Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
1,208
null
Don't "research fast and break things": On the ethics of Computational Social Science
This article is concerned with setting up practical guardrails within the research activities and environments of CSS. It aims to provide CSS scholars, as well as policymakers and other stakeholders who apply CSS methods, with the critical and constructive means needed to ensure that their practices are ethical, trustworthy, and responsible. It begins by providing a taxonomy of the ethical challenges faced by researchers in the field of CSS. These are challenges related to (1) the treatment of research subjects, (2) the impacts of CSS research on affected individuals and communities, (3) the quality of CSS research and to its epistemological status, (4) research integrity, and (5) research equity. Taking these challenges as a motivation for cultural transformation, it then argues for the end-to-end incorporation of habits of responsible research and innovation (RRI) into CSS practices, focusing on the role that contextual considerations, anticipatory reflection, impact assessment, public engagement, and justifiable and well-documented action should play across the research lifecycle. In proposing the inclusion of habits of RRI in CSS practices, the chapter lays out several practical steps needed for ethical, trustworthy, and responsible CSS research activities. These include stakeholder engagement processes, research impact assessments, data lifecycle documentation, bias self-assessments, and transparent research reporting protocols.
1,209
null
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin.
1,210
null
A Functional Information Perspective on Model Interpretation
Contemporary predictive models are hard to interpret as their deep nets exploit numerous complex relations between input elements. This work suggests a theoretical framework for model interpretability by measuring the contribution of relevant features to the functional entropy of the network with respect to the input. We rely on the log-Sobolev inequality that bounds the functional entropy by the functional Fisher information with respect to the covariance of the data. This provides a principled way to measure the amount of information contribution of a subset of features to the decision function. Through extensive experiments, we show that our method surpasses existing interpretability sampling-based methods on various data signals such as image, text, and audio.
1,211
null
tBDFS: Temporal Graph Neural Network Leveraging DFS
Temporal graph neural networks (temporal GNNs) have been widely researched, reaching state-of-the-art results on multiple prediction tasks. A common approach employed by most previous works is to apply a layer that aggregates information from the historical neighbors of a node. Taking a different research direction, in this work, we propose tBDFS -- a novel temporal GNN architecture. tBDFS applies a layer that efficiently aggregates information from temporal paths to a given (target) node in the graph. For each given node, the aggregation is applied in two stages: (1) A single representation is learned for each temporal path ending in that node, and (2) all path representations are aggregated into a final node representation. Overall, our goal is not to add new information to a node, but rather observe the same exact information in a new perspective. This allows our model to directly observe patterns that are path-oriented rather than neighborhood-oriented. This can be thought as a Depth-First Search (DFS) traversal over the temporal graph, compared to the popular Breath-First Search (BFS) traversal that is applied in previous works. We evaluate tBDFS over multiple link prediction tasks and show its favorable performance compared to state-of-the-art baselines. To the best of our knowledge, we are the first to apply a temporal-DFS neural network.
1,212
null
Balancing Bias and Variance for Active Weakly Supervised Learning
As a widely used weakly supervised learning scheme, modern multiple instance learning (MIL) models achieve competitive performance at the bag level. However, instance-level prediction, which is essential for many important applications, remains largely unsatisfactory. We propose to conduct novel active deep multiple instance learning that samples a small subset of informative instances for annotation, aiming to significantly boost the instance-level prediction. A variance regularized loss function is designed to properly balance the bias and variance of instance-level predictions, aiming to effectively accommodate the highly imbalanced instance distribution in MIL and other fundamental challenges. Instead of directly minimizing the variance regularized loss that is non-convex, we optimize a distributionally robust bag level likelihood as its convex surrogate. The robust bag likelihood provides a good approximation of the variance based MIL loss with a strong theoretical guarantee. It also automatically balances bias and variance, making it effective to identify the potentially positive instances to support active sampling. The robust bag likelihood can be naturally integrated with a deep architecture to support deep model training using mini-batches of positive-negative bag pairs. Finally, a novel P-F sampling function is developed that combines a probability vector and predicted instance scores, obtained by optimizing the robust bag likelihood. By leveraging the key MIL assumption, the sampling function can explore the most challenging bags and effectively detect their positive instances for annotation, which significantly improves the instance-level prediction. Experiments conducted over multiple real-world datasets clearly demonstrate the state-of-the-art instance-level prediction achieved by the proposed model.
1,213
null
A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning
An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.
1,214
null
Universality and approximation bounds for echo state networks with random weights
We study the uniform approximation of echo state networks with randomly generated internal weights. These models, in which only the readout weights are optimized during training, have made empirical success in learning dynamical systems. We address the representational capacity of these models by showing that they are universal under weak conditions. Our main result gives a sufficient condition for the activation function and a sampling procedure for the internal weights so that echo state networks can approximate any continuous casual time-invariant operators with high probability. In particular, for ReLU activation, we quantify the approximation error of echo state networks for sufficiently regular operators.
1,215
null
Federated Learning on Riemannian Manifolds
Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated kPCA. We propose a Riemannian federated SVRG (RFedSVRG) method to solve federated optimization over Riemannian manifolds. We analyze its convergence rate under different scenarios. Numerical experiments are conducted to compare RFedSVRG with the Riemannian counterparts of FedAvg and FedProx. We observed from the numerical experiments that the advantages of RFedSVRG are significant.
1,216
null
An Efficient Method for Sample Adversarial Perturbations against Nonlinear Support Vector Machines
Adversarial perturbations have drawn great attentions in various machine learning models. In this paper, we investigate the sample adversarial perturbations for nonlinear support vector machines (SVMs). Due to the implicit form of the nonlinear functions mapping data to the feature space, it is difficult to obtain the explicit form of the adversarial perturbations. By exploring the special property of nonlinear SVMs, we transform the optimization problem of attacking nonlinear SVMs into a nonlinear KKT system. Such a system can be solved by various numerical methods. Numerical results show that our method is efficient in computing adversarial perturbations.
1,217
null
Variational Bayes Deep Operator Network: A data-driven Bayesian solver for parametric differential equations
Neural network based data-driven operator learning schemes have shown tremendous potential in computational mechanics. DeepONet is one such neural network architecture which has gained widespread appreciation owing to its excellent prediction capabilities. Having said that, being set in a deterministic framework exposes DeepONet architecture to the risk of overfitting, poor generalization and in its unaltered form, it is incapable of quantifying the uncertainties associated with its predictions. We propose in this paper, a Variational Bayes DeepONet (VB-DeepONet) for operator learning, which can alleviate these limitations of DeepONet architecture to a great extent and give user additional information regarding the associated uncertainty at the prediction stage. The key idea behind neural networks set in Bayesian framework is that, the weights and bias of the neural network are treated as probability distributions instead of point estimates and, Bayesian inference is used to update their prior distribution. Now, to manage the computational cost associated with approximating the posterior distribution, the proposed VB-DeepONet uses \textit{variational inference}. Unlike Markov Chain Monte Carlo schemes, variational inference has the capacity to take into account high dimensional posterior distributions while keeping the associated computational cost low. Different examples covering mechanics problems like diffusion reaction, gravity pendulum, advection diffusion have been shown to illustrate the performance of the proposed VB-DeepONet and comparisons have also been drawn against DeepONet set in deterministic framework.
1,218
null
Dealing with Sparse Rewards in Continuous Control Robotics via Heavy-Tailed Policies
In this paper, we present a novel Heavy-Tailed Stochastic Policy Gradient (HT-PSG) algorithm to deal with the challenges of sparse rewards in continuous control problems. Sparse reward is common in continuous control robotics tasks such as manipulation and navigation, and makes the learning problem hard due to non-trivial estimation of value functions over the state space. This demands either reward shaping or expert demonstrations for the sparse reward environment. However, obtaining high-quality demonstrations is quite expensive and sometimes even impossible. We propose a heavy-tailed policy parametrization along with a modified momentum-based policy gradient tracking scheme (HT-SPG) to induce a stable exploratory behavior to the algorithm. The proposed algorithm does not require access to expert demonstrations. We test the performance of HT-SPG on various benchmark tasks of continuous control with sparse rewards such as 1D Mario, Pathological Mountain Car, Sparse Pendulum in OpenAI Gym, and Sparse MuJoCo environments (Hopper-v2). We show consistent performance improvement across all tasks in terms of high average cumulative reward. HT-SPG also demonstrates improved convergence speed with minimum samples, thereby emphasizing the sample efficiency of our proposed algorithm.
1,219
null
DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer Learning
Transfer learning has been widely used in natural language processing through deep pretrained language models, such as Bidirectional Encoder Representations from Transformers and Universal Sentence Encoder. Despite the great success, language models get overfitted when applied to small datasets and are prone to forgetting when fine-tuned with a classifier. To remedy this problem of forgetting in transferring deep pretrained language models from one domain to another domain, existing efforts explore fine-tuning methods to forget less. We propose DeepEmotex an effective sequential transfer learning method to detect emotion in text. To avoid forgetting problem, the fine-tuning step is instrumented by a large amount of emotion-labeled data collected from Twitter. We conduct an experimental study using both curated Twitter data sets and benchmark data sets. DeepEmotex models achieve over 91% accuracy for multi-class emotion classification on test dataset. We evaluate the performance of the fine-tuned DeepEmotex models in classifying emotion in EmoInt and Stimulus benchmark datasets. The models correctly classify emotion in 73% of the instances in the benchmark datasets. The proposed DeepEmotex-BERT model outperforms Bi-LSTM result on the benchmark datasets by 23%. We also study the effect of the size of the fine-tuning dataset on the accuracy of our models. Our evaluation results show that fine-tuning with a large set of emotion-labeled data improves both the robustness and effectiveness of the resulting target task model.
1,220
null
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications. However, accurately quantifying the uncertainty in DNN predictions remains a challenging task. For continuous outcome variables, an even more difficult problem is to estimate the predictive density function, which not only provides a natural quantification of the predictive uncertainty, but also fully captures the random variation in the outcome. In this work, we propose the Bayesian Deep Noise Neural Network (B-DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. The latent random noise equips B-DeepNoise with the flexibility to approximate highly complex predictive distributions and accurately quantify predictive uncertainty. For posterior computation, the unique structure of B-DeepNoise leads to a closed-form Gibbs sampling algorithm that iteratively simulates from the posterior full conditional distributions of the model parameters, circumventing computationally intensive Metropolis-Hastings methods. A theoretical analysis of B-DeepNoise establishes a recursive representation of the predictive distribution and decomposes the predictive variance with respect to the latent parameters. We evaluate B-DeepNoise against existing methods on benchmark regression datasets, demonstrating its superior performance in terms of prediction accuracy, uncertainty quantification accuracy, and uncertainty quantification efficiency. To illustrate our method's usefulness in scientific studies, we apply B-DeepNoise to predict general intelligence from neuroimaging features in the Adolescent Brain Cognitive Development (ABCD) project.
1,221
null
An Unsupervised Deep-Learning Method for Bone Age Assessment
The bone age, reflecting the degree of development of the bones, can be used to predict the adult height and detect endocrine diseases of children. Both examinations of radiologists and variability of operators have a significant impact on bone age assessment. To decrease human intervention , machine learning algorithms are used to assess the bone age automatically. However, conventional supervised deep-learning methods need pre-labeled data. In this paper, based on the convolutional auto-encoder with constraints (CCAE), an unsupervised deep-learning model proposed in the classification of the fingerprint, we propose this model for the classification of the bone age and baptize it BA-CCAE. In the proposed BA-CCAE model, the key regions of the raw X-ray images of the bone age are encoded, yielding the latent vectors. The K-means clustering algorithm is used to obtain the final classifications by grouping the latent vectors of the bone images. A set of experiments on the Radiological Society of North America pediatric bone age dataset (RSNA) show that the accuracy of classifications at 48-month intervals is 76.15%. Although the accuracy now is lower than most of the existing supervised models, the proposed BA-CCAE model can establish the classification of bone age without any pre-labeled data, and to the best of our knowledge, the proposed BA-CCAE is one of the few trails using the unsupervised deep-learning method for the bone age assessment.
1,222
null
Mathematical Theory of Bayesian Statistics for Unknown Information Source
In statistical inference, uncertainty is unknown and all models are wrong. A person who makes a statistical model and a prior distribution is simultaneously aware that they are fictional and virtual candidates. In order to study such cases, several statistical measures have been constructed, such as cross validation, information criteria, and marginal likelihood, however, their mathematical properties have not yet been completely clarified when statistical models are under- and over- parametrized. In this paper, we introduce a place of mathematical theory of Bayesian statistics for unknown uncertainty, on which we show general properties of cross validation, information criteria, and marginal likelihood. The derived theory holds even if an unknown uncertainty is unrealizable by a statistical model or even if the posterior distribution cannot be approximated by any normal distribution, hence it gives a helpful standpoint for a person who cannot believe in any specific model and prior. The results are followings. (1) There exists a more precise statistical measure of the generalization loss than leave-one-out cross validation and information criterion based on the mathematical properties of them. (2) There exists a more efficient approximation method of the free energy, which is the minus log marginal likelihood, even if the posterior distribution cannot be approximated by any normal distribution. (3) And the prior distributions optimized by the cross validation and the widely applicable information criterion are asymptotically equivalent to each other, which are different from that by the marginal likelihood.
1,223
null
Physics-driven Deep Learning for PET/MRI
In this paper, we review physics- and data-driven reconstruction techniques for simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) systems, which have significant advantages for clinical imaging of cancer, neurological disorders, and heart disease. These reconstruction approaches utilize priors, either structural or statistical, together with a physics-based description of the PET system response. However, due to the nested representation of the forward problem, direct PET/MRI reconstruction is a nonlinear problem. We elucidate how a multi-faceted approach accommodates hybrid data- and physics-driven machine learning for reconstruction of 3D PET/MRI, summarizing important deep learning developments made in the last 5 years to address attenuation correction, scattering, low photon counts, and data consistency. We also describe how applications of these multi-modality approaches extend beyond PET/MRI to improving accuracy in radiation therapy planning. We conclude by discussing opportunities for extending the current state-of-the-art following the latest trends in physics- and deep learning-based computational imaging and next-generation detector hardware.
1,224
null
Federated Learning with Research Prototypes for Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology
Early prostate cancer detection and staging from MRI are extremely challenging tasks for both radiologists and deep learning algorithms, but the potential to learn from large and diverse datasets remains a promising avenue to increase their generalization capability both within- and across clinics. To enable this for prototype-stage algorithms, where the majority of existing research remains, in this paper we introduce a flexible federated learning framework for cross-site training, validation, and evaluation of deep prostate cancer detection algorithms. Our approach utilizes an abstracted representation of the model architecture and data, which allows unpolished prototype deep learning models to be trained without modification using the NVFlare federated learning framework. Our results show increases in prostate cancer detection and classification accuracy using a specialized neural network model and diverse prostate biopsy data collected at two University of California research hospitals, demonstrating the efficacy of our approach in adapting to different datasets and improving MR-biomarker discovery. We open-source our FLtools system, which can be easily adapted to other deep learning projects for medical imaging.
1,225
null
Machine learning approaches for COVID-19 detection from chest X-ray imaging: A Systematic Review
There is a necessity to develop affordable, and reliable diagnostic tools, which allow containing the COVID-19 spreading. Machine Learning (ML) algorithms have been proposed to design support decision-making systems to assess chest X-ray images, which have proven to be useful to detect and evaluate disease progression. Many research articles are published around this subject, which makes it difficult to identify the best approaches for future work. This paper presents a systematic review of ML applied to COVID-19 detection using chest X-ray images, aiming to offer a baseline for researchers in terms of methods, architectures, databases, and current limitations.
1,226
null
Gradient Boosting Performs Low-Rank Gaussian Process Inference
This paper shows that gradient boosting based on symmetric decision trees can be equivalently reformulated as a kernel method that converges to the solution of a certain Kernel Ridgeless Regression problem. Thus, for low-rank kernels, we obtain the convergence to a Gaussian Process' posterior mean, which, in turn, allows us to easily transform gradient boosting into a sampler from the posterior to provide better knowledge uncertainty estimates through Monte-Carlo estimation of the posterior variance. We show that the proposed sampler allows for better knowledge uncertainty estimates leading to improved out-of-domain detection.
1,227
null
A Theoretical Understanding of Neural Network Compression from Sparse Linear Approximation
The goal of model compression is to reduce the size of a large neural network while retaining a comparable performance. As a result, computation and memory costs in resource-limited applications may be significantly reduced by dropping redundant weights, neurons, or layers. There have been many model compression algorithms proposed that provide impressive empirical success. However, a theoretical understanding of model compression is still limited. One problem is understanding if a network is more compressible than another of the same structure. Another problem is quantifying how much one can prune a network with theoretically guaranteed accuracy degradation. In this work, we propose to use the sparsity-sensitive $\ell_q$-norm ($0<q<1$) to characterize compressibility and provide a relationship between soft sparsity of the weights in the network and the degree of compression with a controlled accuracy degradation bound. We also develop adaptive algorithms for pruning each neuron in the network informed by our theory. Numerical studies demonstrate the promising performance of the proposed methods compared with standard pruning algorithms.
1,228
null
RadNet: Incident Prediction in Spatio-Temporal Road Graph Networks Using Traffic Forecasting
Efficient and accurate incident prediction in spatio-temporal systems is critical to minimize service downtime and optimize performance. This work aims to utilize historic data to predict and diagnose incidents using spatio-temporal forecasting. We consider the specific use case of road traffic systems where incidents take the form of anomalous events, such as accidents or broken-down vehicles. To tackle this, we develop a neural model, called RadNet, which forecasts system parameters such as average vehicle speeds for a future timestep. As such systems largely follow daily or weekly periodicity, we compare RadNet's predictions against historical averages to label incidents. Unlike prior work, RadNet infers spatial and temporal trends in both permutations, finally combining the dense representations before forecasting. This facilitates informed inference and more accurate incident detection. Experiments with two publicly available and a new road traffic dataset demonstrate that the proposed model gives up to 8% higher prediction F1 scores compared to the state-of-the-art methods.
1,229
null
Federated Offline Reinforcement Learning
Evidence-based or data-driven dynamic treatment regimes are essential for personalized medicine, which can benefit from offline reinforcement learning (RL). Although massive healthcare data are available across medical institutions, they are prohibited from sharing due to privacy constraints. Besides, heterogeneity exists in different sites. As a result, federated offline RL algorithms are necessary and promising to deal with the problems. In this paper, we propose a multi-site Markov decision process model which allows both homogeneous and heterogeneous effects across sites. The proposed model makes the analysis of the site-level features possible. We design the first federated policy optimization algorithm for offline RL with sample complexity. The proposed algorithm is communication-efficient and privacy-preserving, which requires only a single round of communication interaction by exchanging summary statistics. We give a theoretical guarantee for the proposed algorithm without the assumption of sufficient action coverage, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed. Extensive simulations demonstrate the effectiveness of the proposed algorithm. The method is applied to a sepsis data set in multiple sites to illustrate its use in clinical settings.
1,230
null
Optimal Solutions for Joint Beamforming and Antenna Selection: From Branch and Bound to Machine Learning
This work revisits the joint beamforming (BF) and antenna selection (AS) problem, as well as its robust beamforming (RBF) version under imperfect channel state information (CSI). Such problems arise in scenarios where the number of the radio frequency (RF) chains is smaller than that of the antenna elements at the transmitter, which has become a critical consideration in the era of large-scale arrays. The joint (R)BF\&AS problem is a mixed integer and nonlinear program, and thus finding {\it optimal solutions} is often costly, if not outright impossible. The vast majority of the prior works tackled these problems using continuous optimization-based approximations -- yet these approximations do not ensure optimality or even feasibility of the solutions. The main contribution of this work is threefold. First, an effective {\it branch and bound} (B\&B) framework for solving the problems of interest is proposed. Leveraging existing BF and RBF solvers, it is shown that the B\&B framework guarantees global optimality of the considered problems. Second, to expedite the potentially costly B\&B algorithm, a machine learning (ML)-based scheme is proposed to help skip intermediate states of the B\&B search tree. The learning model features a {\it graph neural network} (GNN)-based design that is resilient to a commonly encountered challenge in wireless communications, namely, the change of problem size (e.g., the number of users) across the training and test stages. Third, comprehensive performance characterizations are presented, showing that the GNN-based method retains the global optimality of B\&B with provably reduced complexity, under reasonable conditions. Numerical simulations also show that the ML-based acceleration can often achieve an order-of-magnitude speedup relative to B\&B.
1,231
null
MammoDL: Mammographic Breast Density Estimation using Federated Learning
Assessing breast cancer risk from imaging remains a subjective process, in which radiologists employ computer aided detection (CAD) systems or qualitative visual assessment to estimate breast percent density (PD). More advanced machine learning (ML) models have become the most promising way to quantify breast cancer risk for early, accurate, and equitable diagnoses, but training such models in medical research is often restricted to small, single-institution data. Since patient demographics and imaging characteristics may vary considerably across imaging sites, models trained on single-institution data tend not to generalize well. In response to this problem, MammoDL is proposed, an open-source software tool that leverages UNet architecture to accurately estimate breast PD and complexity from digital mammography (DM). With the Open Federated Learning (OpenFL) library, this solution enables secure training on datasets across multiple institutions. MammoDL is a leaner, more flexible model than its predecessors, boasting improved generalization due to federation-enabled training on larger, more representative datasets.
1,232
null
NeuGuard: Lightweight Neuron-Guided Defense against Membership Inference Attacks
Membership inference attacks (MIAs) against machine learning models can lead to serious privacy risks for the training dataset used in the model training. In this paper, we propose a novel and effective Neuron-Guided Defense method named NeuGuard against membership inference attacks (MIAs). We identify a key weakness in existing defense mechanisms against MIAs wherein they cannot simultaneously defend against two commonly used neural network based MIAs, indicating that these two attacks should be separately evaluated to assure the defense effectiveness. We propose NeuGuard, a new defense approach that jointly controls the output and inner neurons' activation with the object to guide the model output of training set and testing set to have close distributions. NeuGuard consists of class-wise variance minimization targeting restricting the final output neurons and layer-wise balanced output control aiming to constrain the inner neurons in each layer. We evaluate NeuGuard and compare it with state-of-the-art defenses against two neural network based MIAs, five strongest metric based MIAs including the newly proposed label-only MIA on three benchmark datasets. Results show that NeuGuard outperforms the state-of-the-art defenses by offering much improved utility-privacy trade-off, generality, and overhead.
1,233
null
gDDIM: Generalized denoising diffusion implicit models
Our goal is to extend the denoising diffusion implicit model (DDIM) to general diffusion models~(DMs). Instead of constructing a non-Markov noising process as in the original DDIM paper, we examine the mechanism of DDIM from a numerical perspective. We discover that the DDIM can be obtained by using some specific approximations of the score when solving the corresponding stochastic differential equation. We present an interpretation of the accelerating effects of DDIM that also explains the advantages of a deterministic sampling scheme over the stochastic one for fast sampling. Building on this insight, we extend DDIM to general DMs with a small but delicate modification in parameterizing the score network. When applied to the critically-damped Langevin diffusion model, a new type of diffusion model proposed recently by augmenting the diffusion process with velocity, our algorithm achieves an FID score of 2.28, on CIFAR10, with only 50 number of score function evaluations~(NFEs) and an FID score of 2.87 with only 27 NFEs, better than all existing methods with the same NFEs. Code is available at https://github.com/qsh-zh/gDDIM
1,234
null
Parameter Convex Neural Networks
Deep learning utilizing deep neural networks (DNNs) has achieved a lot of success recently in many important areas such as computer vision, natural language processing, and recommendation systems. The lack of convexity for DNNs has been seen as a major disadvantage of many optimization methods, such as stochastic gradient descent, which greatly reduces the genelization of neural network applications. We realize that the convexity make sense in the neural network and propose the exponential multilayer neural network (EMLP), a class of parameter convex neural network (PCNN) which is convex with regard to the parameters of the neural network under some conditions that can be realized. Besides, we propose the convexity metric for the two-layer EGCN and test the accuracy when the convexity metric changes. For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset in which our model EGCN performs better than the graph convolutional network (GCN) and the graph attention network (GAT).
1,235
null
Communication-Efficient Robust Federated Learning with Noisy Labels
Federated learning (FL) is a promising privacy-preserving machine learning paradigm over distributed located data. In FL, the data is kept locally by each user. This protects the user privacy, but also makes the server difficult to verify data quality, especially if the data are correctly labeled. Training with corrupted labels is harmful to the federated learning task; however, little attention has been paid to FL in the case of label noise. In this paper, we focus on this problem and propose a learning-based reweighting approach to mitigate the effect of noisy labels in FL. More precisely, we tuned a weight for each training sample such that the learned model has optimal generalization performance over a validation set. More formally, the process can be formulated as a Federated Bilevel Optimization problem. Bilevel optimization problem is a type of optimization problem with two levels of entangled problems. The non-distributed bilevel problems have witnessed notable progress recently with new efficient algorithms. However, solving bilevel optimization problems under the Federated Learning setting is under-investigated. We identify that the high communication cost in hypergradient evaluation is the major bottleneck. So we propose \textit{Comm-FedBiO} to solve the general Federated Bilevel Optimization problems; more specifically, we propose two communication-efficient subroutines to estimate the hypergradient. Convergence analysis of the proposed algorithms is also provided. Finally, we apply the proposed algorithms to solve the noisy label problem. Our approach has shown superior performance on several real-world datasets compared to various baselines.
1,236
null
PhML-DyR: A Physics-Informed ML framework for Dynamic Reconfiguration in Power Systems
A transformation of the US electricity sector is underway with aggressive targets to achieve 100% carbon pollution-free electricity by 2035. To achieve this objective while maintaining a safe and reliable power grid, new operating paradigms are needed, of computationally fast and accurate decision making in a dynamic and uncertain environment. We propose a novel physics-informed machine learning framework for the decision of dynamic grid reconfiguration (PhML-DyR), a key task in power systems. Dynamic reconfiguration (DyR) is a process by which switch-states are dynamically set so as to lead to an optimal grid topology that minimizes line losses. To address the underlying computational complexities of NP-hardness due to the mixed nature of the decision variables, we propose the use of physics-informed ML (PhML) which integrates both operating constraints and topological and connectivity constraints into a neural network framework. Our PhML approach learns to simultaneously optimize grid topology and generator dispatch to meet loads, increase efficiency, and remain within safe operating limits. We demonstrate the effectiveness of PhML-DyR on a canonical grid, showing a reduction in electricity loss by 23%, and improved voltage profiles. We also show a reduction in constraint violations by an order of magnitude as well as in training time using PhML-DyR.
1,237
null
A Simplified Un-Supervised Learning Based Approach for Ink Mismatch Detection in Handwritten Hyper-Spectral Document Images
Hyper-spectral imaging has become the latest trend in the field of optical imaging systems. Among various other applications, hyper-spectral imaging has been widely used for analysis of printed and handwritten documents. This paper proposes an efficient technique for estimating the number of different but visibly similar inks present in a Hyper spectral Document Image. Our approach is based on un-supervised learning and does not require any prior knowledge of the dataset. The algorithm was tested on the iVision HHID dataset and has achieved comparable results with the state of the algorithms present in the literature. This work can prove to be effective when employed during the early stages of forgery detection in Hyper-spectral Document Images.
1,238
null
Rare event failure test case generation in Learning-Enabled-Controllers
Machine learning models have prevalent applications in many real-world problems, which increases the importance of correctness in the behaviour of these trained models. Finding a good test case that can reveal the potential failure in these trained systems can help to retrain these models to increase their correctness. For a well-trained model, the occurrence of a failure is rare. Consequently, searching these rare scenarios by evaluating each sample in input search space or randomized search would be costly and sometimes intractable due to large search space, limited computational resources, and available time. In this paper, we tried to address this challenge of finding these failure scenarios faster than traditional randomized search. The central idea of our approach is to separate the input data space in region of high failure probability and region of low/minimal failure probability based on the observation made by training data, data drawn from real-world statistics, and knowledge from a domain expert. Using these information, we can design a generative model from which we can generate scenarios that have a high likelihood to reveal the potential failure. We evaluated this approach on two different experimental scenarios and able to speed up the discovery of such failures a thousand-fold faster than the traditional randomized search.
1,239
null
Memorization-Dilation: Modeling Neural Collapse Under Noise
The notion of neural collapse refers to several emergent phenomena that have been empirically observed across various canonical classification problems. During the terminal phase of training a deep neural network, the feature embedding of all examples of the same class tend to collapse to a single representation, and the features of different classes tend to separate as much as possible. Neural collapse is often studied through a simplified model, called the unconstrained feature representation, in which the model is assumed to have "infinite expressivity" and can map each data point to any arbitrary representation. In this work, we propose a more realistic variant of the unconstrained feature representation that takes the limited expressivity of the network into account. Empirical evidence suggests that the memorization of noisy data points leads to a degradation (dilation) of the neural collapse. Using a model of the memorization-dilation (M-D) phenomenon, we show one mechanism by which different losses lead to different performances of the trained network on noisy data. Our proofs reveal why label smoothing, a modification of cross-entropy empirically observed to produce a regularization effect, leads to improved generalization in classification tasks.
1,240
null
Model-based Offline Imitation Learning with Non-expert Data
Although Behavioral Cloning (BC) in theory suffers compounding errors, its scalability and simplicity still makes it an attractive imitation learning algorithm. In contrast, imitation approaches with adversarial training typically does not share the same problem, but necessitates interactions with the environment. Meanwhile, most imitation learning methods only utilises optimal datasets, which could be significantly more expensive to obtain than its suboptimal counterpart. A question that arises is, can we utilise the suboptimal dataset in a principled manner, which otherwise would have been idle? We propose a scalable model-based offline imitation learning algorithmic framework that leverages datasets collected by both suboptimal and optimal policies, and show that its worst case suboptimality becomes linear in the time horizon with respect to the expert samples. We empirically validate our theoretical results and show that the proposed method \textit{always} outperforms BC in the low data regime on simulated continuous control domains
1,241
null
Defending Adversarial Examples by Negative Correlation Ensemble
The security issues in DNNs, such as adversarial examples, have attracted much attention. Adversarial examples refer to the examples which are capable to induce the DNNs return completely predictions by introducing carefully designed perturbations. Obviously, adversarial examples bring great security risks to the development of deep learning. Recently, Some defense approaches against adversarial examples have been proposed, however, in our opinion, the performance of these approaches are still limited. In this paper, we propose a new ensemble defense approach named the Negative Correlation Ensemble (NCEn), which achieves compelling results by introducing gradient directions and gradient magnitudes of each member in the ensemble negatively correlated and at the same time, reducing the transferability of adversarial examples among them. Extensive experiments have been conducted, and the results demonstrate that NCEn can improve the adversarial robustness of ensembles effectively.
1,242
null
Federated Learning with GAN-based Data Synthesis for Non-IID Clients
Federated learning (FL) has recently emerged as a popular privacy-preserving collaborative learning paradigm. However, it suffers from the non-independent and identically distributed (non-IID) data among clients. In this paper, we propose a novel framework, named Synthetic Data Aided Federated Learning (SDA-FL), to resolve this non-IID challenge by sharing synthetic data. Specifically, each client pretrains a local generative adversarial network (GAN) to generate differentially private synthetic data, which are uploaded to the parameter server (PS) to construct a global shared synthetic dataset. To generate confident pseudo labels for the synthetic dataset, we also propose an iterative pseudo labeling mechanism performed by the PS. A combination of the local private dataset and synthetic dataset with confident pseudo labels leads to nearly identical data distributions among clients, which improves the consistency among local models and benefits the global aggregation. Extensive experiments evidence that the proposed framework outperforms the baseline methods by a large margin in several benchmark datasets under both the supervised and semi-supervised settings.
1,243
null
Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks
For learning graph representations, not all detailed structures within a graph are relevant to the given graph tasks. Task-relevant structures can be $localized$ or $sparse$ which are only involved in subgraphs or characterized by the interactions of subgraphs (a hierarchical perspective). A graph neural network should be able to efficiently extract task-relevant structures and be invariant to irrelevant parts, which is challenging for general message passing GNNs. In this work, we propose to learn graph representations from a sequence of subgraphs of the original graph to better capture task-relevant substructures or hierarchical structures and skip $noisy$ parts. To this end, we design soft-mask GNN layer to extract desired subgraphs through the mask mechanism. The soft-mask is defined in a continuous space to maintain the differentiability and characterize the weights of different parts. Compared with existing subgraph or hierarchical representation learning methods and graph pooling operations, the soft-mask GNN layer is not limited by the fixed sample or drop ratio, and therefore is more flexible to extract subgraphs with arbitrary sizes. Extensive experiments on public graph benchmarks show that soft-mask mechanism brings performance improvements. And it also provides interpretability where visualizing the values of masks in each layer allows us to have an insight into the structures learned by the model.
1,244
null
Learning to Generate Levels by Imitating Evolution
Search-based procedural content generation (PCG) is a well-known method used for level generation in games. Its key advantage is that it is generic and able to satisfy functional constraints. However, due to the heavy computational costs to run these algorithms online, search-based PCG is rarely utilized for real-time generation. In this paper, we introduce a new type of iterative level generator using machine learning. We train a model to imitate the evolutionary process and use the model to generate levels. This trained model is able to modify noisy levels sequentially to create better levels without the need for a fitness function during inference. We evaluate our trained models on a 2D maze generation task. We compare several different versions of the method: training the models either at the end of evolution (normal evolution) or every 100 generations (assisted evolution) and using the model as a mutation function during evolution. Using the assisted evolution process, the final trained models are able to generate mazes with a success rate of 99% and high diversity of 86%. This work opens the door to a new way of learning level generators guided by the evolutionary process and perhaps will increase the adoption of search-based PCG in the game industry.
1,245
null
DRAformer: Differentially Reconstructed Attention Transformer for Time-Series Forecasting
Time-series forecasting plays an important role in many real-world scenarios, such as equipment life cycle forecasting, weather forecasting, and traffic flow forecasting. It can be observed from recent research that a variety of transformer-based models have shown remarkable results in time-series forecasting. However, there are still some issues that limit the ability of transformer-based models on time-series forecasting tasks: (i) learning directly on raw data is susceptible to noise due to its complex and unstable feature representation; (ii) the self-attention mechanisms pay insufficient attention to changing features and temporal dependencies. In order to solve these two problems, we propose a transformer-based differentially reconstructed attention model DRAformer. Specifically, DRAformer has the following innovations: (i) learning against differenced sequences, which preserves clear and stable sequence features by differencing and highlights the changing properties of sequences; (ii) the reconstructed attention: integrated distance attention exhibits sequential distance through a learnable Gaussian kernel, distributed difference attention calculates distribution difference by mapping the difference sequence to the adaptive feature space, and the combination of the two effectively focuses on the sequences with prominent associations; (iii) the reconstructed decoder input, which extracts sequence features by integrating variation information and temporal correlations, thereby obtaining a more comprehensive sequence representation. Extensive experiments on four large-scale datasets demonstrate that DRAformer outperforms state-of-the-art baselines.
1,246
null
Discovery and density estimation of latent confounders in Bayesian networks with evidence lower bound
Discovering and parameterising latent confounders represent important and challenging problems in causal structure learning and density estimation respectively. In this paper, we focus on both discovering and learning the distribution of latent confounders. This task requires solutions that come from different areas of statistics and machine learning. We combine elements of variational Bayesian methods, expectation-maximisation, hill-climbing search, and structure learning under the assumption of causal insufficiency. We propose two learning strategies; one that maximises model selection accuracy, and another that improves computational efficiency in exchange for minor reductions in accuracy. The former strategy is suitable for small networks and the latter for moderate size networks. Both learning strategies perform well relative to existing solutions.
1,247
null
Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena
Interpretable machine learning (IML) is concerned with the behavior and the properties of machine learning models. Scientists, however, are only interested in the model as a gateway to understanding the modeled phenomenon. We show how to develop IML methods such that they allow insight into relevant phenomenon properties. We argue that current IML research conflates two goals of model-analysis -- model audit and scientific inference. Thereby, it remains unclear if model interpretations have corresponding phenomenon interpretation. Building on statistical decision theory, we show that ML model analysis allows to describe relevant aspects of the joint data probability distribution. We provide a five-step framework for constructing IML descriptors that can help in addressing scientific questions, including a natural way to quantify epistemic uncertainty. Our phenomenon-centric approach to IML in science clarifies: the opportunities and limitations of IML for inference; that conditional not marginal sampling is required; and, the conditions under which we can trust IML methods.
1,248
null
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks
Through using only a well-trained classifier, model-inversion (MI) attacks can recover the data used for training the classifier, leading to the privacy leakage of the training data. To defend against MI attacks, previous work utilizes a unilateral dependency optimization strategy, i.e., minimizing the dependency between inputs (i.e., features) and outputs (i.e., labels) during training the classifier. However, such a minimization process conflicts with minimizing the supervised loss that aims to maximize the dependency between inputs and outputs, causing an explicit trade-off between model robustness against MI attacks and model utility on classification tasks. In this paper, we aim to minimize the dependency between the latent representations and the inputs while maximizing the dependency between latent representations and the outputs, named a bilateral dependency optimization (BiDO) strategy. In particular, we use the dependency constraints as a universally applicable regularizer in addition to commonly used losses for deep neural networks (e.g., cross-entropy), which can be instantiated with appropriate dependency criteria according to different tasks. To verify the efficacy of our strategy, we propose two implementations of BiDO, by using two different dependency measures: BiDO with constrained covariance (BiDO-COCO) and BiDO with Hilbert-Schmidt Independence Criterion (BiDO-HSIC). Experiments show that BiDO achieves the state-of-the-art defense performance for a variety of datasets, classifiers, and MI attacks while suffering a minor classification-accuracy drop compared to the well-trained classifier with no defense, which lights up a novel road to defend against MI attacks.
1,249
null
Monitoring and Proactive Management of QoS Levels in Pervasive Applications
The advent of Edge Computing (EC) as a promising paradigm that provides multiple computation and analytics capabilities close to data sources opens new pathways for novel applications. Nonetheless, the limited computational capabilities of EC nodes and the expectation of ensuring high levels of QoS during tasks execution impose strict requirements for innovative management approaches. Motivated by the need of maintaining a minimum level of QoS during EC nodes functioning, we elaborate a distributed and intelligent decision-making approach for tasks scheduling. Our aim is to enhance the behavior of EC nodes making them capable of securing high QoS levels. We propose that nodes continuously monitor QoS levels and systematically evaluate the probability of violating them to proactively decide some tasks to be offloaded to peer nodes or Cloud. We present, describe and evaluate the proposed scheme through multiple experimental scenarios revealing its performance and the benefits of the envisioned monitoring mechanism when serving processing requests in very dynamic environments like the EC.
1,250
null
Reducing Capacity Gap in Knowledge Distillation with Review Mechanism for Crowd Counting
The lightweight crowd counting models, in particular knowledge distillation (KD) based models, have attracted rising attention in recent years due to their superiority on computational efficiency and hardware requirement. However, existing KD based models usually suffer from the capacity gap issue, resulting in the performance of the student network being limited by the teacher network. In this paper, we address this issue by introducing a novel review mechanism following KD models, motivated by the review mechanism of human-beings during the study. Thus, the proposed model is dubbed ReviewKD. The proposed model consists of an instruction phase and a review phase, where we firstly exploit a well-trained heavy teacher network to transfer its latent feature to a lightweight student network in the instruction phase, then in the review phase yield a refined estimate of the density map based on the learned feature through a review mechanism. The effectiveness of ReviewKD is demonstrated by a set of experiments over six benchmark datasets via comparing to the state-of-the-art models. Numerical results show that ReviewKD outperforms existing lightweight models for crowd counting, and can effectively alleviate the capacity gap issue, and particularly has the performance beyond the teacher network. Besides the lightweight models, we also show that the suggested review mechanism can be used as a plug-and-play module to further boost the performance of a kind of heavy crowd counting models without modifying the neural network architecture and introducing any additional model parameter.
1,251
null
Svadhyaya system for the Second Diagnosing COVID-19 using Acoustics Challenge 2021
This report describes the system used for detecting COVID-19 positives using three different acoustic modalities, namely speech, breathing, and cough in the second DiCOVA challenge. The proposed system is based on the combination of 4 different approaches, each focusing more on one aspect of the problem, and reaches the blind test AUCs of 86.41, 77.60, and 84.55, in the breathing, cough, and speech tracks, respectively, and the AUC of 85.37 in the fusion of these three tracks.
1,252
null
Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly Detection
This paper aims to develop an acoustic signal-based unsupervised anomaly detection method for automatic machine monitoring. Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space and, hence, poor anomaly detection performance. Different models have to be trained for each different kind of machines to accurately perform the anomaly detection task. To solve this issue, we propose a new method named as hierarchical conditional variational autoencoder (HCVAE). This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation. This knowledge helps model to improve the anomaly detection performance as well. We demonstrated the generalization capability of a single HCVAE model for different types of machines by using appropriate conditions. Additionally, to show the practicability of the proposed approach, (i) we evaluated HCVAE model on different domain and (ii) we checked the effect of partial hierarchical knowledge. Our results show that HCVAE method validates both of these points, and it outperforms the baseline system on anomaly detection task by utmost 15 % on the AUC score metric.
1,253
null
A General framework for PAC-Bayes Bounds for Meta-Learning
Meta learning automatically infers an inductive bias, that includes the hyperparameter of the base-learning algorithm, by observing data from a finite number of related tasks. This paper studies PAC-Bayes bounds on meta generalization gap. The meta-generalization gap comprises two sources of generalization gaps: the environment-level and task-level gaps resulting from observation of a finite number of tasks and data samples per task, respectively. In this paper, by upper bounding arbitrary convex functions, which link the expected and empirical losses at the environment and also per-task levels, we obtain new PAC-Bayes bounds. Using these bounds, we develop new PAC-Bayes meta-learning algorithms. Numerical examples demonstrate the merits of the proposed novel bounds and algorithm in comparison to prior PAC-Bayes bounds for meta-learning.
1,254
null
Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution
Despite all the benefits of automated hyperparameter optimization (HPO), most modern HPO algorithms are black-boxes themselves. This makes it difficult to understand the decision process which lead to the selected configuration, reduces trust in HPO, and thus hinders its broad adoption. Here, we study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots. However, if such methods are naively applied to the experimental data of the HPO process in a post-hoc manner, the underlying sampling bias of the optimizer can distort interpretations. We propose a modified HPO method which efficiently balances the search for the global optimum w.r.t. predictive performance and the reliable estimation of IML explanations of an underlying black-box function by coupling Bayesian optimization and Bayesian Algorithm Execution. On benchmark cases of both synthetic objectives and HPO of a neural network, we demonstrate that our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
1,255
null
A Dataset and Benchmark for Automatically Answering and Generating Machine Learning Final Exams
Can a machine learn machine learning? We propose to answer this question using the same criteria we use to answer a similar question: can a human learn machine learning? We automatically answer MIT final exams in Introduction to Machine Learning at a human level. The course is a large undergraduate class with around five hundred students each semester. Recently, program synthesis and few-shot learning solved university-level problem set questions in mathematics and STEM courses at a human level. In this work, we solve questions from final exams that differ from problem sets in several ways: the questions are longer, have multiple parts, are more complicated, and span a broader set of topics. We provide a new dataset and benchmark of questions from eight MIT Introduction to Machine Learning final exams between Fall 2017 and Spring 2022 and provide code for automatically answering these questions and generating new questions. We perform ablation studies comparing zero-shot learning with few-shot learning, chain-of-thought prompting, GPT-3 pre-trained on text and Codex fine-tuned on code on a range of machine learning topics and find that few-shot learning methods perform best. We make our data and code publicly available for the machine learning community.
1,256
null
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Neural message passing is a basic feature extraction unit for graph-structured data that takes account of the impact of neighboring node features in network propagation from one layer to the next. We model such process by an interacting particle system with attractive and repulsive forces and the Allen-Cahn force arising in the modeling of phase transition. The system is a reaction-diffusion process which can separate particles to different clusters. This induces an Allen-Cahn message passing (ACMP) for graph neural networks where the numerical iteration for the solution constitutes the message passing propagation. The mechanism behind ACMP is phase transition of particles which enables the formation of multi-clusters and thus GNNs prediction for node classification. ACMP can propel the network depth to hundreds of layers with theoretically proven strictly positive lower bound of the Dirichlet energy. It thus provides a deep model of GNNs which circumvents the common GNN problem of oversmoothing. Experiments for various real node classification datasets, with possible high homophily difficulty, show the GNNs with ACMP can achieve state of the art performance with no decay of Dirichlet energy.
1,257
null
Learned reconstruction with convergence guarantees
In recent years, deep learning has achieved remarkable empirical success for image reconstruction. This has catalyzed an ongoing quest for precise characterization of correctness and reliability of data-driven methods in critical use-cases, for instance in medical imaging. Notwithstanding the excellent performance and efficacy of deep learning-based methods, concerns have been raised regarding their stability, or lack thereof, with serious practical implications. Significant advances have been made in recent years to unravel the inner workings of data-driven image recovery methods, challenging their widely perceived black-box nature. In this article, we will specify relevant notions of convergence for data-driven image reconstruction, which will form the basis of a survey of learned methods with mathematically rigorous reconstruction guarantees. An example that is highlighted is the role of ICNN, offering the possibility to combine the power of deep learning with classical convex regularization theory for devising methods that are provably convergent. This survey article is aimed at both methodological researchers seeking to advance the frontiers of our understanding of data-driven image reconstruction methods as well as practitioners, by providing an accessible description of convergence concepts and by placing some of the existing empirical practices on a solid mathematical foundation.
1,258
null
Semi-Supervised Hierarchical Graph Classification
Node classification and graph classification are two graph learning problems that predict the class label of a node and the class label of a graph respectively. A node of a graph usually represents a real-world entity, e.g., a user in a social network, or a document in a document citation network. In this work, we consider a more challenging but practically useful setting, in which a node itself is a graph instance. This leads to a hierarchical graph perspective which arises in many domains such as social network, biological network and document collection. We study the node classification problem in the hierarchical graph where a 'node' is a graph instance. As labels are usually limited, we design a novel semi-supervised solution named SEAL-CI. SEAL-CI adopts an iterative framework that takes turns to update two modules, one working at the graph instance level and the other at the hierarchical graph level. To enforce a consistency among different levels of hierarchical graph, we propose the Hierarchical Graph Mutual Information (HGMI) and further present a way to compute HGMI with theoretical guarantee. We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
1,259
null
Multi-instrument Music Synthesis with Spectrogram Diffusion
An ideal music synthesizer should be both interactive and expressive, generating high-fidelity audio in realtime for arbitrary combinations of instruments and notes. Recent neural synthesizers have exhibited a tradeoff between domain-specific models that offer detailed control of only specific instruments, or raw waveform models that can train on all of music but with minimal control and slow generation. In this work, we focus on a middle ground of neural synthesizers that can generate audio from MIDI sequences with arbitrary combinations of instruments in realtime. This enables training on a wide range of transcription datasets with a single model, which in turn offers note-level control of composition and instrumentation across a wide range of instruments. We use a simple two-stage process: MIDI to spectrograms with an encoder-decoder Transformer, then spectrograms to audio with a generative adversarial network (GAN) spectrogram inverter. We compare training the decoder as an autoregressive model and as a Denoising Diffusion Probabilistic Model (DDPM) and find that the DDPM approach is superior both qualitatively and as measured by audio reconstruction and Fr\'echet distance metrics. Given the interactivity and generality of this approach, we find this to be a promising first step towards interactive and expressive neural synthesis for arbitrary combinations of instruments and notes.
1,260
null
Rethinking the Defense Against Free-rider Attack From the Perspective of Model Weight Evolving Frequency
Federated learning (FL) is a distributed machine learning approach where multiple clients collaboratively train a joint model without exchanging their data. Despite FL's unprecedented success in data privacy-preserving, its vulnerability to free-rider attacks has attracted increasing attention. Existing defenses may be ineffective against highly camouflaged or high percentages of free riders. To address these challenges, we reconsider the defense from a novel perspective, i.e., model weight evolving frequency.Empirically, we gain a novel insight that during the FL's training, the model weight evolving frequency of free-riders and that of benign clients are significantly different. Inspired by this insight, we propose a novel defense method based on the model Weight Evolving Frequency, referred to as WEF-Defense.Specifically, we first collect the weight evolving frequency (defined as WEF-Matrix) during local training. For each client, it uploads the local model's WEF-Matrix to the server together with its model weight for each iteration. The server then separates free-riders from benign clients based on the difference in the WEF-Matrix. Finally, the server uses a personalized approach to provide different global models for corresponding clients. Comprehensive experiments conducted on five datasets and five models demonstrate that WEF-Defense achieves better defense effectiveness than the state-of-the-art baselines.
1,261
null
Squeeze All: Novel Estimator and Self-Normalized Bound for Linear Contextual Bandits
We propose a novel algorithm for linear contextual bandits with $O(\sqrt{dT \log T})$ regret bound, where $d$ is the dimension of contexts and $T$ is the time horizon. Our proposed algorithm is equipped with a novel estimator in which exploration is embedded through explicit randomization. Depending on the randomization, our proposed estimator takes contribution either from contexts of all arms or from selected contexts. We establish a self-normalized bound for our estimator, which allows a novel decomposition of the cumulative regret into additive dimension-dependent terms instead of multiplicative terms. We also prove a novel lower bound of $\Omega(\sqrt{dT})$ under our problem setting. Hence, the regret of our proposed algorithm matches the lower bound up to logarithmic factors. The numerical experiments support the theoretical guarantees and show that our proposed method outperforms the existing linear bandit algorithms.
1,262
null
Feature Selection using e-values
In the context of supervised parametric models, we introduce the concept of e-values. An e-value is a scalar quantity that represents the proximity of the sampling distribution of parameter estimates in a model trained on a subset of features to that of the model trained on all features (i.e. the full model). Under general conditions, a rank ordering of e-values separates models that contain all essential features from those that do not. The e-values are applicable to a wide range of parametric models. We use data depths and a fast resampling-based algorithm to implement a feature selection procedure using e-values, providing consistency results. For a $p$-dimensional feature space, this procedure requires fitting only the full model and evaluating $p+1$ models, as opposed to the traditional requirement of fitting and evaluating $2^p$ models. Through experiments across several model settings and synthetic and real datasets, we establish that the e-values method as a promising general alternative to existing model-specific methods of feature selection.
1,263
null
Learning Imbalanced Datasets with Maximum Margin Loss
A learning algorithm referred to as Maximum Margin (MM) is proposed for considering the class-imbalance data learning issue: the trained model tends to predict the majority of classes rather than the minority ones. That is, underfitting for minority classes seems to be one of the challenges of generalization. For a good generalization of the minority classes, we design a new Maximum Margin (MM) loss function, motivated by minimizing a margin-based generalization bound through the shifting decision bound. The theoretically-principled label-distribution-aware margin (LDAM) loss was successfully applied with prior strategies such as re-weighting or re-sampling along with the effective training schedule. However, they did not investigate the maximum margin loss function yet. In this study, we investigate the performances of two types of hard maximum margin-based decision boundary shift with LDAM's training schedule on artificially imbalanced CIFAR-10/100 for fair comparisons and effectiveness.
1,264
null
Fast building segmentation from satellite imagery and few local labels
Innovations in computer vision algorithms for satellite image analysis can enable us to explore global challenges such as urbanization and land use change at the planetary level. However, domain shift problems are a common occurrence when trying to replicate models that drive these analyses to new areas, particularly in the developing world. If a model is trained with imagery and labels from one location, then it usually will not generalize well to new locations where the content of the imagery and data distributions are different. In this work, we consider the setting in which we have a single large satellite imagery scene over which we want to solve an applied problem -- building footprint segmentation. Here, we do not necessarily need to worry about creating a model that generalizes past the borders of our scene but can instead train a local model. We show that surprisingly few labels are needed to solve the building segmentation problem with very high-resolution (0.5m/px) satellite imagery with this setting in mind. Our best model trained with just 527 sparse polygon annotations (an equivalent of 1500 x 1500 densely labeled pixels) has a recall of 0.87 over held out footprints and a R2 of 0.93 on the task of counting the number of buildings in 200 x 200-meter windows. We apply our models over high-resolution imagery in Amman, Jordan in a case study on urban change detection.
1,265
null
An application of neural networks to a problem in knot theory and group theory (untangling braids)
We report on our success on solving the problem of untangling braids up to length 20 and width 4. We use feed-forward neural networks in the framework of reinforcement learning to train the agent to choose Reidemeister moves to untangle braids in the minimal number of moves.
1,266
null
Object Detection, Recognition, Deep Learning, and the Universal Law of Generalization
Object detection and recognition are fundamental functions underlying the success of species. Because the appearance of an object exhibits a large variability, the brain has to group these different stimuli under the same object identity, a process of generalization. Does the process of generalization follow some general principles or is it an ad-hoc "bag-of-tricks"? The Universal Law of Generalization provided evidence that generalization follows similar properties across a variety of species and tasks. Here we test the hypothesis that the internal representations underlying generalization reflect the natural properties of object detection and recognition in our environment rather than the specifics of the system solving these problems. By training a deep-neural-network with images of "clear" and "camouflaged" animals, we found that with a proper choice of category prototypes, the generalization functions are monotone decreasing, similar to the generalization functions of biological systems. Our findings support the hypothesis of the study.
1,267
null
Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective Reinforcement Learning
We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions, which are to be jointly optimized according to given criteria such as proportional fairness (smooth concave scalarization), hard constraints (constrained MDP), and max-min trade-off. We propose an Anchor-changing Regularized Natural Policy Gradient (ARNPG) framework, which can systematically incorporate ideas from well-performing first-order methods into the design of policy optimization algorithms for multi-objective MDP problems. Theoretically, the designed algorithms based on the ARNPG framework achieve $\tilde{O}(1/T)$ global convergence with exact gradients. Empirically, the ARNPG-guided algorithms also demonstrate superior performance compared to some existing policy gradient-based approaches in both exact gradients and sample-based scenarios.
1,268
null
Cross-TOP: Zero-Shot Cross-Schema Task-Oriented Parsing
Deep learning methods have enabled task-oriented semantic parsing of increasingly complex utterances. However, a single model is still typically trained and deployed for each task separately, requiring labeled training data for each, which makes it challenging to support new tasks, even within a single business vertical (e.g., food-ordering or travel booking). In this paper we describe Cross-TOP (Cross-Schema Task-Oriented Parsing), a zero-shot method for complex semantic parsing in a given vertical. By leveraging the fact that user requests from the same vertical share lexical and semantic similarities, a single cross-schema parser is trained to service an arbitrary number of tasks, seen or unseen, within a vertical. We show that Cross-TOP can achieve high accuracy on a previously unseen task without requiring any additional training data, thereby providing a scalable way to bootstrap semantic parsers for new tasks. As part of this work we release the FoodOrdering dataset, a task-oriented parsing dataset in the food-ordering vertical, with utterances and annotations derived from five schemas, each from a different restaurant menu.
1,269
null
Synthetic Over-sampling for Imbalanced Node Classification with Graph Neural Networks
In recent years, graph neural networks (GNNs) have achieved state-of-the-art performance for node classification. However, most existing GNNs would suffer from the graph imbalance problem. In many real-world scenarios, node classes are imbalanced, with some majority classes making up most parts of the graph. The message propagation mechanism in GNNs would further amplify the dominance of those majority classes, resulting in sub-optimal classification performance. In this work, we seek to address this problem by generating pseudo instances of minority classes to balance the training data, extending previous over-sampling-based techniques. This task is non-trivial, as those techniques are designed with the assumption that instances are independent. Neglection of relation information would complicate this oversampling process. Furthermore, the node classification task typically takes the semi-supervised setting with only a few labeled nodes, providing insufficient supervision for the generation of minority instances. Generated new nodes of low quality would harm the trained classifier. In this work, we address these difficulties by synthesizing new nodes in a constructed embedding space, which encodes both node attributes and topology information. Furthermore, an edge generator is trained simultaneously to model the graph structure and provide relations for new samples. To further improve the data efficiency, we also explore synthesizing mixed ``in-between'' nodes to utilize nodes from the majority class in this over-sampling process. Experiments on real-world datasets validate the effectiveness of our proposed framework.
1,270
null
Memory Classifiers: Two-stage Classification for Robustness in Machine Learning
The performance of machine learning models can significantly degrade under distribution shifts of the data. We propose a new method for classification which can improve robustness to distribution shifts, by combining expert knowledge about the ``high-level" structure of the data with standard classifiers. Specifically, we introduce two-stage classifiers called \textit{memory classifiers}. First, these identify prototypical data points -- \textit{memories} -- to cluster the training data. This step is based on features designed with expert guidance; for instance, for image data they can be extracted using digital image processing algorithms. Then, within each cluster, we learn local classifiers based on finer discriminating features, via standard models like deep neural networks. We establish generalization bounds for memory classifiers. We illustrate in experiments that they can improve generalization and robustness to distribution shifts on image datasets. We show improvements which push beyond standard data augmentation techniques.
1,271
null
Intrinsic dimensionality and generalization properties of the $\mathcal{R}$-norm inductive bias
We study the structural and statistical properties of $\mathcal{R}$-norm minimizing interpolants of datasets labeled by specific target functions. The $\mathcal{R}$-norm is the basis of an inductive bias for two-layer neural networks, recently introduced to capture the functional effect of controlling the size of network weights, independently of the network width. We find that these interpolants are intrinsically multivariate functions, even when there are ridge functions that fit the data, and also that the $\mathcal{R}$-norm inductive bias is not sufficient for achieving statistically optimal generalization for certain learning problems. Altogether, these results shed new light on an inductive bias that is connected to practical neural network training.
1,272
null
Large-Scale Retrieval for Reinforcement Learning
Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning, the dominant paradigm is for an agent to amortise information that helps decision-making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context-sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach in Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in reinforcement learning agents.
1,273
null
Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?
We investigate whether self-supervised learning (SSL) can improve online reinforcement learning (RL) from pixels. We extend the contrastive reinforcement learning framework (e.g., CURL) that jointly optimizes SSL and RL losses and conduct an extensive amount of experiments with various self-supervised losses. Our observations suggest that the existing SSL framework for RL fails to bring meaningful improvement over the baselines only taking advantage of image augmentation when the same amount of data and augmentation is used. We further perform an evolutionary search to find the optimal combination of multiple self-supervised losses for RL, but find that even such a loss combination fails to meaningfully outperform the methods that only utilize carefully designed image augmentations. Often, the use of self-supervised losses under the existing framework lowered RL performances. We evaluate the approach in multiple different environments including a real-world robot environment and confirm that no single self-supervised loss or image augmentation method can dominate all environments and that the current framework for joint optimization of SSL and RL is limited. Finally, we empirically investigate the pretraining framework for SSL + RL and the properties of representations learned with different approaches.
1,274
null
Tight Bounds for State Tomography with Incoherent Measurements
We consider the classic question of state tomography: given copies of an unknown quantum state $\rho\in\mathbb{C}^{d\times d}$, output $\widehat{\rho}$ for which $\|\rho - \widehat{\rho}\|_{\mathsf{tr}} \le \varepsilon$. When one is allowed to make coherent measurements entangled across all copies, $\Theta(d^2/\varepsilon^2)$ copies are necessary and sufficient [Haah et al. '17, O'Donnell-Wright '16]. Unfortunately, the protocols achieving this rate incur large quantum memory overheads that preclude implementation on current or near-term devices. On the other hand, the best known protocol using incoherent (single-copy) measurements uses $O(d^3/\varepsilon^2)$ copies [Kueng-Rauhut-Terstiege '17], and multiple papers have posed it as an open question to understand whether or not this rate is tight. In this work, we fully resolve this question, by showing that any protocol using incoherent measurements, even if they are chosen adaptively, requires $\Omega(d^3/\varepsilon^2)$ copies, matching the upper bound of [Kueng-Rauhut-Terstiege '17]. We do so by a new proof technique which directly bounds the "tilt" of the posterior distribution after measurements, which yields a surprisingly short proof of our lower bound, and which we believe may be of independent interest.
1,275
null
Causal Balancing for Domain Generalization
While machine learning models rapidly advance the state-of-the-art on various real-world tasks, out-of-domain (OOD) generalization remains a challenging problem given the vulnerability of these models to spurious correlations. While current domain generalization methods usually focus on enforcing certain invariance properties across different domains by new loss function designs, we propose a balanced mini-batch sampling strategy to reduce the domain-specific spurious correlations in the observed training distributions. More specifically, we propose a two-phased method that 1) identifies the source of spurious correlations, and 2) builds balanced mini-batches free from spurious correlations by matching on the identified source. We provide an identifiability guarantee of the source of spuriousness and show that our proposed approach provably samples from a balanced, spurious-free distribution over all training environments. Experiments are conducted on three computer vision datasets with documented spurious correlations, demonstrating empirically that our balanced mini-batch sampling strategy improves the performance of four different established domain generalization model baselines compared to the random mini-batch sampling strategy.
1,276
null
Meta Optimal Transport
We study the use of amortized optimization to predict optimal transport (OT) maps from the input measures, which we call Meta OT. This helps repeatedly solve similar OT problems between different measures by leveraging the knowledge and information present from past problems to rapidly predict and solve new problems. Otherwise, standard methods ignore the knowledge of the past solutions and suboptimally re-solve each problem from scratch. Meta OT models surpass the standard convergence rates of log-Sinkhorn solvers in the discrete setting and convex potentials in the continuous setting. We improve the computational time of standard OT solvers by multiple orders of magnitude in discrete and continuous transport settings between images, spherical data, and color palettes. Our source code is available at http://github.com/facebookresearch/meta-ot.
1,277
null
Balanced Product of Experts for Long-Tailed Recognition
Many real-world recognition problems suffer from an imbalanced or long-tailed label distribution. Those distributions make representation learning more challenging due to limited generalization over the tail classes. If the test distribution differs from the training distribution, e.g. uniform versus long-tailed, the problem of the distribution shift needs to be addressed. To this aim, recent works have extended softmax cross-entropy using margin modifications, inspired by Bayes' theorem. In this paper, we generalize several approaches with a Balanced Product of Experts (BalPoE), which combines a family of models with different test-time target distributions to tackle the imbalance in the data. The proposed experts are trained in a single stage, either jointly or independently, and fused seamlessly into a BalPoE. We show that BalPoE is Fisher consistent for minimizing the balanced error and perform extensive experiments to validate the effectiveness of our approach. Finally, we investigate the effect of Mixup in this setting, discovering that regularization is a key ingredient for learning calibrated experts. Our experiments show that a regularized BalPoE can perform remarkably well in test accuracy and calibration metrics, leading to state-of-the-art results on CIFAR-100-LT, ImageNet-LT, and iNaturalist-2018 datasets. The code will be made publicly available upon paper acceptance.
1,278
null
Is Self-Supervised Learning More Robust Than Supervised Learning?
Self-supervised contrastive learning is a powerful tool to learn visual representation without labels. Prior work has primarily focused on evaluating the recognition accuracy of various pre-training algorithms, but has overlooked other behavioral aspects. In addition to accuracy, distributional robustness plays a critical role in the reliability of machine learning models. We design and conduct a series of robustness tests to quantify the behavioral differences between contrastive learning and supervised learning to downstream or pre-training data distribution changes. These tests leverage data corruptions at multiple levels, ranging from pixel-level gamma distortion to patch-level shuffling and to dataset-level distribution shift. Our tests unveil intriguing robustness behaviors of contrastive and supervised learning. On the one hand, under downstream corruptions, we generally observe that contrastive learning is surprisingly more robust than supervised learning. On the other hand, under pre-training corruptions, we find contrastive learning vulnerable to patch shuffling and pixel intensity change, yet less sensitive to dataset-level distribution change. We attempt to explain these results through the role of data augmentation and feature space properties. Our insight has implications in improving the downstream robustness of supervised learning.
1,279
null
Interactively Learning Preference Constraints in Linear Bandits
We study sequential decision-making with known rewards and unknown constraints, motivated by situations where the constraints represent expensive-to-evaluate human preferences, such as safe and comfortable driving behavior. We formalize the challenge of interactively learning about these constraints as a novel linear bandit problem which we call constrained linear best-arm identification. To solve this problem, we propose the Adaptive Constraint Learning (ACOL) algorithm. We provide an instance-dependent lower bound for constrained linear best-arm identification and show that ACOL's sample complexity matches the lower bound in the worst-case. In the average case, ACOL's sample complexity bound is still significantly tighter than bounds of simpler approaches. In synthetic experiments, ACOL performs on par with an oracle solution and outperforms a range of baselines. As an application, we consider learning constraints to represent human preferences in a driving simulation. ACOL is significantly more sample efficient than alternatives for this application. Further, we find that learning preferences as constraints is more robust to changes in the driving scenario than encoding the preferences directly in the reward function.
1,280
null
Rethinking Spatial Invariance of Convolutional Networks for Object Counting
Previous work generally believes that improving the spatial invariance of convolutional networks is the key to object counting. However, after verifying several mainstream counting networks, we surprisingly found too strict pixel-level spatial invariance would cause overfit noise in the density map generation. In this paper, we try to use locally connected Gaussian kernels to replace the original convolution filter to estimate the spatial position in the density map. The purpose of this is to allow the feature extraction process to potentially stimulate the density map generation process to overcome the annotation noise. Inspired by previous work, we propose a low-rank approximation accompanied with translation invariance to favorably implement the approximation of massive Gaussian convolution. Our work points a new direction for follow-up research, which should investigate how to properly relax the overly strict pixel-level spatial invariance for object counting. We evaluate our methods on 4 mainstream object counting networks (i.e., MCNN, CSRNet, SANet, and ResNet-50). Extensive experiments were conducted on 7 popular benchmarks for 3 applications (i.e., crowd, vehicle, and plant counting). Experimental results show that our methods significantly outperform other state-of-the-art methods and achieve promising learning of the spatial position of objects.
1,281
null
Accelerated Algorithms for Monotone Inclusions and Constrained Nonconvex-Nonconcave Min-Max Optimization
We study monotone inclusions and monotone variational inequalities, as well as their generalizations to non-monotone settings. We first show that the Extra Anchored Gradient (EAG) algorithm, originally proposed by Yoon and Ryu [2021] for unconstrained convex-concave min-max optimization, can be applied to solve the more general problem of Lipschitz monotone inclusion. More specifically, we prove that the EAG solves Lipschitz monotone inclusion problems with an \emph{accelerated convergence rate} of $O(\frac{1}{T})$, which is \emph{optimal among all first-order methods} [Diakonikolas, 2020, Yoon and Ryu, 2021]. Our second result is a new algorithm, called Extra Anchored Gradient Plus (EAG+), which not only achieves the accelerated $O(\frac{1}{T})$ convergence rate for all monotone inclusion problems, but also exhibits the same accelerated rate for a family of general (non-monotone) inclusion problems that concern negative comonotone operators. As a special case of our second result, EAG+ enjoys the $O(\frac{1}{T})$ convergence rate for solving a non-trivial class of nonconvex-nonconcave min-max optimization problems. Our analyses are based on simple potential function arguments, which might be useful for analysing other accelerated algorithms.
1,282
null
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering
We study the problem of list-decodable sparse mean estimation. Specifically, for a parameter $\alpha \in (0, 1/2)$, we are given $m$ points in $\mathbb{R}^n$, $\lfloor \alpha m \rfloor$ of which are i.i.d. samples from a distribution $D$ with unknown $k$-sparse mean $\mu$. No assumptions are made on the remaining points, which form the majority of the dataset. The goal is to return a small list of candidates containing a vector $\widehat \mu$ such that $\| \widehat \mu - \mu \|_2$ is small. Prior work had studied the problem of list-decodable mean estimation in the dense setting. In this work, we develop a novel, conceptually simpler technique for list-decodable mean estimation. As the main application of our approach, we provide the first sample and computationally efficient algorithm for list-decodable sparse mean estimation. In particular, for distributions with ``certifiably bounded'' $t$-th moments in $k$-sparse directions and sufficiently light tails, our algorithm achieves error of $(1/\alpha)^{O(1/t)}$ with sample complexity $m = (k\log(n))^{O(t)}/\alpha$ and running time $\mathrm{poly}(mn^t)$. For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $\Theta (\sqrt{\log(1/\alpha)})$ with quasi-polynomial sample and computational complexity. We complement our upper bounds with nearly-matching statistical query and low-degree polynomial testing lower bounds.
1,283
null
ROI-Constrained Bidding via Curriculum-Guided Bayesian Reinforcement Learning
Real-Time Bidding (RTB) is an important mechanism in modern online advertising systems. Advertisers employ bidding strategies in RTB to optimize their advertising effects subject to various financial requirements, especially the return-on-investment (ROI) constraint. ROIs change non-monotonically during the sequential bidding process, and often induce a see-saw effect between constraint satisfaction and objective optimization. While some existing approaches show promising results in static or mildly changing ad markets, they fail to generalize to highly dynamic ad markets with ROI constraints, due to their inability to adaptively balance constraints and objectives amidst non-stationarity and partial observability. In this work, we specialize in ROI-Constrained Bidding in non-stationary markets. Based on a Partially Observable Constrained Markov Decision Process, our method exploits an indicator-augmented reward function free of extra trade-off parameters and develops a Curriculum-Guided Bayesian Reinforcement Learning (CBRL) framework to adaptively control the constraint-objective trade-off in non-stationary ad markets. Extensive experiments on a large-scale industrial dataset with two problem settings reveal that CBRL generalizes well in both in-distribution and out-of-distribution data regimes, and enjoys superior learning efficiency and stability.
1,284
null
StructCoder: Structure-Aware Transformer for Code Generation
There has been a recent surge of interest in automating software engineering tasks using deep learning. This work addresses the problem of code generation where the goal is to generate target code given source code in a different language or a natural language description. Most of the state-of-the-art deep learning models for code generation use training strategies that are primarily designed for natural language. However, understanding and generating code requires a more rigorous comprehension of the code syntax and semantics. With this motivation, we develop an encoder-decoder Transformer model where both the encoder and decoder are trained to recognize the syntax and data flow in the source and target codes, respectively. We not only make the encoder structure-aware by leveraging the source code's syntax tree and data flow graph, but we also ensure that our decoder preserves the syntax and data flow of the target code by introducing two auxiliary tasks: AST (Abstract Syntax Tree) paths prediction and data flow prediction. To the best of our knowledge, this is the first work to introduce a structure-aware Transformer decoder to enhance the quality of generated code by modeling target syntax and data flow. The proposed StructCoder model achieves state-of-the-art performance on code translation and text-to-code generation tasks in the CodeXGLUE benchmark.
1,285
null
Measuring the Carbon Intensity of AI in Cloud Instances
By providing unprecedented access to computational resources, cloud computing has enabled rapid growth in technologies such as machine learning, the computational demands of which incur a high energy cost and a commensurate carbon footprint. As a result, recent scholarship has called for better estimates of the greenhouse gas impact of AI: data scientists today do not have easy or reliable access to measurements of this information, precluding development of actionable tactics. Cloud providers presenting information about software carbon intensity to users is a fundamental stepping stone towards minimizing emissions. In this paper, we provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions by using location-based and time-specific marginal emissions data per energy unit. We provide measurements of operational software carbon intensity for a set of modern models for natural language processing and computer vision, and a wide range of model sizes, including pretraining of a 6.1 billion parameter language model. We then evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform: using cloud instances in different geographic regions, using cloud instances at different times of day, and dynamically pausing cloud instances when the marginal carbon intensity is above a certain threshold. We confirm previous results that the geographic region of the data center plays a significant role in the carbon intensity for a given cloud instance, and find that choosing an appropriate region can have the largest operational emissions reduction impact. We also show that the time of day has notable impact on operational software carbon intensity. Finally, we conclude with recommendations for how machine learning practitioners can use software carbon intensity information to reduce environmental impact.
1,286
null
ProActive: Self-Attentive Temporal Point Process Flows for Activity Sequences
Any human activity can be represented as a temporal sequence of actions performed to achieve a certain goal. Unlike machine-made time series, these action sequences are highly disparate as the time taken to finish a similar action might vary between different persons. Therefore, understanding the dynamics of these sequences is essential for many downstream tasks such as activity length prediction, goal prediction, etc. Existing neural approaches that model an activity sequence are either limited to visual data or are task specific, i.e., limited to next action or goal prediction. In this paper, we present ProActive, a neural marked temporal point process (MTPP) framework for modeling the continuous-time distribution of actions in an activity sequence while simultaneously addressing three high-impact problems -- next action prediction, sequence-goal prediction, and end-to-end sequence generation. Specifically, we utilize a self-attention module with temporal normalizing flows to model the influence and the inter-arrival times between actions in a sequence. Moreover, for time-sensitive prediction, we perform an early detection of sequence goal via a constrained margin-based optimization procedure. This in-turn allows ProActive to predict the sequence goal using a limited number of actions. Extensive experiments on sequences derived from three activity recognition datasets show the significant accuracy boost of ProActive over the state-of-the-art in terms of action and goal prediction, and the first-ever application of end-to-end action sequence generation.
1,287
null
A new distance measurement and its application in K-Means Algorithm
K-Means clustering algorithm is one of the most commonly used clustering algorithms because of its simplicity and efficiency. K-Means clustering algorithm based on Euclidean distance only pays attention to the linear distance between samples, but ignores the overall distribution structure of the dataset (i.e. the fluid structure of dataset). Since it is difficult to describe the internal structure of two data points by Euclidean distance in high-dimensional data space, we propose a new distance measurement, namely, view-distance, and apply it to the K-Means algorithm. On the classical manifold learning datasets, S-curve and Swiss roll datasets, not only this new distance can cluster the data according to the structure of the data itself, but also the boundaries between categories are neat dividing lines. Moreover, we also tested the classification accuracy and clustering effect of the K-Means algorithm based on view-distance on some real-world datasets. The experimental results show that, on most datasets, the K-Means algorithm based on view-distance has a certain degree of improvement in classification accuracy and clustering effect.
1,288
null
Extending Process Discovery with Model Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes
Within Process mining, discovery techniques had made it possible to construct business process models automatically from event logs. However, results often do not achieve the balance between model complexity and its fitting accuracy, so there is a need for manual model adjusting. The paper presents an approach to process mining providing semi-automatic support to model optimization based on the combined assessment of the model complexity and fitness. To balance between the two ingredients, a model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity. Additionally, we introduce a concept of meta-states, a cycle collapsing in the model, which can potentially simplify the model and interpret it. We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain. They are remote monitoring process for patients with arterial hypertension and workflows of healthcare workers during the COVID-19 pandemic. A case study also investigates the use of various complexity measures and different ways of solution application providing insights on better practices in improving interpretability and complexity/fitness balance in process models.
1,289
null
Hierarchical Federated Learning with Privacy
Federated learning (FL), where data remains at the federated clients, and where only gradient updates are shared with a central aggregator, was assumed to be private. Recent work demonstrates that adversaries with gradient-level access can mount successful inference and reconstruction attacks. In such settings, differentially private (DP) learning is known to provide resilience. However, approaches used in the status quo (\ie central and local DP) introduce disparate utility vs. privacy trade-offs. In this work, we take the first step towards mitigating such trade-offs through {\em hierarchical FL (HFL)}. We demonstrate that by the introduction of a new intermediary level where calibrated DP noise can be added, better privacy vs. utility trade-offs can be obtained; we term this {\em hierarchical DP (HDP)}. Our experiments with 3 different datasets (commonly used as benchmarks for FL) suggest that HDP produces models as accurate as those obtained using central DP, where noise is added at a central aggregator. Such an approach also provides comparable benefit against inference adversaries as in the local DP case, where noise is added at the federated clients.
1,290
null
Dynamic mean field programming
A dynamic mean field theory is developed for model based Bayesian reinforcement learning in the large state space limit. In an analogy with the statistical physics of disordered systems, the transition probabilities are interpreted as couplings, and value functions as deterministic spins, and thus the sampled transition probabilities are considered to be quenched random variables. The results reveal that, under standard assumptions, the posterior over Q-values is asymptotically independent and Gaussian across state-action pairs, for infinite horizon problems. The finite horizon case exhibits the same behaviour for all state-actions pairs at each time but has an additional correlation across time, for each state-action pair. The results also hold for policy evaluation. The Gaussian statistics can be computed from a set of coupled mean field equations derived from the Bellman equation, which we call dynamic mean field programming (DMFP). For Q-value iteration, approximate equations are obtained by appealing to extreme value theory, and closed form expressions are found in the independent and identically distributed case. The Lyapunov stability of these closed form equations is studied.
1,291
null
Bayesian Estimation of Differential Privacy
Algorithms such as Differentially Private SGD enable training machine learning models with formal privacy guarantees. However, there is a discrepancy between the protection that such algorithms guarantee in theory and the protection they afford in practice. An emerging strand of work empirically estimates the protection afforded by differentially private training as a confidence interval for the privacy budget $\varepsilon$ spent on training a model. Existing approaches derive confidence intervals for $\varepsilon$ from confidence intervals for the false positive and false negative rates of membership inference attacks. Unfortunately, obtaining narrow high-confidence intervals for $\epsilon$ using this method requires an impractically large sample size and training as many models as samples. We propose a novel Bayesian method that greatly reduces sample size, and adapt and validate a heuristic to draw more than one sample per trained model. Our Bayesian method exploits the hypothesis testing interpretation of differential privacy to obtain a posterior for $\varepsilon$ (not just a confidence interval) from the joint posterior of the false positive and false negative rates of membership inference attacks. For the same sample size and confidence, we derive confidence intervals for $\varepsilon$ around 40% narrower than prior work. The heuristic, which we adapt from label-only DP, can be used to further reduce the number of trained models needed to get enough samples by up to 2 orders of magnitude.
1,292
null
Learning the Space of Deep Models
Embedding of large but redundant data, such as images or text, in a hierarchy of lower-dimensional spaces is one of the key features of representation learning approaches, which nowadays provide state-of-the-art solutions to problems once believed hard or impossible to solve. In this work, in a plot twist with a strong meta aftertaste, we show how trained deep models are as redundant as the data they are optimized to process, and how it is therefore possible to use deep learning models to embed deep learning models. In particular, we show that it is possible to use representation learning to learn a fixed-size, low-dimensional embedding space of trained deep models and that such space can be explored by interpolation or optimization to attain ready-to-use models. We find that it is possible to learn an embedding space of multiple instances of the same architecture and of multiple architectures. We address image classification and neural representation of signals, showing how our embedding space can be learnt so as to capture the notions of performance and 3D shape, respectively. In the Multi-Architecture setting we also show how an embedding trained only on a subset of architectures can learn to generate already-trained instances of architectures it never sees instantiated at training time.
1,293
null
On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond
The FedProx algorithm is a simple yet powerful distributed proximal point optimization method widely used for federated learning (FL) over heterogeneous data. Despite its popularity and remarkable success witnessed in practice, the theoretical understanding of FedProx is largely underinvestigated: the appealing convergence behavior of FedProx is so far characterized under certain non-standard and unrealistic dissimilarity assumptions of local functions, and the results are limited to smooth optimization problems. In order to remedy these deficiencies, we develop a novel local dissimilarity invariant convergence theory for FedProx and its minibatch stochastic extension through the lens of algorithmic stability. As a result, we contribute to derive several new and deeper insights into FedProx for non-convex federated optimization including: 1) convergence guarantees independent on local dissimilarity type conditions; 2) convergence guarantees for non-smooth FL problems; and 3) linear speedup with respect to size of minibatch and number of sampled devices. Our theory for the first time reveals that local dissimilarity and smoothness are not must-have for FedProx to get favorable complexity bounds. Preliminary experimental results on a series of benchmark FL datasets are reported to demonstrate the benefit of minibatching for improving the sample efficiency of FedProx.
1,294
null
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. We develop approaches for learning nonlinear state space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Transpose CNNs (T-CNNs). Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning low dimensional representations of the nonlinear Burgers equations, constrained mechanical systems, and spatial fields of reaction-diffusion systems. GD-VAEs provide methods for obtaining representations for use in learning tasks involving dynamics.
1,295
null
Localized adversarial artifacts for compressed sensing MRI
As interest in deep neural networks (DNNs) for image reconstruction tasks grows, their reliability has been called into question (Antun et al., 2020; Gottschling et al., 2020). However, recent work has shown that compared to total variation (TV) minimization, they show similar robustness to adversarial noise in terms of $\ell^2$-reconstruction error (Genzel et al., 2022). We consider a different notion of robustness, using the $\ell^\infty$-norm, and argue that localized reconstruction artifacts are a more relevant defect than the $\ell^2$-error. We create adversarial perturbations to undersampled MRI measurements which induce severe localized artifacts in the TV-regularized reconstruction. The same attack method is not as effective against DNN based reconstruction. Finally, we show that this phenomenon is inherent to reconstruction methods for which exact recovery can be guaranteed, as with compressed sensing reconstructions with $\ell^1$- or TV-minimization.
1,296
null
Human-AI Interaction Design in Machine Teaching
Machine Teaching (MT) is an interactive process where a human and a machine interact with the goal of training a machine learning model (ML) for a specified task. The human teacher communicates their task expertise and the machine student gathers the required data and knowledge to produce an ML model. MT systems are developed to jointly minimize the time spent on teaching and the learner's error rate. The design of human-AI interaction in an MT system not only impacts the teaching efficiency, but also indirectly influences the ML performance by affecting the teaching quality. In this paper, we build upon our previous work where we proposed an MT framework with three components, viz., the teaching interface, the machine learner, and the knowledge base, and focus on the human-AI interaction design involved in realizing the teaching interface. We outline design decisions that need to be addressed in developing an MT system beginning from an ML task. The paper follows the Socratic method entailing a dialogue between a curious student and a wise teacher.
1,297
null
Lightweight Conditional Model Extrapolation for Streaming Data under Class-Prior Shift
We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by the recent success of meta-learning. The main idea is not to attempt to learn a single classifier that would have to work well across all occurring data distributions, nor many separate classifiers, but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific classifier for any specific data distribution is derived via classifier adaptation. Assuming a multi-class classification setting with class-prior shift, the adaptation step can be performed analytically with only the classifier's bias terms being affected. Another contribution of our work is an extrapolation step that predicts suitable adaptation parameters for future time steps based on the previous data. In combination, we obtain a lightweight procedure for learning from streaming data with varying class distribution that adds no trainable parameters and almost no memory or computational overhead compared to training a single model. Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches, especially with respect to the relevant real-world metric of lowest within-day accuracy.
1,298
null
How Much is Enough? A Study on Diffusion Times in Score-based Generative Models
Score-based diffusion models are a class of generative models whose dynamics is described by stochastic differential equations that map noise into data. While recent works have started to lay down a theoretical foundation for these models, an analytical understanding of the role of the diffusion time T is still lacking. Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution; however, a smaller value of T should be preferred for a better approximation of the score-matching objective and higher computational efficiency. Starting from a variational interpretation of diffusion models, in this work we quantify this trade-off, and suggest a new method to improve quality and efficiency of both training and sampling, by adopting smaller diffusion times. Indeed, we show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process. Empirical results support our analysis; for image data, our method is competitive w.r.t. the state-of-the-art, according to standard sample quality metrics and log-likelihood.
1,299
null
Multifidelity Reinforcement Learning with Control Variates
In many computational science and engineering applications, the output of a system of interest corresponding to a given input can be queried at different levels of fidelity with different costs. Typically, low-fidelity data is cheap and abundant, while high-fidelity data is expensive and scarce. In this work we study the reinforcement learning (RL) problem in the presence of multiple environments with different levels of fidelity for a given control task. We focus on improving the RL agent's performance with multifidelity data. Specifically, a multifidelity estimator that exploits the cross-correlations between the low- and high-fidelity returns is proposed to reduce the variance in the estimation of the state-action value function. The proposed estimator, which is based on the method of control variates, is used to design a multifidelity Monte Carlo RL (MFMCRL) algorithm that improves the learning of the agent in the high-fidelity environment. The impacts of variance reduction on policy evaluation and policy improvement are theoretically analyzed by using probability bounds. Our theoretical analysis and numerical experiments demonstrate that for a finite budget of high-fidelity data samples, our proposed MFMCRL agent attains superior performance compared with that of a standard RL agent that uses only the high-fidelity environment data for learning the optimal policy.
1,300
null
An Image Processing Pipeline for Camera Trap Time-Lapse Recordings
A new open-source image processing pipeline for analyzing camera trap time-lapse recordings is described. This pipeline includes machine learning models to assist human-in-the-loop video segmentation and animal re-identification. We present some performance results and observations on the utility of this pipeline after using it in a year-long project studying the spatial ecology and social behavior of the gopher tortoise.
1,301
null
MEAT: Maneuver Extraction from Agent Trajectories
Advances in learning-based trajectory prediction are enabled by large-scale datasets. However, in-depth analysis of such datasets is limited. Moreover, the evaluation of prediction models is limited to metrics averaged over all samples in the dataset. We propose an automated methodology that allows to extract maneuvers (e.g., left turn, lane change) from agent trajectories in such datasets. The methodology considers information about the agent dynamics and information about the lane segments the agent traveled along. Although it is possible to use the resulting maneuvers for training classification networks, we exemplary use them for extensive trajectory dataset analysis and maneuver-specific evaluation of multiple state-of-the-art trajectory prediction models. Additionally, an analysis of the datasets and an evaluation of the prediction models based on the agent dynamics is provided.
1,302
null
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning models have shown their potential for several applications. However, most of the models are opaque and difficult to trust due to their complex reasoning - commonly known as the black-box problem. Some fields, such as medicine, require a high degree of transparency to accept and adopt such technologies. Consequently, creating explainable/interpretable models or applying post-hoc methods on classifiers to build trust in deep learning models are required. Moreover, deep learning methods can be used for segmentation tasks, which typically require hard-to-obtain, time-consuming manually-annotated segmentation labels for training. This paper introduces three inherently-explainable classifiers to tackle both of these problems as one. The localisation heatmaps provided by the networks -- representing the models' focus areas and being used in classification decision-making -- can be directly interpreted, without requiring any post-hoc methods to derive information for model explanation. The models are trained by using the input image and only the classification labels as ground-truth in a supervised fashion - without using any information about the location of the region of interest (i.e. the segmentation labels), making the segmentation training of the models weakly-supervised through classification labels. The final segmentation is obtained by thresholding these heatmaps. The models were employed for the task of multi-class brain tumour classification using two different datasets, resulting in the best F1-score of 0.93 for the supervised classification task while securing a median Dice score of 0.67$\pm$0.08 for the weakly-supervised segmentation task. Furthermore, the obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7\% accuracy.
1,303
null
Fast Deep Autoencoder for Federated learning
This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF (Deep Autoencoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder network in a non-iterative way, which drastically reduces its training time. Its training can be carried out in a distributed way (several partitions of the dataset in parallel) and incrementally (aggregation of partial models), and due to its mathematical formulation, the data that is exchanged does not endanger the privacy of the users. This makes DAEF a valid method for edge computing and federated learning scenarios. The method has been evaluated and compared to traditional (iterative) deep autoencoders using seven real anomaly detection datasets, and their performance have been shown to be similar despite DAEF's faster training.
1,304
null
Distributionally Robust End-to-End Portfolio Construction
We propose an end-to-end distributionally robust system for portfolio construction that integrates the asset return prediction model with a distributionally robust portfolio optimization model. We also show how to learn the risk-tolerance parameter and the degree of robustness directly from data. End-to-end systems have an advantage in that information can be communicated between the prediction and decision layers during training, allowing the parameters to be trained for the final task rather than solely for predictive performance. However, existing end-to-end systems are not able to quantify and correct for the impact of model risk on the decision layer. Our proposed distributionally robust end-to-end portfolio selection system explicitly accounts for the impact of model risk. The decision layer chooses portfolios by solving a minimax problem where the distribution of the asset returns is assumed to belong to an ambiguity set centered around a nominal distribution. Using convex duality, we recast the minimax problem in a form that allows for efficient training of the end-to-end system.
1,305
null
Stochastic Zeroth order Descent with Structured Directions
We introduce and analyze Structured Stochastic Zeroth order Descent (S-SZD), a finite difference approach which approximates a stochastic gradient on a set of $l\leq d$ orthogonal directions, where $d$ is the dimension of the ambient space. These directions are randomly chosen, and may change at each step. For smooth convex functions we prove almost sure convergence of the iterates and a convergence rate on the function values of the form $O(d/l k^{-c})$ for every $c<1/2$, which is arbitrarily close to the one of Stochastic Gradient Descent (SGD) in terms of number of iterations. Our bound also shows the benefits of using $l$ multiple directions instead of one. For non-convex functions satisfying the Polyak-{\L}ojasiewicz condition, we establish the first convergence rates for stochastic zeroth order algorithms under such an assumption. We corroborate our theoretical findings in numerical simulations where assumptions are satisfied and on the real-world problem of hyper-parameter optimization, observing that S-SZD has very good practical performances.
1,306
null
PAVI: Plate-Amortized Variational Inference
Given some observed data and a probabilistic generative model, Bayesian inference aims at obtaining the distribution of a model's latent parameters that could have yielded the data. This task is challenging for large population studies where thousands of measurements are performed over a cohort of hundreds of subjects, resulting in a massive latent parameter space. This large cardinality renders off-the-shelf Variational Inference (VI) computationally impractical. In this work, we design structured VI families that can efficiently tackle large population studies. To this end, our main idea is to share the parameterization and learning across the different i.i.d. variables in a generative model -symbolized by the model's plates. We name this concept plate amortization, and illustrate the powerful synergies it entitles, resulting in expressive, parsimoniously parameterized and orders of magnitude faster to train large scale hierarchical variational distributions. We illustrate the practical utility of PAVI through a challenging Neuroimaging example featuring a million latent parameters, demonstrating a significant step towards scalable and expressive Variational Inference.
1,307
null
Deep Multi-Agent Reinforcement Learning with Hybrid Action Spaces based on Maximum Entropy
Multi-agent deep reinforcement learning has been applied to address a variety of complex problems with either discrete or continuous action spaces and achieved great success. However, most real-world environments cannot be described by only discrete action spaces or only continuous action spaces. And there are few works having ever utilized deep reinforcement learning (drl) to multi-agent problems with hybrid action spaces. Therefore, we propose a novel algorithm: Deep Multi-Agent Hybrid Soft Actor-Critic (MAHSAC) to fill this gap. This algorithm follows the centralized training but decentralized execution (CTDE) paradigm, and extend the Soft Actor-Critic algorithm (SAC) to handle hybrid action space problems in Multi-Agent environments based on maximum entropy. Our experiences are running on an easy multi-agent particle world with a continuous observation and discrete action space, along with some basic simulated physics. The experimental results show that MAHSAC has good performance in training speed, stability, and anti-interference ability. At the same time, it outperforms existing independent deep hybrid learning method in cooperative scenarios and competitive scenarios.