Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
1,500
1,500
Feature Selection for Generator Excitation Neurocontroller Development Using Filter Technique
Essentially, motive behind using control system is to generate suitable control signal for yielding desired response of a physical process. Control of synchronous generator has always remained very critical in power system operation and control. For certain well known reasons power generators are normally operated well below their steady state stability limit. This raises demand for efficient and fast controllers. Artificial intelligence has been reported to give revolutionary outcomes in the field of control engineering. Artificial Neural Network (ANN), a branch of artificial intelligence has been used for nonlinear and adaptive control, utilizing its inherent observability. The overall performance of neurocontroller is dependent upon input features too. Selecting optimum features to train a neurocontroller optimally is very critical. Both quality and size of data are of equal importance for better performance. In this work filter technique is employed to select independent factors for ANN training.
1,501
1,501
CELL: Connecting Everyday Life in an archipeLago
We explore the design of a seamless broadcast communication system that brings together the distributed community of remote secondary education schools. In contrast to higher education, primary and secondary education establishments should remain distributed, in order to maintain a balance of urban and rural life in the developing and the developed world. We plan to deploy an ambient and social interactive TV platform (physical installation, authoring tools, interactive content) that supports social communication in a positive way. In particular, we present the physical design and the conceptual model of the system.
1,502
1,502
Dissimilarity Clustering by Hierarchical Multi-Level Refinement
We introduce in this paper a new way of optimizing the natural extension of the quantization error using in k-means clustering to dissimilarity data. The proposed method is based on hierarchical clustering analysis combined with multi-level heuristic refinement. The method is computationally efficient and achieves better quantization errors than the
1,503
1,503
A Conjugate Property between Loss Functions and Uncertainty Sets in Classification Problems
In binary classification problems, mainly two approaches have been proposed; one is loss function approach and the other is uncertainty set approach. The loss function approach is applied to major learning algorithms such as support vector machine (SVM) and boosting methods. The loss function represents the penalty of the decision function on the training samples. In the learning algorithm, the empirical mean of the loss function is minimized to obtain the classifier. Against a backdrop of the development of mathematical programming, nowadays learning algorithms based on loss functions are widely applied to real-world data analysis. In addition, statistical properties of such learning algorithms are well-understood based on a lots of theoretical works. On the other hand, the learning method using the so-called uncertainty set is used in hard-margin SVM, mini-max probability machine (MPM) and maximum margin MPM. In the learning algorithm, firstly, the uncertainty set is defined for each binary label based on the training samples. Then, the best separating hyperplane between the two uncertainty sets is employed as the decision function. This is regarded as an extension of the maximum-margin approach. The uncertainty set approach has been studied as an application of robust optimization in the field of mathematical programming. The statistical properties of learning algorithms with uncertainty sets have not been intensively studied. In this paper, we consider the relation between the above two approaches. We point out that the uncertainty set is described by using the level set of the conjugate of the loss function. Based on such relation, we study statistical properties of learning algorithms using uncertainty sets.
1,504
1,504
Residual Belief Propagation for Topic Modeling
Fast convergence speed is a desired property for training latent Dirichlet allocation (LDA), especially in online and parallel topic modeling for massive data sets. This paper presents a novel residual belief propagation (RBP) algorithm to accelerate the convergence speed for training LDA. The proposed RBP uses an informed scheduling scheme for asynchronous message passing, which passes fast-convergent messages with a higher priority to influence those slow-convergent messages at each learning iteration. Extensive empirical studies confirm that RBP significantly reduces the training time until convergence while achieves a much lower predictive perplexity than other state-of-the-art training algorithms for LDA, including variational Bayes (VB), collapsed Gibbs sampling (GS), loopy belief propagation (BP), and residual VB (RVB).
1,505
1,505
A Spectral Algorithm for Latent Dirichlet Allocation
The problem of topic modeling can be seen as a generalization of the clustering problem, in that it posits that observations are generated due to multiple latent factors (e.g., the words in each document are generated as a mixture of several active topics, as opposed to just one). This increased representational power comes at the cost of a more challenging unsupervised learning problem of estimating the topic probability vectors (the distributions over words for each topic), when only the words are observed and the corresponding topics are hidden. We provide a simple and efficient learning procedure that is guaranteed to recover the parameters for a wide class of mixture models, including the popular latent Dirichlet allocation (LDA) model. For LDA, the procedure correctly recovers both the topic probability vectors and the prior over the topics, using only trigram statistics (i.e., third order moments, which may be estimated with documents containing just three words). The method, termed Excess Correlation Analysis (ECA), is based on a spectral decomposition of low order moments (third and fourth order) via two singular value decompositions (SVDs). Moreover, the algorithm is scalable since the SVD operations are carried out on $k\times k$ matrices, where $k$ is the number of latent factors (e.g. the number of topics), rather than in the $d$-dimensional observed space (typically $d \gg k$).
1,506
1,506
A Singly-Exponential Time Algorithm for Computing Nonnegative Rank
Here, we give an algorithm for deciding if the nonnegative rank of a matrix $M$ of dimension $m \times n$ is at most $r$ which runs in time $(nm)^{O(r^2)}$. This is the first exact algorithm that runs in time singly-exponential in $r$. This algorithm (and earlier algorithms) are built on methods for finding a solution to a system of polynomial inequalities (if one exists). Notably, the best algorithms for this task run in time exponential in the number of variables but polynomial in all of the other parameters (the number of inequalities and the maximum degree). Hence these algorithms motivate natural algebraic questions whose solution have immediate {\em algorithmic} implications: How many variables do we need to represent the decision problem, does $M$ have nonnegative rank at most $r$? A naive formulation uses $nr + mr$ variables and yields an algorithm that is exponential in $n$ and $m$ even for constant $r$. (Arora, Ge, Kannan, Moitra, STOC 2012) recently reduced the number of variables to $2r^2 2^r$, and here we exponentially reduce the number of variables to $2r^2$ and this yields our main algorithm. In fact, the algorithm that we obtain is nearly-optimal (under the Exponential Time Hypothesis) since an algorithm that runs in time $(nm)^{o(r)}$ would yield a subexponential algorithm for 3-SAT . Our main result is based on establishing a normal form for nonnegative matrix factorization - which in turn allows us to exploit algebraic dependence among a large collection of linear transformations with variable entries. Additionally, we also demonstrate that nonnegative rank cannot be certified by even a very large submatrix of $M$, and this property also follows from the intuition gained from viewing nonnegative rank through the lens of systems of polynomial inequalities.
1,507
1,507
$QD$-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations
The paper considers a class of multi-agent Markov decision processes (MDPs), in which the network agents respond differently (as manifested by the instantaneous one-stage random costs) to a global controlled state and the control actions of a remote controller. The paper investigates a distributed reinforcement learning setup with no prior information on the global state transition and local agent cost statistics. Specifically, with the agents' objective consisting of minimizing a network-averaged infinite horizon discounted cost, the paper proposes a distributed version of $Q$-learning, $\mathcal{QD}$-learning, in which the network agents collaborate by means of local processing and mutual information exchange over a sparse (possibly stochastic) communication network to achieve the network goal. Under the assumption that each agent is only aware of its local online cost data and the inter-agent communication network is \emph{weakly} connected, the proposed distributed scheme is almost surely (a.s.) shown to yield asymptotically the desired value function and the optimal stationary control policy at each network agent. The analytical techniques developed in the paper to address the mixed time-scale stochastic dynamics of the \emph{consensus + innovations} form, which arise as a result of the proposed interactive distributed scheme, are of independent interest.
1,508
1,508
Complexity Analysis of the Lasso Regularization Path
The regularization path of the Lasso can be shown to be piecewise linear, making it possible to "follow" and explicitly compute the entire path. We analyze in this paper this popular strategy, and prove that its worst case complexity is exponential in the number of variables. We then oppose this pessimistic result to an (optimistic) approximate analysis: We show that an approximate path with at most O(1/sqrt(epsilon)) linear segments can always be obtained, where every point on the path is guaranteed to be optimal up to a relative epsilon-duality gap. We complete our theoretical analysis with a practical algorithm to compute these approximate paths.
1,509
1,509
ProPPA: A Fast Algorithm for $\ell_1$ Minimization and Low-Rank Matrix Completion
We propose a Projected Proximal Point Algorithm (ProPPA) for solving a class of optimization problems. The algorithm iteratively computes the proximal point of the last estimated solution projected into an affine space which itself is parallel and approaching to the feasible set. We provide convergence analysis theoretically supporting the general algorithm, and then apply it for solving $\ell_1$-minimization problems and the matrix completion problem. These problems arise in many applications including machine learning, image and signal processing. We compare our algorithm with the existing state-of-the-art algorithms. Experimental results on solving these problems show that our algorithm is very efficient and competitive.
1,510
1,510
A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning
We consider the problem of simultaneously learning to linearly combine a very large number of kernels and learn a good predictor based on the learnt kernel. When the number of kernels $d$ to be combined is very large, multiple kernel learning methods whose computational cost scales linearly in $d$ are intractable. We propose a randomized version of the mirror descent algorithm to overcome this issue, under the objective of minimizing the group $p$-norm penalized empirical risk. The key to achieve the required exponential speed-up is the computationally efficient construction of low-variance estimates of the gradient. We propose importance sampling based estimates, and find that the ideal distribution samples a coordinate with a probability proportional to the magnitude of the corresponding gradient. We show the surprising result that in the case of learning the coefficients of a polynomial kernel, the combinatorial structure of the base kernels to be combined allows the implementation of sampling from this distribution to run in $O(\log(d))$ time, making the total computational cost of the method to achieve an $\epsilon$-optimal solution to be $O(\log(d)/\epsilon^2)$, thereby allowing our method to operate for very large values of $d$. Experiments with simulated and real data confirm that the new algorithm is computationally more efficient than its state-of-the-art alternatives.
1,511
1,511
Minimax Classifier for Uncertain Costs
Many studies on the cost-sensitive learning assumed that a unique cost matrix is known for a problem. However, this assumption may not hold for many real-world problems. For example, a classifier might need to be applied in several circumstances, each of which associates with a different cost matrix. Or, different human experts have different opinions about the costs for a given problem. Motivated by these facts, this study aims to seek the minimax classifier over multiple cost matrices. In summary, we theoretically proved that, no matter how many cost matrices are involved, the minimax problem can be tackled by solving a number of standard cost-sensitive problems and sub-problems that involve only two cost matrices. As a result, a general framework for achieving minimax classifier over multiple cost matrices is suggested and justified by preliminary empirical studies.
1,512
1,512
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. The equivalence holds when energy distances are computed with semimetrics of negative type, in which case a kernel may be defined such that the RKHS distance between distributions corresponds exactly to the energy distance. We determine the class of probability distributions for which kernels induced by semimetrics are characteristic (that is, for which embeddings of the distributions to an RKHS are injective). Finally, we investigate the performance of this family of kernels in two-sample and independence tests: we show in particular that the energy distance most commonly employed in statistics is just one member of a parametric family of kernels, and that other choices from this family can yield more powerful tests.
1,513
1,513
Greedy Multiple Instance Learning via Codebook Learning and Nearest Neighbor Voting
Multiple instance learning (MIL) has attracted great attention recently in machine learning community. However, most MIL algorithms are very slow and cannot be applied to large datasets. In this paper, we propose a greedy strategy to speed up the multiple instance learning process. Our contribution is two fold. First, we propose a density ratio model, and show that maximizing a density ratio function is the low bound of the DD model under certain conditions. Secondly, we make use of a histogram ratio between positive bags and negative bags to represent the density ratio function and find codebooks separately for positive bags and negative bags by a greedy strategy. For testing, we make use of a nearest neighbor strategy to classify new bags. We test our method on both small benchmark datasets and the large TRECVID MED11 dataset. The experimental results show that our method yields comparable accuracy to the current state of the art, while being up to at least one order of magnitude faster.
1,514
1,514
Generative Maximum Entropy Learning for Multiclass Classification
Maximum entropy approach to classification is very well studied in applied statistics and machine learning and almost all the methods that exists in literature are discriminative in nature. In this paper, we introduce a maximum entropy classification method with feature selection for large dimensional data such as text datasets that is generative in nature. To tackle the curse of dimensionality of large data sets, we employ conditional independence assumption (Naive Bayes) and we perform feature selection simultaneously, by enforcing a `maximum discrimination' between estimated class conditional densities. For two class problems, in the proposed method, we use Jeffreys ($J$) divergence to discriminate the class conditional densities. To extend our method to the multi-class case, we propose a completely new approach by considering a multi-distribution divergence: we replace Jeffreys divergence by Jensen-Shannon ($JS$) divergence to discriminate conditional densities of multiple classes. In order to reduce computational complexity, we employ a modified Jensen-Shannon divergence ($JS_{GM}$), based on AM-GM inequality. We show that the resulting divergence is a natural generalization of Jeffreys divergence to a multiple distributions case. As far as the theoretical justifications are concerned we show that when one intends to select the best features in a generative maximum entropy approach, maximum discrimination using $J-$divergence emerges naturally in binary classification. Performance and comparative study of the proposed algorithms have been demonstrated on large dimensional text and gene expression datasets that show our methods scale up very well with large dimensional datasets.
1,515
1,515
Weighted Patterns as a Tool for Improving the Hopfield Model
We generalize the standard Hopfield model to the case when a weight is assigned to each input pattern. The weight can be interpreted as the frequency of the pattern occurrence at the input of the network. In the framework of the statistical physics approach we obtain the saddle-point equation allowing us to examine the memory of the network. In the case of unequal weights our model does not lead to the catastrophic destruction of the memory due to its overfilling (that is typical for the standard Hopfield model). The real memory consists only of the patterns with weights exceeding a critical value that is determined by the weights distribution. We obtain the algorithm allowing us to find this critical value for an arbitrary distribution of the weights, and analyze in detail some particular weights distributions. It is shown that the memory decreases as compared to the case of the standard Hopfield model. However, in our model the network can learn online without the catastrophic destruction of the memory.
1,516
1,516
Variable Selection for Latent Dirichlet Allocation
In latent Dirichlet allocation (LDA), topics are multinomial distributions over the entire vocabulary. However, the vocabulary usually contains many words that are not relevant in forming the topics. We adopt a variable selection method widely used in statistical modeling as a dimension reduction tool and combine it with LDA. In this variable selection model for LDA (vsLDA), topics are multinomial distributions over a subset of the vocabulary, and by excluding words that are not informative for finding the latent topic structure of the corpus, vsLDA finds topics that are more robust and discriminative. We compare three models, vsLDA, LDA with symmetric priors, and LDA with asymmetric priors, on heldout likelihood, MCMC chain consistency, and document classification. The performance of vsLDA is better than symmetric LDA for likelihood and classification, better than asymmetric LDA for consistency and classification, and about the same in the other comparisons.
1,517
1,517
On the Complexity of Trial and Error
Motivated by certain applications from physics, biochemistry, economics, and computer science, in which the objects under investigation are not accessible because of various limitations, we propose a trial-and-error model to examine algorithmic issues in such situations. Given a search problem with a hidden input, we are asked to find a valid solution, to find which we can propose candidate solutions (trials), and use observed violations (errors), to prepare future proposals. In accordance with our motivating applications, we consider the fairly broad class of constraint satisfaction problems, and assume that errors are signaled by a verification oracle in the format of the index of a violated constraint (with the content of the constraint still hidden). Our discoveries are summarized as follows. On one hand, despite the seemingly very little information provided by the verification oracle, efficient algorithms do exist for a number of important problems. For the Nash, Core, Stable Matching, and SAT problems, the unknown-input versions are as hard as the corresponding known-input versions, up to a factor of polynomial. We further give almost tight bounds on the latter two problems' trial complexities. On the other hand, there are problems whose complexities are substantially increased in the unknown-input model. In particular, no time-efficient algorithms exist (under standard hardness assumptions) for Graph Isomorphism and Group Isomorphism problems. The tools used to achieve these results include order theory, strong ellipsoid method, and some non-standard reductions. Our model investigates the value of information, and our results demonstrate that the lack of input information can introduce various levels of extra difficulty. The model exhibits intimate connections with (and we hope can also serve as a useful supplement to) certain existing learning and complexity theories.
1,518
1,518
Convex Relaxation for Combinatorial Penalties
In this paper, we propose an unifying view of several recently proposed structured sparsity-inducing norms. We consider the situation of a model simultaneously (a) penalized by a set- function de ned on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in Lp-norm. We show that the natural combinatorial optimization problems obtained may be relaxed into convex optimization problems and introduce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness of our relaxations. We moreover establish links with norms based on latent representations including the latent group Lasso and block-coding, and with norms obtained from submodular functions.
1,519
1,519
Sparse group lasso and high dimensional multinomial classification
The sparse group lasso optimization problem is solved using a coordinate gradient descent algorithm. The algorithm is applicable to a broad class of convex loss functions. Convergence of the algorithm is established, and the algorithm is used to investigate the performance of the multinomial sparse group lasso classifier. On three different real data examples the multinomial group lasso clearly outperforms multinomial lasso in terms of achieved classification error rate and in terms of including fewer features for the classification. The run-time of our sparse group lasso implementation is of the same order of magnitude as the multinomial lasso algorithm implemented in the R package glmnet. Our implementation scales well with the problem size. One of the high dimensional examples considered is a 50 class classification problem with 10k features, which amounts to estimating 500k parameters. The implementation is available as the R package msgl.
1,520
1,520
Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG via Block Sparse Bayesian Learning
Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body-area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. This work proposes to use the block sparse Bayesian learning (BSBL) framework to compress/reconstruct non-sparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.
1,521
1,521
Detecting Spammers via Aggregated Historical Data Set
The battle between email service providers and senders of mass unsolicited emails (Spam) continues to gain traction. Vast numbers of Spam emails are sent mainly from automatic botnets distributed over the world. One method for mitigating Spam in a computationally efficient manner is fast and accurate blacklisting of the senders. In this work we propose a new sender reputation mechanism that is based on an aggregated historical data-set which encodes the behavior of mail transfer agents over time. A historical data-set is created from labeled logs of received emails. We use machine learning algorithms to build a model that predicts the \emph{spammingness} of mail transfer agents in the near future. The proposed mechanism is targeted mainly at large enterprises and email service providers and can be used for updating both the black and the white lists. We evaluate the proposed mechanism using 9.5M anonymized log entries obtained from the biggest Internet service provider in Europe. Experiments show that proposed method detects more than 94% of the Spam emails that escaped the blacklist (i.e., TPR), while having less than 0.5% false-alarms. Therefore, the effectiveness of the proposed method is much higher than of previously reported reputation mechanisms, which rely on emails logs. In addition, the proposed method, when used for updating both the black and white lists, eliminated the need in automatic content inspection of 4 out of 5 incoming emails, which resulted in dramatic reduction in the filtering computational load.
1,522
1,522
Dynamic Multi-Relational Chinese Restaurant Process for Analyzing Influences on Users in Social Media
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Facebook data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends, beyond the capability of existing approaches.
1,523
1,523
Risk estimation for matrix recovery with spectral regularization
In this paper, we develop an approach to recursively estimate the quadratic risk for matrix recovery problems regularized with spectral functions. Toward this end, in the spirit of the SURE theory, a key step is to compute the (weak) derivative and divergence of a solution with respect to the observations. As such a solution is not available in closed form, but rather through a proximal splitting algorithm, we propose to recursively compute the divergence from the sequence of iterates. A second challenge that we unlocked is the computation of the (weak) derivative of the proximity operator of a spectral function. To show the potential applicability of our approach, we exemplify it on a matrix completion problem to objectively and automatically select the regularization parameter.
1,524
1,524
Graph-based Learning with Unbalanced Clusters
Graph construction is a crucial step in spectral clustering (SC) and graph-based semi-supervised learning (SSL). Spectral methods applied on standard graphs such as full-RBF, $\epsilon$-graphs and $k$-NN graphs can lead to poor performance in the presence of proximal and unbalanced data. This is because spectral methods based on minimizing RatioCut or normalized cut on these graphs tend to put more importance on balancing cluster sizes over reducing cut values. We propose a novel graph construction technique and show that the RatioCut solution on this new graph is able to handle proximal and unbalanced data. Our method is based on adaptively modulating the neighborhood degrees in a $k$-NN graph, which tends to sparsify neighborhoods in low density regions. Our method adapts to data with varying levels of unbalancedness and can be naturally used for small cluster detection. We justify our ideas through limit cut analysis. Unsupervised and semi-supervised experiments on synthetic and real data sets demonstrate the superiority of our method.
1,525
1,525
Approximate Dynamic Programming By Minimizing Distributionally Robust Bounds
Approximate dynamic programming is a popular method for solving large Markov decision processes. This paper describes a new class of approximate dynamic programming (ADP) methods- distributionally robust ADP-that address the curse of dimensionality by minimizing a pessimistic bound on the policy loss. This approach turns ADP into an optimization problem, for which we derive new mathematical program formulations and analyze its properties. DRADP improves on the theoretical guarantees of existing ADP methods-it guarantees convergence and L1 norm based error bounds. The empirical evaluation of DRADP shows that the theoretical guarantees translate well into good performance on benchmark problems.
1,526
1,526
The Natural Gradient by Analogy to Signal Whitening, and Recipes and Tricks for its Use
The natural gradient allows for more efficient gradient descent by removing dependencies and biases inherent in a function's parameterization. Several papers present the topic thoroughly and precisely. It remains a very difficult idea to get your head around however. The intent of this note is to provide simple intuition for the natural gradient and its use. We review how an ill conditioned parameter space can undermine learning, introduce the natural gradient by analogy to the more widely understood concept of signal whitening, and present tricks and specific prescriptions for applying the natural gradient to learning problems.
1,527
1,527
Hamiltonian Annealed Importance Sampling for partition function estimation
We introduce an extension to annealed importance sampling that uses Hamiltonian dynamics to rapidly estimate normalization constants. We demonstrate this method by computing log likelihoods in directed and undirected probabilistic image models. We compare the performance of linear generative models with both Gaussian and Laplace priors, product of experts models with Laplace and Student's t experts, the mc-RBM, and a bilinear generative model. We provide code to compare additional models.
1,528
1,528
The representer theorem for Hilbert spaces: a necessary and sufficient condition
A family of regularization functionals is said to admit a linear representer theorem if every member of the family admits minimizers that lie in a fixed finite dimensional subspace. A recent characterization states that a general class of regularization functionals with differentiable regularizer admits a linear representer theorem if and only if the regularization term is a non-decreasing function of the norm. In this report, we improve over such result by replacing the differentiability assumption with lower semi-continuity and deriving a proof that is independent of the dimensionality of the space.
1,529
1,529
Hamiltonian Monte Carlo with Reduced Momentum Flips
Hamiltonian Monte Carlo (or hybrid Monte Carlo) with partial momentum refreshment explores the state space more slowly than it otherwise would due to the momentum reversals which occur on proposal rejection. These cause trajectories to double back on themselves, leading to random walk behavior on timescales longer than the typical rejection time, and leading to slower mixing. I present a technique by which the number of momentum reversals can be reduced. This is accomplished by maintaining the net exchange of probability between states with opposite momenta, but reducing the rate of exchange in both directions such that it is 0 in one direction. An experiment illustrates these reduced momentum flips accelerating mixing for a particular distribution.
1,530
1,530
Dynamic Behavioral Mixed-Membership Model for Large Evolving Networks
The majority of real-world networks are dynamic and extremely large (e.g., Internet Traffic, Twitter, Facebook, ...). To understand the structural behavior of nodes in these large dynamic networks, it may be necessary to model the dynamics of behavioral roles representing the main connectivity patterns over time. In this paper, we propose a dynamic behavioral mixed-membership model (DBMM) that captures the roles of nodes in the graph and how they evolve over time. Unlike other node-centric models, our model is scalable for analyzing large dynamic networks. In addition, DBMM is flexible, parameter-free, has no functional form or parameterization, and is interpretable (identifies explainable patterns). The performance results indicate our approach can be applied to very large networks while the experimental results show that our model uncovers interesting patterns underlying the dynamics of these networks.
1,531
1,531
A Converged Algorithm for Tikhonov Regularized Nonnegative Matrix Factorization with Automatic Regularization Parameters Determination
We present a converged algorithm for Tikhonov regularized nonnegative matrix factorization (NMF). We specially choose this regularization because it is known that Tikhonov regularized least square (LS) is the more preferable form in solving linear inverse problems than the conventional LS. Because an NMF problem can be decomposed into LS subproblems, it can be expected that Tikhonov regularized NMF will be the more appropriate approach in solving NMF problems. The algorithm is derived using additive update rules which have been shown to have convergence guarantee. We equip the algorithm with a mechanism to automatically determine the regularization parameters based on the L-curve, a well-known concept in the inverse problems community, but is rather unknown in the NMF research. The introduction of this algorithm thus solves two inherent problems in Tikhonov regularized NMF algorithm research, i.e., convergence guarantee and regularization parameters determination.
1,532
1,532
A Generalized Kernel Approach to Structured Output Learning
We study the problem of structured output learning from a regression perspective. We first provide a general formulation of the kernel dependency estimation (KDE) problem using operator-valued kernels. We show that some of the existing formulations of this problem are special cases of our framework. We then propose a covariance-based operator-valued kernel that allows us to take into account the structure of the kernel feature space. This kernel operates on the output space and encodes the interactions between the outputs without any reference to the input space. To address this issue, we introduce a variant of our KDE method based on the conditional covariance operator that in addition to the correlation between the outputs takes into account the effects of the input variables. Finally, we evaluate the performance of our KDE approach using both covariance and conditional covariance kernels on two structured output problems, and compare it to the state-of-the-art kernel-based structured output regression methods.
1,533
1,533
Modularity-Based Clustering for Network-Constrained Trajectories
We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.
1,534
1,534
Efficient Constrained Regret Minimization
Online learning constitutes a mathematical and compelling framework to analyze sequential decision making problems in adversarial environments. The learner repeatedly chooses an action, the environment responds with an outcome, and then the learner receives a reward for the played action. The goal of the learner is to maximize his total reward. However, there are situations in which, in addition to maximizing the cumulative reward, there are some additional constraints on the sequence of decisions that must be satisfied on average by the learner. In this paper we study an extension to the online learning where the learner aims to maximize the total reward given that some additional constraints need to be satisfied. By leveraging on the theory of Lagrangian method in constrained optimization, we propose Lagrangian exponentially weighted average (LEWA) algorithm, which is a primal-dual variant of the well known exponentially weighted average algorithm, to efficiently solve constrained online decision making problems. Using novel theoretical analysis, we establish the regret and the violation of the constraint bounds in full information and bandit feedback models.
1,535
1,535
A Discussion on Parallelization Schemes for Stochastic Vector Quantization Algorithms
This paper studies parallelization schemes for stochastic Vector Quantization algorithms in order to obtain time speed-ups using distributed resources. We show that the most intuitive parallelization scheme does not lead to better performances than the sequential algorithm. Another distributed scheme is therefore introduced which obtains the expected speed-ups. Then, it is improved to fit implementation on distributed architectures where communications are slow and inter-machines synchronization too costly. The schemes are tested with simulated distributed architectures and, for the last one, with Microsoft Windows Azure platform obtaining speed-ups up to 32 Virtual Machines.
1,536
1,536
Sparse Approximation via Penalty Decomposition Methods
In this paper we consider sparse approximation problems, that is, general $l_0$ minimization problems with the $l_0$-"norm" of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of penalty subproblems are solved by a block coordinate descent (BCD) method. Under some suitable assumptions, we establish that any accumulation point of the sequence generated by the PD methods satisfies the first-order optimality conditions of the problems. Furthermore, for the problems in which the $l_0$ part is the only nonconvex part, we show that such an accumulation point is a local minimizer of the problems. In addition, we show that any accumulation point of the sequence generated by the BCD method is a saddle point of the penalty subproblem. Moreover, for the problems in which the $l_0$ part is the only nonconvex part, we establish that such an accumulation point is a local minimizer of the penalty subproblem. Finally, we test the performance of our PD methods by applying them to sparse logistic regression, sparse inverse covariance selection, and compressed sensing problems. The computational results demonstrate that our methods generally outperform the existing methods in terms of solution quality and/or speed.
1,537
1,537
Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC
The damped Gauss-Newton (dGN) algorithm for CANDECOMP/PARAFAC (CP) decomposition can handle the challenges of collinearity of factors and different magnitudes of factors; nevertheless, for factorization of an $N$-D tensor of size $I_1\times I_N$ with rank $R$, the algorithm is computationally demanding due to construction of large approximate Hessian of size $(RT \times RT)$ and its inversion where $T = \sum_n I_n$. In this paper, we propose a fast implementation of the dGN algorithm which is based on novel expressions of the inverse approximate Hessian in block form. The new implementation has lower computational complexity, besides computation of the gradient (this part is common to both methods), requiring the inversion of a matrix of size $NR^2\times NR^2$, which is much smaller than the whole approximate Hessian, if $T \gg NR$. In addition, the implementation has lower memory requirements, because neither the Hessian nor its inverse never need to be stored in their entirety. A variant of the algorithm working with complex valued data is proposed as well. Complexity and performance of the proposed algorithm is compared with those of dGN and ALS with line search on examples of difficult benchmark tensors.
1,538
1,538
On the Identifiability of the Post-Nonlinear Causal Model
By taking into account the nonlinear effect of the cause, the inner noise effect, and the measurement distortion effect in the observed variables, the post-nonlinear (PNL) causal model has demonstrated its excellent performance in distinguishing the cause from effect. However, its identifiability has not been properly addressed, and how to apply it in the case of more than two variables is also a problem. In this paper, we conduct a systematic investigation on its identifiability in the two-variable case. We show that this model is identifiable in most cases; by enumerating all possible situations in which the model is not identifiable, we provide sufficient conditions for its identifiability. Simulations are given to support the theoretical results. Moreover, in the case of more than two variables, we show that the whole causal structure can be found by applying the PNL causal model to each structure in the Markov equivalent class and testing if the disturbance is independent of the direct causes for each variable. In this way the exhaustive search over all possible causal structures is avoided.
1,539
1,539
A Uniqueness Theorem for Clustering
Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like "What distinguishes a clustering of data from other data partitioning?", "Are there any principles governing all clustering paradigms?", "How should a user choose an appropriate clustering algorithm for a particular task?", etc. are almost completely unanswered by the existing body of clustering literature. We consider an axiomatic approach to the theory of Clustering. We adopt the framework of Kleinberg, [Kle03]. By relaxing one of Kleinberg's clustering axioms, we sidestep his impossibility result and arrive at a consistent set of axioms. We suggest to extend these axioms, aiming to provide an axiomatic taxonomy of clustering paradigms. Such a taxonomy should provide users some guidance concerning the choice of the appropriate clustering paradigm for a given task. The main result of this paper is a set of abstract properties that characterize the Single-Linkage clustering function. This characterization result provides new insight into the properties of desired data groupings that make Single-Linkage the appropriate choice. We conclude by considering a taxonomy of clustering functions based on abstract properties that each satisfies.
1,540
1,540
The Entire Quantile Path of a Risk-Agnostic SVM Classifier
A quantile binary classifier uses the rule: Classify x as +1 if P(Y = 1|X = x) >= t, and as -1 otherwise, for a fixed quantile parameter t {[0, 1]. It has been shown that Support Vector Machines (SVMs) in the limit are quantile classifiers with t = 1/2 . In this paper, we show that by using asymmetric cost of misclassification SVMs can be appropriately extended to recover, in the limit, the quantile binary classifier for any t. We then present a principled algorithm to solve the extended SVM classifier for all values of t simultaneously. This has two implications: First, one can recover the entire conditional distribution P(Y = 1|X = x) = t for t {[0, 1]. Second, we can build a risk-agnostic SVM classifier where the cost of misclassification need not be known apriori. Preliminary numerical experiments show the effectiveness of the proposed algorithm.
1,541
1,541
The Infinite Latent Events Model
We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultaneously inferring a set of latent events, which events fired at each timestep, and how those events are causally linked. We illustrate the model on a sound factorization task, a network topology identification task, and a video game task.
1,542
1,542
Herding Dynamic Weights for Partially Observed Random Field Models
Learning the parameters of a (potentially partially observable) random field model is intractable in general. Instead of focussing on a single optimal parameter value we propose to treat parameters as dynamical quantities. We introduce an algorithm to generate complex dynamics for parameters and (both visible and hidden) state vectors. We show that under certain conditions averages computed over trajectories of the proposed dynamical system converge to averages computed over the data. Our "herding dynamics" does not require expensive operations such as exponentiation and is fully deterministic.
1,543
1,543
Exploring compact reinforcement-learning representations with linear regression
This paper presents a new algorithm for online linear regression whose efficiency guarantees satisfy the requirements of the KWIK (Knows What It Knows) framework. The algorithm improves on the complexity bounds of the current state-of-the-art procedure in this setting. We explore several applications of this algorithm for learning compact reinforcement-learning representations. We show that KWIK linear regression can be used to learn the reward function of a factored MDP and the probabilities of action outcomes in Stochastic STRIPS and Object Oriented MDPs, none of which have been proven to be efficiently learnable in the RL setting before. We also combine KWIK linear regression with other KWIK learners to learn larger portions of these models, including experiments on learning factored MDP transition and reward functions together.
1,544
1,544
Temporal-Difference Networks for Dynamical Systems with Continuous Observations and Actions
Temporal-difference (TD) networks are a class of predictive state representations that use well-established TD methods to learn models of partially observable dynamical systems. Previous research with TD networks has dealt only with dynamical systems with finite sets of observations and actions. We present an algorithm for learning TD network representations of dynamical systems with continuous observations and actions. Our results show that the algorithm is capable of learning accurate and robust models of several noisy continuous dynamical systems. The algorithm presented here is the first fully incremental method for learning a predictive representation of a continuous dynamical system.
1,545
1,545
Which Spatial Partition Trees are Adaptive to Intrinsic Dimension?
Recent theory work has found that a special type of spatial partition tree - called a random projection tree - is adaptive to the intrinsic dimension of the data from which it is built. Here we examine this same question, with a combination of theory and experiments, for a broader class of trees that includes k-d trees, dyadic trees, and PCA trees. Our motivation is to get a feel for (i) the kind of intrinsic low dimensional structure that can be empirically verified, (ii) the extent to which a spatial partition can exploit such structure, and (iii) the implications for standard statistical tasks such as regression, vector quantization, and nearest neighbor search.
1,546
1,546
Probabilistic Structured Predictors
We consider MAP estimators for structured prediction with exponential family models. In particular, we concentrate on the case that efficient algorithms for uniform sampling from the output space exist. We show that under this assumption (i) exact computation of the partition function remains a hard problem, and (ii) the partition function and the gradient of the log partition function can be approximated efficiently. Our main result is an approximation scheme for the partition function based on Markov Chain Monte Carlo theory. We also show that the efficient uniform sampling assumption holds in several application settings that are of importance in machine learning.
1,547
1,547
Ordinal Boltzmann Machines for Collaborative Filtering
Collaborative filtering is an effective recommendation technique wherein the preference of an individual can potentially be predicted based on preferences of other members. Early algorithms often relied on the strong locality in the preference data, that is, it is enough to predict preference of a user on a particular item based on a small subset of other users with similar tastes or of other items with similar properties. More recently, dimensionality reduction techniques have proved to be equally competitive, and these are based on the co-occurrence patterns rather than locality. This paper explores and extends a probabilistic model known as Boltzmann Machine for collaborative filtering tasks. It seamlessly integrates both the similarity and co-occurrence in a principled manner. In particular, we study parameterisation options to deal with the ordinal nature of the preferences, and propose a joint modelling of both the user-based and item-based processes. Experiments on moderate and large-scale movie recommendation show that our framework rivals existing well-known methods.
1,548
1,548
Computing Posterior Probabilities of Structural Features in Bayesian Networks
We study the problem of learning Bayesian network structures from data. Koivisto and Sood (2004) and Koivisto (2006) presented algorithms that can compute the exact marginal posterior probability of a subnetwork, e.g., a single edge, in O(n2n) time and the posterior probabilities for all n(n-1) potential edges in O(n2n) total time, assuming that the number of parents per node or the indegree is bounded by a constant. One main drawback of their algorithms is the requirement of a special structure prior that is non uniform and does not respect Markov equivalence. In this paper, we develop an algorithm that can compute the exact posterior probability of a subnetwork in O(3n) time and the posterior probabilities for all n(n-1) potential edges in O(n3n) total time. Our algorithm also assumes a bounded indegree but allows general structure priors. We demonstrate the applicability of the algorithm on several data sets with up to 20 variables.
1,549
1,549
Products of Hidden Markov Models: It Takes N>1 to Tango
Products of Hidden Markov Models(PoHMMs) are an interesting class of generative models which have received little attention since their introduction. This maybe in part due to their more computationally expensive gradient-based learning algorithm,and the intractability of computing the log likelihood of sequences under the model. In this paper, we demonstrate how the partition function can be estimated reliably via Annealed Importance Sampling. We perform experiments using contrastive divergence learning on rainfall data and data captured from pairs of people dancing. Our results suggest that advances in learning and evaluation for undirected graphical models and recent increases in available computing power make PoHMMs worth considering for complex time-series modeling tasks.
1,550
1,550
Modeling Discrete Interventional Data using Directed Cyclic Graphical Models
We outline a representation for discrete multivariate distributions in terms of interventional potential functions that are globally normalized. This representation can be used to model the effects of interventions, and the independence properties encoded in this model can be represented as a directed graph that allows cycles. In addition to discussing inference and sampling with this representation, we give an exponential family parametrization that allows parameter estimation to be stated as a convex optimization problem; we also give a convex relaxation of the task of simultaneous parameter and structure learning using group l1-regularization. The model is evaluated on simulated data and intracellular flow cytometry data.
1,551
1,551
BPR: Bayesian Personalized Ranking from Implicit Feedback
Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive knearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.
1,552
1,552
Using the Gene Ontology Hierarchy when Predicting Gene Function
The problem of multilabel classification when the labels are related through a hierarchical categorization scheme occurs in many application domains such as computational biology. For example, this problem arises naturally when trying to automatically assign gene function using a controlled vocabularies like Gene Ontology. However, most existing approaches for predicting gene functions solve independent classification problems to predict genes that are involved in a given function category, independently of the rest. Here, we propose two simple methods for incorporating information about the hierarchical nature of the categorization scheme. In the first method, we use information about a gene's previous annotation to set an initial prior on its label. In a second approach, we extend a graph-based semi-supervised learning algorithm for predicting gene function in a hierarchy. We show that we can efficiently solve this problem by solving a linear system of equations. We compare these approaches with a previous label reconciliation-based approach. Results show that using the hierarchy information directly, compared to using reconciliation methods, improves gene function prediction.
1,553
1,553
Virtual Vector Machine for Bayesian Online Classification
In a typical online learning scenario, a learner is required to process a large data stream using a small memory buffer. Such a requirement is usually in conflict with a learner's primary pursuit of prediction accuracy. To address this dilemma, we introduce a novel Bayesian online classi cation algorithm, called the Virtual Vector Machine. The virtual vector machine allows you to smoothly trade-off prediction accuracy with memory size. The virtual vector machine summarizes the information contained in the preceding data stream by a Gaussian distribution over the classi cation weights plus a constant number of virtual data points. The virtual data points are designed to add extra non-Gaussian information about the classi cation weights. To maintain the constant number of virtual points, the virtual vector machine adds the current real data point into the virtual point set, merges two most similar virtual points into a new virtual point or deletes a virtual point that is far from the decision boundary. The information lost in this process is absorbed into the Gaussian distribution. The extra information provided by the virtual points leads to improved predictive accuracy over previous online classification algorithms.
1,554
1,554
Convexifying the Bethe Free Energy
The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. However, empirically LBP still outperforms most of its convex variants in a variety of settings, as we also demonstrate here. Motivated by this fact we seek convexified free energies that directly approximate the Bethe free energy. We show that the proposed approximations compare favorably with state-of-the art convex free energy approximations.
1,555
1,555
Convergent message passing algorithms - a unifying view
Message-passing algorithms have emerged as powerful techniques for approximate inference in graphical models. When these algorithms converge, they can be shown to find local (or sometimes even global) optima of variational formulations to the inference problem. But many of the most popular algorithms are not guaranteed to converge. This has lead to recent interest in convergent message-passing algorithms. In this paper, we present a unified view of convergent message-passing algorithms. We present a simple derivation of an abstract algorithm, tree-consistency bound optimization (TCBO) that is provably convergent in both its sum and max product forms. We then show that many of the existing convergent algorithms are instances of our TCBO algorithm, and obtain novel convergent algorithms "for free" by exchanging maximizations and summations in existing algorithms. In particular, we show that Wainwright's non-convergent sum-product algorithm for tree based variational bounds, is actually convergent with the right update order for the case where trees are monotonic chains.
1,556
1,556
Group Sparse Priors for Covariance Estimation
Recently it has become popular to learn sparse Gaussian graphical models (GGMs) by imposing l1 or group l1,2 penalties on the elements of the precision matrix. Thispenalized likelihood approach results in a tractable convex optimization problem. In this paper, we reinterpret these results as performing MAP estimation under a novel prior which we call the group l1 and l1,2 positivedefinite matrix distributions. This enables us to build a hierarchical model in which the l1 regularization terms vary depending on which group the entries are assigned to, which in turn allows us to learn block structured sparse GGMs with unknown group assignments. Exact inference in this hierarchical model is intractable, due to the need to compute the normalization constant of these matrix distributions. However, we derive upper bounds on the partition functions, which lets us use fast variational inference (optimizing a lower bound on the joint posterior). We show that on two real world data sets (motion capture and financial data), our method which infers the block structure outperforms a method that uses a fixed block structure, which in turn outperforms baseline methods that ignore block structure.
1,557
1,557
Domain Knowledge Uncertainty and Probabilistic Parameter Constraints
Incorporating domain knowledge into the modeling process is an effective way to improve learning accuracy. However, as it is provided by humans, domain knowledge can only be specified with some degree of uncertainty. We propose to explicitly model such uncertainty through probabilistic constraints over the parameter space. In contrast to hard parameter constraints, our approach is effective also when the domain knowledge is inaccurate and generally results in superior modeling accuracy. We focus on generative and conditional modeling where the parameters are assigned a Dirichlet or Gaussian prior and demonstrate the framework with experiments on both synthetic and real-world data.
1,558
1,558
Multiple Source Adaptation and the Renyi Divergence
This paper presents a novel theoretical study of the general problem of multiple source adaptation using the notion of Renyi divergence. Our results build on our previous work [12], but significantly broaden the scope of that work in several directions. We extend previous multiple source loss guarantees based on distribution weighted combinations to arbitrary target distributions P, not necessarily mixtures of the source distributions, analyze both known and unknown target distribution cases, and prove a lower bound. We further extend our bounds to deal with the case where the learner receives an approximate distribution for each source instead of the exact one, and show that similar loss guarantees can be achieved depending on the divergence between the approximate and true distributions. We also analyze the case where the labeling functions of the source domains are somewhat different. Finally, we report the results of experiments with both an artificial data set and a sentiment analysis task, showing the performance benefits of the distribution weighted combinations and the quality of our bounds based on the Renyi divergence.
1,559
1,559
Interpretation and Generalization of Score Matching
Score matching is a recently developed parameter learning method that is particularly effective to complicated high dimensional density models with intractable partition functions. In this paper, we study two issues that have not been completely resolved for score matching. First, we provide a formal link between maximum likelihood and score matching. Our analysis shows that score matching finds model parameters that are more robust with noisy training data. Second, we develop a generalization of score matching. Based on this generalization, we further demonstrate an extension of score matching to models of discrete data.
1,560
1,560
Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization
The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the l2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the l2,1-norm regularization is that it encourages multiple predictors to share similar sparsity patterns. However, the resulting optimization problem is challenging to solve due to the non-smoothness of the l2,1-norm regularization. In this paper, we propose to accelerate the computation by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov's method-an optimal first-order black-box method for smooth convex optimization. A key building block in solving the reformulations is the Euclidean projection. We show that the Euclidean projection for the first reformulation can be analytically computed, while the Euclidean projection for the second one can be computed in linear time. Empirical evaluations on several data sets verify the efficiency of the proposed algorithms.
1,561
1,561
Improving Compressed Counting
Compressed Counting (CC) [22] was recently proposed for estimating the ath frequency moments of data streams, where 0 < a <= 2. CC can be used for estimating Shannon entropy, which can be approximated by certain functions of the ath frequency moments as a -> 1. Monitoring Shannon entropy for anomaly detection (e.g., DDoS attacks) in large networks is an important task. This paper presents a new algorithm for improving CC. The improvement is most substantial when a -> 1--. For example, when a = 0:99, the new algorithm reduces the estimation variance roughly by 100-fold. This new algorithm would make CC considerably more practical for estimating Shannon entropy. Furthermore, the new algorithm is statistically optimal when a = 0.5.
1,562
1,562
Identifying confounders using additive noise models
We propose a method for inferring the existence of a latent common cause ('confounder') of two observed random variables. The method assumes that the two effects of the confounder are (possibly nonlinear) functions of the confounder plus independent, additive noise. We discuss under which conditions the model is identifiable (up to an arbitrary reparameterization of the confounder) from the joint distribution of the effects. We state and prove a theoretical result that provides evidence for the conjecture that the model is generically identifiable under suitable technical conditions. In addition, we propose a practical method to estimate the confounder from a finite i.i.d. sample of the effects and illustrate that the method works well on both simulated and real-world data.
1,563
1,563
Bayesian Discovery of Linear Acyclic Causal Models
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accuracy is as good as or better than existing methods. We provide a complete code package (in R) which implements all algorithms and performs all of the analysis provided in the paper, and hope that this will further the application of these methods to solving causal inference problems.
1,564
1,564
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
In this paper we build on previous work which uses inferences techniques, in particular Markov Chain Monte Carlo (MCMC) methods, to solve parameterized control problems. We propose a number of modifications in order to make this approach more practical in general, higher-dimensional spaces. We first introduce a new target distribution which is able to incorporate more reward information from sampled trajectories. We also show how to break strong correlations between the policy parameters and sampled trajectories in order to sample more freely. Finally, we show how to incorporate these techniques in a principled manner to obtain estimates of the optimal policy.
1,565
1,565
Censored Exploration and the Dark Pool Problem
We introduce and analyze a natural algorithm for multi-venue exploration from censored data, which is motivated by the Dark Pool Problem of modern quantitative finance. We prove that our algorithm converges in polynomial time to a near-optimal allocation policy; prior results for similar problems in stochastic inventory control guaranteed only asymptotic convergence and examined variants in which each venue could be treated independently. Our analysis bears a strong resemblance to that of efficient exploration/ exploitation schemes in the reinforcement learning literature. We describe an extensive experimental evaluation of our algorithm on the Dark Pool Problem using real trading data.
1,566
1,566
Learning Continuous-Time Social Network Dynamics
We demonstrate that a number of sociology models for social network dynamics can be viewed as continuous time Bayesian networks (CTBNs). A sampling-based approximate inference method for CTBNs can be used as the basis of an expectation-maximization procedure that achieves better accuracy in estimating the parameters of the model than the standard method of moments algorithmfromthe sociology literature. We extend the existing social network models to allow for indirect and asynchronous observations of the links. A Markov chain Monte Carlo sampling algorithm for this new model permits estimation and inference. We provide results on both a synthetic network (for verification) and real social network data.
1,567
1,567
Correlated Non-Parametric Latent Feature Models
We are often interested in explaining data through a set of hidden factors or features. When the number of hidden features is unknown, the Indian Buffet Process (IBP) is a nonparametric latent feature model that does not bound the number of active features in dataset. However, the IBP assumes that all latent features are uncorrelated, making it inadequate for many realworld problems. We introduce a framework for correlated nonparametric feature models, generalising the IBP. We use this framework to generate several specific models and demonstrate applications on realworld datasets.
1,568
1,568
L2 Regularization for Learning Kernels
The choice of the kernel is critical to the success of many learning algorithms but it is typically left to the user. Instead, the training data can be used to learn the kernel by selecting it out of a given family, such as that of non-negative linear combinations of p base kernels, constrained by a trace or L1 regularization. This paper studies the problem of learning kernels with the same family of kernels but with an L2 regularization instead, and for regression problems. We analyze the problem of learning kernels with ridge regression. We derive the form of the solution of the optimization problem and give an efficient iterative algorithm for computing that solution. We present a novel theoretical analysis of the problem based on stability and give learning bounds for orthogonal kernels that contain only an additive term O(pp/m) when compared to the standard kernel ridge regression stability bound. We also report the results of experiments indicating that L1 regularization can lead to modest improvements for a small number of kernels, but to performance degradations in larger-scale cases. In contrast, L2 regularization never degrades performance and in fact achieves significant improvements with a large number of kernels.
1,569
1,569
Convex Coding
Inspired by recent work on convex formulations of clustering (Lashkari & Golland, 2008; Nowozin & Bakir, 2008) we investigate a new formulation of the Sparse Coding Problem (Olshausen & Field, 1997). In sparse coding we attempt to simultaneously represent a sequence of data-vectors sparsely (i.e. sparse approximation (Tropp et al., 2006)) in terms of a 'code' defined by a set of basis elements, while also finding a code that enables such an approximation. As existing alternating optimization procedures for sparse coding are theoretically prone to severe local minima problems, we propose a convex relaxation of the sparse coding problem and derive a boosting-style algorithm, that (Nowozin & Bakir, 2008) serves as a convex 'master problem' which calls a (potentially non-convex) sub-problem to identify the next code element to add. Finally, we demonstrate the properties of our boosted coding algorithm on an image denoising task.
1,570
1,570
Multilingual Topic Models for Unaligned Text
We develop the multilingual topic model for unaligned text (MuTo), a probabilistic model of text that is designed to analyze corpora composed of documents in two languages. From these documents, MuTo uses stochastic EM to simultaneously discover both a matching between the languages and multilingual latent topics. We demonstrate that MuTo is able to find shared topics on real-world multilingual corpora, successfully pairing related documents across languages. MuTo provides a new framework for creating multilingual topic models without needing carefully curated parallel corpora and allows applications built using the topic model formalism to be applied to a much wider class of corpora.
1,571
1,571
Optimization of Structured Mean Field Objectives
In intractable, undirected graphical models, an intuitive way of creating structured mean field approximations is to select an acyclic tractable subgraph. We show that the hardness of computing the objective function and gradient of the mean field objective qualitatively depends on a simple graph property. If the tractable subgraph has this property- we call such subgraphs v-acyclic-a very fast block coordinate ascent algorithm is possible. If not, optimization is harder, but we show a new algorithm based on the construction of an auxiliary exponential family that can be used to make inference possible in this case as well. We discuss the advantages and disadvantages of each regime and compare the algorithms empirically.
1,572
1,572
Alternating Projections for Learning with Expectation Constraints
We present an objective function for learning with unlabeled data that utilizes auxiliary expectation constraints. We optimize this objective function using a procedure that alternates between information and moment projections. Our method provides an alternate interpretation of the posterior regularization framework (Graca et al., 2008), maintains uncertainty during optimization unlike constraint-driven learning (Chang et al., 2007), and is more efficient than generalized expectation criteria (Mann & McCallum, 2008). Applications of this framework include minimally supervised learning, semisupervised learning, and learning with constraints that are more expressive than the underlying model. In experiments, we demonstrate comparable accuracy to generalized expectation criteria for minimally supervised learning, and use expressive structural constraints to guide semi-supervised learning, providing a 3%-6% improvement over stateof-the-art constraint-driven learning.
1,573
1,573
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs
We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~O(HSpAT). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.
1,574
1,574
On Smoothing and Inference for Topic Models
Latent Dirichlet analysis, or topic modeling, is a flexible latent variable framework for modeling high-dimensional sparse count data. Various learning algorithms have been developed in recent years, including collapsed Gibbs sampling, variational inference, and maximum a posteriori estimation, and this variety motivates the need for careful empirical comparisons. In this paper, we highlight the close connections between these approaches. We find that the main differences are attributable to the amount of smoothing applied to the counts. When the hyperparameters are optimized, the differences in performance among the algorithms diminish significantly. The ability of these algorithms to achieve solutions of comparable accuracy gives us the freedom to select computationally efficient approaches. Using the insights gained from this comparative study, we show how accurate topic models can be learned in several seconds on text corpora with thousands of documents.
1,575
1,575
A Bayesian Sampling Approach to Exploration in Reinforcement Learning
We present a modular approach to reinforcement learning that uses a Bayesian representation of the uncertainty over models. The approach, BOSS (Best of Sampled Set), drives exploration by sampling multiple models from the posterior and selecting actions optimistically. It extends previous work by providing a rule for deciding when to resample and how to combine the models. We show that our algorithm achieves nearoptimal reward with high probability with a sample complexity that is low relative to the speed at which the posterior distribution converges during learning. We demonstrate that BOSS performs quite favorably compared to state-of-the-art reinforcement-learning approaches and illustrate its flexibility by pairing it with a non-parametric model that generalizes across states.
1,576
1,576
Decoupling Exploration and Exploitation in Multi-Armed Bandits
We consider a multi-armed bandit problem where the decision maker can explore and exploit different arms at every round. The exploited arm adds to the decision maker's cumulative reward (without necessarily observing the reward) while the explored arm reveals its value. We devise algorithms for this setup and show that the dependence on the number of arms, k, can be much better than the standard square root of k dependence, depending on the behavior of the arms' reward sequences. For the important case of piecewise stationary stochastic bandits, we show a significant improvement over existing algorithms. Our algorithms are based on a non-uniform sampling policy, which we show is essential to the success of any algorithm in the adversarial setup. Finally, we show some simulation results on an ultra-wide band channel selection inspired setting indicating the applicability of our algorithms.
1,577
1,577
Density Sensitive Hashing
Nearest neighbors search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, e.g., Locality Sensitive Hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbors search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called {\em Density Sensitive Hashing} (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.
1,578
1,578
b-Bit Minwise Hashing in Practice: Large-Scale Batch and Online Learning and Using GPUs for Fast Preprocessing with Simple Hash Functions
In this paper, we study several critical issues which must be tackled before one can apply b-bit minwise hashing to the volumes of data often used industrial applications, especially in the context of search. 1. (b-bit) Minwise hashing requires an expensive preprocessing step that computes k (e.g., 500) minimal values after applying the corresponding permutations for each data vector. We developed a parallelization scheme using GPUs and observed that the preprocessing time can be reduced by a factor of 20-80 and becomes substantially smaller than the data loading time. 2. One major advantage of b-bit minwise hashing is that it can substantially reduce the amount of memory required for batch learning. However, as online algorithms become increasingly popular for large-scale learning in the context of search, it is not clear if b-bit minwise yields significant improvements for them. This paper demonstrates that $b$-bit minwise hashing provides an effective data size/dimension reduction scheme and hence it can dramatically reduce the data loading time for each epoch of the online training process. This is significant because online learning often requires many (e.g., 10 to 100) epochs to reach a sufficient accuracy. 3. Another critical issue is that for very large data sets it becomes impossible to store a (fully) random permutation matrix, due to its space requirements. Our paper is the first study to demonstrate that $b$-bit minwise hashing implemented using simple hash functions, e.g., the 2-universal (2U) and 4-universal (4U) hash families, can produce very similar learning results as using fully random permutations. Experiments on datasets of up to 200GB are presented.
1,579
1,579
Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks
Malicious software is abundant in a world of innumerable computer users, who are constantly faced with these threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at breaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such threats.
1,580
1,580
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search
Bayesian model-based reinforcement learning is a formally elegant approach to learning optimal behaviour under model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal policies is notoriously taxing, since the search space becomes enormous. In this paper we introduce a tractable, sample-based method for approximate Bayes-optimal planning which exploits Monte-Carlo tree search. Our approach outperformed prior Bayesian model-based RL algorithms by a significant margin on several well-known benchmark problems -- because it avoids expensive applications of Bayes rule within the search tree by lazily sampling models from the current beliefs. We illustrate the advantages of our approach by showing it working in an infinite state space domain which is qualitatively out of reach of almost all previous work in Bayesian exploration.
1,581
1,581
Unsupervised Discovery of Mid-Level Discriminative Patches
The goal of this paper is to discover a set of discriminative patches which can serve as a fully unsupervised mid-level visual representation. The desired patches need to satisfy two requirements: 1) to be representative, they need to occur frequently enough in the visual world; 2) to be discriminative, they need to be different enough from the rest of the visual world. The patches could correspond to parts, objects, "visual phrases", etc. but are not restricted to be any one of them. We pose this as an unsupervised discriminative clustering problem on a huge dataset of image patches. We use an iterative procedure which alternates between clustering and training discriminative classifiers, while applying careful cross-validation at each step to prevent overfitting. The paper experimentally demonstrates the effectiveness of discriminative patches as an unsupervised mid-level visual representation, suggesting that it could be used in place of visual words for many tasks. Furthermore, discriminative patches can also be used in a supervised regime, such as scene classification, where they demonstrate state-of-the-art performance on the MIT Indoor-67 dataset.
1,582
1,582
Multiple Identifications in Multi-Armed Bandits
We study the problem of identifying the top $m$ arms in a multi-armed bandit game. Our proposed solution relies on a new algorithm based on successive rejects of the seemingly bad arms, and successive accepts of the good ones. This algorithmic contribution allows to tackle other multiple identifications settings that were previously out of reach. In particular we show that this idea of successive accepts and rejects applies to the multi-bandit best arm identification problem.
1,583
1,583
Genetic Programming for Multibiometrics
Biometric systems suffer from some drawbacks: a biometric system can provide in general good performances except with some individuals as its performance depends highly on the quality of the capture. One solution to solve some of these problems is to use multibiometrics where different biometric systems are combined together (multiple captures of the same biometric modality, multiple feature extraction algorithms, multiple biometric modalities...). In this paper, we are interested in score level fusion functions application (i.e., we use a multibiometric authentication scheme which accept or deny the claimant for using an application). In the state of the art, the weighted sum of scores (which is a linear classifier) and the use of an SVM (which is a non linear classifier) provided by different biometric systems provide one of the best performances. We present a new method based on the use of genetic programming giving similar or better performances (depending on the complexity of the database). We derive a score fusion function by assembling some classical primitives functions (+, *, -, ...). We have validated the proposed method on three significant biometric benchmark datasets from the state of the art.
1,584
1,584
Normalized Maximum Likelihood Coding for Exponential Family with Its Applications to Optimal Clustering
We are concerned with the issue of how to calculate the normalized maximum likelihood (NML) code-length. There is a problem that the normalization term of the NML code-length may diverge when it is continuous and unbounded and a straightforward computation of it is highly expensive when the data domain is finite . In previous works it has been investigated how to calculate the NML code-length for specific types of distributions. We first propose a general method for computing the NML code-length for the exponential family. Then we specifically focus on Gaussian mixture model (GMM), and propose a new efficient method for computing the NML to them. We develop it by generalizing Rissanen's re-normalizing technique. Then we apply this method to the clustering issue, in which a clustering structure is modeled using a GMM, and the main task is to estimate the optimal number of clusters on the basis of the NML code-length. We demonstrate using artificial data sets the superiority of the NML-based clustering over other criteria such as AIC, BIC in terms of the data size required for high accuracy rate to be achieved.
1,585
1,585
Universal Algorithm for Online Trading Based on the Method of Calibration
We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized well-calibrated algorithm. Our strategy is based on Dawid's notion of calibration with more general checking rules and on some modification of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. We combine the method of randomized calibration with Vovk's method of defensive forecasting in RKHS. Unlike the statistical theory, no stochastic assumptions are made about the stock prices. Our empirical results on historical markets provide strong evidence that this type of technical trading can "beat the market" if transaction costs are ignored.
1,586
1,586
kLog: A Language for Logical and Relational Learning with Kernels
We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials.
1,587
1,587
Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling
We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical learning algorithm, based on projected subgradients and Douglas-Rachford splitting technique, and demonstrate its ability to robustly recover a ground truth analysis operator, when provided with a clean training set, of sufficient size. We also find an analysis operator for images, using some noisy cosparse signals, which is indeed a more realistic experiment. As the derived optimisation problem is not a convex program, we often find a local minimum using such variational methods. Some local optimality conditions are derived for two different settings, providing preliminary theoretical support for the well-posedness of the learning problem under appropriate conditions.
1,588
1,588
Theory of Dependent Hierarchical Normalized Random Measures
This paper presents theory for Normalized Random Measures (NRMs), Normalized Generalized Gammas (NGGs), a particular kind of NRM, and Dependent Hierarchical NRMs which allow networks of dependent NRMs to be analysed. These have been used, for instance, for time-dependent topic modelling. In this paper, we first introduce some mathematical background of completely random measures (CRMs) and their construction from Poisson processes, and then introduce NRMs and NGGs. Slice sampling is also introduced for posterior inference. The dependency operators in Poisson processes and for the corresponding CRMs and NRMs is then introduced and Posterior inference for the NGG presented. Finally, we give dependency and composition results when applying these operators to NRMs so they can be used in a network with hierarchical and dependent relations.
1,589
1,589
Online Structured Prediction via Coactive Learning
We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user. At each step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object (e.g. ranking). The user responds by correcting the system if necessary, providing a slightly improved -- but not necessarily optimal -- object as feedback. We argue that such feedback can often be inferred from observable user behavior, for example, from clicks in web-search. Evaluating predictions by their cardinal utility to the user, we propose efficient learning algorithms that have ${\cal O}(\frac{1}{\sqrt{T}})$ average regret, even though the learning algorithm never observes cardinal utility values as in conventional online learning. We demonstrate the applicability of our model and learning algorithms on a movie recommendation task, as well as ranking for web-search.
1,590
1,590
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
The question of the optimality of Thompson Sampling for solving the stochastic multi-armed bandit problem had been open since 1933. In this paper we answer it positively for the case of Bernoulli rewards by providing the first finite-time analysis that matches the asymptotic rate given in the Lai and Robbins lower bound for the cumulative regret. The proof is accompanied by a numerical comparison with other optimal policies, experiments that have been lacking in the literature until now for the Bernoulli case.
1,591
1,591
Diffusion Adaptation over Networks
Adaptive networks are well-suited to perform decentralized information processing and optimization tasks and to model various types of self-organized and complex behavior encountered in nature. Adaptive networks consist of a collection of agents with processing and learning abilities. The agents are linked together through a connection topology, and they cooperate with each other through local interactions to solve distributed optimization, estimation, and inference problems in real-time. The continuous diffusion of information across the network enables agents to adapt their performance in relation to streaming data and network conditions; it also results in improved adaptation and learning performance relative to non-cooperative agents. This article provides an overview of diffusion strategies for adaptation and learning over networks. The article is divided into several sections: 1. Motivation; 2. Mean-Square-Error Estimation; 3. Distributed Optimization via Diffusion Strategies; 4. Adaptive Diffusion Strategies; 5. Performance of Steepest-Descent Diffusion Strategies; 6. Performance of Adaptive Diffusion Strategies; 7. Comparing the Performance of Cooperative Strategies; 8. Selecting the Combination Weights; 9. Diffusion with Noisy Information Exchanges; 10. Extensions and Further Considerations; Appendix A: Properties of Kronecker Products; Appendix B: Graph Laplacian and Network Connectivity; Appendix C: Stochastic Matrices; Appendix D: Block Maximum Norm; Appendix E: Comparison with Consensus Strategies; References.
1,592
1,592
Visualization of features of a series of measurements with one-dimensional cellular structure
This paper describes the method of visualization of periodic constituents and instability areas in series of measurements, being based on the algorithm of smoothing out and concept of one-dimensional cellular automata. A method can be used at the analysis of temporal series, related to the volumes of thematic publications in web-space.
1,593
1,593
Efficient Methods for Unsupervised Learning of Probabilistic Models
In this thesis I develop a variety of techniques to train, evaluate, and sample from intractable and high dimensional probabilistic models. Abstract exceeds arXiv space limitations -- see PDF.
1,594
1,594
New Analysis and Algorithm for Learning with Drifting Distributions
We present a new analysis of the problem of learning with drifting distributions in the batch setting using the notion of discrepancy. We prove learning bounds based on the Rademacher complexity of the hypothesis set and the discrepancy of distributions both for a drifting PAC scenario and a tracking scenario. Our bounds are always tighter and in some cases substantially improve upon previous ones based on the $L_1$ distance. We also present a generalization of the standard on-line to batch conversion to the drifting scenario in terms of the discrepancy and arbitrary convex combinations of hypotheses. We introduce a new algorithm exploiting these learning guarantees, which we show can be formulated as a simple QP. Finally, we report the results of preliminary experiments demonstrating the benefits of this algorithm.
1,595
1,595
From Exact Learning to Computing Boolean Functions and Back Again
The goal of the paper is to relate complexity measures associated with the evaluation of Boolean functions (certificate complexity, decision tree complexity) and learning dimensions used to characterize exact learning (teaching dimension, extended teaching dimension). The high level motivation is to discover non-trivial relations between exact learning of an unknown concept and testing whether an unknown concept is part of a concept class or not. Concretely, the goal is to provide lower and upper bounds of complexity measures for one problem type in terms of the other.
1,596
1,596
Sparse Signal Recovery in the Presence of Intra-Vector and Inter-Vector Correlation
This work discusses the problem of sparse signal recovery when there is correlation among the values of non-zero entries. We examine intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector model, as well as their combination. Algorithms based on the sparse Bayesian learning are presented and the benefits of incorporating correlation at the algorithm level are discussed. The impact of correlation on the limits of support recovery is also discussed highlighting the different impact intra-vector and inter-vector correlations have on such limits.
1,597
1,597
Soft Rule Ensembles for Statistical Learning
In this article supervised learning problems are solved using soft rule ensembles. We first review the importance sampling learning ensembles (ISLE) approach that is useful for generating hard rules. The soft rules are then obtained with logistic regression from the corresponding hard rules. In order to deal with the perfect separation problem related to the logistic regression, Firth's bias corrected likelihood is used. Various examples and simulation results show that soft rule ensembles can improve predictive performance over hard rule ensembles.
1,598
1,598
Streaming Algorithms for Pattern Discovery over Dynamically Changing Event Sequences
Discovering frequent episodes over event sequences is an important data mining task. In many applications, events constituting the data sequence arrive as a stream, at furious rates, and recent trends (or frequent episodes) can change and drift due to the dynamical nature of the underlying event generation process. The ability to detect and track such the changing sets of frequent episodes can be valuable in many application scenarios. Current methods for frequent episode discovery are typically multipass algorithms, making them unsuitable in the streaming context. In this paper, we propose a new streaming algorithm for discovering frequent episodes over a window of recent events in the stream. Our algorithm processes events as they arrive, one batch at a time, while discovering the top frequent episodes over a window consisting of several batches in the immediate past. We derive approximation guarantees for our algorithm under the condition that frequent episodes are approximately well-separated from infrequent ones in every batch of the window. We present extensive experimental evaluations of our algorithm on both real and synthetic data. We also present comparisons with baselines and adaptations of streaming algorithms from itemset mining literature.
1,599
1,599
Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure
In this work we consider the stochastic minimization of nonsmooth convex loss functions, a central problem in machine learning. We propose a novel algorithm called Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), which exploits the structure of common nonsmooth loss functions to achieve optimal convergence rates for a class of problems including SVMs. It is the first stochastic algorithm that can achieve the optimal O(1/t) rate for minimizing nonsmooth loss functions (with strong convexity). The fast rates are confirmed by empirical comparisons, in which ANSGD significantly outperforms previous subgradient descent algorithms including SGD.