Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
112,000
112,000
On Numerical Integration in Neural Ordinary Differential Equations
The combination of ordinary differential equations and neural networks, i.e., neural ordinary differential equations (Neural ODE), has been widely studied from various angles. However, deciphering the numerical integration in Neural ODE is still an open challenge, as many researches demonstrated that numerical integration significantly affects the performance of the model. In this paper, we propose the inverse modified differential equations (IMDE) to clarify the influence of numerical integration on training Neural ODE models. IMDE is determined by the learning task and the employed ODE solver. It is shown that training a Neural ODE model actually returns a close approximation of the IMDE, rather than the true ODE. With the help of IMDE, we deduce that (i) the discrepancy between the learned model and the true ODE is bounded by the sum of discretization error and learning loss; (ii) Neural ODE using non-symplectic numerical integration fail to learn conservation laws theoretically. Several experiments are performed to numerically verify our theoretical analysis.
112,001
112,001
Cautious Learning of Multiattribute Preferences
This paper is dedicated to a cautious learning methodology for predicting preferences between alternatives characterized by binary attributes (formally, each alternative is seen as a subset of attributes). By "cautious", we mean that the model learned to represent the multi-attribute preferences is general enough to be compatible with any strict weak order on the alternatives, and that we allow ourselves not to predict some preferences if the data collected are not compatible with a reliable prediction. A predicted preference will be considered reliable if all the simplest models (following Occam's razor principle) explaining the training data agree on it. Predictions are based on an ordinal dominance relation between alternatives [Fishburn and LaValle, 1996]. The dominance relation relies on an uncertainty set encompassing the possible values of the parameters of the multi-attribute utility function. Numerical tests are provided to evaluate the richness and the reliability of the predictions made.
112,002
112,002
Automatic Detection of Rice Disease in Images of Various Leaf Sizes
Fast, accurate and affordable rice disease detection method is required to assist rice farmers tackling equipment and expertise shortages problems. In this paper, we focused on the solution using computer vision technique to detect rice diseases from rice field photograph images. Dealing with images took in real-usage situation by general farmers is quite challenging due to various environmental factors, and rice leaf object size variation is one major factor caused performance gradation. To solve this problem, we presented a technique combining a CNN object detection with image tiling technique, based on automatically estimated width size of rice leaves in the images as a size reference for dividing the original input image. A model to estimate leaf width was created by small size CNN such as 18 layer ResNet architecture model. A new divided tiled sub-image set with uniformly sized object was generated and used as input for training a rice disease prediction model. Our technique was evaluated on 4,960 images of eight different types of rice leaf diseases, including blast, blight, brown spot, narrow brown spot, orange, red stripe, rice grassy stunt virus, and streak disease. The mean absolute percentage error (MAPE) for leaf width prediction task evaluated on all eight classes was 11.18% in the experiment, indicating that the leaf width prediction model performed well. The mean average precision (mAP) of the prediction performance on YOLOv4 architecture was enhanced from 87.56% to 91.14% when trained and tested with the tiled dataset. According to our study, the proposed image tiling technique improved rice disease detection efficiency.
112,003
112,003
Robust SAR ATR on MSTAR with Deep Learning Models trained on Full Synthetic MOCEM data
The promising potential of Deep Learning for Automatic Target Recognition (ATR) on Synthetic Aperture Radar (SAR) images vanishes when considering the complexity of collecting training datasets measurements. Simulation can overcome this issue by producing synthetic training datasets. However, because of the limited representativeness of simulation, models trained in a classical way with synthetic images have limited generalization abilities when dealing with real measurement at test time. Previous works identified a set of equally promising deep-learning algorithms to tackle this issue. However, these approaches have been evaluated in a very favorable scenario with a synthetic training dataset that overfits the ground truth of the measured test data. In this work, we study the ATR problem outside of this ideal condition, which is unlikely to occur in real operational contexts. Our contribution is threefold. (1) Using the MOCEM simulator (developed by SCALIAN DS for the French MoD/DGA), we produce a synthetic MSTAR training dataset that differs significantly from the real measurements. (2) We experimentally demonstrate the limits of the state-of-the-art. (3) We show that domain randomization techniques and adversarial training can be combined to overcome this issue. We demonstrate that this approach is more robust than the state-of-the-art, with an accuracy of 75 %, while having a limited impact on computing performance during training.
112,004
112,004
Modern Machine-Learning Predictive Models for Diagnosing Infectious Diseases
Controlling infectious diseases is a major health priority because they can spread and infect humans, thus evolving into epidemics or pandemics. Therefore, early detection of infectious diseases is a significant need, and many researchers have developed models to diagnose them in the early stages. This paper reviewed research articles for recent machine-learning (ML) algorithms applied to infectious disease diagnosis. We searched the Web of Science, ScienceDirect, PubMed, Springer, and IEEE databases from 2015 to 2022, identified the pros and cons of the reviewed ML models, and discussed the possible recommendations to advance the studies in this field. We found that most of the articles used small datasets, and few of them used real-time data. Our results demonstrated that a suitable ML technique depends on the nature of the dataset and the desired goal.
112,005
112,005
DiffWire: Inductive Graph Rewiring via the Lov\'asz Bound
Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks, such as node and graph classification, link prediction and node and graph clustering in a variety of domains. Most GNNs use a message passing framework and hence are called MPNNs. Despite their promising results, MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching. Graph rewiring and graph pooling have been proposed in the literature as solutions to address these limitations. However, most state-of-the-art graph rewiring methods fail to preserve the global topology of the graph, are not differentiable (inductive) and require the tuning of hyper-parameters. In this paper, we propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free by leveraging the Lov\'asz bound. Our approach provides a unified theory for graph rewiring by proposing two new, complementary layers in MPNNs: first, CTLayer, a layer that learns the commute times and uses them as a relevance function for edge re-weighting; second, GAPLayer, a layer to optimize the spectral gap, depending on the nature of the network and the task at hand. We empirically validate the value of our proposed approach and each of these layers separately with benchmark datasets for graph classification. DiffWire brings together the learnability of commute times to related definitions of curvature, opening the door to the development of more expressive MPNNs.
112,006
112,006
Lattice Convolutional Networks for Learning Ground States of Quantum Many-Body Systems
Deep learning methods have been shown to be effective in representing ground-state wave functions of quantum many-body systems. Existing methods use convolutional neural networks (CNNs) for square lattices due to their image-like structures. For non-square lattices, existing method uses graph neural network (GNN) in which structure information is not precisely captured, thereby requiring additional hand-crafted sublattice encoding. In this work, we propose lattice convolutions in which a set of proposed operations are used to convert non-square lattices into grid-like augmented lattices on which regular convolution can be applied. Based on the proposed lattice convolutions, we design lattice convolutional networks (LCN) that use self-gating and attention mechanisms. Experimental results show that our method achieves performance on par or better than existing methods on spin 1/2 $J_1$-$J_2$ Heisenberg model over the square, honeycomb, triangular, and kagome lattices while without using hand-crafted encoding.
112,007
112,007
Mean-Semivariance Policy Optimization via Risk-Averse Reinforcement Learning
Keeping risk under control is often more crucial than maximizing expected reward in real-world decision-making situations, such as finance, robotics, autonomous driving, etc. The most natural choice of risk measures is variance, while it penalizes the upside volatility as much as the downside part. Instead, the (downside) semivariance, which captures negative deviation of a random variable under its mean, is more suitable for risk-averse proposes. This paper aims at optimizing the mean-semivariance (MSV) criterion in reinforcement learning w.r.t. steady rewards. Since semivariance is time-inconsistent and does not satisfy the standard Bellman equation, the traditional dynamic programming methods are inapplicable to MSV problems directly. To tackle this challenge, we resort to the Perturbation Analysis (PA) theory and establish the performance difference formula for MSV. We reveal that the MSV problem can be solved by iteratively solving a sequence of RL problems with a policy-dependent reward function. Further, we propose two on-policy algorithms based on the policy gradient theory and the trust region method. Finally, we conduct diverse experiments from simple bandit problems to continuous control tasks in MuJoCo, which demonstrate the effectiveness of our proposed methods.
112,008
112,008
Finite-Sample Guarantees for High-Dimensional DML
Debiased machine learning (DML) offers an attractive way to estimate treatment effects in observational settings, where identification of causal parameters requires a conditional independence or unconfoundedness assumption, since it allows to control flexibly for a potentially very large number of covariates. This paper gives novel finite-sample guarantees for joint inference on high-dimensional DML, bounding how far the finite-sample distribution of the estimator is from its asymptotic Gaussian approximation. These guarantees are useful to applied researchers, as they are informative about how far off the coverage of joint confidence bands can be from the nominal level. There are many settings where high-dimensional causal parameters may be of interest, such as the ATE of many treatment profiles, or the ATE of a treatment on many outcomes. We also cover infinite-dimensional parameters, such as impacts on the entire marginal distribution of potential outcomes. The finite-sample guarantees in this paper complement the existing results on consistency and asymptotic normality of DML estimators, which are either asymptotic or treat only the one-dimensional case.
112,009
112,009
The Manifold Hypothesis for Gradient-Based Explanations
When do gradient-based explanation algorithms provide meaningful explanations? We propose a necessary criterion: their feature attributions need to be aligned with the tangent space of the data manifold. To provide evidence for this hypothesis, we introduce a framework based on variational autoencoders that allows to estimate and generate image manifolds. Through experiments across a range of different datasets -- MNIST, EMNIST, CIFAR10, X-ray pneumonia and Diabetic Retinopathy detection -- we demonstrate that the more a feature attribution is aligned with the tangent space of the data, the more structured and explanatory it tends to be. In particular, the attributions provided by popular post-hoc methods such as Integrated Gradients, SmoothGrad and Input $\times$ Gradient tend to be more strongly aligned with the data manifold than the raw gradient. As a consequence, we suggest that explanation algorithms should actively strive to align their explanations with the data manifold. In part, this can be achieved by adversarial training, which leads to better alignment across all datasets. Some form of adjustment to the model architecture or training algorithm is necessary, since we show that generalization of neural networks alone does not imply the alignment of model gradients with the data manifold.
112,010
112,010
Subsurface Depths Structure Maps Reconstruction with Generative Adversarial Networks
This paper described a method for reconstruction of detailed-resolution depth structure maps, usually obtained after the 3D seismic surveys, using the data from 2D seismic depth maps. The method uses two algorithms based on the generative-adversarial neural network architecture. The first algorithm StyleGAN2-ADA accumulates in the hidden space of the neural network the semantic images of mountainous terrain forms first, and then with help of transfer learning, in the ideal case - the structure geometry of stratigraphic horizons. The second algorithm, the Pixel2Style2Pixel encoder, using the semantic level of generalization of the first algorithm, learns to reconstruct the original high-resolution images from their degraded copies (super-resolution technology). There was demonstrated a methodological approach to transferring knowledge on the structural forms of stratigraphic horizon boundaries from the well-studied areas to the underexplored ones. Using the multimodal synthesis of Pixel2Style2Pixel encoder, it is proposed to create a probabilistic depth space, where each point of the project area is represented by the density of probabilistic depth distribution of equally probable reconstructed geological forms of structural images. Assessment of the reconstruction quality was carried out for two blocks. Using this method, credible detailed depth reconstructions comparable with the quality of 3D seismic maps have been obtained from 2D seismic maps.
112,011
112,011
"Why Here and Not There?" -- Diverse Contrasting Explanations of Dimensionality Reduction
Dimensionality reduction is a popular preprocessing and a widely used tool in data mining. Transparency, which is usually achieved by means of explanations, is nowadays a widely accepted and crucial requirement of machine learning based systems like classifiers and recommender systems. However, transparency of dimensionality reduction and other data mining tools have not been considered much yet, still it is crucial to understand their behavior -- in particular practitioners might want to understand why a specific sample got mapped to a specific location. In order to (locally) understand the behavior of a given dimensionality reduction method, we introduce the abstract concept of contrasting explanations for dimensionality reduction, and apply a realization of this concept to the specific application of explaining two dimensional data visualization.
112,012
112,012
Automating the resolution of flight conflicts: Deep reinforcement learning in service of air traffic controllers
Dense and complex air traffic scenarios require higher levels of automation than those exhibited by tactical conflict detection and resolution (CD\&R) tools that air traffic controllers (ATCO) use today. However, the air traffic control (ATC) domain, being safety critical, requires AI systems to which operators are comfortable to relinquishing control, guaranteeing operational integrity and automation adoption. Two major factors towards this goal are quality of solutions, and transparency in decision making. This paper proposes using a graph convolutional reinforcement learning method operating in a multiagent setting where each agent (flight) performs a CD\&R task, jointly with other agents. We show that this method can provide high-quality solutions with respect to stakeholders interests (air traffic controllers and airspace users), addressing operational transparency issues.
112,013
112,013
Hardening DNNs against Transfer Attacks during Network Compression using Greedy Adversarial Pruning
The prevalence and success of Deep Neural Network (DNN) applications in recent years have motivated research on DNN compression, such as pruning and quantization. These techniques accelerate model inference, reduce power consumption, and reduce the size and complexity of the hardware necessary to run DNNs, all with little to no loss in accuracy. However, since DNNs are vulnerable to adversarial inputs, it is important to consider the relationship between compression and adversarial robustness. In this work, we investigate the adversarial robustness of models produced by several irregular pruning schemes and by 8-bit quantization. Additionally, while conventional pruning removes the least important parameters in a DNN, we investigate the effect of an unconventional pruning method: removing the most important model parameters based on the gradient on adversarial inputs. We call this method Greedy Adversarial Pruning (GAP) and we find that this pruning method results in models that are resistant to transfer attacks from their uncompressed counterparts.
112,014
112,014
Multi-Objective Hyperparameter Optimization -- An Overview
Hyperparameter optimization constitutes a large part of typical modern machine learning workflows. This arises from the fact that machine learning methods and corresponding preprocessing steps often only yield optimal performance when hyperparameters are properly tuned. But in many applications, we are not only interested in optimizing ML pipelines solely for predictive accuracy; additional metrics or constraints must be considered when determining an optimal configuration, resulting in a multi-objective optimization problem. This is often neglected in practice, due to a lack of knowledge and readily available software implementations for multi-objective hyperparameter optimization. In this work, we introduce the reader to the basics of multi- objective hyperparameter optimization and motivate its usefulness in applied ML. Furthermore, we provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization. We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.
112,015
112,015
Predicting Gender via Eye Movements
In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1 %); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli.
112,016
112,016
Understanding and Optimizing Deep Learning Cold-Start Latency on Edge Devices
DNNs are ubiquitous on edge devices nowadays. With its increasing importance and use cases, it's not likely to pack all DNNs into device memory and expect that each inference has been warmed up. Therefore, cold inference, the process to read, initialize, and execute a DNN model, is becoming commonplace and its performance is urgently demanded to be optimized. To this end, we present NNV12, the first on-device inference engine that optimizes for cold inference NNV12 is built atop 3 novel optimization knobs: selecting a proper kernel (implementation) for each DNN operator, bypassing the weights transformation process by caching the post-transformed weights on disk, and pipelined execution of many kernels on asymmetric processors. To tackle with the huge search space, NNV12 employs a heuristic-based scheme to obtain a near-optimal kernel scheduling plan. We fully implement a prototype of NNV12 and evaluate its performance across extensive experiments. It shows that NNV12 achieves up to 15.2x and 401.5x compared to the state-of-the-art DNN engines on edge CPUs and GPUs, respectively.
112,017
112,017
VisageSynTalk: Unseen Speaker Video-to-Speech Synthesis via Speech-Visage Feature Selection
The goal of this work is to reconstruct speech from a silent talking face video. Recent studies have shown impressive performance on synthesizing speech from silent talking face videos. However, they have not explicitly considered on varying identity characteristics of different speakers, which place a challenge in the video-to-speech synthesis, and this becomes more critical in unseen-speaker settings. Distinct from the previous methods, our approach is to separate the speech content and the visage-style from a given silent talking face video. By guiding the model to independently focus on modeling the two representations, we can obtain the speech of high intelligibility from the model even when the input video of an unseen subject is given. To this end, we introduce speech-visage selection module that separates the speech content and the speaker identity from the visual features of the input video. The disentangled representations are jointly incorporated to synthesize speech through visage-style based synthesizer which generates speech by coating the visage-styles while maintaining the speech content. Thus, the proposed framework brings the advantage of synthesizing the speech containing the right content even when the silent talking face video of an unseen subject is given. We validate the effectiveness of the proposed framework on the GRID, TCD-TIMIT volunteer, and LRW datasets. The synthesized speech can be heard in supplementary materials.
112,018
112,018
A Survey of Detection Methods for Die Attachment and Wire Bonding Defects in Integrated Circuit Manufacturing
Defect detection plays a vital role in the manufacturing process of integrated circuits (ICs). Die attachment and wire bonding are two steps of the manufacturing process that determine the power and signal transmission quality and dependability in an IC. This paper presents a survey or literature review of the methods used for detecting these defects based on different sensing modalities used including optical, radiological, acoustical, and infrared thermography. A discussion of the detection methods used is provided in this survey. Both conventional and deep learning approaches for detecting die attachment and wire bonding defects are considered along with challenges and future research directions.
112,019
112,019
Blind Estimation of a Doubly Selective OFDM Channel: A Deep Learning Algorithm and Theory
We provide a new generation solution to the fundamental old problem of a doubly selective fading channel estimation for orthogonal frequency division multiplexing (OFDM) systems. For systems based on OFDM, we propose a deep learning (DL)-based blind doubly selective channel estimator. This estimator does require no pilot symbols, unlike the corresponding state-of-the-art estimators, even during the estimation of a deep fading doubly selective channel. We also provide the first of its kind theory on the testing mean squared error (MSE) performance of our investigated blind OFDM channel estimator based on over-parameterized ReLU FNNs.
112,020
112,020
Intelligent analysis of EEG signals to assess consumer decisions: A Study on Neuromarketing
Neuromarketing is an emerging field that combines neuroscience and marketing to understand the factors that influence consumer decisions better. The study proposes a method to understand consumers' positive and negative reactions to advertisements (ads) and products by analysing electroencephalogram (EEG) signals. These signals are recorded using a low-cost single electrode headset from volunteers belonging to the ages 18-22. A detailed subject dependent (SD) and subject independent (SI) analysis was performed employing machine learning methods like Naive Bayes (NB), Support Vector Machine (SVM), k-nearest neighbour and Decision Tree and the proposed deep learning (DL) model. SVM and NB yielded an accuracy (Acc.) of 0.63 for the SD analysis. In SI analysis, SVM performed better for the advertisement, product and gender-based analysis. Furthermore, the performance of the DL model was on par with that of SVM, especially, in product and ads-based analysis.
112,021
112,021
Topological Simplification of Signals for Inference and Approximate Reconstruction
As Internet of Things (IoT) devices become both cheaper and more powerful, researchers are increasingly finding solutions to their scientific curiosities both financially and computationally feasible. When operating with restricted power or communications budgets, however, devices can only send highly-compressed data. Such circumstances are common for devices placed away from electric grids that can only communicate via satellite, a situation particularly plausible for environmental sensor networks. These restrictions can be further complicated by potential variability in the communications budget, for example a solar-powered device needing to expend less energy when transmitting data on a cloudy day. We propose a novel, topology-based, lossy compression method well-equipped for these restrictive yet variable circumstances. This technique, Topological Signal Compression, allows sending compressed signals that utilize the entirety of a variable communications budget. To demonstrate our algorithm's capabilities, we perform entropy calculations as well as a classification exercise on increasingly topologically simplified signals from the Free-Spoken Digit Dataset and explore the stability of the resulting performance against common baselines.
112,022
112,022
Preliminary study on the impact of EEG density on TMS-EEG classification in Alzheimer's disease
Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set. Within a leave-one-subject-out validation scenario, the best classification performance for AD vs. HC was obtained using a high-density electrode with a Random Forest classifier. The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.2% respectively.
112,023
112,023
Deep Multi-Task Networks For Occluded Pedestrian Pose Estimation
Most of the existing works on pedestrian pose estimation do not consider estimating the pose of an occluded pedestrians, as the annotations of the occluded parts are not available in relevant automotive datasets. For example, CityPersons, a well-known dataset for pedestrian detection in automotive scenes does not provide pose annotations, whereas MS-COCO, a non-automotive dataset, contains human pose estimation. In this work, we propose a multi-task framework to extract pedestrian features through detection and instance segmentation tasks performed separately on these two distributions. Thereafter, an encoder learns pose specific features using an unsupervised instance-level domain adaptation method for the pedestrian instances from both distributions. The proposed framework has improved state-of-the-art performances of pose estimation, pedestrian detection, and instance segmentation.
112,024
112,024
Investigating Multi-Feature Selection and Ensembling for Audio Classification
Deep Learning (DL) algorithms have shown impressive performance in diverse domains. Among them, audio has attracted many researchers over the last couple of decades due to some interesting patterns--particularly in classification of audio data. For better performance of audio classification, feature selection and combination play a key role as they have the potential to make or break the performance of any DL model. To investigate this role, we conduct an extensive evaluation of the performance of several cutting-edge DL models (i.e., Convolutional Neural Network, EfficientNet, MobileNet, Supper Vector Machine and Multi-Perceptron) with various state-of-the-art audio features (i.e., Mel Spectrogram, Mel Frequency Cepstral Coefficients, and Zero Crossing Rate) either independently or as a combination (i.e., through ensembling) on three different datasets (i.e., Free Spoken Digits Dataset, Audio Urdu Digits Dataset, and Audio Gujarati Digits Dataset). Overall, results suggest feature selection depends on both the dataset and the model. However, feature combinations should be restricted to the only features that already achieve good performances when used individually (i.e., mostly Mel Spectrogram, Mel Frequency Cepstral Coefficients). Such feature combination/ensembling enabled us to outperform the previous state-of-the-art results irrespective of our choice of DL model.
112,025
112,025
A Deep Learning Network for the Classification of Intracardiac Electrograms in Atrial Tachycardia
A key technology enabling the success of catheter ablation treatment for atrial tachycardia is activation mapping, which relies on manual local activation time (LAT) annotation of all acquired intracardiac electrogram (EGM) signals. This is a time-consuming and error-prone procedure, due to the difficulty in identifying the signal activation peaks for fractionated signals. This work presents a Deep Learning approach for the automated classification of EGM signals into three different types: normal, abnormal, and unclassified, which forms part of the LAT annotation pipeline, and contributes towards bypassing the need for manual annotations of the LAT. The Deep Learning network, the CNN-LSTM model, is a hybrid network architecture which combines convolutional neural network (CNN) layers with long short-term memory (LSTM) layers. 1452 EGM signals from a total of 9 patients undergoing clinically-indicated 3D cardiac mapping were used for the training, validation and testing of our models. From our findings, the CNN-LSTM model achieved an accuracy of 81% for the balanced dataset. For comparison, we separately developed a rule-based Decision Trees model which attained an accuracy of 67% for the same balanced dataset. Our work elucidates that analysing the EGM signals using a set of explicitly specified rules as proposed by the Decision Trees model is not suitable as EGM signals are complex. The CNN-LSTM model, on the other hand, has the ability to learn the complex, intrinsic features within the signals and identify useful features to differentiate the EGM signals.
112,026
112,026
Binary Single-dimensional Convolutional Neural Network for Seizure Prediction
Nowadays, several deep learning methods are proposed to tackle the challenge of epileptic seizure prediction. However, these methods still cannot be implemented as part of implantable or efficient wearable devices due to their large hardware and corresponding high-power consumption. They usually require complex feature extraction process, large memory for storing high precision parameters and complex arithmetic computation, which greatly increases required hardware resources. Moreover, available yield poor prediction performance, because they adopt network architecture directly from image recognition applications fails to accurately consider the characteristics of EEG signals. We propose in this paper a hardware-friendly network called Binary Single-dimensional Convolutional Neural Network (BSDCNN) intended for epileptic seizure prediction. BSDCNN utilizes 1D convolutional kernels to improve prediction performance. All parameters are binarized to reduce the required computation and storage, except the first layer. Overall area under curve, sensitivity, and false prediction rate reaches 0.915, 89.26%, 0.117/h and 0.970, 94.69%, 0.095/h on American Epilepsy Society Seizure Prediction Challenge (AES) dataset and the CHB-MIT one respectively. The proposed architecture outperforms recent works while offering 7.2 and 25.5 times reductions on the size of parameter and computation, respectively.
112,027
112,027
Smart Meter Data Anomaly Detection using Variational Recurrent Autoencoders with Attention
In the digitization of energy systems, sensors and smart meters are increasingly being used to monitor production, operation and demand. Detection of anomalies based on smart meter data is crucial to identify potential risks and unusual events at an early stage, which can serve as a reference for timely initiation of appropriate actions and improving management. However, smart meter data from energy systems often lack labels and contain noise and various patterns without distinctively cyclical. Meanwhile, the vague definition of anomalies in different energy scenarios and highly complex temporal correlations pose a great challenge for anomaly detection. Many traditional unsupervised anomaly detection algorithms such as cluster-based or distance-based models are not robust to noise and not fully exploit the temporal dependency in a time series as well as other dependencies amongst multiple variables (sensors). This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism. with "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training. This paper makes a quantitative comparison with the VAE-based baseline approach and four other unsupervised learning methods, demonstrating its effectiveness and superiority. This paper further validates the proposed method by a real case study of detecting the anomalies of water supply temperature from an industrial heating plant.
112,028
112,028
Principal Trade-off Analysis
This paper develops Principal Trade-off Analysis (PTA), a decomposition method, analogous to Principal Component Analysis (PCA), which permits the representation of any game as the weighted sum of disc games (continuous R-P-S games). Applying PTA to empirically generated tournament graphs produces a sequence of embeddings into orthogonal 2D feature planes representing independent strategic trade-offs. Each trade-off generates a mode of cyclic competition. Like PCA, PTA provides optimal low rank estimates of the tournament graphs that can be truncated for approximation. The complexity of cyclic competition can be quantified by computing the number of significant cyclic modes. We illustrate the PTA via application to a pair of games (Blotto, Pokemon). The resulting 2D disc game representations are shown to be well suited for visualization and are easily interpretable. In Blotto, PTA identifies game symmetries, and specifies strategic trade-offs associated with distinct win conditions. For Pokemon, PTA embeddings produce clusters in the embedding space that naturally correspond to Pokemon types, a design in the game that produces cyclic trade offs.
112,029
112,029
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks. We first introduce support for low precision quantization in existing ONNX-based quantization formats by leveraging integer clipping, resulting in two new backward-compatible variants: the quantized operator format with clipping and quantize-clip-dequantize (QCDQ) format. We then introduce a novel higher-level ONNX format called quantized ONNX (QONNX) that introduces three new operators -- Quant, BipolarQuant, and Trunc -- in order to represent uniform quantization. By keeping the QONNX IR high-level and flexible, we enable targeting a wider variety of platforms. We also present utilities for working with QONNX, as well as examples of its usage in the FINN and hls4ml toolchains. Finally, we introduce the QONNX model zoo to share low-precision quantized neural networks.
112,030
112,030
Corruption-Robust Contextual Search through Density Updates
We study the problem of contextual search in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of noise in the system. For the $\eps$-ball loss, we give a tight regret bound of $O(C + d \log(1/\eps))$ improving over the $O(d^3 \log(1/\eps)) \log^2(T) + C \log(T) \log(1/\eps))$ bound of Krishnamurthy et al (STOC21). For the symmetric loss, we give an efficient algorithm with regret $O(C+d \log T)$. Our techniques are a significant departure from prior approaches. Specifically, we keep track of density functions over the candidate vectors instead of a knowledge set consisting of the candidate vectors consistent with the feedback obtained.
112,031
112,031
BaIT: Barometer for Information Trustworthiness
This paper presents a new approach to the FNC-1 fake news classification task which involves employing pre-trained encoder models from similar NLP tasks, namely sentence similarity and natural language inference, and two neural network architectures using this approach are proposed. Methods in data augmentation are explored as a means of tackling class imbalance in the dataset, employing common pre-existing methods and proposing a method for sample generation in the under-represented class using a novel sentence negation algorithm. Comparable overall performance with existing baselines is achieved, while significantly increasing accuracy on an under-represented but nonetheless important class for FNC-1.
112,032
112,032
Autonomous Platoon Control with Integrated Deep Reinforcement Learning and Dynamic Programming
Deep Reinforcement Learning (DRL) is regarded as a potential method for car-following control and has been mostly studied to support a single following vehicle. However, it is more challenging to learn a stable and efficient car-following policy when there are multiple following vehicles in a platoon, especially with unpredictable leading vehicle behavior. In this context, we adopt an integrated DRL and Dynamic Programming (DP) approach to learn autonomous platoon control policies, which embeds the Deep Deterministic Policy Gradient (DDPG) algorithm into a finite-horizon value iteration framework. Although the DP framework can improve the stability and performance of DDPG, it has the limitations of lower sampling and training efficiency. In this paper, we propose an algorithm, namely Finite-Horizon-DDPG with Sweeping through reduced state space using Stationary approximation (FH-DDPG-SS), which uses three key ideas to overcome the above limitations, i.e., transferring network weights backward in time, stationary policy approximation for earlier time steps, and sweeping through reduced state space. In order to verify the effectiveness of FH-DDPG-SS, simulation using real driving data is performed, where the performance of FH-DDPG-SS is compared with those of the benchmark algorithms. Finally, platoon safety and string stability for FH-DDPG-SS are demonstrated.
112,033
112,033
Body Gesture Recognition to Control a Social Robot
In this work, we propose a gesture based language to allow humans to interact with robots using their body in a natural way. We have created a new gesture detection model using neural networks and a custom dataset of humans performing a set of body gestures to train our network. Furthermore, we compare body gesture communication with other communication channels to acknowledge the importance of adding this knowledge to robots. The presented approach is extensively validated in diverse simulations and real-life experiments with non-trained volunteers. This attains remarkable results and shows that it is a valuable framework for social robotics applications, such as human robot collaboration or human-robot interaction.
112,034
112,034
A Deep Generative Model of Neonatal Cortical Surface Development
The neonatal cortical surface is known to be affected by preterm birth, and the subsequent changes to cortical organisation have been associated with poorer neurodevelopmental outcomes. Deep Generative models have the potential to lead to clinically interpretable models of disease, but developing these on the cortical surface is challenging since established techniques for learning convolutional filters are inappropriate on non-flat topologies. To close this gap, we implement a surface-based CycleGAN using mixture model CNNs (MoNet) to translate sphericalised neonatal cortical surface features (curvature and T1w/T2w cortical myelin) between different stages of cortical maturity. Results show our method is able to reliably predict changes in individual patterns of cortical organisation at later stages of gestation, validated by comparison to longitudinal data; and translate appearance between preterm and term gestation (> 37 weeks gestation), validated through comparison with a trained term/preterm classifier. Simulated differences in cortical maturation are consistent with observations in the literature.
112,035
112,035
MPI: Evaluating and Inducing Personality in Pre-trained Language Models
Originated as a philosophical quest, personality discerns how individuals differ from each other in terms of thinking, feeling, and behaving. Towards building social machines that work with humans on a daily basis, we are motivated to ask: (1) Do existing pre-trained language models possess personality, akin to their human counterpart? If so, (2) how can we evaluate them? Further, given this evaluation framework, (3) how can we induce a certain personality in a fully controllable fashion? To tackle these three questions, we propose the Machine Personality Inventory (MPI) dataset for evaluating the machine personality; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By evaluating models with MPI, we provide the first piece of evidence showing the existence of personality in pre-trained language models. We further devise a Chain Prompting method to induce the language model with a specific personality in a controllable manner, capable of producing diversified behaviors. We hope to shed light on future studies by adopting personality as the essential psychological guidance for various downstream tasks, building more human-like and in situ dialogue agents.
112,036
112,036
Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation
Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with \textit{unknown} classes leads to the negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing \textit{known} classes. However, this \textit{known}-only matching may fail to learn the target-\textit{unknown} feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which \textit{aligns} the source and the targe-\textit{known} distribution while simultaneously \textit{segregating} the target-\textit{unknown} distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed \textit{unknown-aware} feature alignment, so we can guarantee both \textit{alignment} and \textit{segregation} theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting the state-of-the-art performances.
112,037
112,037
On the fast convergence of minibatch heavy ball momentum
Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum, which can be interpreted as a randomized Kaczmarz algorithm with momentum, retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size is used. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical experiments to demonstrate that our bounds are reasonably sharp.
112,038
112,038
Bayesian Federated Learning via Predictive Distribution Distillation
For most existing federated learning algorithms, each round consists of minimizing a loss function at each client to learn an optimal model at the client, followed by aggregating these client models at the server. Point estimation of the model parameters at the clients does not take into account the uncertainty in the models estimated at each client. In many situations, however, especially in limited data settings, it is beneficial to take into account the uncertainty in the client models for more accurate and robust predictions. Uncertainty also provides useful information for other important tasks, such as active learning and out-of-distribution (OOD) detection. We present a framework for Bayesian federated learning where each client infers the posterior predictive distribution using its training data and present various ways to aggregate these client-specific predictive distributions at the server. Since communicating and aggregating predictive distributions can be challenging and expensive, our approach is based on distilling each client's predictive distribution into a single deep neural network. This enables us to leverage advances in standard federated learning to Bayesian federated learning as well. Unlike some recent works that have tried to estimate model uncertainty of each client, our work also does not make any restrictive assumptions, such as the form of the client's posterior distribution. We evaluate our approach on classification in federated setting, as well as active learning and OOD detection in federated settings, on which our approach outperforms various existing federated learning baselines.
112,039
112,039
A Meta-Analysis of Distributionally-Robust Models
State-of-the-art image classifiers trained on massive datasets (such as ImageNet) have been shown to be vulnerable to a range of both intentional and incidental distribution shifts. On the other hand, several recent classifiers with favorable out-of-distribution (OOD) robustness properties have emerged, achieving high accuracy on their target tasks while maintaining their in-distribution accuracy on challenging benchmarks. We present a meta-analysis on a wide range of publicly released models, most of which have been published over the last twelve months. Through this meta-analysis, we empirically identify four main commonalities for all the best-performing OOD-robust models, all of which illuminate the considerable promise of vision-language pre-training.
112,040
112,040
Contrastive Learning as Goal-Conditioned Reinforcement Learning
In reinforcement learning (RL), it is easier to solve a task if given a good representation. While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable and instead equip RL algorithms with additional representation learning parts (e.g., auxiliary losses, data augmentation). How can we design RL algorithms that directly acquire good representations? In this paper, instead of adding representation learning parts to an existing RL algorithm, we show (contrastive) representation learning methods can be cast as RL algorithms in their own right. To do this, we build upon prior work and apply contrastive representation learning to action-labeled trajectories, in such a way that the (inner product of) learned representations exactly corresponds to a goal-conditioned value function. We use this idea to reinterpret a prior RL method as performing contrastive learning, and then use the idea to propose a much simpler method that achieves similar performance. Across a range of goal-conditioned RL tasks, we demonstrate that contrastive RL methods achieve higher success rates than prior non-contrastive methods, including in the offline RL setting. We also show that contrastive RL outperforms prior methods on image-based tasks, without using data augmentation or auxiliary objectives.
112,041
112,041
Calibrating Agent-based Models to Microdata with Graph Neural Networks
Calibrating agent-based models (ABMs) to data is among the most fundamental requirements to ensure the model fulfils its desired purpose. In recent years, simulation-based inference methods have emerged as powerful tools for performing this task when the model likelihood function is intractable, as is often the case for ABMs. In some real-world use cases of ABMs, both the observed data and the ABM output consist of the agents' states and their interactions over time. In such cases, there is a tension between the desire to make full use of the rich information content of such granular data on the one hand, and the need to reduce the dimensionality of the data to prevent difficulties associated with high-dimensional learning tasks on the other. A possible resolution is to construct lower-dimensional time-series through the use of summary statistics describing the macrostate of the system at each time point. However, a poor choice of summary statistics can result in an unacceptable loss of information from the original dataset, dramatically reducing the quality of the resulting calibration. In this work, we instead propose to learn parameter posteriors associated with granular microdata directly using temporal graph neural networks. We will demonstrate that such an approach offers highly compelling inductive biases for Bayesian inference using the raw ABM microstates as output.
112,042
112,042
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Event cameras respond to brightness changes in the scene asynchronously and independently for every pixel. Due to the properties, these cameras have distinct features: high dynamic range (HDR), high temporal resolution, and low power consumption. However, the results of event cameras should be processed into an alternative representation for computer vision tasks. Also, they are usually noisy and cause poor performance in areas with few events. In recent years, numerous researchers have attempted to reconstruct videos from events. However, they do not provide good quality videos due to a lack of temporal information from irregular and discontinuous data. To overcome these difficulties, we introduce an E2V-SDE whose dynamics are governed in a latent space by Stochastic differential equations (SDE). Therefore, E2V-SDE can rapidly reconstruct images at arbitrary time steps and make realistic predictions on unseen data. In addition, we successfully adopted a variety of image composition techniques for improving image clarity and temporal consistency. By conducting extensive experiments on simulated and real-scene datasets, we verify that our model outperforms state-of-the-art approaches under various video reconstruction settings. In terms of image quality, the LPIPS score improves by up to 12% and the reconstruction speed is 87% higher than that of ET-Net.
112,043
112,043
A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions
Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
112,044
112,044
NatGen: Generative pre-training by "Naturalizing" source code
Pre-trained Generative Language models (e.g. PLBART, CodeT5, SPT-Code) for source code yielded strong results on several tasks in the past few years, including code generation and translation. These models have adopted varying pre-training objectives to learn statistics of code construction from very large-scale corpora in a self-supervised fashion; the success of pre-trained models largely hinges on these pre-training objectives. This paper proposes a new pre-training objective, "Naturalizing" of source code, exploiting code's bimodal, dual-channel (formal & natural channels) nature. Unlike natural language, code's bimodal, dual-channel nature allows us to generate semantically equivalent code at scale. We introduce six classes of semantic preserving transformations to introduce un-natural forms of code, and then force our model to produce more natural original programs written by developers. Learning to generate equivalent, but more natural code, at scale, over large corpora of open-source code, without explicit manual supervision, helps the model learn to both ingest & generate code. We fine-tune our model in three generative Software Engineering tasks: code generation, code translation, and code refinement with limited human-curated labeled data and achieve state-of-the-art performance rivaling CodeT5. We show that our pre-trained model is especially competitive at zero-shot and few-shot learning, and better at learning code properties (e.g., syntax, data flow).
112,045
112,045
Machine Learning is Abduction Inference
Concept of Abduction with Gradated Contradictions is introduced here as a form of Peirce's abduction inference. The general form of abduction criterion is formalized in the proposed Logic of Gradated Contradictions and Logic of Recursive Aggregation. Common steps of an abduction procedure as minimization of such a criterion are specified as well. It is demonstrated on examples of 14 popular textbook learners (from hierarchical clustering to k-NN and SVR) that each of them performs AGC. The proposed theory explains real life learners, yet it avoids any mention of statistics, so it can be considered as a logical alternative to the statistical learning theory.
112,046
112,046
Characteristic kernels on Hilbert spaces, Banach spaces, and on sets of measures
We present new classes of positive definite kernels on non-standard spaces that are integrally strictly positive definite or characteristic. In particular, we discuss radial kernels on separable Hilbert spaces, and introduce broad classes of kernels on Banach spaces and on metric spaces of strong negative type. The general results are used to give explicit classes of kernels on separable $L^p$ spaces and on sets of measures.
112,047
112,047
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Robust and sparse estimation of linear regression coefficients is investigated. The situation addressed by the present paper is that covariates and noises are sampled from heavy-tailed distributions, and the covariates and noises are contaminated by malicious outliers. Our estimator can be computed efficiently. Further, our estimation error bound is sharp.
112,048
112,048
BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and Clinical Data
Fast and accurate detection of the disease can significantly help in reducing the strain on the healthcare facility of any country to reduce the mortality during any pandemic. The goal of this work is to create a multimodal system using a novel machine learning framework that uses both Chest X-ray (CXR) images and clinical data to predict severity in COVID-19 patients. In addition, the study presents a nomogram-based scoring technique for predicting the likelihood of death in high-risk patients. This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted during the first wave of COVID-19 (March-June 2020) in Italy. The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively to identify low or high-risk patients. This multimodal approach improved the accuracy by 6% in comparison to the CXR image or clinical data alone. Finally, nomogram scoring system using multivariate logistic regression -- was used to stratify the mortality risk among the high-risk patients identified in the first stage. Lactate Dehydrogenase (LDH), O2 percentage, White Blood Cells (WBC) Count, Age, and C-reactive protein (CRP) were identified as useful predictor using random forest feature selection model. Five predictors parameters and a CXR image based nomogram score was developed for quantifying the probability of death and categorizing them into two risk groups: survived (<50%), and death (>=50%), respectively. The multi-modal technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %. The area under the curves for the development and validation cohorts are 0.981 and 0.939, respectively.
112,049
112,049
Sparse Subspace Clustering in Diverse Multiplex Network Model
The paper considers the DIverse MultiPLEx (DIMPLE) network model, introduced in Pensky and Wang (2021), where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. The DIMPLE model generalizes a multitude of papers that study multilayer networks with the same community structures in all layers, as well as the Mixture Multilayer Stochastic Block Model (MMLSBM), where the layers in the same group have identical matrices of block connection probabilities. While Pensky and Wang (2021) applied spectral clustering to the proxy of the adjacency tensor, the present paper uses Sparse Subspace Clustering (SSC) for identifying groups of layers with identical community structures. Under mild conditions, the latter leads to the strongly consistent between-layer clustering. In addition, SSC allows to handle much larger networks than methodology of Pensky and Wang (2021), and is perfectly suitable for application of parallel computing.
112,050
112,050
ARES: Locally Adaptive Reconstruction-based Anomaly Scoring
How can we detect anomalies: that is, samples that significantly differ from a given set of high-dimensional data, such as images or sensor data? This is a practical problem with numerous applications and is also relevant to the goal of making learning algorithms more robust to unexpected inputs. Autoencoders are a popular approach, partly due to their simplicity and their ability to perform dimension reduction. However, the anomaly scoring function is not adaptive to the natural variation in reconstruction error across the range of normal samples, which hinders their ability to detect real anomalies. In this paper, we empirically demonstrate the importance of local adaptivity for anomaly scoring in experiments with real data. We then propose our novel Adaptive Reconstruction Error-based Scoring approach, which adapts its scoring based on the local behaviour of reconstruction error over the latent space. We show that this improves anomaly detection performance over relevant baselines in a wide variety of benchmark datasets.
112,051
112,051
Epistemic Deep Learning
The belief function approach to uncertainty quantification as proposed in the Demspter-Shafer theory of evidence is established upon the general mathematical models for set-valued observations, called random sets. Set-valued predictions are the most natural representations of uncertainty in machine learning. In this paper, we introduce a concept called epistemic deep learning based on the random-set interpretation of belief functions to model epistemic learning in deep neural networks. We propose a novel random-set convolutional neural network for classification that produces scores for sets of classes by learning set-valued ground truth representations. We evaluate different formulations of entropy and distance measures for belief functions as viable loss functions for these random-set networks. We also discuss methods for evaluating the quality of epistemic predictions and the performance of epistemic random-set neural networks. We demonstrate through experiments that the epistemic approach produces better performance results when compared to traditional approaches of estimating uncertainty.
112,052
112,052
Rethinking Initialization of the Sinkhorn Algorithm
Computing an optimal transport (OT) coupling between distributions plays an increasingly important role in machine learning. While OT problems can be solved as linear programs, adding an entropic smoothing term is known to result in solvers that are faster and more robust to outliers, differentiable and easier to parallelize. The Sinkhorn fixed point algorithm is the cornerstone of these approaches, and, as a result, multiple attempts have been made to shorten its runtime using, for instance, annealing, momentum or acceleration. The premise of this paper is that \textit{initialization} of the Sinkhorn algorithm has received comparatively little attention, possibly due to two preconceptions: as the regularized OT problem is convex, it may not be worth crafting a tailored initialization as \textit{any} is guaranteed to work; secondly, because the Sinkhorn algorithm is often differentiated in end-to-end pipelines, data-dependent initializations could potentially bias gradient estimates obtained by unrolling iterations. We challenge this conventional wisdom and show that carefully chosen initializations can result in dramatic speed-ups, and will not bias gradients which are computed with implicit differentiation. We detail how initializations can be recovered from closed-form or approximate OT solutions, using known results in the 1D or Gaussian settings. We show empirically that these initializations can be used off-the-shelf, with little to no tuning, and result in consistent speed-ups for a variety of OT problems.
112,053
112,053
Clustered Scheduling and Communication Pipelining For Efficient Resource Management Of Wireless Federated Learning
This paper proposes using communication pipelining to enhance the wireless spectrum utilization efficiency and convergence speed of federated learning in mobile edge computing applications. Due to limited wireless sub-channels, a subset of the total clients is scheduled in each iteration of federated learning algorithms. On the other hand, the scheduled clients wait for the slowest client to finish its computation. We propose to first cluster the clients based on the time they need per iteration to compute the local gradients of the federated learning model. Then, we schedule a mixture of clients from all clusters to send their local updates in a pipelined manner. In this way, instead of just waiting for the slower clients to finish their computation, more clients can participate in each iteration. While the time duration of a single iteration does not change, the proposed method can significantly reduce the number of required iterations to achieve a target accuracy. We provide a generic formulation for optimal client clustering under different settings, and we analytically derive an efficient algorithm for obtaining the optimal solution. We also provide numerical results to demonstrate the gains of the proposed method for different datasets and deep learning architectures.
112,054
112,054
Exploring Chemical Space with Score-based Out-of-distribution Generation
A well-known limitation of existing works on molecule generation is that the generated molecules highly resemble those in the training set. To generate truly novel molecules with completely different structures that may have even better properties than known molecules for de novo drug discovery, more powerful exploration in the chemical space is necessary. To this end, we propose Molecular Out-Of-distribution Diffusion (MOOD), a novel score-based diffusion scheme that incorporates out-of-distribution (OOD) control in the generative stochastic differential equation (SDE) with simple control of a hyperparameter, thus requires no additional computational costs unlike existing methods (e.g., RL-based methods). However, some novel molecules may be chemically implausible, or may not meet the basic requirements of real-world drugs. Thus, MOOD performs conditional generation by utilizing the gradients from a property prediction network that guides the reverse-time diffusion to high-scoring regions according to multiple target properties such as protein-ligand interactions, drug-likeness, and synthesizability. This allows MOOD to search for novel and meaningful molecules rather than generating unseen yet trivial ones. We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
112,055
112,055
Sublinear Algorithms for Hierarchical Clustering
Hierarchical clustering over graphs is a fundamental task in data mining and machine learning with applications in domains such as phylogenetics, social network analysis, and information retrieval. Specifically, we consider the recently popularized objective function for hierarchical clustering due to Dasgupta. Previous algorithms for (approximately) minimizing this objective function require linear time/space complexity. In many applications the underlying graph can be massive in size making it computationally challenging to process the graph even using a linear time/space algorithm. As a result, there is a strong interest in designing algorithms that can perform global computation using only sublinear resources. The focus of this work is to study hierarchical clustering for massive graphs under three well-studied models of sublinear computation which focus on space, time, and communication, respectively, as the primary resources to optimize: (1) (dynamic) streaming model where edges are presented as a stream, (2) query model where the graph is queried using neighbor and degree queries, (3) MPC model where the graph edges are partitioned over several machines connected via a communication channel. We design sublinear algorithms for hierarchical clustering in all three models above. At the heart of our algorithmic results is a view of the objective in terms of cuts in the graph, which allows us to use a relaxed notion of cut sparsifiers to do hierarchical clustering while introducing only a small distortion in the objective function. Our main algorithmic contributions are then to show how cut sparsifiers of the desired form can be efficiently constructed in the query model and the MPC model. We complement our algorithmic results by establishing nearly matching lower bounds that rule out the possibility of designing better algorithms in each of these models.
112,056
112,056
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
The existing analysis of asynchronous stochastic gradient descent (SGD) degrades dramatically when any delay is large, giving the impression that performance depends primarily on the delay. On the contrary, we prove much better guarantees for the same asynchronous SGD algorithm regardless of the delays in the gradients, depending instead just on the number of parallel devices used to implement the algorithm. Our guarantees are strictly better than the existing analyses, and we also argue that asynchronous SGD outperforms synchronous minibatch SGD in the settings we consider. For our analysis, we introduce a novel recursion based on "virtual iterates" and delay-adaptive stepsizes, which allow us to derive state-of-the-art guarantees for both convex and non-convex objectives.
112,057
112,057
Statistical and Computational Phase Transitions in Group Testing
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease within a population of size n, based on the outcomes of pooled tests which return positive whenever there is at least one infected individual in the tested group. We consider two different simple random procedures for assigning individuals to tests: the constant-column design and Bernoulli design. Our first set of results concerns the fundamental statistical limits. For the constant-column design, we give a new information-theoretic lower bound which implies that the proportion of correctly identifiable infected individuals undergoes a sharp "all-or-nothing" phase transition when the number of tests crosses a particular threshold. For the Bernoulli design, we determine the precise number of tests required to solve the associated detection problem (where the goal is to distinguish between a group testing instance and pure noise), improving both the upper and lower bounds of Truong, Aldridge, and Scarlett (2020). For both group testing models, we also study the power of computationally efficient (polynomial-time) inference procedures. We determine the precise number of tests required for the class of low-degree polynomial algorithms to solve the detection problem. This provides evidence for an inherent computational-statistical gap in both the detection and recovery problems at small sparsity levels. Notably, our evidence is contrary to that of Iliopoulos and Zadik (2021), who predicted the absence of a computational-statistical gap in the Bernoulli design.
112,058
112,058
Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games
We study the performance of policy gradient methods for the subclass of Markov games known as Markov potential games (MPGs), which extends the notion of normal-form potential games to the stateful setting and includes the important special case of the fully cooperative setting where the agents share an identical reward function. Our focus in this paper is to study the convergence of the policy gradient method for solving MPGs under softmax policy parameterization, both tabular and parameterized with general function approximators such as neural networks. We first show the asymptotic convergence of this method to a Nash equilibrium of MPGs for tabular softmax policies. Second, we derive the finite-time performance of the policy gradient in two settings: 1) using the log-barrier regularization, and 2) using the natural policy gradient under the best-response dynamics (NPG-BR). Finally, extending the notion of price of anarchy (POA) and smoothness in normal-form games, we introduce the POA for MPGs and provide a POA bound for NPG-BR. To our knowledge, this is the first POA bound for solving MPGs. To support our theoretical results, we empirically compare the convergence rates and POA of policy gradient variants for both tabular and neural softmax policies.
112,059
112,059
Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones, bringing gains in terms of memory and performance. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is available at https://github.com/microsoft/FIBER.
112,060
112,060
Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution
Outlier detection (OD) literature exhibits numerous algorithms as it applies to diverse domains. However, given a new detection task, it is unclear how to choose an algorithm to use, nor how to set its hyperparameter(s) (HPs) in unsupervised settings. HP tuning is an ever-growing problem with the arrival of many new detectors based on deep learning. While they have appealing properties such as task- driven representation learning and end-to-end optimization, deep models come with a long list of HPs. Surprisingly, the issue of model selection in the outlier mining literature has been "the elephant in the room"; a significant factor in unlocking the utmost potential of deep methods, yet little said or done to systematically tackle the issue. In the first part of this paper, we conduct the first large-scale analysis on the HP sensitivity of deep OD methods, and through more than 35,000 trained models, quantitatively demonstrate that model selection is inevitable. Next, we design a HP-robust and scalable deep hyper-ensemble model called ROBOD that assembles models with varying HP configurations, bypassing the choice paralysis. Importantly, we introduce novel strategies to speed up ensemble training, such as parameter sharing, batch/simultaneous training, and data subsampling, that allow us to train fewer models with fewer parameters. Extensive experiments on both image and tabular datasets show that ROBOD achieves and retains robust, state-of-the-art detection performance as compared to its modern counterparts, while taking only 2-10% of the time by the naive hyper-ensemble with independent training.
112,061
112,061
Classification of ECG based on Hybrid Features using CNNs for Wearable Applications
Sudden cardiac death and arrhythmia account for a large percentage of all deaths worldwide. Electrocardiography (ECG) is the most widely used screening tool for cardiovascular diseases. Traditionally, ECG signals are classified manually, requiring experience and great skill, while being time-consuming and prone to error. Thus machine learning algorithms have been widely adopted because of their ability to perform complex data analysis. Features derived from the points of interest in ECG - mainly Q, R, and S, are widely used for arrhythmia detection. In this work, we demonstrate improved performance for ECG classification using hybrid features and three different models, building on a 1-D convolutional neural network (CNN) model that we had proposed in the past. An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model. To make the model immune to noise, we updated the model using frequency features and achieved good sustained performance in presence of noise with a slightly lower accuracy of 98.69%. Further, another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments. Due to its high accuracy and noise immunity, the proposed model which combines multiple hybrid features, is well suited for ambulatory wearable sensing applications.
112,062
112,062
Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised Convolutional Neural Networks
Deep neural networks (DNN) are a promising tool in medical applications. However, the implementation of complex DNNs on battery-powered devices is challenging due to high energy costs for communication. In this work, a convolutional neural network model is developed for detecting atrial fibrillation from electrocardiogram (ECG) signals. The model demonstrates high performance despite being trained on limited, variable-length input data. Weight pruning and logarithmic quantisation are combined to introduce sparsity and reduce model size, which can be exploited for reduced data movement and lower computational complexity. The final model achieved a 91.1% model compression ratio while maintaining high model accuracy of 91.7% and less than 1% loss.
112,063
112,063
Flexible Raman Amplifier Optimization Based on Machine Learning-aided Physical Stimulated Raman Scattering Model
The problem of Raman amplifier optimization is studied. A differentiable interpolation function is obtained for the Raman gain coefficient using machine learning (ML), which allows for the gradient descent optimization of forward-propagating Raman pumps. Both the frequency and power of an arbitrary number of pumps in a forward pumping configuration are then optimized for an arbitrary data channel load and span length. The forward propagation model is combined with an experimentally-trained ML model of a backward-pumping Raman amplifier to jointly optimize the frequency and power of the forward amplifier's pumps and the powers of the backward amplifier's pumps. The joint forward and backward amplifier optimization is demonstrated for an unrepeatered transmission of 250 km. A gain flatness of $<$ 1~dB over 4 THz is achieved. The optimized amplifiers are validated using a numerical simulator.
112,064
112,064
Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs
Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (1D CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a "stand-alone" DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.
112,065
112,065
Human Activity Recognition on Time Series Accelerometer Sensor Data using LSTM Recurrent Neural Networks
The use of sensors available through smart devices has pervaded everyday life in several applications including human activity monitoring, healthcare, and social networks. In this study, we focus on the use of smartwatch accelerometer sensors to recognize eating activity. More specifically, we collected sensor data from 10 participants while consuming pizza. Using this information, and other comparable data available for similar events such as smoking and medication-taking, and dissimilar activities of jogging, we developed a LSTM-ANN architecture that has demonstrated 90% success in identifying individual bites compared to a puff, medication-taking or jogging activities.
112,066
112,066
Classification of EEG Motor Imagery Using Deep Learning for Brain-Computer Interface Systems
A trained T1 class Convolutional Neural Network (CNN) model will be used to examine its ability to successfully identify motor imagery when fed pre-processed electroencephalography (EEG) data. In theory, and if the model has been trained accurately, it should be able to identify a class and label it accordingly. The CNN model will then be restored and used to try and identify the same class of motor imagery data using much smaller sampled data in an attempt to simulate live data.
112,067
112,067
Analysis of Augmentations for Contrastive ECG Representation Learning
This paper systematically investigates the effectiveness of various augmentations for contrastive self-supervised learning of electrocardiogram (ECG) signals and identifies the best parameters. The baseline of our proposed self-supervised framework consists of two main parts: the contrastive learning and the downstream task. In the first stage, we train an encoder using a number of augmentations to extract generalizable ECG signal representations. We then freeze the encoder and finetune a few linear layers with different amounts of labelled data for downstream arrhythmia detection. We then experiment with various augmentations techniques and explore a range of parameters. Our experiments are done on PTB-XL, a large and publicly available 12-lead ECG dataset. The results show that applying augmentations in a specific range of complexities works better for self-supervised contrastive learning. For instance, when adding Gaussian noise, a sigma in the range of 0.1 to 0.2 achieves better results, while poor training occurs when the added noise is too small or too large (outside of the specified range). A similar trend is observed with other augmentations, demonstrating the importance of selecting the optimum level of difficulty for the added augmentations, as augmentations that are too simple will not result in effective training, while augmentations that are too difficult will also prevent the model from effective learning of generalized representations. Our work can influence future research on self-supervised contrastive learning on bio-signals and aid in selecting optimum parameters for different augmentations.
112,068
112,068
Experimental Validation of Spectral-Spatial Power Evolution Design Using Raman Amplifiers
We experimentally validate a machine learning-enabled Raman amplification framework, capable of jointly shaping the signal power evolution in two domains: frequency and fiber distance. The proposed experiment addresses the amplification in the whole C-band, by optimizing four first-order counter-propagating Raman pumps.
112,069
112,069
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
We propose a general framework to design posterior sampling methods for model-based RL. We show that the proposed algorithms can be analyzed by reducing regret to Hellinger distance based conditional probability estimation. We further show that optimistic posterior sampling can control this Hellinger distance, when we measure model error via data likelihood. This technique allows us to design and analyze unified posterior sampling algorithms with state-of-the-art sample complexity guarantees for many model-based RL settings. We illustrate our general result in many special cases, demonstrating the versatility of our framework.
112,070
112,070
A Unified Sequence Interface for Vision Tasks
While language tasks are naturally expressed in a single, unified, modeling framework, i.e., generating sequences of tokens, this has not been the case in computer vision. As a result, there is a proliferation of distinct architectures and loss functions for different vision tasks. In this work we show that a diverse set of "core" computer vision tasks can also be unified if formulated in terms of a shared pixel-to-sequence interface. We focus on four tasks, namely, object detection, instance segmentation, keypoint detection, and image captioning, all with diverse types of outputs, e.g., bounding boxes or dense masks. Despite that, by formulating the output of each task as a sequence of discrete tokens with a unified interface, we show that one can train a neural network with a single model architecture and loss function on all these tasks, with no task-specific customization. To solve a specific task, we use a short prompt as task description, and the sequence output adapts to the prompt so it can produce task-specific output. We show that such a model can achieve competitive performance compared to well-established task-specific models.
112,071
112,071
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
We introduce repriorisation, a data-dependent reparameterisation which transforms a Bayesian neural network (BNN) posterior to a distribution whose KL divergence to the BNN prior vanishes as layer widths grow. The repriorisation map acts directly on parameters, and its analytic simplicity complements the known neural network Gaussian process (NNGP) behaviour of wide BNNs in function space. Exploiting the repriorisation, we develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm which mixes faster the wider the BNN. This contrasts with the typically poor performance of MCMC in high dimensions. We observe up to 50x higher effective sample size relative to no reparametrisation for both fully-connected and residual networks. Improvements are achieved at all widths, with the margin between reparametrised and standard BNNs growing with layer width.
112,072
112,072
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator
Subsurface simulations use computational models to predict the flow of fluids (e.g., oil, water, gas) through porous media. These simulations are pivotal in industrial applications such as petroleum production, where fast and accurate models are needed for high-stake decision making, for example, for well placement optimization and field development planning. Classical finite difference numerical simulators require massive computational resources to model large-scale real-world reservoirs. Alternatively, streamline simulators and data-driven surrogate models are computationally more efficient by relying on approximate physics models, however they are insufficient to model complex reservoir dynamics at scale. Here we introduce Hybrid Graph Network Simulator (HGNS), which is a data-driven surrogate model for learning reservoir simulations of 3D subsurface fluid flows. To model complex reservoir dynamics at both local and global scale, HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure. HGNS is able to scale to grids with millions of cells per time step, two orders of magnitude higher than previous surrogate models, and can accurately predict the fluid flow for tens of time steps (years into the future). Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators, and that it outperforms other learning-based models by reducing long-term prediction errors by up to 21%.
112,073
112,073
Learning to Accelerate Partial Differential Equations via Latent Global Evolution
Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speed-up by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into turbulent phase and an inverse optimization of boundary conditions in 2D Navier-Stokes flow. Compared to state-of-the-art deep learning-based surrogate models and other strong baselines, we demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
112,074
112,074
ELUDE: Generating interpretable explanations via a decomposition into labelled and unlabelled features
Deep learning models have achieved remarkable success in different areas of machine learning over the past decade; however, the size and complexity of these models make them difficult to understand. In an effort to make them more interpretable, several recent works focus on explaining parts of a deep neural network through human-interpretable, semantic attributes. However, it may be impossible to completely explain complex models using only semantic attributes. In this work, we propose to augment these attributes with a small set of uninterpretable features. Specifically, we develop a novel explanation framework ELUDE (Explanation via Labelled and Unlabelled DEcomposition) that decomposes a model's prediction into two parts: one that is explainable through a linear combination of the semantic attributes, and another that is dependent on the set of uninterpretable features. By identifying the latter, we are able to analyze the "unexplained" portion of the model, obtaining insights into the information used by the model. We show that the set of unlabelled features can generalize to multiple models trained with the same feature space and compare our work to two popular attribute-oriented methods, Interpretable Basis Decomposition and Concept Bottleneck, and discuss the additional insights ELUDE provides.
112,075
112,075
Diffusion Models for Video Prediction and Infilling
To predict and anticipate future outcomes or reason about missing information in a sequence is a key ability for agents to be able to make intelligent decisions. This requires strong temporally coherent generative capabilities. Diffusion models have shown huge success in several generative tasks lately, but have not been extensively explored in the video domain. We present Random-Mask Video Diffusion (RaMViD), which extends image diffusion models to videos using 3D convolutions, and introduces a new conditioning technique during training. By varying the mask we condition on, the model is able to perform video prediction, infilling and upsampling. Since we do not use concatenation to condition on a mask, as done in most conditionally trained diffusion models, we are able to decrease the memory footprint. We evaluated the model on two benchmark datasets for video prediction and one for video generation on which we achieved competitive results. On Kinetics-600 we achieved state-of-the-art for video prediction.
112,076
112,076
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Creating fast and accurate force fields is a long-standing challenge in computational chemistry and materials science. Recently, several equivariant message passing neural networks (MPNNs) have been shown to outperform models built using other approaches in terms of accuracy. However, most MPNNs suffer from high computational cost and poor scalability. We propose that these limitations arise because MPNNs only pass two-body messages leading to a direct relationship between the number of layers and the expressivity of the network. In this work, we introduce MACE, a new equivariant MPNN model that uses higher body order messages. In particular, we show that using four-body messages reduces the required number of message passing iterations to just \emph{two}, resulting in a fast and highly parallelizable model, reaching or exceeding state-of-the-art accuracy on the rMD17, 3BPA, and AcAc benchmark tasks. We also demonstrate that using higher order messages leads to an improved steepness of the learning curves.
112,077
112,077
Prefix Language Models are Unified Modal Learners
With the success of vision-language pre-training, we have witnessed the state-of-the-art has been pushed on multi-modal understanding and generation. However, the current pre-training paradigm is either incapable of targeting all modalities at once (e.g., text generation and image generation), or requires multi-fold well-designed tasks which significantly limits the scalability. We demonstrate that a unified modal model could be learned with a prefix language modeling objective upon text and image sequences. Thanks to the simple but powerful pre-training paradigm, our proposed model, DaVinci, is simple to train, scalable to huge data, and adaptable to a variety of downstream tasks across modalities (language / vision / vision+language), types (understanding / generation) and settings (e.g., zero-shot, fine-tuning, linear evaluation) with a single unified architecture. DaVinci achieves the competitive performance on a wide range of 26 understanding / generation tasks, and outperforms previous unified vision-language models on most tasks, including ImageNet classification (+1.6%), VQAv2 (+1.4%), COCO caption generation (BLEU@4 +1.1%, CIDEr +1.5%) and COCO image generation (IS +0.9%, FID -1.0%), at the comparable model and data scale. Furthermore, we offer a well-defined benchmark for future research by reporting the performance on different scales of the pre-training dataset on a heterogeneous and wide distribution coverage. Our results establish new, stronger baselines for future comparisons at different data scales and shed light on the difficulties of comparing VLP models more generally.
112,078
112,078
Masked Siamese ConvNets
Self-supervised learning has shown superior performances over supervised methods on various vision benchmarks. The siamese network, which encourages embeddings to be invariant to distortions, is one of the most successful self-supervised visual representation learning approaches. Among all the augmentation methods, masking is the most general and straightforward method that has the potential to be applied to all kinds of input and requires the least amount of domain knowledge. However, masked siamese networks require particular inductive bias and practically only work well with Vision Transformers. This work empirically studies the problems behind masked siamese networks with ConvNets. We propose several empirical designs to overcome these problems gradually. Our method performs competitively on low-shot image classification and outperforms previous methods on object detection benchmarks. We discuss several remaining issues and hope this work can provide useful data points for future general-purpose self-supervised learning.
112,079
112,079
Masked Frequency Modeling for Self-Supervised Visual Pre-Training
We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models. Instead of randomly inserting mask tokens to the input embeddings in the spatial domain, in this paper, we shift the perspective to the frequency domain. Specifically, MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum. Our key insight is that predicting masked components in the frequency domain is more ideal to reveal underlying image patterns rather than predicting masked patches in the spatial domain, due to the heavy spatial redundancy. Our findings suggest that with the right configuration of mask-and-predict strategy, both the structural information within high-frequency components and the low-level statistics among low-frequency counterparts are useful in learning good representations. For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token. Experimental results on ImageNet and several robustness benchmarks show the competitive performance and advanced robustness of MFM compared with recent masked image modeling approaches. Furthermore, we also comprehensively investigate the effectiveness of classical image restoration tasks for representation learning from a unified frequency perspective and reveal their intriguing relations with our MFM approach. Project page: https://www.mmlab-ntu.com/project/mfm/index.html.
112,080
112,080
Variable Bitrate Neural Fields
Neural approximations of scalar and vector fields, such as signed distance functions and radiance fields, have emerged as accurate, high-quality representations. State-of-the-art results are obtained by conditioning a neural approximation with a lookup from trainable feature grids that take on part of the learning task and allow for smaller, more efficient neural networks. Unfortunately, these feature grids usually come at the cost of significantly increased memory consumption compared to stand-alone neural network models. We present a dictionary method for compressing such feature grids, reducing their memory consumption by up to 100x and permitting a multiresolution representation which can be useful for out-of-core streaming. We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available and with dynamic topology and structure. Our source code will be available at https://github.com/nv-tlabs/vqad.
112,081
112,081
Taxonomy of Benchmarks in Graph Representation Learning
Graph Neural Networks (GNNs) extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNN models with superior performance according to a collection of graph representation learning benchmarks, it is currently not well understood what aspects of a given model are probed by them. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a $\textit{sensitivity profile}$ that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in $\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task types and future datasets.
112,082
112,082
Improving Diversity with Adversarially Learned Transformations for Domain Generalization
To be successful in single source domain generalization, maximizing diversity of synthesized domains has emerged as one of the most effective strategies. Many of the recent successes have come from methods that pre-specify the types of diversity that a model is exposed to during training, so that it can ultimately generalize well to new domains. However, na\"ive diversity based augmentations do not work effectively for domain generalization either because they cannot model large domain shift, or because the span of transforms that are pre-specified do not cover the types of shift commonly occurring in domain generalization. To address this issue, we present a novel framework that uses adversarially learned transformations (ALT) using a neural network to model plausible, yet hard image transformations that fool the classifier. This network is randomly initialized for each batch and trained for a fixed number of steps to maximize classification error. Further, we enforce consistency between the classifier's predictions on the clean and transformed images. With extensive empirical analysis, we find that this new form of adversarial transformations achieve both objectives of diversity and hardness simultaneously, outperforming all existing techniques on competitive benchmarks for single source domain generalization. We also show that ALT can naturally work with existing diversity modules to produce highly distinct, and large transformations of the source domain leading to state-of-the-art performance.
112,083
112,083
Disparate Impact in Differential Privacy from Gradient Misalignment
As machine learning becomes more widespread throughout society, aspects including data privacy and fairness must be carefully considered, and are crucial for deployment in highly regulated industries. Unfortunately, the application of privacy enhancing technologies can worsen unfair tendencies in models. In particular, one of the most widely used techniques for private model training, differentially private stochastic gradient descent (DPSGD), frequently intensifies disparate impact on groups within data. In this work we study the fine-grained causes of unfairness in DPSGD and identify gradient misalignment due to inequitable gradient clipping as the most significant source. This observation leads us to a new method for reducing unfairness by preventing gradient misalignment in DPSGD.
112,084
112,084
Edge Inference with Fully Differentiable Quantized Mixed Precision Neural Networks
The large computing and memory cost of deep neural networks (DNNs) often precludes their use in resource-constrained devices. Quantizing the parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference, facilitating the use of DNNs on edge computing platforms. Recent efforts at quantizing DNNs have employed a range of techniques encompassing progressive quantization, step-size adaptation, and gradient scaling. This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing. Our method establishes a new pareto frontier in model accuracy and memory footprint demonstrating a range of quantized models, delivering best-in-class accuracy below 4.3 MB of weights (wgts.) and activations (acts.). Our main contributions are: (i) hardware-aware heterogeneous differentiable quantization with tensor-sliced learned precision, (ii) targeted gradient modification for wgts. and acts. to mitigate quantization errors, and (iii) a multi-phase learning schedule to address instability in learning arising from updates to the learned quantizer and model parameters. We demonstrate the effectiveness of our techniques on the ImageNet dataset across a range of models including EfficientNet-Lite0 (e.g., 4.14MB of wgts. and acts. at 67.66% accuracy) and MobileNetV2 (e.g., 3.51MB wgts. and acts. at 65.39% accuracy).
112,085
112,085
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective
Recent years have witnessed remarkable success achieved by graph neural networks (GNNs) in many real-world applications such as recommendation and drug discovery. Despite the success, oversmoothing has been identified as one of the key issues which limit the performance of deep GNNs. It indicates that the learned node representations are highly indistinguishable due to the stacked aggregators. In this paper, we propose a new perspective to look at the performance degradation of deep GNNs, i.e., feature overcorrelation. Through empirical and theoretical study on this matter, we demonstrate the existence of feature overcorrelation in deeper GNNs and reveal potential reasons leading to this issue. To reduce the feature correlation, we propose a general framework DeCorr which can encourage GNNs to encode less redundant information. Extensive experiments have demonstrated that DeCorr can help enable deeper GNNs and is complementary to existing techniques tackling the oversmoothing issue.
112,086
112,086
When to intervene? Prescriptive Process Monitoring Under Uncertainty and Resource Constraints
Prescriptive process monitoring approaches leverage historical data to prescribe runtime interventions that will likely prevent negative case outcomes or improve a process's performance. A centerpiece of a prescriptive process monitoring method is its intervention policy: a decision function determining if and when to trigger an intervention on an ongoing case. Previous proposals in this field rely on intervention policies that consider only the current state of a given case. These approaches do not consider the tradeoff between triggering an intervention in the current state, given the level of uncertainty of the underlying predictive models, versus delaying the intervention to a later state. Moreover, they assume that a resource is always available to perform an intervention (infinite capacity). This paper addresses these gaps by introducing a prescriptive process monitoring method that filters and ranks ongoing cases based on prediction scores, prediction uncertainty, and causal effect of the intervention, and triggers interventions to maximize a gain function, considering the available resources. The proposal is evaluated using a real-life event log. The results show that the proposed method outperforms existing baselines regarding total gain.
112,087
112,087
Condensing Graphs via One-Step Gradient Matching
As training deep learning models on large dataset takes a lot of time and resources, it is desired to construct a small synthetic dataset with which we can train deep learning models sufficiently. There are recent works that have explored solutions on condensing image datasets through complex bi-level optimization. For instance, dataset condensation (DC) matches network gradients w.r.t. large-real data and small-synthetic data, where the network weights are optimized for multiple steps at each outer iteration. However, existing approaches have their inherent limitations: (1) they are not directly applicable to graphs where the data is discrete; and (2) the condensation process is computationally expensive due to the involved nested optimization. To bridge the gap, we investigate efficient dataset condensation tailored for graph datasets where we model the discrete graph structure as a probabilistic model. We further propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights. Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs. Extensive experiments on various graph datasets demonstrate the effectiveness and efficiency of the proposed method. In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance and our method is significantly faster than multi-step gradient matching (e.g. 15x in CIFAR10 for synthesizing 500 graphs).
112,088
112,088
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Nonlinear independent component analysis (ICA) aims to recover the underlying independent latent sources from their observable nonlinear mixtures. How to make the nonlinear ICA model identifiable up to certain trivial indeterminacies is a long-standing problem in unsupervised learning. Recent breakthroughs reformulate the standard independence assumption of sources as conditional independence given some auxiliary variables (e.g., class labels and/or domain/time indexes) as weak supervision or inductive bias. However, nonlinear ICA with unconditional priors cannot benefit from such developments. We explore an alternative path and consider only assumptions on the mixing process, such as Structural Sparsity or Independent Influences. We show that under specific instantiations of such constraints, the independent latent sources can be identified from their nonlinear mixtures up to a permutation and a component-wise transformation, thus achieving nontrivial identifiability of nonlinear ICA without auxiliary variables. We provide estimation methods and validate the theoretical results experimentally. The results on image data suggest that our conditions may hold in a number of practical data generating processes.
112,089
112,089
Hybrid full-field thermal characterization of additive manufacturing processes using physics-informed neural networks with data
Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the technique of transfer learning on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM.
112,090
112,090
Reconstructing Training Data from Trained Neural Networks
Understanding to what extent neural networks memorize training data is an intriguing question with practical and theoretical implications. In this paper we show that in some cases a significant fraction of the training data can in fact be reconstructed from the parameters of a trained neural network classifier. We propose a novel reconstruction scheme that stems from recent theoretical results about the implicit bias in training neural networks with gradient-based methods. To the best of our knowledge, our results are the first to show that reconstructing a large portion of the actual training samples from a trained neural network classifier is generally possible. This has negative implications on privacy, as it can be used as an attack for revealing sensitive training data. We demonstrate our method for binary MLP classifiers on a few standard computer vision datasets.
112,091
112,091
SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos
The visual world can be parsimoniously characterized in terms of distinct entities with sparse interactions. Discovering this compositional structure in dynamic visual scenes has proven challenging for end-to-end computer vision approaches unless explicit instance-level supervision is provided. Slot-based models leveraging motion cues have recently shown great promise in learning to represent, segment, and track objects without direct supervision, but they still fail to scale to complex real-world multi-object videos. In an effort to bridge this gap, we take inspiration from human development and hypothesize that information about scene geometry in the form of depth signals can facilitate object-centric learning. We introduce SAVi++, an object-centric video model which is trained to predict depth signals from a slot-based video representation. By further leveraging best practices for model scaling, we are able to train SAVi++ to segment complex dynamic scenes recorded with moving cameras, containing both static and moving objects of diverse appearance on naturalistic backgrounds, without the need for segmentation supervision. Finally, we demonstrate that by using sparse depth signals obtained from LiDAR, SAVi++ is able to learn emergent object segmentation and tracking from videos in the real-world Waymo Open dataset.
112,092
112,092
Pareto Invariant Risk Minimization
Despite the success of invariant risk minimization (IRM) in tackling the Out-of-Distribution generalization problem, IRM can compromise the optimality when applied in practice. The practical variants of IRM, e.g., IRMv1, have been shown to have significant gaps with IRM and thus could fail to capture the invariance even in simple problems. Moreover, the optimization procedure in IRMv1 involves two intrinsically conflicting objectives, and often requires careful tuning for the objective weights. To remedy the above issues, we reformulate IRM as a multi-objective optimization problem, and propose a new optimization scheme for IRM, called PAreto Invariant Risk Minimization (PAIR). PAIR can adaptively adjust the optimization direction under the objective conflicts. Furthermore, we show PAIR can empower the practical IRM variants to overcome the barriers with the original IRM when provided with proper guidance. We conduct experiments with ColoredMNIST to confirm our theory and the effectiveness of PAIR.
112,093
112,093
Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?
Wasserstein Generative Adversarial Networks (WGANs) are the popular generative models built on the theory of Optimal Transport (OT) and the Kantorovich duality. Despite the success of WGANs, it is still unclear how well the underlying OT dual solvers approximate the OT cost (Wasserstein-1 distance, $\mathbb{W}_{1}$) and the OT gradient needed to update the generator. In this paper, we address these questions. We construct 1-Lipschitz functions and use them to build ray monotone transport plans. This strategy yields pairs of continuous benchmark distributions with the analytically known OT plan, OT cost and OT gradient in high-dimensional spaces such as spaces of images. We thoroughly evaluate popular WGAN dual form solvers (gradient penalty, spectral normalization, entropic regularization, etc.) using these benchmark pairs. Even though these solvers perform well in WGANs, none of them faithfully compute $\mathbb{W}_{1}$ in high dimensions. Nevertheless, many provide a meaningful approximation of the OT gradient. These observations suggest that these solvers should not be treated as good estimators of $\mathbb{W}_{1}$, but to some extent they indeed can be used in variational problems requiring the minimization of $\mathbb{W}_{1}$.
112,094
112,094
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection
Consider the problem of imputing missing values in a dataset. One the one hand, conventional approaches using iterative imputation benefit from the simplicity and customizability of learning conditional distributions directly, but suffer from the practical requirement for appropriate model specification of each and every variable. On the other hand, recent methods using deep generative modeling benefit from the capacity and efficiency of learning with neural network function approximators, but are often difficult to optimize and rely on stronger data assumptions. In this work, we study an approach that marries the advantages of both: We propose *HyperImpute*, a generalized iterative imputation framework for adaptively and automatically configuring column-wise models and their hyperparameters. Practically, we provide a concrete implementation with out-of-the-box learners, optimizers, simulators, and extensible interfaces. Empirically, we investigate this framework via comprehensive experiments and sensitivities on a variety of public datasets, and demonstrate its ability to generate accurate imputations relative to a strong suite of benchmarks. Contrary to recent work, we believe our findings constitute a strong defense of the iterative imputation paradigm.
112,095
112,095
Robust Attack Graph Generation
We present a method to learn automaton models that are more robust to input modifications. It iteratively aligns sequences to a learned model, modifies the sequences to their aligned versions, and re-learns the model. Automaton learning algorithms are typically very good at modeling the frequent behavior of a software system. Our solution can be used to also learn the behavior present in infrequent sequences, as these will be aligned to the frequent ones represented by the model. We apply our method to the SAGE tool for modeling attacker behavior from intrusion alerts. In experiments, we demonstrate that our algorithm learns models that can handle noise such as added and removed symbols from sequences. Furthermore, it learns more concise models that fit better to the training data.
112,096
112,096
A machine learning approach to predicting pore pressure response in liquefiable sands under cyclic loading
Shear stress history controls the pore pressure response in liquefiable soils. The excess pore pressure does not increase under cyclic loading when shear stress amplitude is lower than the peak prior amplitude -- the shielding effect. Many sophisticated constitutive models fail to capture the shielding effect observed in the cyclic liquefaction experiments. We develop a data-driven machine learning model based on the LSTM neural network to capture the liquefaction response of soils under cyclic loading. The LSTM model is trained on 12 laboratory cyclic simple shear tests on Nevada sand in loose and dense conditions subjected to different cyclic simple shear loading conditions. The LSTM model features include the relative density of soil and the previous stress history to predict the pore water pressure response. The LSTM model successfully replicates the pore pressure response for three cyclic simple test results considering the shielding and density effects.
112,097
112,097
Evaluating Short-Term Forecasting of Multiple Time Series in IoT Environments
Modern Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices, with the data acquisition and processing infrastructure setting restrictions in terms of computational power and energy resources. To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies, yielding a reduced set of observations. Nevertheless, this can hamper dramatically subsequent decision-making, such as forecasting. To address this problem, in this work we evaluate short-term forecasting in highly underdetermined cases, i.e., the number of sensor streams is much higher than the number of observations. Several statistical, machine learning and neural network-based models are thoroughly examined with respect to the resulting forecasting accuracy on five different real-world datasets. The focus is given on a unified experimental protocol especially designed for short-term prediction of multiple time series at the IoT edge. The proposed framework can be considered as an important step towards establishing a solid forecasting strategy in resource constrained IoT applications.
112,098
112,098
Participation and Data Valuation in IoT Data Markets through Distributed Coalitions
This paper considers a market for Internet of Things (IoT) data that is used to train machine learning models. The data is supplied to the market platform through a network and the price of the data is controlled based on the value it brings to the machine learning model. We explore the correlation property of data in a game-theoretical setting to eventually derive a simplified distributed solution for a data trading mechanism that emphasizes the mutual benefit of devices and the market. The key proposal is an efficient algorithm for markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between devices with correlated data to avoid information leakage. Therein, we develop a network-wide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller.
112,099
112,099
Federated Data Analytics: A Study on Linear Models
As edge devices become increasingly powerful, data analytics are gradually moving from a centralized to a decentralized regime where edge compute resources are exploited to process more of the data locally. This regime of analytics is coined as federated data analytics (FDA). In spite of the recent success stories of FDA, most literature focuses exclusively on deep neural networks. In this work, we take a step back to develop an FDA treatment for one of the most fundamental statistical models: linear regression. Our treatment is built upon hierarchical modeling that allows borrowing strength across multiple groups. To this end, we propose two federated hierarchical model structures that provide a shared representation across devices to facilitate information sharing. Notably, our proposed frameworks are capable of providing uncertainty quantification, variable selection, hypothesis testing and fast adaptation to new unseen data. We validate our methods on a range of real-life applications including condition monitoring for aircraft engines. The results show that our FDA treatment for linear models can serve as a competing benchmark model for future development of federated algorithms.