Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
8
null
Megapixel Image Generation with Step-Unrolled Denoising Autoencoders
An ongoing trend in generative modelling research has been to push sample resolutions higher whilst simultaneously reducing computational requirements for training and sampling. We aim to push this trend further via the combination of techniques - each component representing the current pinnacle of efficiency in their respective areas. These include vector-quantized GAN (VQ-GAN), a vector-quantization (VQ) model capable of high levels of lossy - but perceptually insignificant - compression; hourglass transformers, a highly scaleable self-attention model; and step-unrolled denoising autoencoders (SUNDAE), a non-autoregressive (NAR) text generative model. Unexpectedly, our method highlights weaknesses in the original formulation of hourglass transformers when applied to multidimensional data. In light of this, we propose modifications to the resampling mechanism, applicable in any task applying hierarchical transformers to multidimensional data. Additionally, we demonstrate the scalability of SUNDAE to long sequence lengths - four times longer than prior work. Our proposed framework scales to high-resolutions ($1024 \times 1024$) and trains quickly (2-4 days). Crucially, the trained model produces diverse and realistic megapixel samples in approximately 2 seconds on a consumer-grade GPU (GTX 1080Ti). In general, the framework is flexible: supporting an arbitrary number of sampling steps, sample-wise self-stopping, self-correction capabilities, conditional generation, and a NAR formulation that allows for arbitrary inpainting masks. We obtain FID scores of 10.56 on FFHQ256 - close to the original VQ-GAN in less than half the sampling steps - and 21.85 on FFHQ1024 in only 100 sampling steps.
9
null
Segmentation-free PVC for Cardiac SPECT using a Densely-connected Multi-dimensional Dynamic Network
In nuclear imaging, limited resolution causes partial volume effects (PVEs) that affect image sharpness and quantitative accuracy. Partial volume correction (PVC) methods incorporating high-resolution anatomical information from CT or MRI have been demonstrated to be effective. However, such anatomical-guided methods typically require tedious image registration and segmentation steps. Accurately segmented organ templates are also hard to obtain, particularly in cardiac SPECT imaging, due to the lack of hybrid SPECT/CT scanners with high-end CT and associated motion artifacts. Slight mis-registration/mis-segmentation would result in severe degradation in image quality after PVC. In this work, we develop a deep-learning-based method for fast cardiac SPECT PVC without anatomical information and associated organ segmentation. The proposed network involves a densely-connected multi-dimensional dynamic mechanism, allowing the convolutional kernels to be adapted based on the input images, even after the network is fully trained. Intramyocardial blood volume (IMBV) is introduced as an additional clinical-relevant loss function for network optimization. The proposed network demonstrated promising performance on 28 canine studies acquired on a GE Discovery NM/CT 570c dedicated cardiac SPECT scanner with a 64-slice CT using Technetium-99m-labeled red blood cells. This work showed that the proposed network with densely-connected dynamic mechanism produced superior results compared with the same network without such mechanism. Results also showed that the proposed network without anatomical information could produce images with statistically comparable IMBV measurements to the images generated by anatomical-guided PVC methods, which could be helpful in clinical translation.
10
null
HANF: Hyperparameter And Neural Architecture Search in Federated Learning
Automated machine learning (AutoML) is an important step to make machine learning models being widely applied to solve real world problems. Despite numerous research advancement, machine learning methods are not fully utilized by industries mainly due to their data privacy and security regulations, high cost involved in storing and computing increasing amount of data at central location and most importantly lack of expertise. Hence, we introduce a novel framework, HANF - $\textbf{H}$yperparameter $\textbf{A}$nd $\textbf{N}$eural architecture search in $\textbf{F}$ederated learning as a step towards building an AutoML framework for data distributed across several data owner servers without any need for bringing the data to a central location. HANF jointly optimizes a neural architecture and non-architectural hyperparameters of a learning algorithm using gradient-based neural architecture search and $n$-armed bandit approach respectively in data distributed setting. We show that HANF efficiently finds the optimized neural architecture and also tunes the hyperparameters on data owner servers. Additionally, HANF can be applied in both, federated and non-federated settings. Empirically, we show that HANF converges towards well-suited architectures and non-architectural hyperparameter-sets using image-classification tasks.
11
null
Achievement and Fragility of Long-term Equitability
Equipping current decision-making tools with notions of fairness, equitability, or other ethically motivated outcomes, is one of the top priorities in recent research efforts in machine learning, AI, and optimization. In this paper, we investigate how to allocate limited resources to {locally interacting} communities in a way to maximize a pertinent notion of equitability. In particular, we look at the dynamic setting where the allocation is repeated across multiple periods (e.g., yearly), the local communities evolve in the meantime (driven by the provided allocation), and the allocations are modulated by feedback coming from the communities themselves. We employ recent mathematical tools stemming from data-driven feedback online optimization, by which communities can learn their (possibly unknown) evolution, satisfaction, as well as they can share information with the deciding bodies. We design dynamic policies that converge to an allocation that maximize equitability in the long term. We further demonstrate our model and methodology with realistic examples of healthcare and education subsidies design in Sub-Saharian countries. One of the key empirical takeaways from our setting is that long-term equitability is fragile, in the sense that it can be easily lost when deciding bodies weigh in other factors (e.g., equality in allocation) in the allocation strategy. Moreover, a naive compromise, while not providing significant advantage to the communities, can promote inequality in social outcomes.
12
null
Source Localization of Graph Diffusion via Variational Autoencoders for Graph Inverse Problems
Graph diffusion problems such as the propagation of rumors, computer viruses, or smart grid failures are ubiquitous and societal. Hence it is usually crucial to identify diffusion sources according to the current graph diffusion observations. Despite its tremendous necessity and significance in practice, source localization, as the inverse problem of graph diffusion, is extremely challenging as it is ill-posed: different sources may lead to the same graph diffusion patterns. Different from most traditional source localization methods, this paper focuses on a probabilistic manner to account for the uncertainty of different candidate sources. Such endeavors require overcoming challenges including 1) the uncertainty in graph diffusion source localization is hard to be quantified; 2) the complex patterns of the graph diffusion sources are difficult to be probabilistically characterized; 3) the generalization under any underlying diffusion patterns is hard to be imposed. To solve the above challenges, this paper presents a generic framework: Source Localization Variational AutoEncoder (SL-VAE) for locating the diffusion sources under arbitrary diffusion patterns. Particularly, we propose a probabilistic model that leverages the forward diffusion estimation model along with deep generative models to approximate the diffusion source distribution for quantifying the uncertainty. SL-VAE further utilizes prior knowledge of the source-observation pairs to characterize the complex patterns of diffusion sources by a learned generative prior. Lastly, a unified objective that integrates the forward diffusion estimation model is derived to enforce the model to generalize under arbitrary diffusion patterns. Extensive experiments are conducted on 7 real-world datasets to demonstrate the superiority of SL-VAE in reconstructing the diffusion sources by excelling other methods on average 20% in AUC score.
13
null
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias
Deep learning models are able to approximate one specific dynamical system but struggle at learning generalisable dynamics, where dynamical systems obey the same laws of physics but contain different numbers of elements (e.g., double- and triple-pendulum systems). To relieve this issue, we proposed the Modular Lagrangian Network (ModLaNet), a structural neural network framework with modularity and physical inductive bias. This framework models the energy of each element using modularity and then construct the target dynamical system via Lagrangian mechanics. Modularity is beneficial for reusing trained networks and reducing the scale of networks and datasets. As a result, our framework can learn from the dynamics of simpler systems and extend to more complex ones, which is not feasible using other relevant physics-informed neural networks. We examine our framework for modelling double-pendulum or three-body systems with small training datasets, where our models achieve the best data efficiency and accuracy performance compared with counterparts. We also reorganise our models as extensions to model multi-pendulum and multi-body systems, demonstrating the intriguing reusable feature of our framework.
14
null
How to train accurate BNNs for embedded systems?
A key enabler of deploying convolutional neural networks on resource-constrained embedded systems is the binary neural network (BNN). BNNs save on memory and simplify computation by binarizing both features and weights. Unfortunately, binarization is inevitably accompanied by a severe decrease in accuracy. To reduce the accuracy gap between binary and full-precision networks, many repair methods have been proposed in the recent past, which we have classified and put into a single overview in this chapter. The repair methods are divided into two main branches, training techniques and network topology changes, which can further be split into smaller categories. The latter category introduces additional cost (energy consumption or additional area) for an embedded system, while the former does not. From our overview, we observe that progress has been made in reducing the accuracy gap, but BNN papers are not aligned on what repair methods should be used to get highly accurate BNNs. Therefore, this chapter contains an empirical review that evaluates the benefits of many repair methods in isolation over the ResNet-20\&CIFAR10 and ResNet-18\&CIFAR100 benchmarks. We found three repair categories most beneficial: feature binarizer, feature normalization, and double residual. Based on this review we discuss future directions and research opportunities. We sketch the benefit and costs associated with BNNs on embedded systems because it remains to be seen whether BNNs will be able to close the accuracy gap while staying highly energy-efficient on resource-constrained embedded systems.
15
null
Learning sparse features can lead to overfitting in neural networks
It is widely believed that the success of deep networks lies in their ability to learn a meaningful representation of the features of the data. Yet, understanding when and how this feature learning improves performance remains a challenge: for example, it is beneficial for modern architectures trained to classify images, whereas it is detrimental for fully-connected networks trained for the same task on the same data. Here we propose an explanation for this puzzle, by showing that feature learning can perform worse than lazy training (via random feature kernel or the NTK) as the former can lead to a sparser neural representation. Although sparsity is known to be essential for learning anisotropic data, it is detrimental when the target function is constant or smooth along certain directions of input space. We illustrate this phenomenon in two settings: (i) regression of Gaussian random functions on the d-dimensional unit sphere and (ii) classification of benchmark datasets of images. For (i), we compute the scaling of the generalization error with number of training points, and show that methods that do not learn features generalize better, even when the dimension of the input space is large. For (ii), we show empirically that learning features can indeed lead to sparse and thereby less smooth representations of the image predictors. This fact is plausibly responsible for deteriorating the performance, which is known to be correlated with smoothness along diffeomorphisms.
16
null
Bugs in Machine Learning-based Systems: A Faultload Benchmark
The rapid escalation of applying Machine Learning (ML) in various domains has led to paying more attention to the quality of ML components. There is then a growth of techniques and tools aiming at improving the quality of ML components and integrating them into the ML-based system safely. Although most of these tools use bugs' lifecycle, there is no standard benchmark of bugs to assess their performance, compare them and discuss their advantages and weaknesses. In this study, we firstly investigate the reproducibility and verifiability of the bugs in ML-based systems and show the most important factors in each one. Then, we explore the challenges of generating a benchmark of bugs in ML-based software systems and provide a bug benchmark namely defect4ML that satisfies all criteria of standard benchmark, i.e. relevance, reproducibility, fairness, verifiability, and usability. This faultload benchmark contains 113 bugs reported by ML developers on GitHub and Stack Overflow, using two of the most popular ML frameworks: TensorFlow and Keras. defect4ML also addresses important challenges in Software Reliability Engineering of ML-based software systems, like: 1) fast changes in frameworks, by providing various bugs for different versions of frameworks, 2) code portability, by delivering similar bugs in different ML frameworks, 3) bug reproducibility, by providing fully reproducible bugs with complete information about required dependencies and data, and 4) lack of detailed information on bugs, by presenting links to the bugs' origins. defect4ML can be of interest to ML-based systems practitioners and researchers to assess their testing tools and techniques.
17
null
Analyzing the impact of SARS-CoV-2 variants on respiratory sound signals
The COVID-19 outbreak resulted in multiple waves of infections that have been associated with different SARS-CoV-2 variants. Studies have reported differential impact of the variants on respiratory health of patients. We explore whether acoustic signals, collected from COVID-19 subjects, show computationally distinguishable acoustic patterns suggesting a possibility to predict the underlying virus variant. We analyze the Coswara dataset which is collected from three subject pools, namely, i) healthy, ii) COVID-19 subjects recorded during the delta variant dominant period, and iii) data from COVID-19 subjects recorded during the omicron surge. Our findings suggest that multiple sound categories, such as cough, breathing, and speech, indicate significant acoustic feature differences when comparing COVID-19 subjects with omicron and delta variants. The classification areas-under-the-curve are significantly above chance for differentiating subjects infected by omicron from those infected by delta. Using a score fusion from multiple sound categories, we obtained an area-under-the-curve of 89% and 52.4% sensitivity at 95% specificity. Additionally, a hierarchical three class approach was used to classify the acoustic data into healthy and COVID-19 positive, and further COVID-19 subjects into delta and omicron variants providing high level of 3-class classification accuracy. These results suggest new ways for designing sound based COVID-19 diagnosis approaches.
18
null
PSP: Million-level Protein Sequence Dataset for Protein Structure Prediction
Proteins are essential component of human life and their structures are important for function and mechanism analysis. Recent work has shown the potential of AI-driven methods for protein structure prediction. However, the development of new models is restricted by the lack of dataset and benchmark training procedure. To the best of our knowledge, the existing open source datasets are far less to satisfy the needs of modern protein sequence-structure related research. To solve this problem, we present the first million-level protein structure prediction dataset with high coverage and diversity, named as PSP. This dataset consists of 570k true structure sequences (10TB) and 745k complementary distillation sequences (15TB). We provide in addition the benchmark training procedure for SOTA protein structure prediction model on this dataset. We validate the utility of this dataset for training by participating CAMEO contest in which our model won the first place. We hope our PSP dataset together with the training benchmark can enable a broader community of AI/biology researchers for AI-driven protein related research.
19
null
Iterative Sound Source Localization for Unknown Number of Sources
Sound source localization aims to seek the direction of arrival (DOA) of all sound sources from the observed multi-channel audio. For the practical problem of unknown number of sources, existing localization algorithms attempt to predict a likelihood-based coding (i.e., spatial spectrum) and employ a pre-determined threshold to detect the source number and corresponding DOA value. However, these threshold-based algorithms are not stable since they are limited by the careful choice of threshold. To address this problem, we propose an iterative sound source localization approach called ISSL, which can iteratively extract each source's DOA without threshold until the termination criterion is met. Unlike threshold-based algorithms, ISSL designs an active source detector network based on binary classifier to accept residual spatial spectrum and decide whether to stop the iteration. By doing so, our ISSL can deal with an arbitrary number of sources, even more than the number of sources seen during the training stage. The experimental results show that our ISSL achieves significant performance improvements in both DOA estimation and source number detection compared with the existing threshold-based algorithms.
20
null
Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes
This paper proposes a physically consistent Gaussian Process (GP) enabling the identification of uncertain Lagrangian systems. The function space is tailored according to the energy components of the Lagrangian and the differential equation structure, analytically guaranteeing physical and mathematical properties such as energy conservation and quadratic form. The novel formulation of Cholesky decomposed matrix kernels allow the probabilistic preservation of positive definiteness. Only differential input-to-output measurements of the function map are required while Gaussian noise is permitted in torques, velocities, and accelerations. We demonstrate the effectiveness of the approach in numerical simulation.
21
null
Using Autoencoders on Differentially Private Federated Learning GANs
Machine learning has been applied to almost all fields of computer science over the past decades. The introduction of GANs allowed for new possibilities in fields of medical research and text prediction. However, these new fields work with ever more privacy-sensitive data. In order to maintain user privacy, a combination of federated learning, differential privacy and GANs can be used to work with private data without giving away a users' privacy. Recently, two implementations of such combinations have been published: DP-Fed-Avg GAN and GS-WGAN. This paper compares their performance and introduces an alternative version of DP-Fed-Avg GAN that makes use of denoising techniques to combat the loss in accuracy that generally occurs when applying differential privacy and federated learning to GANs. We also compare the novel adaptation of denoised DP-Fed-Avg GAN to the state-of-the-art implementations in this field.
22
null
Reinforcement learning based adaptive metaheuristics
Parameter adaptation, that is the capability to automatically adjust an algorithm's hyperparameters depending on the problem being faced, is one of the main trends in evolutionary computation applied to numerical optimization. While several handcrafted adaptation policies have been proposed over the years to address this problem, only few attempts have been done so far at apply machine learning to learn such policies. Here, we introduce a general-purpose framework for performing parameter adaptation in continuous-domain metaheuristics based on state-of-the-art reinforcement learning algorithms. We demonstrate the applicability of this framework on two algorithms, namely Covariance Matrix Adaptation Evolution Strategies (CMA-ES) and Differential Evolution (DE), for which we learn, respectively, adaptation policies for the step-size (for CMA-ES), and the scale factor and crossover rate (for DE). We train these policies on a set of 46 benchmark functions at different dimensionalities, with various inputs to the policies, in two settings: one policy per function, and one global policy for all functions. Compared, respectively, to the Cumulative Step-size Adaptation (CSA) policy and to two well-known adaptive DE variants (iDE and jDE), our policies are able to produce competitive results in the majority of cases, especially in the case of DE.
23
null
Adversarial Robustness of Deep Neural Networks: A Survey from a Formal Verification Perspective
Neural networks have been widely applied in security applications such as spam and phishing detection, intrusion prevention, and malware detection. This black-box method, however, often has uncertainty and poor explainability in applications. Furthermore, neural networks themselves are often vulnerable to adversarial attacks. For those reasons, there is a high demand for trustworthy and rigorous methods to verify the robustness of neural network models. Adversarial robustness, which concerns the reliability of a neural network when dealing with maliciously manipulated inputs, is one of the hottest topics in security and machine learning. In this work, we survey existing literature in adversarial robustness verification for neural networks and collect 39 diversified research works across machine learning, security, and software engineering domains. We systematically analyze their approaches, including how robustness is formulated, what verification techniques are used, and the strengths and limitations of each technique. We provide a taxonomy from a formal verification perspective for a comprehensive understanding of this topic. We classify the existing techniques based on property specification, problem reduction, and reasoning strategies. We also demonstrate representative techniques that have been applied in existing studies with a sample model. Finally, we discuss open questions for future research.
24
null
MPClan: Protocol Suite for Privacy-Conscious Computations
The growing volumes of data being collected and its analysis to provide better services are creating worries about digital privacy. To address privacy concerns and give practical solutions, the literature has relied on secure multiparty computation. However, recent research has mostly focused on the small-party honest-majority setting of up to four parties, noting efficiency concerns. In this work, we extend the strategies to support a larger number of participants in an honest-majority setting with efficiency at the center stage. Cast in the preprocessing paradigm, our semi-honest protocol improves the online complexity of the decade-old state-of-the-art protocol of Damg\aa rd and Nielson (CRYPTO'07). In addition to having an improved online communication cost, we can shut down almost half of the parties in the online phase, thereby saving up to 50% in the system's operational costs. Our maliciously secure protocol also enjoys similar benefits and requires only half of the parties, except for one-time verification, towards the end. To showcase the practicality of the designed protocols, we benchmark popular applications such as deep neural networks, graph neural networks, genome sequence matching, and biometric matching using prototype implementations. Our improved protocols aid in bringing up to 60-80% savings in monetary cost over prior work.
25
null
Computational Complexity Evaluation of Neural Network Applications in Signal Processing
In this paper, we provide a systematic approach for assessing and comparing the computational complexity of neural network layers in digital signal processing. We provide and link four software-to-hardware complexity measures, defining how the different complexity metrics relate to the layers' hyper-parameters. This paper explains how to compute these four metrics for feed-forward and recurrent layers, and defines in which case we ought to use a particular metric depending on whether we characterize a more soft- or hardware-oriented application. One of the four metrics, called `the number of additions and bit shifts (NABS)', is newly introduced for heterogeneous quantization. NABS characterizes the impact of not only the bitwidth used in the operation but also the type of quantization used in the arithmetical operations. We intend this work to serve as a baseline for the different levels (purposes) of complexity estimation related to the neural networks' application in real-time digital signal processing, aiming at unifying the computational complexity estimation.
26
null
SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting
Sequence clustering in a streaming environment is challenging because it is computationally expensive, and the sequences may evolve over time. K-medoids or Partitioning Around Medoids (PAM) is commonly used to cluster sequences since it supports alignment-based distances, and the k-centers being actual data items helps with cluster interpretability. However, offline k-medoids has no support for concept drift, while also being prohibitively expensive for clustering data streams. We therefore propose SECLEDS, a streaming variant of the k-medoids algorithm with constant memory footprint. SECLEDS has two unique properties: i) it uses multiple medoids per cluster, producing stable high-quality clusters, and ii) it handles concept drift using an intuitive Medoid Voting scheme for approximating cluster distances. Unlike existing adaptive algorithms that create new clusters for new concepts, SECLEDS follows a fundamentally different approach, where the clusters themselves evolve with an evolving stream. Using real and synthetic datasets, we empirically demonstrate that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimensionality, and number of clusters. We compare against three popular stream and batch clustering algorithms. The state-of-the-art BanditPAM is used as an offline benchmark. SECLEDS achieves comparable F1 score to BanditPAM while reducing the number of required distance computations by 83.7%. Importantly, SECLEDS outperforms all baselines by 138.7% when the stream contains drift. We also cluster real network traffic, and provide evidence that SECLEDS can support network bandwidths of up to 1.08 Gbps while using the (expensive) dynamic time warping distance.
27
null
Dynamic network congestion pricing based on deep reinforcement learning
Traffic congestion is a serious problem in urban areas. Dynamic congestion pricing is one of the useful schemes to eliminate traffic congestion in strategic scale. However, in the reality, an optimal dynamic congestion pricing is very difficult or impossible to determine theoretically, because road networks are usually large and complicated, and behavior of road users is uncertain. To account for this challenge, this work proposes a dynamic congestion pricing method using deep reinforcement learning (DRL). It is designed to eliminate traffic congestion based on observable data in general large-scale road networks, by leveraging the data-driven nature of deep reinforcement learning. One of the novel elements of the proposed method is the distributed and cooperative learning scheme. Specifically, the DRL is implemented by a spatial-temporally distributed manner, and cooperation among DRL agents is established by novel techniques we call spatially shared reward and temporally switching learning. It enables fast and computationally efficient learning in large-scale networks. The numerical experiments using Sioux Falls Network showed that the proposed method works well thanks to the novel learning scheme.
28
null
"You Can't Fix What You Can't Measure": Privately Measuring Demographic Performance Disparities in Federated Learning
Federated learning allows many devices to collaborate in the training of machine learning models. As in traditional machine learning, there is a growing concern that models trained with federated learning may exhibit disparate performance for different demographic groups. Existing solutions to measure and ensure equal model performance across groups require access to information about group membership, but this access is not always available or desirable, especially under the privacy aspirations of federated learning. We study the feasibility of measuring such performance disparities while protecting the privacy of the user's group membership and the federated model's performance on the user's data. Protecting both is essential for privacy, because they may be correlated, and thus learning one may reveal the other. On the other hand, from the utility perspective, the privacy-preserved data should maintain the correlation to ensure the ability to perform accurate measurements of the performance disparity. We achieve both of these goals by developing locally differentially private mechanisms that preserve the correlations between group membership and model performance. To analyze the effectiveness of the mechanisms, we bound their error in estimating the disparity when optimized for a given privacy budget, and validate these bounds on synthetic data. Our results show that the error rapidly decreases for realistic numbers of participating clients, demonstrating that, contrary to what prior work suggested, protecting the privacy of protected attributes is not necessarily in conflict with identifying disparities in the performance of federated models.
29
null
Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in Coherent Optical Transmission Systems
For the first time, recurrent and feedforward neural network-based equalizers for nonlinearity compensation are implemented in an FPGA, with a level of complexity comparable to that of a dispersion equalizer. We demonstrate that the NN-based equalizers can outperform a 1 step-per-span DBP.
30
null
MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-IID distribution
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled GANs to benefit from the rich distributed training data while preserving privacy. However, in a non-iid setting, current federated GAN architectures are unstable, struggling to learn the distinct features and vulnerable to mode collapse. In this paper, we propose a novel architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse and instability for non-iid datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e. high inception score) on average over 20 clients compared to baseline FLGAN.
31
null
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that the class distribution is overall balanced. However, long-tail datasets are ubiquitous in a wide spectrum of applications, where the amount of head class instances is larger than the tail classes. Under such a scenario, AUC is a much more reasonable metric than accuracy since it is insensitive toward class distribution. Motivated by this, we present an early trial to explore adversarial training methods to optimize AUC. The main challenge lies in that the positive and negative examples are tightly coupled in the objective function. As a direct result, one cannot generate adversarial examples without a full scan of the dataset. To address this issue, based on a concavity regularization scheme, we reformulate the AUC optimization problem as a saddle point problem, where the objective becomes an instance-wise function. This leads to an end-to-end training protocol. Furthermore, we provide a convergence guarantee of the proposed algorithm. Our analysis differs from the existing studies since the algorithm is asked to generate adversarial examples by calculating the gradient of a min-max problem. Finally, the extensive experimental results show the performance and robustness of our algorithm in three long-tail datasets.
32
null
Neural Networks with A La Carte Selection of Activation Functions
Activation functions (AFs), which are pivotal to the success (or failure) of a neural network, have received increased attention in recent years, with researchers seeking to design novel AFs that improve some aspect of network performance. In this paper we take another direction, wherein we combine a slew of known AFs into successful architectures, proposing three methods to do so beneficially: 1) generate AF architectures at random, 2) use Optuna, an automatic hyper-parameter optimization software framework, with a Tree-structured Parzen Estimator (TPE) sampler, and 3) use Optuna with a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) sampler. We show that all methods often produce significantly better results for 25 classification problems when compared with a standard network composed of ReLU hidden units and a softmax output unit. Optuna with the TPE sampler emerged as the best AF architecture-producing method.
33
null
Data-driven discovery of novel 2D materials by deep generative models
Efficient algorithms to generate candidate crystal structures with good stability properties can play a key role in data-driven materials discovery. Here we show that a crystal diffusion variational autoencoder (CDVAE) is capable of generating two-dimensional (2D) materials of high chemical and structural diversity and formation energies mirroring the training structures. Specifically, we train the CDVAE on 2615 2D materials with energy above the convex hull $\Delta H_{\mathrm{hull}}< 0.3$ eV/atom, and generate 5003 materials that we relax using density functional theory (DFT). We also generate 14192 new crystals by systematic element substitution of the training structures. We find that the generative model and lattice decoration approach are complementary and yield materials with similar stability properties but very different crystal structures and chemical compositions. In total we find 11630 predicted new 2D materials, where 8599 of these have $\Delta H_{\mathrm{hull}}< 0.3$ eV/atom as the seed structures, while 2004 are within 50 meV of the convex hull and could potentially be synthesized. The relaxed atomic structures of all the materials are available in the open Computational 2D Materials Database (C2DB). Our work establishes the CDVAE as an efficient and reliable crystal generation machine, and significantly expands the space of 2D materials.
34
null
Multi-Agent Deep Reinforcement Learning for Cost- and Delay-Sensitive Virtual Network Function Placement and Routing
This paper proposes an effective and novel multiagent deep reinforcement learning (MADRL)-based method for solving the joint virtual network function (VNF) placement and routing (P&R), where multiple service requests with differentiated demands are delivered at the same time. The differentiated demands of the service requests are reflected by their delay- and cost-sensitive factors. We first construct a VNF P&R problem to jointly minimize a weighted sum of service delay and resource consumption cost, which is NP-complete. Then, the joint VNF P&R problem is decoupled into two iterative subtasks: placement subtask and routing subtask. Each subtask consists of multiple concurrent parallel sequential decision processes. By invoking the deep deterministic policy gradient method and multi-agent technique, an MADRL-P&R framework is designed to perform the two subtasks. The new joint reward and internal rewards mechanism is proposed to match the goals and constraints of the placement and routing subtasks. We also propose the parameter migration-based model-retraining method to deal with changing network topologies. Corroborated by experiments, the proposed MADRL-P&R framework is superior to its alternatives in terms of service cost and delay, and offers higher flexibility for personalized service demands. The parameter migration-based model-retraining method can efficiently accelerate convergence under moderate network topology changes.
35
null
Aggregated Multi-output Gaussian Processes with Knowledge Transfer Across Domains
Aggregate data often appear in various fields such as socio-economics and public security. The aggregate data are associated not with points but with supports (e.g., spatial regions in a city). Since the supports may have various granularities depending on attributes (e.g., poverty rate and crime rate), modeling such data is not straightforward. This article offers a multi-output Gaussian process (MoGP) model that infers functions for attributes using multiple aggregate datasets of respective granularities. In the proposed model, the function for each attribute is assumed to be a dependent GP modeled as a linear mixing of independent latent GPs. We design an observation model with an aggregation process for each attribute; the process is an integral of the GP over the corresponding support. We also introduce a prior distribution of the mixing weights, which allows a knowledge transfer across domains (e.g., cities) by sharing the prior. This is advantageous in such a situation where the spatially aggregated dataset in a city is too coarse to interpolate; the proposed model can still make accurate predictions of attributes by utilizing aggregate datasets in other cities. The inference of the proposed model is based on variational Bayes, which enables one to learn the model parameters using the aggregate datasets from multiple domains. The experiments demonstrate that the proposed model outperforms in the task of refining coarse-grained aggregate data on real-world datasets: Time series of air pollutants in Beijing and various kinds of spatial datasets from New York City and Chicago.
36
null
SANE-TTS: Stable And Natural End-to-End Multilingual Text-to-Speech
In this paper, we present SANE-TTS, a stable and natural end-to-end multilingual TTS model. By the difficulty of obtaining multilingual corpus for given speaker, training multilingual TTS model with monolingual corpora is unavoidable. We introduce speaker regularization loss that improves speech naturalness during cross-lingual synthesis as well as domain adversarial training, which is applied in other multilingual TTS models. Furthermore, by adding speaker regularization loss, replacing speaker embedding with zero vector in duration predictor stabilizes cross-lingual inference. With this replacement, our model generates speeches with moderate rhythm regardless of source speaker in cross-lingual synthesis. In MOS evaluation, SANE-TTS achieves naturalness score above 3.80 both in cross-lingual and intralingual synthesis, where the ground truth score is 3.99. Also, SANE-TTS maintains speaker similarity close to that of ground truth even in cross-lingual inference. Audio samples are available on our web page.
37
null
Implicit Channel Learning for Machine Learning Applications in 6G Wireless Networks
With the deployment of the fifth generation (5G) wireless systems gathering momentum across the world, possible technologies for 6G are under active research discussions. In particular, the role of machine learning (ML) in 6G is expected to enhance and aid emerging applications such as virtual and augmented reality, vehicular autonomy, and computer vision. This will result in large segments of wireless data traffic comprising image, video and speech. The ML algorithms process these for classification/recognition/estimation through the learning models located on cloud servers. This requires wireless transmission of data from edge devices to the cloud server. Channel estimation, handled separately from recognition step, is critical for accurate learning performance. Toward combining the learning for both channel and the ML data, we introduce implicit channel learning to perform the ML tasks without estimating the wireless channel. Here, the ML models are trained with channel-corrupted datasets in place of nominal data. Without channel estimation, the proposed approach exhibits approximately 60% improvement in image and speech classification tasks for diverse scenarios such as millimeter wave and IEEE 802.11p vehicular channels.
38
null
Self Supervised Learning for Few Shot Hyperspectral Image Classification
Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning.
39
null
Approximating 1-Wasserstein Distance with Trees
Wasserstein distance, which measures the discrepancy between distributions, shows efficacy in various types of natural language processing (NLP) and computer vision (CV) applications. One of the challenges in estimating Wasserstein distance is that it is computationally expensive and does not scale well for many distribution comparison tasks. In this paper, we aim to approximate the 1-Wasserstein distance by the tree-Wasserstein distance (TWD), where TWD is a 1-Wasserstein distance with tree-based embedding and can be computed in linear time with respect to the number of nodes on a tree. More specifically, we propose a simple yet efficient L1-regularized approach to learning the weights of the edges in a tree. To this end, we first show that the 1-Wasserstein approximation problem can be formulated as a distance approximation problem using the shortest path distance on a tree. We then show that the shortest path distance can be represented by a linear model and can be formulated as a Lasso-based regression problem. Owing to the convex formulation, we can obtain a globally optimal solution efficiently. Moreover, we propose a tree-sliced variant of these methods. Through experiments, we demonstrated that the weighted TWD can accurately approximate the original 1-Wasserstein distance.
40
null
TreeDRNet:A Robust Deep Model for Long Term Time Series Forecasting
Various deep learning models, especially some latest Transformer-based approaches, have greatly improved the state-of-art performance for long-term time series forecasting.However, those transformer-based models suffer a severe deterioration performance with prolonged input length, which prohibits them from using extended historical info.Moreover, these methods tend to handle complex examples in long-term forecasting with increased model complexity, which often leads to a significant increase in computation and less robustness in performance(e.g., overfitting). We propose a novel neural network architecture, called TreeDRNet, for more effective long-term forecasting. Inspired by robust regression, we introduce doubly residual link structure to make prediction more robust.Built upon Kolmogorov-Arnold representation theorem, we explicitly introduce feature selection, model ensemble, and a tree structure to further utilize the extended input sequence, which improves the robustness and representation power of TreeDRNet. Unlike previous deep models for sequential forecasting work, TreeDRNet is built entirely on multilayer perceptron and thus enjoys high computational efficiency. Our extensive empirical studies show that TreeDRNet is significantly more effective than state-of-the-art methods, reducing prediction errors by 20% to 40% for multivariate time series. In particular, TreeDRNet is over 10 times more efficient than transformer-based methods. The code will be released soon.
41
null
On Structural Explanation of Bias in Graph Neural Networks
Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the \emph{de facto} solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE.
42
null
zPROBE: Zero Peek Robustness Checks for Federated Learning
Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thereby preventing leakage of the users' (private) training data from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the model accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., the median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and unscalable in the secure domain, as it requires sorting of all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage the derived statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.
43
null
Classifying Unstructured Clinical Notes via Automatic Weak Supervision
Healthcare providers usually record detailed notes of the clinical care delivered to each patient for clinical, research, and billing purposes. Due to the unstructured nature of these narratives, providers employ dedicated staff to assign diagnostic codes to patients' diagnoses using the International Classification of Diseases (ICD) coding system. This manual process is not only time-consuming but also costly and error-prone. Prior work demonstrated potential utility of Machine Learning (ML) methodology in automating this process, but it has relied on large quantities of manually labeled data to train the models. Additionally, diagnostic coding systems evolve with time, which makes traditional supervised learning strategies unable to generalize beyond local applications. In this work, we introduce a general weakly-supervised text classification framework that learns from class-label descriptions only, without the need to use any human-labeled documents. It leverages the linguistic domain knowledge stored within pre-trained language models and the data programming framework to assign code labels to individual texts. We demonstrate the efficacy and flexibility of our method by comparing it to state-of-the-art weak text classifiers across four real-world text classification datasets, in addition to assigning ICD codes to medical notes in the publicly available MIMIC-III database.
44
null
Symbolic-Regression Boosting
Modifying standard gradient boosting by replacing the embedded weak learner in favor of a strong(er) one, we present SyRBo: Symbolic-Regression Boosting. Experiments over 98 regression datasets show that by adding a small number of boosting stages -- between 2--5 -- to a symbolic regressor, statistically significant improvements can often be attained. We note that coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to an extant symbolic regressor, often with beneficial results.
45
null
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings
We study reinforcement learning with function approximation for large-scale Partially Observable Markov Decision Processes (POMDPs) where the state space and observation space are large or even continuous. Particularly, we consider Hilbert space embeddings of POMDP where the feature of latent states and the feature of observations admit a conditional Hilbert space embedding of the observation emission process, and the latent state transition is deterministic. Under the function approximation setup where the optimal latent state-action $Q$-function is linear in the state feature, and the optimal $Q$-function has a gap in actions, we provide a \emph{computationally and statistically efficient} algorithm for finding the \emph{exact optimal} policy. We show our algorithm's computational and statistical complexities scale polynomially with respect to the horizon and the intrinsic dimension of the feature on the observation space. Furthermore, we show both the deterministic latent transitions and gap assumptions are necessary to avoid statistical complexity exponential in horizon or dimension. Since our guarantee does not have an explicit dependence on the size of the state and observation spaces, our algorithm provably scales to large-scale POMDPs.
46
null
Multi-modal Sensor Data Fusion for In-situ Classification of Animal Behavior Using Accelerometry and GNSS Data
We examine using data from multiple sensing modes, i.e., accelerometry and global navigation satellite system (GNSS), for classifying animal behavior. We extract three new features from the GNSS data, namely, the distance from the water point, median speed, and median estimated horizontal position error. We consider two approaches for combining the information available from the accelerometry and GNSS data. The first approach is based on concatenating the features extracted from both sensor data and feeding the concatenated feature vector into a multi-layer perceptron (MLP) classifier. The second approach is based on fusing the posterior probabilities predicted by two MLP classifiers each taking the features extracted from the data of one sensor as input. We evaluate the performance of the developed multi-modal animal behavior classification algorithms using two real-world datasets collected via smart cattle collar and ear tags. The leave-one-animal-out cross-validation results show that both approaches improve the classification performance appreciably compared with using the data from only one sensing mode, in particular, for the infrequent but important behaviors of walking and drinking. The algorithms developed based on both approaches require rather small computational and memory resources hence are suitable for implementation on embedded systems of our collar and ear tags. However, the multi-modal animal behavior classification algorithm based on posterior probability fusion is preferable to the one based on feature concatenation as it delivers better classification accuracy, has less computational and memory complexity, is more robust to sensor data failure, and enjoys better modularity.
47
null
Synthesizing Rolling Bearing Fault Samples in New Conditions: A framework based on a modified CGAN
Bearings are one of the vital components of rotating machines that are prone to unexpected faults. Therefore, bearing fault diagnosis and condition monitoring is essential for reducing operational costs and downtime in numerous industries. In various production conditions, bearings can be operated under a range of loads and speeds, which causes different vibration patterns associated with each fault type. Normal data is ample as systems usually work in desired conditions. On the other hand, fault data is rare, and in many conditions, there is no data recorded for the fault classes. Accessing fault data is crucial for developing data-driven fault diagnosis tools that can improve both the performance and safety of operations. To this end, a novel algorithm based on Conditional Generative Adversarial Networks (CGANs) is introduced. Trained on the normal and fault data on any actual fault conditions, this algorithm generates fault data from normal data of target conditions. The proposed method is validated on a real-world bearing dataset, and fault data are generated for different conditions. Several state-of-the-art classifiers and visualization models are implemented to evaluate the quality of the synthesized data. The results demonstrate the efficacy of the proposed algorithm.
48
null
Bilateral Network with Channel Splitting Network and Transformer for Thermal Image Super-Resolution
In recent years, the Thermal Image Super-Resolution (TISR) problem has become an attractive research topic. TISR would been used in a wide range of fields, including military, medical, agricultural and animal ecology. Due to the success of PBVS-2020 and PBVS-2021 workshop challenge, the result of TISR keeps improving and attracts more researchers to sign up for PBVS-2022 challenge. In this paper, we will introduce the technical details of our submission to PBVS-2022 challenge designing a Bilateral Network with Channel Splitting Network and Transformer(BN-CSNT) to tackle the TISR problem. Firstly, we designed a context branch based on channel splitting network with transformer to obtain sufficient context information. Secondly, we designed a spatial branch with shallow transformer to extract low level features which can preserve the spatial information. Finally, for the context branch in order to fuse the features from channel splitting network and transformer, we proposed an attention refinement module, and then features from context branch and spatial branch are fused by proposed feature fusion module. The proposed method can achieve PSNR=33.64, SSIM=0.9263 for x4 and PSNR=21.08, SSIM=0.7803 for x2 in the PBVS-2022 challenge test dataset.
49
null
How many labelers do you have? A closer look at gold-standard labels
The construction of most supervised learning datasets revolves around collecting multiple labels for each instance, then aggregating the labels to form a type of ``gold-standard.''. We question the wisdom of this pipeline by developing a (stylized) theoretical model of this process and analyzing its statistical consequences, showing how access to non-aggregated label information can make training well-calibrated models easier or -- in some cases -- even feasible, whereas it is impossible with only gold-standard labels. The entire story, however, is subtle, and the contrasts between aggregated and fuller label information depend on the particulars of the problem, where estimators that use aggregated information exhibit robust but slower rates of convergence, while estimators that can effectively leverage all labels converge more quickly if they have fidelity to (or can learn) the true labeling process. The theory we develop in the stylized model makes several predictions for real-world datasets, including when non-aggregate labels should improve learning performance, which we test to corroborate the validity of our predictions.
50
null
End-to-End Text-to-Speech Based on Latent Representation of Speaking Styles Using Spontaneous Dialogue
The recent text-to-speech (TTS) has achieved quality comparable to that of humans; however, its application in spoken dialogue has not been widely studied. This study aims to realize a TTS that closely resembles human dialogue. First, we record and transcribe actual spontaneous dialogues. Then, the proposed dialogue TTS is trained in two stages: first stage, variational autoencoder (VAE)-VITS or Gaussian mixture variational autoencoder (GMVAE)-VITS is trained, which introduces an utterance-level latent variable into variational inference with adversarial learning for end-to-end text-to-speech (VITS), a recently proposed end-to-end TTS model. A style encoder that extracts a latent speaking style representation from speech is trained jointly with TTS. In the second stage, a style predictor is trained to predict the speaking style to be synthesized from dialogue history. During inference, by passing the speaking style representation predicted by the style predictor to VAE/GMVAE-VITS, speech can be synthesized in a style appropriate to the context of the dialogue. Subjective evaluation results demonstrate that the proposed method outperforms the original VITS in terms of dialogue-level naturalness.
51
null
BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
Methods for extracting audio and speech features have been studied since pioneering work on spectrum analysis decades ago. Recent efforts are guided by the ambition to develop general-purpose audio representations. For example, deep neural networks can extract optimal embeddings if they are trained on large audio datasets. This work extends existing methods based on self-supervised learning by bootstrapping, proposes various encoder architectures, and explores the effects of using different pre-training datasets. Lastly, we present a novel training framework to come up with a hybrid audio representation, which combines handcrafted and data-driven learned audio features. All the proposed representations were evaluated within the HEAR NeurIPS 2021 challenge for auditory scene classification and timestamp detection tasks. Our results indicate that the hybrid model with a convolutional transformer as the encoder yields superior performance in most HEAR challenge tasks.
52
null
How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections
Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.
53
null
Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning
It has been a recent trend to leverage the power of supervised learning (SL) towards more effective reinforcement learning (RL) methods. We propose a novel phasic approach by alternating online RL and offline SL for tackling sparse-reward goal-conditioned problems. In the online phase, we perform RL training and collect rollout data while in the offline phase, we perform SL on those successful trajectories from the dataset. To further improve sample efficiency, we adopt additional techniques in the online phase including task reduction to generate more feasible trajectories and a value-difference-based intrinsic reward to alleviate the sparse-reward issue. We call this overall algorithm, PhAsic self-Imitative Reduction (PAIR). PAIR substantially outperforms both non-phasic RL and phasic SL baselines on sparse-reward goal-conditioned robotic control problems, including a challenging stacking task. PAIR is the first RL method that learns to stack 6 cubes with only 0/1 success rewards from scratch.
54
null
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
We study Reinforcement Learning for partially observable dynamical systems using function approximation. We propose a new \textit{Partially Observable Bilinear Actor-Critic framework}, that is general enough to include models such as observable tabular Partially Observable Markov Decision Processes (POMDPs), observable Linear-Quadratic-Gaussian (LQG), Predictive State Representations (PSRs), as well as a newly introduced model Hilbert Space Embeddings of POMDPs and observable POMDPs with latent low-rank transition. Under this framework, we propose an actor-critic style algorithm that is capable of performing agnostic policy learning. Given a policy class that consists of memory based policies (that look at a fixed-length window of recent observations), and a value function class that consists of functions taking both memory and future observations as inputs, our algorithm learns to compete against the best memory-based policy in the given policy class. For certain examples such as undercomplete observable tabular POMDPs, observable LQGs and observable POMDPs with latent low-rank transition, by implicitly leveraging their special properties, our algorithm is even capable of competing against the globally optimal policy without paying an exponential dependence on the horizon in its sample complexity.
55
null
Three Applications of Conformal Prediction for Rating Breast Density in Mammography
Breast cancer is the most common cancers and early detection from mammography screening is crucial in improving patient outcomes. Assessing mammographic breast density is clinically important as the denser breasts have higher risk and are more likely to occlude tumors. Manual assessment by experts is both time-consuming and subject to inter-rater variability. As such, there has been increased interest in the development of deep learning methods for mammographic breast density assessment. Despite deep learning having demonstrated impressive performance in several prediction tasks for applications in mammography, clinical deployment of deep learning systems in still relatively rare; historically, mammography Computer-Aided Diagnoses (CAD) have over-promised and failed to deliver. This is in part due to the inability to intuitively quantify uncertainty of the algorithm for the clinician, which would greatly enhance usability. Conformal prediction is well suited to increase reliably and trust in deep learning tools but they lack realistic evaluations on medical datasets. In this paper, we present a detailed analysis of three possible applications of conformal prediction applied to medical imaging tasks: distribution shift characterization, prediction quality improvement, and subgroup fairness analysis. Our results show the potential of distribution-free uncertainty quantification techniques to enhance trust on AI algorithms and expedite their translation to usage.
56
null
Knowledge Distillation via Weighted Ensemble of Teaching Assistants
Knowledge distillation in machine learning is the process of transferring knowledge from a large model called the teacher to a smaller model called the student. Knowledge distillation is one of the techniques to compress the large network (teacher) to a smaller network (student) that can be deployed in small devices such as mobile phones. When the network size gap between the teacher and student increases, the performance of the student network decreases. To solve this problem, an intermediate model is employed between the teacher model and the student model known as the teaching assistant model, which in turn bridges the gap between the teacher and the student. In this research, we have shown that using multiple teaching assistant models, the student model (the smaller model) can be further improved. We combined these multiple teaching assistant models using weighted ensemble learning where we have used a differential evaluation optimization algorithm to generate the weight values.
57
null
Sampling Enclosing Subgraphs for Link Prediction
Link prediction is a fundamental problem for graph-structured data (e.g., social networks, drug side-effect networks, etc.). Graph neural networks have offered robust solutions for this problem, specifically by learning the representation of the subgraph enclosing the target link (i.e., pair of nodes). However, these solutions do not scale well to large graphs as extraction and operation on enclosing subgraphs are computationally expensive, especially for large graphs. This paper presents a scalable link prediction solution, that we call ScaLed, which utilizes sparse enclosing subgraphs to make predictions. To extract sparse enclosing subgraphs, ScaLed takes multiple random walks from a target pair of nodes, then operates on the sampled enclosing subgraph induced by all visited nodes. By leveraging the smaller sampled enclosing subgraph, ScaLed can scale to larger graphs with much less overhead while maintaining high accuracy. ScaLed further provides the flexibility to control the trade-off between computation overhead and accuracy. Through comprehensive experiments, we have shown that ScaLed can produce comparable accuracy to those reported by the existing subgraph representation learning frameworks while being less computationally demanding.
58
null
STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison
Machine learning (ML) offers powerful methods for detecting and modeling associations often in data with large feature spaces and complex associations. Many useful tools/packages (e.g. scikit-learn) have been developed to make the various elements of data handling, processing, modeling, and interpretation accessible. However, it is not trivial for most investigators to assemble these elements into a rigorous, replicatable, unbiased, and effective data analysis pipeline. Automated machine learning (AutoML) seeks to address these issues by simplifying the process of ML analysis for all. Here, we introduce STREAMLINE, a simple, transparent, end-to-end AutoML pipeline designed as a framework to easily conduct rigorous ML modeling and analysis (limited initially to binary classification). STREAMLINE is specifically designed to compare performance between datasets, ML algorithms, and other AutoML tools. It is unique among other autoML tools by offering a fully transparent and consistent baseline of comparison using a carefully designed series of pipeline elements including: (1) exploratory analysis, (2) basic data cleaning, (3) cross validation partitioning, (4) data scaling and imputation, (5) filter-based feature importance estimation, (6) collective feature selection, (7) ML modeling with `Optuna' hyperparameter optimization across 15 established algorithms (including less well-known Genetic Programming and rule-based ML), (8) evaluation across 16 classification metrics, (9) model feature importance estimation, (10) statistical significance comparisons, and (11) automatically exporting all results, plots, a PDF summary report, and models that can be easily applied to replication data.
59
null
The Real Deal: A Review of Challenges and Opportunities in Moving Reinforcement Learning-Based Traffic Signal Control Systems Towards Reality
Traffic signal control (TSC) is a high-stakes domain that is growing in importance as traffic volume grows globally. An increasing number of works are applying reinforcement learning (RL) to TSC; RL can draw on an abundance of traffic data to improve signalling efficiency. However, RL-based signal controllers have never been deployed. In this work, we provide the first review of challenges that must be addressed before RL can be deployed for TSC. We focus on four challenges involving (1) uncertainty in detection, (2) reliability of communications, (3) compliance and interpretability, and (4) heterogeneous road users. We show that the literature on RL-based TSC has made some progress towards addressing each challenge. However, more work should take a systems thinking approach that considers the impacts of other pipeline components on RL.
60
null
Efficient and Accurate Top-$K$ Recovery from Choice Data
The intersection of learning to rank and choice modeling is an active area of research with applications in e-commerce, information retrieval and the social sciences. In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items as efficiently as possible using passively collected discrete choice data, i.e., the user picks one item from a set of multiple items. Motivated by this practical consideration, we propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery i.e., correctly identifying all of the top $K$ items. We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models. We prove that in the limit, the choice-based Borda count algorithm produces the same top-$K$ estimate as the commonly used Maximum Likelihood Estimate method but the former's speed and simplicity brings considerable advantages in practice. Experiments on both synthetic and real datasets show that the counting algorithm is competitive with commonly used ranking algorithms in terms of accuracy while being several orders of magnitude faster.
61
null
A Disability Lens towards Biases in GPT-3 Generated Open-Ended Languages
Language models (LM) are becoming prevalent in many language-based application spaces globally. Although these LMs are improving our day-to-day interactions with digital products, concerns remain whether open-ended languages or text generated from these models reveal any biases toward a specific group of people, thereby risking the usability of a certain product. There is a need to identify whether these models possess bias to improve the fairness in these models. This gap motivates our ongoing work, where we measured the two aspects of bias in GPT-3 generated text through a disability lens.
62
null
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
3D-related inductive biases like translational invariance and rotational equivariance are indispensable to graph neural networks operating on 3D atomistic graphs such as molecules. Inspired by the success of Transformers in various domains, we study how to incorporate these inductive biases into Transformers. In this paper, we present Equiformer, a graph neural network leveraging the strength of Transformer architectures and incorporating $SE(3)/E(3)$-equivariant features based on irreducible representations (irreps). Irreps features encode equivariant information in channel dimensions without complicating graph structures. The simplicity enables us to directly incorporate them by replacing original operations with equivariant counterparts. Moreover, to better adapt Transformers to 3D graphs, we propose a novel equivariant graph attention, which considers both content and geometric information such as relative position contained in irreps features. To improve expressivity of the attention, we replace dot product attention with multi-layer perceptron attention and include non-linear message passing. We benchmark Equiformer on two quantum properties prediction datasets, QM9 and OC20. For QM9, among models trained with the same data partition, Equiformer achieves best results on 11 out of 12 regression tasks. For OC20, under the setting of training with IS2RE data and optionally IS2RS data, Equiformer improves upon state-of-the-art models. Code reproducing all main results will be available soon.
63
null
On making optimal transport robust to all outliers
Optimal transport (OT) is known to be sensitive against outliers because of its marginal constraints. Outlier robust OT variants have been proposed based on the definition that outliers are samples which are expensive to move. In this paper, we show that this definition is restricted by considering the case where outliers are closer to the target measure than clean samples. We show that outlier robust OT fully transports these outliers leading to poor performances in practice. To tackle these outliers, we propose to detect them by relying on a classifier trained with adversarial training to classify source and target samples. A sample is then considered as an outlier if the prediction from the classifier is different from its assigned label. To decrease the influence of these outliers in the transport problem, we propose to either remove them from the problem or to increase the cost of moving them by using the classifier prediction. We show that we successfully detect these outliers and that they do not influence the transport problem on several experiments such as gradient flows, generative models and label propagation.
64
null
Task-Adaptive Few-shot Node Classification
Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform \emph{node-level}, \emph{class-level}, and \emph{task-level} adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT.
65
null
Learning quantum symmetries with interactive quantum-classical variational algorithms
A symmetry of a state $\lvert \psi \rangle$ is a unitary operator of which $\lvert \psi \rangle$ is an eigenvector. When $\lvert \psi \rangle$ is an unknown state supplied by a black-box oracle, the state's symmetries serve to characterize it, and often relegate much of the desired information about $\lvert \psi \rangle$. In this paper, we develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of $\lvert \psi \rangle$ with no a priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. Our scheme can be implemented efficiently on average with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We demonstrate our algorithm on representative families of states.
66
null
Similarity-aware Positive Instance Sampling for Graph Contrastive Pre-training
Graph instance contrastive learning has been proved as an effective task for Graph Neural Network (GNN) pre-training. However, one key issue may seriously impede the representative power in existing works: Positive instances created by current methods often miss crucial information of graphs or even yield illegal instances (such as non-chemically-aware graphs in molecular generation). To remedy this issue, we propose to select positive graph instances directly from existing graphs in the training set, which ultimately maintains the legality and similarity to the target graphs. Our selection is based on certain domain-specific pair-wise similarity measurements as well as sampling from a hierarchical graph encoding similarity relations among graphs. Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph. We conduct extensive experiments on $13$ graph classification and node classification benchmark datasets from various domains. The results demonstrate that the GNN models pre-trained by our strategies can outperform those trained-from-scratch models as well as the variants obtained by existing methods.
67
null
Affinity-Aware Graph Networks
Graph Neural Networks (GNNs) have emerged as a powerful technique for learning on relational data. Owing to the relatively limited number of message passing steps they perform -- and hence a smaller receptive field -- there has been significant interest in improving their expressivity by incorporating structural aspects of the underlying graph. In this paper, we explore the use of affinity measures as features in graph neural networks, in particular measures arising from random walks, including effective resistance, hitting and commute times. We propose message passing networks based on these features and evaluate their performance on a variety of node and graph property prediction tasks. Our architecture has lower computational complexity, while our features are invariant to the permutations of the underlying graph. The measures we compute allow the network to exploit the connectivity properties of the graph, thereby allowing us to outperform relevant benchmarks for a wide variety of tasks, often with significantly fewer message passing steps. On one of the largest publicly available graph regression datasets, OGB-LSC-PCQM4Mv1, we obtain the best known single-model validation MAE at the time of writing.
68
null
World Value Functions: Knowledge Representation for Learning and Planning
We propose world value functions (WVFs), a type of goal-oriented general value function that represents how to solve not just a given task, but any other goal-reaching task in an agent's environment. This is achieved by equipping an agent with an internal goal space defined as all the world states where it experiences a terminal transition. The agent can then modify the standard task rewards to define its own reward function, which provably drives it to learn how to achieve all reachable internal goals, and the value of doing so in the current task. We demonstrate two key benefits of WVFs in the context of learning and planning. In particular, given a learned WVF, an agent can compute the optimal policy in a new task by simply estimating the task's reward function. Furthermore, we show that WVFs also implicitly encode the transition dynamics of the environment, and so can be used to perform planning. Experimental results show that WVFs can be learned faster than regular value functions, while their ability to infer the environment's dynamics can be used to integrate learning and planning methods to further improve sample efficiency.
69
null
Measuring Representational Robustness of Neural Networks Through Shared Invariances
A major challenge in studying robustness in deep learning is defining the set of ``meaningless'' perturbations to which a given Neural Network (NN) should be invariant. Most work on robustness implicitly uses a human as the reference model to define such perturbations. Our work offers a new view on robustness by using another reference NN to define the set of perturbations a given NN should be invariant to, thus generalizing the reliance on a reference ``human NN'' to any NN. This makes measuring robustness equivalent to measuring the extent to which two NNs share invariances, for which we propose a measure called STIR. STIR re-purposes existing representation similarity measures to make them suitable for measuring shared invariances. Using our measure, we are able to gain insights into how shared invariances vary with changes in weight initialization, architecture, loss functions, and training dataset. Our implementation is available at: \url{https://github.com/nvedant07/STIR}.
70
null
Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
Permutation invariant neural networks are a promising tool for making predictions from sets. However, we show that existing permutation invariant architectures, Deep Sets and Set Transformer, can suffer from vanishing or exploding gradients when they are deep. Additionally, layer norm, the normalization of choice in Set Transformer, can hurt performance by removing information useful for prediction. To address these issues, we introduce the clean path principle for equivariant residual connections and develop set norm, a normalization tailored for sets. With these, we build Deep Sets++ and Set Transformer++, models that reach high depths with comparable or better performance than their original counterparts on a diverse suite of tasks. We additionally introduce Flow-RBC, a new single-cell dataset and real-world application of permutation invariant prediction. We open-source our data and code here: https://github.com/rajesh-lab/deep_permutation_invariant.
71
null
Learning Viewpoint-Agnostic Visual Representations by Recovering Tokens in 3D Space
Humans are remarkably flexible in understanding viewpoint changes due to visual cortex supporting the perception of 3D structure. In contrast, most of the computer vision models that learn visual representation from a pool of 2D images often fail to generalize over novel camera viewpoints. Recently, the vision architectures have shifted towards convolution-free architectures, visual Transformers, which operate on tokens derived from image patches. However, neither these Transformers nor 2D convolutional networks perform explicit operations to learn viewpoint-agnostic representation for visual understanding. To this end, we propose a 3D Token Representation Layer (3DTRL) that estimates the 3D positional information of the visual tokens and leverages it for learning viewpoint-agnostic representations. The key elements of 3DTRL include a pseudo-depth estimator and a learned camera matrix to impose geometric transformations on the tokens. These enable 3DTRL to recover the 3D positional information of the tokens from 2D patches. In practice, 3DTRL is easily plugged-in into a Transformer. Our experiments demonstrate the effectiveness of 3DTRL in many vision tasks including image classification, multi-view video alignment, and action recognition. The models with 3DTRL outperform their backbone Transformers in all the tasks with minimal added computation. Our project page is at https://www3.cs.stonybrook.edu/~jishang/3dtrl/3dtrl.html
72
null
MaskViT: Masked Visual Pre-Training for Video Prediction
The ability to predict future visual observations conditioned on past observations and motor commands can enable embodied agents to plan solutions to a variety of tasks in complex environments. This work shows that we can create good video prediction models by pre-training transformers via masked visual modeling. Our approach, named MaskViT, is based on two simple design decisions. First, for memory and training efficiency, we use two types of window attention: spatial and spatiotemporal. Second, during training, we mask a variable percentage of tokens instead of a fixed mask ratio. For inference, MaskViT generates all tokens via iterative refinement where we incrementally decrease the masking ratio following a mask scheduling function. On several datasets we demonstrate that MaskViT outperforms prior works in video prediction, is parameter efficient, and can generate high-resolution videos (256x256). Further, we demonstrate the benefits of inference speedup (up to 512x) due to iterative decoding by using MaskViT for planning on a real robot. Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling with minimal domain knowledge.
73
null
On the Parameterization and Initialization of Diagonal State Space Models
State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark.
74
null
Remote Sensing Change Detection (Segmentation) using Denoising Diffusion Probabilistic Models
Human civilization has an increasingly powerful influence on the earth system, and earth observations are an invaluable tool for assessing and mitigating the negative impacts. To this end, observing precisely defined changes on Earth's surface is essential, and we propose an effective way to achieve this goal. Notably, our change detection (CD)/ segmentation method proposes a novel way to incorporate the millions of off-the-shelf, unlabeled, remote sensing images available through different earth observation programs into the training process through denoising diffusion probabilistic models. We first leverage the information from these off-the-shelf, uncurated, and unlabeled remote sensing images by using a pre-trained denoising diffusion probabilistic model and then employ the multi-scale feature representations from the diffusion model decoder to train a lightweight CD classifier to detect precise changes. The experiments performed on four publically available CD datasets show that the proposed approach achieves remarkably better results than the state-of-the-art methods in F1, IoU, and overall accuracy. Code and pre-trained models are available at: https://github.com/wgcban/ddpm-cd
75
null
Provably Efficient Model-Free Constrained RL with Linear Function Approximation
We study the constrained reinforcement learning problem, in which an agent aims to maximize the expected cumulative reward subject to a constraint on the expected total value of a utility function. In contrast to existing model-based approaches or model-free methods accompanied with a `simulator', we aim to develop the first model-free, simulator-free algorithm that achieves a sublinear regret and a sublinear constraint violation even in large-scale systems. To this end, we consider the episodic constrained Markov decision processes with linear function approximation, where the transition dynamics and the reward function can be represented as a linear function of some known feature mapping. We show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret and $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ constraint violation bounds can be achieved, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps. Our bounds are attained without explicitly estimating the unknown transition model or requiring a simulator, and they depend on the state space only through the dimension of the feature mapping. Hence our bounds hold even when the number of states goes to infinity. Our main results are achieved via novel adaptations of the standard LSVI-UCB algorithms. In particular, we first introduce primal-dual optimization into the LSVI-UCB algorithm to balance between regret and constraint violation. More importantly, we replace the standard greedy selection with respect to the state-action function in LSVI-UCB with a soft-max policy. This turns out to be key in establishing uniform concentration for the constrained case via its approximation-smoothness trade-off. We also show that one can achieve an even zero constraint violation while still maintaining the same order with respect to $T$.
76
null
On the Generalizability and Predictability of Recommender Systems
While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric, however, there are also strong correlations between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric: https://github.com/naszilla/reczilla.
77
null
Predicting the meal macronutrient composition from continuous glucose monitors
Sustained high levels of blood glucose in type 2 diabetes (T2DM) can have disastrous long-term health consequences. An essential component of clinical interventions for T2DM is monitoring dietary intake to keep plasma glucose levels within an acceptable range. Yet, current techniques to monitor food intake are time intensive and error prone. To address this issue, we are developing techniques to automatically monitor food intake and the composition of those foods using continuous glucose monitors (CGMs). This article presents the results of a clinical study in which participants consumed nine standardized meals with known macronutrients amounts (carbohydrate, protein, and fat) while wearing a CGM. We built a multitask neural network to estimate the macronutrient composition from the CGM signal, and compared it against a baseline linear regression. The best prediction result comes from our proposed neural network, trained with subject-dependent data, as measured by root mean squared relative error and correlation coefficient. These findings suggest that it is possible to estimate macronutrient composition from CGM signals, opening the possibility to develop automatic techniques to track food intake.
78
null
A Topological characterisation of Weisfeiler-Leman equivalence classes
Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs. The most popular and successful GNNs are based on message passing schemes. Such schemes inherently have limited expressive power when it comes to distinguishing two non-isomorphic graphs. In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish. We then generate arbitrarily many non-isomorphic graphs that cannot be distinguished by GNNs, leading to the GraphCovers dataset. We also show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes. Finally, we test the GraphCovers dataset on several GNN architectures, showing that none of them can distinguish any two graphs it contains.
79
null
Sample Condensation in Online Continual Learning
Online Continual learning is a challenging learning scenario where the model must learn from a non-stationary stream of data where each sample is seen only once. The main challenge is to incrementally learn while avoiding catastrophic forgetting, namely the problem of forgetting previously acquired knowledge while learning from new data. A popular solution in these scenario is to use a small memory to retain old data and rehearse them over time. Unfortunately, due to the limited memory size, the quality of the memory will deteriorate over time. In this paper we propose OLCGM, a novel replay-based continual learning strategy that uses knowledge condensation techniques to continuously compress the memory and achieve a better use of its limited size. The sample condensation step compresses old samples, instead of removing them like other replay strategies. As a result, the experiments show that, whenever the memory budget is limited compared to the complexity of the data, OLCGM improves the final accuracy compared to state-of-the-art replay strategies.
80
null
Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features
Decision trees are one of the most useful and popular methods in the machine learning toolbox. In this paper, we consider the problem of learning optimal decision trees, a combinatorial optimization problem that is challenging to solve at scale. A common approach in the literature is to use greedy heuristics, which may not be optimal. Recently there has been significant interest in learning optimal decision trees using various approaches (e.g., based on integer programming, dynamic programming) -- to achieve computational scalability, most of these approaches focus on classification tasks with binary features. In this paper, we present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees. Different from existing customized approaches, we consider both regression and classification tasks with continuous features. The basic idea underlying our approach is to split the search space based on the quantiles of the feature distribution -- leading to upper and lower bounds for the underlying optimization problem along the BnB iterations. Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets.
81
null
Non-Determinism and the Lawlessness of ML Code
Legal literature on machine learning (ML) tends to focus on harms, and as a result tends to reason about individual model outcomes and summary error rates. This focus on model-level outcomes and errors has masked important aspects of ML that are rooted in its inherent non-determinism. We show that the effects of non-determinism, and consequently its implications for the law, instead become clearer from the perspective of reasoning about ML outputs as probability distributions over possible outcomes. This distributional viewpoint accounts for non-determinism by emphasizing the possible outcomes of ML. Importantly, this type of reasoning is not exclusive with current legal reasoning; it complements (and in fact can strengthen) analyses concerning individual, concrete outcomes for specific automated decisions. By clarifying the important role of non-determinism, we demonstrate that ML code falls outside of the cyberlaw frame of treating "code as law," as this frame assumes that code is deterministic. We conclude with a brief discussion of what work ML can do to constrain the potentially harm-inducing effects of non-determinism, and we clarify where the law must do work to bridge the gap between its current individual-outcome focus and the distributional approach that we recommend.
82
null
CoSP: Co-supervised pretraining of pocket and ligand
Can we inject the pocket-ligand interaction knowledge into the pre-trained model and jointly learn their chemical space? Pretraining molecules and proteins has attracted considerable attention in recent years, while most of these approaches focus on learning one of the chemical spaces and lack the injection of biological knowledge. We propose a co-supervised pretraining (CoSP) framework to simultaneously learn 3D pocket and ligand representations. We use a gated geometric message passing layer to model both 3D pockets and ligands, where each node's chemical features, geometric position and orientation are considered. To learn biological meaningful embeddings, we inject the pocket-ligand interaction knowledge into the pretraining model via contrastive loss. Considering the specificity of molecules, we further propose a chemical similarity-enhanced negative sampling strategy to improve the contrastive learning performance. Through extensive experiments, we conclude that CoSP can achieve competitive results in pocket matching, molecule property predictions, and virtual screening.
83
null
Inductive Conformal Prediction: A Straightforward Introduction with Examples in Python
Inductive Conformal Prediction (ICP) is a set of distribution-free and model agnostic algorithms devised to predict with a user-defined confidence with coverage guarantee. Instead of having point predictions, i.e., a real number in the case of regression or a single class in multi class classification, models calibrated using ICP output an interval or a set of classes, respectively. ICP takes special importance in high-risk settings where we want the true output to belong to the prediction set with high probability. As an example, a classification model might output that given a magnetic resonance image a patient has no latent diseases to report. However, this model output was based on the most likely class, the second most likely class might tell that the patient has a 15% chance of brain tumor or other severe disease and therefore further exams should be conducted. Using ICP is therefore way more informative and we believe that should be the standard way of producing forecasts. This paper is a hands-on introduction, this means that we will provide examples as we introduce the theory.
84
null
Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for training models with broad, general capabilities for text, images, and other modalities. However, for many sequential decision domains such as robotics, video games, and computer use, publicly available data does not contain the labels required to train behavioral priors in the same way. We extend the internet-scale pretraining paradigm to sequential decision domains through semi-supervised imitation learning wherein agents learn to act by watching online unlabeled videos. Specifically, we show that with a small amount of labeled data we can train an inverse dynamics model accurate enough to label a huge unlabeled source of online data -- here, online videos of people playing Minecraft -- from which we can then train a general behavioral prior. Despite using the native human interface (mouse and keyboard at 20Hz), we show that this behavioral prior has nontrivial zero-shot capabilities and that it can be fine-tuned, with both imitation learning and reinforcement learning, to hard-exploration tasks that are impossible to learn from scratch via reinforcement learning. For many tasks our models exhibit human-level performance, and we are the first to report computer agents that can craft diamond tools, which can take proficient humans upwards of 20 minutes (24,000 environment actions) of gameplay to accomplish.
85
null
Authentication of Copy Detection Patterns under Machine Learning Attacks: A Supervised Approach
Copy detection patterns (CDP) are an attractive technology that allows manufacturers to defend their products against counterfeiting. The main assumption behind the protection mechanism of CDP is that these codes printed with the smallest symbol size (1x1) on an industrial printer cannot be copied or cloned with sufficient accuracy due to data processing inequality. However, previous works have shown that Machine Learning (ML) based attacks can produce high-quality fakes, resulting in decreased accuracy of authentication based on traditional feature-based authentication systems. While Deep Learning (DL) can be used as a part of the authentication system, to the best of our knowledge, none of the previous works has studied the performance of a DL-based authentication system against ML-based attacks on CDP with 1x1 symbol size. In this work, we study such a performance assuming a supervised learning (SL) setting.
86
null
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 $\mu$s and energy consumption as low as 30 $\mu$J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools.
87
null
Chasing Convex Bodies and Functions with Black-Box Advice
We consider the problem of convex function chasing with black-box advice, where an online decision-maker aims to minimize the total cost of making and switching between decisions in a normed vector space, aided by black-box advice such as the decisions of a machine-learned algorithm. The decision-maker seeks cost comparable to the advice when it performs well, known as $\textit{consistency}$, while also ensuring worst-case $\textit{robustness}$ even when the advice is adversarial. We first consider the common paradigm of algorithms that switch between the decisions of the advice and a competitive algorithm, showing that no algorithm in this class can improve upon 3-consistency while staying robust. We then propose two novel algorithms that bypass this limitation by exploiting the problem's convexity. The first, INTERP, achieves $(\sqrt{2}+\epsilon)$-consistency and $\mathcal{O}(\frac{C}{\epsilon^2})$-robustness for any $\epsilon > 0$, where $C$ is the competitive ratio of an algorithm for convex function chasing or a subclass thereof. The second, BDINTERP, achieves $(1+\epsilon)$-consistency and $\mathcal{O}(\frac{CD}{\epsilon})$-robustness when the problem has bounded diameter $D$. Further, we show that BDINTERP achieves near-optimal consistency-robustness trade-off for the special case where cost functions are $\alpha$-polyhedral.
88
null
Graph Neural Networks for Temperature-Dependent Activity Coefficient Prediction of Solutes in Ionic Liquids
Ionic liquids (ILs) are important solvents for sustainable processes and predicting activity coefficients (ACs) of solutes in ILs is needed. Recently, matrix completion methods (MCMs), transformers, and graph neural networks (GNNs) have shown high accuracy in predicting ACs of binary mixtures, superior to well-established models, e.g., COSMO-RS and UNIFAC. GNNs are particularly promising here as they learn a molecular graph-to-property relationship without pretraining, typically required for transformers, and are, unlike MCMs, applicable to molecules not included in training. For ILs, however, GNN applications are currently missing. Herein, we present a GNN to predict temperature-dependent infinite dilution ACs of solutes in ILs. We train the GNN on a database including more than 40,000 AC values and compare it to a state-of-the-art MCM. The GNN and MCM achieve similar high prediction performance, with the GNN additionally enabling high-quality predictions for ACs of solutions that contain ILs and solutes not considered during training.
89
null
Single-phase deep learning in cortico-cortical networks
The error-backpropagation (backprop) algorithm remains the most common solution to the credit assignment problem in artificial neural networks. In neuroscience, it is unclear whether the brain could adopt a similar strategy to correctly modify its synapses. Recent models have attempted to bridge this gap while being consistent with a range of experimental observations. However, these models are either unable to effectively backpropagate error signals across multiple layers or require a multi-phase learning process, neither of which are reminiscent of learning in the brain. Here, we introduce a new model, bursting cortico-cortical networks (BurstCCN), which solves these issues by integrating known properties of cortical networks namely bursting activity, short-term plasticity (STP) and dendrite-targeting interneurons. BurstCCN relies on burst multiplexing via connection-type-specific STP to propagate backprop-like error signals within deep cortical networks. These error signals are encoded at distal dendrites and induce burst-dependent plasticity as a result of excitatory-inhibitory topdown inputs. First, we demonstrate that our model can effectively backpropagate errors through multiple layers using a single-phase learning process. Next, we show both empirically and analytically that learning in our model approximates backprop-derived gradients. Finally, we demonstrate that our model is capable of learning complex image classification tasks (MNIST and CIFAR-10). Overall, our results suggest that cortical features across sub-cellular, cellular, microcircuit and systems levels jointly underlie single-phase efficient deep learning in the brain.
90
null
Measuring the Feasibility of Analogical Transfer using Complexity
Analogies are 4-ary relations of the form "A is to B as C is to D". While focus has been mostly on how to solve an analogy, i.e. how to find correct values of D given A, B and C, less attention has been drawn on whether solving such an analogy was actually feasible. In this paper, we propose a quantification of the transferability of a source case (A and B) to solve a target problem C. This quantification is based on a complexity minimization principle which has been demonstrated to be efficient for solving analogies. We illustrate these notions on morphological analogies and show its connections with machine learning, and in particular with Unsupervised Domain Adaptation.
91
null
Classical surrogates for quantum learning models
The advent of noisy intermediate-scale quantum computers has put the search for possible applications to the forefront of quantum information science. One area where hopes for an advantage through near-term quantum computers are high is quantum machine learning, where variational quantum learning models based on parametrized quantum circuits are discussed. In this work, we introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model and reproduces its input-output relations. As inference can be performed classically, the existence of a classical surrogate greatly enhances the applicability of a quantum learning strategy. However, the classical surrogate also challenges possible advantages of quantum schemes. As it is possible to directly optimize the ansatz of the classical surrogate, they create a natural benchmark the quantum model has to outperform. We show that large classes of well-analyzed re-uploading models have a classical surrogate. We conducted numerical experiments and found that these quantum models show no advantage in performance or trainability in the problems we analyze. This leaves only generalization capability as possible point of quantum advantage and emphasizes the dire need for a better understanding of inductive biases of quantum learning models.
92
null
NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
In order for artificial agents to perform useful tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification. This practice restricts novelties to well-framed images of distinct object types. We suggest that new benchmarks are needed to represent the challenges of navigating an open world. Our new NovelCraft dataset contains multi-modal episodic data of the images and symbolic world-states seen by an agent completing a pogo-stick assembly task within a video game world. In some episodes, we insert novel objects that can impact gameplay. Novelty can vary in size, position, and occlusion within complex scenes. We benchmark state-of-the-art novelty detection and generalized category discovery models with a focus on comprehensive evaluation. Results suggest an opportunity for future research: models aware of task-specific costs of different types of mistakes could more effectively detect and adapt to novelty in open worlds.
93
null
Walk the Random Walk: Learning to Discover and Reach Goals Without Supervision
Learning a diverse set of skills by interacting with an environment without any external supervision is an important challenge. In particular, obtaining a goal-conditioned agent that can reach any given state is useful in many applications. We propose a novel method for training such a goal-conditioned agent without any external rewards or any domain knowledge. We use random walk to train a reachability network that predicts the similarity between two states. This reachability network is then used in building goal memory containing past observations that are diverse and well-balanced. Finally, we train a goal-conditioned policy network with goals sampled from the goal memory and reward it by the reachability network and the goal memory. All the components are kept updated throughout training as the agent discovers and learns new goals. We apply our method to a continuous control navigation and robotic manipulation tasks.
94
null
Self-Supervised Training with Autoencoders for Visual Anomaly Detection
Deep convolutional autoencoders provide an effective tool for learning non-linear dimensionality reduction in an unsupervised way. Recently, they have been used for the task of anomaly detection in the visual domain. By optimising for the reconstruction error using anomaly-free examples, the common belief is that a trained network will have difficulties to reconstruct anomalous parts during the test phase. This is usually done by controlling the capacity of the network by either reducing the size of the bottleneck layer or enforcing sparsity constraints on its activations. However, neither of these techniques does explicitly penalise reconstruction of anomalous signals often resulting in a poor detection. We tackle this problem by adapting a self-supervised learning regime which allows to use discriminative information during training while regularising the model to focus on the data manifold by means of a modified reconstruction error resulting in an accurate detection. Unlike related approaches, the inference of the proposed method during training and prediction is very efficient processing the whole input image in one single step. Our experiments on the MVTec Anomaly Detection dataset demonstrate high recognition and localisation performance of the proposed method. On the texture-subset, in particular, our approach consistently outperforms a bunch of recent anomaly detection methods by a big margin.
95
null
Measurement and applications of position bias in a marketplace search engine
Search engines intentionally influence user behavior by picking and ranking the list of results. Users engage with the highest results both because of their prominent placement and because they are typically the most relevant documents. Search engine ranking algorithms need to identify relevance while incorporating the influence of the search engine itself. This paper describes our efforts at Thumbtack to understand the impact of ranking, including the empirical results of a randomization program. In the context of a consumer marketplace we discuss practical details of model choice, experiment design, bias calculation, and machine learning model adaptation. We include a novel discussion of how ranking bias may not only affect labels, but also model features. The randomization program led to improved models, motivated internal scenario analysis, and enabled user-facing scenario tooling.
96
null
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a \textit{syntactic subspace}, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.
97
null
Deep Reinforcement Learning-Assisted Federated Learning for Robust Short-term Utility Demand Forecasting in Electricity Wholesale Markets
Short-term load forecasting (STLF) plays a significant role in the operation of electricity trading markets. Considering the growing concern of data privacy, federated learning (FL) is increasingly adopted to train STLF models for utility companies (UCs) in recent research. Inspiringly, in wholesale markets, as it is not realistic for power plants (PPs) to access UCs' data directly, FL is definitely a feasible solution of obtaining an accurate STLF model for PPs. However, due to FL's distributed nature and intense competition among UCs, defects increasingly occur and lead to poor performance of the STLF model, indicating that simply adopting FL is not enough. In this paper, we propose a DRL-assisted FL approach, DEfect-AwaRe federated soft actor-critic (DearFSAC), to robustly train an accurate STLF model for PPs to forecast precise short-term utility electricity demand. Firstly. we design a STLF model based on long short-term memory (LSTM) using just historical load data and time data. Furthermore, considering the uncertainty of defects occurrence, a deep reinforcement learning (DRL) algorithm is adopted to assist FL by alleviating model degradation caused by defects. In addition, for faster convergence of FL training, an auto-encoder is designed for both dimension reduction and quality evaluation of uploaded models. In the simulations, we validate our approach on real data of Helsinki's UCs in 2019. The results show that DearFSAC outperforms all the other approaches no matter if defects occur or not.
98
null
Reinforcement Learning under Partial Observability Guided by Learned Environment Models
In practical applications, we can rarely assume full observability of a system's environment, despite such knowledge being important for determining a reactive control system's precise interaction with its environment. Therefore, we propose an approach for reinforcement learning (RL) in partially observable environments. While assuming that the environment behaves like a partially observable Markov decision process with known discrete actions, we assume no knowledge about its structure or transition probabilities. Our approach combines Q-learning with IoAlergia, a method for learning Markov decision processes (MDP). By learning MDP models of the environment from episodes of the RL agent, we enable RL in partially observable domains without explicit, additional memory to track previous interactions for dealing with ambiguities stemming from partial observability. We instead provide RL with additional observations in the form of abstract environment states by simulating new experiences on learned environment models to track the explored states. In our evaluation, we report on the validity of our approach and its promising performance in comparison to six state-of-the-art deep RL techniques with recurrent neural networks and fixed memory.
99
null
A Temporal Extension of Latent Dirichlet Allocation for Unsupervised Acoustic Unit Discovery
Latent Dirichlet allocation (LDA) is widely used for unsupervised topic modelling on sets of documents. No temporal information is used in the model. However, there is often a relationship between the corresponding topics of consecutive tokens. In this paper, we present an extension to LDA that uses a Markov chain to model temporal information. We use this new model for acoustic unit discovery from speech. As input tokens, the model takes a discretised encoding of speech from a vector quantised (VQ) neural network with 512 codes. The goal is then to map these 512 VQ codes to 50 phone-like units (topics) in order to more closely resemble true phones. In contrast to the base LDA, which only considers how VQ codes co-occur within utterances (documents), the Markov chain LDA additionally captures how consecutive codes follow one another. This extension leads to an increase in cluster quality and phone segmentation results compared to the base LDA. Compared to a recent vector quantised neural network approach that also learns 50 units, the extended LDA model performs better in phone segmentation but worse in mutual information.
100
null
Efficient Transformer-based Speech Enhancement Using Long Frames and STFT Magnitudes
The SepFormer architecture shows very good results in speech separation. Like other learned-encoder models, it uses short frames, as they have been shown to obtain better performance in these cases. This results in a large number of frames at the input, which is problematic; since the SepFormer is transformer-based, its computational complexity drastically increases with longer sequences. In this paper, we employ the SepFormer in a speech enhancement task and show that by replacing the learned-encoder features with a magnitude short-time Fourier transform (STFT) representation, we can use long frames without compromising perceptual enhancement performance. We obtained equivalent quality and intelligibility evaluation scores while reducing the number of operations by a factor of approximately 8 for a 10-second utterance.
101
null
Learning Agile Skills via Adversarial Imitation of Rough Partial Demonstrations
Learning agile skills is one of the main challenges in robotics. To this end, reinforcement learning approaches have achieved impressive results. These methods require explicit task information in terms of a reward function or an expert that can be queried in simulation to provide a target control output, which limits their applicability. In this work, we propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations for successful skill acquirement where reference or expert demonstrations are not easily accessible. Moreover, we show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors. Finally, the obtained skills such as a backflip are tested on an agile quadruped robot called Solo 8 and present faithful replication of hand-held human demonstrations.
102
null
A generalised form for a homogeneous population of structures using an overlapping mixture of Gaussian processes
Reductions in natural frequency are often used as a damage indicator for structural health monitoring (SHM) purposes. However, fluctuations in operational and environmental conditions, changes in boundary conditions, and slight differences among nominally-identical structures can also affect stiffness, producing frequency changes that mimic or mask damage. This variability has limited the practical implementation and generalisation of SHM technologies. The aim of this work is to investigate the effects of normal variation, and to identify methods that account for the resulting uncertainty. This work considers vibration data collected from a set of four healthy full-scale composite helicopter blades. The blades were nominally-identical but distinct, and slight differences in material properties and geometry among the blades caused significant variability in the frequency response functions, which presented as four separate trajectories across the input space. In this paper, an overlapping mixture of Gaussian processes (OMGP), was used to generate labels and quantify the uncertainty of normal-condition frequency response data from the helicopter blades. Using a population-based approach, the OMGP model provided a generic representation, called a form, to characterise the normal condition of the blades. Additional simulated data were then compared against the form and evaluated for damage using a marginal-likelihood novelty index.
103
null
EFFGAN: Ensembles of fine-tuned federated GANs
Generative adversarial networks have proven to be a powerful tool for learning complex and high-dimensional data distributions, but issues such as mode collapse have been shown to make it difficult to train them. This is an even harder problem when the data is decentralized over several clients in a federated learning setup, as problems such as client drift and non-iid data make it hard for federated averaging to converge. In this work, we study the task of how to learn a data distribution when training data is heterogeneously decentralized over clients and cannot be shared. Our goal is to sample from this distribution centrally, while the data never leaves the clients. We show using standard benchmark image datasets that existing approaches fail in this setting, experiencing so-called client drift when the local number of epochs becomes to large. We thus propose a novel approach we call EFFGAN: Ensembles of fine-tuned federated GANs. Being an ensemble of local expert generators, EFFGAN is able to learn the data distribution over all clients and mitigate client drift. It is able to train with a large number of local epochs, making it more communication efficient than previous works.
104
null
Capacity Optimality of OAMP in Coded Large Unitarily Invariant Systems
This paper investigates a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary fixed signal distribution, and forward error control (FEC) coding. Several area properties are established based on the state evolution of orthogonal approximate message passing (OAMP) in an un-coded LUIS. Under the assumptions that the state evolution for joint OAMP and FEC decoding is correct and the replica method is reliable, we analyze the achievable rate of OAMP. We prove that OAMP reaches the constrained capacity predicted by the replica method of the LUIS with an arbitrary signal distribution based on matched FEC coding. Meanwhile, we elaborate a constrained capacity-achieving coding principle for LUIS, based on which irregular low-density parity-check (LDPC) codes are optimized for binary signaling in the simulation results. We show that OAMP with the optimized codes has significant performance improvement over the un-optimized ones and the well-known Turbo linear MMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, constrained capacity-approaching bit error rate (BER) performances are observed under various channel conditions.
105
null
Sufficient Statistic Memory Approximate Message Passing
Approximate message passing (AMP) type algorithms have been widely used in the signal reconstruction of certain large random linear systems. A key feature of the AMP-type algorithms is that their dynamics can be correctly described by state evolution. However, state evolution does not necessarily guarantee the convergence of iterative algorithms. To solve the convergence problem of AMP-type algorithms in principle, this paper proposes a memory AMP (MAMP) under a sufficient statistic condition, named sufficient statistic MAMP (SS-MAMP). We show that the covariance matrices of SS-MAMP are L-banded and convergent. Given an arbitrary MAMP, we can construct the SS-MAMP by damping, which not only ensures the convergence, but also preserves the orthogonality, i.e., its dynamics can be correctly described by state evolution.
106
null
Backward baselines: Is your model predicting the past?
When does a machine learning model predict the future of individuals and when does it recite patterns that predate the individuals? In this work, we propose a distinction between these two pathways of prediction, supported by theoretical, empirical, and normative arguments. At the center of our proposal is a family of simple and efficient statistical tests, called backward baselines, that demonstrate if, and to which extent, a model recounts the past. Our statistical theory provides guidance for interpreting backward baselines, establishing equivalences between different baselines and familiar statistical concepts. Concretely, we derive a meaningful backward baseline for auditing a prediction system as a black box, given only background variables and the system's predictions. Empirically, we evaluate the framework on different prediction tasks derived from longitudinal panel surveys, demonstrating the ease and effectiveness of incorporating backward baselines into the practice of machine learning.
107
null
Adversarial Zoom Lens: A Novel Physical-World Attack to DNNs
Although deep neural networks (DNNs) are known to be fragile, no one has studied the effects of zooming-in and zooming-out of images in the physical world on DNNs performance. In this paper, we demonstrate a novel physical adversarial attack technique called Adversarial Zoom Lens (AdvZL), which uses a zoom lens to zoom in and out of pictures of the physical world, fooling DNNs without changing the characteristics of the target object. The proposed method is so far the only adversarial attack technique that does not add physical adversarial perturbation attack DNNs. In a digital environment, we construct a data set based on AdvZL to verify the antagonism of equal-scale enlarged images to DNNs. In the physical environment, we manipulate the zoom lens to zoom in and out of the target object, and generate adversarial samples. The experimental results demonstrate the effectiveness of AdvZL in both digital and physical environments. We further analyze the antagonism of the proposed data set to the improved DNNs. On the other hand, we provide a guideline for defense against AdvZL by means of adversarial training. Finally, we look into the threat possibilities of the proposed approach to future autonomous driving and variant attack ideas similar to the proposed attack.