Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
112,300
112,300
Thumbs up? Sentiment Classification using Machine Learning Techniques
We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three machine learning methods we employed (Naive Bayes, maximum entropy classification, and support vector machines) do not perform as well on sentiment classification as on traditional topic-based categorization. We conclude by examining factors that make the sentiment classification problem more challenging.
112,301
112,301
Unsupervised Learning of Morphology without Morphemes
The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.
112,302
112,302
Robust Feature Selection by Mutual Information Distributions
Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.
112,303
112,303
The Prioritized Inductive Logic Programs
The limit behavior of inductive logic programs has not been explored, but when considering incremental or online inductive learning algorithms which usually run ongoingly, such behavior of the programs should be taken into account. An example is given to show that some inductive learning algorithm may not be correct in the long run if the limit behavior is not considered. An inductive logic program is convergent if given an increasing sequence of example sets, the program produces a corresponding sequence of the Horn logic programs which has the set-theoretic limit, and is limit-correct if the limit of the produced sequence of the Horn logic programs is correct with respect to the limit of the sequence of the example sets. It is shown that the GOLEM system is not limit-correct. Finally, a limit-correct inductive logic system, called the prioritized GOLEM system, is proposed as a solution.
112,304
112,304
Optimal Ordered Problem Solver
We present a novel, general, optimally fast, incremental way of searching for a universal algorithm that solves each task in a sequence of tasks. The Optimal Ordered Problem Solver (OOPS) continually organizes and exploits previously found solutions to earlier tasks, efficiently searching not only the space of domain-specific algorithms, but also the space of search algorithms. Essentially we extend the principles of optimal nonincremental universal search to build an incremental universal learner that is able to improve itself through experience. In illustrative experiments, our self-improver becomes the first general system that learns to solve all n disk Towers of Hanoi tasks (solution size 2^n-1) for n up to 30, profiting from previously solved, simpler tasks involving samples of a simple context free language.
112,305
112,305
An Algorithm for Pattern Discovery in Time Series
We present a new algorithm for discovering patterns in time series and other sequential data. We exhibit a reliable procedure for building the minimal set of hidden, Markovian states that is statistically capable of producing the behavior exhibited in the data -- the underlying process's causal states. Unlike conventional methods for fitting hidden Markov models (HMMs) to data, our algorithm makes no assumptions about the process's causal architecture (the number of hidden states and their transition structure), but rather infers it from the data. It starts with assumptions of minimal structure and introduces complexity only when the data demand it. Moreover, the causal states it infers have important predictive optimality properties that conventional HMM states lack. We introduce the algorithm, review the theory behind it, prove its asymptotic reliability, use large deviation theory to estimate its rate of convergence, and compare it to other algorithms which also construct HMMs from data. We also illustrate its behavior on an example process, and report selected numerical results from an implementation.
112,306
112,306
Evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm
The Markov Blanket Bayesian Classifier is a recently-proposed algorithm for construction of probabilistic classifiers. This paper presents an empirical comparison of the MBBC algorithm with three other Bayesian classifiers: Naive Bayes, Tree-Augmented Naive Bayes and a general Bayesian network. All of these are implemented using the K2 framework of Cooper and Herskovits. The classifiers are compared in terms of their performance (using simple accuracy measures and ROC curves) and speed, on a range of standard benchmark data sets. It is concluded that MBBC is competitive in terms of speed and accuracy with the other algorithms considered.
112,307
112,307
Maximing the Margin in the Input Space
We propose a novel criterion for support vector machine learning: maximizing the margin in the input space, not in the feature (Hilbert) space. This criterion is a discriminative version of the principal curve proposed by Hastie et al. The criterion is appropriate in particular when the input space is already a well-designed feature space with rather small dimensionality. The definition of the margin is generalized in order to represent prior knowledge. The derived algorithm consists of two alternating steps to estimate the dual parameters. Firstly, the parameters are initialized by the original SVM. Then one set of parameters is updated by Newton-like procedure, and the other set is updated by solving a quadratic programming problem. The algorithm converges in a few steps to a local optimum under mild conditions and it preserves the sparsity of support vectors. Although the complexity to calculate temporal variables increases the complexity to solve the quadratic programming problem for each step does not change. It is also shown that the original SVM can be seen as a special case. We further derive a simplified algorithm which enables us to use the existing code for the original SVM.
112,308
112,308
Approximating Incomplete Kernel Matrices by the em Algorithm
In biological data, it is often the case that observed data are available only for a subset of samples. When a kernel matrix is derived from such data, we have to leave the entries for unavailable samples as missing. In this paper, we make use of a parametric model of kernel matrices, and estimate missing entries by fitting the model to existing entries. The parametric model is created as a set of spectral variants of a complete kernel matrix derived from another information source. For model fitting, we adopt the em algorithm based on the information geometry of positive definite matrices. We will report promising results on bacteria clustering experiments using two marker sequences: 16S and gyrB.
112,309
112,309
Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment
Nonlinear manifold learning from unorganized data points is a very challenging unsupervised learning and data visualization problem with a great variety of applications. In this paper we present a new algorithm for manifold learning and nonlinear dimension reduction. Based on a set of unorganized data points sampled with noise from the manifold, we represent the local geometry of the manifold using tangent spaces learned by fitting an affine subspace in a neighborhood of each data point. Those tangent spaces are aligned to give the internal global coordinates of the data points with respect to the underlying manifold by way of a partial eigendecomposition of the neighborhood connection matrix. We present a careful error analysis of our algorithm and show that the reconstruction errors are of second-order accuracy. We illustrate our algorithm using curves and surfaces both in 2D/3D and higher dimensional Euclidean spaces, and 64-by-64 pixel face images with various pose and lighting conditions. We also address several theoretical and algorithmic issues for further research and improvements.
112,310
112,310
Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data
Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. Good performance on this task has been obtained by approaching it as a supervised learning problem. An input document is treated as a set of candidate phrases that must be classified as either keyphrases or non-keyphrases. To classify a candidate phrase as a keyphrase, the most important features (attributes) appear to be the frequency and location of the candidate phrase in the document. Recent work has demonstrated that it is also useful to know the frequency of the candidate phrase as a manually assigned keyphrase for other documents in the same domain as the given document (e.g., the domain of computer science). Unfortunately, this keyphrase-frequency feature is domain-specific (the learning process must be repeated for each new domain) and training-intensive (good performance requires a relatively large number of training documents in the given domain, with manually assigned keyphrases). The aim of the work described here is to remove these limitations. In this paper, I introduce new features that are derived by mining lexical knowledge from a very large collection of unlabeled data, consisting of approximately 350 million Web pages without manually assigned keyphrases. I present experiments that show that the new features result in improved keyphrase extraction, although they are neither domain-specific nor training-intensive.
112,311
112,311
Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus
The evaluative character of a word is called its semantic orientation. A positive semantic orientation implies desirability (e.g., "honest", "intrepid") and a negative semantic orientation implies undesirability (e.g., "disturbing", "superfluous"). This paper introduces a simple algorithm for unsupervised learning of semantic orientation from extremely large corpora. The method involves issuing queries to a Web search engine and using pointwise mutual information to analyse the results. The algorithm is empirically evaluated using a training corpus of approximately one hundred billion words -- the subset of the Web that is indexed by the chosen search engine. Tested with 3,596 words (1,614 positive and 1,982 negative), the algorithm attains an accuracy of 80%. The 3,596 test words include adjectives, adverbs, nouns, and verbs. The accuracy is comparable with the results achieved by Hatzivassiloglou and McKeown (1997), using a complex four-stage supervised learning algorithm that is restricted to determining the semantic orientation of adjectives.
112,312
112,312
Learning to Extract Keyphrases from Text
Many academic journals ask their authors to provide a list of about five to fifteen key words, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a surprisingly wide variety of tasks for which keyphrases are useful, as we discuss in this paper. Recent commercial software, such as Microsoft's Word 97 and Verity's Search 97, includes algorithms that automatically extract keyphrases from documents. In this paper, we approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for this task. The third set of experiments examines the performance of GenEx on the task of metadata generation, relative to the performance of Microsoft's Word 97. The fourth and final set of experiments investigates the performance of GenEx on the task of highlighting, relative to Verity's Search 97. The experimental results support the claim that a specialized learning algorithm (GenEx) can generate better keyphrases than a general-purpose learning algorithm (C4.5) and the non-learning algorithms that are used in commercial software (Word 97 and Search 97).
112,313
112,313
Extraction of Keyphrases from Text: Evaluation of Four Algorithms
This report presents an empirical evaluation of four algorithms for automatically extracting keywords and keyphrases from documents. The four algorithms are compared using five different collections of documents. For each document, we have a target set of keyphrases, which were generated by hand. The target keyphrases were generated for human readers; they were not tailored for any of the four keyphrase extraction algorithms. Each of the algorithms was evaluated by the degree to which the algorithm's keyphrases matched the manually generated keyphrases. The four algorithms were (1) the AutoSummarize feature in Microsoft's Word 97, (2) an algorithm based on Eric Brill's part-of-speech tagger, (3) the Summarize feature in Verity's Search 97, and (4) NRC's Extractor algorithm. For all five document collections, NRC's Extractor yields the best match with the manually generated keyphrases.
112,314
112,314
Learning Algorithms for Keyphrase Extraction
Many academic journals ask their authors to provide a list of about five to fifteen keywords, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a wide variety of tasks for which keyphrases are useful, as we discuss in this paper. We approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. We evaluate the performance of nine different configurations of C4.5. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for automatically extracting keyphrases from text. The experimental results support the claim that a custom-designed algorithm (GenEx), incorporating specialized procedural domain knowledge, can generate better keyphrases than a generalpurpose algorithm (C4.5). Subjective human evaluation of the keyphrases generated by Extractor suggests that about 80% of the keyphrases are acceptable to human readers. This level of performance should be satisfactory for a wide variety of applications.
112,315
112,315
How to Shift Bias: Lessons from the Baldwin Effect
An inductive learning algorithm takes a set of data as input and generates a hypothesis as output. A set of data is typically consistent with an infinite number of hypotheses; therefore, there must be factors other than the data that determine the output of the learning algorithm. In machine learning, these other factors are called the bias of the learner. Classical learning algorithms have a fixed bias, implicit in their design. Recently developed learning algorithms dynamically adjust their bias as they search for a hypothesis. Algorithms that shift bias in this manner are not as well understood as classical algorithms. In this paper, we show that the Baldwin effect has implications for the design and analysis of bias shifting algorithms. The Baldwin effect was proposed in 1896, to explain how phenomena that might appear to require Lamarckian evolution (inheritance of acquired characteristics) can arise from purely Darwinian evolution. Hinton and Nowlan presented a computational model of the Baldwin effect in 1987. We explore a variation on their model, which we constructed explicitly to illustrate the lessons that the Baldwin effect has for research in bias shifting algorithms. The main lesson is that it appears that a good strategy for shift of bias in a learning algorithm is to begin with a weak bias and gradually shift to a strong bias.
112,316
112,316
Unsupervised Language Acquisition: Theory and Practice
In this thesis I present various algorithms for the unsupervised machine learning of aspects of natural languages using a variety of statistical models. The scientific object of the work is to examine the validity of the so-called Argument from the Poverty of the Stimulus advanced in favour of the proposition that humans have language-specific innate knowledge. I start by examining an a priori argument based on Gold's theorem, that purports to prove that natural languages cannot be learned, and some formal issues related to the choice of statistical grammars rather than symbolic grammars. I present three novel algorithms for learning various parts of natural languages: first, an algorithm for the induction of syntactic categories from unlabelled text using distributional information, that can deal with ambiguous and rare words; secondly, a set of algorithms for learning morphological processes in a variety of languages, including languages such as Arabic with non-concatenative morphology; thirdly an algorithm for the unsupervised induction of a context-free grammar from tagged text. I carefully examine the interaction between the various components, and show how these algorithms can form the basis for a empiricist model of language acquisition. I therefore conclude that the Argument from the Poverty of the Stimulus is unsupported by the evidence.
112,317
112,317
Technical Note: Bias and the Quantification of Stability
Research on bias in machine learning algorithms has generally been concerned with the impact of bias on predictive accuracy. We believe that there are other factors that should also play a role in the evaluation of bias. One such factor is the stability of the algorithm; in other words, the repeatability of the results. If we obtain two sets of data from the same phenomenon, with the same underlying probability distribution, then we would like our learning algorithm to induce approximately the same concepts from both sets of data. This paper introduces a method for quantifying stability, based on a measure of the agreement between concepts. We also discuss the relationships among stability, predictive accuracy, and bias.
112,318
112,318
A Theory of Cross-Validation Error
This paper presents a theory of error in cross-validation testing of algorithms for predicting real-valued attributes. The theory justifies the claim that predicting real-valued attributes requires balancing the conflicting demands of simplicity and accuracy. Furthermore, the theory indicates precisely how these conflicting demands must be balanced, in order to minimize cross-validation error. A general theory is presented, then it is developed in detail for linear regression and instance-based learning.
112,319
112,319
Theoretical Analyses of Cross-Validation Error and Voting in Instance-Based Learning
This paper begins with a general theory of error in cross-validation testing of algorithms for supervised learning from examples. It is assumed that the examples are described by attribute-value pairs, where the values are symbolic. Cross-validation requires a set of training examples and a set of testing examples. The value of the attribute that is to be predicted is known to the learner in the training set, but unknown in the testing set. The theory demonstrates that cross-validation error has two components: error on the training set (inaccuracy) and sensitivity to noise (instability). This general theory is then applied to voting in instance-based learning. Given an example in the testing set, a typical instance-based learning algorithm predicts the designated attribute by voting among the k nearest neighbors (the k most similar examples) to the testing example in the training set. Voting is intended to increase the stability (resistance to noise) of instance-based learning, but a theoretical analysis shows that there are circumstances in which voting can be destabilizing. The theory suggests ways to minimize cross-validation error, by insuring that voting is stable and does not adversely affect accuracy.
112,320
112,320
Contextual Normalization Applied to Aircraft Gas Turbine Engine Diagnosis
Diagnosing faults in aircraft gas turbine engines is a complex problem. It involves several tasks, including rapid and accurate interpretation of patterns in engine sensor data. We have investigated contextual normalization for the development of a software tool to help engine repair technicians with interpretation of sensor data. Contextual normalization is a new strategy for employing machine learning. It handles variation in data that is due to contextual factors, rather than the health of the engine. It does this by normalizing the data in a context-sensitive manner. This learning strategy was developed and tested using 242 observations of an aircraft gas turbine engine in a test cell, where each observation consists of roughly 12,000 numbers, gathered over a 12 second interval. There were eight classes of observations: seven deliberately implanted classes of faults and a healthy class. We compared two approaches to implementing our learning strategy: linear regression and instance-based learning. We have three main results. (1) For the given problem, instance-based learning works better than linear regression. (2) For this problem, contextual normalization works better than other common forms of normalization. (3) The algorithms described here can be the basis for a useful software tool for assisting technicians with the interpretation of sensor data.
112,321
112,321
Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A phrase has a positive semantic orientation when it has good associations (e.g., "subtle nuances") and a negative semantic orientation when it has bad associations (e.g., "very cavalier"). In this paper, the semantic orientation of a phrase is calculated as the mutual information between the given phrase and the word "excellent" minus the mutual information between the given phrase and the word "poor". A review is classified as recommended if the average semantic orientation of its phrases is positive. The algorithm achieves an average accuracy of 74% when evaluated on 410 reviews from Epinions, sampled from four different domains (reviews of automobiles, banks, movies, and travel destinations). The accuracy ranges from 84% for automobile reviews to 66% for movie reviews.
112,322
112,322
Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL
This paper presents a simple unsupervised learning algorithm for recognizing synonyms, based on statistical data acquired by querying a Web search engine. The algorithm, called PMI-IR, uses Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs of words. PMI-IR is empirically evaluated using 80 synonym test questions from the Test of English as a Foreign Language (TOEFL) and 50 synonym test questions from a collection of tests for students of English as a Second Language (ESL). On both tests, the algorithm obtains a score of 74%. PMI-IR is contrasted with Latent Semantic Analysis (LSA), which achieves a score of 64% on the same 80 TOEFL questions. The paper discusses potential applications of the new unsupervised learning algorithm and some implications of the results for LSA and LSI (Latent Semantic Indexing).
112,323
112,323
Types of Cost in Inductive Concept Learning
Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. Very few papers have examined the many other types of cost. In this paper, we attempt to create a taxonomy of the different types of cost that are involved in inductive concept learning. This taxonomy may help to organize the literature on cost-sensitive learning. We hope that it will inspire researchers to investigate all types of cost in inductive concept learning in more depth.
112,324
112,324
Exploiting Context When Learning to Classify
This paper addresses the problem of classifying observations when features are context-sensitive, specifically when the testing set involves a context that is different from the training set. The paper begins with a precise definition of the problem, then general strategies are presented for enhancing the performance of classification algorithms on this type of problem. These strategies are tested on two domains. The first domain is the diagnosis of gas turbine engines. The problem is to diagnose a faulty engine in one context, such as warm weather, when the fault has previously been seen only in another context, such as cold weather. The second domain is speech recognition. The problem is to recognize words spoken by a new speaker, not represented in the training set. For both domains, exploiting context results in substantially more accurate classification.
112,325
112,325
Myths and Legends of the Baldwin Effect
This position paper argues that the Baldwin effect is widely misunderstood by the evolutionary computation community. The misunderstandings appear to fall into two general categories. Firstly, it is commonly believed that the Baldwin effect is concerned with the synergy that results when there is an evolving population of learning individuals. This is only half of the story. The full story is more complicated and more interesting. The Baldwin effect is concerned with the costs and benefits of lifetime learning by individuals in an evolving population. Several researchers have focussed exclusively on the benefits, but there is much to be gained from attention to the costs. This paper explains the two sides of the story and enumerates ten of the costs and benefits of lifetime learning by individuals in an evolving population. Secondly, there is a cluster of misunderstandings about the relationship between the Baldwin effect and Lamarckian inheritance of acquired characteristics. The Baldwin effect is not Lamarckian. A Lamarckian algorithm is not better for most evolutionary computing problems than a Baldwinian algorithm. Finally, Lamarckian inheritance is not a better model of memetic (cultural) evolution than the Baldwin effect.
112,326
112,326
The Management of Context-Sensitive Features: A Review of Strategies
In this paper, we review five heuristic strategies for handling context-sensitive features in supervised machine learning from examples. We discuss two methods for recovering lost (implicit) contextual information. We mention some evidence that hybrid strategies can have a synergetic effect. We then show how the work of several machine learning researchers fits into this framework. While we do not claim that these strategies exhaust the possibilities, it appears that the framework includes all of the techniques that can be found in the published literature on contextsensitive learning.
112,327
112,327
The Identification of Context-Sensitive Features: A Formal Definition of Context for Concept Learning
A large body of research in machine learning is concerned with supervised learning from examples. The examples are typically represented as vectors in a multi-dimensional feature space (also known as attribute-value descriptions). A teacher partitions a set of training examples into a finite number of classes. The task of the learning algorithm is to induce a concept from the training examples. In this paper, we formally distinguish three types of features: primary, contextual, and irrelevant features. We also formally define what it means for one feature to be context-sensitive to another feature. Context-sensitive features complicate the task of the learner and potentially impair the learner's performance. Our formal definitions make it possible for a learner to automatically identify context-sensitive features. After context-sensitive features have been identified, there are several strategies that the learner can employ for managing the features; however, a discussion of these strategies is outside of the scope of this paper. The formal definitions presented here correct a flaw in previously proposed definitions. We discuss the relationship between our work and a formal definition of relevance.
112,328
112,328
Low Size-Complexity Inductive Logic Programming: The East-West Challenge Considered as a Problem in Cost-Sensitive Classification
The Inductive Logic Programming community has considered proof-complexity and model-complexity, but, until recently, size-complexity has received little attention. Recently a challenge was issued "to the international computing community" to discover low size-complexity Prolog programs for classifying trains. The challenge was based on a problem first proposed by Ryszard Michalski, 20 years ago. We interpreted the challenge as a problem in cost-sensitive classification and we applied a recently developed cost-sensitive classifier to the competition. Our algorithm was relatively successful (we won a prize). This paper presents our algorithm and analyzes the results of the competition.
112,329
112,329
Data Engineering for the Analysis of Semiconductor Manufacturing Data
We have analyzed manufacturing data from several different semiconductor manufacturing plants, using decision tree induction software called Q-YIELD. The software generates rules for predicting when a given product should be rejected. The rules are intended to help the process engineers improve the yield of the product, by helping them to discover the causes of rejection. Experience with Q-YIELD has taught us the importance of data engineering -- preprocessing the data to enable or facilitate decision tree induction. This paper discusses some of the data engineering problems we have encountered with semiconductor manufacturing data. The paper deals with two broad classes of problems: engineering the features in a feature vector representation and engineering the definition of the target concept (the classes). Manufacturing process data present special problems for feature engineering, since the data have multiple levels of granularity (detail, resolution). Engineering the target concept is important, due to our focus on understanding the past, as opposed to the more common focus in machine learning on predicting the future.
112,330
112,330
Robust Classification with Context-Sensitive Features
This paper addresses the problem of classifying observations when features are context-sensitive, especially when the testing set involves a context that is different from the training set. The paper begins with a precise definition of the problem, then general strategies are presented for enhancing the performance of classification algorithms on this type of problem. These strategies are tested on three domains. The first domain is the diagnosis of gas turbine engines. The problem is to diagnose a faulty engine in one context, such as warm weather, when the fault has previously been seen only in another context, such as cold weather. The second domain is speech recognition. The context is given by the identity of the speaker. The problem is to recognize words spoken by a new speaker, not represented in the training set. The third domain is medical prognosis. The problem is to predict whether a patient with hepatitis will live or die. The context is the age of the patient. For all three domains, exploiting context results in substantially more accurate classification.
112,331
112,331
Kalman filter control in the reinforcement learning framework
There is a growing interest in using Kalman-filter models in brain modelling. In turn, it is of considerable importance to make Kalman-filters amenable for reinforcement learning. In the usual formulation of optimal control it is computed off-line by solving a backward recursion. In this technical note we show that slight modification of the linear-quadratic-Gaussian Kalman-filter model allows the on-line estimation of optimal control and makes the bridge to reinforcement learning. Moreover, the learning rule for value estimation assumes a Hebbian form weighted by the error of the value estimation.
112,332
112,332
Convergence and Loss Bounds for Bayesian Sequence Prediction
The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t-1}$ can be computed with Bayes' rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a class $M$ one can base ones prediction on the Bayes mix $\xi$ defined as a weighted sum of distributions $\nu\in M$. Various convergence results of the mixture posterior $\xi_t$ to the true posterior $\mu_t$ are presented. In particular a new (elementary) derivation of the convergence $\xi_t/\mu_t\to 1$ is provided, which additionally gives the rate of convergence. A general sequence predictor is allowed to choose an action $y_t$ based on $x_1...x_{t-1}$ and receives loss $\ell_{x_t y_t}$ if $x_t$ is the next symbol of the sequence. No assumptions are made on the structure of $\ell$ (apart from being bounded) and $M$. The Bayes-optimal prediction scheme $\Lambda_\xi$ based on mixture $\xi$ and the Bayes-optimal informed prediction scheme $\Lambda_\mu$ are defined and the total loss $L_\xi$ of $\Lambda_\xi$ is bounded in terms of the total loss $L_\mu$ of $\Lambda_\mu$. It is shown that $L_\xi$ is bounded for bounded $L_\mu$ and $L_\xi/L_\mu\to 1$ for $L_\mu\to \infty$. Convergence of the instantaneous losses are also proven.
112,333
112,333
The New AI: General & Sound & Relevant for Physics
Most traditional artificial intelligence (AI) systems of the past 50 years are either very limited, or based on heuristics, or both. The new millennium, however, has brought substantial progress in the field of theoretically optimal and practically feasible algorithms for prediction, search, inductive inference based on Occam's razor, problem solving, decision making, and reinforcement learning in environments of a very general type. Since inductive inference is at the heart of all inductive sciences, some of the results are relevant not only for AI and computer science but also for physics, provoking nontraditional predictions based on Zuse's thesis of the computer-generated universe.
112,334
112,334
Unsupervised Learning in a Framework of Information Compression by Multiple Alignment, Unification and Search
This paper describes a novel approach to unsupervised learning that has been developed within a framework of "information compression by multiple alignment, unification and search" (ICMAUS), designed to integrate learning with other AI functions such as parsing and production of language, fuzzy pattern recognition, probabilistic and exact forms of reasoning, and others.
112,335
112,335
Algorithmic Clustering of Music
We present a fully automatic method for music classification, based only on compression of strings that represent the music pieces. The method uses no background knowledge about music whatsoever: it is completely general and can, without change, be used in different areas like linguistic classification and genomics. It is based on an ideal theory of the information content in individual objects (Kolmogorov complexity), information distance, and a universal similarity metric. Experiments show that the method distinguishes reasonably well between various musical genres and can even cluster pieces by composer.
112,336
112,336
On the Existence and Convergence Computable Universal Priors
Solomonoff unified Occam's razor and Epicurus' principle of multiple explanations to one elegant, formal, universal theory of inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of his universal semimeasure M converges rapidly to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal predictor in case of unknown mu. We investigate the existence and convergence of computable universal (semi)measures for a hierarchy of computability classes: finitely computable, estimable, enumerable, and approximable. For instance, M is known to be enumerable, but not finitely computable, and to dominate all enumerable semimeasures. We define seven classes of (semi)measures based on these four computability concepts. Each class may or may not contain a (semi)measure which dominates all elements of another class. The analysis of these 49 cases can be reduced to four basic cases, two of them being new. The results hold for discrete and continuous semimeasures. We also investigate more closely the types of convergence, possibly implied by universality: in difference and in ratio, with probability 1, in mean sum, and for Martin-Loef random sequences. We introduce a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues.
112,337
112,337
Sequence Prediction based on Monotone Complexity
This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence behavior is unclear. In probabilistic environments, neither the posterior nor the losses converge, in general.
112,338
112,338
Universal Sequential Decisions in Unknown Environments
We give a brief introduction to the AIXI model, which unifies and overcomes the limitations of sequential decision theory and universal Solomonoff induction. While the former theory is suited for active agents in known environments, the latter is suited for passive prediction of unknown environments.
112,339
112,339
Reinforcement Learning with Linear Function Approximation and LQ control Converges
Reinforcement learning is commonly used with function approximation. However, very few positive results are known about the convergence of function approximation based RL control algorithms. In this paper we show that TD(0) and Sarsa(0) with linear function approximation is convergent for a simple class of problems, where the system is linear and the costs are quadratic (the LQ control problem). Furthermore, we show that for systems with Gaussian noise and non-completely observable states (the LQG problem), the mentioned RL algorithms are still convergent, if they are combined with Kalman filtering.
112,340
112,340
Bayesian Treatment of Incomplete Discrete Data applied to Mutual Information and Feature Selection
Given the joint chances of a pair of random variables one can compute quantities of interest, like the mutual information. The Bayesian treatment of unknown chances involves computing, from a second order prior distribution and the data likelihood, a posterior distribution of the chances. A common treatment of incomplete data is to assume ignorability and determine the chances by the expectation maximization (EM) algorithm. The two different methods above are well established but typically separated. This paper joins the two approaches in the case of Dirichlet priors, and derives efficient approximations for the mean, mode and the (co)variance of the chances and the mutual information. Furthermore, we prove the unimodality of the posterior distribution, whence the important property of convergence of EM to the global maximum in the chosen framework. These results are applied to the problem of selecting features for incremental learning and naive Bayes classification. A fast filter based on the distribution of mutual information is shown to outperform the traditional filter based on empirical mutual information on a number of incomplete real data sets.
112,341
112,341
AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents
A satisfactory multiagent learning algorithm should, {\em at a minimum}, learn to play optimally against stationary opponents and converge to a Nash equilibrium in self-play. The algorithm that has come closest, WoLF-IGA, has been proven to have these two properties in 2-player 2-action repeated games--assuming that the opponent's (mixed) strategy is observable. In this paper we present AWESOME, the first algorithm that is guaranteed to have these two properties in {\em all} repeated (finite) games. It requires only that the other players' actual actions (not their strategies) can be observed at each step. It also learns to play optimally against opponents that {\em eventually become} stationary. The basic idea behind AWESOME ({\em Adapt When Everybody is Stationary, Otherwise Move to Equilibrium}) is to try to adapt to the others' strategies when they appear stationary, but otherwise to retreat to a precomputed equilibrium strategy. The techniques used to prove the properties of AWESOME are fundamentally different from those used for previous algorithms, and may help in analyzing other multiagent learning algorithms also.
112,342
112,342
BL-WoLF: A Framework For Loss-Bounded Learnability In Zero-Sum Games
We present BL-WoLF, a framework for learnability in repeated zero-sum games where the cost of learning is measured by the losses the learning agent accrues (rather than the number of rounds). The game is adversarially chosen from some family that the learner knows. The opponent knows the game and the learner's learning strategy. The learner tries to either not accrue losses, or to quickly learn about the game so as to avoid future losses (this is consistent with the Win or Learn Fast (WoLF) principle; BL stands for ``bounded loss''). Our framework allows for both probabilistic and approximate learning. The resultant notion of {\em BL-WoLF}-learnability can be applied to any class of games, and allows us to measure the inherent disadvantage to a player that does not know which game in the class it is in. We present {\em guaranteed BL-WoLF-learnability} results for families of games with deterministic payoffs and families of games with stochastic payoffs. We demonstrate that these families are {\em guaranteed approximately BL-WoLF-learnable} with lower cost. We then demonstrate families of games (both stochastic and deterministic) that are not guaranteed BL-WoLF-learnable. We show that those families, nevertheless, are {\em BL-WoLF-learnable}. To prove these results, we use a key lemma which we derive.
112,343
112,343
Manifold Learning with Geodesic Minimal Spanning Trees
In the manifold learning problem one seeks to discover a smooth low dimensional surface, i.e., a manifold embedded in a higher dimensional linear vector space, based on a set of measured sample points on the surface. In this paper we consider the closely related problem of estimating the manifold's intrinsic dimension and the intrinsic entropy of the sample points. Specifically, we view the sample points as realizations of an unknown multivariate density supported on an unknown smooth manifold. We present a novel geometrical probability approach, called the geodesic-minimal-spanning-tree (GMST), to obtaining asymptotically consistent estimates of the manifold dimension and the R\'{e}nyi $\alpha$-entropy of the sample density on the manifold. The GMST approach is striking in its simplicity and does not require reconstructing the manifold or estimating the multivariate density of the samples. The GMST method simply constructs a minimal spanning tree (MST) sequence using a geodesic edge matrix and uses the overall lengths of the MSTs to simultaneously estimate manifold dimension and entropy. We illustrate the GMST approach for dimension and entropy estimation of a human face dataset.
112,344
112,344
Learning Analogies and Semantic Relations
We present an algorithm for learning from unlabeled text, based on the Vector Space Model (VSM) of information retrieval, that can solve verbal analogy questions of the kind found in the Scholastic Aptitude Test (SAT). A verbal analogy has the form A:B::C:D, meaning "A is to B as C is to D"; for example, mason:stone::carpenter:wood. SAT analogy questions provide a word pair, A:B, and the problem is to select the most analogous word pair, C:D, from a set of five choices. The VSM algorithm correctly answers 47% of a collection of 374 college-level analogy questions (random guessing would yield 20% correct). We motivate this research by relating it to work in cognitive science and linguistics, and by applying it to a difficult problem in natural language processing, determining semantic relations in noun-modifier pairs. The problem is to classify a noun-modifier pair, such as "laser printer", according to the semantic relation between the noun (printer) and the modifier (laser). We use a supervised nearest-neighbour algorithm that assigns a class to a given noun-modifier pair by finding the most analogous noun-modifier pair in the training data. With 30 classes of semantic relations, on a collection of 600 labeled noun-modifier pairs, the learning algorithm attains an F value of 26.5% (random guessing: 3.3%). With 5 classes of semantic relations, the F value is 43.2% (random: 20%). The performance is state-of-the-art for these challenging problems.
112,345
112,345
Controlled hierarchical filtering: Model of neocortical sensory processing
A model of sensory information processing is presented. The model assumes that learning of internal (hidden) generative models, which can predict the future and evaluate the precision of that prediction, is of central importance for information extraction. Furthermore, the model makes a bridge to goal-oriented systems and builds upon the structural similarity between the architecture of a robust controller and that of the hippocampal entorhinal loop. This generative control architecture is mapped to the neocortex and to the hippocampal entorhinal loop. Implicit memory phenomena; priming and prototype learning are emerging features of the model. Mathematical theorems ensure stability and attractive learning properties of the architecture. Connections to reinforcement learning are also established: both the control network, and the network with a hidden model converge to (near) optimal policy under suitable conditions. Falsifying predictions, including the role of the feedback connections between neocortical areas are made.
112,346
112,346
Coherent Keyphrase Extraction via Web Mining
Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. A limitation of previous keyphrase extraction algorithms is that the selected keyphrases are occasionally incoherent. That is, the majority of the output keyphrases may fit together well, but there may be a minority that appear to be outliers, with no clear semantic relation to the majority or to each other. This paper presents enhancements to the Kea keyphrase extraction algorithm that are designed to increase the coherence of the extracted keyphrases. The approach is to use the degree of statistical association among candidate keyphrases as evidence that they may be semantically related. The statistical association is measured using web mining. Experiments demonstrate that the enhancements improve the quality of the extracted keyphrases. Furthermore, the enhancements are not domain-specific: the algorithm generalizes well when it is trained on one domain (computer science documents) and tested on another (physics documents).
112,347
112,347
Reliable and Efficient Inference of Bayesian Networks from Sparse Data by Statistical Learning Theory
To learn (statistical) dependencies among random variables requires exponentially large sample size in the number of observed random variables if any arbitrary joint probability distribution can occur. We consider the case that sparse data strongly suggest that the probabilities can be described by a simple Bayesian network, i.e., by a graph with small in-degree \Delta. Then this simple law will also explain further data with high confidence. This is shown by calculating bounds on the VC dimension of the set of those probability measures that correspond to simple graphs. This allows to select networks by structural risk minimization and gives reliability bounds on the error of the estimated joint measure without (in contrast to a previous paper) any prior assumptions on the set of possible joint measures. The complexity for searching the optimal Bayesian networks of in-degree \Delta increases only polynomially in the number of random varibales for constant \Delta and the optimal joint measure associated with a given graph can be found by convex optimization.
112,348
112,348
Using Simulated Annealing to Calculate the Trembles of Trembling Hand Perfection
Within the literature on non-cooperative game theory, there have been a number of attempts to propose logorithms which will compute Nash equilibria. Rather than derive a new algorithm, this paper shows that the family of algorithms known as Markov chain Monte Carlo (MCMC) can be used to calculate Nash equilibria. MCMC is a type of Monte Carlo simulation that relies on Markov chains to ensure its regularity conditions. MCMC has been widely used throughout the statistics and optimization literature, where variants of this algorithm are known as simulated annealing. This paper shows that there is interesting connection between the trembles that underlie the functioning of this algorithm and the type of Nash refinement known as trembling hand perfection.
112,349
112,349
Measuring Praise and Criticism: Inference of Semantic Orientation from Association
The evaluative character of a word is called its semantic orientation. Positive semantic orientation indicates praise (e.g., "honest", "intrepid") and negative semantic orientation indicates criticism (e.g., "disturbing", "superfluous"). Semantic orientation varies in both direction (positive or negative) and degree (mild to strong). An automated system for measuring semantic orientation would have application in text classification, text filtering, tracking opinions in online discussions, analysis of survey responses, and automated chat systems (chatbots). This paper introduces a method for inferring the semantic orientation of a word from its statistical association with a set of positive and negative paradigm words. Two instances of this approach are evaluated, based on two different statistical measures of word association: pointwise mutual information (PMI) and latent semantic analysis (LSA). The method is experimentally tested with 3,596 words (including adjectives, adverbs, nouns, and verbs) that have been manually labeled positive (1,614 words) and negative (1,982 words). The method attains an accuracy of 82.8% on the full test set, but the accuracy rises above 95% when the algorithm is allowed to abstain from classifying mild words.
112,350
112,350
Combining Independent Modules to Solve Multiple-choice Synonym and Analogy Problems
Existing statistical approaches to natural language problems are very coarse approximations to the true complexity of language processing. As such, no single technique will be best for all problem instances. Many researchers are examining ensemble methods that combine the output of successful, separately developed modules to create more accurate solutions. This paper examines three merging rules for combining probability distributions: the well known mixture rule, the logarithmic rule, and a novel product rule. These rules were applied with state-of-the-art results to two problems commonly used to assess human mastery of lexical semantics -- synonym questions and analogy questions. All three merging rules result in ensembles that are more accurate than any of their component modules. The differences among the three rules are not statistically significant, but it is suggestive that the popular mixture rule is not the best rule for either of the two problems.
112,351
112,351
Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet
Various optimality properties of universal sequence predictors based on Bayes-mixtures in general, and Solomonoff's prediction scheme in particular, will be studied. The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t-1}$ can be computed with the chain rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a countable or continuous class $\M$ one can base ones prediction on the Bayes-mixture $\xi$ defined as a $w_\nu$-weighted sum or integral of distributions $\nu\in\M$. The cumulative expected loss of the Bayes-optimal universal prediction scheme based on $\xi$ is shown to be close to the loss of the Bayes-optimal, but infeasible prediction scheme based on $\mu$. We show that the bounds are tight and that no other predictor can lead to significantly smaller bounds. Furthermore, for various performance measures, we show Pareto-optimality of $\xi$ and give an Occam's razor argument that the choice $w_\nu\sim 2^{-K(\nu)}$ for the weights is optimal, where $K(\nu)$ is the length of the shortest program describing $\nu$. The results are applied to games of chance, defined as a sequence of bets, observations, and rewards. The prediction schemes (and bounds) are compared to the popular predictors based on expert advice. Extensions to infinite alphabets, partial, delayed and probabilistic prediction, classification, and more active systems are briefly discussed.
112,352
112,352
Toward Attribute Efficient Learning Algorithms
We make progress on two important problems regarding attribute efficient learnability. First, we give an algorithm for learning decision lists of length $k$ over $n$ variables using $2^{\tilde{O}(k^{1/3})} \log n$ examples and time $n^{\tilde{O}(k^{1/3})}$. This is the first algorithm for learning decision lists that has both subexponential sample complexity and subexponential running time in the relevant parameters. Our approach establishes a relationship between attribute efficient learning and polynomial threshold functions and is based on a new construction of low degree, low weight polynomial threshold functions for decision lists. For a wide range of parameters our construction matches a 1994 lower bound due to Beigel for the ODDMAXBIT predicate and gives an essentially optimal tradeoff between polynomial threshold function degree and weight. Second, we give an algorithm for learning an unknown parity function on $k$ out of $n$ variables using $O(n^{1-1/k})$ examples in time polynomial in $n$. For $k=o(\log n)$ this yields a polynomial time algorithm with sample complexity $o(n)$. This is the first polynomial time algorithm for learning parity on a superconstant number of variables with sublinear sample complexity.
112,353
112,353
Hybrid LQG-Neural Controller for Inverted Pendulum System
The paper presents a hybrid system controller, incorporating a neural and an LQG controller. The neural controller has been optimized by genetic algorithms directly on the inverted pendulum system. The failure free optimization process stipulated a relatively small region of the asymptotic stability of the neural controller, which is concentrated around the regulation point. The presented hybrid controller combines benefits of a genetically optimized neural controller and an LQG controller in a single system controller. High quality of the regulation process is achieved through utilization of the neural controller, while stability of the system during transient processes and a wide range of operation are assured through application of the LQG controller. The hybrid controller has been validated by applying it to a simulation model of an inherently unstable system of inverted pendulum.
112,354
112,354
Improving spam filtering by combining Naive Bayes with simple k-nearest neighbor searches
Using naive Bayes for email classification has become very popular within the last few months. They are quite easy to implement and very efficient. In this paper we want to present empirical results of email classification using a combination of naive Bayes and k-nearest neighbor searches. Using this technique we show that the accuracy of a Bayes filter can be improved slightly for a high number of features and significantly for a small number of features.
112,355
112,355
Failure-Free Genetic Algorithm Optimization of a System Controller Using SAFE/LEARNING Controllers in Tandem
The paper presents a method for failure free genetic algorithm optimization of a system controller. Genetic algorithms present a powerful tool that facilitates producing near-optimal system controllers. Applied to such methods of computational intelligence as neural networks or fuzzy logic, these methods are capable of combining the non-linear mapping capabilities of the latter with learning the system behavior directly, that is, without a prior model. At the same time, genetic algorithms routinely produce solutions that lead to the failure of the controlled system. Such solutions are generally unacceptable for applications where safe operation must be guaranteed. We present here a method of design, which allows failure-free application of genetic algorithms through utilization of SAFE and LEARNING controllers in tandem, where the SAFE controller recovers the system from dangerous states while the LEARNING controller learns its behavior. The method has been validated by applying it to an inherently unstable system of inverted pendulum.
112,356
112,356
Mapping Subsets of Scholarly Information
We illustrate the use of machine learning techniques to analyze, structure, maintain, and evolve a large online corpus of academic literature. An emerging field of research can be identified as part of an existing corpus, permitting the implementation of a more coherent community structure for its practitioners.
112,357
112,357
Acquiring Lexical Paraphrases from a Single Corpus
This paper studies the potential of identifying lexical paraphrases within a single corpus, focusing on the extraction of verb paraphrases. Most previous approaches detect individual paraphrase instances within a pair (or set) of comparable corpora, each of them containing roughly the same information, and rely on the substantial level of correspondence of such corpora. We present a novel method that successfully detects isolated paraphrase instances within a single corpus without relying on any a-priori structure and information. A comparison suggests that an instance-based approach may be combined with a vector based approach in order to assess better the paraphrase likelihood for many verb pairs.
112,358
112,358
Part-of-Speech Tagging with Minimal Lexicalization
We use a Dynamic Bayesian Network to represent compactly a variety of sublexical and contextual features relevant to Part-of-Speech (PoS) tagging. The outcome is a flexible tagger (LegoTag) with state-of-the-art performance (3.6% error on a benchmark corpus). We explore the effect of eliminating redundancy and radically reducing the size of feature vocabularies. We find that a small but linguistically motivated set of suffixes results in improved cross-corpora generalization. We also show that a minimal lexicon limited to function words is sufficient to ensure reasonable performance.
112,359
112,359
About Unitary Rating Score Constructing
It is offered to pool test points of different subjects and different aspects of the same subject together in order to get the unitary rating score, by the way of nonlinear transformation of indicator points in accordance with Zipf's distribution. It is proposed to use the well-studied distribution of Intellectuality Quotient IQ as the reference distribution for latent variable "progress in studies".
112,360
112,360
A Numerical Example on the Principles of Stochastic Discrimination
Studies on ensemble methods for classification suffer from the difficulty of modeling the complementary strengths of the components. Kleinberg's theory of stochastic discrimination (SD) addresses this rigorously via mathematical notions of enrichment, uniformity, and projectability of an ensemble. We explain these concepts via a very simple numerical example that captures the basic principles of the SD theory and method. We focus on a fundamental symmetry in point set covering that is the key observation leading to the foundation of the theory. We believe a better understanding of the SD method will lead to developments of better tools for analyzing other ensemble methods.
112,361
112,361
Fitness inheritance in the Bayesian optimization algorithm
This paper describes how fitness inheritance can be used to estimate fitness for a proportion of newly sampled candidate solutions in the Bayesian optimization algorithm (BOA). The goal of estimating fitness for some candidate solutions is to reduce the number of fitness evaluations for problems where fitness evaluation is expensive. Bayesian networks used in BOA to model promising solutions and generate the new ones are extended to allow not only for modeling and sampling candidate solutions, but also for estimating their fitness. The results indicate that fitness inheritance is a promising concept in BOA, because population-sizing requirements for building appropriate models of promising solutions lead to good fitness estimates even if only a small proportion of candidate solutions is evaluated using the actual fitness function. This can lead to a reduction of the number of actual fitness evaluations by a factor of 30 or more.
112,362
112,362
Distribution of Mutual Information from Complete and Incomplete Data
Mutual information is widely used, in a descriptive way, to measure the stochastic dependence of categorical random variables. In order to address questions such as the reliability of the descriptive value, one must consider sample-to-population inferential approaches. This paper deals with the posterior distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean, and analytical approximations for the variance, skewness and kurtosis are derived. These approximations have a guaranteed accuracy level of the order O(1/n^3), where n is the sample size. Leading order approximations for the mean and the variance are derived in the case of incomplete samples. The derived analytical expressions allow the distribution of mutual information to be approximated reliably and quickly. In fact, the derived expressions can be computed with the same order of complexity needed for descriptive mutual information. This makes the distribution of mutual information become a concrete alternative to descriptive mutual information in many applications which would benefit from moving to the inductive side. Some of these prospective applications are discussed, and one of them, namely feature selection, is shown to perform significantly better when inductive mutual information is used.
112,363
112,363
Concept of E-machine: How does a "dynamical" brain learn to process "symbolic" information? Part I
The human brain has many remarkable information processing characteristics that deeply puzzle scientists and engineers. Among the most important and the most intriguing of these characteristics are the brain's broad universality as a learning system and its mysterious ability to dynamically change (reconfigure) its behavior depending on a combinatorial number of different contexts. This paper discusses a class of hypothetically brain-like dynamically reconfigurable associative learning systems that shed light on the possible nature of these brain's properties. The systems are arranged on the general principle referred to as the concept of E-machine. The paper addresses the following questions: 1. How can "dynamical" neural networks function as universal programmable "symbolic" machines? 2. What kind of a universal programmable symbolic machine can form arbitrarily complex software in the process of programming similar to the process of biological associative learning? 3. How can a universal learning machine dynamically reconfigure its software depending on a combinatorial number of possible contexts?
112,364
112,364
Tournament versus Fitness Uniform Selection
In evolutionary algorithms a critical parameter that must be tuned is that of selection pressure. If it is set too low then the rate of convergence towards the optimum is likely to be slow. Alternatively if the selection pressure is set too high the system is likely to become stuck in a local optimum due to a loss of diversity in the population. The recent Fitness Uniform Selection Scheme (FUSS) is a conceptually simple but somewhat radical approach to addressing this problem - rather than biasing the selection towards higher fitness, FUSS biases selection towards sparsely populated fitness levels. In this paper we compare the relative performance of FUSS with the well known tournament selection scheme on a range of problems.
112,365
112,365
When Do Differences Matter? On-Line Feature Extraction Through Cognitive Economy
For an intelligent agent to be truly autonomous, it must be able to adapt its representation to the requirements of its task as it interacts with the world. Most current approaches to on-line feature extraction are ad hoc; in contrast, this paper presents an algorithm that bases judgments of state compatibility and state-space abstraction on principled criteria derived from the psychological principle of cognitive economy. The algorithm incorporates an active form of Q-learning, and partitions continuous state-spaces by merging and splitting Voronoi regions. The experiments illustrate a new methodology for testing and comparing representations by means of learning curves. Results from the puck-on-a-hill task demonstrate the algorithm's ability to learn effective representations, superior to those produced by some other, well-known, methods.
112,366
112,366
Convergence of Discrete MDL for Sequential Prediction
We study the properties of the Minimum Description Length principle for sequence prediction, considering a two-part MDL estimator which is chosen from a countable class of models. This applies in particular to the important case of universal sequence prediction, where the model class corresponds to all algorithms for some fixed universal Turing machine (this correspondence is by enumerable semimeasures, hence the resulting models are stochastic). We prove convergence theorems similar to Solomonoff's theorem of universal induction, which also holds for general Bayes mixtures. The bound characterizing the convergence speed for MDL predictions is exponentially larger as compared to Bayes mixtures. We observe that there are at least three different ways of using MDL for prediction. One of these has worse prediction properties, for which predictions only converge if the MDL estimator stabilizes. We establish sufficient conditions for this to occur. Finally, some immediate consequences for complexity relations and randomness criteria are proven.
112,367
112,367
Prediction with Expert Advice by Following the Perturbed Leader for General Weights
When applying aggregating strategies to Prediction with Expert Advice, the learning rate must be adaptively tuned. The natural choice of sqrt(complexity/current loss) renders the analysis of Weighted Majority derivatives quite complicated. In particular, for arbitrary weights there have been no results proven so far. The analysis of the alternative "Follow the Perturbed Leader" (FPL) algorithm from Kalai (2003} (based on Hannan's algorithm) is easier. We derive loss bounds for adaptive learning rate and both finite expert classes with uniform weights and countable expert classes with arbitrary weights. For the former setup, our loss bounds match the best known results so far, while for the latter our results are (to our knowledge) new.
112,368
112,368
Knowledge Reduction and Discovery based on Demarcation Information
Knowledge reduction, includes attribute reduction and value reduction, is an important topic in rough set literature. It is also closely relevant to other fields, such as machine learning and data mining. In this paper, an algorithm called TWI-SQUEEZE is proposed. It can find a reduct, or an irreducible attribute subset after two scans. Its soundness and computational complexity are given, which show that it is the fastest algorithm at present. A measure of variety is brought forward, of which algorithm TWI-SQUEEZE can be regarded as an application. The author also argues the rightness of this measure as a measure of information, which can make it a unified measure for "differentiation, a concept appeared in cognitive psychology literature. Value reduction is another important aspect of knowledge reduction. It is interesting that using the same algorithm we can execute a complete value reduction efficiently. The complete knowledge reduction, which results in an irreducible table, can therefore be accomplished after four scans of table. The byproducts of reduction are two classifiers of different styles. In this paper, various cases and models will be discussed to prove the efficiency and effectiveness of the algorithm. Some topics, such as how to integrate user preference to find a local optimal attribute subset will also be discussed.
112,369
112,369
Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences
We present a new method for nonlinear prediction of discrete random sequences under minimal structural assumptions. We give a mathematical construction for optimal predictors of such processes, in the form of hidden Markov models. We then describe an algorithm, CSSR (Causal-State Splitting Reconstruction), which approximates the ideal predictor from data. We discuss the reliability of CSSR, its data requirements, and its performance in simulations. Finally, we compare our approach to existing methods using variable-length Markov models and cross-validated hidden Markov models, and show theoretically and experimentally that our method delivers results superior to the former and at least comparable to the latter.
112,370
112,370
Learning for Adaptive Real-time Search
Real-time heuristic search is a popular model of acting and learning in intelligent autonomous agents. Learning real-time search agents improve their performance over time by acquiring and refining a value function guiding the application of their actions. As computing the perfect value function is typically intractable, a heuristic approximation is acquired instead. Most studies of learning in real-time search (and reinforcement learning) assume that a simple value-function-greedy policy is used to select actions. This is in contrast to practice, where high-performance is usually attained by interleaving planning and acting via a lookahead search of a non-trivial depth. In this paper, we take a step toward bridging this gap and propose a novel algorithm that (i) learns a heuristic function to be used specifically with a lookahead-based policy, (ii) selects the lookahead depth adaptively in each state, (iii) gives the user control over the trade-off between exploration and exploitation. We extensively evaluate the algorithm in the sliding tile puzzle testbed comparing it to the classical LRTA* and the more recent weighted LRTA*, bounded LRTA*, and FALCONS. Improvements of 5 to 30 folds in convergence speed are observed.
112,371
112,371
On the Convergence Speed of MDL Predictions for Bernoulli Sequences
We consider the Minimum Description Length principle for online sequence prediction. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is bounded, implying convergence with probability one, and (b) it additionally specifies a `rate of convergence'. Generally, for MDL only exponential loss bounds hold, as opposed to the linear bounds for a Bayes mixture. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. The results apply to many Machine Learning tasks including classification and hypothesis testing. We provide arguments that our theorems generalize to countable classes of i.i.d. models.
112,372
112,372
Universal Convergence of Semimeasures on Individual Random Sequences
Solomonoff's central result on induction is that the posterior of a universal semimeasure M converges rapidly and with probability 1 to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal sequence predictor in case of unknown mu. Despite some nearby results and proofs in the literature, the stronger result of convergence for all (Martin-Loef) random sequences remained open. Such a convergence result would be particularly interesting and natural, since randomness can be defined in terms of M itself. We show that there are universal semimeasures M which do not converge for all random sequences, i.e. we give a partial negative answer to the open problem. We also provide a positive answer for some non-universal semimeasures. We define the incomputable measure D as a mixture over all computable measures and the enumerable semimeasure W as a mixture over all enumerable nearly-measures. We show that W converges to D and D to mu on all random sequences. The Hellinger distance measuring closeness of two distributions plays a central role.
112,373
112,373
Word Sense Disambiguation by Web Mining for Word Co-occurrence Probabilities
This paper describes the National Research Council (NRC) Word Sense Disambiguation (WSD) system, as applied to the English Lexical Sample (ELS) task in Senseval-3. The NRC system approaches WSD as a classical supervised machine learning problem, using familiar tools such as the Weka machine learning software and Brill's rule-based part-of-speech tagger. Head words are represented as feature vectors with several hundred features. Approximately half of the features are syntactic and the other half are semantic. The main novelty in the system is the method for generating the semantic features, based on word \hbox{co-occurrence} probabilities. The probabilities are estimated using the Waterloo MultiText System with a corpus of about one terabyte of unlabeled text, collected by a web crawler.
112,374
112,374
Semantic Linking - a Context-Based Approach to Interactivity in Hypermedia
The semantic Web initiates new, high level access schemes to online content and applications. One area of superior need for a redefined content exploration is given by on-line educational applications and their concepts of interactivity in the framework of open hypermedia systems. In the present paper we discuss aspects and opportunities of gaining interactivity schemes from semantic notions of components. A transition from standard educational annotation to semantic statements of hyperlinks is discussed. Further on we introduce the concept of semantic link contexts as an approach to manage a coherent rhetoric of linking. A practical implementation is introduced, as well. Our semantic hyperlink implementation is based on the more general Multimedia Information Repository MIR, an open hypermedia system supporting the standards XML, Corba and JNDI.
112,375
112,375
Hypermedia Learning Objects System - On the Way to a Semantic Educational Web
While eLearning systems become more and more popular in daily education, available applications lack opportunities to structure, annotate and manage their contents in a high-level fashion. General efforts to improve these deficits are taken by initiatives to define rich meta data sets and a semanticWeb layer. In the present paper we introduce Hylos, an online learning system. Hylos is based on a cellular eLearning Object (ELO) information model encapsulating meta data conforming to the LOM standard. Content management is provisioned on this semantic meta data level and allows for variable, dynamically adaptable access structures. Context aware multifunctional links permit a systematic navigation depending on the learners and didactic needs, thereby exploring the capabilities of the semantic web. Hylos is built upon the more general Multimedia Information Repository (MIR) and the MIR adaptive context linking environment (MIRaCLE), its linking extension. MIR is an open system supporting the standards XML, Corba and JNDI. Hylos benefits from manageable information structures, sophisticated access logic and high-level authoring tools like the ELO editor responsible for the semi-manual creation of meta data and WYSIWYG like content editing.
112,376
112,376
Online convex optimization in the bandit setting: gradient descent without a gradient
We consider a the general online convex optimization framework introduced by Zinkevich. In this setting, there is a sequence of convex functions. Each period, we must choose a signle point (from some feasible set) and pay a cost equal to the value of the next function on our chosen point. Zinkevich shows that, if the each function is revealed after the choice is made, then one can achieve vanishingly small regret relative the best single decision chosen in hindsight. We extend this to the bandit setting where we do not find out the entire functions but rather just their value at our chosen point. We show how to get vanishingly small regret in this setting. Our approach uses a simple approximation of the gradient that is computed from evaluating a function at a single (random) point. We show that this estimate is sufficient to mimic Zinkevich's gradient descent online analysis, with access to the gradient (only being able to evaluate the function at a single point).
112,377
112,377
Journal of New Democratic Methods: An Introduction
This paper describes a new breed of academic journals that use statistical machine learning techniques to make them more democratic. In particular, not only can anyone submit an article, but anyone can also become a reviewer. Machine learning is used to decide which reviewers accurately represent the views of the journal's readers and thus deserve to have their opinions carry more weight. The paper concentrates on describing a specific experimental prototype of a democratic journal called the Journal of New Democratic Methods (JNDM). The paper also mentions the wider implications that machine learning and the techniques used in the JNDM may have for representative democracy in general.
112,378
112,378
Non-negative matrix factorization with sparseness constraints
Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we show how explicitly incorporating the notion of `sparseness' improves the found decompositions. Additionally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope is that this will further the application of these methods to solving novel data-analysis problems.
112,379
112,379
Applying Policy Iteration for Training Recurrent Neural Networks
Recurrent neural networks are often used for learning time-series data. Based on a few assumptions we model this learning task as a minimization problem of a nonlinear least-squares cost function. The special structure of the cost function allows us to build a connection to reinforcement learning. We exploit this connection and derive a convergent, policy iteration-based algorithm. Furthermore, we argue that RNN training can be fit naturally into the reinforcement learning framework.
112,380
112,380
L1 regularization is better than L2 for learning and predicting chaotic systems
Emergent behaviors are in the focus of recent research interest. It is then of considerable importance to investigate what optimizations suit the learning and prediction of chaotic systems, the putative candidates for emergence. We have compared L1 and L2 regularizations on predicting chaotic time series using linear recurrent neural networks. The internal representation and the weights of the networks were optimized in a unifying framework. Computational tests on different problems indicate considerable advantages for the L1 regularization: It had considerably better learning time and better interpolating capabilities. We shall argue that optimization viewed as a maximum likelihood estimation justifies our results, because L1 regularization fits heavy-tailed distributions -- an apparently general feature of emergent systems -- better.
112,381
112,381
Automated Pattern Detection--An Algorithm for Constructing Optimally Synchronizing Multi-Regular Language Filters
In the computational-mechanics structural analysis of one-dimensional cellular automata the following automata-theoretic analogue of the \emph{change-point problem} from time series analysis arises: \emph{Given a string $\sigma$ and a collection $\{\mc{D}_i\}$ of finite automata, identify the regions of $\sigma$ that belong to each $\mc{D}_i$ and, in particular, the boundaries separating them.} We present two methods for solving this \emph{multi-regular language filtering problem}. The first, although providing the ideal solution, requires a stack, has a worst-case compute time that grows quadratically in $\sigma$'s length and conditions its output at any point on arbitrarily long windows of future input. The second method is to algorithmically construct a transducer that approximates the first algorithm. In contrast to the stack-based algorithm, however, the transducer requires only a finite amount of memory, runs in linear time, and gives immediate output for each letter read; it is, moreover, the best possible finite-state approximation with these three features.
112,382
112,382
Self-Organised Factorial Encoding of a Toroidal Manifold
It is shown analytically how a neural network can be used optimally to encode input data that is derived from a toroidal manifold. The case of a 2-layer network is considered, where the output is assumed to be a set of discrete neural firing events. The network objective function measures the average Euclidean error that occurs when the network attempts to reconstruct its input from its output. This optimisation problem is solved analytically for a toroidal input manifold, and two types of solution are obtained: a joint encoder in which the network acts as a soft vector quantiser, and a factorial encoder in which the network acts as a pair of soft vector quantisers (one for each of the circular subspaces of the torus). The factorial encoder is favoured for small network sizes when the number of observed firing events is large. Such self-organised factorial encoding may be used to restrict the size of network that is required to perform a given encoding task, and will decompose an input manifold into its constituent submanifolds.
112,383
112,383
Neural Architectures for Robot Intelligence
We argue that the direct experimental approaches to elucidate the architecture of higher brains may benefit from insights gained from exploring the possibilities and limits of artificial control architectures for robot systems. We present some of our recent work that has been motivated by that view and that is centered around the study of various aspects of hand actions since these are intimately linked with many higher cognitive abilities. As examples, we report on the development of a modular system for the recognition of continuous hand postures based on neural nets, the use of vision and tactile sensing for guiding prehensile movements of a multifingered hand, and the recognition and use of hand gestures for robot teaching. Regarding the issue of learning, we propose to view real-world learning from the perspective of data mining and to focus more strongly on the imitation of observed actions instead of purely reinforcement-based exploration. As a concrete example of such an effort we report on the status of an ongoing project in our lab in which a robot equipped with an attention system with a neurally inspired architecture is taught actions by using hand gestures in conjunction with speech commands. We point out some of the lessons learnt from this system, and discuss how systems of this kind can contribute to the study of issues at the junction between natural and artificial cognitive systems.
112,384
112,384
A Note on the PAC Bayesian Theorem
We prove general exponential moment inequalities for averages of [0,1]-valued iid random variables and use them to tighten the PAC Bayesian Theorem. The logarithmic dependence on the sample count in the enumerator of the PAC Bayesian bound is halved.
112,385
112,385
Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare
For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home.
112,386
112,386
Human-Level Performance on Word Analogy Questions by Latent Relational Analysis
This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, machine translation, and information retrieval. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason/stone is analogous to the pair carpenter/wood. Past work on semantic similarity measures has mainly been concerned with attributional similarity. Recently the Vector Space Model (VSM) of information retrieval has been adapted to the task of measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus (they are not predefined), (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data (it is also used this way in Latent Semantic Analysis), and (3) automatically generated synonyms are used to explore reformulations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying noun-modifier relations, LRA achieves similar gains over the VSM, while using a smaller corpus.
112,387
112,387
The Google Similarity Distance
Words and phrases acquire meaning from the way they are used in society, from their relative semantics to other words and phrases. For computers the equivalent of `society' is `database,' and the equivalent of `use' is `way to search the database.' We present a new theory of similarity between words and phrases based on information distance and Kolmogorov complexity. To fix thoughts we use the world-wide-web as database, and Google as search engine. The method is also applicable to other search engines and databases. This theory is then applied to construct a method to automatically extract similarity, the Google similarity distance, of words and phrases from the world-wide-web using Google page counts. The world-wide-web is the largest database on earth, and the context information entered by millions of independent users averages out to provide automatic semantics of useful quality. We give applications in hierarchical clustering, classification, and language translation. We give examples to distinguish between colors and numbers, cluster names of paintings by 17th century Dutch masters and names of books by English novelists, the ability to understand emergencies, and primes, and we demonstrate the ability to do a simple automatic English-Spanish translation. Finally, we use the WordNet database as an objective baseline against which to judge the performance of our method. We conduct a massive randomized trial in binary classification using support vector machines to learn categories based on our Google distance, resulting in an a mean agreement of 87% with the expert crafted WordNet categories.
112,388
112,388
Online Learning of Aggregate Knowledge about Non-linear Preferences Applied to Negotiating Prices and Bundles
In this paper, we consider a form of multi-issue negotiation where a shop negotiates both the contents and the price of bundles of goods with his customers. We present some key insights about, as well as a procedure for, locating mutually beneficial alternatives to the bundle currently under negotiation. The essence of our approach lies in combining aggregate (anonymous) knowledge of customer preferences with current data about the ongoing negotiation process. The developed procedure either works with already obtained aggregate knowledge or, in the absence of such knowledge, learns the relevant information online. We conduct computer experiments with simulated customers that have_nonlinear_ preferences. We show how, for various types of customers, with distinct negotiation heuristics, our procedure (with and without the necessary aggregate knowledge) increases the speed with which deals are reached, as well as the number and the Pareto efficiency of the deals reached compared to a benchmark.
112,389
112,389
Combining Independent Modules in Lexical Multiple-Choice Problems
Existing statistical approaches to natural language problems are very coarse approximations to the true complexity of language processing. As such, no single technique will be best for all problem instances. Many researchers are examining ensemble methods that combine the output of multiple modules to create more accurate solutions. This paper examines three merging rules for combining probability distributions: the familiar mixture rule, the logarithmic rule, and a novel product rule. These rules were applied with state-of-the-art results to two problems used to assess human mastery of lexical semantics -- synonym questions and analogy questions. All three merging rules result in ensembles that are more accurate than any of their component modules. The differences among the three rules are not statistically significant, but it is suggestive that the popular mixture rule is not the best rule for either of the two problems.
112,390
112,390
An Empirical Study of MDL Model Selection with Infinite Parametric Complexity
Parametric complexity is a central concept in MDL model selection. In practice it often turns out to be infinite, even for quite simple models such as the Poisson and Geometric families. In such cases, MDL model selection as based on NML and Bayesian inference based on Jeffreys' prior can not be used. Several ways to resolve this problem have been proposed. We conduct experiments to compare and evaluate their behaviour on small sample sizes. We find interestingly poor behaviour for the plug-in predictive code; a restricted NML model performs quite well but it is questionable if the results validate its theoretical motivation. The Bayesian model with the improper Jeffreys' prior is the most dependable.
112,391
112,391
Bandit Problems with Side Observations
An extension of the traditional two-armed bandit problem is considered, in which the decision maker has access to some side information before deciding which arm to pull. At each time t, before making a selection, the decision maker is able to observe a random variable X_t that provides some information on the rewards to be obtained. The focus is on finding uniformly good rules (that minimize the growth rate of the inferior sampling time) and on quantifying how much the additional information helps. Various settings are considered and for each setting, lower bounds on the achievable inferior sampling time are developed and asymptotically optimal adaptive schemes achieving these lower bounds are constructed.
112,392
112,392
Asymptotic Log-loss of Prequential Maximum Likelihood Codes
We analyze the Dawid-Rissanen prequential maximum likelihood codes relative to one-parameter exponential family models M. If data are i.i.d. according to an (essentially) arbitrary P, then the redundancy grows at rate c/2 ln n. We show that c=v1/v2, where v1 is the variance of P, and v2 is the variance of the distribution m* in M that is closest to P in KL divergence. This shows that prequential codes behave quite differently from other important universal codes such as the 2-part MDL, Shtarkov and Bayes codes, for which c=1. This behavior is undesirable in an MDL model selection setting.
112,393
112,393
Stability Analysis for Regularized Least Squares Regression
We discuss stability for a class of learning algorithms with respect to noisy labels. The algorithms we consider are for regression, and they involve the minimization of regularized risk functionals, such as L(f) := 1/N sum_i (f(x_i)-y_i)^2+ lambda ||f||_H^2. We shall call the algorithm `stable' if, when y_i is a noisy version of f*(x_i) for some function f* in H, the output of the algorithm converges to f* as the regularization term and noise simultaneously vanish. We consider two flavors of this problem, one where a data set of N points remains fixed, and the other where N -> infinity. For the case where N -> infinity, we give conditions for convergence to f_E (the function which is the expectation of y(x) for each x), as lambda -> 0. For the fixed N case, we describe the limiting 'non-noisy', 'non-regularized' function f*, and give conditions for convergence. In the process, we develop a set of tools for dealing with functionals such as L(f), which are applicable to many other problems in learning theory.
112,394
112,394
Estimating mutual information and multi--information in large networks
We address the practical problems of estimating the information relations that characterize large networks. Building on methods developed for analysis of the neural code, we show that reliable estimates of mutual information can be obtained with manageable computational effort. The same methods allow estimation of higher order, multi--information terms. These ideas are illustrated by analyses of gene expression, financial markets, and consumer preferences. In each case, information theoretic measures correlate with independent, intuitive measures of the underlying structures in the system.
112,395
112,395
Master Algorithms for Active Experts Problems based on Increasing Loss Values
We specify an experts algorithm with the following characteristics: (a) it uses only feedback from the actions actually chosen (bandit setup), (b) it can be applied with countably infinite expert classes, and (c) it copes with losses that may grow in time appropriately slowly. We prove loss bounds against an adaptive adversary. From this, we obtain master algorithms for "active experts problems", which means that the master's actions may influence the behavior of the adversary. Our algorithm can significantly outperform standard experts algorithms on such problems. Finally, we combine it with a universal expert class. This results in a (computationally infeasible) universal master algorithm which performs - in a certain sense - almost as well as any computable strategy, for any online problem.
112,396
112,396
On sample complexity for computational pattern recognition
In statistical setting of the pattern recognition problem the number of examples required to approximate an unknown labelling function is linear in the VC dimension of the target learning class. In this work we consider the question whether such bounds exist if we restrict our attention to computable pattern recognition methods, assuming that the unknown labelling function is also computable. We find that in this case the number of examples required for a computable method to approximate the labelling function not only is not linear, but grows faster (in the VC dimension of the class) than any computable function. No time or space constraints are put on the predictors or target functions; the only resource we consider is the training examples. The task of pattern recognition is considered in conjunction with another learning problem -- data compression. An impossibility result for the task of data compression allows us to estimate the sample complexity for pattern recognition.
112,397
112,397
Learning nonsingular phylogenies and hidden Markov models
In this paper we study the problem of learning phylogenies and hidden Markov models. We call a Markov model nonsingular if all transition matrices have determinants bounded away from 0 (and 1). We highlight the role of the nonsingularity condition for the learning problem. Learning hidden Markov models without the nonsingularity condition is at least as hard as learning parity with noise, a well-known learning problem conjectured to be computationally hard. On the other hand, we give a polynomial-time algorithm for learning nonsingular phylogenies and hidden Markov models.
112,398
112,398
The Self-Organization of Speech Sounds
The speech code is a vehicle of language: it defines a set of forms used by a community to carry information. Such a code is necessary to support the linguistic interactions that allow humans to communicate. How then may a speech code be formed prior to the existence of linguistic interactions? Moreover, the human speech code is discrete and compositional, shared by all the individuals of a community but different across communities, and phoneme inventories are characterized by statistical regularities. How can a speech code with these properties form? We try to approach these questions in the paper, using the "methodology of the artificial". We build a society of artificial agents, and detail a mechanism that shows the formation of a discrete speech code without pre-supposing the existence of linguistic capacities or of coordinated interactions. The mechanism is based on a low-level model of sensory-motor interactions. We show that the integration of certain very simple and non language-specific neural devices leads to the formation of a speech code that has properties similar to the human speech code. This result relies on the self-organizing properties of a generic coupling between perception and production within agents, and on the interactions between agents. The artificial system helps us to develop better intuitions on how speech might have appeared, by showing how self-organization might have helped natural selection to find speech.
112,399
112,399
On Generalized Computable Universal Priors and their Convergence
Solomonoff unified Occam's razor and Epicurus' principle of multiple explanations to one elegant, formal, universal theory of inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of the universal semimeasure M converges rapidly to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal predictor in case of unknown mu. The first part of the paper investigates the existence and convergence of computable universal (semi)measures for a hierarchy of computability classes: recursive, estimable, enumerable, and approximable. For instance, M is known to be enumerable, but not estimable, and to dominate all enumerable semimeasures. We present proofs for discrete and continuous semimeasures. The second part investigates more closely the types of convergence, possibly implied by universality: in difference and in ratio, with probability 1, in mean sum, and for Martin-Loef random sequences. We introduce a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues. In particular, we show that convergence fails (holds) on generalized-random sequences in gappy (dense) Bernoulli classes.