | 92 | 90 | 19,446 | 669 | 8,752 | 464 | 9,501 | 92 | 52 | 5,000 |
35 | 20,438 | 62 | 6.839844 | 5 | , $(\widehat{\beta},\ | 13 | 9,722 | 8,752 | 464 | 2,461 | 5,548 | 8,752 | 464 | 2,592 | 6,580 | 46,926 | 253 | 17,705 | 669 | 1,274 | 21,837 |
35 | 20,438 | 63 | 6.839844 | 14 | then such optimal diffusion control is given by $$\begin{aligned}
\ | 840 | 824 | 8,654 | 12,393 | 1,453 | 310 | 1,677 | 407 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,009 |
35 | 20,439 | 0 | 7.304688 | 13 | armies and created _dynasties_ (DY-nuh- | 29,894 | 285 | 3,562 | 795 | 42,927 | 505 | 447 | 64 | 313 | 32,201 | 14 | 3,023 | 73 | 14 | 296 | 1,796 |
35 | 20,439 | 1 | 7.136719 | 9 | Feeling Nostalgic
nos· | 7,510 | 8,855 | 427 | 493 | 13,256 | 280 | 187 | 187 | 23,047 | 6,256 | 22,559 | 6,256 | 45,795 | 187 | 187 | 19 |
35 | 20,439 | 2 | 6.695313 | 9 | 1ska
1ske
1ski
1 | 18 | 32,518 | 187 | 18 | 40,993 | 187 | 18 | 9,327 | 187 | 18 | 3,319 | 80 | 187 | 18 | 3,319 | 86 |
35 | 20,439 | 3 | 6.679688 | 7 | kind to and is not portrayed sympathe | 2,238 | 281 | 285 | 310 | 417 | 30,804 | 12,514 | 4,349 | 85 | 1,037 | 15 | 24,697 | 13 | 352 | 812 | 320 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.