Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
109,000
109,000
"What makes a question inquisitive?" A Study on Type-Controlled Inquisitive Question Generation
We propose a type-controlled framework for inquisitive question generation. We annotate an inquisitive question dataset with question types, train question type classifiers, and finetune models for type-controlled question generation. Empirical results demonstrate that we can generate a variety of questions that adhere to specific types while drawing from the source texts. We also investigate strategies for selecting a single question from a generated set, considering both an informative vs.~inquisitive question classifier and a pairwise ranker trained from a small set of expert annotations. Question selection using the pairwise ranker yields strong results in automatic and manual evaluation. Our human evaluation assesses multiple aspects of the generated questions, finding that the ranker chooses questions with the best syntax (4.59), semantics (4.37), and inquisitiveness (3.92) on a scale of 1-5, even rivaling the performance of human-written questions.
109,001
109,001
Robust Perception Architecture Design for Automotive Cyber-Physical Systems
In emerging automotive cyber-physical systems (CPS), accurate environmental perception is critical to achieving safety and performance goals. Enabling robust perception for vehicles requires solving multiple complex problems related to sensor selection/ placement, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. We present PASTA, a novel framework for global co-optimization of deep learning and sensing for dependable vehicle perception. Experimental results with the Audi-TT and BMW-Minicooper vehicles show how PASTA can find robust, vehicle-specific perception architecture solutions.
109,002
109,002
A Framework for CSI-Based Indoor Localization with 1D Convolutional Neural Networks
Modern indoor localization techniques are essential to overcome the weak GPS coverage in indoor environments. Recently, considerable progress has been made in Channel State Information (CSI) based indoor localization with signal fingerprints. However, CSI signal patterns can be complicated in the large and highly dynamic indoor spaces with complex interiors, thus a solution for solving this issue is urgently needed to expand the applications of CSI to a broader indoor space. In this paper, we propose an end-to-end solution including data collection, pattern clustering, denoising, calibration and a lightweight one-dimensional convolutional neural network (1D CNN) model with CSI fingerprinting to tackle this problem. We have also created and plan to open source a CSI dataset with a large amount of data collected across complex indoor environments at Colorado State University. Experiments indicate that our approach achieves up to 68.5% improved performance (mean distance error) with minimal number of parameters, compared to the best-known deep machine learning and CSI-based indoor localization works.
109,003
109,003
Multi-Head Attention Neural Network for Smartphone Invariant Indoor Localization
Smartphones together with RSSI fingerprinting serve as an efficient approach for delivering a low-cost and high-accuracy indoor localization solution. However, a few critical challenges have prevented the wide-spread proliferation of this technology in the public domain. One such critical challenge is device heterogeneity, i.e., the variation in the RSSI signal characteristics captured across different smartphone devices. In the real-world, the smartphones or IoT devices used to capture RSSI fingerprints typically vary across users of an indoor localization service. Conventional indoor localization solutions may not be able to cope with device-induced variations which can degrade their localization accuracy. We propose a multi-head attention neural network-based indoor localization framework that is resilient to device heterogeneity. An in-depth analysis of our proposed framework across a variety of indoor environments demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
109,004
109,004
A Survey on Machine Learning for Geo-Distributed Cloud Data Center Management
Cloud workloads today are typically managed in a distributed environment and processed across geographically distributed data centers. Cloud service providers have been distributing data centers globally to reduce operating costs while also improving quality of service by using intelligent workload and resource management strategies. Such large scale and complex orchestration of software workload and hardware resources remains a difficult problem to solve efficiently. Researchers and practitioners have been trying to address this problem by proposing a variety of cloud management techniques. Mathematical optimization techniques have historically been used to address cloud management issues. But these techniques are difficult to scale to geo-distributed problem sizes and have limited applicability in dynamic heterogeneous system environments, forcing cloud service providers to explore intelligent data-driven and Machine Learning (ML) based alternatives. The characterization, prediction, control, and optimization of complex, heterogeneous, and ever-changing distributed cloud resources and workloads employing ML methodologies have received much attention in recent years. In this article, we review the state-of-the-art ML techniques for the cloud data center management problem. We examine the challenges and the issues in current research focused on ML for cloud management and explore strategies for addressing these issues. We also discuss advantages and disadvantages of ML techniques presented in the recent literature and make recommendations for future research directions.
109,005
109,005
Unraveling Attention via Convex Duality: Analysis and Interpretations of Vision Transformers
Vision transformers using self-attention or its proposed alternatives have demonstrated promising results in many image related tasks. However, the underpinning inductive bias of attention is not well understood. To address this issue, this paper analyzes attention through the lens of convex duality. For the non-linear dot-product self-attention, and alternative mechanisms such as MLP-mixer and Fourier Neural Operator (FNO), we derive equivalent finite-dimensional convex problems that are interpretable and solvable to global optimality. The convex programs lead to {\it block nuclear-norm regularization} that promotes low rank in the latent feature and token dimensions. In particular, we show how self-attention networks implicitly clusters the tokens, based on their latent similarity. We conduct experiments for transferring a pre-trained transformer backbone for CIFAR-100 classification by fine-tuning a variety of convex attention heads. The results indicate the merits of the bias induced by attention compared with the existing MLP or linear heads.
109,006
109,006
Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent Teacher
Machine unlearning has become an important field of research due to an increasing focus on addressing the evolving data privacy rules and regulations into the machine learning (ML) applications. It facilitates the request for removal of certain set or class of data from the already trained ML model without retraining from scratch. Recently, several efforts have been made to perform unlearning in an effective and efficient manner. We propose a novel machine unlearning method by exploring the utility of competent and incompetent teachers in a student-teacher framework to induce forgetfulness. The knowledge from the competent and incompetent teachers is selectively transferred to the student to obtain a model that doesn't contain any information about the forget data. We experimentally show that this method is well generalized, fast, and effective. Furthermore, we introduce a zero retrain forgetting (ZRF) metric to evaluate the unlearning method. Unlike the existing unlearning metrics, the ZRF score does not depend on the availability of the expensive retrained model. This makes it useful for analysis of the unlearned model after deployment as well. The experiments are conducted for random subset forgetting and class forgetting on various deep networks and across different application domains. A use case of forgetting information about the patients' medical records is also presented.
109,007
109,007
Can We Do Better Than Random Start? The Power of Data Outsourcing
Many organizations have access to abundant data but lack the computational power to process the data. While they can outsource the computational task to other facilities, there are various constraints on the amount of data that can be shared. It is natural to ask what can data outsourcing accomplish under such constraints. We address this question from a machine learning perspective. When training a model with optimization algorithms, the quality of the results often relies heavily on the points where the algorithms are initialized. Random start is one of the most popular methods to tackle this issue, but it can be computationally expensive and not feasible for organizations lacking computing resources. Based on three different scenarios, we propose simulation-based algorithms that can utilize a small amount of outsourced data to find good initial points accordingly. Under suitable regularity conditions, we provide theoretical guarantees showing the algorithms can find good initial points with high probability. We also conduct numerical experiments to demonstrate that our algorithms perform significantly better than the random start approach.
109,008
109,008
Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep Neural Network, a Survey
State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model's optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods.
109,009
109,009
Computerized Tomography Pulmonary Angiography Image Simulation using Cycle Generative Adversarial Network from Chest CT imaging in Pulmonary Embolism Patients
The purpose of this research is to develop a system that generates simulated computed tomography pulmonary angiography (CTPA) images clinically for pulmonary embolism diagnoses. Nowadays, CTPA images are the gold standard computerized detection method to determine and identify the symptoms of pulmonary embolism (PE), although performing CTPA is harmful for patients and also expensive. Therefore, we aim to detect possible PE patients through CT images. The system will simulate CTPA images with deep learning models for the identification of PE patients' symptoms, providing physicians with another reference for determining PE patients. In this study, the simulated CTPA image generation system uses a generative antagonistic network to enhance the features of pulmonary vessels in the CT images to strengthen the reference value of the images and provide a basis for hospitals to judge PE patients. We used the CT images of 22 patients from National Cheng Kung University Hospital and the corresponding CTPA images as the training data for the task of simulating CTPA images and generated them using two sets of generative countermeasure networks. This study is expected to propose a new approach to the clinical diagnosis of pulmonary embolism, in which a deep learning network is used to assist in the complex screening process and to review the generated simulated CTPA images, allowing physicians to assess whether a patient needs to undergo detailed testing for CTPA, improving the speed of detection of pulmonary embolism and significantly reducing the number of undetected patients.
109,010
109,010
Forecasting Solar Power Generation on the basis of Predictive and Corrective Maintenance Activities
Solar energy forecasting has seen tremendous growth in the last decade using historical time series collected from a weather station, such as weather variables wind speed and direction, solar radiance, and temperature. It helps in the overall management of solar power plants. However, the solar power plant regularly requires preventive and corrective maintenance activities that further impact energy production. This paper presents a novel work for forecasting solar power energy production based on maintenance activities, problems observed at a power plant, and weather data. The results accomplished on the datasets obtained from the 1MW solar power plant of PDEU (our university) that has generated data set with 13 columns as daily entries from 2012 to 2020. There are 12 structured columns and one unstructured column with manual text entries about different maintenance activities, problems observed, and weather conditions daily. The unstructured column is used to create a new feature column vector using Hash Map, flag words, and stop words. The final dataset comprises five important feature vector columns based on correlation and causality analysis.
109,011
109,011
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph Learning
In this paper, we study the design and analysis of a class of efficient algorithms for computing the Gromov-Wasserstein (GW) distance tailored to large-scale graph learning tasks. Armed with the Luo-Tseng error bound condition~\cite{luo1992error}, two proposed algorithms, called Bregman Alternating Projected Gradient (BAPG) and hybrid Bregman Proximal Gradient (hBPG) are proven to be (linearly) convergent. Upon task-specific properties, our analysis further provides novel theoretical insights to guide how to select the best fit method. As a result, we are able to provide comprehensive experiments to validate the effectiveness of our methods on a host of tasks, including graph alignment, graph partition, and shape matching. In terms of both wall-clock time and modeling performance, the proposed methods achieve state-of-the-art results.
109,012
109,012
ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
Neural networks (NNs) with intensive multiplications (e.g., convolutions and transformers) are capable yet power hungry, impeding their more extensive deployment into resource-constrained devices. As such, multiplication-free networks, which follow a common practice in energy-efficient hardware implementation to parameterize NNs with more efficient operators (e.g., bitwise shifts and additions), have gained growing attention. However, multiplication-free networks usually under-perform their vanilla counterparts in terms of the achieved accuracy. To this end, this work advocates hybrid NNs that consist of both powerful yet costly multiplications and efficient yet less powerful operators for marrying the best of both worlds, and proposes ShiftAddNAS, which can automatically search for more accurate and more efficient NNs. Our ShiftAddNAS highlights two enablers. Specifically, it integrates (1) the first hybrid search space that incorporates both multiplication-based and multiplication-free operators for facilitating the development of both accurate and efficient hybrid NNs; and (2) a novel weight sharing strategy that enables effective weight sharing among different operators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs. Laplacian for add operators) and simultaneously leads to a largely reduced supernet size and much better searched networks. Extensive experiments and ablation studies on various models, datasets, and tasks consistently validate the efficacy of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9 better BLEU score compared to state-of-the-art NN, while leading to up to 93% or 69% energy and latency savings, respectively. Codes and pretrained models are available at https://github.com/RICE-EIC/ShiftAddNAS.
109,013
109,013
Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in Latent Space
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments. To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach configurable goals for a wide range of tasks on command. However, such goal-conditioned policies are notoriously difficult and time-consuming to train from scratch. In this paper, we propose Planning to Practice (PTP), a method that makes it practical to train goal-conditioned policies for long-horizon tasks that require multiple distinct types of interactions to solve. Our approach is based on two key ideas. First, we decompose the goal-reaching problem hierarchically, with a high-level planner that sets intermediate subgoals using conditional subgoal generators in the latent space for a low-level model-free policy. Second, we propose a hybrid approach which first pre-trains both the conditional subgoal generator and the policy on previously collected data through offline reinforcement learning, and then fine-tunes the policy via online exploration. This fine-tuning process is itself facilitated by the planned subgoals, which breaks down the original target task into short-horizon goal-reaching tasks that are significantly easier to learn. We conduct experiments in both the simulation and real world, in which the policy is pre-trained on demonstrations of short primitive behaviors and fine-tuned for temporally extended tasks that are unseen in the offline data. Our experimental results show that PTP can generate feasible sequences of subgoals that enable the policy to efficiently solve the target tasks.
109,014
109,014
Latent Variable Method Demonstrator -- Software for Understanding Multivariate Data Analytics Algorithms
The ever-increasing quantity of multivariate process data is driving a need for skilled engineers to analyze, interpret, and build models from such data. Multivariate data analytics relies heavily on linear algebra, optimization, and statistics and can be challenging for students to understand given that most curricula do not have strong coverage in the latter three topics. This article describes interactive software -- the Latent Variable Demonstrator (LAVADE) -- for teaching, learning, and understanding latent variable methods. In this software, users can interactively compare latent variable methods such as Partial Least Squares (PLS), and Principal Component Regression (PCR) with other regression methods such as Least Absolute Shrinkage and Selection Operator (lasso), Ridge Regression (RR), and Elastic Net (EN). LAVADE helps to build intuition on choosing appropriate methods, hyperparameter tuning, and model coefficient interpretation, fostering a conceptual understanding of the algorithms' differences. The software contains a data generation method and three chemical process datasets, allowing for comparing results of datasets with different levels of complexity. LAVADE is released as open-source software so that others can apply and advance the tool for use in teaching or research.
109,015
109,015
Brachial Plexus Nerve Trunk Segmentation Using Deep Learning: A Comparative Study with Doctors' Manual Segmentation
Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can observe the target nerve and its surrounding structures, the puncture needle's advancement, and local anesthetics spread in real-time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Here, we establish a public dataset containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produce the BP segmentation ground truth and label brachial plexus trunks. We design a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluate BPSegSys' performance in terms of intersection-over-union (IoU), a commonly used performance measure for segmentation experiments. Considering three dataset groups in our established public dataset, the IoU of BPSegSys are 0.5238, 0.4715, and 0.5029, respectively, which exceed the IoU 0.5205, 0.4704, and 0.4979 of experienced doctors. In addition, we show that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value.
109,016
109,016
Uncertainty-based Network for Few-shot Image Classification
The transductive inference is an effective technique in the few-shot learning task, where query sets update prototypes to improve themselves. However, these methods optimize the model by considering only the classification scores of the query instances as confidence while ignoring the uncertainty of these classification scores. In this paper, we propose a novel method called Uncertainty-Based Network, which models the uncertainty of classification results with the help of mutual information. Specifically, we first data augment and classify the query instance and calculate the mutual information of these classification scores. Then, mutual information is used as uncertainty to assign weights to classification scores, and the iterative update strategy based on classification scores and uncertainties assigns the optimal weights to query instances in prototype optimization. Extensive results on four benchmarks show that Uncertainty-Based Network achieves comparable performance in classification accuracy compared to state-of-the-art method.
109,017
109,017
CellTypeGraph: A New Geometric Computer Vision Benchmark
Classifying all cells in an organ is a relevant and difficult problem from plant developmental biology. We here abstract the problem into a new benchmark for node classification in a geo-referenced graph. Solving it requires learning the spatial layout of the organ including symmetries. To allow the convenient testing of new geometrical learning methods, the benchmark of Arabidopsis thaliana ovules is made available as a PyTorch data loader, along with a large number of precomputed features. Finally, we benchmark eight recent graph neural network architectures, finding that DeeperGCN currently works best on this problem.
109,018
109,018
On the Convergence of Policy in Unregularized Policy Mirror Descent
In this short note, we give the convergence analysis of the policy in the recent famous policy mirror descent (PMD). We mainly consider the unregularized setting following [11] with generalized Bregman divergence. The difference is that we directly give the convergence rates of policy under generalized Bregman divergence. Our results are inspired by the convergence of value function in previous works and are an extension study of policy mirror descent. Though some results have already appeared in previous work, we further discover a large body of Bregman divergences could give finite-step convergence to an optimal policy, such as the classical Euclidean distance.
109,019
109,019
Active learning of causal probability trees
The past two decades have seen a growing interest in combining causal information, commonly represented using causal graphs, with machine learning models. Probability trees provide a simple yet powerful alternative representation of causal information. They enable both computation of intervention and counterfactuals, and are strictly more general, since they allow context-dependent causal dependencies. Here we present a Bayesian method for learning probability trees from a combination of interventional and observational data. The method quantifies the expected information gain from an intervention, and selects the interventions with the largest gain. We demonstrate the efficiency of the method on simulated and real data. An effective method for learning probability trees on a limited interventional budget will greatly expand their applicability.
109,020
109,020
SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation
We propose the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speech-to-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets.
109,021
109,021
SKILL: Structured Knowledge Infusion for Large Language Models
Large language models (LLMs) have demonstrated human-level performance on a vast spectrum of natural language tasks. However, it is largely unexplored whether they can better internalize knowledge from a structured data, such as a knowledge graph, or from text. In this work, we propose a method to infuse structured knowledge into LLMs, by directly training T5 models on factual triples of knowledge graphs (KGs). We show that models pre-trained on Wikidata KG with our method outperform the T5 baselines on FreebaseQA and WikiHop, as well as the Wikidata-answerable subset of TriviaQA and NaturalQuestions. The models pre-trained on factual triples compare competitively with the ones on natural language sentences that contain the same knowledge. Trained on a smaller size KG, WikiMovies, we saw 3x improvement of exact match score on MetaQA task compared to T5 baseline. The proposed method has an advantage that no alignment between the knowledge graph and text corpus is required in curating training data. This makes our method particularly useful when working with industry-scale knowledge graphs.
109,022
109,022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
This article studies the infinite-width limit of deep feedforward neural networks whose weights are dependent, and modelled via a mixture of Gaussian distributions. Each hidden node of the network is assigned a nonnegative random variable that controls the variance of the outgoing weights of that node. We make minimal assumptions on these per-node random variables: they are iid and their sum, in each layer, converges to some finite random variable in the infinite-width limit. Under this model, we show that each layer of the infinite-width neural network can be characterised by two simple quantities: a non-negative scalar parameter and a L\'evy measure on the positive reals. If the scalar parameters are strictly positive and the L\'evy measures are trivial at all hidden layers, then one recovers the classical Gaussian process (GP) limit, obtained with iid Gaussian weights. More interestingly, if the L\'evy measure of at least one layer is non-trivial, we obtain a mixture of Gaussian processes (MoGP) in the large-width limit. The behaviour of the neural network in this regime is very different from the GP regime. One obtains correlated outputs, with non-Gaussian distributions, possibly with heavy tails. Additionally, we show that, in this regime, the weights are compressible, and feature learning is possible. Many sparsity-promoting neural network models can be recast as special cases of our approach, and we discuss their infinite-width limits; we also present an asymptotic analysis of the pruning error. We illustrate some of the benefits of the MoGP regime over the GP regime in terms of representation learning and compressibility on simulated, MNIST and Fashion MNIST datasets.
109,023
109,023
Automatic Acquisition of a Repertoire of Diverse Grasping Trajectories through Behavior Shaping and Novelty Search
Grasping a particular object may require a dedicated grasping movement that may also be specific to the robot end-effector. No generic and autonomous method does exist to generate these movements without making hypotheses on the robot or on the object. Learning methods could help to autonomously discover relevant grasping movements, but they face an important issue: grasping movements are so rare that a learning method based on exploration has little chance to ever observe an interesting movement, thus creating a bootstrap issue. We introduce an approach to generate diverse grasping movements in order to solve this problem. The movements are generated in simulation, for particular object positions. We test it on several simulated robots: Baxter, Pepper and a Kuka Iiwa arm. Although we show that generated movements actually work on a real Baxter robot, the aim is to use this method to create a large dataset to bootstrap deep learning methods.
109,024
109,024
Moral reinforcement learning using actual causation
Reinforcement learning systems will to a greater and greater extent make decisions that significantly impact the well-being of humans, and it is therefore essential that these systems make decisions that conform to our expectations of morally good behavior. The morally good is often defined in causal terms, as in whether one's actions have in fact caused a particular outcome, and whether the outcome could have been anticipated. We propose an online reinforcement learning method that learns a policy under the constraint that the agent should not be the cause of harm. This is accomplished by defining cause using the theory of actual causation and assigning blame to the agent when its actions are the actual cause of an undesirable outcome. We conduct experiments on a toy ethical dilemma in which a natural choice of reward function leads to clearly undesirable behavior, but our method learns a policy that avoids being the cause of harmful behavior, demonstrating the soundness of our approach. Allowing an agent to learn while observing causal moral distinctions such as blame, opens the possibility to learning policies that better conform to our moral judgments.
109,025
109,025
Sharp asymptotics on the compression of two-layer neural networks
In this paper, we study the compression of a target two-layer neural network with N nodes into a compressed network with M < N nodes. More precisely, we consider the setting in which the weights of the target network are i.i.d. sub-Gaussian, and we minimize the population L2 loss between the outputs of the target and of the compressed network, under the assumption of Gaussian inputs. By using tools from high-dimensional probability, we show that this non-convex problem can be simplified when the target network is sufficiently over-parameterized, and provide the error rate of this approximation as a function of the input dimension and N . For a ReLU activation function, we conjecture that the optimum of the simplified optimization problem is achieved by taking weights on the Equiangular Tight Frame (ETF), while the scaling of the weights and the orientation of the ETF depend on the parameters of the target network. Numerical evidence is provided to support this conjecture.
109,026
109,026
An Application of Scenario Exploration to Find New Scenarios for the Development and Testing of Automated Driving Systems in Urban Scenarios
Verification and validation are major challenges for developing automated driving systems. A concept that gets more and more recognized for testing in automated driving is scenario-based testing. However, it introduces the problem of what scenarios are relevant for testing and which are not. This work aims to find relevant, interesting, or critical parameter sets within logical scenarios by utilizing Bayes optimization and Gaussian processes. The parameter optimization is done by comparing and evaluating six different metrics in two urban intersection scenarios. Finally, a list of ideas this work leads to and should be investigated further is presented.
109,027
109,027
blob loss: instance imbalance aware loss functions for semantic segmentation
Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score.
109,028
109,028
ROP inception: signal estimation with quadratic random sketching
Rank-one projections (ROP) of matrices and quadratic random sketching of signals support several data processing and machine learning methods, as well as recent imaging applications, such as phase retrieval or optical processing units. In this paper, we demonstrate how signal estimation can be operated directly through such quadratic sketches--equivalent to the ROPs of the "lifted signal" obtained as its outer product with itself--without explicitly reconstructing that signal. Our analysis relies on showing that, up to a minor debiasing trick, the ROP measurement operator satisfies a generalised sign product embedding (SPE) property. In a nutshell, the SPE shows that the scalar product of a signal sketch with the "sign" of the sketch of a given pattern approximates the square of the projection of that signal on this pattern. This thus amounts to an insertion (an "inception") of a ROP model inside a ROP sketch. The effectiveness of our approach is evaluated in several synthetic experiments.
109,029
109,029
Hyper-Learning for Gradient-Based Batch Size Adaptation
Scheduling the batch size to increase is an effective strategy to control gradient noise when training deep neural networks. Current approaches implement scheduling heuristics that neglect structure within the optimization procedure, limiting their flexibility to the training dynamics and capacity to discern the impact of their adaptations on generalization. We introduce Arbiter as a new hyperparameter optimization algorithm to perform batch size adaptations for learnable scheduling heuristics using gradients from a meta-objective function, which overcomes previous heuristic constraints by enforcing a novel learning process called hyper-learning. With hyper-learning, Arbiter formulates a neural network agent to generate optimal batch size samples for an inner deep network by learning an adaptive heuristic through observing concomitant responses over T inner descent steps. Arbiter avoids unrolled optimization, and does not require hypernetworks to facilitate gradients, making it reasonably cheap, simple to implement, and versatile to different tasks. We demonstrate Arbiter's effectiveness in several illustrative experiments: to act as a stand-alone batch size scheduler; to complement fixed batch size schedules with greater flexibility; and to promote variance reduction during stochastic meta-optimization of the learning rate.
109,030
109,030
Delaytron: Efficient Learning of Multiclass Classifiers with Delayed Bandit Feedbacks
In this paper, we present online algorithm called {\it Delaytron} for learning multi class classifiers using delayed bandit feedbacks. The sequence of feedback delays $\{d_t\}_{t=1}^T$ is unknown to the algorithm. At the $t$-th round, the algorithm observes an example $\mathbf{x}_t$ and predicts a label $\tilde{y}_t$ and receives the bandit feedback $\mathbb{I}[\tilde{y}_t=y_t]$ only $d_t$ rounds later. When $t+d_t>T$, we consider that the feedback for the $t$-th round is missing. We show that the proposed algorithm achieves regret of $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+\left(2+\frac{L^2}{R^2\Vert \W\Vert_F^2}\right)\sum_{t=1}^Td_t\right]}\right)$ when the loss for each missing sample is upper bounded by $L$. In the case when the loss for missing samples is not upper bounded, the regret achieved by Delaytron is $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+2\sum_{t=1}^Td_t+\vert \mathcal{M}\vert T\right]}\right)$ where $\mathcal{M}$ is the set of missing samples in $T$ rounds. These bounds were achieved with a constant step size which requires the knowledge of $T$ and $\sum_{t=1}^Td_t$. For the case when $T$ and $\sum_{t=1}^Td_t$ are unknown, we use a doubling trick for online learning and proposed Adaptive Delaytron. We show that Adaptive Delaytron achieves a regret bound of $\mathcal{O}\left(\sqrt{T+\sum_{t=1}^Td_t}\right)$. We show the effectiveness of our approach by experimenting on various datasets and comparing with state-of-the-art approaches.
109,031
109,031
IIsy: Practical In-Network Classification
The rat race between user-generated data and data-processing systems is currently won by data. The increased use of machine learning leads to further increase in processing requirements, while data volume keeps growing. To win the race, machine learning needs to be applied to the data as it goes through the network. In-network classification of data can reduce the load on servers, reduce response time and increase scalability. In this paper, we introduce IIsy, implementing machine learning classification models in a hybrid fashion using off-the-shelf network devices. IIsy targets three main challenges of in-network classification: (i) mapping classification models to network devices (ii) extracting the required features and (iii) addressing resource and functionality constraints. IIsy supports a range of traditional and ensemble machine learning models, scaling independently of the number of stages in a switch pipeline. Moreover, we demonstrate the use of IIsy for hybrid classification, where a small model is implemented on a switch and a large model at the backend, achieving near optimal classification results, while significantly reducing latency and load on the servers.
109,032
109,032
Monotonicity Regularization: Improved Penalties and Novel Applications to Disentangled Representation Learning and Robust Classification
We study settings where gradient penalties are used alongside risk minimization with the goal of obtaining predictors satisfying different notions of monotonicity. Specifically, we present two sets of contributions. In the first part of the paper, we show that different choices of penalties define the regions of the input space where the property is observed. As such, previous methods result in models that are monotonic only in a small volume of the input space. We thus propose an approach that uses mixtures of training instances and random points to populate the space and enforce the penalty in a much larger region. As a second set of contributions, we introduce regularization strategies that enforce other notions of monotonicity in different settings. In this case, we consider applications, such as image classification and generative modeling, where monotonicity is not a hard constraint but can help improve some aspects of the model. Namely, we show that inducing monotonicity can be beneficial in applications such as: (1) allowing for controllable data generation, (2) defining strategies to detect anomalous data, and (3) generating explanations for predictions. Our proposed approaches do not introduce relevant computational overhead while leading to efficient procedures that provide extra benefits over baseline models.
109,033
109,033
Adaptive Momentum-Based Policy Gradient with Second-Order Information
The variance reduced gradient estimators for policy gradient methods has been one of the main focus of research in the reinforcement learning in recent years as they allow acceleration of the estimation process. We propose a variance reduced policy gradient method, called SGDHess-PG, which incorporates second-order information into stochastic gradient descent (SGD) using momentum with an adaptive learning rate. SGDHess-PG algorithm can achieve $\epsilon$-approximate first-order stationary point with $\tilde{O}(\epsilon^{-3})$ number of trajectories, while using a batch size of $O(1)$ at each iteration. Unlike most previous work, our proposed algorithm does not require importance sampling techniques which can compromise the advantage of variance reduction process. Our extensive experimental results show the effectiveness of the proposed algorithm on various control tasks and its advantage over the state of the art in practice.
109,034
109,034
Multiscale reconstruction of porous media based on multiple dictionaries learning
Digital modeling of the microstructure is important for studying the physical and transport properties of porous media. Multiscale modeling for porous media can accurately characterize macro-pores and micro-pores in a large-FoV (field of view) high-resolution three-dimensional pore structure model. This paper proposes a multiscale reconstruction algorithm based on multiple dictionaries learning, in which edge patterns and micro-pore patterns from homology high-resolution pore structure are introduced into low-resolution pore structure to build a fine multiscale pore structure model. The qualitative and quantitative comparisons of the experimental results show that the results of multiscale reconstruction are similar to the real high-resolution pore structure in terms of complex pore geometry and pore surface morphology. The geometric, topological and permeability properties of multiscale reconstruction results are almost identical to those of the real high-resolution pore structures. The experiments also demonstrate the proposal algorithm is capable of multiscale reconstruction without regard to the size of the input. This work provides an effective method for fine multiscale modeling of porous media.
109,035
109,035
KGNN: Distributed Framework for Graph Neural Knowledge Representation
Knowledge representation learning has been commonly adopted to incorporate knowledge graph (KG) into various online services. Although existing knowledge representation learning methods have achieved considerable performance improvement, they ignore high-order structure and abundant attribute information, resulting unsatisfactory performance on semantics-rich KGs. Moreover, they fail to make prediction in an inductive manner and cannot scale to large industrial graphs. To address these issues, we develop a novel framework called KGNN to take full advantage of knowledge data for representation learning in the distributed learning system. KGNN is equipped with GNN based encoder and knowledge aware decoder, which aim to jointly explore high-order structure and attribute information together in a fine-grained fashion and preserve the relation patterns in KGs, respectively. Extensive experiments on three datasets for link prediction and triplet classification task demonstrate the effectiveness and scalability of KGNN framework.
109,036
109,036
Measuring Alignment Bias in Neural Seq2Seq Semantic Parsers
Prior to deep learning the semantic parsing community has been interested in understanding and modeling the range of possible word alignments between natural language sentences and their corresponding meaning representations. Sequence-to-sequence models changed the research landscape suggesting that we no longer need to worry about alignments since they can be learned automatically by means of an attention mechanism. More recently, researchers have started to question such premise. In this work we investigate whether seq2seq models can handle both simple and complex alignments. To answer this question we augment the popular Geo semantic parsing dataset with alignment annotations and create Geo-Aligned. We then study the performance of standard seq2seq models on the examples that can be aligned monotonically versus examples that require more complex alignments. Our empirical study shows that performance is significantly better over monotonic alignments.
109,037
109,037
Semi-Parametric Contextual Bandits with Graph-Laplacian Regularization
Non-stationarity is ubiquitous in human behavior and addressing it in the contextual bandits is challenging. Several works have addressed the problem by investigating semi-parametric contextual bandits and warned that ignoring non-stationarity could harm performances. Another prevalent human behavior is social interaction which has become available in a form of a social network or graph structure. As a result, graph-based contextual bandits have received much attention. In this paper, we propose "SemiGraphTS," a novel contextual Thompson-sampling algorithm for a graph-based semi-parametric reward model. Our algorithm is the first to be proposed in this setting. We derive an upper bound of the cumulative regret that can be expressed as a multiple of a factor depending on the graph structure and the order for the semi-parametric model without a graph. We evaluate the proposed and existing algorithms via simulation and real data example.
109,038
109,038
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics-Informed Neural Networks can seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they can self-adaptively learn the weighting between data and physics. Combined with Bayesian Neural Networks, they can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems.
109,039
109,039
A Study of the Attention Abnormality in Trojaned BERTs
Trojan attacks raise serious security concerns. In this paper, we investigate the underlying mechanism of Trojaned BERT models. We observe the attention focus drifting behavior of Trojaned models, i.e., when encountering an poisoned input, the trigger token hijacks the attention focus regardless of the context. We provide a thorough qualitative and quantitative analysis of this phenomenon, revealing insights into the Trojan mechanism. Based on the observation, we propose an attention-based Trojan detector to distinguish Trojaned models from clean ones. To the best of our knowledge, this is the first paper to analyze the Trojan mechanism and to develop a Trojan detector based on the transformer's attention.
109,040
109,040
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited to short timescales and few atoms. For larger systems, efficient, but much less reliable empirical force fields are used. Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations, offering similar accuracy as ab initio methods at orders-of-magnitude speedup. Until now, MLFFs mainly capture short-range interactions in small molecules or periodic materials, due to the increased complexity of constructing models and obtaining reliable reference data for large molecules, where long-ranged many-body effects become important. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on "bottom-up" and "top-down" molecular fragments of varying size, from which the relevant physicochemical interactions can be learned. GEMS is applied to study the dynamics of alanine-based peptides and the 46-residue protein crambin in aqueous solution, allowing nanosecond-scale MD simulations of >25k atoms at essentially ab initio quality. Our findings suggest that structural motifs in peptides and proteins are more flexible than previously thought, indicating that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes such as protein (mis)folding, drug-protein binding, or allosteric regulation.
109,041
109,041
Finite Element Method-enhanced Neural Network for Forward and Inverse Problems
We introduce a novel hybrid methodology combining classical finite element methods (FEM) with neural networks to create a well-performing and generalizable surrogate model for forward and inverse problems. The residual from finite element methods and custom loss functions from neural networks are merged to form the algorithm. The Finite Element Method-enhanced Neural Network hybrid model (FEM-NN hybrid) is data-efficient and physics conforming. The proposed methodology can be used for surrogate models in real-time simulation, uncertainty quantification, and optimization in the case of forward problems. It can be used for updating the models in the case of inverse problems. The method is demonstrated with examples, and the accuracy of the results and performance is compared against the conventional way of network training and the classical finite element method. An application of the forward-solving algorithm is demonstrated for the uncertainty quantification of wind effects on a high-rise buildings. The inverse algorithm is demonstrated in the speed-dependent bearing coefficient identification of fluid bearings. The hybrid methodology of this kind will serve as a paradigm shift in the simulation methods currently used.
109,042
109,042
Scalable algorithms for physics-informed neural and graph networks
Physics-informed machine learning (PIML) has emerged as a promising new approach for simulating complex physical and biological systems that are governed by complex multiscale processes for which some data are also available. In some instances, the objective is to discover part of the hidden physics from the available data, and PIML has been shown to be particularly effective for such problems for which conventional methods may fail. Unlike commercial machine learning where training of deep neural networks requires big data, in PIML big data are not available. Instead, we can train such networks from additional information obtained by employing the physical laws and evaluating them at random points in the space-time domain. Such physics-informed machine learning integrates multimodality and multifidelity data with mathematical models, and implements them using neural networks or graph networks. Here, we review some of the prevailing trends in embedding physics into machine learning, using physics-informed neural networks (PINNs) based primarily on feed-forward neural networks and automatic differentiation. For more complex systems or systems of systems and unstructured data, graph neural networks (GNNs) present some distinct advantages, and here we review how physics-informed learning can be accomplished with GNNs based on graph exterior calculus to construct differential operators; we refer to these architectures as physics-informed graph networks (PIGNs). We present representative examples for both forward and inverse problems and discuss what advances are needed to scale up PINNs, PIGNs and more broadly GNNs for large-scale engineering problems.
109,043
109,043
Explanation-Guided Fairness Testing through Genetic Algorithm
The fairness characteristic is a critical attribute of trusted AI systems. A plethora of research has proposed diverse methods for individual fairness testing. However, they are suffering from three major limitations, i.e., low efficiency, low effectiveness, and model-specificity. This work proposes ExpGA, an explanationguided fairness testing approach through a genetic algorithm (GA). ExpGA employs the explanation results generated by interpretable methods to collect high-quality initial seeds, which are prone to derive discriminatory samples by slightly modifying feature values. ExpGA then adopts GA to search discriminatory sample candidates by optimizing a fitness value. Benefiting from this combination of explanation results and GA, ExpGA is both efficient and effective to detect discriminatory individuals. Moreover, ExpGA only requires prediction probabilities of the tested model, resulting in a better generalization capability to various models. Experiments on multiple real-world benchmarks, including tabular and text datasets, show that ExpGA presents higher efficiency and effectiveness than four state-of-the-art approaches.
109,044
109,044
A unified framework for dataset shift diagnostics
Most machine learning (ML) methods assume that the data used in the training phase comes from the distribution of the target population. However, in practice one often faces dataset shift, which, if not properly taken into account, may decrease the predictive performance of the ML models. In general, if the practitioner knows which type of shift is taking place - e.g., covariate shift or label shift - they may apply transfer learning methods to obtain better predictions. Unfortunately, current methods for detecting shift are only designed to detect specific types of shift or cannot formally test their presence. We introduce a general framework that gives insights on how to improve prediction methods by detecting the presence of different types of shift and quantifying how strong they are. Our approach can be used for any data type (tabular/image/text) and both for classification and regression tasks. Moreover, it uses formal hypotheses tests that controls false alarms. We illustrate how our framework is useful in practice using both artificial and real datasets. Our package for dataset shift detection can be found in https://github.com/felipemaiapolo/detectshift.
109,045
109,045
Topological Signal Processing using the Weighted Ordinal Partition Network
One of the most important problems arising in time series analysis is that of bifurcation, or change point detection. That is, given a collection of time series over a varying parameter, when has the structure of the underlying dynamical system changed? For this task, we turn to the field of topological data analysis (TDA), which encodes information about the shape and structure of data. The idea of utilizing tools from TDA for signal processing tasks, known as topological signal processing (TSP), has gained much attention in recent years, largely through a standard pipeline that computes the persistent homology of the point cloud generated by the Takens' embedding. However, this procedure is limited by computation time since the simplicial complex generated in this case is large, but also has a great deal of redundant data. For this reason, we turn to a more recent method for encoding the structure of the attractor, which constructs an ordinal partition network (OPN) representing information about when the dynamical system has passed between certain regions of state space. The result is a weighted graph whose structure encodes information about the underlying attractor. Our previous work began to find ways to package the information of the OPN in a manner that is amenable to TDA; however, that work only used the network structure and did nothing to encode the additional weighting information. In this paper, we take the next step: building a pipeline to analyze the weighted OPN with TDA and showing that this framework provides more resilience to noise or perturbations in the system and improves the accuracy of the dynamic state detection.
109,046
109,046
Demystifying the Data Need of ML-surrogates for CFD Simulations
Computational fluid dynamics (CFD) simulations, a critical tool in various engineering applications, often require significant time and compute power to predict flow properties. The high computational cost associated with CFD simulations significantly restricts the scope of design space exploration and limits their use in planning and operational control. To address this issue, machine learning (ML) based surrogate models have been proposed as a computationally efficient tool to accelerate CFD simulations. However, a lack of clarity about CFD data requirements often challenges the widespread adoption of ML-based surrogates among design engineers and CFD practitioners. In this work, we propose an ML-based surrogate model to predict the temperature distribution inside the cabin of a passenger vehicle under various operating conditions and use it to demonstrate the trade-off between prediction performance and training dataset size. Our results show that the prediction accuracy is high and stable even when the training size is gradually reduced from 2000 to 200. The ML-based surrogates also reduce the compute time from ~30 minutes to around ~9 milliseconds. Moreover, even when only 50 CFD simulations are used for training, the temperature trend (e.g., locations of hot/cold regions) predicted by the ML-surrogate matches quite well with the results from CFD simulations.
109,047
109,047
DouFu: A Double Fusion Joint Learning Method For Driving Trajectory Representation
Driving trajectory representation learning is of great significance for various location-based services, such as driving pattern mining and route recommendation. However, previous representation generation approaches tend to rarely address three challenges: 1) how to represent the intricate semantic intentions of mobility inexpensively; 2) complex and weak spatial-temporal dependencies due to the sparsity and heterogeneity of the trajectory data; 3) route selection preferences and their correlation to driving behavior. In this paper, we propose a novel multimodal fusion model, DouFu, for trajectory representation joint learning, which applies multimodal learning and attention fusion module to capture the internal characteristics of trajectories. We first design movement, route, and global features generated from the trajectory data and urban functional zones and then analyze them respectively with the attention encoder or feed forward network. The attention fusion module incorporates route features with movement features to create a better spatial-temporal embedding. With the global semantic feature, DouFu produces a comprehensive embedding for each trajectory. We evaluate representations generated by our method and other baseline models on classification and clustering tasks. Empirical results show that DouFu outperforms other models in most of the learning algorithms like the linear regression and the support vector machine by more than 10%.
109,048
109,048
Perturbation of Deep Autoencoder Weights for Model Compression and Classification of Tabular Data
Fully connected deep neural networks (DNN) often include redundant weights leading to overfitting and high memory requirements. Additionally, the performance of DNN is often challenged by traditional machine learning models in tabular data classification. In this paper, we propose periodical perturbations (prune and regrow) of DNN weights, especially at the self-supervised pre-training stage of deep autoencoders. The proposed weight perturbation strategy outperforms dropout learning in four out of six tabular data sets in downstream classification tasks. The L1 or L2 regularization of weights at the same pretraining stage results in inferior classification performance compared to dropout or our weight perturbation routine. Unlike dropout learning, the proposed weight perturbation routine additionally achieves 15% to 40% sparsity across six tabular data sets for the compression of deep pretrained models. Our experiments reveal that a pretrained deep autoencoder with weight perturbation or dropout can outperform traditional machine learning in tabular data classification when fully connected DNN fails miserably. However, traditional machine learning models appear superior to any deep models when a tabular data set contains uncorrelated variables. Therefore, the success of deep models can be attributed to the inevitable presence of correlated variables in real-world data sets.
109,049
109,049
LPC-AD: Fast and Accurate Multivariate Time Series Anomaly Detection via Latent Predictive Coding
This paper proposes LPC-AD, a fast and accurate multivariate time series (MTS) anomaly detection method. LPC-AD is motivated by the ever-increasing needs for fast and accurate MTS anomaly detection methods to support fast troubleshooting in cloud computing, micro-service systems, etc. LPC-AD is fast in the sense that its reduces the training time by as high as 38.2% compared to the state-of-the-art (SOTA) deep learning methods that focus on training speed. LPC-AD is accurate in the sense that it improves the detection accuracy by as high as 18.9% compared to SOTA sophisticated deep learning methods that focus on enhancing detection accuracy. Methodologically, LPC-AD contributes a generic architecture LPC-Reconstruct for one to attain different trade-offs between training speed and detection accuracy. More specifically, LPC-Reconstruct is built on ideas from autoencoder for reducing redundancy in time series, latent predictive coding for capturing temporal dependence in MTS, and randomized perturbation for avoiding overfitting of anomalous dependence in the training data. We present simple instantiations of LPC-Reconstruct to attain fast training speed, where we propose a simple randomized perturbation method. The superior performance of LPC-AD over SOTA methods is validated by extensive experiments on four large real-world datasets. Experiment results also show the necessity and benefit of each component of the LPC-Reconstruct architecture and that LPC-AD is robust to hyper parameters.
109,050
109,050
REAL ML: Recognizing, Exploring, and Articulating Limitations of Machine Learning Research
Transparency around limitations can improve the scientific rigor of research, help ensure appropriate interpretation of research findings, and make research claims more credible. Despite these benefits, the machine learning (ML) research community lacks well-developed norms around disclosing and discussing limitations. To address this gap, we conduct an iterative design process with 30 ML and ML-adjacent researchers to develop and test REAL ML, a set of guided activities to help ML researchers recognize, explore, and articulate the limitations of their research. Using a three-stage interview and survey study, we identify ML researchers' perceptions of limitations, as well as the challenges they face when recognizing, exploring, and articulating limitations. We develop REAL ML to address some of these practical challenges, and highlight additional cultural challenges that will require broader shifts in community norms to address. We hope our study and REAL ML help move the ML research community toward more active and appropriate engagement with limitations.
109,051
109,051
Network Gradient Descent Algorithm for Decentralized Federated Learning
We study a fully decentralized federated learning algorithm, which is a novel gradient descent algorithm executed on a communication-based network. For convenience, we refer to it as a network gradient descent (NGD) method. In the NGD method, only statistics (e.g., parameter estimates) need to be communicated, minimizing the risk of privacy. Meanwhile, different clients communicate with each other directly according to a carefully designed network structure without a central master. This greatly enhances the reliability of the entire algorithm. Those nice properties inspire us to carefully study the NGD method both theoretically and numerically. Theoretically, we start with a classical linear regression model. We find that both the learning rate and the network structure play significant roles in determining the NGD estimator's statistical efficiency. The resulting NGD estimator can be statistically as efficient as the global estimator, if the learning rate is sufficiently small and the network structure is well balanced, even if the data are distributed heterogeneously. Those interesting findings are then extended to general models and loss functions. Extensive numerical studies are presented to corroborate our theoretical findings. Classical deep learning models are also presented for illustration purpose.
109,052
109,052
Deep Supervised Information Bottleneck Hashing for Cross-modal Retrieval based Computer-aided Diagnosis
Mapping X-ray images, radiology reports, and other medical data as binary codes in the common space, which can assist clinicians to retrieve pathology-related data from heterogeneous modalities (i.e., hashing-based cross-modal medical data retrieval), provides a new view to promot computeraided diagnosis. Nevertheless, there remains a barrier to boost medical retrieval accuracy: how to reveal the ambiguous semantics of medical data without the distraction of superfluous information. To circumvent this drawback, we propose Deep Supervised Information Bottleneck Hashing (DSIBH), which effectively strengthens the discriminability of hash codes. Specifically, the Deep Deterministic Information Bottleneck (Yu, Yu, and Principe 2021) for single modality is extended to the cross-modal scenario. Benefiting from this, the superfluous information is reduced, which facilitates the discriminability of hash codes. Experimental results demonstrate the superior accuracy of the proposed DSIBH compared with state-of-the-arts in cross-modal medical data retrieval tasks.
109,053
109,053
Applications of Reinforcement Learning in Deregulated Power Market: A Comprehensive Review
The increasing penetration of renewable generations, along with the deregulation and marketization of power industry, promotes the transformation of power market operation paradigms. The optimal bidding strategy and dispatching methodology under these new paradigms are prioritized concerns for both market participants and power system operators, with obstacles of uncertain characteristics, computational efficiency, as well as requirements of hyperopic decision-making. To tackle these problems, the Reinforcement Learning (RL), as an emerging machine learning technique with advantages compared with conventional optimization tools, is playing an increasingly significant role in both academia and industry. This paper presents a comprehensive review of RL applications in deregulated power market operation including bidding and dispatching strategy optimization, based on more than 150 carefully selected literatures. For each application, apart from a paradigmatic summary of generalized methodology, in-depth discussions of applicability and obstacles while deploying RL techniques are also provided. Finally, some RL techniques that have great potentiality to be deployed in bidding and dispatching problems are recommended and discussed.
109,054
109,054
Individualized Risk Assessment of Preoperative Opioid Use by Interpretable Neural Network Regression
Preoperative opioid use has been reported to be associated with higher preoperative opioid demand, worse postoperative outcomes, and increased postoperative healthcare utilization and expenditures. Understanding the risk of preoperative opioid use helps establish patient-centered pain management. In the field of machine learning, deep neural network (DNN) has emerged as a powerful means for risk assessment because of its superb prediction power; however, the blackbox algorithms may make the results less interpretable than statistical models. Bridging the gap between the statistical and machine learning fields, we propose a novel Interpretable Neural Network Regression (INNER), which combines the strengths of statistical and DNN models. We use the proposed INNER to conduct individualized risk assessment of preoperative opioid use. Intensive simulations and an analysis of 34,186 patients expecting surgery in the Analgesic Outcomes Study (AOS) show that the proposed INNER not only can accurately predict the preoperative opioid use using preoperative characteristics as DNN, but also can estimate the patient specific odds of opioid use without pain and the odds ratio of opioid use for a unit increase in the reported overall body pain, leading to more straightforward interpretations of the tendency to use opioids than DNN. Our results identify the patient characteristics that are strongly associated with opioid use and is largely consistent with the previous findings, providing evidence that INNER is a useful tool for individualized risk assessment of preoperative opioid use.
109,055
109,055
Evaluation of a User Authentication Schema Using Behavioral Biometrics and Machine Learning
The amount of secure data being stored on mobile devices has grown immensely in recent years. However, the security measures protecting this data have stayed static, with few improvements being done to the vulnerabilities of current authentication methods such as physiological biometrics or passwords. Instead of these methods, behavioral biometrics has recently been researched as a solution to these vulnerable authentication methods. In this study, we aim to contribute to the research being done on behavioral biometrics by creating and evaluating a user authentication scheme using behavioral biometrics. The behavioral biometrics used in this study include touch dynamics and phone movement, and we evaluate the performance of different single-modal and multi-modal combinations of the two biometrics. Using two publicly available datasets - BioIdent and Hand Movement Orientation and Grasp (H-MOG), this study uses seven common machine learning algorithms to evaluate performance. The algorithms used in the evaluation include Random Forest, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Logistic Regression, Multilayer Perceptron, and Long Short-Term Memory Recurrent Neural Networks, with accuracy rates reaching as high as 86%.
109,056
109,056
Automatic Velocity Picking Using Unsupervised Ensemble Learning
In seismic data processing, accurate and efficient automatic velocity picking algorithms can significantly accelerate the processing, and the main branch is to use velocity spectra for velocity pickup. Recently, machine learning algorithms have been widely used in automatic spectrum picking. Even though deep learning methods can address the problem well in supervised cases, they are often accompanied by expensive computational costs and low interpretability. On the contrast, unsupervised learning methods based on the physical knowledge have great potential to efficiently resolve the task. In this paper, we propose an unsupervised ensemble learning (UEL) method to pick the root mean square (RMS) velocities on the spectrum. In particular, UEL utilizes the information of nearby velocity spectra and the nearest seed velocity curve to assist the selection of effective and reasonable velocity points. To increase the coherence of energy peaks, an information gain method is developed by local normalization. In addition, we designed the attention scale-space filter (ASSF) clustering method to incorporate the coherence information into the picking process. Experiments on three datasets demonstrate that compared to traditional clustering methods, UEL can recognize energy clusters better, especially with smaller blobs. Moreover, the injection of nearby spectra and interval velocity constraint in UEL significantly improves the robustness and accuracy of picking results.
109,057
109,057
Should attention be all we need? The epistemic and ethical implications of unification in machine learning
"Attention is all you need" has become a fundamental precept in machine learning research. Originally designed for machine translation, transformers and the attention mechanisms that underpin them now find success across many problem domains. With the apparent domain-agnostic success of transformers, many researchers are excited that similar model architectures can be successfully deployed across diverse applications in vision, language and beyond. We consider the benefits and risks of these waves of unification on both epistemic and ethical fronts. On the epistemic side, we argue that many of the arguments in favor of unification in the natural sciences fail to transfer over to the machine learning case, or transfer over only under assumptions that might not hold. Unification also introduces epistemic risks related to portability, path dependency, methodological diversity, and increased black-boxing. On the ethical side, we discuss risks emerging from epistemic concerns, further marginalizing underrepresented perspectives, the centralization of power, and having fewer models across more domains of application
109,058
109,058
Machine learning and atomic layer deposition: predicting saturation times from reactor growth profiles using artificial neural networks
In this work we explore the application of deep neural networks to the optimization of atomic layer deposition processes based on thickness values obtained at different points of an ALD reactor. We introduce a dataset designed to train neural networks to predict saturation times based on the dose time and thickness values measured at different points of the reactor for a single experimental condition. We then explore different artificial neural network configurations, including depth (number of hidden layers) and size (number of neurons in each layers) to better understand the size and complexity that neural networks should have to achieve high predictive accuracy. The results obtained show that trained neural networks can accurately predict saturation times without requiring any prior information on the surface kinetics. This provides a viable approach to minimize the number of experiments required to optimize new ALD processes in a known reactor. However, the datasets and training procedure depend on the reactor geometry.
109,059
109,059
Compatible deep neural network framework with financial time series data, including data preprocessor, neural network model and trading strategy
Experience has shown that trading in stock and cryptocurrency markets has the potential to be highly profitable. In this light, considerable effort has been recently devoted to investigate how to apply machine learning and deep learning to interpret and predict market behavior. This research introduces a new deep neural network architecture and a novel idea of how to prepare financial data before feeding them to the model. In the data preparation part, the first step is to generate many features using technical indicators and then apply the XGBoost model for feature engineering. Splitting data into three categories and using separate autoencoders, we extract high-level mixed features at the second step. This data preprocessing is introduced to predict price movements. Regarding modeling, different convolutional layers, an long short-term memory unit, and several fully-connected layers have been designed to perform binary classification. This research also introduces a trading strategy to exploit the trained model outputs. Three different datasets are used to evaluate this method, where results indicate that this framework can provide us with profitable and robust predictions.
109,060
109,060
Bias and Fairness on Multimodal Emotion Detection Algorithms
Numerous studies have shown that machine learning algorithms can latch onto protected attributes such as race and gender and generate predictions that systematically discriminate against one or more groups. To date the majority of bias and fairness research has been on unimodal models. In this work, we explore the biases that exist in emotion recognition systems in relationship to the modalities utilized, and study how multimodal approaches affect system bias and fairness. We consider audio, text, and video modalities, as well as all possible multimodal combinations of those, and find that text alone has the least bias, and accounts for the majority of the models' performances, raising doubts about the worthiness of multimodal emotion recognition systems when bias and fairness are desired alongside model performance.
109,061
109,061
Deep Learning of Chaotic Systems from Partially-Observed Data
Recently, a general data driven numerical framework has been developed for learning and modeling of unknown dynamical systems using fully- or partially-observed data. The method utilizes deep neural networks (DNNs) to construct a model for the flow map of the unknown system. Once an accurate DNN approximation of the flow map is constructed, it can be recursively executed to serve as an effective predictive model of the unknown system. In this paper, we apply this framework to chaotic systems, in particular the well-known Lorenz 63 and 96 systems, and critically examine the predictive performance of the approach. A distinct feature of chaotic systems is that even the smallest perturbations will lead to large (albeit bounded) deviations in the solution trajectories. This makes long-term predictions of the method, or any data driven methods, questionable, as the local model accuracy will eventually degrade and lead to large pointwise errors. Here we employ several other qualitative and quantitative measures to determine whether the chaotic dynamics have been learned. These include phase plots, histograms, autocorrelation, correlation dimension, approximate entropy, and Lyapunov exponent. Using these measures, we demonstrate that the flow map based DNN learning method is capable of accurately modeling chaotic systems, even when only a subset of the state variables are available to the DNNs. For example, for the Lorenz 96 system with 40 state variables, when data of only 3 variables are available, the method is able to learn an effective DNN model for the 3 variables and produce accurately the chaotic behavior of the system.
109,062
109,062
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
The optimization with orthogonality has been shown useful in training deep neural networks (DNNs). To impose orthogonality on DNNs, both computational efficiency and stability are important. However, existing methods utilizing Riemannian optimization or hard constraints can only ensure stability while those using soft constraints can only improve efficiency. In this paper, we propose a novel method, named Feedback Gradient Descent (FGD), to our knowledge, the first work showing high efficiency and stability simultaneously. FGD induces orthogonality based on the simple yet indispensable Euler discretization of a continuous-time dynamical system on the tangent bundle of the Stiefel manifold. In particular, inspired by a numerical integration method on manifolds called Feedback Integrators, we propose to instantiate it on the tangent bundle of the Stiefel manifold for the first time. In the extensive image classification experiments, FGD comprehensively outperforms the existing state-of-the-art methods in terms of accuracy, efficiency, and stability.
109,063
109,063
How do Variational Autoencoders Learn? Insights from Representational Similarity
The ability of Variational Autoencoders (VAEs) to learn disentangled representations has made them popular for practical applications. However, their behaviour is not yet fully understood. For example, the questions of when they can provide disentangled representations, or suffer from posterior collapse are still areas of active research. Despite this, there are no layerwise comparisons of the representations learned by VAEs, which would further our understanding of these models. In this paper, we thus look into the internal behaviour of VAEs using representational similarity techniques. Specifically, using the CKA and Procrustes similarities, we found that the encoders' representations are learned long before the decoders', and this behaviour is independent of hyperparameters, learning objectives, and datasets. Moreover, the encoders' representations up to the mean and variance layers are similar across hyperparameters and learning objectives.
109,064
109,064
Automated Mobility Context Detection with Inertial Signals
Remote monitoring of motor functions is a powerful approach for health assessment, especially among the elderly population or among subjects affected by pathologies that negatively impact their walking capabilities. This is further supported by the continuous development of wearable sensor devices, which are getting progressively smaller, cheaper, and more energy efficient. The external environment and mobility context have an impact on walking performance, hence one of the biggest challenges when remotely analysing gait episodes is the ability to detect the context within which those episodes occurred. The primary goal of this paper is the investigation of context detection for remote monitoring of daily motor functions. We aim to understand whether inertial signals sampled with wearable accelerometers, provide reliable information to classify gait-related activities as either indoor or outdoor. We explore two different approaches to this task: (1) using gait descriptors and features extracted from the input inertial signals sampled during walking episodes, together with classic machine learning algorithms, and (2) treating the input inertial signals as time series data and leveraging end-to-end state-of-the-art time series classifiers. We directly compare the two approaches through a set of experiments based on data collected from 9 healthy individuals. Our results indicate that the indoor/outdoor context can be successfully derived from inertial data streams. We also observe that time series classification models achieve better accuracy than any other feature-based models, while preserving efficiency and ease of use.
109,065
109,065
Fault Detection for Non-Condensing Boilers using Simulated Building Automation System Sensor Data
Building performance has been shown to degrade significantly after commissioning, resulting in increased energy consumption and associated greenhouse gas emissions. Continuous Commissioning using existing sensor networks and IoT devices has the potential to minimize this waste by continually identifying system degradation and re-tuning control strategies to adapt to real building performance. Due to its significant contribution to greenhouse gas emissions, the performance of gas boiler systems for building heating is critical. A review of boiler performance studies has been used to develop a set of common faults and degraded performance conditions, which have been integrated into a MATLAB/Simulink emulator. This resulted in a labeled dataset with approximately 10,000 simulations of steady-state performance for each of 14 non-condensing boilers. The collected data is used for training and testing fault classification using K-nearest neighbour, Decision tree, Random Forest, and Support Vector Machines. The results show that the Support Vector Machines method gave the best prediction accuracy, consistently exceeding 90%, and generalization across multiple boilers is not possible due to low classification accuracy.
109,066
109,066
Human Emotion Classification based on EEG Signals Using Recurrent Neural Network And KNN
In human contact, emotion is very crucial. Attributes like words, voice intonation, facial expressions, and kinesics can all be used to portray one's feelings. However, brain-computer interface (BCI) devices have not yet reached the level required for emotion interpretation. With the rapid development of machine learning algorithms, dry electrode techniques, and different real-world applications of the brain-computer interface for normal individuals, emotion categorization from EEG data has recently gotten a lot of attention. Electroencephalogram (EEG) signals are a critical resource for these systems. The primary benefit of employing EEG signals is that they reflect true emotion and are easily resolved by computer systems. In this work, EEG signals associated with good, neutral, and negative emotions were identified using channel selection preprocessing. However, researchers had a limited grasp of the specifics of the link between various emotional states until now. To identify EEG signals, we used discrete wavelet transform and machine learning techniques such as recurrent neural network (RNN) and k-nearest neighbor (kNN) algorithm. Initially, the classifier methods were utilized for channel selection. As a result, final feature vectors were created by integrating the features of EEG segments from these channels. Using the RNN and kNN algorithms, the final feature vectors with connected positive, neutral, and negative emotions were categorized independently. The classification performance of both techniques is computed and compared. Using RNN and kNN, the average overall accuracies were 94.844 % and 93.438 %, respectively.
109,067
109,067
JUNO: Jump-Start Reinforcement Learning-based Node Selection for UWB Indoor Localization
Ultra-Wideband (UWB) is one of the key technologies empowering the Internet of Thing (IoT) concept to perform reliable, energy-efficient, and highly accurate monitoring, screening, and localization in indoor environments. Performance of UWB-based localization systems, however, can significantly degrade because of Non Line of Sight (NLoS) connections between a mobile user and UWB beacons. To mitigate the destructive effects of NLoS connections, we target development of a Reinforcement Learning (RL) anchor selection framework that can efficiently cope with the dynamic nature of indoor environments. Existing RL models in this context, however, lack the ability to generalize well to be used in a new setting. Moreover, it takes a long time for the conventional RL models to reach the optimal policy. To tackle these challenges, we propose the Jump-start RL-based Uwb NOde selection (JUNO) framework, which performs real-time location predictions without relying on complex NLoS identification/mitigation methods. The effectiveness of the proposed JUNO framework is evaluated in term of the location error, where the mobile user moves randomly through an ultra-dense indoor environment with a high chance of establishing NLoS connections. Simulation results corroborate the effectiveness of the proposed framework in comparison to its state-of-the-art counterparts.
109,068
109,068
Can You Still See Me?: Reconstructing Robot Operations Over End-to-End Encrypted Channels
Connected robots play a key role in Industry 4.0, providing automation and higher efficiency for many industrial workflows. Unfortunately, these robots can leak sensitive information regarding these operational workflows to remote adversaries. While there exists mandates for the use of end-to-end encryption for data transmission in such settings, it is entirely possible for passive adversaries to fingerprint and reconstruct entire workflows being carried out -- establishing an understanding of how facilities operate. In this paper, we investigate whether a remote attacker can accurately fingerprint robot movements and ultimately reconstruct operational workflows. Using a neural network approach to traffic analysis, we find that one can predict TLS-encrypted movements with around \textasciitilde60\% accuracy, increasing to near-perfect accuracy under realistic network conditions. Further, we also find that attackers can reconstruct warehousing workflows with similar success. Ultimately, simply adopting best cybersecurity practices is clearly not enough to stop even weak (passive) adversaries.
109,069
109,069
DNNR: Differential Nearest Neighbors Regression
K-nearest neighbors (KNN) is one of the earliest and most established algorithms in machine learning. For regression tasks, KNN averages the targets within a neighborhood which poses a number of challenges: the neighborhood definition is crucial for the predictive performance as neighbors might be selected based on uninformative features, and averaging does not account for how the function changes locally. We propose a novel method called Differential Nearest Neighbors Regression (DNNR) that addresses both issues simultaneously: during training, DNNR estimates local gradients to scale the features; during inference, it performs an n-th order Taylor approximation using estimated gradients. In a large-scale evaluation on over 250 datasets, we find that DNNR performs comparably to state-of-the-art gradient boosting methods and MLPs while maintaining the simplicity and transparency of KNN. This allows us to derive theoretical error bounds and inspect failures. In times that call for transparency of ML models, DNNR provides a good balance between performance and interpretability.
109,070
109,070
Conditional Visual Servoing for Multi-Step Tasks
Visual Servoing has been effectively used to move a robot into specific target locations or to track a recorded demonstration. It does not require manual programming, but it is typically limited to settings where one demonstration maps to one environment state. We propose a modular approach to extend visual servoing to scenarios with multiple demonstration sequences. We call this conditional servoing, as we choose the next demonstration conditioned on the observation of the robot. This method presents an appealing strategy to tackle multi-step problems, as individual demonstrations can be combined flexibly into a control policy. We propose different selection functions and compare them on a shape-sorting task in simulation. With the reprojection error yielding the best overall results, we implement this selection function on a real robot and show the efficacy of the proposed conditional servoing. For videos of our experiments, please check out our project page: https://lmb.informatik.uni-freiburg.de/projects/conditional_servoing/
109,071
109,071
On the Privacy of Decentralized Machine Learning
In this work, we carry out the first, in-depth, privacy analysis of Decentralized Learning -- a collaborative machine learning framework aimed at circumventing the main limitations of federated learning. We identify the decentralized learning properties that affect users' privacy and we introduce a suite of novel attacks for both passive and active decentralized adversaries. We demonstrate that, contrary to what is claimed by decentralized learning proposers, decentralized learning does not offer any security advantages over more practical approaches such as federated learning. Rather, it tends to degrade users' privacy by increasing the attack surface and enabling any user in the system to perform powerful privacy attacks such as gradient inversion, and even gain full control over honest users' local model. We also reveal that, given the state of the art in protections, privacy-preserving configurations of decentralized learning require abandoning any possible advantage over the federated setup, completely defeating the objective of the decentralized approach.
109,072
109,072
A Psychological Theory of Explainability
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
109,073
109,073
Utterance Weighted Multi-Dilation Temporal Convolutional Networks for Monaural Speech Dereverberation
Speech dereverberation is an important stage in many speech technology applications. Recent work in this area has been dominated by deep neural network models. Temporal convolutional networks (TCNs) are deep learning models that have been proposed for sequence modelling in the task of dereverberating speech. In this work a weighted multi-dilation depthwise-separable convolution is proposed to replace standard depthwise-separable convolutions in TCN models. This proposed convolution enables the TCN to dynamically focus on more or less local information in its receptive field at each convolutional block in the network. It is shown that this weighted multi-dilation temporal convolutional network (WD-TCN) consistently outperforms the TCN across various model configurations and using the WD-TCN model is a more parameter efficient method to improve the performance of the model than increasing the number of convolutional blocks. The best performance improvement over the baseline TCN is 0.55 dB scale-invariant signal-to-distortion ratio (SISDR) and the best performing WD-TCN model attains 12.26 dB SISDR on the WHAMR dataset.
109,074
109,074
Dynamic Recognition of Speakers for Consent Management by Contrastive Embedding Replay
Voice assistants record sound and can overhear conversations. Thus, a consent management mechanism is desirable such that users can express their wish to be recorded or not. Consent management can be implemented using speaker recognition; users that do not give consent enrol their voice and all further recordings of these users is subsequently not processed. Building speaker recognition based consent management is challenging due to the dynamic nature of the problem, required scalability for large number of speakers, and need for fast speaker recognition with high accuracy. This paper describes a speaker recognition based consent management system addressing the aforementioned challenges. A fully supervised batch contrastive learning is applied to learn the underlying speaker equivariance inductive bias during the training on the set of speakers noting recording dissent. Speakers that do not provide consent are grouped in buckets which are trained continuously. The embeddings are contrastively learned for speakers in their buckets during training and act later as a replay buffer for classification. The buckets are progressively registered during training and a novel multi-strided random sampling of the contrastive embedding replay buffer is proposed. Buckets are contrastively trained for a few steps only in each iteration and replayed for classification progressively leading to fast convergence. An algorithm for fast and dynamic registration and removal of speakers in buckets is described. The evaluation results show that the proposed approach provides the desired fast and dynamic solution for consent management and outperforms existing approaches in terms of convergence speed and adaptive capabilities as well as verification performance during inference.
109,075
109,075
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
109,076
109,076
Application of Graph Based Features in Computer Aided Diagnosis for Histopathological Image Classification of Gastric Cancer
The gold standard for gastric cancer detection is gastric histopathological image analysis, but there are certain drawbacks in the existing histopathological detection and diagnosis. In this paper, based on the study of computer aided diagnosis system, graph based features are applied to gastric cancer histopathology microscopic image analysis, and a classifier is used to classify gastric cancer cells from benign cells. Firstly, image segmentation is performed, and after finding the region, cell nuclei are extracted using the k-means method, the minimum spanning tree (MST) is drawn, and graph based features of the MST are extracted. The graph based features are then put into the classifier for classification. In this study, different segmentation methods are compared in the tissue segmentation stage, among which are Level-Set, Otsu thresholding, watershed, SegNet, U-Net and Trans-U-Net segmentation; Graph based features, Red, Green, Blue features, Grey-Level Co-occurrence Matrix features, Histograms of Oriented Gradient features and Local Binary Patterns features are compared in the feature extraction stage; Radial Basis Function (RBF) Support Vector Machine (SVM), Linear SVM, Artificial Neural Network, Random Forests, k-NearestNeighbor, VGG16, and Inception-V3 are compared in the classifier stage. It is found that using U-Net to segment tissue areas, then extracting graph based features, and finally using RBF SVM classifier gives the optimal results with 94.29%.
109,077
109,077
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
109,078
109,078
Experimentally realized in situ backpropagation for deep learning in nanophotonic neural networks
Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
109,079
109,079
Recovering Private Text in Federated Learning of Language Models
Federated learning allows distributed users to collaboratively train a model while keeping each user's data private. Recently, a growing body of work has demonstrated that an eavesdropping attacker can effectively recover image data from gradients transmitted during federated learning. However, little progress has been made in recovering text data. In this paper, we present a novel attack method FILM for federated learning of language models -- for the first time, we show the feasibility of recovering text from large batch sizes of up to 128 sentences. Different from image-recovery methods which are optimized to match gradients, we take a distinct approach that first identifies a set of words from gradients and then directly reconstructs sentences based on beam search and a prior-based reordering strategy. The key insight of our attack is to leverage either prior knowledge in pre-trained language models or memorization during training. Despite its simplicity, we demonstrate that FILM can work well with several large-scale datasets -- it can extract single sentences with high fidelity even for large batch sizes and recover multiple sentences from the batch successfully if the attack is applied iteratively. We hope our results can motivate future work in developing stronger attacks as well as new defense methods for training language models in federated learning. Our code is publicly available at https://github.com/Princeton-SysML/FILM.
109,080
109,080
Do Neural Networks Compress Manifolds Optimally?
Artificial Neural-Network-based (ANN-based) lossy compressors have recently obtained striking results on several sources. Their success may be ascribed to an ability to identify the structure of low-dimensional manifolds in high-dimensional ambient spaces. Indeed, prior work has shown that ANN-based compressors can achieve the optimal entropy-distortion curve for some such sources. In contrast, we determine the optimal entropy-distortion tradeoffs for two low-dimensional manifolds with circular structure and show that state-of-the-art ANN-based compressors fail to optimally compress the sources, especially at high rates.
109,081
109,081
Supervised Learning for Coverage-Directed Test Selection in Simulation-Based Verification
Constrained random test generation is one the most widely adopted methods for generating stimuli for simulation-based verification. Randomness leads to test diversity, but tests tend to repeatedly exercise the same design logic. Constraints are written (typically manually) to bias random tests towards interesting, hard-to-reach, and yet-untested logic. However, as verification progresses, most constrained random tests yield little to no effect on functional coverage. If stimuli generation consumes significantly less resources than simulation, then a better approach involves randomly generating a large number tests, selecting the most effective subset, and only simulating that subset. In this paper, we introduce a novel method for automatic constraint extraction and test selection. This method, which we call coverage-directed test selection, is based on supervised learning from coverage feedback. Our method biases selection towards tests that have a high probability of increasing functional coverage, and prioritises them for simulation. We show how coverage-directed test selection can reduce manual constraint writing, prioritise effective tests, reduce verification resource consumption, and accelerate coverage closure on a large, real-life industrial hardware design.
109,082
109,082
High-dimensional additive Gaussian processes under monotonicity constraints
We introduce an additive Gaussian process framework accounting for monotonicity constraints and scalable to high dimensions. Our contributions are threefold. First, we show that our framework enables to satisfy the constraints everywhere in the input space. We also show that more general componentwise linear inequality constraints can be handled similarly, such as componentwise convexity. Second, we propose the additive MaxMod algorithm for sequential dimension reduction. By sequentially maximizing a squared-norm criterion, MaxMod identifies the active input dimensions and refines the most important ones. This criterion can be computed explicitly at a linear cost. Finally, we provide open-source codes for our full framework. We demonstrate the performance and scalability of the methodology in several synthetic examples with hundreds of dimensions under monotonicity constraints as well as on a real-world flood application.
109,083
109,083
High-resolution landscape-scale biomass mapping using a spatiotemporal patchwork of LiDAR coverages
Estimating forest aboveground biomass at fine spatial scales has become increasingly important for greenhouse gas estimation, monitoring, and verification efforts to mitigate climate change. Airborne LiDAR continues to be a valuable source of remote sensing data for estimating aboveground biomass. However airborne LiDAR collections may take place at local or regional scales covering irregular, non-contiguous footprints, resulting in a 'patchwork' of different landscape segments at different points in time. Here we addressed common obstacles including selection of training data, the investigation of regional or coverage specific patterns in bias and error, and map agreement, and model-based precision assessments at multiple scales. Three machine learning algorithms and an ensemble model were trained using field inventory data (FIA), airborne LiDAR, and topographic, climatic and cadastral geodata. Using strict selection criteria, 801 FIA plots were selected with co-located point clouds drawn from a patchwork of 17 leaf-off LiDAR coverages 2014-2019). Our ensemble model created 30m AGB prediction surfaces within a predictor-defined area of applicability (98% of LiDAR coverage) and resulting AGB predictions were compared with FIA plot-level and areal estimates at multiple scales of aggregation. Our model was overall accurate (% RMSE 13-33%), had very low bias (MBE $\leq$ $\pm$5 Mg ha$^{-1}$), explained most field-observed variation (R$^2$ 0.74-0.93), produced estimates that were both largely consistent with FIA's aggregate summaries (86% of estimates within 95% CI), as well as precise when aggregated to arbitrary small-areas (mean bootstrap standard error 0.37 Mg ha$^{-1}$). We share practical solutions to challenges faced when using spatiotemporal patchworks of LiDAR to meet growing needs for biomass prediction and mapping, and applications in carbon accounting and ecosystem stewardship.
109,084
109,084
Disentangling Visual Embeddings for Attributes and Objects
We study the problem of compositional zero-shot learning for object-attribute recognition. Prior works use visual features extracted with a backbone network, pre-trained for object classification and thus do not capture the subtly distinct features associated with attributes. To overcome this challenge, these studies employ supervision from the linguistic space, and use pre-trained word embeddings to better separate and compose attribute-object pairs for recognition. Analogous to linguistic embedding space, which already has unique and agnostic embeddings for object and attribute, we shift the focus back to the visual space and propose a novel architecture that can disentangle attribute and object features in the visual space. We use visual decomposed features to hallucinate embeddings that are representative for the seen and novel compositions to better regularize the learning of our model. Extensive experiments show that our method outperforms existing work with significant margin on three datasets: MIT-States, UT-Zappos, and a new benchmark created based on VAW. The code, models, and dataset splits are publicly available at https://github.com/nirat1606/OADis.
109,085
109,085
Learning Quantum Entanglement Distillation with Noisy Classical Communications
Quantum networking relies on the management and exploitation of entanglement. Practical sources of entangled qubits are imperfect, producing mixed quantum state with reduced fidelity with respect to ideal Bell pairs. Therefore, an important primitive for quantum networking is entanglement distillation, whose goal is to enhance the fidelity of entangled qubits through local operations and classical communication (LOCC). Existing distillation protocols assume the availability of ideal, noiseless, communication channels. In this paper, we study the case in which communication takes place over noisy binary symmetric channels. We propose to implement local processing through parameterized quantum circuits (PQCs) that are optimized to maximize the average fidelity, while accounting for communication errors. The introduced approach, Noise Aware-LOCCNet (NA-LOCCNet), is shown to have significant advantages over existing protocols designed for noiseless communications.
109,086
109,086
Strategizing against Learners in Bayesian Games
We study repeated two-player games where one of the players, the learner, employs a no-regret learning strategy, while the other, the optimizer, is a rational utility maximizer. We consider general Bayesian games, where the payoffs of both the optimizer and the learner could depend on the type, which is drawn from a publicly known distribution, but revealed privately to the learner. We address the following questions: (a) what is the bare minimum that the optimizer can guarantee to obtain regardless of the no-regret learning algorithm employed by the learner? (b) are there learning algorithms that cap the optimizer payoff at this minimum? (c) can these algorithms be implemented efficiently? While building this theory of optimizer-learner interactions, we define a new combinatorial notion of regret called polytope swap regret, that could be of independent interest in other settings.
109,087
109,087
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
The curation of large-scale medical datasets from multiple institutions necessary for training deep learning models is challenged by the difficulty in sharing patient data with privacy-preserving. Federated learning (FL), a paradigm that enables privacy-protected collaborative learning among different institutions, is a promising solution to this challenge. However, FL generally suffers from performance deterioration due to heterogeneous data distributions across institutions and the lack of quality labeled data. In this paper, we present a robust and label-efficient self-supervised FL framework for medical image analysis. Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline (i.e., pre-training the models directly on the decentralized target task datasets). Built upon the recent success of Vision Transformers, we employ masked image encoding tasks for self-supervised pre-training, to facilitate more effective knowledge transfer to downstream federated models. Extensive empirical results on simulated and real-world medical imaging federated datasets show that self-supervised pre-training largely benefits the robustness of federated models against various degrees of data heterogeneity. Notably, under severe data heterogeneity, our method, without relying on any additional pre-training data, achieves an improvement of 5.06%, 1.53% and 4.58% in test accuracy on retinal, dermatology and chest X-ray classification compared with the supervised baseline with ImageNet pre-training. Moreover, we show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios, surpassing the supervised baseline by 10.36% and the semi-supervised FL method by 8.3% in test accuracy.
109,088
109,088
The Power of Reuse: A Multi-Scale Transformer Model for Structural Dynamic Segmentation in Symbolic Music Generation
Symbolic Music Generation relies on the contextual representation capabilities of the generative model, where the most prevalent approach is the Transformer-based model. Not only that, the learning of long-term context is also related to the dynamic segmentation of musical structures, i.e. intro, verse and chorus, which is currently overlooked by the research community. In this paper, we propose a multi-scale Transformer, which uses coarse-decoder and fine-decoders to model the contexts at the global and section-level, respectively. Concretely, we designed a Fragment Scope Localization layer to syncopate the music into sections, which were later used to pre-train fine-decoders. After that, we designed a Music Style Normalization layer to transfer the style information from the original sections to the generated sections to achieve consistency in music style. The generated sections are combined in the aggregation layer and fine-tuned by the coarse decoder. Our model is evaluated on two open MIDI datasets, and experiments show that our model outperforms the best contemporary symbolic music generative models. More excitingly, visual evaluation shows that our model is superior in melody reuse, resulting in more realistic music.
109,089
109,089
CV4Code: Sourcecode Understanding via Visual Code Representations
We present CV4Code, a compact and effective computer vision method for sourcecode understanding. Our method leverages the contextual and the structural information available from the code snippet by treating each snippet as a two-dimensional image, which naturally encodes the context and retains the underlying structural information through an explicit spatial representation. To codify snippets as images, we propose an ASCII codepoint-based image representation that facilitates fast generation of sourcecode images and eliminates redundancy in the encoding that would arise from an RGB pixel representation. Furthermore, as sourcecode is treated as images, neither lexical analysis (tokenisation) nor syntax tree parsing is required, which makes the proposed method agnostic to any particular programming language and lightweight from the application pipeline point of view. CV4Code can even featurise syntactically incorrect code which is not possible from methods that depend on the Abstract Syntax Tree (AST). We demonstrate the effectiveness of CV4Code by learning Convolutional and Transformer networks to predict the functional task, i.e. the problem it solves, of the source code directly from its two-dimensional representation, and using an embedding from its latent space to derive a similarity score of two code snippets in a retrieval setup. Experimental results show that our approach achieves state-of-the-art performance in comparison to other methods with the same task and data configurations. For the first time we show the benefits of treating sourcecode understanding as a form of image processing task.
109,090
109,090
Hierarchical Distribution-Aware Testing of Deep Learning
With its growing use in safety/security-critical applications, Deep Learning (DL) has raised increasing concerns regarding its dependability. In particular, DL has a notorious problem of lacking robustness. Despite recent efforts made in detecting Adversarial Examples (AEs) via state-of-the-art attacking and testing methods, they are normally input distribution agnostic and/or disregard the perception quality of AEs. Consequently, the detected AEs are irrelevant inputs in the application context or unnatural/unrealistic that can be easily noticed by humans. This may lead to a limited effect on improving the DL model's dependability, as the testing budget is likely to be wasted on detecting AEs that are encountered very rarely in its real-life operations. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the input distribution and the perceptual quality of inputs. The two considerations are encoded by a novel hierarchical mechanism. First, at the feature level, the input data distribution is extracted and approximated by data compression techniques and probability density estimators. Such quantified feature level distribution, together with indicators that are highly correlated with local robustness, are considered in selecting test seeds. Given a test seed, we then develop a two-step genetic algorithm for local test case generation at the pixel level, in which two fitness functions work alternatively to control the quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions at feature and pixel levels is superior to state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only the quality of detected AEs but also improving the overall robustness of the DL model under testing.
109,091
109,091
Quantum Transfer Learning for Wi-Fi Sensing
Beyond data communications, commercial-off-the-shelf Wi-Fi devices can be used to monitor human activities, track device locomotion, and sense the ambient environment. In particular, spatial beam attributes that are inherently available in the 60-GHz IEEE 802.11ad/ay standards have shown to be effective in terms of overhead and channel measurement granularity for these indoor sensing tasks. In this paper, we investigate transfer learning to mitigate domain shift in human monitoring tasks when Wi-Fi settings and environments change over time. As a proof-of-concept study, we consider quantum neural networks (QNN) as well as classical deep neural networks (DNN) for the future quantum-ready society. The effectiveness of both DNN and QNN is validated by an in-house experiment for human pose recognition, achieving greater than 90% accuracy with a limited data size.
109,092
109,092
Deep Neural Network Classifier for Multi-dimensional Functional Data
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data. Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function. Unlike the popular functional discriminant analysis approaches which rely on Gaussian assumption, the proposed FDNN approach applies to general non-Gaussian multi-dimensional functional data. Moreover, when the log density ratio possesses a locally connected functional modular structure, we show that FDNN achieves minimax optimality. The superiority of our approach is demonstrated through both simulated and real-world datasets.
109,093
109,093
Universal characteristics of deep neural network loss surfaces from random matrix theory
This paper considers several aspects of random matrix universality in deep neural networks. Motivated by recent experimental work, we use universal properties of random matrices related to local statistics to derive practical implications for deep neural networks based on a realistic model of their Hessians. In particular we derive universal aspects of outliers in the spectra of deep neural networks and demonstrate the important role of random matrix local laws in popular pre-conditioning gradient descent algorithms. We also present insights into deep neural network loss surfaces from quite general arguments based on tools from statistical physics and random matrix theory.
109,094
109,094
Variational Quantum Compressed Sensing for Joint User and Channel State Acquisition in Grant-Free Device Access Systems
This paper introduces a new quantum computing framework integrated with a two-step compressed sensing technique, applied to a joint channel estimation and user identification problem. We propose a variational quantum circuit (VQC) design as a new denoising solution. For a practical grant-free communications system having correlated device activities, variational quantum parameters for Pauli rotation gates in the proposed VQC system are optimized to facilitate to the non-linear estimation. Numerical results show that the VQC method can outperform modern compressed sensing techniques using an element-wise denoiser.
109,095
109,095
OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource Language Pair for Low-Resource Sentence Retrieval
Aligning parallel sentences in multilingual corpora is essential to curating data for downstream applications such as Machine Translation. In this work, we present OneAligner, an alignment model specially designed for sentence retrieval tasks. This model is able to train on only one language pair and transfers, in a cross-lingual fashion, to low-resource language pairs with negligible degradation in performance. When trained with all language pairs of a large-scale parallel multilingual corpus (OPUS-100), this model achieves the state-of-the-art result on the Tateoba dataset, outperforming an equally-sized previous model by 8.0 points in accuracy while using less than 0.6% of their parallel data. When finetuned on a single rich-resource language pair, be it English-centered or not, our model is able to match the performance of the ones finetuned on all language pairs under the same data budget with less than 2.0 points decrease in accuracy. Furthermore, with the same setup, scaling up the number of rich-resource language pairs monotonically improves the performance, reaching a minimum of 0.4 points discrepancy in accuracy, making it less mandatory to collect any low-resource parallel data. Finally, we conclude through empirical results and analyses that the performance of the sentence alignment task depends mostly on the monolingual and parallel data size, up to a certain size threshold, rather than on what language pairs are used for training or evaluation.
109,096
109,096
Multibit Tries Packet Classification with Deep Reinforcement Learning
High performance packet classification is a key component to support scalable network applications like firewalls, intrusion detection, and differentiated services. With ever increasing in the line-rate in core networks, it becomes a great challenge to design a scalable and high performance packet classification solution using hand-tuned heuristics approaches. In this paper, we present a scalable learning-based packet classification engine and its performance evaluation. By exploiting the sparsity of ruleset, our algorithm uses a few effective bits (EBs) to extract a large number of candidate rules with just a few of memory access. These effective bits are learned with deep reinforcement learning and they are used to create a bitmap to filter out the majority of rules which do not need to be full-matched to improve the online system performance. Moreover, our EBs learning-based selection method is independent of the ruleset, which can be applied to varying rulesets. Our multibit tries classification engine outperforms lookup time both in worst and average case by 55% and reduce memory footprint, compared to traditional decision tree without EBs.
109,097
109,097
All-Photonic Artificial Neural Network Processor Via Non-linear Optics
Optics and photonics has recently captured interest as a platform to accelerate linear matrix processing, that has been deemed as a bottleneck in traditional digital electronic architectures. In this paper, we propose an all-photonic artificial neural network processor wherein information is encoded in the amplitudes of frequency modes that act as neurons. The weights among connected layers are encoded in the amplitude of controlled frequency modes that act as pumps. Interaction among these modes for information processing is enabled by non-linear optical processes. Both the matrix multiplication and element-wise activation functions are performed through coherent processes, enabling the direct representation of negative and complex numbers without the use of detectors or digital electronics. Via numerical simulations, we show that our design achieves a performance commensurate with present-day state-of-the-art computational networks on image-classification benchmarks. Our architecture is unique in providing a completely unitary, reversible mode of computation. Additionally, the computational speed increases with the power of the pumps to arbitrarily high rates, as long as the circuitry can sustain the higher optical power.
109,098
109,098
Bagged Polynomial Regression and Neural Networks
Series and polynomial regression are able to approximate the same function classes as neural networks. However, these methods are rarely used in practice, although they offer more interpretability than neural networks. In this paper, we show that a potential reason for this is the slow convergence rate of polynomial regression estimators and propose the use of bagged polynomial regression (BPR) as an attractive alternative to neural networks. Theoretically, we derive new finite sample and asymptotic $L^2$ convergence rates for series estimators. We show that the rates can be improved in smooth settings by splitting the feature space and generating polynomial features separately for each partition. Empirically, we show that our proposed estimator, the BPR, can perform as well as more complex models with more parameters. Our estimator also performs close to state-of-the-art prediction methods in the benchmark MNIST handwritten digit dataset.
109,099
109,099
Learning to Learn Quantum Turbo Detection
This paper investigates a turbo receiver employing a variational quantum circuit (VQC). The VQC is configured with an ansatz of the quantum approximate optimization algorithm (QAOA). We propose a 'learning to learn' (L2L) framework to optimize the turbo VQC decoder such that high fidelity soft-decision output is generated. Besides demonstrating the proposed algorithm's computational complexity, we show that the L2L VQC turbo decoder can achieve an excellent performance close to the optimal maximum-likelihood performance in a multiple-input multiple-output system.