Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
110,200
110,200
Targeted Adaptive Design
Modern advanced manufacturing and advanced materials design often require searches of relatively high-dimensional process control parameter spaces for settings that result in optimal structure, property, and performance parameters. The mapping from the former to the latter must be determined from noisy experiments or from expensive simulations. We abstract this problem to a mathematical framework in which an unknown function from a control space to a design space must be ascertained by means of expensive noisy measurements, which locate optimal control settings generating desired design features within specified tolerances, with quantified uncertainty. We describe targeted adaptive design (TAD), a new algorithm that performs this optimal sampling task. TAD creates a Gaussian process surrogate model of the unknown mapping at each iterative stage, proposing a new batch of control settings to sample experimentally and optimizing the updated log-predictive likelihood of the target design. TAD either stops upon locating a solution with uncertainties that fit inside the tolerance box or uses a measure of expected future information to determine that the search space has been exhausted with no solution. TAD thus embodies the exploration-exploitation tension in a manner that recalls, but is essentially different from, Bayesian optimization and optimal experimental design.
110,201
110,201
StarGraph: A Coarse-to-Fine Representation Method for Large-Scale Knowledge Graph
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector, ignoring the rich information contained in neighbor entities. We propose a method named StarGraph, which gives a novel way to utilize the neighborhood information for large-scale knowledge graphs to get better entity representations. The core idea is to divide the neighborhood information into different levels for sampling and processing, where the generalized coarse-grained information and unique fine-grained information are combined to generate an efficient subgraph for each node. In addition, a self-attention network is proposed to process the subgraphs and get the entity representations, which are used to replace the entity embeddings in conventional methods. The proposed method achieves the best results on the ogbl-wikikg2 dataset, which validates the effectiveness of it. The code is now available at https://github.com/hzli-ucas/StarGraph
110,202
110,202
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
Mixed-integer programming (MIP) technology offers a generic way of formulating and solving combinatorial optimization problems. While generally reliable, state-of-the-art MIP solvers base many crucial decisions on hand-crafted heuristics, largely ignoring common patterns within a given instance distribution of the problem of interest. Here, we propose MIP-GNN, a general framework for enhancing such solvers with data-driven insights. By encoding the variable-constraint interactions of a given mixed-integer linear program (MILP) as a bipartite graph, we leverage state-of-the-art graph neural network architectures to predict variable biases, i.e., component-wise averages of (near) optimal solutions, indicating how likely a variable will be set to 0 or 1 in (near) optimal solutions of binary MILPs. In turn, the predicted biases stemming from a single, once-trained model are used to guide the solver, replacing heuristic components. We integrate MIP-GNN into a state-of-the-art MIP solver, applying it to tasks such as node selection and warm-starting, showing significant improvements compared to the default setting of the solver on two classes of challenging binary MILPs.
110,203
110,203
KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal
In this work, we consider and analyze the sample complexity of model-free reinforcement learning with a generative model. Particularly, we analyze mirror descent value iteration (MDVI) by Geist et al. (2019) and Vieillard et al. (2020a), which uses the Kullback-Leibler divergence and entropy regularization in its value and policy updates. Our analysis shows that it is nearly minimax-optimal for finding an $\varepsilon$-optimal policy when $\varepsilon$ is sufficiently small. This is the first theoretical result that demonstrates that a simple model-free algorithm without variance-reduction can be nearly minimax-optimal under the considered setting.
110,204
110,204
Diffusion-LM Improves Controllable Text Generation
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
110,205
110,205
Will Bilevel Optimizers Benefit from Loops
Bilevel optimization has arisen as a powerful tool for solving a variety of machine learning problems. Two current popular bilevel optimizers AID-BiO and ITD-BiO naturally involve solving one or two sub-problems, and consequently, whether we solve these problems with loops (that take many iterations) or without loops (that take only a few iterations) can significantly affect the overall computational efficiency. Existing studies in the literature cover only some of those implementation choices, and the complexity bounds available are not refined enough to enable rigorous comparison among different implementations. In this paper, we first establish unified convergence analysis for both AID-BiO and ITD-BiO that are applicable to all implementation choices of loops. We then specialize our results to characterize the computational complexity for all implementations, which enable an explicit comparison among them. Our result indicates that for AID-BiO, the loop for estimating the optimal point of the inner function is beneficial for overall efficiency, although it causes higher complexity for each update step, and the loop for approximating the outer-level Hessian-inverse-vector product reduces the gradient complexity. For ITD-BiO, the two loops always coexist, and our convergence upper and lower bounds show that such loops are necessary to guarantee a vanishing convergence error, whereas the no-loop scheme suffers from an unavoidable non-vanishing convergence error. Our numerical experiments further corroborate our theoretical results.
110,206
110,206
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task in self-driving and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and ultimately induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task. In this paper, we present the first adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random inputs with rich context, and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder that models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our semi-supervised semantics-guided adversarial training method can effectively mitigate the impact of adversarial attacks and generally improve the system's adversarial robustness to a variety of attacks, including unseen ones. We believe that such semantics-guided architecture and advancement in robust generalization is an important step for developing robust prediction models and enabling safe decision making.
110,207
110,207
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of $\alpha$-coherent function for which we provide convergence analysis. We show that for strictly $\alpha$-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in $\alpha$-coherent class of functions.
110,208
110,208
FedControl: When Control Theory Meets Federated Learning
To date, the most popular federated learning algorithms use coordinate-wise averaging of the model parameters. We depart from this approach by differentiating client contributions according to the performance of local learning and its evolution. The technique is inspired from control theory and its classification performance is evaluated extensively in IID framework and compared with FedAvg.
110,209
110,209
Provably Sample-Efficient RL with Side Information about Latent Dynamics
We study reinforcement learning (RL) in settings where observations are high-dimensional, but where an RL agent has access to abstract knowledge about the structure of the state space, as is the case, for example, when a robot is tasked to go to a specific room in a building using observations from its own camera, while having access to the floor plan. We formalize this setting as transfer reinforcement learning from an abstract simulator, which we assume is deterministic (such as a simple model of moving around the floor plan), but which is only required to capture the target domain's latent-state dynamics approximately up to unknown (bounded) perturbations (to account for environment stochasticity). Crucially, we assume no prior knowledge about the structure of observations in the target domain except that they can be used to identify the latent states (but the decoding map is unknown). Under these assumptions, we present an algorithm, called TASID, that learns a robust policy in the target domain, with sample complexity that is polynomial in the horizon, and independent of the number of states, which is not possible without access to some prior knowledge. In synthetic experiments, we verify various properties of our algorithm and show that it empirically outperforms transfer RL algorithms that require access to "full simulators" (i.e., those that also simulate observations).
110,210
110,210
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
We propose a general purpose Bayesian inference algorithm for expensive likelihoods, replacing the stochastic term in the Langevin equation with a deterministic density gradient term. The particle density is evaluated from the current particle positions using a Normalizing Flow (NF), which is differentiable and has good generalization properties in high dimensions. We take advantage of NF preconditioning and NF based Metropolis-Hastings updates for a faster and unbiased convergence. We show on various examples that the method is competitive against state of the art sampling methods.
110,211
110,211
Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration
The deep learning boom motivates researchers and practitioners of computational fluid dynamics eager to integrate the two areas.The PINN (physics-informed neural network) method is one such attempt. While most reports in the literature show positive outcomes of applying the PINN method, our experiments with it stifled such optimism. This work presents our not-so-successful story of using PINN to solve two fundamental flow problems: 2D Taylor-Green vortex at $Re = 100$ and 2D cylinder flow at $Re = 200$. The PINN method solved the 2D Taylor-Green vortex problem with acceptable results, and we used this flow as an accuracy and performance benchmark. About 32 hours of training were required for the PINN method's accuracy to match the accuracy of a $16 \times 16$ finite-difference simulation, which took less than 20 seconds. The 2D cylinder flow, on the other hand, did not even result in a physical solution. The PINN method behaved like a steady-flow solver and did not capture the vortex shedding phenomenon. By sharing our experience, we would like to emphasize that the PINN method is still a work-in-progress. More work is needed to make PINN feasible for real-world problems.
110,212
110,212
On the Symmetries of Deep Learning Models and their Internal Representations
Symmetry has been a fundamental tool in the exploration of a broad range of complex systems. In machine learning, symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family's internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the \emph{intertwiner groups} of the model. Each of these arises from a particular nonlinear layer of the model and different nonlinearities result in different symmetry groups. These groups change the weights of a model in such a way that the underlying function that the model represents remains constant but the internal representations of data inside the model may change. We connect intertwiner groups to a model's internal representations of data through a range of experiments that probe similarities between hidden states across models with the same architecture. Our work suggests that the symmetries of a network are propagated into the symmetries in that network's representation of data, providing us with a better understanding of how architecture affects the learning and prediction process. Finally, we speculate that for ReLU networks, the intertwiner groups may provide a justification for the common practice of concentrating model interpretability exploration on the activation basis in hidden layers rather than arbitrary linear combinations thereof.
110,213
110,213
Personalized PageRank Graph Attention Networks
There has been a rising interest in graph neural networks (GNNs) for representation learning over the past few years. GNNs provide a general and efficient framework to learn from graph-structured data. However, GNNs typically only use the information of a very limited neighborhood for each node to avoid over-smoothing. A larger neighborhood would be desirable to provide the model with more information. In this work, we incorporate the limit distribution of Personalized PageRank (PPR) into graph attention networks (GATs) to reflect the larger neighbor information without introducing over-smoothing. Intuitively, message aggregation based on Personalized PageRank corresponds to infinitely many neighborhood aggregation layers. We show that our models outperform a variety of baseline models for four widely used benchmark datasets. Our implementation is publicly available online.
110,214
110,214
NeuPSL: Neural Probabilistic Soft Logic
We present Neural Probabilistic Soft Logic (NeuPSL), a novel neuro-symbolic (NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level perception of deep neural networks. To explicitly model the boundary between neural and symbolic representations, we introduce NeSy Energy-Based Models, a general family of energy-based models that combine neural and symbolic reasoning. Using this framework, we show how to seamlessly integrate neural and symbolic parameter learning and inference. We perform an extensive empirical evaluation and show that NeuPSL outperforms existing methods on joint inference and has significantly lower variance in almost all settings.
110,215
110,215
Towards Communication-Learning Trade-off for Federated Learning at the Network Edge
In this letter, we study a wireless federated learning (FL) system where network pruning is applied to local users with limited resources. Although pruning is beneficial to reduce FL latency, it also deteriorates learning performance due to the information loss. Thus, a trade-off problem between communication and learning is raised. To address this challenge, we quantify the effects of network pruning and packet error on the learning performance by deriving the convergence rate of FL with a non-convex loss function. Then, closed-form solutions for pruning control and bandwidth allocation are proposed to minimize the weighted sum of FL latency and FL performance. Finally, numerical results demonstrate that 1) our proposed solution can outperform benchmarks in terms of cost reduction and accuracy guarantee, and 2) a higher pruning rate would bring less communication overhead but also worsen FL accuracy, which is consistent with our theoretical analysis.
110,216
110,216
Image Keypoint Matching using Graph Neural Networks
Image matching is a key component of many tasks in computer vision and its main objective is to find correspondences between features extracted from different natural images. When images are represented as graphs, image matching boils down to the problem of graph matching which has been studied intensively in the past. In recent years, graph neural networks have shown great potential in the graph matching task, and have also been applied to image matching. In this paper, we propose a graph neural network for the problem of image matching. The proposed method first generates initial soft correspondences between keypoints using localized node embeddings and then iteratively refines the initial correspondences using a series of graph neural network layers. We evaluate our method on natural image datasets with keypoint annotations and show that, in comparison to a state-of-the-art model, our method speeds up inference times without sacrificing prediction accuracy.
110,217
110,217
So3krates -- Self-attention for higher-order geometric interactions on arbitrary length-scales
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum mechanical properties of molecules and materials depend on non-local electronic effects, which are often neglected due to the difficulty of modeling them efficiently. This work proposes a modified attention mechanism adapted to the underlying physics, which allows to recover the relevant non-local effects. Namely, we introduce spherical harmonic coordinates (SPHCs) to reflect higher-order geometric information for each atom in a molecule, enabling a non-local formulation of attention in the SPHC space. Our proposed model So3krates -- a self-attention based message passing neural network -- uncouples geometric information from atomic features, making them independently amenable to attention mechanisms. We show that in contrast to other published methods, So3krates is able to describe non-local quantum mechanical effects over arbitrary length scales. Further, we find evidence that the inclusion of higher-order geometric correlations increases data efficiency and improves generalization. So3krates matches or exceeds state-of-the-art performance on popular benchmarks, notably, requiring a significantly lower number of parameters (0.25--0.4x) while at the same time giving a substantial speedup (6--14x for training and 2--11x for inference) compared to other models.
110,218
110,218
Uniform Convergence and Generalization for Nonconvex Stochastic Minimax Problems
This paper studies the uniform convergence and generalization bounds for nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization. We first establish the uniform convergence between the empirical minimax problem and the population minimax problem and show the $\tilde{\mathcal{O}}(d\kappa^2\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d\epsilon^{-4})$ sample complexities respectively for the NC-SC and NC-C settings, where $d$ is the dimension number and $\kappa$ is the condition number. To the best of our knowledge, this is the first uniform convergence measured by the first-order stationarity in stochastic minimax optimization. Based on the uniform convergence, we shed light on the sample and gradient complexities required for finding an approximate stationary point for stochastic minimax optimization in the NC-SC and NC-C settings.
110,219
110,219
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Sparse modeling for signal processing and machine learning has been at the focus of scientific research for over two decades. Among others, supervised sparsity-aware learning comprises two major paths paved by: a) discriminative methods and b) generative methods. The latter, more widely known as Bayesian methods, enable uncertainty evaluation w.r.t. the performed predictions. Furthermore, they can better exploit related prior information and naturally introduce robustness into the model, due to their unique capacity to marginalize out uncertainties related to the parameter estimates. Moreover, hyper-parameters associated with the adopted priors can be learnt via the training data. To implement sparsity-aware learning, the crucial point lies in the choice of the function regularizer for discriminative methods and the choice of the prior distribution for Bayesian learning. Over the last decade or so, due to the intense research on deep learning, emphasis has been put on discriminative techniques. However, a come back of Bayesian methods is taking place that sheds new light on the design of deep neural networks, which also establish firm links with Bayesian models and inspire new paths for unsupervised learning, such as Bayesian tensor decomposition. The goal of this article is two-fold. First, to review, in a unified way, some recent advances in incorporating sparsity-promoting priors into three highly popular data modeling tools, namely deep neural networks, Gaussian processes, and tensor decomposition. Second, to review their associated inference techniques from different aspects, including: evidence maximization via optimization and variational inference methods. Challenges such as small data dilemma, automatic model structure search, and natural prediction uncertainty evaluation are also discussed. Typical signal processing and machine learning tasks are demonstrated.
110,220
110,220
Provably Auditing Ordinary Least Squares in Low Dimensions
Measuring the stability of conclusions derived from Ordinary Least Squares linear regression is critically important, but most metrics either only measure local stability (i.e. against infinitesimal changes in the data), or are only interpretable under statistical assumptions. Recent work proposes a simple, global, finite-sample stability metric: the minimum number of samples that need to be removed so that rerunning the analysis overturns the conclusion, specifically meaning that the sign of a particular coefficient of the estimated regressor changes. However, besides the trivial exponential-time algorithm, the only approach for computing this metric is a greedy heuristic that lacks provable guarantees under reasonable, verifiable assumptions; the heuristic provides a loose upper bound on the stability and also cannot certify lower bounds on it. We show that in the low-dimensional regime where the number of covariates is a constant but the number of samples is large, there are efficient algorithms for provably estimating (a fractional version of) this metric. Applying our algorithms to the Boston Housing dataset, we exhibit regression analyses where we can estimate the stability up to a factor of $3$ better than the greedy heuristic, and analyses where we can certify stability to dropping even a majority of the samples.
110,221
110,221
Fake It Till You Make It: Near-Distribution Novelty Detection by Score-Based Generative Models
We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called ``near-distribution" setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20\% decrease in performance in the near-distribution setting. Next, we propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data. Our model is then fine-tuned to distinguish such data from the normal samples. We provide a quantitative as well as qualitative evaluation of this strategy, and compare the results with a variety of GAN-based models. Effectiveness of our method for both the near-distribution and standard novelty detection is assessed through extensive experiments on datasets in diverse applications such as medical images, object classification, and quality control. This reveals that our method considerably improves over existing models, and consistently decreases the gap between the near-distribution and standard novelty detection performance. Overall, our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks. The code repository is available at https://github.com/rohban-lab/FITYMI
110,222
110,222
MC-GEN:Multi-level Clustering for Private Synthetic Data Generation
Nowadays, machine learning is one of the most common technology to turn raw data into useful information in scientific and industrial processes. The performance of the machine learning model often depends on the size of dataset. Companies and research institutes usually share or exchange their data to avoid data scarcity. However, sharing original datasets that contain private information can cause privacy leakage. Utilizing synthetic datasets which have similar characteristics as a substitute is one of the solutions to avoid the privacy issue. Differential privacy provides a strong privacy guarantee to protect the individual data records which contain sensitive information. We propose MC-GEN, a privacy-preserving synthetic data generation method under differential privacy guarantee for multiple classification tasks. MC-GEN builds differentially private generative models on the multi-level clustered data to generate synthetic datasets. Our method also reduced the noise introduced from differential privacy to improve the utility. In experimental evaluation, we evaluated the parameter effect of MC-GEN and compared MC-GEN with three existing methods. Our results showed that MC-GEN can achieve significant effectiveness under certain privacy guarantees on multiple classification tasks.
110,223
110,223
Deep Learning with Label Noise: A Hierarchical Approach
Deep neural networks are susceptible to label noise. Existing methods to improve robustness, such as meta-learning and regularization, usually require significant change to the network architecture or careful tuning of the optimization procedure. In this work, we propose a simple hierarchical approach that incorporates a label hierarchy when training the deep learning models. Our approach requires no change of the network architecture or the optimization procedure. We investigate our hierarchical network through a wide range of simulated and real datasets and various label noise types. Our hierarchical approach improves upon regular deep neural networks in learning with label noise. Combining our hierarchical approach with pre-trained models achieves state-of-the-art performance in real-world noisy datasets.
110,224
110,224
A Quadrature Perspective on Frequency Bias in Neural Network Training with Nonuniform Data
Small generalization errors of over-parameterized neural networks (NNs) can be partially explained by the frequency biasing phenomenon, where gradient-based algorithms minimize the low-frequency misfit before reducing the high-frequency residuals. Using the Neural Tangent Kernel (NTK), one can provide a theoretically rigorous analysis for training where data are drawn from constant or piecewise-constant probability densities. Since most training data sets are not drawn from such distributions, we use the NTK model and a data-dependent quadrature rule to theoretically quantify the frequency biasing of NN training given fully nonuniform data. By replacing the loss function with a carefully selected Sobolev norm, we can further amplify, dampen, counterbalance, or reverse the intrinsic frequency biasing in NN training.
110,225
110,225
Uncertainty quantification of two-phase flow in porous media via coupled-TgNN surrogate model
Uncertainty quantification (UQ) of subsurface two-phase flow usually requires numerous executions of forward simulations under varying conditions. In this work, a novel coupled theory-guided neural network (TgNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The TgNN model not only relies on labeled data, but also incorporates underlying scientific theory and experiential rules (e.g., governing equations, stochastic parameter fields, boundary and initial conditions, well conditions, and expert knowledge) as additional components into the loss function. The performance of the TgNN-based surrogate model for two-phase flow problems is tested by different numbers of labeled data and collocation points, as well as the existence of data noise. The proposed TgNN-based surrogate model offers an effective way to solve the coupled nonlinear two-phase flow problem and demonstrates good accuracy and strong robustness when compared with the purely data-driven surrogate model. By combining the accurate TgNN-based surrogate model with the Monte Carlo method, UQ tasks can be performed at a minimum cost to evaluate statistical quantities. Since the heterogeneity of the random fields strongly impacts the results of the surrogate model, corresponding variance and correlation length are added to the input of the neural network to maintain its predictive capacity. The results show that the TgNN-based surrogate model achieves satisfactory accuracy, stability, and efficiency in UQ problems of subsurface two-phase flow.
110,226
110,226
Deep Embedded Clustering with Distribution Consistency Preservation for Attributed Networks
Many complex systems in the real world can be characterized by attributed networks. To mine the potential information in these networks, deep embedded clustering, which obtains node representations and clusters simultaneously, has been paid much attention in recent years. Under the assumption of consistency for data in different views, the cluster structure of network topology and that of node attributes should be consistent for an attributed network. However, many existing methods ignore this property, even though they separately encode node representations from network topology and node attributes meanwhile clustering nodes on representation vectors learnt from one of the views. Therefore, in this study, we propose an end-to-end deep embedded clustering model for attributed networks. It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments. In addition, a distribution consistency constraint is introduced to maintain the latent consistency of cluster distributions of two views. Extensive experiments on several datasets demonstrate that the proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods. The source code can be found at https://github.com/Zhengymm/DCP.
110,227
110,227
Ensemble2: Anomaly Detection via EVT-Ensemble Framework for Seasonal KPIs in Communication Network
KPI anomaly detection is one important function of network management system. Traditional methods either require prior knowledge or manually set thresholds. To overcome these shortcomings, we propose the Ensemble2 framework, which applies ensemble learning to improve exogenous capabilities. Meanwhile, automatically adjusts thresholds based on extreme value theory. The model is tested on production datasets to verify its effectiveness. We further optimize the model using online learning, and finally running at a speed of ~10 pts/s on an Intel i5 platform.
110,228
110,228
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph
Multi-hop logical reasoning over knowledge graph (KG) plays a fundamental role in many artificial intelligence tasks. Recent complex query embedding (CQE) methods for reasoning focus on static KGs, while temporal knowledge graphs (TKGs) have not been fully explored. Reasoning over TKGs has two challenges: 1. The query should answer entities or timestamps; 2. The operators should consider both set logic on entity set and temporal logic on timestamp set. To bridge this gap, we define the multi-hop logical reasoning problem on TKGs. With generated three datasets, we propose the first temporal CQE named Temporal Feature-Logic Embedding framework (TFLEX) to answer the temporal complex queries. We utilize vector logic to compute the logic part of Temporal Feature-Logic embeddings, thus naturally modeling all First-Order Logic (FOL) operations on entity set. In addition, our framework extends vector logic on timestamp set to cope with three extra temporal operators (After, Before and Between). Experiments on numerous query patterns demonstrate the effectiveness of our method.
110,229
110,229
Federated Neural Bandit
Recent works on neural contextual bandit have achieved compelling performances thanks to their ability to leverage the strong representation power of neural networks (NNs) for reward prediction. Many applications of contextual bandit involve multiple agents who collaborate without sharing raw observations, giving rise to the setting of federated contextual bandit. Existing works on federated contextual bandit rely on linear or kernelized bandit, which may fall short when modeling complicated real-world reward functions. In this regard, we introduce the federated neural-upper confidence bound (FN-UCB) algorithm. To better exploit the federated setting, we adopt a weighted combination of two UCBs: $\text{UCB}^{a}$ allows every agent to additionally use the observations from the other agents to accelerate exploration (without sharing raw observations); $\text{UCB}^{b}$ uses an NN with aggregated parameters for reward prediction in a similar way as federated averaging for supervised learning. Notably, the weight between the two UCBs required by our theoretical analysis is amenable to an interesting interpretation, which emphasizes $\text{UCB}^{a}$ initially for accelerated exploration and relies more on $\text{UCB}^{b}$ later after enough observations have been collected to train the NNs for accurate reward prediction (i.e., reliable exploitation). We prove sub-linear upper bounds on both the cumulative regret and the number of communication rounds of FN-UCB, and use empirical experiments to demonstrate its competitive performances.
110,230
110,230
Approximate Conditional Coverage via Neural Model Approximations
Constructing reliable prediction sets is an obstacle for applications of neural models: Distribution-free conditional coverage is theoretically impossible, and the exchangeability assumption underpinning the coverage guarantees of standard split-conformal approaches is violated on domain shifts. Given these challenges, we propose and analyze a data-driven procedure for obtaining empirically reliable approximate conditional coverage, calculating unique quantile thresholds for each label for each test point. We achieve this via the strong signals for prediction reliability from KNN-based model approximations over the training set and approximations over constrained samples from the held-out calibration set. We demonstrate the potential for substantial (and otherwise unknowable) under-coverage with split-conformal alternatives with marginal coverage guarantees when not taking these distances and constraints into account with protein secondary structure prediction, grammatical error detection, sentiment classification, and fact verification, covering supervised sequence labeling, zero-shot sequence labeling (i.e., feature detection), document classification (with sparsity/interpretability constraints), and retrieval-classification, including class-imbalanced and domain-shifted settings.
110,231
110,231
Efficient Federated Learning with Spike Neural Networks for Traffic Sign Recognition
With the gradual popularization of self-driving, it is becoming increasingly important for vehicles to smartly make the right driving decisions and autonomously obey traffic rules by correctly recognizing traffic signs. However, for machine learning-based traffic sign recognition on the Internet of Vehicles (IoV), a large amount of traffic sign data from distributed vehicles is needed to be gathered in a centralized server for model training, which brings serious privacy leakage risk because of traffic sign data containing lots of location privacy information. To address this issue, we first exploit privacy-preserving federated learning to perform collaborative training for accurate recognition models without sharing raw traffic sign data. Nevertheless, due to the limited computing and energy resources of most devices, it is hard for vehicles to continuously undertake complex artificial intelligence tasks. Therefore, we introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training, which is the next generation of neural networks and is practical and well-fitted to IoV scenarios. Furthermore, we design a novel encoding scheme for SNNs based on neuron receptive fields to extract information from the pixel and spatial dimensions of traffic signs to achieve high-accuracy training. Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
110,232
110,232
A Confidence Machine for Sparse High-Order Interaction Model
In predictive modeling for high-stake decision-making, predictors must be not only accurate but also reliable. Conformal prediction (CP) is a promising approach for obtaining the confidence of prediction results with fewer theoretical assumptions. To obtain the confidence set by so-called full-CP, we need to refit the predictor for all possible values of prediction results, which is only possible for simple predictors. For complex predictors such as random forests (RFs) or neural networks (NNs), split-CP is often employed where the data is split into two parts: one part for fitting and another to compute the confidence set. Unfortunately, because of the reduced sample size, split-CP is inferior to full-CP both in fitting as well as confidence set computation. In this paper, we develop a full-CP of sparse high-order interaction model (SHIM), which is sufficiently flexible as it can take into account high-order interactions among variables. We resolve the computational challenge for full-CP of SHIM by introducing a novel approach called homotopy mining. Through numerical experiments, we demonstrate that SHIM is as accurate as complex predictors such as RF and NN and enjoys the superior statistical power of full-CP.
110,233
110,233
Learning from Self-Sampled Correct and Partially-Correct Programs
Program synthesis aims to generate executable programs that are consistent with the user specification. While there are often multiple programs that satisfy the same user specification, existing neural program synthesis models are often only learned from one reference program by maximizing its log-likelihood. This causes the model to be overly confident in its predictions as it sees the single solution repeatedly during training. This leads to poor generalization on unseen examples, even when multiple attempts are allowed. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct programs, which yield the gold execution results, as well as partially-correct programs, whose intermediate execution state matches another correct program. We show that our use of self-sampled correct and partially-correct programs can benefit learning and help guide the sampling process, leading to more efficient exploration of the program space. Additionally, we explore various training objectives to support learning from multiple programs per example and find they greatly affect the performance. Experiments on the MathQA and GSM8K datasets show that our proposed method improves the pass@k performance by 3.1% to 12.3% compared to learning from a single reference program with MLE.
110,234
110,234
Automatic Expert Selection for Multi-Scenario and Multi-Task Search
Multi-scenario learning (MSL) enables a service provider to cater for users' fine-grained demands by separating services for different user sectors, e.g., by user's geographical region. Under each scenario there is a need to optimize multiple task-specific targets e.g., click through rate and conversion rate, known as multi-task learning (MTL). Recent solutions for MSL and MTL are mostly based on the multi-gate mixture-of-experts (MMoE) architecture. MMoE structure is typically static and its design requires domain-specific knowledge, making it less effective in handling both MSL and MTL. In this paper, we propose a novel Automatic Expert Selection framework for Multi-scenario and Multi-task search, named AESM^{2}. AESM^{2} integrates both MSL and MTL into a unified framework with an automatic structure learning. Specifically, AESM^{2} stacks multi-task layers over multi-scenario layers. This hierarchical design enables us to flexibly establish intrinsic connections between different scenarios, and at the same time also supports high-level feature extraction for different tasks. At each multi-scenario/multi-task layer, a novel expert selection algorithm is proposed to automatically identify scenario-/task-specific and shared experts for each input. Experiments over two real-world large-scale datasets demonstrate the effectiveness of AESM^{2} over a battery of strong baselines. Online A/B test also shows substantial performance gain on multiple metrics. Currently, AESM^{2} has been deployed online for serving major traffic.
110,235
110,235
Multi-agent Databases via Independent Learning
Machine learning is rapidly being used in database research to improve the effectiveness of numerous tasks included but not limited to query optimization, workload scheduling, physical design, etc. essential database components, such as the optimizer, scheduler, and physical designer. Currently, the research focus has been on replacing a single database component responsible for one task by its learning-based counterpart. However, query performance is not simply determined by the performance of a single component, but by the cooperation of multiple ones. As such, learned based database components need to collaborate during both training and execution in order to develop policies that meet end performance goals. Thus, the paper attempts to address the question "Is it possible to design a database consisting of various learned components that cooperatively work to improve end-to-end query latency?". To answer this question, we introduce MADB (Multi-Agent DB), a proof-of-concept system that incorporates a learned query scheduler and a learned query optimizer. MADB leverages a cooperative multi-agent reinforcement learning approach that allows the two components to exchange the context of their decisions with each other and collaboratively work towards reducing the query latency. Preliminary results demonstrate that MADB can outperform the non-cooperative integration of learned components.
110,236
110,236
Differentially Private Covariance Revisited
In this paper, we present three new error bounds, in terms of the Frobenius norm, for covariance estimation under differential privacy: (1) a worst-case bound of $\tilde{O}(d^{1/4}/\sqrt{n})$, which improves the standard Gaussian mechanism $\tilde{O}(d/n)$ for the regime $d>\widetilde{\Omega}(n^{2/3})$; (2) a trace-sensitive bound that improves the state of the art by a $\sqrt{d}$-factor, and (3) a tail-sensitive bound that gives a more instance-specific result. The corresponding algorithms are also simple and efficient. Experimental results show that they offer significant improvements over prior work.
110,237
110,237
Feature subset selection for kernel SVM classification via mixed-integer optimization
We study the mixed-integer optimization (MIO) approach to feature subset selection in nonlinear kernel support vector machines (SVMs) for binary classification. First proposed for linear regression in the 1970s, this approach has recently moved into the spotlight with advances in optimization algorithms and computer hardware. The goal of this paper is to establish an MIO approach for selecting the best subset of features for kernel SVM classification. To measure the performance of subset selection, we use the kernel-target alignment, which is the distance between the centroids of two response classes in a high-dimensional feature space. We propose a mixed-integer linear optimization (MILO) formulation based on the kernel-target alignment for feature subset selection, and this MILO problem can be solved to optimality using optimization software. We also derive a reduced version of the MILO problem to accelerate our MILO computations. Experimental results show good computational efficiency for our MILO formulation with the reduced problem. Moreover, our method can often outperform the linear-SVM-based MILO formulation and recursive feature elimination in prediction performance, especially when there are relatively few data instances.
110,238
110,238
Survival Analysis on Structured Data using Deep Reinforcement Learning
Survival analysis is playing a major role in manufacturing sector by analyzing occurrence of any unwanted event based on the input data. Predictive maintenance, which is a part of survival analysis, helps to find any device failure based on the current incoming data from different sensor or any equipment. Deep learning techniques were used to automate the predictive maintenance problem to some extent, but they are not very helpful in predicting the device failure for the input data which the algorithm had not learned. Since neural network predicts the output based on previous learned input features, it cannot perform well when there is more variation in input features. Performance of the model is degraded with the occurrence of changes in input data and finally the algorithm fails in predicting the device failure. This problem can be solved by our proposed method where the algorithm can predict the device failure more precisely than the existing deep learning algorithms. The proposed solution involves implementation of Deep Reinforcement Learning algorithm called Double Deep Q Network (DDQN) for classifying the device failure based on the input features. The algorithm is capable of learning different variation of the input feature and is robust in predicting whether the device will fail or not based on the input data. The proposed DDQN model is trained with limited or lesser amount of input data. The trained model predicted larger amount of test data efficiently and performed well compared to other deep learning and machine learning models.
110,239
110,239
Teaching Models to Express Their Uncertainty in Words
We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers.
110,240
110,240
Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers
Sparsely activated transformers, such as Mixture of Experts (MoE), have received great interest due to their outrageous scaling capability which enables dramatical increases in model size without significant increases in computational cost. To achieve this, MoE models replace the feedforward sub-layer with Mixture-of-Experts sub-layer in transformers and use a gating network to route each token to its assigned experts. Since the common practice for efficient training of such models requires distributing experts and tokens across different machines, this routing strategy often incurs huge cross-machine communication cost because tokens and their assigned experts likely reside in different machines. In this paper, we propose \emph{Gating Dropout}, which allows tokens to ignore the gating network and stay at their local machines, thus reducing the cross-machine communication. Similar to traditional dropout, we also show that Gating Dropout has a regularization effect during training, resulting in improved generalization performance. We validate the effectiveness of Gating Dropout on multilingual machine translation tasks. Our results demonstrate that Gating Dropout improves a state-of-the-art MoE model with faster wall-clock time convergence rates and better BLEU scores for a variety of model sizes and datasets.
110,241
110,241
List-Decodable Sparse Mean Estimation
Robust mean estimation is one of the most important problems in statistics: given a set of samples $\{x_1, \dots, x_n\} \subset \mathbb{R}^d$ where an $\alpha$ fraction are drawn from some distribution $D$ and the rest are adversarially corrupted, it aims to estimate the mean of $D$. A surge of recent research interest has been focusing on the list-decodable setting where $\alpha \in (0, \frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean. In this paper, we consider that the underlying distribution is Gaussian and the target mean is $k$-sparse. Our main contribution is the first polynomial-time algorithm that enjoys sample complexity $O\big(\mathrm{poly}(k, \log d)\big)$, i.e. poly-logarithmic in the dimension. One of the main algorithmic ingredients is using low-degree sparse polynomials to filter outliers, which may be of independent interest.
110,242
110,242
Object-wise Masked Autoencoders for Fast Pre-training
Self-supervised pre-training for images without labels has recently achieved promising performance in image classification. The success of transformer-based methods, ViT and MAE, draws the community's attention to the design of backbone architecture and self-supervised task. In this work, we show that current masked image encoding models learn the underlying relationship between all objects in the whole scene, instead of a single object representation. Therefore, those methods bring a lot of compute time for self-supervised pre-training. To solve this issue, we introduce a novel object selection and division strategy to drop non-object patches for learning object-wise representations by selective reconstruction with interested region masks. We refer to this method ObjMAE. Extensive experiments on four commonly-used datasets demonstrate the effectiveness of our model in reducing the compute cost by 72% while achieving competitive performance. Furthermore, we investigate the inter-object and intra-object relationship and find that the latter is crucial for self-supervised pre-training.
110,243
110,243
Reinforcement Learning for Branch-and-Bound Optimisation using Retrospective Trajectories
Combinatorial optimisation problems framed as mixed integer linear programmes (MILPs) are ubiquitous across a range of real-world applications. The canonical branch-and-bound (B&B) algorithm seeks to exactly solve MILPs by constructing a search tree of increasingly constrained sub-problems. In practice, its solving time performance is dependent on heuristics, such as the choice of the next variable to constrain ('branching'). Recently, machine learning (ML) has emerged as a promising paradigm for branching. However, prior works have struggled to apply reinforcement learning (RL), citing sparse rewards, difficult exploration, and partial observability as significant challenges. Instead, leading ML methodologies resort to approximating high quality handcrafted heuristics with imitation learning (IL), which precludes the discovery of novel policies and requires expensive data labelling. In this work, we propose retro branching; a simple yet effective approach to RL for branching. By retrospectively deconstructing the search tree into multiple paths each contained within a sub-tree, we enable the agent to learn from shorter trajectories with more predictable next states. In experiments on four combinatorial tasks, our approach enables learning-to-branch without any expert guidance or pre-training. We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables, with ablations verifying that our retrospectively constructed trajectories are essential to achieving these results.
110,244
110,244
Estimation of 3D Body Shape and Clothing Measurements from Frontal- and Side-view Images
The estimation of 3D human body shape and clothing measurements is crucial for virtual try-on and size recommendation problems in the fashion industry but has always been a challenging problem due to several conditions, such as lack of publicly available realistic datasets, ambiguity in multiple camera resolutions, and the undefinable human shape space. Existing works proposed various solutions to these problems but could not succeed in the industry adaptation because of complexity and restrictions. To solve the complexity and challenges, in this paper, we propose a simple yet effective architecture to estimate both shape and measures from frontal- and side-view images. We utilize silhouette segmentation from the two multi-view images and implement an auto-encoder network to learn low-dimensional features from segmented silhouettes. Then, we adopt a kernel-based regularized regression module to estimate the body shape and measurements. The experimental results show that the proposed method provides competitive results on the synthetic dataset, NOMO-3d-400-scans Dataset, and RGB Images of humans captured in different cameras.
110,245
110,245
Fair Labeled Clustering
Numerous algorithms have been produced for the fundamental problem of clustering under many different notions of fairness. Perhaps the most common family of notions currently studied is group fairness, in which proportional group representation is ensured in every cluster. We extend this direction by considering the downstream application of clustering and how group fairness should be ensured for such a setting. Specifically, we consider a common setting in which a decision-maker runs a clustering algorithm, inspects the center of each cluster, and decides an appropriate outcome (label) for its corresponding cluster. In hiring for example, there could be two outcomes, positive (hire) or negative (reject), and each cluster would be assigned one of these two outcomes. To ensure group fairness in such a setting, we would desire proportional group representation in every label but not necessarily in every cluster as is done in group fair clustering. We provide algorithms for such problems and show that in contrast to their NP-hard counterparts in group fair clustering, they permit efficient solutions. We also consider a well-motivated alternative setting where the decision-maker is free to assign labels to the clusters regardless of the centers' positions in the metric space. We show that this setting exhibits interesting transitions from computationally hard to easy according to additional constraints on the problem. Moreover, when the constraint parameters take on natural values we show a randomized algorithm for this setting that always achieves an optimal clustering and satisfies the fairness constraints in expectation. Finally, we run experiments on real world datasets that validate the effectiveness of our algorithms.
110,246
110,246
Granular Generalized Variable Precision Rough Sets and Rational Approximations
Rational approximations are introduced and studied in granular graded sets and generalizations thereof by the first author in recent research papers. The concept of rationality is determined by related ontologies and coherence between granularity, parthood perspective and approximations used in the context. In addition, a framework is introduced by her in the mentioned paper(s). Granular approximations constructed as per the procedures of VPRS are likely to be more rational than those constructed from a classical perspective under certain conditions. This may continue to hold for some generalizations of the former; however, a formal characterization of such conditions is not available in the previously published literature. In this research, theoretical aspects of the problem are critically examined, uniform generalizations of granular VPRS are introduced, new connections with granular graded rough sets are proved, appropriate concepts of substantial parthood are introduced, and their extent of compatibility with the framework is accessed. Furthermore, meta applications to cluster validation, image segmentation and dynamic sorting are invented. Basic assumptions made are explained, and additional examples are constructed for readability.
110,247
110,247
Going Deeper into Permutation-Sensitive Graph Neural Networks
The invariance to permutations of the adjacency matrix, i.e., graph isomorphism, is an overarching requirement for Graph Neural Networks (GNNs). Conventionally, this prerequisite can be satisfied by the invariant operations over node permutations when aggregating messages. However, such an invariant manner may ignore the relationships among neighboring nodes, thereby hindering the expressivity of GNNs. In this work, we devise an efficient permutation-sensitive aggregation mechanism via permutation groups, capturing pairwise correlations between neighboring nodes. We prove that our approach is strictly more powerful than the 2-dimensional Weisfeiler-Lehman (2-WL) graph isomorphism test and not less powerful than the 3-WL test. Moreover, we prove that our approach achieves the linear sampling complexity. Comprehensive experiments on multiple synthetic and real-world datasets demonstrate the superiority of our model.
110,248
110,248
Syntax-Guided Program Reduction for Understanding Neural Code Intelligence Models
Neural code intelligence (CI) models are opaque black-boxes and offer little insight on the features they use in making predictions. This opacity may lead to distrust in their prediction and hamper their wider adoption in safety-critical applications. Recently, input program reduction techniques have been proposed to identify key features in the input programs to improve the transparency of CI models. However, this approach is syntax-unaware and does not consider the grammar of the programming language. In this paper, we apply a syntax-guided program reduction technique that considers the grammar of the input programs during reduction. Our experiments on multiple models across different types of input programs show that the syntax-guided program reduction technique is faster and provides smaller sets of key tokens in reduced programs. We also show that the key tokens could be used in generating adversarial examples for up to 65% of the input programs.
110,249
110,249
WaveMix-Lite: A Resource-efficient Neural Network for Image Analysis
Gains in the ability to generalize on image analysis tasks for neural networks have come at the cost of increased number of parameters and layers, dataset sizes, training and test computations, and GPU RAM. We introduce a new architecture -- WaveMix-Lite -- that can generalize on par with contemporary transformers and convolutional neural networks (CNNs) while needing fewer resources. WaveMix-Lite uses 2D-discrete wavelet transform to efficiently mix spatial information from pixels. WaveMix-Lite seems to be a versatile and scalable architectural framework that can be used for multiple vision tasks, such as image classification and semantic segmentation, without requiring significant architectural changes, unlike transformers and CNNs. It is able to meet or exceed several accuracy benchmarks while training on a single GPU. For instance, it achieves state-of-the-art accuracy on five EMNIST datasets, outperforms CNNs and transformers in ImageNet-1K (64$\times$64 images), and achieves an mIoU of 75.32 % on Cityscapes validation set, while using less than one-fifth the number parameters and half the GPU RAM of comparable CNNs or transformers. Our experiments show that while the convolutional elements of neural architectures exploit the shift-invariance property of images, new types of layers (e.g., wavelet transform) can exploit additional properties of images, such as scale-invariance and finite spatial extents of objects.
110,250
110,250
Deep Learning-based Spatially Explicit Emulation of an Agent-Based Simulator for Pandemic in a City
Agent-Based Models are very useful for simulation of physical or social processes, such as the spreading of a pandemic in a city. Such models proceed by specifying the behavior of individuals (agents) and their interactions, and parameterizing the process of infection based on such interactions based on the geography and demography of the city. However, such models are computationally very expensive, and the complexity is often linear in the total number of agents. This seriously limits the usage of such models for simulations, which often have to be run hundreds of times for policy planning and even model parameter estimation. An alternative is to develop an emulator, a surrogate model that can predict the Agent-Based Simulator's output based on its initial conditions and parameters. In this paper, we discuss a Deep Learning model based on Dilated Convolutional Neural Network that can emulate such an agent based model with high accuracy. We show that use of this model instead of the original Agent-Based Model provides us major gains in the speed of simulations, allowing much quicker calibration to observations, and more extensive scenario analysis. The models we consider are spatially explicit, as the locations of the infected individuals are simulated instead of the gross counts. Another aspect of our emulation framework is its divide-and-conquer approach that divides the city into several small overlapping blocks and carries out the emulation in them parallelly, after which these results are merged together. This ensures that the same emulator can work for a city of any size, and also provides significant improvement of time complexity of the emulator, compared to the original simulator.
110,251
110,251
Rethinking the Setting of Semi-supervised Learning on Graphs
We argue that the present setting of semisupervised learning on graphs may result in unfair comparisons, due to its potential risk of over-tuning hyper-parameters for models. In this paper, we highlight the significant influence of tuning hyper-parameters, which leverages the label information in the validation set to improve the performance. To explore the limit of over-tuning hyperparameters, we propose ValidUtil, an approach to fully utilize the label information in the validation set through an extra group of hyper-parameters. With ValidUtil, even GCN can easily get high accuracy of 85.8% on Cora. To avoid over-tuning, we merge the training set and the validation set and construct an i.i.d. graph benchmark (IGB) consisting of 4 datasets. Each dataset contains 100 i.i.d. graphs sampled from a large graph to reduce the evaluation variance. Our experiments suggest that IGB is a more stable benchmark than previous datasets for semisupervised learning on graphs.
110,252
110,252
Multi-Source Transfer Learning for Deep Model-Based Reinforcement Learning
Recent progress in deep model-based reinforcement learning allows agents to be significantly more sample efficient by constructing world models of high-dimensional environments from visual observations, which enables agents to learn complex behaviours in summarized lower-dimensional spaces. Reusing knowledge from relevant previous tasks is another approach for achieving better data-efficiency, which becomes especially more likely when information of multiple previously learned tasks is accessible. We show that the simplified representations of environments resulting from world models provide for promising transfer learning opportunities, by introducing several methods that facilitate world model agents to benefit from multi-source transfer learning. Methods are proposed for autonomously extracting relevant knowledge from both multi-task and multi-agent settings as multi-source origins, resulting in substantial performance improvements compared to learning from scratch. We introduce two additional novel techniques that enable and enhance the proposed approaches respectively: fractional transfer learning and universal feature spaces from a universal autoencoder. We demonstrate that our methods enable transfer learning from different domains with different state, reward, and action spaces by performing extensive and challenging multi-domain experiments on Dreamer, the state-of-the-art world model based algorithm for visual continuous control tasks.
110,253
110,253
Non-stationary Transformers: Rethinking the Stationarity in Time Series Forecasting
Transformers have shown great power in time series forecasting due to their global-range modeling ability. However, their performance can degenerate terribly on non-stationary real-world data in which the joint distribution changes over time. Previous studies primarily adopt stationarization to reduce the non-stationarity of original series for better predictability. But the stationarized series deprived of inherent non-stationarity can be less instructive for real-world bursty events forecasting. This problem, termed over-stationarization in this paper, leads Transformers to generate indistinguishable temporal attentions for different series and impedes the predictive capability of deep models. To tackle the dilemma between series predictability and model capability, we propose Non-stationary Transformers as a generic framework with two interdependent modules: Series Stationarization and De-stationary Attention. Concretely, Series Stationarization unifies the statistics of each input and converts the output with restored statistics for better predictability. To address over-stationarization, De-stationary Attention is devised to recover the intrinsic non-stationary information into temporal dependencies by approximating distinguishable attentions learned from unstationarized series. Our Non-stationary Transformers framework consistently boosts mainstream Transformers by a large margin, which reduces 49.43% MSE on Transformer, 47.34% on Informer, and 46.89% on Reformer, making them the state-of-the-art in time series forecasting.
110,254
110,254
Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead
Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component.
110,255
110,255
Approximation of Functionals by Neural Network without Curse of Dimensionality
In this paper, we establish a neural network to approximate functionals, which are maps from infinite dimensional spaces to finite dimensional spaces. The approximation error of the neural network is $O(1/\sqrt{m})$ where $m$ is the size of networks, which overcomes the curse of dimensionality. The key idea of the approximation is to define a Barron spectral space of functionals.
110,256
110,256
Go Beyond Multiple Instance Neural Networks: Deep-learning Models based on Local Pattern Aggregation
Deep convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs), speaker-independent speech and complex images. However, typical CNNs require a fixed input size while it is common to process variable-size data in practical use. Recurrent networks such as long short-term memory (LSTM) are capable of eliminating the restriction, but suffer from high computational complexity. In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems. The novel network structure, called LPANet, has cropping and aggregation operations embedded into it. With these new features, LPANet can reduce the difficulty of tuning model parameters and thus tend to improve generalization performance. To demonstrate the effectiveness, we applied it to the problem of premature ventricular contraction detection and the experimental results shows that our proposed method has certain advantages compared to classical network models, such as CNN and LSTM.
110,257
110,257
Laplace HypoPINN: Physics-Informed Neural Network for hypocenter localization and its predictive uncertainty
Several techniques have been proposed over the years for automatic hypocenter localization. While those techniques have pros and cons that trade-off computational efficiency and the susceptibility of getting trapped in local minima, an alternate approach is needed that allows robust localization performance and holds the potential to make the elusive goal of real-time microseismic monitoring possible. Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and versatile framework for solving partial differential equations (PDEs) along with the associated initial or boundary conditions. We develop HypoPINN -- a PINN-based inversion framework for hypocenter localization and introduce an approximate Bayesian framework for estimating its predictive uncertainties. This work focuses on predicting the hypocenter locations using HypoPINN and investigates the propagation of uncertainties from the random realizations of HypoPINN's weights and biases using the Laplace approximation. We train HypoPINN to obtain the optimized weights for predicting hypocenter location. Next, we approximate the covariance matrix at the optimized HypoPINN's weights for posterior sampling with the Laplace approximation. The posterior samples represent various realizations of HypoPINN's weights. Finally, we predict the locations of the hypocenter associated with those weights' realizations to investigate the uncertainty propagation that comes from those realisations. We demonstrate the features of this methodology through several numerical examples, including using the Otway velocity model based on the Otway project in Australia.
110,258
110,258
Large-Scale Privacy-Preserving Network Embedding against Private Link Inference Attacks
Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks. Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a PPNE framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.
110,259
110,259
Looks Like Magic: Transfer Learning in GANs to Generate New Card Illustrations
In this paper, we propose MAGICSTYLEGAN and MAGICSTYLEGAN-ADA - both incarnations of the state-of-the-art models StyleGan2 and StyleGan2 ADA - to experiment with their capacity of transfer learning into a rather different domain: creating new illustrations for the vast universe of the game "Magic: The Gathering" cards. This is a challenging task especially due to the variety of elements present in these illustrations, such as humans, creatures, artifacts, and landscapes - not to mention the plethora of art styles of the images made by various artists throughout the years. To solve the task at hand, we introduced a novel dataset, named MTG, with thousands of illustration from diverse card types and rich in metadata. The resulting set is a dataset composed by a myriad of both realistic and fantasy-like illustrations. Although, to investigate effects of diversity we also introduced subsets that contain specific types of concepts, such as forests, islands, faces, and humans. We show that simpler models, such as DCGANs, are not able to learn to generate proper illustrations in any setting. On the other side, we train instances of MAGICSTYLEGAN using all proposed subsets, being able to generate high quality illustrations. We perform experiments to understand how well pre-trained features from StyleGan2 can be transferred towards the target domain. We show that in well trained models we can find particular instances of noise vector that realistically represent real images from the dataset. Moreover, we provide both quantitative and qualitative studies to support our claims, and that demonstrate that MAGICSTYLEGAN is the state-of-the-art approach for generating Magic illustrations. Finally, this paper highlights some emerging properties regarding transfer learning in GANs, which is still a somehow under-explored field in generative learning research.
110,260
110,260
Stochastic Gradient Methods with Compressed Communication for Decentralized Saddle Point Problems
We propose two stochastic gradient algorithms to solve a class of saddle-point problems in a decentralized setting (without a central server). The proposed algorithms are the first to achieve sub-linear/linear computation and communication complexities using respectively stochastic gradient/stochastic variance reduced gradient oracles with compressed information exchange to solve non-smooth strongly-convex strongly-concave saddle-point problems in decentralized setting. Our first algorithm is a Restart-based Decentralized Proximal Stochastic Gradient method with Compression (C-RDPSG) for general stochastic settings. We provide rigorous theoretical guarantees of C-RDPSG with gradient computation complexity and communication complexity of order $\mathcal{O}( (1+\delta)^4 \frac{1}{L^2}{\kappa_f^2}\kappa_g^2 \frac{1}{\epsilon} )$, to achieve an $\epsilon$-accurate saddle-point solution, where $\delta$ denotes the compression factor, $\kappa_f$ and $\kappa_g$ denote respectively the condition numbers of objective function and communication graph, and $L$ denotes the smoothness parameter of the smooth part of the objective function. Next, we present a Decentralized Proximal Stochastic Variance Reduced Gradient algorithm with Compression (C-DPSVRG) for finite sum setting which exhibits gradient computation complexity and communication complexity of order $\mathcal{O}((1+\delta)\kappa_f^2 \kappa_g \log(\frac{1}{\epsilon}))$. Extensive numerical experiments show competitive performance of the proposed algorithms and provide support to the theoretical results obtained.
110,261
110,261
Variational Transformer: A Framework Beyond the Trade-off between Accuracy and Diversity for Image Captioning
Accuracy and Diversity are two essential metrizable manifestations in generating natural and semantically correct captions. Many efforts have been made to enhance one of them with another decayed due to the trade-off gap. However, compromise does not make the progress. Decayed diversity makes the captioner a repeater, and decayed accuracy makes it a fake advisor. In this work, we exploit a novel Variational Transformer framework to improve accuracy and diversity simultaneously. To ensure accuracy, we introduce the "Invisible Information Prior" along with the "Auto-selectable GMM" to instruct the encoder to learn the precise language information and object relation in different scenes. To ensure diversity, we propose the "Range-Median Reward" baseline to retain more diverse candidates with higher rewards during the RL-based training process. Experiments show that our method achieves the simultaneous promotion of accuracy (CIDEr) and diversity (self-CIDEr), up to 1.1 and 4.8 percent, compared with the baseline. Also, our method outperforms others under the newly proposed measurement of the trade-off gap, with at least 3.55 percent promotion.
110,262
110,262
CyCLIP: Cyclic Contrastive Language-Image Pretraining
Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness. Such models typically require joint reasoning in the image and text representation spaces for downstream inference tasks. Contrary to prior beliefs, we demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions. To mitigate this issue, we formalize consistency and propose CyCLIP, a framework for contrastive representation learning that explicitly optimizes for the learned representations to be geometrically consistent in the image and text space. In particular, we show that consistent representations can be learned by explicitly symmetrizing (a) the similarity between the two mismatched image-text pairs (cross-modal consistency); and (b) the similarity between the image-image pair and the text-text pair (in-modal consistency). Empirically, we show that the improved consistency in CyCLIP translates to significant gains over CLIP, with gains ranging from 10%-24% for zero-shot classification accuracy on standard benchmarks (CIFAR-10, CIFAR-100, ImageNet1K) and 10%-27% for robustness to various natural distribution shifts. The code is available at https://github.com/goel-shashank/CyCLIP.
110,263
110,263
Visual Perception of Building and Household Vulnerability from Streets
In developing countries, building codes often are outdated or not enforced. As a result, a large portion of the housing stock is substandard and vulnerable to natural hazards and climate related events. Assessing housing quality is key to inform public policies and private investments. Standard assessment methods are typically carried out only on a sample / pilot basis due to its high costs or, when complete, tend to be obsolete due to the lack of compliance with recommended updating standards or not accessible to most users with the level of detail needed to take key policy or business decisions. Thus, we propose an evaluation framework that is cost-efficient for first capture and future updates, and is reliable at the block level. The framework complements existing work of using street view imagery combined with deep learning to automatically extract building information to assist the identification of housing characteristics. We then check its potential for scalability and higher level reliability. For that purpose, we create an index, which synthesises the highest possible level of granularity of data at the housing unit and at the household level at the block level, and assess whether the predictions made by our model could be used to approximate vulnerability conditions with a lower budget and in selected areas. Our results indicated that the predictions from the images are clearly correlated with the index.
110,264
110,264
Collaborative likelihood-ratio estimation over graphs
Assuming we have i.i.d observations from two unknown probability density functions (pdfs), $p$ and $p'$, the likelihood-ratio estimation (LRE) is an elegant approach to compare the two pdfs just by relying on the available data, and without knowing the pdfs explicitly. In this paper we introduce a graph-based extension of this problem: Suppose each node $v$ of a fixed graph has access to observations coming from two unknown node-specific pdfs, $p_v$ and $p'_v$; the goal is then to compare the respective $p_v$ and $p'_v$ of each node by also integrating information provided by the graph structure. This setting is interesting when the graph conveys some sort of `similarity' between the node-wise estimation tasks, which suggests that the nodes can collaborate to solve more efficiently their individual tasks, while on the other hand trying to limit the data sharing among them. Our main contribution is a distributed non-parametric framework for graph-based LRE, called GRULSIF, that incorporates in a novel way elements from f-divengence functionals, Kernel methods, and Multitask Learning. Among the several applications of LRE, we choose the two-sample hypothesis testing to develop a proof of concept for our graph-based learning framework. Our experiments compare favorably the performance of our approach against state-of-the-art non-parametric statistical tests that apply at each node independently, and thus disregard the graph structure.
110,265
110,265
ByteComp: Revisiting Gradient Compression in Distributed Training
Gradient compression (GC) is a promising approach to addressing the communication bottleneck in distributed deep learning (DDL). However, it is challenging to find the optimal compression strategy for applying GC to DDL because of the intricate interactions among tensors. To fully unleash the benefits of GC, two questions must be addressed: 1) How to express all compression strategies and the corresponding interactions among tensors of any DDL training job? 2) How to quickly select a near-optimal compression strategy? In this paper, we propose ByteComp to answer these questions. It first designs a decision tree abstraction to express all the compression strategies and develops empirical models to timeline tensor computation, communication, and compression to enable ByteComp to derive the intricate interactions among tensors. It then designs a compression decision algorithm that analyzes tensor interactions to eliminate and prioritize strategies and optimally offloads compression to CPUs. Experimental evaluations show that ByteComp can improve the training throughput over the start-of-the-art compression-enabled system by up to 77% for representative DDL training jobs. Moreover, the computational time needed to select the compression strategy is measured in milliseconds, and the selected strategy is only a few percent from optimal.
110,266
110,266
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Domain Adaptation of Black-box Predictors (DABP) aims to learn a model on an unlabeled target domain supervised by a black-box predictor trained on a source domain. It does not require access to both the source-domain data and the predictor parameters, thus addressing the data privacy and portability issues of standard domain adaptation. Existing DABP approaches mostly rely on model distillation from the black-box predictor, \emph{i.e.}, training the model with its noisy target-domain predictions, which however inevitably introduces the confirmation bias accumulated from the prediction noises. To mitigate such bias, we propose a new method, named BETA, to incorporate knowledge distillation and noisy label learning into one coherent framework. This is enabled by a new divide-to-adapt strategy. BETA divides the target domain into an easy-to-adapt subdomain with less noise and a hard-to-adapt subdomain. Then it deploys mutually-teaching twin networks to filter the predictor errors for each other and improve them progressively, from the easy to hard subdomains. As such, BETA effectively purifies the noisy labels and reduces error accumulation. We theoretically show that the target error of BETA is minimized by decreasing the noise ratio of the subdomains. Extensive experiments demonstrate BETA outperforms existing methods on all DABP benchmarks, and is even comparable with the standard domain adaptation methods that use the source-domain data.
110,267
110,267
Efficient-Adam: Communication-Efficient Distributed Adam with Complexity Analysis
Distributed adaptive stochastic gradient methods have been widely used for large-scale nonconvex optimization, such as training deep learning models. However, their communication complexity on finding $\varepsilon$-stationary points has rarely been analyzed in the nonconvex setting. In this work, we present a novel communication-efficient distributed Adam in the parameter-server model for stochastic nonconvex optimization, dubbed {\em Efficient-Adam}. Specifically, we incorporate a two-way quantization scheme into Efficient-Adam to reduce the communication cost between the workers and server. Simultaneously, we adopt a two-way error feedback strategy to reduce the biases caused by the two-way quantization on both the server and workers, respectively. In addition, we establish the iteration complexity for the proposed Efficient-Adam with a class of quantization operators, and further characterize its communication complexity between the server and workers when an $\varepsilon$-stationary point is achieved. Finally, we apply Efficient-Adam to solve a toy stochastic convex optimization problem and train deep learning models on real-world vision and language tasks. Extensive experiments together with a theoretical guarantee justify the merits of Efficient Adam.
110,268
110,268
Happenstance: Utilizing Semantic Search to Track Russian State Media Narratives about the Russo-Ukrainian War On Reddit
In the buildup to and in the weeks following the Russian Federation's invasion of Ukraine, Russian disinformation outlets output torrents of misleading and outright false information. In this work, we study the coordinated information campaign to understand the most prominent disinformation narratives touted by the Russian government to English-speaking audiences. To do this, we first perform sentence-level topic analysis using the large-language model MPNet on articles published by nine different Russian disinformation websites and the new Russian "fact-checking" website waronfakes.com. We show that smaller websites like katehon.com were highly effective at producing topics that were later echoed by other disinformation sites. After analyzing the set of Russian information narratives, we analyze their correspondence with narratives and topics of discussion on the r/Russia and 10 other political subreddits. Using MPNet and a semantic search algorithm, we map these subreddits' comments to the set of topics extracted from our set of disinformation websites, finding that 39.6% of r/Russia comments corresponded to narratives from Russian disinformation websites, compared to 8.86% on r/politics.
110,269
110,269
Noise-Aware Statistical Inference with Differentially Private Synthetic Data
While generation of synthetic data under differential privacy (DP) has received a lot of attention in the data privacy community, analysis of synthetic data has received much less. Existing work has shown that simply analysing DP synthetic data as if it were real does not produce valid inferences of population-level quantities. For example, confidence intervals become too narrow, which we demonstrate with a simple experiment. We tackle this problem by combining synthetic data analysis techniques from the field of multiple imputation, and synthetic data generation using noise-aware Bayesian modeling into a pipeline NA+MI that allows computing accurate uncertainty estimates for population-level quantities from DP synthetic data. To implement NA+MI for discrete data generation from marginal queries, we develop a novel noise-aware synthetic data generation algorithm NAPSU-MQ using the principle of maximum entropy. Our experiments demonstrate that the pipeline is able to produce accurate confidence intervals from DP synthetic data. The intervals become wider with tighter privacy to accurately capture the additional uncertainty stemming from DP noise.
110,270
110,270
Task-Agnostic Continual Reinforcement Learning: In Praise of a Simple Baseline
We study task-agnostic continual reinforcement learning (TACRL) in which standard RL challenges are compounded with partial observability stemming from task agnosticism, as well as additional difficulties of continual learning (CL), i.e., learning on a non-stationary sequence of tasks. Here we compare TACRL methods with their soft upper bounds prescribed by previous literature: multi-task learning (MTL) methods which do not have to deal with non-stationary data distributions, as well as task-aware methods, which are allowed to operate under full observability. We consider a previously unexplored and straightforward baseline for TACRL, replay-based recurrent RL (3RL), in which we augment an RL algorithm with recurrent mechanisms to address partial observability and experience replay mechanisms to address catastrophic forgetting in CL. Studying empirical performance in a sequence of RL tasks, we find surprising occurrences of 3RL matching and overcoming the MTL and task-aware soft upper bounds. We lay out hypotheses that could explain this inflection point of continual and task-agnostic learning research. Our hypotheses are empirically tested in continuous control tasks via a large-scale study of the popular multi-task and continual learning benchmark Meta-World. By analyzing different training statistics including gradient conflict, we find evidence that 3RL's outperformance stems from its ability to quickly infer how new tasks relate with the previous ones, enabling forward transfer.
110,271
110,271
SuperVoice: Text-Independent Speaker Verification Using Ultrasound Energy in Human Speech
Voice-activated systems are integrated into a variety of desktop, mobile, and Internet-of-Things (IoT) devices. However, voice spoofing attacks, such as impersonation and replay attacks, in which malicious attackers synthesize the voice of a victim or simply replay it, have brought growing security concerns. Existing speaker verification techniques distinguish individual speakers via the spectrographic features extracted from an audible frequency range of voice commands. However, they often have high error rates and/or long delays. In this paper, we explore a new direction of human voice research by scrutinizing the unique characteristics of human speech at the ultrasound frequency band. Our research indicates that the high-frequency ultrasound components (e.g. speech fricatives) from 20 to 48 kHz can significantly enhance the security and accuracy of speaker verification. We propose a speaker verification system, SUPERVOICE that uses a two-stream DNN architecture with a feature fusion mechanism to generate distinctive speaker models. To test the system, we create a speech dataset with 12 hours of audio (8,950 voice samples) from 127 participants. In addition, we create a second spoofed voice dataset to evaluate its security. In order to balance between controlled recordings and real-world applications, the audio recordings are collected from two quiet rooms by 8 different recording devices, including 7 smartphones and an ultrasound microphone. Our evaluation shows that SUPERVOICE achieves 0.58% equal error rate in the speaker verification task, it only takes 120 ms for testing an incoming utterance, outperforming all existing speaker verification systems. Moreover, within 91 ms processing time, SUPERVOICE achieves 0% equal error rate in detecting replay attacks launched by 5 different loudspeakers.
110,272
110,272
Optimal Decision Diagrams for Classification
Decision diagrams for classification have some notable advantages over decision trees, as their internal connections can be determined at training time and their width is not bound to grow exponentially with their depth. Accordingly, decision diagrams are usually less prone to data fragmentation in internal nodes. However, the inherent complexity of training these classifiers acted as a long-standing barrier to their widespread adoption. In this context, we study the training of optimal decision diagrams (ODDs) from a mathematical programming perspective. We introduce a novel mixed-integer linear programming model for training and demonstrate its applicability for many datasets of practical importance. Further, we show how this model can be easily extended for fairness, parsimony, and stability notions. We present numerical analyses showing that our model allows training ODDs in short computational times, and that ODDs achieve better accuracy than optimal decision trees, while allowing for improved stability without significant accuracy losses.
110,273
110,273
Introducing Non-Linearity into Quantum Generative Models
The evolution of an isolated quantum system is linear, and hence quantum algorithms are reversible, including those that utilize quantum circuits as generative machine learning models. However, some of the most successful classical generative models, such as those based on neural networks, involve highly non-linear and thus non-reversible dynamics. In this paper, we explore the effect of these dynamics in quantum generative modeling by introducing a model that adds non-linear activations via a neural network structure onto the standard Born Machine framework - the Quantum Neuron Born Machine (QNBM). To achieve this, we utilize a previously introduced Quantum Neuron subroutine, which is a repeat-until-success circuit with mid-circuit measurements and classical control. After introducing the QNBM, we investigate how its performance depends on network size, by training a 3-layer QNBM with 4 output neurons and various input and hidden layer sizes. We then compare our non-linear QNBM to the linear Quantum Circuit Born Machine (QCBM). We allocate similar time and memory resources to each model, such that the only major difference is the qubit overhead required by the QNBM. With gradient-based training, we show that while both models can easily learn a trivial uniform probability distribution, on a more challenging class of distributions, the QNBM achieves an almost 3x smaller error rate than a QCBM with a similar number of tunable parameters. We therefore show that non-linearity is a useful resource in quantum generative models, and we put forth the QNBM as a new model with good generative performance and potential for quantum advantage.
110,274
110,274
Core-set Selection Using Metrics-based Explanations (CSUME) for multiclass ECG
The adoption of deep learning-based healthcare decision support systems such as the detection of irregular cardiac rhythm is hindered by challenges such as lack of access to quality data and the high costs associated with the collection and annotation of data. The collection and processing of large volumes of healthcare data is a continuous process. The performance of data-hungry Deep Learning models (DL) is highly dependent on the quantity and quality of the data. While the need for data quantity has been established through research adequately, we show how a selection of good quality data improves deep learning model performance. In this work, we take Electrocardiogram (ECG) data as a case study and propose a model performance improvement methodology for algorithm developers, that selects the most informative data samples from incoming streams of multi-class ECG data. Our Core-Set selection methodology uses metrics-based explanations to select the most informative ECG data samples. This also provides an understanding (for algorithm developers) as to why a sample was selected as more informative over others for the improvement of deep learning model performance. Our experimental results show a 9.67% and 8.69% precision and recall improvement with a significant training data volume reduction of 50%. Additionally, our proposed methodology asserts the quality and annotation of ECG samples from incoming data streams. It allows automatic detection of individual data samples that do not contribute to model learning thus minimizing possible negative effects on model performance. We further discuss the potential generalizability of our approach by experimenting with a different dataset and deep learning architecture.
110,275
110,275
Additive Higher-Order Factorization Machines
In the age of big data and interpretable machine learning, approaches need to work at scale and at the same time allow for a clear mathematical understanding of the method's inner workings. While there exist inherently interpretable semi-parametric regression techniques for large-scale applications to account for non-linearity in the data, their model complexity is still often restricted. One of the main limitations are missing interactions in these models, which are not included for the sake of better interpretability, but also due to untenable computational costs. To address this shortcoming, we derive a scalable high-order tensor product spline model using a factorization approach. Our method allows to include all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We prove both theoretically and empirically that our methods scales notably better than existing approaches, derive meaningful penalization schemes and also discuss further theoretical aspects. We finally investigate predictive and estimation performance both with synthetic and real data.
110,276
110,276
History-Restricted Online Learning
We introduce the concept of history-restricted no-regret online learning algorithms. An online learning algorithm $\mathcal{A}$ is $M$-history-restricted if its output at time $t$ can be written as a function of the $M$ previous rewards. This class of online learning algorithms is quite natural to consider from many perspectives: they may be better models of human agents and they do not store long-term information (thereby ensuring ``the right to be forgotten''). We first demonstrate that a natural approach to constructing history-restricted algorithms from mean-based no-regret learning algorithms (e.g. running Hedge over the last $M$ rounds) fails, and that such algorithms incur linear regret. We then construct a history-restricted algorithm that achieves a per-round regret of $\Theta(1/\sqrt{M})$, which we complement with a tight lower bound. Finally, we empirically explore distributions where history-restricted online learners have favorable performance compared to other no-regret algorithms.
110,277
110,277
Transfer Learning as a Method to Reproduce High-Fidelity NLTE Opacities in Simulations
Simulations of high-energy density physics often need non-local thermodynamic equilibrium (NLTE) opacity data. This data, however, is expensive to produce at relatively low-fidelity. It is even more so at high-fidelity such that the opacity calculations can contribute ninety-five percent of the total computation time. This proportion can even reach large proportions. Neural networks can be used to replace the standard calculations of low-fidelity data, and the neural networks can be trained to reproduce artificial, high-fidelity opacity spectra. In this work, it is demonstrated that a novel neural network architecture trained to reproduce high-fidelity krypton spectra through transfer learning can be used in simulations. Further, it is demonstrated that this can be done while achieving a relative percent error of the peak radiative temperature of the hohlraum of approximately 1\% to 4\% while achieving a 19.4x speed up.
110,278
110,278
Learning Non-Autoregressive Models from Search for Unsupervised Sentence Summarization
Text summarization aims to generate a short summary for an input text. In this work, we propose a Non-Autoregressive Unsupervised Summarization (NAUS) approach, which does not require parallel data for training. Our NAUS first performs edit-based search towards a heuristically defined score, and generates a summary as pseudo-groundtruth. Then, we train an encoder-only non-autoregressive Transformer based on the search result. We also propose a dynamic programming approach for length-control decoding, which is important for the summarization task. Experiments on two datasets show that NAUS achieves state-of-the-art performance for unsupervised summarization, yet largely improving inference efficiency. Further, our algorithm is able to perform explicit length-transfer summary generation.
110,279
110,279
A Character-Level Length-Control Algorithm for Non-Autoregressive Sentence Summarization
Sentence summarization aims at compressing a long sentence into a short one that keeps the main gist, and has extensive real-world applications such as headline generation. In previous work, researchers have developed various approaches to improve the ROUGE score, which is the main evaluation metric for summarization, whereas controlling the summary length has not drawn much attention. In our work, we address a new problem of explicit character-level length control for summarization, and propose a dynamic programming algorithm based on the Connectionist Temporal Classification (CTC) model. Results show that our approach not only achieves higher ROUGE scores but also yields more complete sentences.
110,280
110,280
Group-wise Reinforcement Feature Generation for Optimal and Explainable Representation Space Reconstruction
Representation (feature) space is an environment where data points are vectorized, distances are computed, patterns are characterized, and geometric structures are embedded. Extracting a good representation space is critical to address the curse of dimensionality, improve model generalization, overcome data sparsity, and increase the availability of classic models. Existing literature, such as feature engineering and representation learning, is limited in achieving full automation (e.g., over heavy reliance on intensive labor and empirical experiences), explainable explicitness (e.g., traceable reconstruction process and explainable new features), and flexible optimal (e.g., optimal feature space reconstruction is not embedded into downstream tasks). Can we simultaneously address the automation, explicitness, and optimal challenges in representation space reconstruction for a machine learning task? To answer this question, we propose a group-wise reinforcement generation perspective. We reformulate representation space reconstruction into an interactive process of nested feature generation and selection, where feature generation is to generate new meaningful and explicit features, and feature selection is to eliminate redundant features to control feature sizes. We develop a cascading reinforcement learning method that leverages three cascading Markov Decision Processes to learn optimal generation policies to automate the selection of features and operations and the feature crossing. We design a group-wise generation strategy to cross a feature group, an operation, and another feature group to generate new features and find the strategy that can enhance exploration efficiency and augment reward signals of cascading agents. Finally, we present extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our system.
110,281
110,281
Improving VAE-based Representation Learning
Latent variable models like the Variational Auto-Encoder (VAE) are commonly used to learn representations of images. However, for downstream tasks like semantic classification, the representations learned by VAE are less competitive than other non-latent variable models. This has led to some speculations that latent variable models may be fundamentally unsuitable for representation learning. In this work, we study what properties are required for good representations and how different VAE structure choices could affect the learned properties. We show that by using a decoder that prefers to learn local features, the remaining global features can be well captured by the latent, which significantly improves performance of a downstream classification task. We further apply the proposed model to semi-supervised learning tasks and demonstrate improvements in data efficiency.
110,282
110,282
SupMAE: Supervised Masked Autoencoders Are Efficient Vision Learners
Self-supervised Masked Autoencoders (MAE) are emerging as a new pre-training paradigm in computer vision. MAE learns semantics implicitly via reconstructing local patches, requiring thousands of pre-training epochs to achieve favorable performance. This paper incorporates explicit supervision, i.e., golden labels, into the MAE framework. The proposed Supervised MAE (SupMAE) only exploits a visible subset of image patches for classification, unlike the standard supervised pre-training where all image patches are used. SupMAE is efficient and can achieve comparable performance with MAE using only 30% compute when evaluated on ImageNet with the ViT-B/16 model. Detailed ablation studies are conducted to verify the proposed components.
110,283
110,283
Functional Linear Regression of CDFs
The estimation of cumulative distribution functions (CDF) is an important learning task with a great variety of downstream applications, e.g., risk assessments in predictions and decision making. We study functional regression of contextual CDFs where each data point is sampled from a linear combination of context dependent CDF bases. We propose estimation methods that estimate CDFs accurately everywhere. In particular, given $n$ samples with $d$ bases, we show estimation error upper bounds of $\widetilde O(\sqrt{d/n})$ for fixed design, random design, and adversarial context cases. We also derive matching information theoretic lower bounds, establishing minimax optimality for CDF functional regression. To complete our study, we consider agnostic settings where there is a mismatch in the data generation process. We characterize the error of the proposed estimator in terms of the mismatched error, and show that the estimator is well-behaved under model mismatch.
110,284
110,284
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Machine learning models often generalize poorly to out-of-distribution (OOD) data as a result of relying on features that are spuriously correlated with the label during training. Recently, the technique of Invariant Risk Minimization (IRM) was proposed to learn predictors that only use invariant features by conserving the feature-conditioned class expectation $\mathbb{E}_e[y|f(x)]$ across environments. However, more recent studies have demonstrated that IRM can fail in various task settings. Here, we identify a fundamental flaw of IRM formulation that causes the failure. We then introduce a complementary notion of invariance, MRI, that is based on conserving the class-conditioned feature expectation $\mathbb{E}_e[f(x)|y]$ across environments, that corrects for the flaw in IRM. Further, we introduce a simplified, practical version of the MRI formulation called as MRI-v1. We note that this constraint is convex which confers it with an advantage over the practical version of IRM, IRM-v1, which imposes non-convex constraints. We prove that in a general linear problem setting, MRI-v1 can guarantee invariant predictors given sufficient environments. We also empirically demonstrate that MRI strongly out-performs IRM and consistently achieves near-optimal OOD generalization in image-based nonlinear problems.
110,285
110,285
Machine Learning for Microcontroller-Class Hardware -- A Review
The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
110,286
110,286
A Model of One-Shot Generalization
We provide a theoretical framework to study a phenomenon that we call one-shot generalization. This phenomenon refers to the ability of an algorithm to perform transfer learning within a single task, meaning that it correctly classifies a test point that has a single exemplar in the training set. We propose a simple data model and use it to study this phenomenon in two ways. First, we prove a non-asymptotic base-line -- kernel methods based on nearest-neighbor classification cannot perform one-shot generalization, independently of the choice of the kernel and the size of the training set. Second, we empirically show that the most direct neural network architecture for our data model performs one-shot generalization almost perfectly. This stark differential leads us to believe that the one-shot generalization mechanism is partially responsible for the empirical success of neural networks.
110,287
110,287
Representation Gap in Deep Reinforcement Learning
Deep reinforcement learning gives the promise that an agent learns good policy from high-dimensional information. Whereas representation learning removes irrelevant and redundant information and retains pertinent information. We consider the representation capacity of action value function and theoretically reveal its inherent property, \textit{representation gap} with its target action value function. This representation gap is favorable. However, through illustrative experiments, we show that the representation of action value function grows similarly compared with its target value function, i.e. the undesirable inactivity of the representation gap (\textit{representation overlap}). Representation overlap results in a loss of representation capacity, which further leads to sub-optimal learning performance. To activate the representation gap, we propose a simple but effective framework \underline{P}olicy \underline{O}ptimization from \underline{P}reventing \underline{R}epresentation \underline{O}verlaps (POPRO), which regularizes the policy evaluation phase through differing the representation of action value function from its target. We also provide the convergence rate guarantee of POPRO. We evaluate POPRO on gym continuous control suites. The empirical results show that POPRO using pixel inputs outperforms or parallels the sample-efficiency of methods that use state-based features.
110,288
110,288
Calibrated Predictive Distributions via Diagnostics for Conditional Coverage
Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. A large body of work (including normalizing flows and Bayesian neural networks) has been devoted to describing the entire predictive distribution (PD) of a target variable Y given input features $\mathbf{X}$. However, off-the-shelf PDs are usually far from being conditionally calibrated; i.e., the probability of occurrence of an event given input $\mathbf{X}$ can be significantly different from the predicted probability. Most current research on predictive inference (such as conformal prediction) concerns constructing prediction sets, that do not only provide correct uncertainties on average over the entire population (that is, averaging over $\mathbf{X}$), but that are also approximately conditionally calibrated with accurate uncertainties for individual instances. It is often believed that the problem of obtaining and assessing entire conditionally calibrated PDs is too challenging to approach. In this work, we show that recalibration as well as validation are indeed attainable goals in practice. Our proposed method relies on the idea of regressing probability integral transform (PIT) scores against $\mathbf{X}$. This regression gives full diagnostics of conditional coverage across the entire feature space and can be used to recalibrate misspecified PDs. We benchmark our corrected prediction bands against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with distributional shift and dependent high-dimensional sequence data. Finally, we demonstrate an application to the physical sciences in which we assess and produce calibrated PDs for measurements of galaxy distances using imaging data (i.e., photometric redshifts).
110,289
110,289
AutoDisc: Automatic Distillation Schedule for Large Language Model Compression
Driven by the teacher-student paradigm, knowledge distillation is one of the de facto ways for language model compression. Recent studies have uncovered that conventional distillation is less effective when facing a large capacity gap between the teacher and the student, and introduced teacher assistant-based distillation to bridge the gap. As a connection, the scale and the performance of the teacher assistant is crucial for transferring the knowledge from the teacher to the student. However, existing teacher assistant-based methods manually select the scale of the teacher assistant, which fails to identify the teacher assistant with the optimal scale-performance tradeoff. To this end, we propose an Automatic Distillation Schedule (AutoDisc) for large language model compression. In particular, AutoDisc first specifies a set of teacher assistant candidates at different scales with gridding and pruning, and then optimizes all candidates in an once-for-all optimization with two approximations. The best teacher assistant scale is automatically selected according to the scale-performance tradeoff. AutoDisc is evaluated with an extensive set of experiments on a language understanding benchmark GLUE. Experimental results demonstrate the improved performance and applicability of our AutoDisc. We further apply AutoDisc on a language model with over one billion parameters and show the scalability of AutoDisc.
110,290
110,290
Provable Benefits of Representational Transfer in Reinforcement Learning
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation, which is subsequently used to learn a good policy in a target task. We propose a new notion of task relatedness between source and target tasks, and develop a novel approach for representational transfer under this assumption. Concretely, we show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy, with only online access to the target task. The sample complexity is close to knowing the ground truth features in the target task, and comparable to prior representation learning results in the source tasks. We complement our positive results with lower bounds without generative access, and validate our findings with empirical evaluation on rich observation MDPs that require deep exploration.
110,291
110,291
No-regret Learning in Repeated First-Price Auctions with Budget Constraints
Recently the online advertising market has exhibited a gradual shift from second-price auctions to first-price auctions. Although there has been a line of works concerning online bidding strategies in first-price auctions, it still remains open how to handle budget constraints in the problem. In the present paper, we initiate the study for a buyer with budgets to learn online bidding strategies in repeated first-price auctions. We propose an RL-based bidding algorithm against the optimal non-anticipating strategy under stationary competition. Our algorithm obtains $\widetilde O(\sqrt T)$-regret if the bids are all revealed at the end of each round. With the restriction that the buyer only sees the winning bid after each round, our modified algorithm obtains $\widetilde O(T^{\frac{7}{12}})$-regret by techniques developed from survival analysis. Our analysis extends to the more general scenario where the buyer has any bounded instantaneous utility function with regrets of the same order.
110,292
110,292
3D-C2FT: Coarse-to-fine Transformer for Multi-view 3D Reconstruction
Recently, the transformer model has been successfully employed for the multi-view 3D reconstruction problem. However, challenges remain on designing an attention mechanism to explore the multiview features and exploit their relations for reinforcing the encoding-decoding modules. This paper proposes a new model, namely 3D coarse-to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine(C2F) attention mechanism for encoding multi-view features and rectifying defective 3D objects. C2F attention mechanism enables the model to learn multi-view information flow and synthesize 3D surface correction in a coarse to fine-grained manner. The proposed model is evaluated by ShapeNet and Multi-view Real-life datasets. Experimental results show that 3D-C2FT achieves notable results and outperforms several competing models on these datasets.
110,293
110,293
Learning Locality and Isotropy in Dialogue Modeling
Existing dialogue modeling methods have achieved promising performance on various dialogue tasks with the aid of Transformer and the large-scale pre-trained language models. However, some recent studies revealed that the context representations produced by these methods suffer the problem of anisotropy. In this paper, we find that the generated representations are also not conversational, losing the conversation structure information during the context modeling stage. To this end, we identify two properties in dialogue modeling, i.e., locality and isotropy, and present a simple method for dialogue representation calibration, namely SimDRC, to build isotropic and conversational feature spaces. Experimental results show that our approach significantly outperforms the current state-of-the-art models on three dialogue tasks across the automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our proposed approach.
110,294
110,294
Masked Distillation with Receptive Tokens
Distilling from the feature maps can be fairly effective for dense prediction tasks since both the feature discriminability and localization priors can be well transferred. However, not every pixel contributes equally to the performance, and a good student should learn from what really matters to the teacher. In this paper, we introduce a learnable embedding dubbed receptive token to localize those pixels of interests (PoIs) in the feature map, with a distillation mask generated via pixel-wise attention. Then the distillation will be performed on the mask via pixel-wise reconstruction. In this way, a distillation mask actually indicates a pattern of pixel dependencies within feature maps of teacher. We thus adopt multiple receptive tokens to investigate more sophisticated and informative pixel dependencies to further enhance the distillation. To obtain a group of masks, the receptive tokens are learned via the regular task loss but with teacher fixed, and we also leverage a Dice loss to enrich the diversity of learned masks. Our method dubbed MasKD is simple and practical, and needs no priors of tasks in application. Experiments show that our MasKD can achieve state-of-the-art performance consistently on object detection and semantic segmentation benchmarks. Code is available at: https://github.com/hunto/MasKD .
110,295
110,295
Independent and Decentralized Learning in Markov Potential Games
We propose a multi-agent reinforcement learning dynamics, and analyze its convergence properties in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players can only observe the realized state and their own reward in every stage. Players do not have knowledge of the game model, and cannot coordinate with each other. In each stage of our learning dynamics, players update their estimate of a perturbed Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating a smoothed optimal one-stage deviation strategy based on the estimated Q-function. A key feature of the learning dynamics is that the Q-function estimates are updated at a faster timescale than the policies. We prove that the policies induced by our learning dynamics converge to a stationary Nash equilibrium in Markov potential games with probability 1. Our results build on the theory of two timescale asynchronous stochastic approximation, and new analysis on the monotonicity of potential function along the trajectory of policy updates in Markov potential games.
110,296
110,296
Joint Abductive and Inductive Neural Logical Reasoning
Neural logical reasoning (NLR) is a fundamental task in knowledge discovery and artificial intelligence. NLR aims at answering multi-hop queries with logical operations on structured knowledge bases based on distributed representations of queries and answers. While previous neural logical reasoners can give specific entity-level answers, i.e., perform inductive reasoning from the perspective of logic theory, they are not able to provide descriptive concept-level answers, i.e., perform abductive reasoning, where each concept is a summary of a set of entities. In particular, the abductive reasoning task attempts to infer the explanations of each query with descriptive concepts, which make answers comprehensible to users and is of great usefulness in the field of applied ontology. In this work, we formulate the problem of the joint abductive and inductive neural logical reasoning (AI-NLR), solving which needs to address challenges in incorporating, representing, and operating on concepts. We propose an original solution named ABIN for AI-NLR. Firstly, we incorporate description logic-based ontological axioms to provide the source of concepts. Then, we represent concepts and queries as fuzzy sets, i.e., sets whose elements have degrees of membership, to bridge concepts and queries with entities. Moreover, we design operators involving concepts on top of the fuzzy set representation of concepts and queries for optimization and inference. Extensive experimental results on two real-world datasets demonstrate the effectiveness of ABIN for AI-NLR.
110,297
110,297
An adaptive granularity clustering method based on hyper-ball
The purpose of cluster analysis is to classify elements according to their similarity. Its applications range from astronomy to bioinformatics and pattern recognition. Our method is based on the idea that the data with similar distribution form a hyper-ball and the adjacent hyper-balls form a cluster. Based on the cognitive law of "large scale first", this method can identify clusters without considering shape in a simple and non-parametric way. Experimental results on several datasets demonstrate the effectiveness of the algorithm.
110,298
110,298
Dynamic Graph Learning Based on Hierarchical Memory for Origin-Destination Demand Prediction
Recent years have witnessed a rapid growth of applying deep spatiotemporal methods in traffic forecasting. However, the prediction of origin-destination (OD) demands is still a challenging problem since the number of OD pairs is usually quadratic to the number of stations. In this case, most of the existing spatiotemporal methods fail to handle spatial relations on such a large scale. To address this problem, this paper provides a dynamic graph representation learning framework for OD demands prediction. In particular, a hierarchical memory updater is first proposed to maintain a time-aware representation for each node, and the representations are updated according to the most recently observed OD trips in continuous-time and multiple discrete-time ways. Second, a spatiotemporal propagation mechanism is provided to aggregate representations of neighbor nodes along a random spatiotemporal route which treats origin and destination as two different semantic entities. Last, an objective function is designed to derive the future OD demands according to the most recent node representations, and also to tackle the data sparsity problem in OD prediction. Extensive experiments have been conducted on two real-world datasets, and the experimental results demonstrate the superiority of the proposed method. The code and data are available at https://github.com/Rising0321/HMOD.
110,299
110,299
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Neural Ordinary Differential Equations (Neural ODEs) are the continuous analog of Residual Neural Networks (ResNets). We investigate whether the discrete dynamics defined by a ResNet are close to the continuous one of a Neural ODE. We first quantify the distance between the ResNet's hidden state trajectory and the solution of its corresponding Neural ODE. Our bound is tight and, on the negative side, does not go to 0 with depth N if the residual functions are not smooth with depth. On the positive side, we show that this smoothness is preserved by gradient descent for a ResNet with linear residual functions and small enough initial loss. It ensures an implicit regularization towards a limit Neural ODE at rate 1 over N, uniformly with depth and optimization time. As a byproduct of our analysis, we consider the use of a memory-free discrete adjoint method to train a ResNet by recovering the activations on the fly through a backward pass of the network, and show that this method theoretically succeeds at large depth if the residual functions are Lipschitz with the input. We then show that Heun's method, a second order ODE integration scheme, allows for better gradient estimation with the adjoint method when the residual functions are smooth with depth. We experimentally validate that our adjoint method succeeds at large depth, and that Heun method needs fewer layers to succeed. We finally use the adjoint method successfully for fine-tuning very deep ResNets without memory consumption in the residual layers.