Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
3,700
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of Russo and Van Roy [2016] to the contextual setting by introducing a new concept of information ratio based on the mutual information between the unknown model parameter and the observed loss. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with d-dimensional parameters, K actions, and Lipschitz logits, for which we provide a $\widetilde{O}(\sqrt{dKT})$ regret upper-bound that does not depend on the smallest slope of the sigmoid link function.
3,701
Federated Semi-Supervised Learning with Prototypical Networks
With the increasing computing power of edge devices, Federated Learning (FL) emerges to enable model training without privacy concerns. The majority of existing studies assume the data are fully labeled on the client side. In practice, however, the amount of labeled data is often limited. Recently, federated semi-supervised learning (FSSL) is explored as a way to effectively utilize unlabeled data during training. In this work, we propose ProtoFSSL, a novel FSSL approach based on prototypical networks. In ProtoFSSL, clients share knowledge with each other via lightweight prototypes, which prevents the local models from diverging. For computing loss on unlabeled data, each client creates accurate pseudo-labels based on shared prototypes. Jointly with labeled data, the pseudo-labels provide training signals for local prototypes. Compared to a FSSL approach based on weight sharing, the prototype-based inter-client knowledge sharing significantly reduces both communication and computation costs, enabling more frequent knowledge sharing between more clients for better accuracy. In multiple datasets, ProtoFSSL results in higher accuracy compared to the recent FSSL methods with and without knowledge sharing, such as FixMatch, FedRGD, and FedMatch. On SVHN dataset, ProtoFSSL performs comparably to fully supervised FL methods.
3,702
Fast Causal Orientation Learning in Directed Acyclic Graphs
Causal relationships among a set of variables are commonly represented by a directed acyclic graph. The orientations of some edges in the causal DAG can be discovered from observational/interventional data. Further edges can be oriented by iteratively applying so-called Meek rules. Inferring edges' orientations from some previously oriented edges, which we call Causal Orientation Learning (COL), is a common problem in various causal discovery tasks. In these tasks, it is often required to solve multiple COL problems and therefore applying Meek rules could be time-consuming. Motivated by Meek rules, we introduce Meek functions that can be utilized in solving COL problems. In particular, we show that these functions have some desirable properties, enabling us to speed up the process of applying Meek rules. In particular, we propose a dynamic programming (DP) based method to apply Meek functions. Moreover, based on the proposed DP method, we present a lower bound on the number of edges that can be oriented as a result of intervention. We also propose a method to check whether some oriented edges belong to a causal DAG. Experimental results show that the proposed methods can outperform previous work in several causal discovery tasks in terms of running-time.
3,703
Dynamic Domain Generalization
Domain generalization (DG) is a fundamental yet very challenging research topic in machine learning. The existing arts mainly focus on learning domain-invariant features with limited source domains in a static model. Unfortunately, there is a lack of training-free mechanism to adjust the model when generalized to the agnostic target domains. To tackle this problem, we develop a brand-new DG variant, namely Dynamic Domain Generalization (DDG), in which the model learns to twist the network parameters to adapt the data from different domains. Specifically, we leverage a meta-adjuster to twist the network parameters based on the static model with respect to different data from different domains. In this way, the static model is optimized to learn domain-shared features, while the meta-adjuster is designed to learn domain-specific features. To enable this process, DomainMix is exploited to simulate data from diverse domains during teaching the meta-adjuster to adapt to the upcoming agnostic target domains. This learning mechanism urges the model to generalize to different agnostic target domains via adjusting the model without training. Extensive experiments demonstrate the effectiveness of our proposed method. Code is available at: https://github.com/MetaVisionLab/DDG
3,704
(De-)Randomized Smoothing for Decision Stump Ensembles
Tree-based models are used in many high-stakes application domains such as finance and medicine, where robustness and interpretability are of utmost importance. Yet, methods for improving and certifying their robustness are severely under-explored, in contrast to those focusing on neural networks. Targeting this important challenge, we propose deterministic smoothing for decision stump ensembles. Whereas most prior work on randomized smoothing focuses on evaluating arbitrary base models approximately under input randomization, the key insight of our work is that decision stump ensembles enable exact yet efficient evaluation via dynamic programming. Importantly, we obtain deterministic robustness certificates, even jointly over numerical and categorical features, a setting ubiquitous in the real world. Further, we derive an MLE-optimal training method for smoothed decision stumps under randomization and propose two boosting approaches to improve their provable robustness. An extensive experimental evaluation shows that our approach yields significantly higher certified accuracies than the state-of-the-art for tree-based models. We release all code and trained models at ANONYMIZED.
3,705
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Faced with problems of increasing complexity, recent research in Bayesian Optimisation (BO) has focused on adapting deep probabilistic models as flexible alternatives to Gaussian Processes (GPs). In a similar vein, this paper investigates the feasibility of employing state-of-the-art probabilistic transformers in BO. Upon further investigation, we observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation. First, we notice that these models are trained on uniformly distributed inputs, which impairs predictive accuracy on non-uniform data - a setting arising from any typical BO loop due to exploration-exploitation trade-offs. Second, we realise that training losses (e.g., cross-entropy) only asymptotically guarantee accurate posterior approximations, i.e., after arriving at the global optimum, which generally cannot be ensured. At the stationary points of the loss function, however, we observe a degradation in predictive performance especially in exploratory regions of the input space. To tackle these shortcomings we introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance. In a large panel of experiments, we demonstrate, for the first time, that one transformer pre-trained on data sampled from random GP priors produces competitive results on 16 benchmark black-boxes compared to GP-based BO. Since our model is only pre-trained once and used in all tasks without any retraining and/or fine-tuning, we report an order of magnitude time-reduction, while matching and sometimes outperforming GPs.
3,706
Bias Reduction via Cooperative Bargaining in Synthetic Graph Dataset Generation
In general, to draw robust conclusions from a dataset, all the analyzed population must be represented on said dataset. Having a dataset that does not fulfill this condition normally leads to selection bias. Additionally, graphs have been used to model a wide variety of problems. Although synthetic graphs can be used to augment available real graph datasets to overcome selection bias, the generation of unbiased synthetic datasets is complex with current tools. In this work, we propose a method to find a synthetic graph dataset that has an even representation of graphs with different metrics. The resulting dataset can then be used, among others, for benchmarking graph processing techniques as the accuracy of different Graph Neural Network (GNN) models or the speedups obtained by different graph processing acceleration frameworks.
3,707
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
While Bayesian neural networks (BNNs) provide a sound and principled alternative to standard neural networks, an artificial sharpening of the posterior usually needs to be applied to reach comparable performance. This is in stark contrast to theory, dictating that given an adequate prior and a well-specified model, the untempered Bayesian posterior should achieve optimal performance. Despite the community's extensive efforts, the observed gains in performance still remain disputed with several plausible causes pointing at its origin. While data augmentation has been empirically recognized as one of the main drivers of this effect, a theoretical account of its role, on the other hand, is largely missing. In this work we identify two interlaced factors concurrently influencing the strength of the cold posterior effect, namely the correlated nature of augmentations and the degree of invariance of the employed model to such transformations. By theoretically analyzing simplified settings, we prove that tempering implicitly reduces the misspecification arising from modeling augmentations as i.i.d. data. The temperature mimics the role of the effective sample size, reflecting the gain in information provided by the augmentations. We corroborate our theoretical findings with extensive empirical evaluations, scaling to realistic BNNs. By relying on the framework of group convolutions, we experiment with models of varying inherent degree of invariance, confirming its hypothesized relationship with the optimal temperature.
3,708
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning. Despite their extraordinary predictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs, rendering these models vulnerable to graph structural attacks and with limited capacity in generalizing to graphs of varied homophily levels. Although many methods have been proposed to improve the robustness of GNN models, most of these techniques are restricted to the spatial domain and employ complicated defense mechanisms, such as learning new graph structures or calculating edge attentions. In this paper, we study the problem of designing simple and robust GNN models in the spectral domain. We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter. Based on our theoretical analysis in both spatial and spectral domains, we demonstrate that EvenNet outperforms full-order models in generalizing across homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors improves the robustness of GNNs. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet outperforms existing defense models against structural attacks without introducing additional computational costs and maintains competitiveness in traditional node classification tasks on homophilic and heterophilic graphs.
3,709
Transformers from an Optimization Perspective
Deep learning models such as the Transformer are often constructed by heuristics and experience. To provide a complementary foundation, in this work we study the following problem: Is it possible to find an energy function underlying the Transformer model, such that descent steps along this energy correspond with the Transformer forward pass? By finding such a function, we can reinterpret Transformers as the unfolding of an interpretable optimization process across iterations. This unfolding perspective has been frequently adopted in the past to elucidate more straightforward deep models such as MLPs and CNNs; however, it has thus far remained elusive obtaining a similar equivalence for more complex models with self-attention mechanisms like the Transformer. To this end, we first outline several major obstacles before providing companion techniques to at least partially address them, demonstrating for the first time a close association between energy function minimization and deep layers with self-attention. This interpretation contributes to our intuition and understanding of Transformers, while potentially laying the ground-work for new model designs.
3,710
A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit Card Fraud Detection
Detection of a Fraud transaction on credit cards became one of the major problems for financial institutions, organizations and companies. As the global financial system is highly connected to non-cash transactions and online operations fraud makers invent more effective ways to access customers' finances. The main problem in credit card fraud detection is that the number of fraud transactions is significantly lower than genuine ones. The aim of the paper is to implement new techniques, which contains of under-sampling algorithms, K-nearest Neighbor Algorithm (KNN) and Deep Neural Network (KNN) on new obtained dataset. The performance evaluation showed that DNN model gives precise high accuracy (98.12%), which shows the good ability of presented method to detect fraudulent transactions.
3,711
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
3,712
TraClets: Harnessing the power of computer vision for trajectory classification
Due to the advent of new mobile devices and tracking sensors in recent years, huge amounts of data are being produced every day. Therefore, novel methodologies need to emerge that dive through this vast sea of information and generate insights and meaningful information. To this end, researchers have developed several trajectory classification algorithms over the years that are able to annotate tracking data. Similarly, in this research, a novel methodology is presented that exploits image representations of trajectories, called TraClets, in order to classify trajectories in an intuitive humans way, through computer vision techniques. Several real-world datasets are used to evaluate the proposed approach and compare its classification performance to other state-of-the-art trajectory classification algorithms. Experimental results demonstrate that TraClets achieves a classification performance that is comparable to, or in most cases, better than the state-of-the-art, acting as a universal, high-accuracy approach for trajectory classification.
3,713
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). To handle performance degradation caused by domain shifts that are difficult to detect or too frequent to adapt, domain generalization techniques are preferred. However, currently available datasets have difficulties in evaluating these techniques, such as limited number of values for parameters that cause domain shifts (domain shift parameters). In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. We prepared at least two values for the domain shift parameters in the source domain. Also, we introduced domain shifts that can be difficult to notice. Experimental results using two baseline systems indicate that the dataset reproduces the domain shift scenarios and is useful for benchmarking domain generalization techniques.
3,714
Comparison of Deep Learning Segmentation and Multigrader-annotated Mandibular Canals of Multicenter CBCT scans
Deep learning approach has been demonstrated to automatically segment the bilateral mandibular canals from CBCT scans, yet systematic studies of its clinical and technical validation are scarce. To validate the mandibular canal localization accuracy of a deep learning system (DLS) we trained it with 982 CBCT scans and evaluated using 150 scans of five scanners from clinical workflow patients of European and Southeast Asian Institutes, annotated by four radiologists. The interobserver variability was compared to the variability between the DLS and the radiologists. In addition, the generalization of DLS to CBCT scans from scanners not used in the training data was examined to evaluate the out-of-distribution generalization capability. The DLS had lower variability to the radiologists than the interobserver variability between them and it was able to generalize to three new devices. For the radiologists' consensus segmentation, used as gold standard, the DLS had a symmetric mean curve distance of 0.39 mm compared to those of the individual radiologists with 0.62 mm, 0.55 mm, 0.47 mm, and 0.42 mm. The DLS showed comparable or slightly better performance in the segmentation of the mandibular canal with the radiologists and generalization capability to new scanners.
3,715
Probabilistic Systems with Hidden State and Unobservable Transitions
We consider probabilistic systems with hidden state and unobservable transitions, an extension of Hidden Markov Models (HMMs) that in particular admits unobservable {\epsilon}-transitions (also called null transitions), allowing state changes of which the observer is unaware. Due to the presence of {\epsilon}-loops this additional feature complicates the theory and requires to carefully set up the corresponding probability space and random variables. In particular we present an algorithm for determining the most probable explanation given an observation (a generalization of the Viterbi algorithm for HMMs) and a method for parameter learning that adapts the probabilities of a given model based on an observation (a generalization of the Baum-Welch algorithm). The latter algorithm guarantees that the given observation has a higher (or equal) probability after adjustment of the parameters and its correctness can be derived directly from the so-called EM algorithm.
3,716
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm is unaware of the causal discovery step. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph prior as an inductive bias. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
3,717
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
It is well-known that modern neural networks are vulnerable to adversarial examples. To mitigate this problem, a series of robust learning algorithms have been proposed. However, although the robust training error can be near zero via some methods, all existing algorithms lead to a high robust generalization error. In this paper, we provide a theoretical understanding of this puzzling phenomenon from the perspective of expressive power for deep neural networks. Specifically, for binary classification problems with well-separated data, we show that, for ReLU networks, while mild over-parameterization is sufficient for high robust training accuracy, there exists a constant robust generalization gap unless the size of the neural network is exponential in the data dimension $d$. Even if the data is linear separable, which means achieving low clean generalization error is easy, we can still prove an $\exp({\Omega}(d))$ lower bound for robust generalization. Moreover, we establish an improved upper bound of $\exp({\mathcal{O}}(k))$ for the network size to achieve low robust generalization error when the data lies on a manifold with intrinsic dimension $k$ ($k \ll d$). Nonetheless, we also have a lower bound that grows exponentially with respect to $k$ -- the curse of dimensionality is inevitable. By demonstrating an exponential separation between the network size for achieving low robust training and generalization error, our results reveal that the hardness of robust generalization may stem from the expressive power of practical models.
3,718
On the Convergence of Semi-Relaxed Sinkhorn with Marginal Constraint and OT Distance Gaps
This paper presents consideration of the Semi-Relaxed Sinkhorn (SR-Sinkhorn) algorithm for the semi-relaxed optimal transport (SROT) problem, which relaxes one marginal constraint of the standard OT problem. For evaluation of how the constraint relaxation affects the algorithm behavior and solution, it is vitally necessary to present the theoretical convergence analysis in terms not only of the functional value gap, but also of the marginal constraint gap as well as the OT distance gap. However, no existing work has addressed all analyses simultaneously. To this end, this paper presents a comprehensive convergence analysis for SR-Sinkhorn. After presenting the $\epsilon$-approximation of the functional value gap based on a new proof strategy and exploiting this proof strategy, we give the upper bound of the marginal constraint gap. We also provide its convergence to the $\epsilon$-approximation when two distributions are in the probability simplex. Furthermore, the convergence analysis of the OT distance gap to the $\epsilon$-approximation is given as assisted by the obtained marginal constraint gap. The latter two theoretical results are the first results presented in the literature related to the SROT problem.
3,719
Raising the Bar in Graph-level Anomaly Detection
Graph-level anomaly detection has become a critical topic in diverse areas, such as financial fraud detection and detecting anomalous activities in social networks. While most research has focused on anomaly detection for visual data such as images, where high detection accuracies have been obtained, existing deep learning approaches for graphs currently show considerably worse performance. This paper raises the bar on graph-level anomaly detection, i.e., the task of detecting abnormal graphs in a set of graphs. By drawing on ideas from self-supervised learning and transformation learning, we present a new deep learning approach that significantly improves existing deep one-class approaches by fixing some of their known problems, including hypersphere collapse and performance flip. Experiments on nine real-world data sets involving nine techniques reveal that our method achieves an average performance improvement of 11.8% AUC compared to the best existing approach.
3,720
Adaptive Random Forests for Energy-Efficient Inference on Microcontrollers
Random Forests (RFs) are widely used Machine Learning models in low-power embedded devices, due to their hardware friendly operation and high accuracy on practically relevant tasks. The accuracy of a RF often increases with the number of internal weak learners (decision trees), but at the cost of a proportional increase in inference latency and energy consumption. Such costs can be mitigated considering that, in most applications, inputs are not all equally difficult to classify. Therefore, a large RF is often necessary only for (few) hard inputs, and wasteful for easier ones. In this work, we propose an early-stopping mechanism for RFs, which terminates the inference as soon as a high-enough classification confidence is reached, reducing the number of weak learners executed for easy inputs. The early-stopping confidence threshold can be controlled at runtime, in order to favor either energy saving or accuracy. We apply our method to three different embedded classification tasks, on a single-core RISC-V microcontroller, achieving an energy reduction from 38% to more than 90% with a drop of less than 0.5% in accuracy. We also show that our approach outperforms previous adaptive ML methods for RFs.
3,721
Feudal Multi-Agent Reinforcement Learning with Adaptive Network Partition for Traffic Signal Control
Multi-agent reinforcement learning (MARL) has been applied and shown great potential in multi-intersections traffic signal control, where multiple agents, one for each intersection, must cooperate together to optimize traffic flow. To encourage global cooperation, previous work partitions the traffic network into several regions and learns policies for agents in a feudal structure. However, static network partition fails to adapt to dynamic traffic flow, which will changes frequently over time. To address this, we propose a novel feudal MARL approach with adaptive network partition. Specifically, we first partition the network into several regions according to the traffic flow. To do this, we propose two approaches: one is directly to use graph neural network (GNN) to generate the network partition, and the other is to use Monte-Carlo tree search (MCTS) to find the best partition with criteria computed by GNN. Then, we design a variant of Qmix using GNN to handle various dimensions of input, given by the dynamic network partition. Finally, we use a feudal hierarchy to manage agents in each partition and promote global cooperation. By doing so, agents are able to adapt to the traffic flow as required in practice. We empirically evaluate our method both in a synthetic traffic grid and real-world traffic networks of three cities, widely used in the literature. Our experimental results confirm that our method can achieve better performance, in terms of average travel time and queue length, than several leading methods for traffic signal control.
3,722
Deep Learning Fetal Ultrasound Video Model Match Human Observers in Biometric Measurements
Objective. This work investigates the use of deep convolutional neural networks (CNN) to automatically perform measurements of fetal body parts, including head circumference, biparietal diameter, abdominal circumference and femur length, and to estimate gestational age and fetal weight using fetal ultrasound videos. Approach. We developed a novel multi-task CNN-based spatio-temporal fetal US feature extraction and standard plane detection algorithm (called FUVAI) and evaluated the method on 50 freehand fetal US video scans. We compared FUVAI fetal biometric measurements with measurements made by five experienced sonographers at two time points separated by at least two weeks. Intra- and inter-observer variabilities were estimated. Main results. We found that automated fetal biometric measurements obtained by FUVAI were comparable to the measurements performed by experienced sonographers The observed differences in measurement values were within the range of inter- and intra-observer variability. Moreover, analysis has shown that these differences were not statistically significant when comparing any individual medical expert to our model. Significance. We argue that FUVAI has the potential to assist sonographers who perform fetal biometric measurements in clinical settings by providing them with suggestions regarding the best measuring frames, along with automated measurements. Moreover, FUVAI is able perform these tasks in just a few seconds, which is a huge difference compared to the average of six minutes taken by sonographers. This is significant, given the shortage of medical experts capable of interpreting fetal ultrasound images in numerous countries.
3,723
Improving Bidding and Playing Strategies in the Trick-Taking game Wizard using Deep Q-Networks
In this work, the trick-taking game Wizard with a separate bidding and playing phase is modeled by two interleaved partially observable Markov decision processes (POMDP). Deep Q-Networks (DQN) are used to empower self-improving agents, which are capable of tackling the challenges of a highly non-stationary environment. To compare algorithms between each other, the accuracy between bid and trick count is monitored, which strongly correlates with the actual rewards and provides a well-defined upper and lower performance bound. The trained DQN agents achieve accuracies between 66% and 87% in self-play, leaving behind both a random baseline and a rule-based heuristic. The conducted analysis also reveals a strong information asymmetry concerning player positions during bidding. To overcome the missing Markov property of imperfect-information games, a long short-term memory (LSTM) network is implemented to integrate historic information into the decision-making process. Additionally, a forward-directed tree search is conducted by sampling a state of the environment and thereby turning the game into a perfect information setting. To our surprise, both approaches do not surpass the performance of the basic DQN agent.
3,724
Counterfactual Analysis in Dynamic Models: Copulas and Bounds
We provide an explicit model of the causal mechanism in a structural causal model (SCM) with the goal of estimating counterfactual quantities of interest (CQIs). We propose some standard dependence structures, i.e. copulas, as base cases for the causal mechanism. While these base cases can be used to construct more interesting copulas, there are uncountably many copulas in general and so we formulate optimization problems for bounding the CQIs. As our ultimate goal is counterfactual reasoning in dynamic models which may have latent-states, we show by way of example that filtering / smoothing / sampling methods for these models can be integrated with our modeling of the causal mechanism. Specifically, we consider the "cheating-at-the-casino" application of a hidden Markov model and use linear programming (LP) to construct lower and upper bounds on the casino's winnings due to cheating. These bounds are considerably tighter when we constrain the copulas in the LPs to be time-independent. We can characterize the entire space of SCMs obeying counterfactual stability (CS), and we use it to negatively answer the open question of Oberst and Sontag [18] regarding the uniqueness of the Gumbel-max mechanism for modeling CS. Our work has applications in epidemiology and legal reasoning, and more generally in counterfactual off-policy evaluation, a topic of increasing interest in the reinforcement learning community.
3,725
Error Bound of Empirical $\ell_2$ Risk Minimization for Noisy Standard and Generalized Phase Retrieval Problems
In this paper, we study the estimation performance of empirical $\ell_2$ risk minimization (ERM) in noisy (standard) phase retrieval (NPR) given by $y_k = |\alpha_k^*x_0|^2+\eta_k$, or noisy generalized phase retrieval (NGPR) formulated as $y_k = x_0^*A_kx_0 + \eta_k$, where $x_0\in\mathbb{K}^d$ is the desired signal, $n$ is the sample size, $\eta= (\eta_1,...,\eta_n)^\top$ is the noise vector. We establish new error bounds under different noise patterns, and our proofs are valid for both $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{C}$. In NPR under arbitrary noise vector $\eta$, we derive a new error bound $O\big(\|\eta\|_\infty\sqrt{\frac{d}{n}} + \frac{|\mathbf{1}^\top\eta|}{n}\big)$, which is tighter than the currently known one $O\big(\frac{\|\eta\|}{\sqrt{n}}\big)$ in many cases. In NGPR, we show $O\big(\|\eta\|\frac{\sqrt{d}}{n}\big)$ for arbitrary $\eta$. In both problems, the bounds for arbitrary noise immediately give rise to $\tilde{O}(\sqrt{\frac{d}{n}})$ for sub-Gaussian or sub-exponential random noise, with some conventional but inessential assumptions (e.g., independent or zero-mean condition) removed or weakened. In addition, we make a first attempt to ERM under heavy-tailed random noise assumed to have bounded $l$-th moment. To achieve a trade-off between bias and variance, we truncate the responses and propose a corresponding robust ERM estimator, which is shown to possess the guarantee $\tilde{O}\big(\big[\sqrt{\frac{d}{n}}\big]^{1-1/l}\big)$ in both NPR, NGPR. All the error bounds straightforwardly extend to the more general problems of rank-$r$ matrix recovery, and these results deliver a conclusion that the full-rank frame $\{A_k\}_{k=1}^n$ in NGPR is more robust to biased noise than the rank-1 frame $\{\alpha_k\alpha_k^*\}_{k=1}^n$ in NPR. Extensive experimental results are presented to illustrate our theoretical findings.
3,726
Multivariate Probabilistic Forecasting of Intraday Electricity Prices using Normalizing Flows
Electricity is traded on various markets with different time horizons and regulations. Short-term trading becomes increasingly important due to higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15 min intervals in each day-ahead price interval as a four-dimensional joint distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. The normalizing flow is compared to a selection of historical data, a Gaussian copula, and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends most accurately and has the narrowest prediction intervals. Notably, the normalizing flow is the only approach that identifies rare price peaks. Finally, this work discusses the influence of different external impact factors and finds that, individually, most of these factors have negligible impact. Only the immediate history of the price difference realization and the combination of all input factors lead to notable improvements in the forecasts.
3,727
Isolating and Leveraging Controllable and Noncontrollable Visual Dynamics in World Models
World models learn the consequences of actions in vision-based interactive systems. However, in practical scenarios such as autonomous driving, there commonly exists noncontrollable dynamics independent of the action signals, making it difficult to learn effective world models. To tackle this problem, we present a novel reinforcement learning approach named Iso-Dream, which improves the Dream-to-Control framework in two aspects. First, by optimizing the inverse dynamics, we encourage the world model to learn controllable and noncontrollable sources of spatiotemporal changes on isolated state transition branches. Second, we optimize the behavior of the agent on the decoupled latent imaginations of the world model. Specifically, to estimate state values, we roll-out the noncontrollable states into the future and associate them with the current controllable state. In this way, the isolation of dynamics sources can greatly benefit long-horizon decision-making of the agent, such as a self-driving car that can avoid potential risks by anticipating the movement of other vehicles. Experiments show that Iso-Dream is effective in decoupling the mixed dynamics and remarkably outperforms existing approaches in a wide range of visual control and prediction domains.
3,728
Prune and distill: similar reformatting of image information along rat visual cortex and deep neural networks
Visual object recognition has been extensively studied in both neuroscience and computer vision. Recently, the most popular class of artificial systems for this task, deep convolutional neural networks (CNNs), has been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex. This has prompted questions on what, if any, are the common principles underlying the reformatting of visual information as it flows through a CNN or the ventral stream. Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex and look for them in the other system. We show that intrinsic dimensionality (ID) of object representations along the rat homologue of the ventral stream presents two distinct expansion-contraction phases, as previously shown for CNNs. Conversely, in CNNs, we show that training results in both distillation and active pruning (mirroring the increase in ID) of low- to middle-level image information in single units, as representations gain the ability to support invariant discrimination, in agreement with previous observations in rat visual cortex. Taken together, our findings suggest that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
3,729
Global Convergence of Over-parameterized Deep Equilibrium Models
A deep equilibrium model (DEQ) is implicitly defined through an equilibrium point of an infinite-depth weight-tied model with an input-injection. Instead of infinite computations, it solves an equilibrium point directly with root-finding and computes gradients with implicit differentiation. The training dynamics of over-parameterized DEQs are investigated in this study. By supposing a condition on the initial equilibrium point, we show that the unique equilibrium point always exists during the training process, and the gradient descent is proved to converge to a globally optimal solution at a linear convergence rate for the quadratic loss function. In order to show that the required initial condition is satisfied via mild over-parameterization, we perform a fine-grained analysis on random DEQs. We propose a novel probabilistic framework to overcome the technical difficulty in the non-asymptotic analysis of infinite-depth weight-tied models.
3,730
A Design Space for Explainable Ranking and Ranking Models
Item ranking systems support users in multi-criteria decision-making tasks. Users need to trust rankings and ranking algorithms to reflect user preferences nicely while avoiding systematic errors and biases. However, today only few approaches help end users, model developers, and analysts to explain rankings. We report on the study of explanation approaches from the perspectives of recommender systems, explainable AI, and visualization research and propose the first cross-domain design space for explainers of item rankings. In addition, we leverage the descriptive power of the design space to characterize a) existing explainers and b) three main user groups involved in ranking explanation tasks. The generative power of the design space is a means for future designers and developers to create more target-oriented solutions in this only weakly exploited space.
3,731
fakeWeather: Adversarial Attacks for Deep Neural Networks Emulating Weather Conditions on the Camera Lens of Autonomous Systems
Recently, Deep Neural Networks (DNNs) have achieved remarkable performances in many applications, while several studies have enhanced their vulnerabilities to malicious attacks. In this paper, we emulate the effects of natural weather conditions to introduce plausible perturbations that mislead the DNNs. By observing the effects of such atmospheric perturbations on the camera lenses, we model the patterns to create different masks that fake the effects of rain, snow, and hail. Even though the perturbations introduced by our attacks are visible, their presence remains unnoticed due to their association with natural events, which can be especially catastrophic for fully-autonomous and unmanned vehicles. We test our proposed fakeWeather attacks on multiple Convolutional Neural Network and Capsule Network models, and report noticeable accuracy drops in the presence of such adversarial perturbations. Our work introduces a new security threat for DNNs, which is especially severe for safety-critical applications and autonomous systems.
3,732
X-ViT: High Performance Linear Vision Transformer without Softmax
Vision transformers have become one of the most important models for computer vision tasks. Although they outperform prior works, they require heavy computational resources on a scale that is quadratic to the number of tokens, $N$. This is a major drawback of the traditional self-attention (SA) algorithm. Here, we propose the X-ViT, ViT with a novel SA mechanism that has linear complexity. The main approach of this work is to eliminate nonlinearity from the original SA. We factorize the matrix multiplication of the SA mechanism without complicated linear approximation. By modifying only a few lines of code from the original SA, the proposed models outperform most transformer-based models on image classification and dense prediction tasks on most capacity regimes.
3,733
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body dynamics, and effects that remain challenging to capture, e.g., stick-slip friction and mechanical flexibilities. Such effects exhibit hysteresis and partial observability, rendering them, particularly challenging to model. Hence, hybrid models, which combine a physical prior with data-driven approaches are especially well-suited in this setting. We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model which is paired with a recurrent neural network architecture, allowing us to capture unmodeled partially observable effects using the network memory. We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator. Using data sets obtained through an optimal experiment design approach, we study the accuracy of offline torque prediction and generalization capabilities of joint learning methods. In control experiments on the real system, we evaluate the model as a feed-forward term for impedance control and show the feedback gains can be drastically reduced to achieve a given tracking accuracy.
3,734
Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions
A significant gap remains between today's visual pattern recognition models and human-level visual cognition especially when it comes to few-shot learning and compositional reasoning of novel concepts. We introduce Bongard-HOI, a new visual reasoning benchmark that focuses on compositional learning of human-object interactions (HOIs) from natural images. It is inspired by two desirable characteristics from the classical Bongard problems (BPs): 1) few-shot concept learning, and 2) context-dependent reasoning. We carefully curate the few-shot instances with hard negatives, where positive and negative images only disagree on action labels, making mere recognition of object categories insufficient to complete our benchmarks. We also design multiple test sets to systematically study the generalization of visual learning models, where we vary the overlap of the HOI concepts between the training and test sets of few-shot instances, from partial to no overlaps. Bongard-HOI presents a substantial challenge to today's visual recognition models. The state-of-the-art HOI detection model achieves only 62% accuracy on few-shot binary prediction while even amateur human testers on MTurk have 91% accuracy. With the Bongard-HOI benchmark, we hope to further advance research efforts in visual reasoning, especially in holistic perception-reasoning systems and better representation learning.
3,735
Painful intelligence: What AI can tell us about human suffering
This book uses the modern theory of artificial intelligence (AI) to understand human suffering or mental pain. Both humans and sophisticated AI agents process information about the world in order to achieve goals and obtain rewards, which is why AI can be used as a model of the human brain and mind. This book intends to make the theory accessible to a relatively general audience, requiring only some relevant scientific background. The book starts with the assumption that suffering is mainly caused by frustration. Frustration means the failure of an agent (whether AI or human) to achieve a goal or a reward it wanted or expected. Frustration is inevitable because of the overwhelming complexity of the world, limited computational resources, and scarcity of good data. In particular, such limitations imply that an agent acting in the real world must cope with uncontrollability, unpredictability, and uncertainty, which all lead to frustration. Fundamental in such modelling is the idea of learning, or adaptation to the environment. While AI uses machine learning, humans and animals adapt by a combination of evolutionary mechanisms and ordinary learning. Even frustration is fundamentally an error signal that the system uses for learning. This book explores various aspects and limitations of learning algorithms and their implications regarding suffering. At the end of the book, the computational theory is used to derive various interventions or training methods that will reduce suffering in humans. The amount of frustration is expressed by a simple equation which indicates how it can be reduced. The ensuing interventions are very similar to those proposed by Buddhist and Stoic philosophy, and include mindfulness meditation. Therefore, this book can be interpreted as an exposition of a computational theory justifying why such philosophies and meditation reduce human suffering.
3,736
Generalization Bounds for Gradient Methods via Discrete and Continuous Prior
Proving algorithm-dependent generalization error bounds for gradient-type optimization methods has attracted significant attention recently in learning theory. However, most existing trajectory-based analyses require either restrictive assumptions on the learning rate (e.g., fast decreasing learning rate), or continuous injected noise (such as the Gaussian noise in Langevin dynamics). In this paper, we introduce a new discrete data-dependent prior to the PAC-Bayesian framework, and prove a high probability generalization bound of order $O(\frac{1}{n}\cdot \sum_{t=1}^T(\gamma_t/\varepsilon_t)^2\left\|{\mathbf{g}_t}\right\|^2)$ for Floored GD (i.e. a version of gradient descent with precision level $\varepsilon_t$), where $n$ is the number of training samples, $\gamma_t$ is the learning rate at step $t$, $\mathbf{g}_t$ is roughly the difference of the gradient computed using all samples and that using only prior samples. $\left\|{\mathbf{g}_t}\right\|$ is upper bounded by and and typical much smaller than the gradient norm $\left\|{\nabla f(W_t)}\right\|$. We remark that our bound holds for nonconvex and nonsmooth scenarios. Moreover, our theoretical results provide numerically favorable upper bounds of testing errors (e.g., $0.037$ on MNIST). Using a similar technique, we can also obtain new generalization bounds for certain variants of SGD. Furthermore, we study the generalization bounds for gradient Langevin Dynamics (GLD). Using the same framework with a carefully constructed continuous prior, we show a new high probability generalization bound of order $O(\frac{1}{n} + \frac{L^2}{n^2}\sum_{t=1}^T(\gamma_t/\sigma_t)^2)$ for GLD. The new $1/n^2$ rate is due to the concentration of the difference between the gradient of training samples and that of the prior.
3,737
AsyncFedED: Asynchronous Federated Learning with Euclidean Distance based Adaptive Weight Aggregation
In an asynchronous federated learning framework, the server updates the global model once it receives an update from a client instead of waiting for all the updates to arrive as in the synchronous setting. This allows heterogeneous devices with varied computing power to train the local models without pausing, thereby speeding up the training process. However, it introduces the stale model problem, where the newly arrived update was calculated based on a set of stale weights that are older than the current global model, which may hurt the convergence of the model. In this paper, we present an asynchronous federated learning framework with a proposed adaptive weight aggregation algorithm, referred to as AsyncFedED. To the best of our knowledge this aggregation method is the first to take the staleness of the arrived gradients, measured by the Euclidean distance between the stale model and the current global model, and the number of local epochs that have been performed, into account. Assuming general non-convex loss functions, we prove the convergence of the proposed method theoretically. Numerical results validate the effectiveness of the proposed AsyncFedED in terms of the convergence rate and model accuracy compared to the existing methods for three considered tasks.
3,738
A reconfigurable integrated electronic tongue and its use in accelerated analysis of juices and wines
Potentiometric electronic tongues (ETs) leveraging trends in miniaturization and internet of things (IoT) bear promise for facile mobile chemical analysis of complex multicomponent liquids, such as beverages. In this work, hand-crafted feature extraction from the transient potentiometric response of an array of low-selective miniaturized polymeric sensors is combined with a data pipeline for deployment of trained machine learning models on a cloud back-end or edge device. The sensor array demonstrated sensitivity to different organic acids and exhibited interesting performance for the fingerprinting of fruit juices and wines, including differentiation of samples through supervised learning based on sensory descriptors and prediction of consumer acceptability of aged juice samples. Product authentication, quality control and support of sensory evaluation are some of the applications that are expected to benefit from integrated electronic tongues that facilitate the characterization of complex properties of multi-component liquids.
3,739
A Sea of Words: An In-Depth Analysis of Anchors for Text Data
Anchors [Ribeiro et al. (2018)] is a post-hoc, rule-based interpretability method. For text data, it proposes to explain a decision by highlighting a small set of words (an anchor) such that the model to explain has similar outputs when they are present in a document. In this paper, we present the first theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. We leverage this analysis to gain insights on the behavior of Anchors on simple models, including elementary if-then rules and linear classifiers.
3,740
Text-Based Automatic Personality Prediction Using KGrAt-Net; A Knowledge Graph Attention Network Classifier
Nowadays, a tremendous amount of human communications take place on the Internet-based communication infrastructures, like social networks, email, forums, organizational communication platforms, etc. Indeed, the automatic prediction or assessment of individuals' personalities through their written or exchanged text would be advantageous to ameliorate the relationships among them. To this end, this paper aims to propose KGrAt-Net which is a Knowledge Graph Attention Network text classifier. For the first time, it applies the knowledge graph attention network to perform Automatic Personality Prediction (APP), according to the Big Five personality traits. After performing some preprocessing activities, first, it tries to acquire a knowingful representation of the knowledge behind the concepts in the input text through building its equivalent knowledge graph. A knowledge graph is a graph-based data model that formally represents the semantics of the existing concepts in the input text and models the knowledge behind them. Then, applying the attention mechanism, it efforts to pay attention to the most relevant parts of the graph to predict the personality traits of the input text. The results demonstrated that KGrAt-Net considerably improved the personality prediction accuracies. Furthermore, KGrAt-Net also uses the knowledge graphs' embeddings to enrich the classification, which makes it even more accurate in APP.
3,741
Block-coordinate Frank-Wolfe algorithm and convergence analysis for semi-relaxed optimal transport problem
The optimal transport (OT) problem has been used widely for machine learning. It is necessary for computation of an OT problem to solve linear programming with tight mass-conservation constraints. These constraints prevent its application to large-scale problems. To address this issue, loosening such constraints enables us to propose the relaxed-OT method using a faster algorithm. This approach has demonstrated its effectiveness for applications. However, it remains slow. As a superior alternative, we propose a fast block-coordinate Frank-Wolfe (BCFW) algorithm for a convex semi-relaxed OT. Specifically, we prove their upper bounds of the worst convergence iterations, and equivalence between the linearization duality gap and the Lagrangian duality gap. Additionally, we develop two fast variants of the proposed BCFW. Numerical experiments have demonstrated that our proposed algorithms are effective for color transfer and surpass state-of-the-art algorithms. This report presents a short version of arXiv:2103.05857.
3,742
Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval
The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.
3,743
CIGMO: Categorical invariant representations in a deep generative framework
Data of general object images have two most common structures: (1) each object of a given shape can be rendered in multiple different views, and (2) shapes of objects can be categorized in such a way that the diversity of shapes is much larger across categories than within a category. Existing deep generative models can typically capture either structure, but not both. In this work, we introduce a novel deep generative model, called CIGMO, that can learn to represent category, shape, and view factors from image data. The model is comprised of multiple modules of shape representations that are each specialized to a particular category and disentangled from view representation, and can be learned using a group-based weakly supervised learning method. By empirical investigation, we show that our model can effectively discover categories of object shapes despite large view variation and quantitatively supersede various previous methods including the state-of-the-art invariant clustering algorithm. Further, we show that our approach using category-specialization can enhance the learned shape representation to better perform down-stream tasks such as one-shot object identification as well as shape-view disentanglement.
3,744
Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions
One of the grand challenges of utilizing machine learning for the discovery of innovative new polymers lies in the difficulty of accurately representing the complex structures of polymeric materials. Although a wide array of hand-designed polymer representations have been explored, there has yet to be an ideal solution for how to capture the periodicity of polymer structures, and how to develop polymer descriptors without the need for human feature design. In this work, we tackle these problems through the development of our periodic polymer graph representation. Our pipeline for polymer property predictions is comprised of our polymer graph representation that naturally accounts for the periodicity of polymers, followed by a message-passing neural network (MPNN) that leverages the power of graph deep learning to automatically learn chemically-relevant polymer descriptors. Across a diverse dataset of 10 polymer properties, we find that this polymer graph representation consistently outperforms hand-designed representations with a 20% average reduction in prediction error. Our results illustrate how the incorporation of chemical intuition through directly encoding periodicity into our polymer graph representation leads to a considerable improvement in the accuracy and reliability of polymer property predictions. We also demonstrate how combining polymer graph representations with message-passing neural network architectures can automatically extract meaningful polymer features that are consistent with human intuition, while outperforming human-derived features. This work highlights the advancement in predictive capability that is possible if using chemical descriptors that are specifically optimized for capturing the unique chemical structure of polymers.
3,745
HOUDINI: Escaping from Moderately Constrained Saddles
We give the first polynomial time algorithms for escaping from high-dimensional saddle points under a moderate number of constraints. Given gradient access to a smooth function $f \colon \mathbb R^d \to \mathbb R$ we show that (noisy) gradient descent methods can escape from saddle points under a logarithmic number of inequality constraints. This constitutes the first tangible progress (without reliance on NP-oracles or altering the definitions to only account for certain constraints) on the main open question of the breakthrough work of Ge et al. who showed an analogous result for unconstrained and equality-constrained problems. Our results hold for both regular and stochastic gradient descent.
3,746
Auto-PINN: Understanding and Optimizing Physics-Informed Neural Architecture
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation. In forward modeling problems, PINNs are meshless partial differential equation (PDE) solvers that can handle irregular, high-dimensional physical domains. Naturally, the neural architecture hyperparameters have a large impact on the efficiency and accuracy of the PINN solver. However, this remains an open and challenging problem because of the large search space and the difficulty of identifying a proper search objective for PDEs. Here, we propose Auto-PINN, the first systematic, automated hyperparameter optimization approach for PINNs, which employs Neural Architecture Search (NAS) techniques to PINN design. Auto-PINN avoids manually or exhaustively searching the hyperparameter space associated with PINNs. A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs. We find that the different hyperparameters can be decoupled, and that the training loss function of PINNs is a good search objective. Comparison experiments with baseline methods demonstrate that Auto-PINN produces neural architectures with superior stability and accuracy over alternative baselines.
3,747
Regularized Gradient Descent Ascent for Two-Player Zero-Sum Markov Games
We study the problem of finding the Nash equilibrium in a two-player zero-sum Markov game. Due to its formulation as a minimax optimization program, a natural approach to solve the problem is to perform gradient descent/ascent with respect to each player in an alternating fashion. However, due to the non-convexity/non-concavity of the underlying objective function, theoretical understandings of this method are limited. In our paper, we consider solving an entropy-regularized variant of the Markov game. The regularization introduces structure into the optimization landscape that make the solutions more identifiable and allow the problem to be solved more efficiently. Our main contribution is to show that under proper choices of the regularization parameter, the gradient descent ascent algorithm converges to the Nash equilibrium of the original unregularized problem. We explicitly characterize the finite-time performance of the last iterate of our algorithm, which vastly improves over the existing convergence bound of the gradient descent ascent algorithm without regularization. Finally, we complement the analysis with numerical simulations that illustrate the accelerated convergence of the algorithm.
3,748
Generating personalized counterfactual interventions for algorithmic recourse by eliciting user preferences
Counterfactual interventions are a powerful tool to explain the decisions of a black-box decision process, and to enable algorithmic recourse. They are a sequence of actions that, if performed by a user, can overturn an unfavourable decision made by an automated decision system. However, most of the current methods provide interventions without considering the user's preferences. For example, a user might prefer doing certain actions with respect to others. In this work, we present the first human-in-the-loop approach to perform algorithmic recourse by eliciting user preferences. We introduce a polynomial procedure to ask choice-set questions which maximize the Expected Utility of Selection (EUS), and use it to iteratively refine our cost estimates in a Bayesian setting. We integrate this preference elicitation strategy into a reinforcement learning agent coupled with Monte Carlo Tree Search for efficient exploration, so as to provide personalized interventions achieving algorithmic recourse. An experimental evaluation on synthetic and real-world datasets shows that a handful of queries allows to achieve a substantial reduction in the cost of interventions with respect to user-independent alternatives.
3,749
Group GAN
Generating multivariate time series is a promising approach for sharing sensitive data in many medical, financial, and IoT applications. A common type of multivariate time series originates from a single source such as the biometric measurements from a medical patient. This leads to complex dynamical patterns between individual time series that are hard to learn by typical generation models such as GANs. There is valuable information in those patterns that machine learning models can use to better classify, predict or perform other downstream tasks. We propose a novel framework that takes time series' common origin into account and favors inter-channel relationship preservation. The two key points of our method are: 1) the individual time series are generated from a common point in latent space and 2) a central discriminator favors the preservation of inter-channel dynamics. We demonstrate empirically that our method helps preserve channel correlations and that our synthetic data performs very well downstream tasks with medical and financial data.
3,750
Subverting machines, fluctuating identities: Re-learning human categorization
Most machine learning systems that interact with humans construct some notion of a person's "identity," yet the default paradigm in AI research envisions identity with essential attributes that are discrete and static. In stark contrast, strands of thought within critical theory present a conception of identity as malleable and constructed entirely through interaction; a doing rather than a being. In this work, we distill some of these ideas for machine learning practitioners and introduce a theory of identity as autopoiesis, circular processes of formation and function. We argue that the default paradigm of identity used by the field immobilizes existing identity categories and the power differentials that co$\unicode{x2010}$occur, due to the absence of iterative feedback to our models. This includes a critique of emergent AI fairness practices that continue to impose the default paradigm. Finally, we apply our theory to sketch approaches to autopoietic identity through multilevel optimization and relational learning. While these ideas raise many open questions, we imagine the possibilities of machines that are capable of expressing human identity as a relationship perpetually in flux.
3,751
On Consistency in Graph Neural Network Interpretation
Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. These identified sub-structures can provide interpretations of GNN's behavior. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. An inductive bias is deep-rooted in this framework: the same output cannot guarantee that two inputs are processed under the same rationale. Consequently, they have the danger of providing spurious explanations and fail to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address the issues, we propose to obtain more faithful and consistent explanations of GNNs. After a close examination on predictions of GNNs from the causality perspective, we attribute spurious explanations to two typical reasons: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Motivated by the observation that both confounding effects and diverse causal rationales are encoded in internal representations, we propose a simple yet effective countermeasure by aligning embeddings. This new objective can be incorporated into existing GNN explanation algorithms with no effort. We implement both a simplified version based on absolute distance and a distribution-aware version based on anchors. Experiments on $5$ datasets validate its effectiveness, and theoretical analysis shows that it is in effect optimizing a more faithful explanation objective in design, which further justifies the proposed approach.
3,752
Can Foundation Models Help Us Achieve Perfect Secrecy?
A key promise of machine learning is the ability to assist users with personal tasks. Because the personal context required to make accurate predictions is often sensitive, we require systems that protect privacy. A gold standard privacy-preserving system will satisfy perfect secrecy, meaning that interactions with the system provably reveal no additional private information to adversaries. This guarantee should hold even as we perform multiple personal tasks over the same underlying data. However, privacy and quality appear to be in tension in existing systems for personal tasks. Neural models typically require lots of training to perform well, while individual users typically hold a limited scale of data, so the systems propose to learn from the aggregate data of multiple users. This violates perfect secrecy and instead, in the last few years, academics have defended these solutions using statistical notions of privacy -- i.e., the probability of learning private information about a user should be reasonably low. Given the vulnerabilities of these solutions, we explore whether the strong perfect secrecy guarantee can be achieved using recent zero-to-few sample adaptation techniques enabled by foundation models. In response, we propose FOCUS, a framework for personal tasks. Evaluating on popular privacy benchmarks, we find the approach, satisfying perfect secrecy, competes with strong collaborative learning baselines on 6 of 7 tasks. We empirically analyze the proposal, highlighting the opportunities and limitations across task types, and model inductive biases and sizes.
3,753
Effective Abstract Reasoning with Dual-Contrast Network
As a step towards improving the abstract reasoning capability of machines, we aim to solve Raven's Progressive Matrices (RPM) with neural networks, since solving RPM puzzles is highly correlated with human intelligence. Unlike previous methods that use auxiliary annotations or assume hidden rules to produce appropriate feature representation, we only use the ground truth answer of each question for model learning, aiming for an intelligent agent to have a strong learning capability with a small amount of supervision. Based on the RPM problem formulation, the correct answer filled into the missing entry of the third row/column has to best satisfy the same rules shared between the first two rows/columns. Thus we design a simple yet effective Dual-Contrast Network (DCNet) to exploit the inherent structure of RPM puzzles. Specifically, a rule contrast module is designed to compare the latent rules between the filled row/column and the first two rows/columns; a choice contrast module is designed to increase the relative differences between candidate choices. Experimental results on the RAVEN and PGM datasets show that DCNet outperforms the state-of-the-art methods by a large margin of 5.77%. Further experiments on few training samples and model generalization also show the effectiveness of DCNet. Code is available at https://github.com/visiontao/dcnet.
3,754
Off-Beat Multi-Agent Reinforcement Learning
We investigate model-free multi-agent reinforcement learning (MARL) in environments where off-beat actions are prevalent, i.e., all actions have pre-set execution durations. During execution durations, the environment changes are influenced by, but not synchronised with, action execution. Such a setting is ubiquitous in many real-world problems. However, most MARL methods assume actions are executed immediately after inference, which is often unrealistic and can lead to catastrophic failure for multi-agent coordination with off-beat actions. In order to fill this gap, we develop an algorithmic framework for MARL with off-beat actions. We then propose a novel episodic memory, LeGEM, for model-free MARL algorithms. LeGEM builds agents' episodic memories by utilizing agents' individual experiences. It boosts multi-agent learning by addressing the challenging temporal credit assignment problem raised by the off-beat actions via our novel reward redistribution scheme, alleviating the issue of non-Markovian reward. We evaluate LeGEM on various multi-agent scenarios with off-beat actions, including Stag-Hunter Game, Quarry Game, Afforestation Game, and StarCraft II micromanagement tasks. Empirical results show that LeGEM significantly boosts multi-agent coordination and achieves leading performance and improved sample efficiency.
3,755
Hazard Gradient Penalty for Survival Analysis
Survival analysis appears in various fields such as medicine, economics, engineering, and business. Recent studies showed that the Ordinary Differential Equation (ODE) modeling framework unifies many existing survival models while the framework is flexible and widely applicable. However, naively applying the ODE framework to survival analysis problems may model fiercely changing density function which may worsen the model's performance. Though we can apply L1 or L2 regularizers to the ODE model, their effect on the ODE modeling framework is barely known. In this paper, we propose hazard gradient penalty (HGP) to enhance the performance of a survival analysis model. Our method imposes constraints on local data points by regularizing the gradient of hazard function with respect to the data point. Our method applies to any survival analysis model including the ODE modeling framework and is easy to implement. We theoretically show that our method is related to minimizing the KL divergence between the density function at a data point and that of the neighborhood points. Experimental results on three public benchmarks show that our approach outperforms other regularization methods.
3,756
Incorporating the Barzilai-Borwein Adaptive Step Size into Sugradient Methods for Deep Network Training
In this paper, we incorporate the Barzilai-Borwein step size into gradient descent methods used to train deep networks. This allows us to adapt the learning rate using a two-point approximation to the secant equation which quasi-Newton methods are based upon. Moreover, the adaptive learning rate method presented here is quite general in nature and can be applied to widely used gradient descent approaches such as Adagrad and RMSprop. We evaluate our method using standard example network architectures on widely available datasets and compare against alternatives elsewhere in the literature. In our experiments, our adaptive learning rate shows a smoother and faster convergence than that exhibited by the alternatives, with better or comparable performance.
3,757
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm's privacy loss remain open -- even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant factor. This result reveals that all previous analyses for this setting have the wrong qualitative behavior. Specifically, while previous privacy analyses increase ad infinitum in the number of iterations, we show that after a small burn-in period, running SGD longer leaks no further privacy. Our analysis departs completely from previous approaches based on fast mixing, instead using techniques based on optimal transport (namely, Privacy Amplification by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification by Sampling). Our techniques readily extend to other settings, e.g., strongly convex losses, non-uniform stepsizes, arbitrary batch sizes, and random or cyclic choice of batches.
3,758
DP-PCA: Statistically Optimal and Differentially Private PCA
We study the canonical statistical task of computing the principal component from $n$ i.i.d.~data in $d$ dimensions under $(\varepsilon,\delta)$-differential privacy. Although extensively studied in literature, existing solutions fall short on two key aspects: ($i$) even for Gaussian data, existing private algorithms require the number of samples $n$ to scale super-linearly with $d$, i.e., $n=\Omega(d^{3/2})$, to obtain non-trivial results while non-private PCA requires only $n=O(d)$, and ($ii$) existing techniques suffer from a non-vanishing error even when the randomness in each data point is arbitrarily small. We propose DP-PCA, which is a single-pass algorithm that overcomes both limitations. It is based on a private minibatch gradient ascent method that relies on {\em private mean estimation}, which adds minimal noise required to ensure privacy by adapting to the variance of a given minibatch of gradients. For sub-Gaussian data, we provide nearly optimal statistical error rates even for $n=\tilde O(d)$. Furthermore, we provide a lower bound showing that sub-Gaussian style assumption is necessary in obtaining the optimal error rate.
3,759
Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
Motivated by the success of ensembles for uncertainty estimation in supervised learning, we take a renewed look at how ensembles of $Q$-functions can be leveraged as the primary source of pessimism for offline reinforcement learning (RL). We begin by identifying a critical flaw in a popular algorithmic choice used by many ensemble-based RL algorithms, namely the use of shared pessimistic target values when computing each ensemble member's Bellman error. Through theoretical analyses and construction of examples in toy MDPs, we demonstrate that shared pessimistic targets can paradoxically lead to value estimates that are effectively optimistic. Given this result, we propose MSG, a practical offline RL algorithm that trains an ensemble of $Q$-functions with independently computed targets based on completely separate networks, and optimizes a policy with respect to the lower confidence bound of predicted action values. Our experiments on the popular D4RL and RL Unplugged offline RL benchmarks demonstrate that on challenging domains such as antmazes, MSG with deep ensembles surpasses highly well-tuned state-of-the-art methods by a wide margin. Additionally, through ablations on benchmarks domains, we verify the critical significance of using independently trained $Q$-functions, and study the role of ensemble size. Finally, as using separate networks per ensemble member can become computationally costly with larger neural network architectures, we investigate whether efficient ensemble approximations developed for supervised learning can be similarly effective, and demonstrate that they do not match the performance and robustness of MSG with separate networks, highlighting the need for new efforts into efficient uncertainty estimation directed at RL.
3,760
ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
Graph Neural Networks (GNNs) have achieved enormous success in tackling analytical problems on graph data. Most GNNs interpret nearly all the node connections as inductive bias with feature smoothness, and implicitly assume strong homophily on the observed graph. However, real-world networks are not always homophilic, but sometimes exhibit heterophilic patterns where adjacent nodes share dissimilar attributes and distinct labels. Therefore,GNNs smoothing the node proximity holistically may aggregate inconsistent information arising from both task-relevant and irrelevant connections. In this paper, we propose a novel edge splitting GNN (ES-GNN) framework, which generalizes GNNs beyond homophily by jointly partitioning network topology and disentangling node features. Specifically, the proposed framework employs an interpretable operation to adaptively split the set of edges of the original graph into two exclusive sets indicating respectively the task-relevant and irrelevant relations among nodes. The node features are then aggregated separately on these two partial edge sets to produce disentangled representations, based on which a more accurate edge splitting can be attained later. Theoretically, we show that our ES-GNN can be regarded as a solution to a graph denoising problem with a disentangled smoothness assumption, which further illustrates our motivations and interprets the improved generalization. Extensive experiments over 8 benchmark and 1 synthetic datasets demonstrate that ES-GNN not only outperforms the state-of-the-arts (including 8 GNN baselines), but also can be more robust to adversarial graphs and alleviate the over-smoothing problem.
3,761
Maximum Likelihood Training of Implicit Nonlinear Diffusion Models
Whereas diverse variations of diffusion models exist, expanding the linear diffusion into a nonlinear diffusion process is investigated only by a few works. The nonlinearity effect has been hardly understood, but intuitively, there would be more promising diffusion patterns to optimally train the generative distribution towards the data distribution. This paper introduces such a data-adaptive and nonlinear diffusion process for score-based diffusion models. The proposed Implicit Nonlinear Diffusion Model (INDM) learns the nonlinear diffusion process by combining a normalizing flow and a diffusion process. Specifically, INDM implicitly constructs a nonlinear diffusion on the \textit{data space} by leveraging a linear diffusion on the \textit{latent space} through a flow network. This flow network is the key to forming a nonlinear diffusion as the nonlinearity fully depends on the flow network. This flexible nonlinearity is what improves the learning curve of INDM to nearly MLE training, compared against the non-MLE training of DDPM++, which turns out to be a special case of INDM with the identity flow. Also, training the nonlinear diffusion empirically yields a sampling-friendly latent diffusion that the sample trajectory of INDM is closer to an optimal transport than the trajectories of previous research. In experiments, INDM achieves the state-of-the-art FID on CelebA.
3,762
FedFormer: Contextual Federation with Attention in Reinforcement Learning
A core issue in federated reinforcement learning is defining how to aggregate insights from multiple agents into one. This is commonly done by taking the average of each participating agent's model weights into one common model (FedAvg). We instead propose FedFormer, a novel federation strategy that utilizes Transformer Attention to contextually aggregate embeddings from models originating from different learner agents. In so doing, we attentively weigh contributions of other agents with respect to the current agent's environment and learned relationships, thus providing more effective and efficient federation. We evaluate our methods on the Meta-World environment and find that our approach yields significant improvements over FedAvg and non-federated Soft Actor Critique single agent methods. Our results compared to Soft Actor Critique show that FedFormer performs better while still abiding by the privacy constraints of federated learning. In addition, we demonstrate nearly linear improvements in effectiveness with increased agent pools in certain tasks. This is contrasted by FedAvg, which fails to make noticeable improvements when scaled.
3,763
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
The Federated Averaging (FedAvg) algorithm, which consists of alternating between a few local stochastic gradient updates at client nodes, followed by a model averaging update at the server, is perhaps the most commonly used method in Federated Learning. Notwithstanding its simplicity, several empirical studies have illustrated that the output model of FedAvg, after a few fine-tuning steps, leads to a model that generalizes well to new unseen tasks. This surprising performance of such a simple method, however, is not fully understood from a theoretical point of view. In this paper, we formally investigate this phenomenon in the multi-task linear representation setting. We show that the reason behind generalizability of the FedAvg's output is its power in learning the common data representation among the clients' tasks, by leveraging the diversity among client data distributions via local updates. We formally establish the iteration complexity required by the clients for proving such result in the setting where the underlying shared representation is a linear map. To the best of our knowledge, this is the first such result for any setting. We also provide empirical evidence demonstrating FedAvg's representation learning ability in federated image classification with heterogeneous data.
3,764
Safety Aware Changepoint Detection for Piecewise i.i.d. Bandits
In this paper, we consider the setting of piecewise i.i.d. bandits under a safety constraint. In this piecewise i.i.d. setting, there exists a finite number of changepoints where the mean of some or all arms change simultaneously. We introduce the safety constraint studied in \citet{wu2016conservative} to this setting such that at any round the cumulative reward is above a constant factor of the default action reward. We propose two actively adaptive algorithms for this setting that satisfy the safety constraint, detect changepoints, and restart without the knowledge of the number of changepoints or their locations. We provide regret bounds for our algorithms and show that the bounds are comparable to their counterparts from the safe bandit and piecewise i.i.d. bandit literature. We also provide the first matching lower bounds for this setting. Empirically, we show that our safety-aware algorithms perform similarly to the state-of-the-art actively adaptive algorithms that do not satisfy the safety constraint.
3,765
Asymptotic Convergence Rate and Statistical Inference for Stochastic Sequential Quadratic Programming
We apply a stochastic sequential quadratic programming (StoSQP) algorithm to solve constrained nonlinear optimization problems, where the objective is stochastic and the constraints are deterministic. We study a fully stochastic setup, where only a single sample is available in each iteration for estimating the gradient and Hessian of the objective. We allow StoSQP to select a random stepsize $\bar{\alpha}_t$ adaptively, such that $\beta_t\leq \bar{\alpha}_t \leq \beta_t+\chi_t$, where $\beta_t$, $\chi_t=o(\beta_t)$ are prespecified deterministic sequences. We also allow StoSQP to solve Newton system inexactly via randomized iterative solvers, e.g., with the sketch-and-project method; and we do not require the approximation error of inexact Newton direction to vanish. For this general StoSQP framework, we establish the asymptotic convergence rate for its last iterate, with the worst-case iteration complexity as a byproduct; and we perform statistical inference. In particular, with proper decaying $\beta_t,\chi_t$, we show that: (i) the StoSQP scheme can take at most $O(1/\epsilon^4)$ iterations to achieve $\epsilon$-stationarity; (ii) asymptotically and almost surely, $\|(x_t -x^\star, \lambda_t - \lambda^\star)\| = O(\sqrt{\beta_t\log(1/\beta_t)})+O(\chi_t/\beta_t)$, where $(x_t,\lambda_t)$ is the primal-dual StoSQP iterate; (iii) the sequence $1/\sqrt{\beta_t}\cdot (x_t -x^\star, \lambda_t - \lambda^\star)$ converges to a mean zero Gaussian distribution with a nontrivial covariance matrix. Moreover, we establish the Berry-Esseen bound for $(x_t, \lambda_t)$ to measure quantitatively the convergence of its distribution function. We also provide a practical estimator for the covariance matrix, from which the confidence intervals of $(x^\star, \lambda^\star)$ can be constructed using iterates $\{(x_t,\lambda_t)\}_t$. Our theorems are validated using nonlinear problems in CUTEst test set.
3,766
Learning with Stochastic Orders
Learning high-dimensional distributions is often done with explicit likelihood modeling or implicit modeling via minimizing integral probability metrics (IPMs). In this paper, we expand this learning paradigm to stochastic orders, namely, the convex or Choquet order between probability measures. Towards this end, we introduce the Choquet-Toland distance between probability measures, that can be used as a drop-in replacement for IPMs. We also introduce the Variational Dominance Criterion (VDC) to learn probability measures with dominance constraints, that encode the desired stochastic order between the learned measure and a known baseline. We analyze both quantities and show that they suffer from the curse of dimensionality and propose surrogates via input convex maxout networks (ICMNs), that enjoy parametric rates. Finally, we provide a min-max framework for learning with stochastic orders and validate it experimentally on synthetic and high-dimensional image generation, with promising results. The code is available at https://github.com/yair-schiff/stochastic-orders-ICMN
3,767
Membership Inference Attack Using Self Influence Functions
Member inference (MI) attacks aim to determine if a specific data sample was used to train a machine learning model. Thus, MI is a major privacy threat to models trained on private sensitive data, such as medical records. In MI attacks one may consider the black-box settings, where the model's parameters and activations are hidden from the adversary, or the white-box case where they are available to the attacker. In this work, we focus on the latter and present a novel MI attack for it that employs influence functions, or more specifically the samples' self-influence scores, to perform the MI prediction. We evaluate our attack on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, using versatile architectures such as AlexNet, ResNet, and DenseNet. Our attack method achieves new state-of-the-art results for both training with and without data augmentations. Code is available at https://github.com/giladcohen/sif_mi_attack.
3,768
SeedGNN: Graph Neural Networks for Supervised Seeded Graph Matching
Recently, there have been significant interests in designing Graph Neural Networks (GNNs) for seeded graph matching, which aims to match two (unlabeled) graphs using only topological information and a small set of seeds. However, most previous GNN architectures for seeded graph matching employ a semi-supervised approach, which learns from only the seed set in a single pair of graphs, and therefore does not attempt to learn from many training examples/graphs to best match future unseen graphs. In contrast, this paper is the first to propose a supervised approach for seeded graph matching, which had so far only been used for seedless graph matching. Our proposed SeedGNN architecture employs a number of novel design choices that are inspired by theoretical studies of seeded graph matching. First, SeedGNN can easily learn the capability of counting and using witnesses of different hops, in a way that can be generalized to graphs with different sizes. Second, SeedGNN can use easily-matched pairs as new seeds to percolate and match other nodes. We evaluate SeedGNN on both synthetic and real graphs, and demonstrate significant performance improvement over both non-learning and learning algorithms in the existing literature. Further, our experiments confirm that the knowledge learned by SeedGNN from training graphs can be generalized to test graphs with different sizes and categories.
3,769
Fast variable selection makes scalable Gaussian process BSS-ANOVA a speedy and accurate choice for tabular and time series regression
Gaussian processes (GPs) are non-parametric regression engines with a long history. They are often overlooked in modern machine learning contexts because of scalability issues: regression for traditional GP kernels are $\mathcal{O}(N^3)$ where $N$ is the size of the dataset. One of a number of scalable GP approaches is the Karhunen-Lo\'eve (KL) decomposed kernel BSS-ANOVA, developed in 2009. It is $\mathcal{O}(NP)$ in training and $\mathcal{O}(P)$ per point in prediction, where $P$ is the number of terms in the ANOVA / KL expansion. A new method of forward variable selection, quickly and effectively limits the number of terms, yielding a method with competitive accuracies, training and inference times for large tabular datasets. The new algorithm balances model fidelity with model complexity using Bayesian and Akaike information criteria (BIC/AIC). The inference speed and accuracy makes the method especially useful for modeling dynamic systems in a model-free manner, by modeling the derivative in a dynamic system as a static problem, then integrating the learned dynamics using a high-order scheme. The methods are demonstrated on a `Susceptible, Infected, Recovered' (SIR) toy problem, with the transmissibility used as forcing function, along with the `Cascaded Tanks' benchmark dataset. Comparisons on the static prediction of derivatives are made with a Random Forest and Residual Neural Network, while for the timeseries prediction comparisons are made with LSTM and GRU recurrent neural networks. The GP outperforms the other methods in all modeling tasks on accuracy, while (in the case of the neural networks) performing many orders of magnitude fewer calculations. For the SIR test, which involved prediction for a set of forcing functions qualitatively different from those appearing in the training set, the GP captured the correct dynamics while the neural networks failed to do so.
3,770
Reinforcement Learning Approach for Mapping Applications to Dataflow-Based Coarse-Grained Reconfigurable Array
The Streaming Engine (SE) is a Coarse-Grained Reconfigurable Array which provides programming flexibility and high-performance with energy efficiency. An application program to be executed on the SE is represented as a combination of Synchronous Data Flow (SDF) graphs, where every instruction is represented as a node. Each node needs to be mapped to the right slot and array in the SE to ensure the correct execution of the program. This creates an optimization problem with a vast and sparse search space for which finding a mapping manually is impractical because it requires expertise and knowledge of the SE micro-architecture. In this work we propose a Reinforcement Learning framework with Global Graph Attention (GGA) module and output masking of invalid placements to find and optimize instruction schedules. We use Proximal Policy Optimization in order to train a model which places operations into the SE tiles based on a reward function that models the SE device and its constraints. The GGA module consists of a graph neural network and an attention module. The graph neural network creates embeddings of the SDFs and the attention block is used to model sequential operation placement. We show results on how certain workloads are mapped to the SE and the factors affecting mapping quality. We find that the addition of GGA, on average, finds 10% better instruction schedules in terms of total clock cycles taken and masking improves reward obtained by 20%.
3,771
Global Normalization for Streaming Speech Recognition in a Modular Framework
We introduce the Globally Normalized Autoregressive Transducer (GNAT) for addressing the label bias problem in streaming speech recognition. Our solution admits a tractable exact computation of the denominator for the sequence-level normalization. Through theoretical and empirical results, we demonstrate that by switching to a globally normalized model, the word error rate gap between streaming and non-streaming speech-recognition models can be greatly reduced (by more than 50\% on the Librispeech dataset). This model is developed in a modular framework which encompasses all the common neural speech recognition models. The modularity of this framework enables controlled comparison of modelling choices and creation of new models.
3,772
Transformer for Partial Differential Equations' Operator Learning
Data-driven learning of partial differential equations' solution operators has recently emerged as a promising paradigm for approximating the underlying solutions. The solution operators are usually parameterized by deep learning models that are built upon problem-specific inductive biases. An example is a convolutional or a graph neural network that exploits the local grid structure where functions' values are sampled. The attention mechanism, on the other hand, provides a flexible way to implicitly exploit the patterns within inputs, and furthermore, relationship between arbitrary query locations and inputs. In this work, we present an attention-based framework for data-driven operator learning, which we term Operator Transformer (OFormer). Our framework is built upon self-attention, cross-attention, and a set of point-wise multilayer perceptrons (MLPs), and thus it makes few assumptions on the sampling pattern of the input function or query locations. We show that the proposed framework is competitive on standard benchmark problems and can flexibly be adapted to randomly sampled input.
3,773
Explaining Preferences with Shapley Values
While preference modelling is becoming one of the pillars of machine learning, the problem of preference explanation remains challenging and underexplored. In this paper, we propose \textsc{Pref-SHAP}, a Shapley value-based model explanation framework for pairwise comparison data. We derive the appropriate value functions for preference models and further extend the framework to model and explain \emph{context specific} information, such as the surface type in a tennis game. To demonstrate the utility of \textsc{Pref-SHAP}, we apply our method to a variety of synthetic and real-world datasets and show that richer and more insightful explanations can be obtained over the baseline.
3,774
Contextual Adapters for Personalized Speech Recognition in Neural Transducers
Personal rare word recognition in end-to-end Automatic Speech Recognition (E2E ASR) models is a challenge due to the lack of training data. A standard way to address this issue is with shallow fusion methods at inference time. However, due to their dependence on external language models and the deterministic approach to weight boosting, their performance is limited. In this paper, we propose training neural contextual adapters for personalization in neural transducer based ASR models. Our approach can not only bias towards user-defined words, but also has the flexibility to work with pretrained ASR models. Using an in-house dataset, we demonstrate that contextual adapters can be applied to any general purpose pretrained ASR model to improve personalization. Our method outperforms shallow fusion, while retaining functionality of the pretrained models by not altering any of the model weights. We further show that the adapter style training is superior to full-fine-tuning of the ASR models on datasets with user-defined content.
3,775
Mixed Federated Learning: Joint Decentralized and Centralized Learning
Federated learning (FL) enables learning from decentralized privacy-sensitive data, with computations on raw data confined to take place at edge clients. This paper introduces mixed FL, which incorporates an additional loss term calculated at the coordinating server (while maintaining FL's private data restrictions). There are numerous benefits. For example, additional datacenter data can be leveraged to jointly learn from centralized (datacenter) and decentralized (federated) training data and better match an expected inference data distribution. Mixed FL also enables offloading some intensive computations (e.g., embedding regularization) to the server, greatly reducing communication and client computation load. For these and other mixed FL use cases, we present three algorithms: PARALLEL TRAINING, 1-WAY GRADIENT TRANSFER, and 2-WAY GRADIENT TRANSFER. We state convergence bounds for each, and give intuition on which are suited to particular mixed FL problems. Finally we perform extensive experiments on three tasks, demonstrating that mixed FL can blend training data to achieve an oracle's accuracy on an inference distribution, and can reduce communication and computation overhead by over 90%. Our experiments confirm theoretical predictions of how algorithms perform under different mixed FL problem settings.
3,776
A Unified Analysis of Federated Learning with Arbitrary Client Participation
Federated learning (FL) faces challenges of intermittent client availability and computation/communication efficiency. As a result, only a small subset of clients can participate in FL at a given time. It is important to understand how partial client participation affects convergence, but most existing works have either considered idealized participation patterns or obtained results with non-zero optimality error for generic patterns. In this paper, we provide a unified convergence analysis for FL with arbitrary client participation. We first introduce a generalized version of federated averaging (FedAvg) that amplifies parameter updates at an interval of multiple FL rounds. Then, we present a novel analysis that captures the effect of client participation in a single term. By analyzing this term, we obtain convergence upper bounds for a wide range of participation patterns, including both non-stochastic and stochastic cases, which match either the lower bound of stochastic gradient descent (SGD) or the state-of-the-art results in specific settings. We also discuss various insights, recommendations, and experimental results.
3,777
Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
This paper considers the Pointer Value Retrieval (PVR) benchmark introduced in [ZRKB21], where a 'reasoning' function acts on a string of digits to produce the label. More generally, the paper considers the learning of logical functions with gradient descent (GD) on neural networks. It is first shown that in order to learn logical functions with gradient descent on symmetric neural networks, the generalization error can be lower-bounded in terms of the noise-stability of the target function, supporting a conjecture made in [ZRKB21]. It is then shown that in the distribution shift setting, when the data withholding corresponds to freezing a single feature (referred to as canonical holdout), the generalization error of gradient descent admits a tight characterization in terms of the Boolean influence for several relevant architectures. This is shown on linear models and supported experimentally on other models such as MLPs and Transformers. In particular, this puts forward the hypothesis that for such architectures and for learning logical functions such as PVR functions, GD tends to have an implicit bias towards low-degree representations, which in turn gives the Boolean influence for the generalization error under quadratic loss.
3,778
A Model Predictive Control Functional Continuous Time Bayesian Network for Self-Management of Multiple Chronic Conditions
Multiple chronic conditions (MCC) are one of the biggest challenges of modern times. The evolution of MCC follows a complex stochastic process that is influenced by a variety of risk factors, ranging from pre-existing conditions to modifiable lifestyle behavioral factors (e.g. diet, exercise habits, tobacco use, alcohol use, etc.) to non-modifiable socio-demographic factors (e.g., age, gender, education, marital status, etc.). People with MCC are at an increased risk of new chronic conditions and mortality. This paper proposes a model predictive control functional continuous time Bayesian network, an online recursive method to examine the impact of various lifestyle behavioral changes on the emergence trajectories of MCC and generate strategies to minimize the risk of progression of chronic conditions in individual patients. The proposed method is validated based on the Cameron county Hispanic cohort (CCHC) dataset, which has a total of 385 patients. The dataset examines the emergence of 5 chronic conditions (diabetes, obesity, cognitive impairment, hyperlipidemia, and hypertension) based on four modifiable risk factors representing lifestyle behaviors (diet, exercise habits, tobacco use, alcohol use) and four non-modifiable risk factors, including socio-demographic information (age, gender, education, marital status). The proposed method is tested under different scenarios (e.g., age group, the prior existence of MCC), demonstrating the effective intervention strategies for improving the lifestyle behavioral risk factors to offset MCC evolution.
3,779
Quark: Controllable Text Generation with Reinforced Unlearning
Large-scale language models often learn behaviors that are misaligned with user expectations. Generated text may contain offensive or toxic language, contain significant repetition, or be of a different sentiment than desired by the user. We consider the task of unlearning these misalignments by fine-tuning the language model on signals of what not to do. We introduce Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted property, while not straying too far from the original model. Quark alternates between (i) collecting samples with the current language model, (ii) sorting them into quantiles based on reward, with each quantile identified by a reward token prepended to the language model's input, and (iii) using a standard language modeling loss on samples from each quantile conditioned on its reward token, while remaining nearby the original language model via a KL-divergence penalty. By conditioning on a high-reward token at generation time, the model generates text that exhibits less of the unwanted property. For unlearning toxicity, negative sentiment, and repetition, our experiments show that Quark outperforms both strong baselines and state-of-the-art reinforcement learning methods like PPO (Schulman et al. 2017), while relying only on standard language modeling primitives.
3,780
RIGID: Robust Linear Regression with Missing Data
We present a robust framework to perform linear regression with missing entries in the features. By considering an elliptical data distribution, and specifically a multivariate normal model, we are able to conditionally formulate a distribution for the missing entries and present a robust framework, which minimizes the worst case error caused by the uncertainty about the missing data. We show that the proposed formulation, which naturally takes into account the dependency between different variables, ultimately reduces to a convex program, for which a customized and scalable solver can be delivered. In addition to a detailed analysis to deliver such solver, we also asymptoticly analyze the behavior of the proposed framework, and present technical discussions to estimate the required input parameters. We complement our analysis with experiments performed on synthetic, semi-synthetic, and real data, and show how the proposed formulation improves the prediction accuracy and robustness, and outperforms the competing techniques.
3,781
BagFlip: A Certified Defense against Data Poisoning
Machine learning models are vulnerable to data-poisoning attacks, in which an attacker maliciously modifies the training set to change the prediction of a learned model. In a trigger-less attack, the attacker can modify the training set but not the test inputs, while in a backdoor attack the attacker can also modify test inputs. Existing model-agnostic defense approaches either cannot handle backdoor attacks or do not provide effective certificates (i.e., a proof of a defense). We present BagFlip, a model-agnostic certified approach that can effectively defend against both trigger-less and backdoor attacks. We evaluate BagFlip on image classification and malware detection datasets. BagFlip is equal to or more effective than the state-of-the-art approaches for trigger-less attacks and more effective than the state-of-the-art approaches for backdoor attacks.
3,782
Flexible Group Fairness Metrics for Survival Analysis
Algorithmic fairness is an increasingly important field concerned with detecting and mitigating biases in machine learning models. There has been a wealth of literature for algorithmic fairness in regression and classification however there has been little exploration of the field for survival analysis. Survival analysis is the prediction task in which one attempts to predict the probability of an event occurring over time. Survival predictions are particularly important in sensitive settings such as when utilising machine learning for diagnosis and prognosis of patients. In this paper we explore how to utilise existing survival metrics to measure bias with group fairness metrics. We explore this in an empirical experiment with 29 survival datasets and 8 measures. We find that measures of discrimination are able to capture bias well whereas there is less clarity with measures of calibration and scoring rules. We suggest further areas for research including prediction-based fairness metrics for distribution predictions.
3,783
Faster Optimization on Sparse Graphs via Neural Reparametrization
In mathematical optimization, second-order Newton's methods generally converge faster than first-order methods, but they require the inverse of the Hessian, hence are computationally expensive. However, we discover that on sparse graphs, graph neural networks (GNN) can implement an efficient Quasi-Newton method that can speed up optimization by a factor of 10-100x. Our method, neural reparametrization, modifies the optimization parameters as the output of a GNN to reshape the optimization landscape. Using a precomputed Hessian as the propagation rule, the GNN can effectively utilize the second-order information, reaching a similar effect as adaptive gradient methods. As our method solves optimization through architecture design, it can be used in conjunction with any optimizers such as Adam and RMSProp. We show the application of our method on scientifically relevant problems including heat diffusion, synchronization and persistent homology.
3,784
A Hybrid Neural Autoencoder for Sensory Neuroprostheses and Its Applications in Bionic Vision
Sensory neuroprostheses are emerging as a promising technology to restore lost sensory function or augment human capacities. However, sensations elicited by current devices often appear artificial and distorted. Although current models can often predict the neural or perceptual response to an electrical stimulus, an optimal stimulation strategy solves the inverse problem: what is the required stimulus to produce a desired response? Here we frame this as an end-to-end optimization problem, where a deep neural network encoder is trained to invert a known, fixed forward model that approximates the underlying biological system. As a proof of concept, we demonstrate the effectiveness of our hybrid neural autoencoder (HNA) on the use case of visual neuroprostheses. We found that HNA is able to produce high-fidelity stimuli from the MNIST and COCO datasets that outperform conventional encoding strategies and surrogate techniques across all tested conditions. Overall this is an important step towards the long-standing challenge of restoring high-quality vision to people living with incurable blindness and may prove a promising solution for a variety of neuroprosthetic technologies.
3,785
Differentially Private Decoding in Large Language Models
Recent large-scale natural language processing (NLP) systems use a pre-trained Large Language Model (LLM) on massive and diverse corpora as a headstart. In practice, the pre-trained model is adapted to a wide array of tasks via fine-tuning on task-specific datasets. LLMs, while effective, have been shown to memorize instances of training data thereby potentially revealing private information processed during pre-training. The potential leakage might further propagate to the downstream tasks for which LLMs are fine-tuned. On the other hand, privacy-preserving algorithms usually involve retraining from scratch, which is prohibitively expensive for LLMs. In this work, we propose a simple, easy to interpret, and computationally lightweight perturbation mechanism to be applied to an already trained model at the decoding stage. Our perturbation mechanism is model-agnostic and can be used in conjunction with any LLM. We provide theoretical analysis showing that the proposed mechanism is differentially private, and experimental results showing a privacy-utility trade-off.
3,786
Fairness in Recommendation: A Survey
As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.
3,787
Denial-of-Service Attack on Object Detection Model Using Universal Adversarial Perturbation
Adversarial attacks against deep learning-based object detectors have been studied extensively in the past few years. The proposed attacks aimed solely at compromising the models' integrity (i.e., trustworthiness of the model's prediction), while adversarial attacks targeting the models' availability, a critical aspect in safety-critical domains such as autonomous driving, have not been explored by the machine learning research community. In this paper, we propose NMS-Sponge, a novel approach that negatively affects the decision latency of YOLO, a state-of-the-art object detector, and compromises the model's availability by applying a universal adversarial perturbation (UAP). In our experiments, we demonstrate that the proposed UAP is able to increase the processing time of individual frames by adding "phantom" objects while preserving the detection of the original objects.
3,788
Approximate Q-learning and SARSA(0) under the $ε$-greedy Policy: a Differential Inclusion Analysis
Q-learning and SARSA(0) with linear function approximation, under $\epsilon$-greedy exploration, are leading methods to estimate the optimal policy in Reinforcement Learning (RL). It has been empirically known that the discontinuous nature of the greedy policies causes these algorithms to exhibit complex phenomena such as i.) instability, ii.) policy oscillation and chattering, iii.) multiple attractors, and iv.) worst policy convergence. However, the literature lacks a formal recipe to explain these behaviors and this has been a long-standing open problem (Sutton, 1999). Our work addresses this by building the necessary mathematical framework using stochastic recursive inclusions and Differential Inclusions (DIs). From this novel viewpoint, our main result states that these approximate algorithms asymptotically converge to suitable invariant sets of DIs instead of differential equations, as is common elsewhere in RL. Furthermore, the nature of these deterministic DIs completely governs the limiting behaviors of these algorithms.
3,789
Fight Poison with Poison: Detecting Backdoor Poison Samples via Decoupling Benign Correlations
In this work, we study poison samples detection for defending against backdoor poisoning attacks on deep neural networks (DNNs). A principled idea underlying prior arts on this problem is to utilize the backdoored models' distinguishable behaviors on poison and clean populations to distinguish between these two different populations themselves and remove the identified poison. Many prior arts build their detectors upon a latent separability assumption, which states that backdoored models trained on the poisoned dataset will learn separable latent representations for backdoor and clean samples. Although such separation behaviors empirically exist for many existing attacks, there is no control on the separability and the extent of separation can vary a lot across different poison strategies, datasets, as well as the training configurations of backdoored models. Worse still, recent adaptive poison strategies can greatly reduce the "distinguishable behaviors" and consequently render most prior arts less effective (or completely fail). We point out that these limitations directly come from the passive reliance on some distinguishable behaviors that are not controlled by defenders. To mitigate such limitations, in this work, we propose the idea of active defense -- rather than passively assuming backdoored models will have certain distinguishable behaviors on poison and clean samples, we propose to actively enforce the trained models to behave differently on these two different populations. Specifically, we introduce confusion training as a concrete instance of active defense.
3,790
Emergent organization of receptive fields in networks of excitatory and inhibitory neurons
Local patterns of excitation and inhibition that can generate neural waves are studied as a computational mechanism underlying the organization of neuronal tunings. Sparse coding algorithms based on networks of excitatory and inhibitory neurons are proposed that exhibit topographic maps as the receptive fields are adapted to input stimuli. Motivated by a leaky integrate-and-fire model of neural waves, we propose an activation model that is more typical of artificial neural networks. Computational experiments with the activation model using both natural images and natural language text are presented. In the case of images, familiar "pinwheel" patterns of oriented edge detectors emerge; in the case of text, the resulting topographic maps exhibit a 2-dimensional representation of granular word semantics. Experiments with a synthetic model of somatosensory input are used to investigate how the network dynamics may affect plasticity of neuronal maps under changes to the inputs.
3,791
Circumventing Backdoor Defenses That Are Based on Latent Separability
Deep learning models are vulnerable to backdoor poisoning attacks. In particular, adversaries can embed hidden backdoors into a model by only modifying a very small portion of its training data. On the other hand, it has also been commonly observed that backdoor poisoning attacks tend to leave a tangible signature in the latent space of the backdoored model i.e. poison samples and clean samples form two separable clusters in the latent space. These observations give rise to the popularity of latent separability assumption, which states that the backdoored DNN models will learn separable latent representations for poison and clean populations. A number of popular defenses (e.g. Spectral Signature, Activation Clustering, SCAn, etc.) are exactly built upon this assumption. However, in this paper, we show that the latent separation can be significantly suppressed via designing adaptive backdoor poisoning attacks with more sophisticated poison strategies, which consequently render state-of-the-art defenses based on this assumption less effective (and often completely fail). More interestingly, we find that our adaptive attacks can even evade some other typical backdoor defenses that do not explicitly build on this separability assumption. Our results show that adaptive backdoor poisoning attacks that can breach the latent separability assumption should be seriously considered for evaluating existing and future defenses.
3,792
Self-supervised Pretraining and Transfer Learning Enable Flu and COVID-19 Predictions in Small Mobile Sensing Datasets
Detailed mobile sensing data from phones, watches, and fitness trackers offer an unparalleled opportunity to quantify and act upon previously unmeasurable behavioral changes in order to improve individual health and accelerate responses to emerging diseases. Unlike in natural language processing and computer vision, deep representation learning has yet to broadly impact this domain, in which the vast majority of research and clinical applications still rely on manually defined features and boosted tree models or even forgo predictive modeling altogether due to insufficient accuracy. This is due to unique challenges in the behavioral health domain, including very small datasets (~10^1 participants), which frequently contain missing data, consist of long time series with critical long-range dependencies (length>10^4), and extreme class imbalances (>10^3:1). Here, we introduce a neural architecture for multivariate time series classification designed to address these unique domain challenges. Our proposed behavioral representation learning approach combines novel tasks for self-supervised pretraining and transfer learning to address data scarcity, and captures long-range dependencies across long-history time series through transformer self-attention following convolutional neural network-based dimensionality reduction. We propose an evaluation framework aimed at reflecting expected real-world performance in plausible deployment scenarios. Concretely, we demonstrate (1) performance improvements over baselines of up to 0.15 ROC AUC across five prediction tasks, (2) transfer learning-induced performance improvements of 16% PR AUC in small data scenarios, and (3) the potential of transfer learning in novel disease scenarios through an exploratory case study of zero-shot COVID-19 prediction in an independent data set. Finally, we discuss potential implications for medical surveillance testing.
3,793
Tensor Program Optimization with Probabilistic Programs
Automatic optimization for tensor programs becomes increasingly important as we deploy deep learning in various environments, and efficient optimization relies on a rich search space and effective search. Most existing efforts adopt a search space which lacks the ability to efficiently enable domain experts to grow the search space. This paper introduces MetaSchedule, a domain-specific probabilistic programming language abstraction to construct a rich search space of tensor programs. Our abstraction allows domain experts to analyze the program, and easily propose stochastic choices in a modular way to compose program transformation accordingly. We also build an end-to-end learning-driven framework to find an optimized program for a given search space. Experimental results show that MetaSchedule can cover the search space used in the state-of-the-art tensor program optimization frameworks in a modular way. Additionally, it empowers domain experts to conveniently grow the search space and modularly enhance the system, which brings 48% speedup on end-to-end deep learning workloads.
3,794
Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods
Addressing the challenge of scaling-up epidemiological inference to complex and heterogeneous models, we introduce Poisson Approximate Likelihood (PAL) methods. In contrast to the popular ODE approach to compartmental modelling, in which a large population limit is used to motivate a deterministic model, PALs are derived from approximate filtering equations for finite-population, stochastic compartmental models, and the large population limit drives the consistency of maximum PAL estimators. Our theoretical results appear to be the first likelihood-based parameter estimation consistency results applicable across a broad class of partially observed stochastic compartmental models. Compared to simulation-based methods such as Approximate Bayesian Computation and Sequential Monte Carlo, PALs are simple to implement, involving only elementary arithmetic operations and no tuning parameters; and fast to evaluate, requiring no simulation from the model and having computational cost independent of population size. Through examples, we demonstrate how PALs can be: embedded within Delayed Acceptance Particle Markov Chain Monte Carlo to facilitate Bayesian inference; used to fit an age-structured model of influenza, taking advantage of automatic differentiation in Stan; and applied to calibrate a spatial meta-population model of measles.
3,795
MyoSuite -- A contact-rich simulation suite for musculoskeletal motor control
Embodied agents in continuous control domains have had limited exposure to tasks allowing to explore musculoskeletal properties that enable agile and nimble behaviors in biological beings. The sophistication behind neuro-musculoskeletal control can pose new challenges for the motor learning community. At the same time, agents solving complex neural control problems allow impact in fields such as neuro-rehabilitation, as well as collaborative-robotics. Human biomechanics underlies complex multi-joint-multi-actuator musculoskeletal systems. The sensory-motor system relies on a range of sensory-contact rich and proprioceptive inputs that define and condition muscle actuation required to exhibit intelligent behaviors in the physical world. Current frameworks for musculoskeletal control do not support physiological sophistication of the musculoskeletal systems along with physical world interaction capabilities. In addition, they are neither embedded in complex and skillful motor tasks nor are computationally effective and scalable to study large-scale learning paradigms. Here, we present MyoSuite -- a suite of physiologically accurate biomechanical models of elbow, wrist, and hand, with physical contact capabilities, which allow learning of complex and skillful contact-rich real-world tasks. We provide diverse motor-control challenges: from simple postural control to skilled hand-object interactions such as turning a key, twirling a pen, rotating two balls in one hand, etc. By supporting physiological alterations in musculoskeletal geometry (tendon transfer), assistive devices (exoskeleton assistance), and muscle contraction dynamics (muscle fatigue, sarcopenia), we present real-life tasks with temporal changes, thereby exposing realistic non-stationary conditions in our tasks which most continuous control benchmarks lack.
3,796
VectorAdam for Rotation Equivariant Geometry Optimization
The rise of geometric problems in machine learning has necessitated the development of equivariant methods, which preserve their output under the action of rotation or some other transformation. At the same time, the Adam optimization algorithm has proven remarkably effective across machine learning and even traditional tasks in geometric optimization. In this work, we observe that naively applying Adam to optimize vector-valued data is not rotation equivariant, due to per-coordinate moment updates, and in fact this leads to significant artifacts and biases in practice. We propose to resolve this deficiency with VectorAdam, a simple modification which makes Adam rotation-equivariant by accounting for the vector structure of optimization variables. We demonstrate this approach on problems in machine learning and traditional geometric optimization, showing that equivariant VectorAdam resolves the artifacts and biases of traditional Adam when applied to vector-valued data, with equivalent or even improved rates of convergence.
3,797
DRLComplex: Reconstruction of protein quaternary structures using deep reinforcement learning
Predicted inter-chain residue-residue contacts can be used to build the quaternary structure of protein complexes from scratch. However, only a small number of methods have been developed to reconstruct protein quaternary structures using predicted inter-chain contacts. Here, we present an agent-based self-learning method based on deep reinforcement learning (DRLComplex) to build protein complex structures using inter-chain contacts as distance constraints. We rigorously tested DRLComplex on two standard datasets of homodimeric and heterodimeric protein complexes (i.e., the CASP-CAPRI homodimer and Std_32 heterodimer datasets) using both true and predicted interchain contacts as inputs. Utilizing true contacts as input, DRLComplex achieved high average TM-scores of 0.9895 and 0.9881 and a low average interface RMSD (I_RMSD) of 0.2197 and 0.92 on the two datasets, respectively. When predicted contacts are used, the method achieves TM-scores of 0.73 and 0.76 for homodimers and heterodimers, respectively. Our experiments find that the accuracy of reconstructed quaternary structures depends on the accuracy of the contact predictions. Compared to other optimization methods for reconstructing quaternary structures from inter-chain contacts, DRLComplex performs similar to an advanced gradient descent method and better than a Markov Chain Monte Carlo simulation method and a simulated annealing-based method, validating the effectiveness of DRLComplex for quaternary reconstruction of protein complexes.
3,798
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes
We study offline reinforcement learning (RL) in partially observable Markov decision processes. In particular, we aim to learn an optimal policy from a dataset collected by a behavior policy which possibly depends on the latent state. Such a dataset is confounded in the sense that the latent state simultaneously affects the action and the observation, which is prohibitive for existing offline RL algorithms. To this end, we propose the \underline{P}roxy variable \underline{P}essimistic \underline{P}olicy \underline{O}ptimization (\texttt{P3O}) algorithm, which addresses the confounding bias and the distributional shift between the optimal and behavior policies in the context of general function approximation. At the core of \texttt{P3O} is a coupled sequence of pessimistic confidence regions constructed via proximal causal inference, which is formulated as minimax estimation. Under a partial coverage assumption on the confounded dataset, we prove that \texttt{P3O} achieves a $n^{-1/2}$-suboptimality, where $n$ is the number of trajectories in the dataset. To our best knowledge, \texttt{P3O} is the first provably efficient offline RL algorithm for POMDPs with a confounded dataset.
3,799
Evolution of beliefs in social networks
Evolution of beliefs of a society are a product of interactions between people (horizontal transmission) in the society over generations (vertical transmission). Researchers have studied both horizontal and vertical transmission separately. Extending prior work, we propose a new theoretical framework which allows application of tools from Markov chain theory to the analysis of belief evolution via horizontal and vertical transmission. We analyze three cases: static network, randomly changing network, and homophily-based dynamic network. Whereas the former two assume network structure is independent of beliefs, the latter assumes that people tend to communicate with those who have similar beliefs. We prove under general conditions that both static and randomly changing networks converge to a single set of beliefs among all individuals along with the rate of convergence. We prove that homophily-based network structures do not in general converge to a single set of beliefs shared by all and prove lower bounds on the number of different limiting beliefs as a function of initial beliefs. We conclude by discussing implications for prior theories and directions for future work.