Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
3,100
Learning-Augmented Algorithms for Online TSP on the Line
We study the online Traveling Salesman Problem (TSP) on the line augmented with machine-learned predictions. In the classical problem, there is a stream of requests released over time along the real line. The goal is to minimize the makespan of the algorithm. We distinguish between the open variant and the closed one, in which we additionally require the algorithm to return to the origin after serving all requests. The state of the art is a $1.64$-competitive algorithm and a $2.04$-competitive algorithm for the closed and open variants, respectively \cite{Bjelde:1.64}. In both cases, a tight lower bound is known \cite{Ausiello:1.75, Bjelde:1.64}. In both variants, our primary prediction model involves predicted positions of the requests. We introduce algorithms that (i) obtain a tight 1.5 competitive ratio for the closed variant and a 1.66 competitive ratio for the open variant in the case of perfect predictions, (ii) are robust against unbounded prediction error, and (iii) are smooth, i.e., their performance degrades gracefully as the prediction error increases. Moreover, we further investigate the learning-augmented setting in the open variant by additionally considering a prediction for the last request served by the optimal offline algorithm. Our algorithm for this enhanced setting obtains a 1.33 competitive ratio with perfect predictions while also being smooth and robust, beating the lower bound of 1.44 we show for our original prediction setting for the open variant. Also, we provide a lower bound of 1.25 for this enhanced setting.
3,101
Graph Neural Networks with Precomputed Node Features
Most Graph Neural Networks (GNNs) cannot distinguish some graphs or indeed some pairs of nodes within a graph. This makes it impossible to solve certain classification tasks. However, adding additional node features to these models can resolve this problem. We introduce several such augmentations, including (i) positional node embeddings, (ii) canonical node IDs, and (iii) random features. These extensions are motivated by theoretical results and corroborated by extensive testing on synthetic subgraph detection tasks. We find that positional embeddings significantly outperform other extensions in these tasks. Moreover, positional embeddings have better sample efficiency, perform well on different graph distributions and even outperform learning with ground truth node positions. Finally, we show that the different augmentations perform competitively on established GNN benchmarks, and advise on when to use them.
3,102
Computing the Variance of Shuffling Stochastic Gradient Algorithms via Power Spectral Density Analysis
When solving finite-sum minimization problems, two common alternatives to stochastic gradient descent (SGD) with theoretical benefits are random reshuffling (SGD-RR) and shuffle-once (SGD-SO), in which functions are sampled in cycles without replacement. Under a convenient stochastic noise approximation which holds experimentally, we study the stationary variances of the iterates of SGD, SGD-RR and SGD-SO, whose leading terms decrease in this order, and obtain simple approximations. To obtain our results, we study the power spectral density of the stochastic gradient noise sequences. Our analysis extends beyond SGD to SGD with momentum and to the stochastic Nesterov's accelerated gradient method. We perform experiments on quadratic objective functions to test the validity of our approximation and the correctness of our findings.
3,103
Cross-View Language Modeling: Towards Unified Cross-Lingual Cross-Modal Pre-training
In this paper, we introduce Cross-View Language Modeling, a simple and effective language model pre-training framework that unifies cross-lingual cross-modal pre-training with shared architectures and objectives. Our approach is motivated by a key observation that cross-lingual and cross-modal pre-training share the same goal of aligning two different views of the same object into a common semantic space. To this end, the cross-view language modeling framework considers both multi-modal data (i.e., image-caption pairs) and multi-lingual data (i.e., parallel sentence pairs) as two different views of the same object, and trains the model to align the two views by maximizing the mutual information between them with conditional masked language modeling and contrastive learning. We pre-train CCLM, a Cross-lingual Cross-modal Language Model, with the cross-view language modeling framework. Empirical results on IGLUE, a multi-lingual multi-modal benchmark, and two multi-lingual image-text retrieval datasets show that while conceptually simpler, CCLM significantly outperforms the prior state-of-the-art with an average absolute improvement of over 10%. Notably, CCLM is the first multi-lingual multi-modal model that surpasses the translate-test performance of representative English vision-language models by zero-shot cross-lingual transfer.
3,104
Graph Machine Learning for Design of High-Octane Fuels
Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further auto-ignition training data.
3,105
On the Choice of Data for Efficient Training and Validation of End-to-End Driving Models
The emergence of data-driven machine learning (ML) has facilitated significant progress in many complicated tasks such as highly-automated driving. While much effort is put into improving the ML models and learning algorithms in such applications, little focus is put into how the training data and/or validation setting should be designed. In this paper we investigate the influence of several data design choices regarding training and validation of deep driving models trainable in an end-to-end fashion. Specifically, (i) we investigate how the amount of training data influences the final driving performance, and which performance limitations are induced through currently used mechanisms to generate training data. (ii) Further, we show by correlation analysis, which validation design enables the driving performance measured during validation to generalize well to unknown test environments. (iii) Finally, we investigate the effect of random seeding and non-determinism, giving insights which reported improvements can be deemed significant. Our evaluations using the popular CARLA simulator provide recommendations regarding data generation and driving route selection for an efficient future development of end-to-end driving models.
3,106
Higher-Order Attention Networks
This paper introduces higher-order attention networks (HOANs), a novel class of attention-based neural networks defined on a generalized higher-order domain called a combinatorial complex (CC). Similar to hypergraphs, CCs admit arbitrary set-like relations between a collection of abstract entities. Simultaneously, CCs permit the construction of hierarchical higher-order relations analogous to those supported by cell complexes. Thus, CCs effectively generalize both hypergraphs and cell complexes and combine their desirable characteristics. By exploiting the rich combinatorial nature of CCs, HOANs define a new class of message-passing attention-based networks that unifies higher-order neural networks. Our evaluation on tasks related to mesh shape analysis and graph learning demonstrates that HOANs attain competitive, and in some examples superior, predictive performance in comparison to state-of-the-art neural networks.
3,107
Multi-Armed Bandit Problem with Temporally-Partitioned Rewards: When Partial Feedback Counts
There is a rising interest in industrial online applications where data becomes available sequentially. Inspired by the recommendation of playlists to users where their preferences can be collected during the listening of the entire playlist, we study a novel bandit setting, namely Multi-Armed Bandit with Temporally-Partitioned Rewards (TP-MAB), in which the stochastic reward associated with the pull of an arm is partitioned over a finite number of consecutive rounds following the pull. This setting, unexplored so far to the best of our knowledge, is a natural extension of delayed-feedback bandits to the case in which rewards may be dilated over a finite-time span after the pull instead of being fully disclosed in a single, potentially delayed round. We provide two algorithms to address TP-MAB problems, namely, TP-UCB-FR and TP-UCB-EW, which exploit the partial information disclosed by the reward collected over time. We show that our algorithms provide better asymptotical regret upper bounds than delayed-feedback bandit algorithms when a property characterizing a broad set of reward structures of practical interest, namely alpha-smoothness, holds. We also empirically evaluate their performance across a wide range of settings, both synthetically generated and from a real-world media recommendation problem.
3,108
Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks
To accelerate the training of graph convolutional networks (GCNs), many sampling-based methods have been developed for approximating the embedding aggregation. Among them, a layer-wise approach recursively performs importance sampling to select neighbors jointly for existing nodes in each layer. This paper revisits the approach from a matrix approximation perspective. We identify two issues in the existing layer-wise sampling methods: sub-optimal sampling probabilities and the approximation bias induced by sampling without replacement. We propose two remedies: new sampling probabilities and a debiasing algorithm, to address these issues, and provide the statistical analysis of the estimation variance. The improvements are demonstrated by extensive analyses and experiments on common benchmarks.
3,109
SAMPLE-HD: Simultaneous Action and Motion Planning Learning Environment
Humans exhibit incredibly high levels of multi-modal understanding - combining visual cues with read, or heard knowledge comes easy to us and allows for very accurate interaction with the surrounding environment. Various simulation environments focus on providing data for tasks related to scene understanding, question answering, space exploration, visual navigation. In this work, we are providing a solution to encompass both, visual and behavioural aspects of simulation in a new environment for learning interactive reasoning in manipulation setup. SAMPLE-HD environment allows to generate various scenes composed of small household objects, to procedurally generate language instructions for manipulation, and to generate ground truth paths serving as training data.
3,110
Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge Prediction
Electrochemical batteries are ubiquitous devices in our society. When they are employed in mission-critical applications, the ability to precisely predict the end of discharge under highly variable environmental and operating conditions is of paramount importance in order to support operational decision-making. While there are accurate predictive models of the processes underlying the charge and discharge phases of batteries, the modelling of ageing and its effect on performance remains poorly understood. Such a lack of understanding often leads to inaccurate models or the need for time-consuming calibration procedures whenever the battery ages or its conditions change significantly. This represents a major obstacle to the real-world deployment of efficient and robust battery management systems. In this paper, we propose for the first time an approach that can predict the voltage discharge curve for batteries of any degradation level without the need for calibration. In particular, we introduce Dynaformer, a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples and predict the full voltage discharge curve for real batteries with high precision. Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels. In addition to evaluating the performance of the proposed framework on simulated data, we demonstrate that a minimal amount of fine-tuning allows the model to bridge the simulation-to-real gap between simulations and real data collected from a set of batteries. The proposed methodology enables the utilization of battery-powered systems until the end of discharge in a controlled and predictable way, thereby significantly prolonging the operating cycles and reducing costs.
3,111
RMT-Net: Reject-aware Multi-Task Network for Modeling Missing-not-at-random Data in Financial Credit Scoring
In financial credit scoring, loan applications may be approved or rejected. We can only observe default/non-default labels for approved samples but have no observations for rejected samples, which leads to missing-not-at-random selection bias. Machine learning models trained on such biased data are inevitably unreliable. In this work, we find that the default/non-default classification task and the rejection/approval classification task are highly correlated, according to both real-world data study and theoretical analysis. Consequently, the learning of default/non-default can benefit from rejection/approval. Accordingly, we for the first time propose to model the biased credit scoring data with Multi-Task Learning (MTL). Specifically, we propose a novel Reject-aware Multi-Task Network (RMT-Net), which learns the task weights that control the information sharing from the rejection/approval task to the default/non-default task by a gating network based on rejection probabilities. RMT-Net leverages the relation between the two tasks that the larger the rejection probability, the more the default/non-default task needs to learn from the rejection/approval task. Furthermore, we extend RMT-Net to RMT-Net++ for modeling scenarios with multiple rejection/approval strategies. Extensive experiments are conducted on several datasets, and strongly verifies the effectiveness of RMT-Net on both approved and rejected samples. In addition, RMT-Net++ further improves RMT-Net's performances.
3,112
Non-Intrusive Reduced Models based on Operator Inference for Chaotic Systems
This work explores the physics-driven machine learning technique Operator Inference (OpInf) for predicting the state of chaotic dynamical systems. OpInf provides a non-intrusive approach to infer approximations of polynomial operators in reduced space without having access to the full order operators appearing in discretized models. Datasets for the physics systems are generated using conventional numerical solvers and then projected to a low-dimensional space via Principal Component Analysis (PCA). In latent space, a least-squares problem is set to fit a quadratic polynomial operator which is subsequently employed in a time-integration scheme in order to produce extrapolations in the same space. Once solved, the inverse PCA operation is applied for reconstructing the extrapolations in the original space. The quality of the OpInf predictions is assessed via the Normalized Root Mean Squared Error (NRMSE) metric from which the Valid Prediction Time (VPT) is computed. Numerical experiments considering the chaotic systems Lorenz 96 and the Kuramoto-Sivashinsky equation show promising forecasting capabilities of the OpInf reduced order models with VPT ranges that outperform state-of-the-art machine learning methods such as backpropagation and reservoir computing recurrent neural networks [1], as well as Markov neural operators [2]. The best results based on randomized initial conditions show that Lorenz 96 system can be forecasted up to 6.66 or 3.19 Lyapunov time units corresponding to the forcing terms F=8 and F=10, respectively, while the KS system achieved remarkable 794 Lyapunov time units.
3,113
A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs
We consider online learning with feedback graphs, a sequential decision-making framework where the learner's feedback is determined by a directed graph over the action set. We present a computationally efficient algorithm for learning in this framework that simultaneously achieves near-optimal regret bounds in both stochastic and adversarial environments. The bound against oblivious adversaries is $\tilde{O} (\sqrt{\alpha T})$, where $T$ is the time horizon and $\alpha$ is the independence number of the feedback graph. The bound against stochastic environments is $O\big( (\ln T)^2 \max_{S\in \mathcal I(G)} \sum_{i \in S} \Delta_i^{-1}\big)$ where $\mathcal I(G)$ is the family of all independent sets in a suitably defined undirected version of the graph and $\Delta_i$ are the suboptimality gaps. The algorithm combines ideas from the EXP3++ algorithm for stochastic and adversarial bandits and the EXP3.G algorithm for feedback graphs with a novel exploration scheme. The scheme, which exploits the structure of the graph to reduce exploration, is key to obtain best-of-both-worlds guarantees with feedback graphs. We also extend our algorithm and results to a setting where the feedback graphs are allowed to change over time.
3,114
FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks
Algorithmic decision making driven by neural networks has become very prominent in applications that directly affect people's quality of life. In this paper, we study the problem of verifying, training, and guaranteeing individual fairness of neural network models. A popular approach for enforcing fairness is to translate a fairness notion into constraints over the parameters of the model. However, such a translation does not always guarantee fair predictions of the trained neural network model. To address this challenge, we develop a counterexample-guided post-processing technique to provably enforce fairness constraints at prediction time. Contrary to prior work that enforces fairness only on points around test or train data, we are able to enforce and guarantee fairness on all points in the input domain. Additionally, we propose an in-processing technique to use fairness as an inductive bias by iteratively incorporating fairness counterexamples in the learning process. We have implemented these techniques in a tool called FETA. Empirical evaluation on real-world datasets indicates that FETA is not only able to guarantee fairness on-the-fly at prediction time but also is able to train accurate models exhibiting a much higher degree of individual fairness.
3,115
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Byzantine-robustness has been gaining a lot of attention due to the growth of the interest in collaborative and federated learning. However, many fruitful directions, such as the usage of variance reduction for achieving robustness and communication compression for reducing communication costs, remain weakly explored in the field. This work addresses this gap and proposes Byz-VR-MARINA - a new Byzantine-tolerant method with variance reduction and compression. A key message of our paper is that variance reduction is key to fighting Byzantine workers more effectively. At the same time, communication compression is a bonus that makes the process more communication efficient. We derive theoretical convergence guarantees for Byz-VR-MARINA outperforming previous state-of-the-art for general non-convex and Polyak-Lojasiewicz loss functions. Unlike the concurrent Byzantine-robust methods with variance reduction and/or compression, our complexity results are tight and do not rely on restrictive assumptions such as boundedness of the gradients or limited compression. Moreover, we provide the first analysis of a Byzantine-tolerant method supporting non-uniform sampling of stochastic gradients. Numerical experiments corroborate our theoretical findings.
3,116
Vietnamese Hate and Offensive Detection using PhoBERT-CNN and Social Media Streaming Data
Society needs to develop a system to detect hate and offense to build a healthy and safe environment. However, current research in this field still faces four major shortcomings, including deficient pre-processing techniques, indifference to data imbalance issues, modest performance models, and lacking practical applications. This paper focused on developing an intelligent system capable of addressing these shortcomings. Firstly, we proposed an efficient pre-processing technique to clean comments collected from Vietnamese social media. Secondly, a novel hate speech detection (HSD) model, which is the combination of a pre-trained PhoBERT model and a Text-CNN model, was proposed for solving tasks in Vietnamese. Thirdly, EDA techniques are applied to deal with imbalanced data to improve the performance of classification models. Besides, various experiments were conducted as baselines to compare and investigate the proposed model's performance against state-of-the-art methods. The experiment results show that the proposed PhoBERT-CNN model outperforms SOTA methods and achieves an F1-score of 67,46% and 98,45% on two benchmark datasets, ViHSD and HSD-VLSP, respectively. Finally, we also built a streaming HSD application to demonstrate the practicality of our proposed system.
3,117
Deep Learning Opacity in Scientific Discovery
Philosophers have recently focused on critical, epistemological challenges that arise from the opacity of deep neural networks. One might conclude from this literature that doing good science with opaque models is exceptionally challenging, if not impossible. Yet, this is hard to square with the recent boom in optimism for AI in science alongside a flood of recent scientific breakthroughs driven by AI methods. In this paper, I argue that the disconnect between philosophical pessimism and scientific optimism is driven by a failure to examine how AI is actually used in science. I show that, in order to understand the epistemic justification for AI-powered breakthroughs, philosophers must examine the role played by deep learning as part of a wider process of discovery. The philosophical distinction between the 'context of discovery' and the 'context of justification' is helpful in this regard. I demonstrate the importance of attending to this distinction with two cases drawn from the scientific literature, and show that epistemic opacity need not diminish AI's capacity to lead scientists to significant and justifiable breakthroughs.
3,118
Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
In deep reinforcement learning (RL), data augmentation is widely considered as a tool to induce a set of useful priors about semantic consistency and improve sample efficiency and generalization performance. However, even when the prior is useful for generalization, distilling it to RL agent often interferes with RL training and degenerates sample efficiency. Meanwhile, the agent is forgetful of the prior due to the non-stationary nature of RL. These observations suggest two extreme schedules of distillation: (i) over the entire training; or (ii) only at the end. Hence, we devise a stand-alone network distillation method to inject the consistency prior at any time (even after RL), and a simple yet efficient framework to automatically schedule the distillation. Specifically, the proposed framework first focuses on mastering train environments regardless of generalization by adaptively deciding which {\it or no} augmentation to be used for the training. After this, we add the distillation to extract the remaining benefits for generalization from all the augmentations, which requires no additional new samples. In our experiments, we demonstrate the utility of the proposed framework, in particular, that considers postponing the augmentation to the end of RL training.
3,119
One Positive Label is Sufficient: Single-Positive Multi-Label Learning with Label Enhancement
Multi-label learning (MLL) learns from the examples each associated with multiple labels simultaneously, where the high cost of annotating all relevant labels for each training example is challenging for real-world applications. To cope with the challenge, we investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label and show that one can successfully learn a theoretically grounded multi-label classifier for the problem. In this paper, a novel SPMLL method named {\proposed}, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed. Specifically, an unbiased risk estimator is derived, which could be guaranteed to approximately converge to the optimal risk minimizer of fully supervised learning and shows that one positive label of each instance is sufficient to train the predictive model. Then, the corresponding empirical risk estimator is established via recovering the latent soft label as a label enhancement process, where the posterior density of the latent soft labels is approximate to the variational Beta density parameterized by an inference model. Experiments on benchmark datasets validate the effectiveness of the proposed method.
3,120
Feature Selection for Discovering Distributional Treatment Effect Modifiers
Finding the features relevant to the difference in treatment effects is essential to unveil the underlying causal mechanisms. Existing methods seek such features by measuring how greatly the feature attributes affect the degree of the {\it conditional average treatment effect} (CATE). However, these methods may overlook important features because CATE, a measure of the average treatment effect, cannot detect differences in distribution parameters other than the mean (e.g., variance). To resolve this weakness of existing methods, we propose a feature selection framework for discovering {\it distributional treatment effect modifiers}. We first formulate a feature importance measure that quantifies how strongly the feature attributes influence the discrepancy between potential outcome distributions. Then we derive its computationally efficient estimator and develop a feature selection algorithm that can control the type I error rate to the desired level. Experimental results show that our framework successfully discovers important features and outperforms the existing mean-based method.
3,121
The robust way to stack and bag: the local Lipschitz way
Recent research has established that the local Lipschitz constant of a neural network directly influences its adversarial robustness. We exploit this relationship to construct an ensemble of neural networks which not only improves the accuracy, but also provides increased adversarial robustness. The local Lipschitz constants for two different ensemble methods - bagging and stacking - are derived and the architectures best suited for ensuring adversarial robustness are deduced. The proposed ensemble architectures are tested on MNIST and CIFAR-10 datasets in the presence of white-box attacks, FGSM and PGD. The proposed architecture is found to be more robust than a) a single network and b) traditional ensemble methods.
3,122
Neural Network Verification with Proof Production
Deep neural networks (DNNs) are increasingly being employed in safety-critical systems, and there is an urgent need to guarantee their correctness. Consequently, the verification community has devised multiple techniques and tools for verifying DNNs. When DNN verifiers discover an input that triggers an error, that is easy to confirm; but when they report that no error exists, there is no way to ensure that the verification tool itself is not flawed. As multiple errors have already been observed in DNN verification tools, this calls the applicability of DNN verification into question. In this work, we present a novel mechanism for enhancing Simplex-based DNN verifiers with proof production capabilities: the generation of an easy-to-check witness of unsatisfiability, which attests to the absence of errors. Our proof production is based on an efficient adaptation of the well-known Farkas' lemma, combined with mechanisms for handling piecewise-linear functions and numerical precision errors. As a proof of concept, we implemented our technique on top of the Marabou DNN verifier. Our evaluation on a safety-critical system for airborne collision avoidance shows that proof production succeeds in almost all cases and requires only minimal overhead.
3,123
Differentially Private Shapley Values for Data Evaluation
The Shapley value has been proposed as a solution to many applications in machine learning, including for equitable valuation of data. Shapley values are computationally expensive and involve the entire dataset. The query for a point's Shapley value can also compromise the statistical privacy of other data points. We observe that in machine learning problems such as empirical risk minimization, and in many learning algorithms (such as those with uniform stability), a diminishing returns property holds, where marginal benefit per data point decreases rapidly with data sample size. Based on this property, we propose a new stratified approximation method called the Layered Shapley Algorithm. We prove that this method operates on small (O(\polylog(n))) random samples of data and small sized ($O(\log n)$) coalitions to achieve the results with guaranteed probabilistic accuracy, and can be modified to incorporate differential privacy. Experimental results show that the algorithm correctly identifies high-value data points that improve validation accuracy, and that the differentially private evaluations preserve approximate ranking of data.
3,124
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Stein Variational Gradient Descent (SVGD) is an important alternative to the Langevin-type algorithms for sampling from probability distributions of the form $\pi(x) \propto \exp(-V(x))$. In the existing theory of Langevin-type algorithms and SVGD, the potential function $V$ is often assumed to be $L$-smooth. However, this restrictive condition excludes a large class of potential functions such as polynomials of degree greater than $2$. Our paper studies the convergence of the SVGD algorithm for distributions with $(L_0,L_1)$-smooth potentials. This relaxed smoothness assumption was introduced by Zhang et al. [2019a] for the analysis of gradient clipping algorithms. With the help of trajectory-independent auxiliary conditions, we provide a descent lemma establishing that the algorithm decreases the $\mathrm{KL}$ divergence at each iteration and prove a complexity bound for SVGD in the population limit in terms of the Stein Fisher information.
3,125
Proximally Sensitive Error for Anomaly Detection and Feature Learning
Mean squared error (MSE) is one of the most widely used metrics to expression differences between multi-dimensional entities, including images. However, MSE is not locally sensitive as it does not take into account the spatial arrangement of the (pixel) differences, which matters for structured data types like images. Such spatial arrangements carry information about the source of the differences; therefore, an error function that also incorporates the location of errors can lead to a more meaningful distance measure. We introduce Proximally Sensitive Error (PSE), through which we suggest that a regional emphasis in the error measure can 'highlight' semantic differences between images over syntactic/random deviations. We demonstrate that this emphasis can be leveraged upon for the task of anomaly/occlusion detection. We further explore its utility as a loss function to help a model focus on learning representations of semantic objects instead of minimizing syntactic reconstruction noise.
3,126
Realistic Deep Learning May Not Fit Benignly
Studies on benign overfitting provide insights for the success of overparameterized deep learning models. In this work, we examine the benign overfitting phenomena in real-world settings. We found that for tasks such as training a ResNet model on ImageNet dataset, the model does not fit benignly. To understand why benign overfitting fails in the ImageNet experiment, we analyze previous benign overfitting models under a more restrictive setup where the number of parameters is not significantly larger than the number of data points. Under this mild overparameterization setup, our analysis identifies a phase change: unlike in the heavy overparameterization setting, benign overfitting can now fail in the presence of label noise. Our study explains our empirical observations, and naturally leads to a simple technique known as self-training that can boost the model's generalization performances. Furthermore, our work highlights the importance of understanding implicit bias in underfitting regimes as a future direction.
3,127
Incentivizing Combinatorial Bandit Exploration
Consider a bandit algorithm that recommends actions to self-interested users in a recommendation system. The users are free to choose other actions and need to be incentivized to follow the algorithm's recommendations. While the users prefer to exploit, the algorithm can incentivize them to explore by leveraging the information collected from the previous users. All published work on this problem, known as incentivized exploration, focuses on small, unstructured action sets and mainly targets the case when the users' beliefs are independent across actions. However, realistic exploration problems often feature large, structured action sets and highly correlated beliefs. We focus on a paradigmatic exploration problem with structure: combinatorial semi-bandits. We prove that Thompson Sampling, when applied to combinatorial semi-bandits, is incentive-compatible when initialized with a sufficient number of samples of each arm (where this number is determined in advance by the Bayesian prior). Moreover, we design incentive-compatible algorithms for collecting the initial samples.
3,128
Rotate the ReLU to implicitly sparsify deep networks
In the era of Deep Neural Network based solutions for a variety of real-life tasks, having a compact and energy-efficient deployable model has become fairly important. Most of the existing deep architectures use Rectifier Linear Unit (ReLU) activation. In this paper, we propose a novel idea of rotating the ReLU activation to give one more degree of freedom to the architecture. We show that this activation wherein the rotation is learned via training results in the elimination of those parameters/filters in the network which are not important for the task. In other words, rotated ReLU seems to be doing implicit sparsification. The slopes of the rotated ReLU activations act as coarse feature extractors and unnecessary features can be eliminated before retraining. Our studies indicate that features always choose to pass through a lesser number of filters in architectures such as ResNet and its variants. Hence, by rotating the ReLU, the weights or the filters that are not necessary are automatically identified and can be dropped thus giving rise to significant savings in memory and computation. Furthermore, in some cases, we also notice that along with saving in memory and computation we also obtain improvement over the reported performance of the corresponding baseline work in the popular datasets such as MNIST, CIFAR-10, CIFAR-100, and SVHN.
3,129
Where are my Neighbors? Exploiting Patches Relations in Self-Supervised Vision Transformer
Vision Transformers (ViTs) enabled the use of transformer architecture on vision tasks showing impressive performances when trained on big datasets. However, on relatively small datasets, ViTs are less accurate given their lack of inductive bias. To this end, we propose a simple but still effective self-supervised learning (SSL) strategy to train ViTs, that without any external annotation, can significantly improve the results. Specifically, we define a set of SSL tasks based on relations of image patches that the model has to solve before or jointly during the downstream training. Differently from ViT, our RelViT model optimizes all the output tokens of the transformer encoder that are related to the image patches, thus exploiting more training signal at each training step. We investigated our proposed methods on several image benchmarks finding that RelViT improves the SSL state-of-the-art methods by a large margin, especially on small datasets.
3,130
Contrastive Principal Component Learning: Modeling Similarity by Augmentation Overlap
Traditional self-supervised contrastive learning methods learn embeddings by pulling views of the same sample together and pushing views of different samples away. Since views of a sample are usually generated via data augmentations, the semantic relationship between samples is ignored. Based on the observation that semantically similar samples are more likely to have similar augmentations, we propose to measure similarity via the distribution of augmentations, i.e., how much the augmentations of two samples overlap. To handle the dimensional and computational complexity, we propose a novel Contrastive Principal Component Learning (CPCL) method composed of a contrastive-like loss and an on-the-fly projection loss to efficiently perform PCA on the augmentation feature, which encodes the augmentation distribution. By CPCL, the learned low-dimensional embeddings theoretically preserve the similarity of augmentation distribution between samples. Empirical results show our method can achieve competitive results against various traditional contrastive learning methods on different benchmarks.
3,131
Good Intentions: Adaptive Parameter Servers via Intent Signaling
Parameter servers (PSs) ease the implementation of distributed training for large machine learning (ML) tasks by providing primitives for shared parameter access. Especially for ML tasks that access parameters sparsely, PSs can achieve high efficiency and scalability. To do so, they employ a number of techniques -- such as replication or relocation -- to reduce communication cost and/or latency of parameter accesses. A suitable choice and parameterization of these techniques is crucial to realize these gains, however. Unfortunately, such choices depend on the task, the workload, and even individual parameters, they often require expensive upfront experimentation, and they are susceptible to workload changes. In this paper, we explore whether PSs can automatically adapt to the workload without any prior tuning. Our goals are to improve usability and to maintain (or even improve) efficiency. We propose (i) a novel intent signaling mechanism that acts as an enabler for adaptivity and naturally integrates into ML tasks, and (ii) a fully adaptive, zero-tuning PS called AdaPS based on this mechanism. Our experimental evaluation suggests that automatic adaptation to the workload is indeed possible: AdaPS matched or outperformed state-of-the-art PSs out of the box.
3,132
An $α$-No-Regret Algorithm For Graphical Bilinear Bandits
We propose the first regret-based approach to the Graphical Bilinear Bandits problem, where $n$ agents in a graph play a stochastic bilinear bandit game with each of their neighbors. This setting reveals a combinatorial NP-hard problem that prevents the use of any existing regret-based algorithm in the (bi-)linear bandit literature. In this paper, we fill this gap and present the first regret-based algorithm for graphical bilinear bandits using the principle of optimism in the face of uncertainty. Theoretical analysis of this new method yields an upper bound of $\tilde{O}(\sqrt{T})$ on the $\alpha$-regret and evidences the impact of the graph structure on the rate of convergence. Finally, we show through various experiments the validity of our approach.
3,133
Ultrahyperbolic Knowledge Graph Embeddings
Recent knowledge graph (KG) embeddings have been advanced by hyperbolic geometry due to its superior capability for representing hierarchies. The topological structures of real-world KGs, however, are rather heterogeneous, i.e., a KG is composed of multiple distinct hierarchies and non-hierarchical graph structures. Therefore, a homogeneous (either Euclidean or hyperbolic) geometry is not sufficient for fairly representing such heterogeneous structures. To capture the topological heterogeneity of KGs, we present an ultrahyperbolic KG embedding (UltraE) in an ultrahyperbolic (or pseudo-Riemannian) manifold that seamlessly interleaves hyperbolic and spherical manifolds. In particular, we model each relation as a pseudo-orthogonal transformation that preserves the pseudo-Riemannian bilinear form. The pseudo-orthogonal transformation is decomposed into various operators (i.e., circular rotations, reflections and hyperbolic rotations), allowing for simultaneously modeling heterogeneous structures as well as complex relational patterns. Experimental results on three standard KGs show that UltraE outperforms previous Euclidean- and hyperbolic-based approaches.
3,134
Algorithmic Foundation of Deep X-Risk Optimization
X-risk is a term introduced to represent a family of compositional measures or objectives, in which each data point is compared with a set of data points explicitly or implicitly for defining a risk function. It includes many widely used measures or objectives, e.g., AUROC, AUPRC, partial AUROC, NDCG, MAP, top-$K$ NDCG, top-$K$ MAP, listwise losses, p-norm push, top push, precision/recall at top $K$ positions, precision at a certain recall level, contrastive objectives, etc. While these measures/objectives and their optimization algorithms have been studied in the literature of machine learning, computer vision, information retrieval, and etc, optimizing these measures/objectives has encountered some unique challenges for deep learning. In this technical report, we survey our recent rigorous efforts for deep X-risk optimization (DXO) by focusing on its algorithmic foundation. We introduce a class of techniques for optimizing X-risk for deep learning. We formulate DXO into three special families of non-convex optimization problems belonging to non-convex min-max optimization, non-convex compositional optimization, and non-convex bilevel optimization, respectively. For each family of problems, we present some strong baseline algorithms and their complexities, which will motivate further research for improving the existing results. Discussions about the presented results and future studies are given at the end. Efficient algorithms for optimizing a variety of X-risks are implemented in the LibAUC library at www.libauc.org.
3,135
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
Interpreting computations in the visual cortex as learning and inference in a generative model of the environment has received wide support both in neuroscience and cognitive science. However, hierarchical computations, a hallmark of visual cortical processing, has remained impervious for generative models because of a lack of adequate tools to address it. Here we capitalize on advances in Variational Autoencoders (VAEs) to investigate the early visual cortex with sparse coding hierarchical VAEs trained on natural images. We design alternative architectures that vary both in terms of the generative and the recognition components of the two latent-layer VAE. We show that representations similar to the one found in the primary and secondary visual cortices naturally emerge under mild inductive biases. Importantly, a nonlinear representation for texture-like patterns is a stable property of the high-level latent space resistant to the specific architecture of the VAE, reminiscent of the secondary visual cortex. We show that a neuroscience-inspired choice of the recognition model, which features a top-down processing component is critical for two signatures of computations with generative models: learning higher order moments of the posterior beyond the mean and image inpainting. Patterns in higher order response statistics provide inspirations for neuroscience to interpret response correlations and for machine learning to evaluate the learned representations through more detailed characterization of the posterior.
3,136
Active Inference for Robotic Manipulation
Robotic manipulation stands as a largely unsolved problem despite significant advances in robotics and machine learning in the last decades. One of the central challenges of manipulation is partial observability, as the agent usually does not know all physical properties of the environment and the objects it is manipulating in advance. A recently emerging theory that deals with partial observability in an explicit manner is Active Inference. It does so by driving the agent to act in a way that is not only goal-directed but also informative about the environment. In this work, we apply Active Inference to a hard-to-explore simulated robotic manipulation tasks, in which the agent has to balance a ball into a target zone. Since the reward of this task is sparse, in order to explore this environment, the agent has to learn to balance the ball without any extrinsic feedback, purely driven by its own curiosity. We show that the information-seeking behavior induced by Active Inference allows the agent to explore these challenging, sparse environments systematically. Finally, we conclude that using an information-seeking objective is beneficial in sparse environments and allows the agent to solve tasks in which methods that do not exhibit directed exploration fail.
3,137
Evaluating Gaussian Grasp Maps for Generative Grasping Models
Generalising robotic grasping to previously unseen objects is a key task in general robotic manipulation. The current method for training many antipodal generative grasping models rely on a binary ground truth grasp map generated from the centre thirds of correctly labelled grasp rectangles. However, these binary maps do not accurately reflect the positions in which a robotic arm can correctly grasp a given object. We propose a continuous Gaussian representation of annotated grasps to generate ground truth training data which achieves a higher success rate on a simulated robotic grasping benchmark. Three modern generative grasping networks are trained with either binary or Gaussian grasp maps, along with recent advancements from the robotic grasping literature, such as discretisation of grasp angles into bins and an attentional loss function. Despite negligible difference according to the standard rectangle metric, Gaussian maps better reproduce the training data and therefore improve success rates when tested on the same simulated robot arm by avoiding collisions with the object: achieving 87.94\% accuracy. Furthermore, the best performing model is shown to operate with a high success rate when transferred to a real robotic arm, at high inference speeds, without the need for transfer learning. The system is then shown to be capable of performing grasps on an antagonistic physical object dataset benchmark.
3,138
Semantic Probabilistic Layers for Neuro-Symbolic Learning
We design a predictive layer for structured-output prediction (SOP) that can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints. Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space all while being amenable to end-to-end learning via maximum likelihood. SPLs combine exact probabilistic inference with logical reasoning in a clean and modular way, learning complex distributions and restricting their support to solutions of the constraint. As such, they can faithfully, and efficiently, model complex SOP tasks beyond the reach of alternative neuro-symbolic approaches. We empirically demonstrate that SPLs outperform these competitors in terms of accuracy on challenging SOP tasks including hierarchical multi-label classification, pathfinding and preference learning, while retaining perfect constraint satisfaction.
3,139
Open Environment Machine Learning
Conventional machine learning studies generally assume close world scenarios where important factors of the learning process hold invariant. With the great success of machine learning, nowadays, more and more practical tasks, particularly those involving open world scenarios where important factors are subject to change, called open environment machine learning (Open ML) in this article, are present to the community. Evidently it is a grand challenge for machine learning turning from close world to open world. It becomes even more challenging since, in various big data tasks, data are usually accumulated with time, like streams, while it is hard to train the machine learning model after collecting all data as in conventional studies. This article briefly introduces some advances in this line of research, focusing on techniques concerning emerging new classes, decremental/incremental features, changing data distributions, varied learning objectives, and discusses some theoretical issues.
3,140
OmniXAI: A Library for Explainable AI
We introduce OmniXAI (short for Omni eXplainable AI), an open-source Python library of eXplainable AI (XAI), which offers omni-way explainable AI capabilities and various interpretable machine learning techniques to address the pain points of understanding and interpreting the decisions made by machine learning (ML) in practice. OmniXAI aims to be a one-stop comprehensive library that makes explainable AI easy for data scientists, ML researchers and practitioners who need explanation for various types of data, models and explanation methods at different stages of ML process (data exploration, feature engineering, model development, evaluation, and decision-making, etc). In particular, our library includes a rich family of explanation methods integrated in a unified interface, which supports multiple data types (tabular data, images, texts, time-series), multiple types of ML models (traditional ML in Scikit-learn and deep learning models in PyTorch/TensorFlow), and a range of diverse explanation methods including "model-specific" and "model-agnostic" ones (such as feature-attribution explanation, counterfactual explanation, gradient-based explanation, etc). For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications by only writing a few lines of codes, and also a GUI dashboard for visualization of different explanations for more insights about decisions. In this technical report, we present OmniXAI's design principles, system architectures, and major functionalities, and also demonstrate several example use cases across different types of data, tasks, and models.
3,141
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
Accurately predicting the relevance of items to users is crucial to the success of many social platforms. Conventional approaches train models on logged historical data; but recommendation systems, media services, and online marketplaces all exhibit a constant influx of new content -- making relevancy a moving target, to which standard predictive models are not robust. In this paper, we propose a learning framework for relevance prediction that is robust to changes in the data distribution. Our key observation is that robustness can be obtained by accounting for how users causally perceive the environment. We model users as boundedly-rational decision makers whose causal beliefs are encoded by a causal graph, and show how minimal information regarding the graph can be used to contend with distributional changes. Experiments in multiple settings demonstrate the effectiveness of our approach.
3,142
NeuroUnlock: Unlocking the Architecture of Obfuscated Deep Neural Networks
The advancements of deep neural networks (DNNs) have led to their deployment in diverse settings, including safety and security-critical applications. As a result, the characteristics of these models have become sensitive intellectual properties that require protection from malicious users. Extracting the architecture of a DNN through leaky side-channels (e.g., memory access) allows adversaries to (i) clone the model, and (ii) craft adversarial attacks. DNN obfuscation thwarts side-channel-based architecture stealing (SCAS) attacks by altering the run-time traces of a given DNN while preserving its functionality. In this work, we expose the vulnerability of state-of-the-art DNN obfuscation methods to these attacks. We present NeuroUnlock, a novel SCAS attack against obfuscated DNNs. Our NeuroUnlock employs a sequence-to-sequence model that learns the obfuscation procedure and automatically reverts it, thereby recovering the original DNN architecture. We demonstrate the effectiveness of NeuroUnlock by recovering the architecture of 200 randomly generated and obfuscated DNNs running on the Nvidia RTX 2080 TI graphics processing unit (GPU). Moreover, NeuroUnlock recovers the architecture of various other obfuscated DNNs, such as the VGG-11, VGG-13, ResNet-20, and ResNet-32 networks. After recovering the architecture, NeuroUnlock automatically builds a near-equivalent DNN with only a 1.4% drop in the testing accuracy. We further show that launching a subsequent adversarial attack on the recovered DNNs boosts the success rate of the adversarial attack by 51.7% in average compared to launching it on the obfuscated versions. Additionally, we propose a novel methodology for DNN obfuscation, ReDLock, which eradicates the deterministic nature of the obfuscation and achieves 2.16X more resilience to the NeuroUnlock attack. We release the NeuroUnlock and the ReDLock as open-source frameworks.
3,143
From Cities to Series: Complex Networks and Deep Learning for Improved Spatial and Temporal Analytics*
Graphs have often been used to answer questions about the interaction between real-world entities by taking advantage of their capacity to represent complex topologies. Complex networks are known to be graphs that capture such non-trivial topologies; they are able to represent human phenomena such as epidemic processes, the dynamics of populations, and the urbanization of cities. The investigation of complex networks has been extrapolated to many fields of science, with particular emphasis on computing techniques, including artificial intelligence. In such a case, the analysis of the interaction between entities of interest is transposed to the internal learning of algorithms, a paradigm whose investigation is able to expand the state of the art in Computer Science. By exploring this paradigm, this thesis puts together complex networks and machine learning techniques to improve the understanding of the human phenomena observed in pandemics, pendular migration, and street networks. Accordingly, we contribute with: (i) a new neural network architecture capable of modeling dynamic processes observed in spatial and temporal data with applications in epidemics propagation, weather forecasting, and patient monitoring in intensive care units; (ii) a machine-learning methodology for analyzing and predicting links in the scope of human mobility between all the cities of Brazil; and, (iii) techniques for identifying inconsistencies in the urban planning of cities while tracking the most influential vertices, with applications over Brazilian and worldwide cities. We obtained results sustained by sound evidence of advances to the state of the art in artificial intelligence, rigorous formalisms, and ample experimentation. Our findings rely upon real-world applications in a range of domains, demonstrating the applicability of our methodologies.
3,144
Predicting Political Ideology from Digital Footprints
This paper proposes a new method to predict individual political ideology from digital footprints on one of the world's largest online discussion forum. We compiled a unique data set from the online discussion forum reddit that contains information on the political ideology of around 91,000 users as well as records of their comment frequency and the comments' text corpus in over 190,000 different subforums of interest. Applying a set of statistical learning approaches, we show that information about activity in non-political discussion forums alone, can very accurately predict a user's political ideology. Depending on the model, we are able to predict the economic dimension of ideology with an accuracy of up to 90.63% and the social dimension with and accuracy of up to 82.02%. In comparison, using the textual features from actual comments does not improve predictive accuracy. Our paper highlights the importance of revealed digital behaviour to complement stated preferences from digital communication when analysing human preferences and behaviour using online data.
3,145
Optimization with access to auxiliary information
We investigate the fundamental optimization question of minimizing a target function $f(x)$ whose gradients are expensive to compute or have limited availability, given access to some auxiliary side function $h(x)$ whose gradients are cheap or more available. This formulation captures many settings of practical relevance such as i) re-using batches in SGD, ii) transfer learning, iii) federated learning, iv) training with compressed models/dropout, etc. We propose two generic new algorithms which are applicable in all these settings and prove using only an assumption on the Hessian similarity between the target and side information that we can benefit from this framework.
3,146
Towards Generalisable Audio Representations for Audio-Visual Navigation
In audio-visual navigation (AVN), an intelligent agent needs to navigate to a constantly sound-making object in complex 3D environments based on its audio and visual perceptions. While existing methods attempt to improve the navigation performance with preciously designed path planning or intricate task settings, none has improved the model generalisation on unheard sounds with task settings unchanged. We thus propose a contrastive learning-based method to tackle this challenge by regularising the audio encoder, where the sound-agnostic goal-driven latent representations can be learnt from various audio signals of different classes. In addition, we consider two data augmentation strategies to enrich the training sounds. We demonstrate that our designs can be easily equipped to existing AVN frameworks to obtain an immediate performance gain (13.4%$\uparrow$ in SPL on Replica and 12.2%$\uparrow$ in SPL on MP3D). Our project is available at https://AV-GeN.github.io/.
3,147
Attention-embedded Quadratic Network (Qttention) for Effective and Interpretable Bearing Fault Diagnosis
Bearing fault diagnosis is of great importance to decrease the damage risk of rotating machines and further improve economic profits. Recently, machine learning, represented by deep learning, has made great progress in bearing fault diagnosis. However, applying deep learning to such a task still faces two major problems. On the one hand, deep learning loses its effectiveness when bearing data are noisy or big data are unavailable, making deep learning hard to implement in industrial fields. On the other hand, a deep network is notoriously a black box. It is difficult to know how a model classifies faulty signals from the normal and the physics principle behind the classification. To solve the effectiveness and interpretability issues, we prototype a convolutional network with recently-invented quadratic neurons. This quadratic neuron empowered network can qualify the noisy and small bearing data due to the strong feature representation ability of quadratic neurons. Moreover, we independently derive the attention mechanism from a quadratic neuron, referred to as qttention, by factorizing the learned quadratic function in analogue to the attention, making the model with quadratic neurons inherently interpretable. Experiments on the public and our datasets demonstrate that the proposed network can facilitate effective and interpretable bearing fault diagnosis.
3,148
A comparative study between vision transformers and CNNs in digital pathology
Recently, vision transformers were shown to be capable of outperforming convolutional neural networks when pretrained on sufficient amounts of data. In comparison to convolutional neural networks, vision transformers have a weaker inductive bias and therefore allow a more flexible feature detection. Due to their promising feature detection, this work explores vision transformers for tumor detection in digital pathology whole slide images in four tissue types, and for tissue type identification. We compared the patch-wise classification performance of the vision transformer DeiT-Tiny to the state-of-the-art convolutional neural network ResNet18. Due to the sparse availability of annotated whole slide images, we further compared both models pretrained on large amounts of unlabeled whole-slide images using state-of-the-art self-supervised approaches. The results show that the vision transformer performed slightly better than the ResNet18 for three of four tissue types for tumor detection while the ResNet18 performed slightly better for the remaining tasks. The aggregated predictions of both models on slide level were correlated, indicating that the models captured similar imaging features. All together, the vision transformer models performed on par with the ResNet18 while requiring more effort to train. In order to surpass the performance of convolutional neural networks, vision transformers might require more challenging tasks to benefit from their weak inductive bias.
3,149
Transfer without Forgetting
This work investigates the entanglement between Continual Learning (CL) and Transfer Learning (TL). In particular, we shed light on the widespread application of network pretraining, highlighting that it is itself subject to catastrophic forgetting. Unfortunately, this issue leads to the under-exploitation of knowledge transfer during later tasks. On this ground, we propose Transfer without Forgetting (TwF), a hybrid Continual Transfer Learning approach building upon a fixed pretrained sibling network, which continuously propagates the knowledge inherent in the source domain through a layer-wise loss term. Our experiments indicate that TwF steadily outperforms other CL methods across a variety of settings, averaging a 4.81% gain in Class-Incremental accuracy over a variety of datasets and different buffer sizes.
3,150
A Generalized Supervised Contrastive Learning Framework
Based on recent remarkable achievements of contrastive learning in self-supervised representation learning, supervised contrastive learning (SupCon) has successfully extended the batch contrastive approaches to the supervised context and outperformed cross-entropy on various datasets on ResNet. In this work, we present GenSCL: a generalized supervised contrastive learning framework that seamlessly adapts modern image-based regularizations (such as Mixup-Cutmix) and knowledge distillation (KD) to SupCon by our generalized supervised contrastive loss. Generalized supervised contrastive loss is a further extension of supervised contrastive loss measuring cross-entropy between the similarity of labels and that of latent features. Then a model can learn to what extent contrastives should be pulled closer to an anchor in the latent space. By explicitly and fully leveraging label information, GenSCL breaks the boundary between conventional positives and negatives, and any kind of pre-trained teacher classifier can be utilized. ResNet-50 trained in GenSCL with Mixup-Cutmix and KD achieves state-of-the-art accuracies of 97.6% and 84.7% on CIFAR10 and CIFAR100 without external data, which significantly improves the results reported in the original SupCon (1.6% and 8.2%, respectively). Pytorch implementation is available at https://t.ly/yuUO.
3,151
Empirical Study of Quality Image Assessment for Synthesis of Fetal Head Ultrasound Imaging with DCGANs
In this work, we present an empirical study of DCGANs, including hyperparameter heuristics and image quality assessment, as a way to address the scarcity of datasets to investigate fetal head ultrasound. We present experiments to show the impact of different image resolutions, epochs, dataset size input, and learning rates for quality image assessment on four metrics: mutual information (MI), Fr\'echet inception distance (FID), peak-signal-to-noise ratio (PSNR), and local binary pattern vector (LBPv). The results show that FID and LBPv have stronger relationship with clinical image quality scores. The resources to reproduce this work are available at \url{https://github.com/budai4medtech/miua2022}.
3,152
Neural Improvement Heuristics for Preference Ranking
In recent years, Deep Learning based methods have been a revolution in the field of combinatorial optimization. They learn to approximate solutions and constitute an interesting choice when dealing with repetitive problems drawn from similar distributions. Most effort has been devoted to investigating neural constructive methods, while the works that propose neural models to iteratively improve a candidate solution are less frequent. In this paper, we present a Neural Improvement (NI) model for graph-based combinatorial problems that, given an instance and a candidate solution, encodes the problem information by means of edge features. Our model proposes a modification on the pairwise precedence of items to increase the quality of the solution. We demonstrate the practicality of the model by applying it as the building block of a Neural Hill Climber and other trajectory-based methods. The algorithms are used to solve the Preference Ranking Problem and results show that they outperform conventional alternatives in simulated and real-world data. Conducted experiments also reveal that the proposed model can be a milestone in the development of efficiently guided trajectory-based optimization algorithms.
3,153
Bayesian Learning to Discover Mathematical Operations in Governing Equations of Dynamic Systems
Discovering governing equations from data is critical for diverse scientific disciplines as they can provide insights into the underlying phenomenon of dynamic systems. This work presents a new representation for governing equations by designing the Mathematical Operation Network (MathONet) with a deep neural network-like hierarchical structure. Specifically, the MathONet is stacked by several layers of unary operations (e.g., sin, cos, log) and binary operations (e.g., +,-), respectively. An initialized MathONet is typically regarded as a super-graph with a redundant structure, a sub-graph of which can yield the governing equation. We develop a sparse group Bayesian learning algorithm to extract the sub-graph by employing structurally constructed priors over the redundant mathematical operations. By demonstrating the chaotic Lorenz system, Lotka-Volterra system, and Kolmogorov-Petrovsky-Piskunov system, the proposed method can discover the ordinary differential equations (ODEs) and partial differential equations (PDEs) from the observations given limited mathematical operations, without any prior knowledge on possible expressions of the ODEs and PDEs.
3,154
Strongly Augmented Contrastive Clustering
Deep clustering has attracted increasing attention in recent years due to its capability of joint representation learning and clustering via deep neural networks. In its latest developments, the contrastive learning has emerged as an effective technique to substantially enhance the deep clustering performance. However, the existing contrastive learning based deep clustering algorithms mostly focus on some carefully-designed augmentations (often with limited transformations to preserve the structure), referred to as weak augmentations, but cannot go beyond the weak augmentations to explore the more opportunities in stronger augmentations (with more aggressive transformations or even severe distortions). In this paper, we present an end-to-end deep clustering approach termed strongly augmented contrastive clustering (SACC), which extends the conventional two-augmentation-view paradigm to multiple views and jointly leverages strong and weak augmentations for strengthened deep clustering. Particularly, we utilize a backbone network with triply-shared weights, where a strongly augmented view and two weakly augmented views are incorporated. Based on the representations produced by the backbone, the weak-weak view pair and the strong-weak view pairs are simultaneously exploited for the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector), which, together with the backbone, can be jointly optimized in a purely unsupervised manner. Experimental results on five challenging image datasets have shown the superior performance of the proposed SACC approach over the state-of-the-art.
3,155
ORC: Network Group-based Knowledge Distillation using Online Role Change
In knowledge distillation, since a single, omnipotent teacher network cannot solve all problems, multiple teacher-based knowledge distillations have been studied recently. However, sometimes their improvements are not as good as expected because some immature teachers may transfer the false knowledge to the student. In this paper, to overcome this limitation and take the efficacy of the multiple networks, we divide the multiple networks into teacher and student groups, respectively. That is, the student group is a set of immature networks that require learning the teacher's knowledge, while the teacher group consists of the selected networks that have performed well. Furthermore, according to our online role change strategy, the top-ranked networks in the student group are able to promote to the teacher group at every iteration and vice versa. After training the teacher group using the error images of the student group to refine the teacher group's knowledge, we transfer the collective knowledge from the teacher group to the student group successfully. We verify the superiority of the proposed method on CIFAR-10 and CIFAR-100, which achieves high performance. We further show the generality of our method with various backbone architectures such as resent, wrn, vgg, mobilenet, and shufflenet.
3,156
Learning programs by combining programs
The goal of inductive logic programming is to induce a set of rules (a logic program) that generalises examples. Inducing programs with many rules and literals is a major challenge. To tackle this challenge, we decompose programs into \emph{non-separable} fragments, learn fragments separately, and then combine them. We implement our approach in a generate, test, combine, and constrain loop. Our anytime approach can learn optimal, recursive, and large programs and supports predicate invention. Our experiments on multiple domains (including program synthesis and inductive general game playing) show that our approach can increase predictive accuracies and reduce learning times compared to existing approaches.
3,157
Elucidating the Design Space of Diffusion-Based Generative Models
We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of an existing ImageNet-64 model from 2.07 to near-SOTA 1.55.
3,158
Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization
We study differentially private (DP) algorithms for smooth stochastic minimax optimization, with stochastic minimization as a byproduct. The holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss, using an algorithm with a linear time-complexity in the number of training samples. We provide a general framework for solving differentially private stochastic minimax optimization (DP-SMO) problems, which enables the practitioners to bring their own base optimization algorithm and use it as a black-box to obtain the near-optimal privacy-loss trade-off. Our framework is inspired from the recently proposed Phased-ERM method [20] for nonsmooth differentially private stochastic convex optimization (DP-SCO), which exploits the stability of the empirical risk minimization (ERM) for the privacy guarantee. The flexibility of our approach enables us to sidestep the requirement that the base algorithm needs to have bounded sensitivity, and allows the use of sophisticated variance-reduced accelerated methods to achieve near-linear time-complexity. To the best of our knowledge, these are the first linear-time optimal algorithms, up to logarithmic factors, for smooth DP-SMO when the objective is (strongly-)convex-(strongly-)concave. Additionally, based on our flexible framework, we derive a new family of near-linear time algorithms for smooth DP-SCO with optimal privacy-loss trade-offs for a wider range of smoothness parameters compared to previous algorithms.
3,159
Augmenting Message Passing by Retrieving Similar Graphs
Graph Neural Networks (GNNs) are effective tools for graph representation learning. Most GNNs rely on a recursive neighborhood aggregation scheme, named message passing. In this paper, motivated by the success of retrieval-based models, we propose a non-parametric scheme called GraphRetrieval, in which similar training graphs associated with their ground-truth labels are retrieved to be jointly utilized with the input graph representation to complete various graph-based predictive tasks. In particular, we take a well-trained model with its parameters fixed and then we add an adapter based on self-attention with only a few trainable parameters per task to explicitly learn the interaction between an input graph and its retrieved similar graphs. Our experiments on 12 different datasets involving different tasks (classification and regression) show that GraphRetrieval is able to achieve substantial improvements on all twelve datasets compared to three strong GNN baseline models. Our work demonstrates that GraphRetrieval is a promising augmentation for message passing.
3,160
DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep Neural Networks
Deep clustering has recently emerged as a promising technique for complex image clustering. Despite the significant progress, previous deep clustering works mostly tend to construct the final clustering by utilizing a single layer of representation, e.g., by performing $K$-means on the last fully-connected layer or by associating some clustering loss to a specific layer. However, few of them have considered the possibilities and potential benefits of jointly leveraging multi-layer representations for enhancing the deep clustering performance. In light of this, this paper presents a Deep Clustering via Ensembles (DeepCluE) approach, which bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks. Particularly, we utilize a weight-sharing convolutional neural network as the backbone, which is trained with both the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector) in an unsupervised manner. Thereafter, multiple layers of feature representations are extracted from the trained network, upon which a set of diversified base clusterings can be generated via a highly efficient clusterer. Then, the reliability of the clusters in multiple base clusterings is automatically estimated by exploiting an entropy-based criterion, based on which the multiple base clusterings are further formulated into a weighted-cluster bipartite graph. By partitioning this bipartite graph via transfer cut, the final image clustering result can therefore be obtained. Experimental results on six image datasets confirm the advantages of our DeepCluE approach over the state-of-the-art deep clustering approaches.
3,161
A Survey on Deep Learning for Skin Lesion Segmentation
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 134 research papers that deal with deep learning based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. We summarize all examined works in a comprehensive table to facilitate comparisons.
3,162
Support Vector Machines under Adversarial Label Contamination
Machine learning algorithms are increasingly being applied in security-related tasks such as spam and malware detection, although their security properties against deliberate attacks have not yet been widely understood. Intelligent and adaptive attackers may indeed exploit specific vulnerabilities exposed by machine learning techniques to violate system security. Being robust to adversarial data manipulation is thus an important, additional requirement for machine learning algorithms to successfully operate in adversarial settings. In this work, we evaluate the security of Support Vector Machines (SVMs) to well-crafted, adversarial label noise attacks. In particular, we consider an attacker that aims to maximize the SVM's classification error by flipping a number of labels in the training data. We formalize a corresponding optimal attack strategy, and solve it by means of heuristic approaches to keep the computational complexity tractable. We report an extensive experimental analysis on the effectiveness of the considered attacks against linear and non-linear SVMs, both on synthetic and real-world datasets. We finally argue that our approach can also provide useful insights for developing more secure SVM learning algorithms, and also novel techniques in a number of related research areas, such as semi-supervised and active learning.
3,163
Control of Two-way Coupled Fluid Systems with Differentiable Solvers
We investigate the use of deep neural networks to control complex nonlinear dynamical systems, specifically the movement of a rigid body immersed in a fluid. We solve the Navier Stokes equations with two way coupling, which gives rise to nonlinear perturbations that make the control task very challenging. Neural networks are trained in an unsupervised way to act as controllers with desired characteristics through a process of learning from a differentiable simulator. Here we introduce a set of physically interpretable loss terms to let the networks learn robust and stable interactions. We demonstrate that controllers trained in a canonical setting with quiescent initial conditions reliably generalize to varied and challenging environments such as previously unseen inflow conditions and forcing, although they do not have any fluid information as input. Further, we show that controllers trained with our approach outperform a variety of classical and learned alternatives in terms of evaluation metrics and generalization capabilities.
3,164
Nonsmooth automatic differentiation: a cheap gradient principle and other complexity results
We provide a simple model to estimate the computational costs of the backward and forward modes of algorithmic differentiation for a wide class of nonsmooth programs. Prominent examples are the famous relu and convolutional neural networks together with their standard loss functions. Using the recent notion of conservative gradients, we then establish a "nonsmooth cheap gradient principle" for backpropagation encompassing most concrete applications. Nonsmooth backpropagation's cheapness contrasts with concurrent forward approaches which have, at this day, dimensional-dependent worst case estimates. In order to understand this class of methods, we relate the complexity of computing a large number of directional derivatives to that of matrix multiplication. This shows a fundamental limitation for improving forward AD for that task. Finally, while the fastest algorithms for computing a Clarke subgradient are linear in the dimension, it appears that computing two distinct Clarke (resp. lexicographic) subgradients for simple neural networks is NP-Hard.
3,165
On Layer Normalizations and Residual Connections in Transformers
In the perspective of a layer normalization (LN) position, the architecture of Transformers can be categorized into two types: Post-LN and Pre-LN. Recent Transformers prefer to select Pre-LN because the training in Post-LN with deep Transformers, e.g., ten or more layers, often becomes unstable, resulting in useless models. However, in contrast, Post-LN has also consistently achieved better performance than Pre-LN in relatively shallow Transformers, e.g., six or fewer layers. This study first investigates the reason for these discrepant observations empirically and theoretically and discovers 1, the LN in Post-LN is the source of the vanishing gradient problem that mainly leads the unstable training whereas Pre-LN prevents it, and 2, Post-LN tends to preserve larger gradient norms in higher layers during the back-propagation that may lead an effective training. Exploiting the new findings, we propose a method that can equip both higher stability and effective training by a simple modification from Post-LN. We conduct experiments on a wide range of text generation tasks and demonstrate that our method outperforms Pre-LN, and stable training regardless of the shallow or deep layer settings.
3,166
RLSS: A Deep Reinforcement Learning Algorithm for Sequential Scene Generation
We present RLSS: a reinforcement learning algorithm for sequential scene generation. This is based on employing the proximal policy optimization (PPO) algorithm for generative problems. In particular, we consider how to effectively reduce the action space by including a greedy search algorithm in the learning process. Our experiments demonstrate that our method converges for a relatively large number of actions and learns to generate scenes with predefined design objectives. This approach is placing objects iteratively in the virtual scene. In each step, the network chooses which objects to place and selects positions which result in maximal reward. A high reward is assigned if the last action resulted in desired properties whereas the violation of constraints is penalized. We demonstrate the capability of our method to generate plausible and diverse scenes efficiently by solving indoor planning problems and generating Angry Birds levels.
3,167
Model Generation with Provable Coverability for Offline Reinforcement Learning
Model-based offline optimization with dynamics-aware policy provides a new perspective for policy learning and out-of-distribution generalization, where the learned policy could adapt to different dynamics enumerated at the training stage. But due to the limitation under the offline setting, the learned model could not mimic real dynamics well enough to support reliable out-of-distribution exploration, which still hinders policy to generalize well. To narrow the gap, previous works roughly ensemble randomly initialized models to better approximate the real dynamics. However, such practice is costly and inefficient, and provides no guarantee on how well the real dynamics could be approximated by the learned models, which we name coverability in this paper. We actively address this issue by generating models with provable ability to cover real dynamics in an efficient and controllable way. To that end, we design a distance metric for dynamic models based on the occupancy of policies under the dynamics, and propose an algorithm to generate models optimizing their coverage for the real dynamics. We give a theoretical analysis on the model generation process and proves that our algorithm could provide enhanced coverability. As a downstream task, we train a dynamics-aware policy with minor or no conservative penalty, and experiments demonstrate that our algorithm outperforms prior offline methods on existing offline RL benchmarks. We also discover that policies learned by our method have better zero-shot transfer performance, implying their better generalization.
3,168
Contextual Bandits with Knapsacks for a Conversion Model
We consider contextual bandits with knapsacks, with an underlying structure between rewards generated and cost vectors suffered. We do so motivated by sales with commercial discounts. At each round, given the stochastic i.i.d.\ context $\mathbf{x}_t$ and the arm picked $a_t$ (corresponding, e.g., to a discount level), a customer conversion may be obtained, in which case a reward $r(a,\mathbf{x}_t)$ is gained and vector costs $c(a_t,\mathbf{x}_t)$ are suffered (corresponding, e.g., to losses of earnings). Otherwise, in the absence of a conversion, the reward and costs are null. The reward and costs achieved are thus coupled through the binary variable measuring conversion or the absence thereof. This underlying structure between rewards and costs is different from the linear structures considered by Agrawal and Devanur [2016] but we show that the techniques introduced in this article may also be applied to the latter case. Namely, the adaptive policies exhibited solve at each round a linear program based on upper-confidence estimates of the probabilities of conversion given $a$ and $\mathbf{x}$. This kind of policy is most natural and achieves a regret bound of the typical order (OPT/$B$) $\sqrt{T}$, where $B$ is the total budget allowed, OPT is the optimal expected reward achievable by a static policy, and $T$ is the number of rounds.
3,169
Federated Learning in Satellite Constellations
Distributed machine learning (DML) results from the synergy between machine learning and connectivity. Federated learning (FL) is a prominent instance of DML in which intermittently connected mobile clients contribute to the training of a common learning model. This paper presents the new context brought to FL by satellite constellations where the connectivity patterns are significantly different from the ones assumed in terrestrial FL. We provide a taxonomy of different types of satellite connectivity relevant for FL and show how the distributed training process can overcome the slow convergence due to long offline times of clients by taking advantage of the predictable intermittency of the satellite communication links.
3,170
Predecessor Features
Any reinforcement learning system must be able to identify which past events contributed to observed outcomes, a problem known as credit assignment. A common solution to this problem is to use an eligibility trace to assign credit to recency-weighted set of experienced events. However, in many realistic tasks, the set of recently experienced events are only one of the many possible action events that could have preceded the current outcome. This suggests that reinforcement learning can be made more efficient by allowing credit assignment to any viable preceding state, rather than only those most recently experienced. Accordingly, we examine ``Predecessor Features'', the fully bootstrapped version of van Hasselt's ``Expected Trace'', an algorithm that achieves this richer form of credit assignment. By maintaining a representation that approximates the expected sum of past occupancies, this algorithm allows temporal difference (TD) errors to be propagated accurately to a larger number of predecessor states than conventional methods, greatly improving learning speed. The algorithm can also be naturally extended from tabular state representation to feature representations allowing for increased performance on a wide range of environments. We demonstrate several use cases for Predecessor Features and compare its performance with other approaches.
3,171
Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks
Neural Architecture Search (NAS) is increasingly popular to automatically explore the accuracy versus computational complexity trade-off of Deep Learning (DL) architectures. When targeting tiny edge devices, the main challenge for DL deployment is matching the tight memory constraints, hence most NAS algorithms consider model size as the complexity metric. Other methods reduce the energy or latency of DL models by trading off accuracy and number of inference operations. Energy and memory are rarely considered simultaneously, in particular by low-search-cost Differentiable NAS (DNAS) solutions. We overcome this limitation proposing the first DNAS that directly addresses the most realistic scenario from a designer's perspective: the co-optimization of accuracy and energy (or latency) under a memory constraint, determined by the target HW. We do so by combining two complexity-dependent loss functions during training, with independent strength. Testing on three edge-relevant tasks from the MLPerf Tiny benchmark suite, we obtain rich Pareto sets of architectures in the energy vs. accuracy space, with memory footprints constraints spanning from 75% to 6.25% of the baseline networks. When deployed on a commercial edge device, the STM NUCLEO-H743ZI2, our networks span a range of 2.18x in energy consumption and 4.04% in accuracy for the same memory constraint, and reduce energy by up to 2.2x with negligible accuracy drop with respect to the baseline.
3,172
Stochastic Gradient Methods with Preconditioned Updates
This work considers non-convex finite sum minimization. There are a number of algorithms for such problems, but existing methods often work poorly when the problem is badly scaled and/or ill-conditioned, and a primary goal of this work is to introduce methods that alleviate this issue. Thus, here we include a preconditioner that is based upon Hutchinson's approach to approximating the diagonal of the Hessian, and couple it with several gradient based methods to give new `scaled' algorithms: {\tt Scaled SARAH} and {\tt Scaled L-SVRG}. Theoretical complexity guarantees under smoothness assumptions are presented, and we prove linear convergence when both smoothness and the PL-condition is assumed. Because our adaptively scaled methods use approximate partial second order curvature information, they are better able to mitigate the impact of badly scaled problems, and this improved practical performance is demonstrated in the numerical experiments that are also presented in this work.
3,173
On the Perils of Cascading Robust Classifiers
Ensembling certifiably robust neural networks has been shown to be a promising approach for improving the \emph{certified robust accuracy} of neural models. Black-box ensembles that assume only query-access to the constituent models (and their robustness certifiers) during prediction are particularly attractive due to their modular structure. Cascading ensembles are a popular instance of black-box ensembles that appear to improve certified robust accuracies in practice. However, we find that the robustness certifier used by a cascading ensemble is unsound. That is, when a cascading ensemble is certified as locally robust at an input $x$, there can, in fact, be inputs $x'$ in the $\epsilon$-ball centered at $x$, such that the cascade's prediction at $x'$ is different from $x$. We present an alternate black-box ensembling mechanism based on weighted voting which we prove to be sound for robustness certification. Via a thought experiment, we demonstrate that if the constituent classifiers are suitably diverse, voting ensembles can improve certified performance. Our code is available at \url{https://github.com/TristaChi/ensembleKW}.
3,174
Task-Specific Expert Pruning for Sparse Mixture-of-Experts
The sparse Mixture-of-Experts (MoE) model is powerful for large-scale pre-training and has achieved promising results due to its model capacity. However, with trillions of parameters, MoE is hard to be deployed on cloud or mobile environment. The inference of MoE requires expert parallelism, which is not hardware-friendly and communication expensive. Especially for resource-limited downstream tasks, such sparse structure has to sacrifice a lot of computing efficiency for limited performance gains. In this work, we observe most experts contribute scarcely little to the MoE fine-tuning and inference. We further propose a general method to progressively drop the non-professional experts for the target downstream task, which preserves the benefits of MoE while reducing the MoE model into one single-expert dense model. Our experiments reveal that the fine-tuned single-expert model could preserve 99.3% benefits from MoE across six different types of tasks while enjoying 2x inference speed with free communication cost.
3,175
Provably Efficient Lifelong Reinforcement Learning with Linear Function Approximation
We study lifelong reinforcement learning (RL) in a regret minimization setting of linear contextual Markov decision process (MDP), where the agent needs to learn a multi-task policy while solving a streaming sequence of tasks. We propose an algorithm, called UCB Lifelong Value Distillation (UCBlvd), that provably achieves sublinear regret for any sequence of tasks, which may be adaptively chosen based on the agent's past behaviors. Remarkably, our algorithm uses only sublinear number of planning calls, which means that the agent eventually learns a policy that is near optimal for multiple tasks (seen or unseen) without the need of deliberate planning. A key to this property is a new structural assumption that enables computation sharing across tasks during exploration. Specifically, for $K$ task episodes of horizon $H$, our algorithm has a regret bound $\tilde{\mathcal{O}}(\sqrt{(d^3+d^\prime d)H^4K})$ based on $\mathcal{O}(dH\log(K))$ number of planning calls, where $d$ and $d^\prime$ are the feature dimensions of the dynamics and rewards, respectively. This theoretical guarantee implies that our algorithm can enable a lifelong learning agent to accumulate experiences and learn to rapidly solve new tasks.
3,176
Self-supervised Learning for Label Sparsity in Computational Drug Repositioning
The computational drug repositioning aims to discover new uses for marketed drugs, which can accelerate the drug development process and play an important role in the existing drug discovery system. However, the number of validated drug-disease associations is scarce compared to the number of drugs and diseases in the real world. Too few labeled samples will make the classification model unable to learn effective latent factors of drugs, resulting in poor generalization performance. In this work, we propose a multi-task self-supervised learning framework for computational drug repositioning. The framework tackles label sparsity by learning a better drug representation. Specifically, we take the drug-disease association prediction problem as the main task, and the auxiliary task is to use data augmentation strategies and contrast learning to mine the internal relationships of the original drug features, so as to automatically learn a better drug representation without supervised labels. And through joint training, it is ensured that the auxiliary task can improve the prediction accuracy of the main task. More precisely, the auxiliary task improves drug representation and serving as additional regularization to improve generalization. Furthermore, we design a multi-input decoding network to improve the reconstruction ability of the autoencoder model. We evaluate our model using three real-world datasets. The experimental results demonstrate the effectiveness of the multi-task self-supervised learning framework, and its predictive ability is superior to the state-of-the-art model.
3,177
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
In this paper, we study multi-block min-max bilevel optimization problems, where the upper level is non-convex strongly-concave minimax objective and the lower level is a strongly convex objective, and there are multiple blocks of dual variables and lower level problems. Due to the intertwined multi-block min-max bilevel structure, the computational cost at each iteration could be prohibitively high, especially with a large number of blocks. To tackle this challenge, we present a single-loop randomized stochastic algorithm, which requires updates for only a constant number of blocks at each iteration. Under some mild assumptions on the problem, we establish its sample complexity of $\mathcal{O}(1/\epsilon^4)$ for finding an $\epsilon$-stationary point. This matches the optimal complexity for solving stochastic nonconvex optimization under a general unbiased stochastic oracle model. Moreover, we provide two applications of the proposed method in multi-task deep AUC (area under ROC curve) maximization and multi-task deep partial AUC maximization. Experimental results validate our theory and demonstrate the effectiveness of our method on problems with hundreds of tasks.
3,178
IDANI: Inference-time Domain Adaptation via Neuron-level Interventions
Large pre-trained models are usually fine-tuned on downstream task data, and tested on unseen data. When the train and test data come from different domains, the model is likely to struggle, as it is not adapted to the test domain. We propose a new approach for domain adaptation (DA), using neuron-level interventions: We modify the representation of each test example in specific neurons, resulting in a counterfactual example from the source domain, which the model is more familiar with. The modified example is then fed back into the model. While most other DA methods are applied during training time, ours is applied during inference only, making it more efficient and applicable. Our experiments show that our method improves performance on unseen domains.
3,179
CoNSoLe: Convex Neural Symbolic Learning
Learning the underlying equation from data is a fundamental problem in many disciplines. Recent advances rely on Neural Networks (NNs) but do not provide theoretical guarantees in obtaining the exact equations owing to the non-convexity of NNs. In this paper, we propose Convex Neural Symbolic Learning (CoNSoLe) to seek convexity under mild conditions. The main idea is to decompose the recovering process into two steps and convexify each step. In the first step of searching for right symbols, we convexify the deep Q-learning. The key is to maintain double convexity for both the negative Q-function and the negative reward function in each iteration, leading to provable convexity of the negative optimal Q function to learn the true symbol connections. Conditioned on the exact searching result, we construct a Locally Convex equation Learner (LoCaL) neural network to convexify the estimation of symbol coefficients. With such a design, we quantify a large region with strict convexity in the loss surface of LoCaL for commonly used physical functions. Finally, we demonstrate the superior performance of the CoNSoLe framework over the state-of-the-art on a diverse set of datasets.
3,180
Star algorithm for NN ensembling
Neural network ensembling is a common and robust way to increase model efficiency. In this paper, we propose a new neural network ensemble algorithm based on Audibert's empirical star algorithm. We provide optimal theoretical minimax bound on the excess squared risk. Additionally, we empirically study this algorithm on regression and classification tasks and compare it to most popular ensembling methods.
3,181
Interpretable Deep Learning Classifier by Detection of Prototypical Parts on Kidney Stones Images
Identifying the type of kidney stones can allow urologists to determine their formation cause, improving the early prescription of appropriate treatments to diminish future relapses. However, currently, the associated ex-vivo diagnosis (known as morpho-constitutional analysis, MCA) is time-consuming, expensive, and requires a great deal of experience, as it requires a visual analysis component that is highly operator dependant. Recently, machine learning methods have been developed for in-vivo endoscopic stone recognition. Shallow methods have been demonstrated to be reliable and interpretable but exhibit low accuracy, while deep learning-based methods yield high accuracy but are not explainable. However, high stake decisions require understandable computer-aided diagnosis (CAD) to suggest a course of action based on reasonable evidence, rather than merely prescribe one. Herein, we investigate means for learning part-prototypes (PPs) that enable interpretable models. Our proposal suggests a classification for a kidney stone patch image and provides explanations in a similar way as those used on the MCA method.
3,182
Fair Comparison between Efficient Attentions
Transformers have been successfully used in various fields and are becoming the standard tools in computer vision. However, self-attention, a core component of transformers, has a quadratic complexity problem, which limits the use of transformers in various vision tasks that require dense prediction. Many studies aiming at solving this problem have been reported proposed. However, no comparative study of these methods using the same scale has been reported due to different model configurations, training schemes, and new methods. In our paper, we validate these efficient attention models on the ImageNet1K classification task by changing only the attention operation and examining which efficient attention is better.
3,183
Asymptotic Properties for Bayesian Neural Network in Besov Space
Neural networks have shown great predictive power when dealing with various unstructured data such as images and natural languages. The Bayesian neural network captures the uncertainty of prediction by putting a prior distribution for the parameter of the model and computing the posterior distribution. In this paper, we show that the Bayesian neural network using spike-and-slab prior has consistency with nearly minimax convergence rate when the true regression function is in the Besov space. Even when the smoothness of the regression function is unknown the same posterior convergence rate holds and thus the spike and slab prior is adaptive to the smoothness of the regression function. We also consider the shrinkage prior and show that it has the same convergence rate. In other words, we propose a practical Bayesian neural network with guaranteed asymptotic properties.
3,184
Privacy for Free: How does Dataset Condensation Help Privacy?
To prevent unintentional data leakage, research community has resorted to data generators that can produce differentially private data for model training. However, for the sake of the data privacy, existing solutions suffer from either expensive training cost or poor generalization performance. Therefore, we raise the question whether training efficiency and privacy can be achieved simultaneously. In this work, we for the first time identify that dataset condensation (DC) which is originally designed for improving training efficiency is also a better solution to replace the traditional data generators for private data generation, thus providing privacy for free. To demonstrate the privacy benefit of DC, we build a connection between DC and differential privacy, and theoretically prove on linear feature extractors (and then extended to non-linear feature extractors) that the existence of one sample has limited impact ($O(m/n)$) on the parameter distribution of networks trained on $m$ samples synthesized from $n (n \gg m)$ raw samples by DC. We also empirically validate the visual privacy and membership privacy of DC-synthesized data by launching both the loss-based and the state-of-the-art likelihood-based membership inference attacks. We envision this work as a milestone for data-efficient and privacy-preserving machine learning.
3,185
Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble
Inverse reinforcement learning (IRL) recovers the underlying reward function from expert demonstrations. A generalizable reward function is even desired as it captures the fundamental motivation of the expert. However, classical IRL methods can only recover reward functions coupled with the training dynamics, thus are hard to generalize to a changed environment. Previous dynamics-agnostic reward learning methods have strict assumptions, such as that the reward function has to be state-only. This work proposes a general approach to learn transferable reward functions, Dynamics-Agnostic Discriminator-Ensemble Reward Learning (DARL). Following the adversarial imitation learning (AIL) framework, DARL learns a dynamics-agnostic discriminator on a latent space mapped from the original state-action space. The latent space is learned to contain the least information of the dynamics. Moreover, to reduce the reliance of the discriminator on policies, the reward function is represented as an ensemble of the discriminators during training. We assess DARL in four MuJoCo tasks with dynamics transfer. Empirical results compared with the state-of-the-art AIL methods show that DARL can learn a reward that is more consistent with the true reward, thus obtaining higher environment returns.
3,186
Continuous Prediction with Experts' Advice
Prediction with experts' advice is one of the most fundamental problems in online learning and captures many of its technical challenges. A recent line of work has looked at online learning through the lens of differential equations and continuous-time analysis. This viewpoint has yielded optimal results for several problems in online learning. In this paper, we employ continuous-time stochastic calculus in order to study the discrete-time experts' problem. We use these tools to design a continuous-time, parameter-free algorithm with improved guarantees for the quantile regret. We then develop an analogous discrete-time algorithm with a very similar analysis and identical quantile regret bounds. Finally, we design an anytime continuous-time algorithm with regret matching the optimal fixed-time rate when the gains are independent Brownian Motions; in many settings, this is the most difficult case. This gives some evidence that, even with adversarial gains, the optimal anytime and fixed-time regrets may coincide.
3,187
DM$^2$: Distributed Multi-Agent Reinforcement Learning for Distribution Matching
Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to explicit coordination schemes. The proposed algorithm (DM$^2$) leverages distribution matching to facilitate independent agents' coordination. Each individual agent matches a target distribution of concurrently sampled trajectories from a joint expert policy. The theoretical analysis shows that under some conditions, if each agent optimizes their individual distribution matching objective, the agents increase a lower bound on the objective of matching the joint expert policy, allowing convergence to the joint expert policy. Further, if the distribution matching objective is aligned with a joint task, a combination of environment reward and distribution matching reward leads to the same equilibrium. Experimental validation on the StarCraft domain shows that combining the reward for distribution matching with the environment reward allows agents to outperform a fully distributed baseline. Additional experiments probe the conditions under which expert demonstrations need to be sampled in order to outperform the fully distributed baseline.
3,188
Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
The research for characterizing GNN expressiveness attracts much attention as graph neural networks achieve a champion in the last five years. The number of linear regions has been considered a good measure for the expressivity of neural networks with piecewise linear activation. In this paper, we present some estimates for the number of linear regions of the classic graph convolutional networks (GCNs) with one layer and multiple-layer scenarios. In particular, we obtain an optimal upper bound for the maximum number of linear regions for one-layer GCNs, and the upper and lower bounds for multi-layer GCNs. The simulated estimate shows that the true maximum number of linear regions is possibly closer to our estimated lower bound. These results imply that the number of linear regions of multi-layer GCNs is exponentially greater than one-layer GCNs per parameter in general. This suggests that deeper GCNs have more expressivity than shallow GCNs.
3,189
Torsional Diffusion for Molecular Conformer Generation
Molecular conformer generation is a fundamental task in computational chemistry. Several machine learning approaches have been developed, but none have outperformed state-of-the-art cheminformatics methods. We propose torsional diffusion, a novel diffusion framework that operates on the space of torsion angles via a diffusion process on the hypertorus and an extrinsic-to-intrinsic score model. On a standard benchmark of drug-like molecules, torsional diffusion generates superior conformer ensembles compared to machine learning and cheminformatics methods in terms of both RMSD and chemical properties, and is orders of magnitude faster than previous diffusion-based models. Moreover, our model provides exact likelihoods, which we employ to build the first generalizable Boltzmann generator. Code is available at https://github.com/gcorso/torsional-diffusion.
3,190
Learning to Untangle Genome Assembly with Graph Convolutional Networks
A quest to determine the complete sequence of a human DNA from telomere to telomere started three decades ago and was finally completed in 2021. This accomplishment was a result of a tremendous effort of numerous experts who engineered various tools and performed laborious manual inspection to achieve the first gapless genome sequence. However, such method can hardly be used as a general approach to assemble different genomes, especially when the assembly speed is critical given the large amount of data. In this work, we explore a different approach to the central part of the genome assembly task that consists of untangling a large assembly graph from which a genomic sequence needs to be reconstructed. Our main motivation is to reduce human-engineered heuristics and use deep learning to develop more generalizable reconstruction techniques. Precisely, we introduce a new learning framework to train a graph convolutional network to resolve assembly graphs by finding a correct path through them. The training is supervised with a dataset generated from the resolved CHM13 human sequence and tested on assembly graphs built using real human PacBio HiFi reads. Experimental results show that a model, trained on simulated graphs generated solely from a single chromosome, is able to remarkably resolve all other chromosomes. Moreover, the model outperforms hand-crafted heuristics from a state-of-the-art \textit{de novo} assembler on the same graphs. Reconstructed chromosomes with graph networks are more accurate on nucleotide level, report lower number of contigs, higher genome reconstructed fraction and NG50/NGA50 assessment metrics.
3,191
Adaptive Online Learning of Quantum States
In the fundamental problem of shadow tomography, the goal is to efficiently learn an unknown $d$-dimensional quantum state using projective measurements. However, it is rarely the case that the underlying state remains stationary: changes may occur due to measurements, environmental noise, or an underlying Hamiltonian state evolution. In this paper we adopt tools from adaptive online learning to learn a changing state, giving adaptive and dynamic regret bounds for online shadow tomography that are polynomial in the number of qubits and sublinear in the number of measurements. Our analysis utilizes tools from complex matrix analysis to cope with complex numbers, which may be of independent interest in online learning. In addition, we provide numerical experiments that corroborate our theoretical results.
3,192
How Biased is Your Feature?: Computing Fairness Influence Functions with Global Sensitivity Analysis
Fairness in machine learning has attained significant focus due to the widespread application of machine learning in high-stake decision-making tasks. Unless regulated with a fairness objective, machine learning classifiers might demonstrate unfairness/bias towards certain demographic populations in the data. Thus, the quantification and mitigation of the bias induced by classifiers have become a central concern. In this paper, we aim to quantify the influence of different features on the bias of a classifier. To this end, we propose a framework of Fairness Influence Function (FIF), and compute it as a scaled difference of conditional variances in the prediction of the classifier. We also instantiate an algorithm, FairXplainer, that uses variance decomposition among the subset of features and a local regressor to compute FIFs accurately, while also capturing the intersectional effects of the features. Our experimental analysis validates that FairXplainer captures the influences of both individual features and higher-order feature interactions, estimates the bias more accurately than existing local explanation methods, and detects the increase/decrease in bias due to affirmative/punitive actions in the classifier.
3,193
Transformer with Fourier Integral Attentions
Multi-head attention empowers the recent success of transformers, the state-of-the-art models that have achieved remarkable success in sequence modeling and beyond. These attention mechanisms compute the pairwise dot products between the queries and keys, which results from the use of unnormalized Gaussian kernels with the assumption that the queries follow a mixture of Gaussian distribution. There is no guarantee that this assumption is valid in practice. In response, we first interpret attention in transformers as a nonparametric kernel regression. We then propose the FourierFormer, a new class of transformers in which the dot-product kernels are replaced by the novel generalized Fourier integral kernels. Different from the dot-product kernels, where we need to choose a good covariance matrix to capture the dependency of the features of data, the generalized Fourier integral kernels can automatically capture such dependency and remove the need to tune the covariance matrix. We theoretically prove that our proposed Fourier integral kernels can efficiently approximate any key and query distributions. Compared to the conventional transformers with dot-product attention, FourierFormers attain better accuracy and reduce the redundancy between attention heads. We empirically corroborate the advantages of FourierFormers over the baseline transformers in a variety of practical applications including language modeling and image classification.
3,194
ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
Long-term engagement is preferred over immediate engagement in sequential recommendation as it directly affects product operational metrics such as daily active users (DAUs) and dwell time. Meanwhile, reinforcement learning (RL) is widely regarded as a promising framework for optimizing long-term engagement in sequential recommendation. However, due to expensive online interactions, it is very difficult for RL algorithms to perform state-action value estimation, exploration and feature extraction when optimizing long-term engagement. In this paper, we propose ResAct which seeks a policy that is close to, but better than, the online-serving policy. In this way, we can collect sufficient data near the learned policy so that state-action values can be properly estimated, and there is no need to perform online exploration. Directly optimizing this policy is difficult due to the huge policy space. ResAct instead solves it by first reconstructing the online behaviors and then improving it. Our main contributions are fourfold. First, we design a generative model which reconstructs behaviors of the online-serving policy by sampling multiple action estimators. Second, we design an effective learning paradigm to train the residual actor which can output the residual for action improvement. Third, we facilitate the extraction of features with two information theoretical regularizers to confirm the expressiveness and conciseness of features. Fourth, we conduct extensive experiments on a real world dataset consisting of millions of sessions, and our method significantly outperforms the state-of-the-art baselines in various of long term engagement optimization tasks.
3,195
DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training
Personalized federated learning is proposed to handle the data heterogeneity problem amongst clients by learning dedicated tailored local models for each user. However, existing works are often built in a centralized way, leading to high communication pressure and high vulnerability when a failure or an attack on the central server occurs. In this work, we propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL, which employs personalized sparse masks to customize sparse local models on the edge. To further save the communication and computation cost, we propose a decentralized sparse training technique, which means that each local model in Dis-PFL only maintains a fixed number of active parameters throughout the whole local training and peer-to-peer communication process. Comprehensive experiments demonstrate that Dis-PFL significantly saves the communication bottleneck for the busiest node among all clients and, at the same time, achieves higher model accuracy with less computation cost and communication rounds. Furthermore, we demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities and achieves better personalized performances.
3,196
On Gap-dependent Bounds for Offline Reinforcement Learning
This paper presents a systematic study on gap-dependent sample complexity in offline reinforcement learning. Prior work showed when the density ratio between an optimal policy and the behavior policy is upper bounded (the optimal policy coverage assumption), then the agent can achieve an $O\left(\frac{1}{\epsilon^2}\right)$ rate, which is also minimax optimal. We show under the optimal policy coverage assumption, the rate can be improved to $O\left(\frac{1}{\epsilon}\right)$ when there is a positive sub-optimality gap in the optimal $Q$-function. Furthermore, we show when the visitation probabilities of the behavior policy are uniformly lower bounded for states where an optimal policy's visitation probabilities are positive (the uniform optimal policy coverage assumption), the sample complexity of identifying an optimal policy is independent of $\frac{1}{\epsilon}$. Lastly, we present nearly-matching lower bounds to complement our gap-dependent upper bounds.
3,197
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Discovering governing equations of complex dynamical systems directly from data is a central problem in scientific machine learning. In recent years, the sparse identification of nonlinear dynamics (SINDy) framework, powered by heuristic sparse regression methods, has become a dominant tool for learning parsimonious models. We propose an exact formulation of the SINDy problem using mixed-integer optimization (MIO) to solve the sparsity constrained regression problem to provable optimality in seconds. On a large number of canonical ordinary and partial differential equations, we illustrate the dramatic improvement of our approach in accurate model discovery while being more sample efficient, robust to noise, and flexible in accommodating physical constraints.
3,198
Discovering the Hidden Vocabulary of DALLE-2
We discover that DALLE-2 seems to have a hidden vocabulary that can be used to generate images with absurd prompts. For example, it seems that \texttt{Apoploe vesrreaitais} means birds and \texttt{Contarra ccetnxniams luryca tanniounons} (sometimes) means bugs or pests. We find that these prompts are often consistent in isolation but also sometimes in combinations. We present our black-box method to discover words that seem random but have some correspondence to visual concepts. This creates important security and interpretability challenges.
3,199
Byzantine-Robust Online and Offline Distributed Reinforcement Learning
We consider a distributed reinforcement learning setting where multiple agents separately explore the environment and communicate their experiences through a central server. However, $\alpha$-fraction of agents are adversarial and can report arbitrary fake information. Critically, these adversarial agents can collude and their fake data can be of any sizes. We desire to robustly identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents. Our main technical contribution is Weighted-Clique, a novel algorithm for the robust mean estimation from batches problem, that can handle arbitrary batch sizes. Building upon this new estimator, in the offline setting, we design a Byzantine-robust distributed pessimistic value iteration algorithm; in the online setting, we design a Byzantine-robust distributed optimistic value iteration algorithm. Both algorithms obtain near-optimal sample complexities and achieve superior robustness guarantee than prior works.