Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
2,500
Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic Reinforcement Learning
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option. This application necessitates efficient inquiry of relevant disease symptoms in order to make accurate diagnosis recommendations. This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution. They perform well when the feature space is small, that is, the number of symptoms and diagnosable disease categories is limited, but they frequently fail in assignments with a large number of features. To address this challenge, we propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network. The actor incorporates a Variational AutoEncoder (VAE) to model the uncertainty induced by partial observations of features, thereby facilitating in making appropriate inquiries. In the critic network, a supervised diagnosis model for disease predictions is involved to precisely estimate the state-value function. Furthermore, inspired by the medical concept of differential diagnosis, we combine the generative and diagnosis models to create a novel reward shaping mechanism to address the sparse reward problem in large search spaces. We conduct extensive experiments on both synthetic and real-world datasets for empirical evaluations. The results demonstrate that our approach outperforms state-of-the-art methods in terms of diagnostic accuracy and interaction efficiency while also being more effectively scalable to large search spaces. Besides, our method is adaptable to both categorical and continuous features, making it ideal for online applications.
2,501
Joint Adversarial Learning for Cross-domain Fair Classification
Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn significant attention to develop effective algorithms to achieve fairness and good classification performance. Despite the great success of these fairness-aware machine learning models, most of the existing models require sensitive attributes to preprocess the data, regularize the model learning or postprocess the prediction to have fair predictions. However, sensitive attributes are often incomplete or even unavailable due to privacy, legal or regulation restrictions. Though we lack the sensitive attribute for training a fair model in the target domain, there might exist a similar domain that has sensitive attributes. Thus, it is important to exploit auxiliary information from the similar domain to help improve fair classification in the target domain. Therefore, in this paper, we study a novel problem of exploring domain adaptation for fair classification. We propose a new framework that can simultaneously estimate the sensitive attributes while learning a fair classifier in the target domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model for fair classification, even when no sensitive attributes are available in the target domain.
2,502
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning
Personalized Federated Learning (pFL), which utilizes and deploys distinct local models, has gained increasing attention in recent years due to its success in handling the statistical heterogeneity of FL clients. However, standardized evaluation and systematical analysis of diverse pFL methods remain a challenge. Firstly, the highly varied datasets, FL simulation settings and pFL implementations prevent fast and fair comparisons of pFL methods. Secondly, the effectiveness and robustness of pFL methods are under-explored in various practical scenarios, such as new clients generalization and resource-limited clients participation. Finally, the current pFL literature diverges in the adopted evaluation and ablation protocols. To tackle these challenges, we propose the first comprehensive pFL benchmark, pFL-Bench, for facilitating rapid, reproducible, standardized and thorough pFL evaluation. The proposed benchmark contains more than 10 datasets in diverse application domains with unified data partition and realistic heterogeneous settings; a modular and easy-to-extend pFL codebase with more than 20 competitive pFL baseline implementations; and systematic evaluations under containerized environments in terms of generalization, fairness, system overhead, and convergence. We highlight the benefits and potential of state-of-the-art pFL methods and hope pFL-Bench enables further pFL research and broad applications that would otherwise be difficult owing to the absence of a dedicated benchmark. The code is released at https://github.com/alibaba/FederatedScope/tree/master/benchmark/pFL-Bench.
2,503
Solving the Spike Feature Information Vanishing Problem in Spiking Deep Q Network with Potential Based Normalization
Brain inspired spiking neural networks (SNNs) have been successfully applied to many pattern recognition domains. The SNNs based deep structure have achieved considerable results in perceptual tasks, such as image classification, target detection. However, the application of deep SNNs in reinforcement learning (RL) tasks is still a problem to be explored. Although there have been previous studies on the combination of SNNs and RL, most of them focus on robotic control problems with shallow networks or using ANN-SNN conversion method to implement spiking deep Q Network (SDQN). In this work, we mathematically analyzed the problem of the disappearance of spiking signal features in SDQN and proposed a potential based layer normalization(pbLN) method to directly train spiking deep Q networks. Experiment shows that compared with state-of-art ANN-SNN conversion method and other SDQN works, the proposed pbLN spiking deep Q networks (PL-SDQN) achieved better performance on Atari game tasks.
2,504
Neural Bandit with Arm Group Graph
Contextual bandits aim to identify among a set of arms the optimal one with the highest reward based on their contextual information. Motivated by the fact that the arms usually exhibit group behaviors and the mutual impacts exist among groups, we introduce a new model, Arm Group Graph (AGG), where the nodes represent the groups of arms and the weighted edges formulate the correlations among groups. To leverage the rich information in AGG, we propose a bandit algorithm, AGG-UCB, where the neural networks are designed to estimate rewards, and we propose to utilize graph neural networks (GNN) to learn the representations of arm groups with correlations. To solve the exploitation-exploration dilemma in bandits, we derive a new upper confidence bound (UCB) built on neural networks (exploitation) for exploration. Furthermore, we prove that AGG-UCB can achieve a near-optimal regret bound with over-parameterized neural networks, and provide the convergence analysis of GNN with fully-connected layers which may be of independent interest. In the end, we conduct extensive experiments against state-of-the-art baselines on multiple public data sets, showing the effectiveness of the proposed algorithm.
2,505
Alternately Optimized Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated powerful representation capability in numerous graph-based tasks. Specifically, the decoupled structures of GNNs such as APPNP become popular due to their simplicity and performance advantages. However, the end-to-end training of these GNNs makes them inefficient in computation and memory consumption. In order to deal with these limitations, in this work, we propose an alternating optimization framework for graph neural networks that does not require end-to-end training. Extensive experiments under different settings demonstrate that the performance of the proposed algorithm is comparable to existing state-of-the-art algorithms but has significantly better computation and memory efficiency. Additionally, we show that our framework can be taken advantage to enhance existing decoupled GNNs.
2,506
Network Report: A Structured Description for Network Datasets
The rapid development of network science and technologies depends on shareable datasets. Currently, there is no standard practice for reporting and sharing network datasets. Some network dataset providers only share links, while others provide some contexts or basic statistics. As a result, critical information may be unintentionally dropped, and network dataset consumers may misunderstand or overlook critical aspects. Inappropriately using a network dataset can lead to severe consequences (e.g., discrimination) especially when machine learning models on networks are deployed in high-stake domains. Challenges arise as networks are often used across different domains (e.g., network science, physics, etc) and have complex structures. To facilitate the communication between network dataset providers and consumers, we propose network report. A network report is a structured description that summarizes and contextualizes a network dataset. Network report extends the idea of dataset reports (e.g., Datasheets for Datasets) from prior work with network-specific descriptions of the non-i.i.d. nature, demographic information, network characteristics, etc. We hope network reports encourage transparency and accountability in network research and development across different fields.
2,507
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
In machine learning, an agent needs to estimate uncertainty to efficiently explore and adapt and to make effective decisions. A common approach to uncertainty estimation maintains an ensemble of models. In recent years, several approaches have been proposed for training ensembles, and conflicting views prevail with regards to the importance of various ingredients of these approaches. In this paper, we aim to address the benefits of two ingredients -- prior functions and bootstrapping -- which have come into question. We show that prior functions can significantly improve an ensemble agent's joint predictions across inputs and that bootstrapping affords additional benefits if the signal-to-noise ratio varies across inputs. Our claims are justified by both theoretical and experimental results.
2,508
Can Backdoor Attacks Survive Time-Varying Models?
Backdoors are powerful attacks against deep neural networks (DNNs). By poisoning training data, attackers can inject hidden rules (backdoors) into DNNs, which only activate on inputs containing attack-specific triggers. While existing work has studied backdoor attacks on a variety of DNN models, they only consider static models, which remain unchanged after initial deployment. In this paper, we study the impact of backdoor attacks on a more realistic scenario of time-varying DNN models, where model weights are updated periodically to handle drifts in data distribution over time. Specifically, we empirically quantify the "survivability" of a backdoor against model updates, and examine how attack parameters, data drift behaviors, and model update strategies affect backdoor survivability. Our results show that one-shot backdoor attacks (i.e., only poisoning training data once) do not survive past a few model updates, even when attackers aggressively increase trigger size and poison ratio. To stay unaffected by model update, attackers must continuously introduce corrupted data into the training pipeline. Together, these results indicate that when models are updated to learn new data, they also "forget" backdoors as hidden, malicious features. The larger the distribution shift between old and new training data, the faster backdoors are forgotten. Leveraging these insights, we apply a smart learning rate scheduler to further accelerate backdoor forgetting during model updates, which prevents one-shot backdoors from surviving past a single model update.
2,509
Subject Granular Differential Privacy in Federated Learning
This paper introduces subject granular privacy in the Federated Learning (FL) setting, where a subject is an individual whose private information is embodied by several data items either confined within a single federation user or distributed across multiple federation users. We formally define the notion of subject level differential privacy for FL. We propose three new algorithms that enforce subject level DP. Two of these algorithms are based on notions of user level local differential privacy (LDP) and group differential privacy respectively. The third algorithm is based on a novel idea of hierarchical gradient averaging (HiGradAvgDP) for subjects participating in a training mini-batch. We also introduce horizontal composition of privacy loss for a subject across multiple federation users. We show that horizontal composition is equivalent to sequential composition in the worst case. We prove the subject level DP guarantee for all our algorithms and empirically analyze them using the FEMNIST and Shakespeare datasets. Our evaluation shows that, of our three algorithms, HiGradAvgDP delivers the best model performance, approaching that of a model trained using a DP-SGD based algorithm that provides a weaker item level privacy guarantee.
2,510
Predictive Modeling of Charge Levels for Battery Electric Vehicles using CNN EfficientNet and IGTD Algorithm
Convolutional Neural Networks (CNN) have been a good solution for understanding a vast image dataset. As the increased number of battery-equipped electric vehicles is flourishing globally, there has been much research on understanding which charge levels electric vehicle drivers would choose to charge their vehicles to get to their destination without any prevention. We implemented deep learning approaches to analyze the tabular datasets to understand their state of charge and which charge levels they would choose. In addition, we implemented the Image Generator for Tabular Dataset algorithm to utilize tabular datasets as image datasets to train convolutional neural networks. Also, we integrated other CNN architecture such as EfficientNet to prove that CNN is a great learner for reading information from images that were converted from the tabular dataset, and able to predict charge levels for battery-equipped electric vehicles. We also evaluated several optimization methods to enhance the learning rate of the models and examined further analysis on improving the model architecture.
2,511
FedPop: A Bayesian Approach for Personalised Federated Learning
Personalised federated learning (FL) aims at collaboratively learning a machine learning model taylored for each client. Albeit promising advances have been made in this direction, most of existing approaches works do not allow for uncertainty quantification which is crucial in many applications. In addition, personalisation in the cross-device setting still involves important issues, especially for new clients or those having small number of observations. This paper aims at filling these gaps. To this end, we propose a novel methodology coined FedPop by recasting personalised FL into the population modeling paradigm where clients' models involve fixed common population parameters and random effects, aiming at explaining data heterogeneity. To derive convergence guarantees for our scheme, we introduce a new class of federated stochastic optimisation algorithms which relies on Markov chain Monte Carlo methods. Compared to existing personalised FL methods, the proposed methodology has important benefits: it is robust to client drift, practical for inference on new clients, and above all, enables uncertainty quantification under mild computational and memory overheads. We provide non-asymptotic convergence guarantees for the proposed algorithms and illustrate their performances on various personalised federated learning tasks.
2,512
Towards Scalable Hyperbolic Neural Networks using Taylor Series Approximations
Hyperbolic networks have shown prominent improvements over their Euclidean counterparts in several areas involving hierarchical datasets in various domains such as computer vision, graph analysis, and natural language processing. However, their adoption in practice remains restricted due to (i) non-scalability on accelerated deep learning hardware, (ii) vanishing gradients due to the closure of hyperbolic space, and (iii) information loss due to frequent mapping between local tangent space and fully hyperbolic space. To tackle these issues, we propose the approximation of hyperbolic operators using Taylor series expansions, which allows us to reformulate the computationally expensive tangent and cosine hyperbolic functions into their polynomial equivariants which are more efficient. This allows us to retain the benefits of preserving the hierarchical anatomy of the hyperbolic space, while maintaining the scalability over current accelerated deep learning infrastructure. The polynomial formulation also enables us to utilize the advancements in Euclidean networks such as gradient clipping and ReLU activation to avoid vanishing gradients and remove errors due to frequent switching between tangent space and hyperbolic space. Our empirical evaluation on standard benchmarks in the domain of graph analysis and computer vision shows that our polynomial formulation is as scalable as Euclidean architectures, both in terms of memory and time complexity, while providing results as effective as hyperbolic models. Moreover, our formulation also shows a considerable improvement over its baselines due to our solution to vanishing gradients and information loss.
2,513
Decoupled Self-supervised Learning for Non-Homophilous Graphs
In this paper, we study the problem of conducting self-supervised learning for node representation learning on non-homophilous graphs. Existing self-supervised learning methods typically assume the graph is homophilous where linked nodes often belong to the same class or have similar features. However, such assumptions of homophily do not always hold true in real-world graphs. We address this problem by developing a decoupled self-supervised learning (DSSL) framework for graph neural networks. DSSL imitates a generative process of nodes and links from latent variable modeling of the semantic structure, which decouples different underlying semantics between different neighborhoods into the self-supervised node learning process. Our DSSL framework is agnostic to the encoders and does not need prefabricated augmentations, thus is flexible to different graphs. To effectively optimize the framework with latent variables, we derive the evidence lower-bound of the self-supervised objective and develop a scalable training algorithm with variational inference. We provide a theoretical analysis to justify that DSSL enjoys better downstream performance. Extensive experiments on various types of graph benchmarks demonstrate that our proposed framework can significantly achieve better performance compared with competitive self-supervised learning baselines.
2,514
One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift
In this paper, we investigate $\textit{open-set recognition}$ with domain shift, where the final goal is to achieve $\textit{Source-free Universal Domain Adaptation}$ (SF-UNDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-UNDA setting, the model cannot access source data anymore during target adaptation, which aims to address data privacy concerns. We propose a novel training scheme to learn a ($n$+1)-way classifier to predict the $n$ source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show: $\textbf{1)}$ After source training, the resulting source model can get excellent performance for $\textit{open-set single domain generalization}$ and also $\textit{open-set recognition}$ tasks; $\textbf{2)}$ After target adaptation, our method surpasses current UNDA approaches which demand source data during adaptation on several benchmarks. The versatility to several different tasks strongly proves the efficacy and generalization ability of our method. $\textbf{3)}$ When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art UNDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively. Code will be available in https://github.com/Albert0147/OneRing.
2,515
Meta-Learning Transferable Parameterized Skills
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We first propose novel learning objectives -- trajectory-centric diversity and smoothness -- that allow an agent to meta-learn reusable parameterized skills. Our agent can use these learned skills to construct a temporally-extended parameterized-action Markov decision process, for which we propose a hierarchical actor-critic algorithm that aims to efficiently learn a high-level control policy with the learned skills. We empirically demonstrate that the proposed algorithms enable an agent to solve a complicated long-horizon obstacle-course environment.
2,516
Neural Network Compression via Effective Filter Analysis and Hierarchical Pruning
Network compression is crucial to making the deep networks to be more efficient, faster, and generalizable to low-end hardware. Current network compression methods have two open problems: first, there lacks a theoretical framework to estimate the maximum compression rate; second, some layers may get over-prunned, resulting in significant network performance drop. To solve these two problems, this study propose a gradient-matrix singularity analysis-based method to estimate the maximum network redundancy. Guided by that maximum rate, a novel and efficient hierarchical network pruning algorithm is developed to maximally condense the neuronal network structure without sacrificing network performance. Substantial experiments are performed to demonstrate the efficacy of the new method for pruning several advanced convolutional neural network (CNN) architectures. Compared to existing pruning methods, the proposed pruning algorithm achieved state-of-the-art performance. At the same or similar compression ratio, the new method provided the highest network prediction accuracy as compared to other methods.
2,517
Click prediction boosting via Bayesian hyperparameter optimization based ensemble learning pipelines
Online travel agencies (OTA's) advertise their website offers on meta-search bidding engines. The problem of predicting the number of clicks a hotel would receive for a given bid amount is an important step in the management of an OTA's advertisement campaign on a meta-search engine, because bid times number of clicks defines the cost to be generated. Various regressors are ensembled in this work to improve click prediction performance. Following the preprocessing procedures, the feature set is divided into train and test groups depending on the logging date of the samples. The data collection is then subjected to feature elimination via utilizing XGBoost, which significantly reduces the dimension of features. The optimum hyper-parameters are then found by applying Bayesian hyperparameter optimization to XGBoost, LightGBM, and SGD models. The different trained models are tested separately as well as combined to form ensemble models. Four alternative ensemble solutions have been suggested. The same test set is used to test both individual and ensemble models, and the results of 46 model combinations demonstrate that stack ensemble models yield the desired R2 score of all. In conclusion, the ensemble model improves the prediction performance by about 10%.
2,518
Spatial Cross-Attention Improves Self-Supervised Visual Representation Learning
Unsupervised representation learning methods like SwAV are proved to be effective in learning visual semantics of a target dataset. The main idea behind these methods is that different views of a same image represent the same semantics. In this paper, we further introduce an add-on module to facilitate the injection of the knowledge accounting for spatial cross correlations among the samples. This in turn results in distilling intra-class information including feature level locations and cross similarities between same-class instances. The proposed add-on can be added to existing methods such as the SwAV. We can later remove the add-on module for inference without any modification of the learned weights. Through an extensive set of empirical evaluations, we verify that our method yields an improved performance in detecting the class activation maps, top-1 classification accuracy, and down-stream tasks such as object detection, with different configuration settings.
2,519
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Despite their high computation and communication costs, Newton-type methods remain an appealing option for distributed training due to their robustness against ill-conditioned convex problems. In this work, we study ommunication compression and aggregation mechanisms for curvature information in order to reduce these costs while preserving theoretically superior local convergence guarantees. We prove that the recently developed class of three point compressors (3PC) of Richtarik et al. [2022] for gradient communication can be generalized to Hessian communication as well. This result opens up a wide variety of communication strategies, such as contractive compression} and lazy aggregation, available to our disposal to compress prohibitively costly curvature information. Moreover, we discovered several new 3PC mechanisms, such as adaptive thresholding and Bernoulli aggregation, which require reduced communication and occasional Hessian computations. Furthermore, we extend and analyze our approach to bidirectional communication compression and partial device participation setups to cater to the practical considerations of applications in federated learning. For all our methods, we derive fast condition-number-independent local linear and/or superlinear convergence rates. Finally, with extensive numerical evaluations on convex optimization problems, we illustrate that our designed schemes achieve state-of-the-art communication complexity compared to several key baselines using second-order information.
2,520
Certifying Data-Bias Robustness in Linear Regression
Datasets typically contain inaccuracies due to human error and societal biases, and these inaccuracies can affect the outcomes of models trained on such datasets. We present a technique for certifying whether linear regression models are pointwise-robust to label bias in the training dataset, i.e., whether bounded perturbations to the labels of a training dataset result in models that change the prediction of test points. We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method that does not require advance knowledge of the test point. We extensively evaluate both techniques and find that linear models -- both regression- and classification-based -- often display high levels of bias-robustness. However, we also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets. Overall, our approach can serve as a guide for when to trust, or question, a model's output.
2,521
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure
The practicality of reinforcement learning algorithms has been limited due to poor scaling with respect to the problem size, as the sample complexity of learning an $\epsilon$-optimal policy is $\Tilde{\Omega}\left(|S||A|H^3 / \eps^2\right)$ over worst case instances of an MDP with state space $S$, action space $A$, and horizon $H$. We consider a class of MDPs that exhibit low rank structure, where the latent features are unknown. We argue that a natural combination of value iteration and low-rank matrix estimation results in an estimation error that grows doubly exponentially in the horizon $H$. We then provide a new algorithm along with statistical guarantees that efficiently exploits low rank structure given access to a generative model, achieving a sample complexity of $\Tilde{O}\left(d^5(|S|+|A|)\mathrm{poly}(H)/\eps^2\right)$ for a rank $d$ setting, which is minimax optimal with respect to the scaling of $|S|, |A|$, and $\eps$. In contrast to literature on linear and low-rank MDPs, we do not require a known feature mapping, our algorithm is computationally simple, and our results hold for long time horizons. Our results provide insights on the minimal low-rank structural assumptions required on the MDP with respect to the transition kernel versus the optimal action-value function.
2,522
A generative recommender system with GMM prior for cancer drug generation and sensitivity prediction
Recent emergence of high-throughput drug screening assays sparkled an intensive development of machine learning methods, including models for prediction of sensitivity of cancer cell lines to anti-cancer drugs, as well as methods for generation of potential drug candidates. However, a concept of generation of compounds with specific properties and simultaneous modeling of their efficacy against cancer cell lines has not been comprehensively explored. To address this need, we present VADEERS, a Variational Autoencoder-based Drug Efficacy Estimation Recommender System. The generation of compounds is performed by a novel variational autoencoder with a semi-supervised Gaussian Mixture Model (GMM) prior. The prior defines a clustering in the latent space, where the clusters are associated with specific drug properties. In addition, VADEERS is equipped with a cell line autoencoder and a sensitivity prediction network. The model combines data for SMILES string representations of anti-cancer drugs, their inhibition profiles against a panel of protein kinases, cell lines biological features and measurements of the sensitivity of the cell lines to the drugs. The evaluated variants of VADEERS achieve a high r=0.87 Pearson correlation between true and predicted drug sensitivity estimates. We train the GMM prior in such a way that the clusters in the latent space correspond to a pre-computed clustering of the drugs by their inhibitory profiles. We show that the learned latent representations and new generated data points accurately reflect the given clustering. In summary, VADEERS offers a comprehensive model of drugs and cell lines properties and relationships between them, as well as a guided generation of novel compounds.
2,523
Extending Momentum Contrast with Cross Similarity Consistency Regularization
Contrastive self-supervised representation learning methods maximize the similarity between the positive pairs, and at the same time tend to minimize the similarity between the negative pairs. However, in general the interplay between the negative pairs is ignored as they do not put in place special mechanisms to treat negative pairs differently according to their specific differences and similarities. In this paper, we present Extended Momentum Contrast (XMoCo), a self-supervised representation learning method founded upon the legacy of the momentum-encoder unit proposed in the MoCo family configurations. To this end, we introduce a cross consistency regularization loss, with which we extend the transformation consistency to dissimilar images (negative pairs). Under the cross consistency regularization rule, we argue that semantic representations associated with any pair of images (positive or negative) should preserve their cross-similarity under pretext transformations. Moreover, we further regularize the training loss by enforcing a uniform distribution of similarity over the negative pairs across a batch. The proposed regularization can easily be added to existing self-supervised learning algorithms in a plug-and-play fashion. Empirically, we report a competitive performance on the standard Imagenet-1K linear head classification benchmark. In addition, by transferring the learned representations to common downstream tasks, we show that using XMoCo with the prevalently utilized augmentations can lead to improvements in the performance of such tasks. We hope the findings of this paper serve as a motivation for researchers to take into consideration the important interplay among the negative examples in self-supervised learning.
2,524
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Supervised learning in function spaces is an emerging area of machine learning research with applications to the prediction of complex physical systems such as fluid flows, solid mechanics, and climate modeling. By directly learning maps (operators) between infinite dimensional function spaces, these models are able to learn discretization invariant representations of target functions. A common approach is to represent such target functions as linear combinations of basis elements learned from data. However, there are simple scenarios where, even though the target functions form a low dimensional submanifold, a very large number of basis elements is needed for an accurate linear representation. Here we present NOMAD, a novel operator learning framework with a nonlinear decoder map capable of learning finite dimensional representations of nonlinear submanifolds in function spaces. We show this method is able to accurately learn low dimensional representations of solution manifolds to partial differential equations while outperforming linear models of larger size. Additionally, we compare to state-of-the-art operator learning methods on a complex fluid dynamics benchmark and achieve competitive performance with a significantly smaller model size and training cost.
2,525
A Penny for Your (visual) Thoughts: Self-Supervised Reconstruction of Natural Movies from Brain Activity
Reconstructing natural videos from fMRI brain recordings is very challenging, for two main reasons: (i) As fMRI data acquisition is difficult, we only have a limited amount of supervised samples, which is not enough to cover the huge space of natural videos; and (ii) The temporal resolution of fMRI recordings is much lower than the frame rate of natural videos. In this paper, we propose a self-supervised approach for natural-movie reconstruction. By employing cycle-consistency over Encoding-Decoding natural videos, we can: (i) exploit the full framerate of the training videos, and not be limited only to clips that correspond to fMRI recordings; (ii) exploit massive amounts of external natural videos which the subjects never saw inside the fMRI machine. These enable increasing the applicable training data by several orders of magnitude, introducing natural video priors to the decoding network, as well as temporal coherence. Our approach significantly outperforms competing methods, since those train only on the limited supervised data. We further introduce a new and simple temporal prior of natural videos, which - when folded into our fMRI decoder further - allows us to reconstruct videos at a higher frame-rate (HFR) of up to x8 of the original fMRI sample rate.
2,526
Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits
We study the regret of Thompson sampling (TS) algorithms for exponential family bandits, where the reward distribution is from a one-dimensional exponential family, which covers many common reward distributions including Bernoulli, Gaussian, Gamma, Exponential, etc. We propose a Thompson sampling algorithm, termed ExpTS, which uses a novel sampling distribution to avoid the under-estimation of the optimal arm. We provide a tight regret analysis for ExpTS, which simultaneously yields both the finite-time regret bound as well as the asymptotic regret bound. In particular, for a $K$-armed bandit with exponential family rewards, ExpTS over a horizon $T$ is sub-UCB (a strong criterion for the finite-time regret that is problem-dependent), minimax optimal up to a factor $\sqrt{\log K}$, and asymptotically optimal, for exponential family rewards. Moreover, we propose ExpTS$^+$, by adding a greedy exploitation step in addition to the sampling distribution used in ExpTS, to avoid the over-estimation of sub-optimal arms. ExpTS$^+$ is an anytime bandit algorithm and achieves the minimax optimality and asymptotic optimality simultaneously for exponential family reward distributions. Our proof techniques are general and conceptually simple and can be easily applied to analyze standard Thompson sampling with specific reward distributions.
2,527
How does overparametrization affect performance on minority groups?
The benefits of overparameterization for the overall performance of modern machine learning (ML) models are well known. However, the effect of overparameterization at a more granular level of data subgroups is less understood. Recent empirical studies demonstrate encouraging results: (i) when groups are not known, overparameterized models trained with empirical risk minimization (ERM) perform better on minority groups; (ii) when groups are known, ERM on data subsampled to equalize group sizes yields state-of-the-art worst-group-accuracy in the overparameterized regime. In this paper, we complement these empirical studies with a theoretical investigation of the risk of overparameterized random feature models on minority groups. In a setting in which the regression functions for the majority and minority groups are different, we show that overparameterization always improves minority group performance.
2,528
Few-Shot Learning by Dimensionality Reduction in Gradient Space
We introduce SubGD, a novel few-shot learning method which is based on the recent finding that stochastic gradient descent updates tend to live in a low-dimensional parameter subspace. In experimental and theoretical analyses, we show that models confined to a suitable predefined subspace generalize well for few-shot learning. A suitable subspace fulfills three criteria across the given tasks: it (a) allows to reduce the training error by gradient flow, (b) leads to models that generalize well, and (c) can be identified by stochastic gradient descent. SubGD identifies these subspaces from an eigendecomposition of the auto-correlation matrix of update directions across different tasks. Demonstrably, we can identify low-dimensional suitable subspaces for few-shot learning of dynamical systems, which have varying properties described by one or few parameters of the analytical system description. Such systems are ubiquitous among real-world applications in science and engineering. We experimentally corroborate the advantages of SubGD on three distinct dynamical systems problem settings, significantly outperforming popular few-shot learning methods both in terms of sample efficiency and performance.
2,529
Parametric Chordal Sparsity for SDP-based Neural Network Verification
Many future technologies rely on neural networks, but verifying the correctness of their behavior remains a major challenge. It is known that neural networks can be fragile in the presence of even small input perturbations, yielding unpredictable outputs. The verification of neural networks is therefore vital to their adoption, and a number of approaches have been proposed in recent years. In this paper we focus on semidefinite programming (SDP) based techniques for neural network verification, which are particularly attractive because they can encode expressive behaviors while ensuring a polynomial time decision. Our starting point is the DeepSDP framework proposed by Fazlyab et al, which uses quadratic constraints to abstract the verification problem into a large-scale SDP. When the size of the neural network grows, however, solving this SDP quickly becomes intractable. Our key observation is that by leveraging chordal sparsity and specific parametrizations of DeepSDP, we can decompose the primary computational bottleneck of DeepSDP -- a large linear matrix inequality (LMI) -- into an equivalent collection of smaller LMIs. Our parametrization admits a tunable parameter, allowing us to trade-off efficiency and accuracy in the verification procedure. We call our formulation Chordal-DeepSDP, and provide experimental evaluation to show that it can: (1) effectively increase accuracy with the tunable parameter and (2) outperform DeepSDP on deeper networks.
2,530
SHRED: 3D Shape Region Decomposition with Learned Local Operations
We present SHRED, a method for 3D SHape REgion Decomposition. SHRED takes a 3D point cloud as input and uses learned local operations to produce a segmentation that approximates fine-grained part instances. We endow SHRED with three decomposition operations: splitting regions, fixing the boundaries between regions, and merging regions together. Modules are trained independently and locally, allowing SHRED to generate high-quality segmentations for categories not seen during training. We train and evaluate SHRED with fine-grained segmentations from PartNet; using its merge-threshold hyperparameter, we show that SHRED produces segmentations that better respect ground-truth annotations compared with baseline methods, at any desired decomposition granularity. Finally, we demonstrate that SHRED is useful for downstream applications, out-performing all baselines on zero-shot fine-grained part instance segmentation and few-shot fine-grained semantic segmentation when combined with methods that learn to label shape regions.
2,531
Short Blocklength Wiretap Channel Codes via Deep Learning: Design and Performance Evaluation
We design short blocklength codes for the Gaussian wiretap channel under information-theoretic security guarantees. Our approach consists in decoupling the reliability and secrecy constraints in our code design. Specifically, we handle the reliability constraint via an autoencoder, and handle the secrecy constraint with hash functions. For blocklengths smaller than or equal to 16, we evaluate through simulations the probability of error at the legitimate receiver and the leakage at the eavesdropper for our code construction. This leakage is defined as the mutual information between the confidential message and the eavesdropper's channel observations, and is empirically measured via a neural network-based mutual information estimator. Our simulation results provide examples of codes with positive secrecy rates that outperform the best known achievable secrecy rates obtained non-constructively for the Gaussian wiretap channel. Additionally, we show that our code design is suitable for the compound and arbitrarily varying Gaussian wiretap channels, for which the channel statistics are not perfectly known but only known to belong to a pre-specified uncertainty set. These models not only capture uncertainty related to channel statistics estimation, but also scenarios where the eavesdropper jams the legitimate transmission or influences its own channel statistics by changing its location.
2,532
FDGNN: Fully Dynamic Graph Neural Network
Dynamic Graph Neural Networks recently became more and more important as graphs from many scientific fields, ranging from mathematics, biology, social sciences, and physics to computer science, are dynamic by nature. While temporal changes (dynamics) play an essential role in many real-world applications, most of the models in the literature on Graph Neural Networks (GNN) process static graphs. The few GNN models on dynamic graphs only consider exceptional cases of dynamics, e.g., node attribute-dynamic graphs or structure-dynamic graphs limited to additions or changes to the graph's edges, etc. Therefore, we present a novel Fully Dynamic Graph Neural Network (FDGNN) that can handle fully-dynamic graphs in continuous time. The proposed method provides a node and an edge embedding that includes their activity to address added and deleted nodes or edges, and possible attributes. Furthermore, the embeddings specify Temporal Point Processes for each event to encode the distributions of the structure- and attribute-related incoming graph events. In addition, our model can be updated efficiently by considering single events for local retraining.
2,533
Discrete State-Action Abstraction via the Successor Representation
When reinforcement learning is applied with sparse rewards, agents must spend a prohibitively long time exploring the unknown environment without any learning signal. Abstraction is one approach that provides the agent with an intrinsic reward for transitioning in a latent space. Prior work focuses on dense continuous latent spaces, or requires the user to manually provide the representation. Our approach is the first for automatically learning a discrete abstraction of the underlying environment. Moreover, our method works on arbitrary input spaces, using an end-to-end trainable regularized successor representation model. For transitions between abstract states, we train a set of temporally extended actions in the form of options, i.e., an action abstraction. Our proposed algorithm, Discrete State-Action Abstraction (DSAA), iteratively swaps between training these options and using them to efficiently explore more of the environment to improve the state abstraction. As a result, our model is not only useful for transfer learning but also in the online learning setting. We empirically show that our agent is able to explore the environment and solve provided tasks more efficiently than baseline reinforcement learning algorithms. Our code is publicly available at \url{https://github.com/amnonattali/dsaa}.
2,534
Adversarial Reprogramming Revisited
Adversarial reprogramming, introduced by Elsayed, Goodfellow, and Sohl-Dickstein, seeks to repurpose a neural network to perform a different task, by manipulating its input without modifying its weights. We prove that two-layer ReLU neural networks with random weights can be adversarially reprogrammed to achieve arbitrarily high accuracy on Bernoulli data models over hypercube vertices, provided the network width is no greater than its input dimension. We also substantially strengthen a recent result of Phuong and Lampert on directional convergence of gradient flow, and obtain as a corollary that training two-layer ReLU neural networks on orthogonally separable datasets can cause their adversarial reprogramming to fail. We support these theoretical results by experiments that demonstrate that, as long as batch normalisation layers are suitably initialised, even untrained networks with random weights are susceptible to adversarial reprogramming. This is in contrast to observations in several recent works that suggested that adversarial reprogramming is not possible for untrained networks to any degree of reliability.
2,535
Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach
Upcoming technologies like digital twins, autonomous, and artificial intelligent systems involving safety-critical applications require models which are accurate, interpretable, computationally efficient, and generalizable. Unfortunately, the two most commonly used modeling approaches, physics-based modeling (PBM) and data-driven modeling (DDM) fail to satisfy all these requirements. In the current work, we demonstrate how a hybrid approach combining the best of PBM and DDM can result in models which can outperform them both. We do so by combining partial differential equations based on first principles describing partially known physics with a black box DDM, in this case, a deep neural network model compensating for the unknown physics. First, we present a mathematical argument for why this approach should work and then apply the hybrid approach to model two dimensional heat diffusion problem with an unknown source term. The result demonstrates the method's superior performance in terms of accuracy, and generalizability. Additionally, it is shown how the DDM part can be interpreted within the hybrid framework to make the overall approach reliable.
2,536
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Federated learning (FL) has emerged as an effective approach to address consumer privacy needs. FL has been successfully applied to certain machine learning tasks, such as training smart keyboard models and keyword spotting. Despite FL's initial success, many important deep learning use cases, such as ranking and recommendation tasks, have been limited from on-device learning. One of the key challenges faced by practical FL adoption for DL-based ranking and recommendation is the prohibitive resource requirements that cannot be satisfied by modern mobile systems. We propose Federated Ensemble Learning (FEL) as a solution to tackle the large memory requirement of deep learning ranking and recommendation tasks. FEL enables large-scale ranking and recommendation model training on-device by simultaneously training multiple model versions on disjoint clusters of client devices. FEL integrates the trained sub-models via an over-arch layer into an ensemble model that is hosted on the server. Our experiments demonstrate that FEL leads to 0.43-2.31% model quality improvement over traditional on-device federated learning - a significant improvement for ranking and recommendation system use cases.
2,537
Learning in Observable POMDPs, without Computationally Intractable Oracles
Much of reinforcement learning theory is built on top of oracles that are computationally hard to implement. Specifically for learning near-optimal policies in Partially Observable Markov Decision Processes (POMDPs), existing algorithms either need to make strong assumptions about the model dynamics (e.g. deterministic transitions) or assume access to an oracle for solving a hard optimistic planning or estimation problem as a subroutine. In this work we develop the first oracle-free learning algorithm for POMDPs under reasonable assumptions. Specifically, we give a quasipolynomial-time end-to-end algorithm for learning in "observable" POMDPs, where observability is the assumption that well-separated distributions over states induce well-separated distributions over observations. Our techniques circumvent the more traditional approach of using the principle of optimism under uncertainty to promote exploration, and instead give a novel application of barycentric spanners to constructing policy covers.
2,538
Robust Sparse Mean Estimation via Sum of Squares
We study the problem of high-dimensional sparse mean estimation in the presence of an $\epsilon$-fraction of adversarial outliers. Prior work obtained sample and computationally efficient algorithms for this task for identity-covariance subgaussian distributions. In this work, we develop the first efficient algorithms for robust sparse mean estimation without a priori knowledge of the covariance. For distributions on $\mathbb R^d$ with "certifiably bounded" $t$-th moments and sufficiently light tails, our algorithm achieves error of $O(\epsilon^{1-1/t})$ with sample complexity $m = (k\log(d))^{O(t)}/\epsilon^{2-2/t}$. For the special case of the Gaussian distribution, our algorithm achieves near-optimal error of $\tilde O(\epsilon)$ with sample complexity $m = O(k^4 \mathrm{polylog}(d))/\epsilon^2$. Our algorithms follow the Sum-of-Squares based, proofs to algorithms approach. We complement our upper bounds with Statistical Query and low-degree polynomial testing lower bounds, providing evidence that the sample-time-error tradeoffs achieved by our algorithms are qualitatively the best possible.
2,539
A Benchmark for Federated Hetero-Task Learning
To investigate the heterogeneity in federated learning in real-world scenarios, we generalize the classic federated learning to federated hetero-task learning, which emphasizes the inconsistency across the participants in federated learning in terms of both data distribution and learning tasks. We also present B-FHTL, a federated hetero-task learning benchmark consisting of simulation dataset, FL protocols and a unified evaluation mechanism. B-FHTL dataset contains three well-designed federated learning tasks with increasing heterogeneity. Each task simulates the clients with different non-IID data and learning tasks. To ensure fair comparison among different FL algorithms, B-FHTL builds in a full suite of FL protocols by providing high-level APIs to avoid privacy leakage, and presets most common evaluation metrics spanning across different learning tasks, such as regression, classification, text generation and etc. Furthermore, we compare the FL algorithms in fields of federated multi-task learning, federated personalization and federated meta learning within B-FHTL, and highlight the influence of heterogeneity and difficulties of federated hetero-task learning. Our benchmark, including the federated dataset, protocols, the evaluation mechanism and the preliminary experiment, is open-sourced at https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
2,540
Towards Bridging Algorithm and Theory for Unbiased Recommendation
This work studies the problem of learning unbiased algorithms from biased feedback for recommender systems. We address this problem from both theoretical and algorithmic perspectives. Recent works in unbiased learning have advanced the state-of-the-art with various techniques such as meta-learning, knowledge distillation, and information bottleneck. Despite their empirical successes, most of them lack theoretical guarantee, forming non-negligible gaps between the theories and recent algorithms. To this end, we first view the unbiased recommendation problem from a distribution shift perspective. We theoretically analyze the generalization bounds of unbiased learning and suggest their close relations with recent unbiased learning objectives. Based on the theoretical analysis, we further propose a principled framework, Adversarial Self-Training (AST), for unbiased recommendation. Empirical evaluation on real-world and semi-synthetic datasets demonstrate the effectiveness of the proposed AST.
2,541
Generating Long Videos of Dynamic Scenes
We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
2,542
Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage
Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. However, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions. Although some work has developed fair GNNs, most of them directly borrow fair representation learning techniques from non-graph domains without considering the potential problem of sensitive attribute leakage caused by feature propagation in GNNs. However, we empirically observe that feature propagation could vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus, we design two feature masking strategies according to feature correlations to highlight the importance of considering feature propagation and correlation variation in alleviating discrimination. Motivated by our analysis, we propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features considering correlation variation after feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using sensitive-related features. Experiments on real-world datasets demonstrate that FairVGNN enjoys a better trade-off between model utility and fairness. Our code is publicly available at https://github.com/YuWVandy/FairVGNN.
2,543
Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics
The rise of blockchain and distributed ledger technologies (DLTs) in the financial sector has generated a socio-economic shift that triggered legal concerns and regulatory initiatives. While the anonymity of DLTs may safeguard the right to privacy, data protection and other civil liberties, lack of identification hinders accountability, investigation and enforcement. The resulting challenges extend to the rules to combat money laundering and the financing of terrorism and proliferation (AML/CFT). As law enforcement agencies and analytics companies have begun to successfully apply forensics to track currency across blockchain ecosystems, in this paper we focus on the increasing relevance of these techniques. In particular, we offer insights into the application to the Internet of Money (IoM) of machine learning, network and transaction graph analysis. After providing some background on the notion of anonymity in the IoM and on the interplay between AML/CFT and blockchain forensics, we focus on anomaly detection approaches leading to our experiments. Namely, we analyzed a real-world dataset of Bitcoin transactions represented as a directed graph network through various machine learning techniques. Our claim is that the AML/CFT domain could benefit from novel graph analysis methods in machine learning. Indeed, our findings show that the Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) neural network types represent a promising solution for AML/CFT compliance.
2,544
FedRel: An Adaptive Federated Relevance Framework for Spatial Temporal Graph Learning
Spatial-temporal data contains rich information and has been widely studied in recent years due to the rapid development of relevant applications in many fields. For instance, medical institutions often use electrodes attached to different parts of a patient to analyse the electorencephal data rich with spatial and temporal features for health assessment and disease diagnosis. Existing research has mainly used deep learning techniques such as convolutional neural network (CNN) or recurrent neural network (RNN) to extract hidden spatial-temporal features. Yet, it is challenging to incorporate both inter-dependencies spatial information and dynamic temporal changes simultaneously. In reality, for a model that leverages these spatial-temporal features to fulfil complex prediction tasks, it often requires a colossal amount of training data in order to obtain satisfactory model performance. Considering the above-mentioned challenges, we propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning in this paper. After transforming the raw spatial-temporal data into high quality features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs capable of capturing the hidden topological and long-term temporal correlation information in these graphs. To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module in our framework to leverage diverse data distributions from different participants with attentive aggregations of their models.
2,545
Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs
Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (1D CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a "stand-alone" DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.
2,546
Towards a General Purpose CNN for Long Range Dependencies in $N$D
The use of Convolutional Neural Networks (CNNs) is widespread in Deep Learning due to a range of desirable model properties which result in an efficient and effective machine learning framework. However, performant CNN architectures must be tailored to specific tasks in order to incorporate considerations such as the input length, resolution, and dimentionality. In this work, we overcome the need for problem-specific CNN architectures with our Continuous Convolutional Neural Network (CCNN): a single CNN architecture equipped with continuous convolutional kernels that can be used for tasks on data of arbitrary resolution, dimensionality and length without structural changes. Continuous convolutional kernels model long range dependencies at every layer, and remove the need for downsampling layers and task-dependent depths needed in current CNN architectures. We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$\mathrm{D}$) and visual data (2$\mathrm{D}$). Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
2,547
Group privacy for personalized federated learning
Federated learning is a type of collaborative machine learning, where participating clients process their data locally, sharing only updates to the collaborative model. This enables to build privacy-aware distributed machine learning models, among others. The goal is the optimization of a statistical model's parameters by minimizing a cost function of a collection of datasets which are stored locally by a set of clients. This process exposes the clients to two issues: leakage of private information and lack of personalization of the model. On the other hand, with the recent advancements in techniques to analyze data, there is a surge of concern for the privacy violation of the participating clients. To mitigate this, differential privacy and its variants serve as a standard for providing formal privacy guarantees. Often the clients represent very heterogeneous communities and hold data which are very diverse. Therefore, aligned with the recent focus of the FL community to build a framework of personalized models for the users representing their diversity, it is also of utmost importance to protect against potential threats against the sensitive and personal information of the clients. $d$-privacy, which is a generalization of geo-indistinguishability, the lately popularized paradigm of location privacy, uses a metric-based obfuscation technique that preserves the spatial distribution of the original data. To address the issue of protecting the privacy of the clients and allowing for personalized model training to enhance the fairness and utility of the system, we propose a method to provide group privacy guarantees exploiting some key properties of $d$-privacy which enables personalized models under the framework of FL. We provide with theoretical justifications to the applicability and experimental validation on real-world datasets to illustrate the working of the proposed method.
2,548
Towards Understanding and Mitigating Audio Adversarial Examples for Speaker Recognition
Speaker recognition systems (SRSs) have recently been shown to be vulnerable to adversarial attacks, raising significant security concerns. In this work, we systematically investigate transformation and adversarial training based defenses for securing SRSs. According to the characteristic of SRSs, we present 22 diverse transformations and thoroughly evaluate them using 7 recent promising adversarial attacks (4 white-box and 3 black-box) on speaker recognition. With careful regard for best practices in defense evaluations, we analyze the strength of transformations to withstand adaptive attacks. We also evaluate and understand their effectiveness against adaptive attacks when combined with adversarial training. Our study provides lots of useful insights and findings, many of them are new or inconsistent with the conclusions in the image and speech recognition domains, e.g., variable and constant bit rate speech compressions have different performance, and some non-differentiable transformations remain effective against current promising evasion techniques which often work well in the image domain. We demonstrate that the proposed novel feature-level transformation combined with adversarial training is rather effective compared to the sole adversarial training in a complete white-box setting, e.g., increasing the accuracy by 13.62% and attack cost by two orders of magnitude, while other transformations do not necessarily improve the overall defense capability. This work sheds further light on the research directions in this field. We also release our evaluation platform SPEAKERGUARD to foster further research.
2,549
Data Stealing Attack on Medical Images: Is it Safe to Export Networks from Data Lakes?
In privacy-preserving machine learning, it is common that the owner of the learned model does not have any physical access to the data. Instead, only a secured remote access to a data lake is granted to the model owner without any ability to retrieve data from the data lake. Yet, the model owner may want to export the trained model periodically from the remote repository and a question arises whether this may cause is a risk of data leakage. In this paper, we introduce the concept of data stealing attack during the export of neural networks. It consists in hiding some information in the exported network that allows the reconstruction outside the data lake of images initially stored in that data lake. More precisely, we show that it is possible to train a network that can perform lossy image compression and at the same time solve some utility tasks such as image segmentation. The attack then proceeds by exporting the compression decoder network together with some image codes that leads to the image reconstruction outside the data lake. We explore the feasibility of such attacks on databases of CT and MR images, showing that it is possible to obtain perceptually meaningful reconstructions of the target dataset, and that the stolen dataset can be used in turns to solve a broad range of tasks. Comprehensive experiments and analyses show that data stealing attacks should be considered as a threat for sensitive imaging data sources.
2,550
Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics
The statistical regularities in language corpora encode well-known social biases into word embeddings. Here, we focus on gender to provide a comprehensive analysis of group-based biases in widely-used static English word embeddings trained on internet corpora (GloVe 2014, fastText 2017). Using the Single-Category Word Embedding Association Test, we demonstrate the widespread prevalence of gender biases that also show differences in: (1) frequencies of words associated with men versus women; (b) part-of-speech tags in gender-associated words; (c) semantic categories in gender-associated words; and (d) valence, arousal, and dominance in gender-associated words. First, in terms of word frequency: we find that, of the 1,000 most frequent words in the vocabulary, 77% are more associated with men than women, providing direct evidence of a masculine default in the everyday language of the English-speaking world. Second, turning to parts-of-speech: the top male-associated words are typically verbs (e.g., fight, overpower) while the top female-associated words are typically adjectives and adverbs (e.g., giving, emotionally). Gender biases in embeddings also permeate parts-of-speech. Third, for semantic categories: bottom-up, cluster analyses of the top 1,000 words associated with each gender. The top male-associated concepts include roles and domains of big tech, engineering, religion, sports, and violence; in contrast, the top female-associated concepts are less focused on roles, including, instead, female-specific slurs and sexual content, as well as appearance and kitchen terms. Fourth, using human ratings of word valence, arousal, and dominance from a ~20,000 word lexicon, we find that male-associated words are higher on arousal and dominance, while female-associated words are higher on valence.
2,551
On the Role of Discount Factor in Offline Reinforcement Learning
Offline reinforcement learning (RL) enables effective learning from previously collected data without exploration, which shows great promise in real-world applications when exploration is expensive or even infeasible. The discount factor, $\gamma$, plays a vital role in improving online RL sample efficiency and estimation accuracy, but the role of the discount factor in offline RL is not well explored. This paper examines two distinct effects of $\gamma$ in offline RL with theoretical analysis, namely the regularization effect and the pessimism effect. On the one hand, $\gamma$ is a regulator to trade-off optimality with sample efficiency upon existing offline techniques. On the other hand, lower guidance $\gamma$ can also be seen as a way of pessimism where we optimize the policy's performance in the worst possible models. We empirically verify the above theoretical observation with tabular MDPs and standard D4RL tasks. The results show that the discount factor plays an essential role in the performance of offline RL algorithms, both under small data regimes upon existing offline methods and in large data regimes without other conservative methods.
2,552
Imitating Past Successes can be Very Suboptimal
Prior work has proposed a simple strategy for reinforcement learning (RL): label experience with the outcomes achieved in that experience, and then imitate the relabeled experience. These outcome-conditioned imitation learning methods are appealing because of their simplicity, strong performance, and close ties with supervised learning. However, it remains unclear how these methods relate to the standard RL objective, reward maximization. In this paper, we prove that existing outcome-conditioned imitation learning methods do not necessarily improve the policy; rather, in some settings they can decrease the expected reward. Nonetheless, we show that a simple modification results in a method that does guarantee policy improvement, under some assumptions. Our aim is not to develop an entirely new method, but rather to explain how a variant of outcome-conditioned imitation learning can be used to maximize rewards.
2,553
On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$
Let $\mathcal{M}$ be a compact $d$-dimensional submanifold of $\mathbb{R}^N$ with reach $\tau$ and volume $V_{\mathcal M}$. Fix $\epsilon \in (0,1)$. In this paper we prove that a nonlinear function $f: \mathbb{R}^N \rightarrow \mathbb{R}^{m}$ exists with $m \leq C \left(d / \epsilon^2 \right) \log \left(\frac{\sqrt[d]{V_{\mathcal M}}}{\tau} \right)$ such that $$(1 - \epsilon) \| {\bf x} - {\bf y} \|_2 \leq \left\| f({\bf x}) - f({\bf y}) \right\|_2 \leq (1 + \epsilon) \| {\bf x} - {\bf y} \|_2$$ holds for all ${\bf x} \in \mathcal{M}$ and ${\bf y} \in \mathbb{R}^N$. In effect, $f$ not only serves as a bi-Lipschitz function from $\mathcal{M}$ into $\mathbb{R}^{m}$ with bi-Lipschitz constants close to one, but also approximately preserves all distances from points not in $\mathcal{M}$ to all points in $\mathcal{M}$ in its image. Furthermore, the proof is constructive and yields an algorithm which works well in practice. In particular, it is empirically demonstrated herein that such nonlinear functions allow for more accurate compressive nearest neighbor classification than standard linear Johnson-Lindenstrauss embeddings do in practice.
2,554
Computational Doob's $h$-transforms for Online Filtering of Discretely Observed Diffusions
This paper is concerned with online filtering of discretely observed nonlinear diffusion processes. Our approach is based on the fully adapted auxiliary particle filter, which involves Doob's $h$-transforms that are typically intractable. We propose a computational framework to approximate these $h$-transforms by solving the underlying backward Kolmogorov equations using nonlinear Feynman-Kac formulas and neural networks. The methodology allows one to train a locally optimal particle filter prior to the data-assimilation procedure. Numerical experiments illustrate that the proposed approach can be orders of magnitude more efficient than the bootstrap particle filter in the regime of highly informative observations, when the observations are extreme under the model, and if the state dimension is large.
2,555
DeepOPF-AL: Augmented Learning for Solving AC-OPF Problems with Multiple Load-Solution Mappings
The existence of multiple load-solution mappings of non-convex AC-OPF problems poses a fundamental challenge to deep neural network (DNN) schemes. As the training dataset may contain a mixture of data points corresponding to different load-solution mappings, the DNN can fail to learn a legitimate mapping and generate inferior solutions. We propose DeepOPF-AL as an augmented-learning approach to tackle this issue. The idea is to train a DNN to learn a unique mapping from an augmented input, i.e., (load, initial point), to the solution generated by an iterative OPF solver with the load and initial point as intake. We then apply the learned augmented mapping to solve AC-OPF problems much faster than conventional solvers. Simulation results over IEEE test cases show that DeepOPF-AL achieves noticeably better optimality and similar feasibility and speedup performance, as compared to a recent DNN scheme, with the same DNN size yet elevated training complexity.
2,556
Building Robust Ensembles via Margin Boosting
In the context of adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks, and as a result, has sub-optimal robustness. Consequently, an emerging line of work has focused on learning an ensemble of neural networks to defend against adversarial attacks. In this work, we take a principled approach towards building robust ensembles. We view this problem from the perspective of margin-boosting and develop an algorithm for learning an ensemble with maximum margin. Through extensive empirical evaluation on benchmark datasets, we show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion. An important byproduct of our work is a margin-maximizing cross-entropy (MCE) loss, which is a better alternative to the standard cross-entropy (CE) loss. Empirically, we show that replacing the CE loss in state-of-the-art adversarial training techniques with our MCE loss leads to significant performance improvement.
2,557
An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training
Large medical imaging data sets are becoming increasingly available. A common challenge in these data sets is to ensure that each sample meets minimum quality requirements devoid of significant artefacts. Despite a wide range of existing automatic methods having been developed to identify imperfections and artefacts in medical imaging, they mostly rely on data-hungry methods. In particular, the lack of sufficient scans with artefacts available for training has created a barrier in designing and deploying machine learning in clinical research. To tackle this problem, we propose a novel framework having four main components: (1) a set of artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, (2) a set of abstract and engineered features to represent images compactly, (3) a feature selection process that depends on the class of artefact to improve classification performance, and (4) a set of Support Vector Machine (SVM) classifiers trained to identify artefacts. Our novel contributions are threefold: first, we use the novel physics-based artefact generators to generate synthetic brain MRI scans with controlled artefacts as a data augmentation technique. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a large pool of abstract and engineered image features developed to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features that provide the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods.
2,558
Adaptive Regularization for Adversarial Training
Adversarial training, which is to enhance robustness against adversarial attacks, has received much attention because it is easy to generate human-imperceptible perturbations of data to deceive a given deep neural network. In this paper, we propose a new adversarial training algorithm that is theoretically well motivated and empirically superior to other existing algorithms. A novel feature of the proposed algorithm is to use a data-adaptive regularization for robustifying a prediction model. We apply more regularization to data which are more vulnerable to adversarial attacks and vice versa. Even though the idea of data-adaptive regularization is not new, our data-adaptive regularization has a firm theoretical base of reducing an upper bound of the robust risk. Numerical experiments illustrate that our proposed algorithm improves the generalization (accuracy on clean samples) and robustness (accuracy on adversarial attacks) simultaneously to achieve the state-of-the-art performance.
2,559
AS2T: Arbitrary Source-To-Target Adversarial Attack on Speaker Recognition Systems
Recent work has illuminated the vulnerability of speaker recognition systems (SRSs) against adversarial attacks, raising significant security concerns in deploying SRSs. However, they considered only a few settings (e.g., some combinations of source and target speakers), leaving many interesting and important settings in real-world attack scenarios alone. In this work, we present AS2T, the first attack in this domain which covers all the settings, thus allows the adversary to craft adversarial voices using arbitrary source and target speakers for any of three main recognition tasks. Since none of the existing loss functions can be applied to all the settings, we explore many candidate loss functions for each setting including the existing and newly designed ones. We thoroughly evaluate their efficacy and find that some existing loss functions are suboptimal. Then, to improve the robustness of AS2T towards practical over-the-air attack, we study the possible distortions occurred in over-the-air transmission, utilize different transformation functions with different parameters to model those distortions, and incorporate them into the generation of adversarial voices. Our simulated over-the-air evaluation validates the effectiveness of our solution in producing robust adversarial voices which remain effective under various hardware devices and various acoustic environments with different reverberation, ambient noises, and noise levels. Finally, we leverage AS2T to perform thus far the largest-scale evaluation to understand transferability among 14 diverse SRSs. The transferability analysis provides many interesting and useful insights which challenge several findings and conclusion drawn in previous works in the image domain. Our study also sheds light on future directions of adversarial attacks in the speaker recognition domain.
2,560
Improving trajectory calculations using deep learning inspired single image superresolution
Lagrangian trajectory or particle dispersion models as well as semi-Lagrangian advection schemes require meteorological data such as wind, temperature and geopotential at the exact spatio-temporal locations of the particles that move independently from a regular grid. Traditionally, this high-resolution data has been obtained by interpolating the meteorological parameters from the gridded data of a meteorological model or reanalysis, e.g. using linear interpolation in space and time. However, interpolation errors are a large source of error for these models. Reducing them requires meteorological input fields with high space and time resolution, which may not always be available and can cause severe data storage and transfer problems. Here, we interpret this problem as a single image superresolution task. We interpret meteorological fields available at their native resolution as low-resolution images and train deep neural networks to up-scale them to higher resolution, thereby providing more accurate data for Lagrangian models. We train various versions of the state-of-the-art Enhanced Deep Residual Networks for Superresolution on low-resolution ERA5 reanalysis data with the goal to up-scale these data to arbitrary spatial resolution. We show that the resulting up-scaled wind fields have root-mean-squared errors half the size of the winds obtained with linear spatial interpolation at acceptable computational inference costs. In a test setup using the Lagrangian particle dispersion model FLEXPART and reduced-resolution wind fields, we demonstrate that absolute horizontal transport deviations of calculated trajectories from "ground-truth" trajectories calculated with undegraded 0.5{\deg} winds are reduced by at least 49.5% (21.8%) after 48 hours relative to trajectories using linear interpolation of the wind data when training on 2{\deg} to 1{\deg} (4{\deg} to 2{\deg}) resolution data.
2,561
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
We consider using gradient descent to minimize the nonconvex function $f(X)=\phi(XX^{T})$ over an $n\times r$ factor matrix $X$, in which $\phi$ is an underlying smooth convex cost function defined over $n\times n$ matrices. While only a second-order stationary point $X$ can be provably found in reasonable time, if $X$ is additionally rank deficient, then its rank deficiency certifies it as being globally optimal. This way of certifying global optimality necessarily requires the search rank $r$ of the current iterate $X$ to be overparameterized with respect to the rank $r^{\star}$ of the global minimizer $X^{\star}$. Unfortunately, overparameterization significantly slows down the convergence of gradient descent, from a linear rate with $r=r^{\star}$ to a sublinear rate when $r>r^{\star}$, even when $\phi$ is strongly convex. In this paper, we propose an inexpensive preconditioner that restores the convergence rate of gradient descent back to linear in the overparameterized case, while also making it agnostic to possible ill-conditioning in the global minimizer $X^{\star}$.
2,562
Parotid Gland MRI Segmentation Based on Swin-Unet and Multimodal Images
Parotid gland tumors account for approximately 2% to 10% of head and neck tumors. Preoperative tumor localization, differential diagnosis, and subsequent selection of appropriate treatment for parotid gland tumors is critical. However, the relative rarity of these tumors and the highly dispersed tissue types have left an unmet need for a subtle differential diagnosis of such neoplastic lesions based on preoperative radiomics. Recently, deep learning methods have developed rapidly, especially Transformer beats the traditional convolutional neural network in computer vision. Many new Transformer-based networks have been proposed for computer vision tasks. In this study, multicenter multimodal parotid gland MRI images were collected. The Swin-Unet which was based on Transformer was used. MRI images of STIR, T1 and T2 modalities were combined into a three-channel data to train the network. We achieved segmentation of the region of interest for parotid gland and tumor. The DSC of the model on the test set was 88.63%, MPA was 99.31%, MIoU was 83.99%, and HD was 3.04. Then a series of comparison experiments were designed in this paper to further validate the segmentation performance of the algorithm.
2,563
Assessing Project-Level Fine-Tuning of ML4SE Models
Machine Learning for Software Engineering (ML4SE) is an actively growing research area that focuses on methods that help programmers in their work. In order to apply the developed methods in practice, they need to achieve reasonable quality in order to help rather than distract developers. While the development of new approaches to code representation and data collection improves the overall quality of the models, it does not take into account the information that we can get from the project at hand. In this work, we investigate how the model's quality can be improved if we target a specific project. We develop a framework to assess quality improvements that models can get after fine-tuning for the method name prediction task on a particular project. We evaluate three models of different complexity and compare their quality in three settings: trained on a large dataset of Java projects, further fine-tuned on the data from a particular project, and trained from scratch on this data. We show that per-project fine-tuning can greatly improve the models' quality as they capture the project's domain and naming conventions. We open-source the tool we used for data collection, as well as the code to run the experiments: https://zenodo.org/record/6040745.
2,564
Improving the Diagnosis of Psychiatric Disorders with Self-Supervised Graph State Space Models
Single subject prediction of brain disorders from neuroimaging data has gained increasing attention in recent years. Yet, for some heterogeneous disorders such as major depression disorder (MDD) and autism spectrum disorder (ASD), the performance of prediction models on large-scale multi-site datasets remains poor. We present a two-stage framework to improve the diagnosis of heterogeneous psychiatric disorders from resting-state functional magnetic resonance imaging (rs-fMRI). First, we propose a self-supervised mask prediction task on data from healthy individuals that can exploit differences between healthy controls and patients in clinical datasets. Next, we train a supervised classifier on the learned discriminative representations. To model rs-fMRI data, we develop Graph-S4; an extension to the recently proposed state-space model S4 to graph settings where the underlying graph structure is not known in advance. We show that combining the framework and Graph-S4 can significantly improve the diagnostic performance of neuroimaging-based single subject prediction models of MDD and ASD on three open-source multi-center rs-fMRI clinical datasets.
2,565
DeepTPI: Test Point Insertion with Deep Reinforcement Learning
Test point insertion (TPI) is a widely used technique for testability enhancement, especially for logic built-in self-test (LBIST) due to its relatively low fault coverage. In this paper, we propose a novel TPI approach based on deep reinforcement learning (DRL), named DeepTPI. Unlike previous learning-based solutions that formulate the TPI task as a supervised-learning problem, we train a novel DRL agent, instantiated as the combination of a graph neural network (GNN) and a Deep Q-Learning network (DQN), to maximize the test coverage improvement. Specifically, we model circuits as directed graphs and design a graph-based value network to estimate the action values for inserting different test points. The policy of the DRL agent is defined as selecting the action with the maximum value. Moreover, we apply the general node embeddings from a pre-trained model to enhance node features, and propose a dedicated testability-aware attention mechanism for the value network. Experimental results on circuits with various scales show that DeepTPI significantly improves test coverage compared to the commercial DFT tool. The code of this work is available at https://github.com/cure-lab/DeepTPI.
2,566
Concentration bounds for SSP Q-learning for average cost MDPs
We derive a concentration bound for a Q-learning algorithm for average cost Markov decision processes based on an equivalent shortest path problem, and compare it numerically with the alternative scheme based on relative value iteration.
2,567
Subject Membership Inference Attacks in Federated Learning
Privacy in Federated Learning (FL) is studied at two different granularities: item-level, which protects individual data points, and user-level, which protects each user (participant) in the federation. Nearly all of the private FL literature is dedicated to studying privacy attacks and defenses at these two granularities. Recently, subject-level privacy has emerged as an alternative privacy granularity to protect the privacy of individuals (data subjects) whose data is spread across multiple (organizational) users in cross-silo FL settings. An adversary might be interested in recovering private information about these individuals (a.k.a. \emph{data subjects}) by attacking the trained model. A systematic study of these patterns requires complete control over the federation, which is impossible with real-world datasets. We design a simulator for generating various synthetic federation configurations, enabling us to study how properties of the data, model design and training, and the federation itself impact subject privacy risk. We propose three attacks for \emph{subject membership inference} and examine the interplay between all factors within a federation that affect the attacks' efficacy. We also investigate the effectiveness of Differential Privacy in mitigating this threat. Our takeaways generalize to real-world datasets like FEMNIST, giving credence to our findings.
2,568
Neural Network Decoders for Permutation Codes Correcting Different Errors
Permutation codes were extensively studied in order to correct different types of errors for the applications on power line communication and rank modulation for flash memory. In this paper, we introduce the neural network decoders for permutation codes to correct these errors with one-shot decoding, which treat the decoding as $n$ classification tasks for non-binary symbols for a code of length $n$. These are actually the first general decoders introduced to deal with any error type for these two applications. The performance of the decoders is evaluated by simulations with different error models.
2,569
Integrating Random Effects in Deep Neural Networks
Modern approaches to supervised learning like deep neural networks (DNNs) typically implicitly assume that observed responses are statistically independent. In contrast, correlated data are prevalent in real-life large-scale applications, with typical sources of correlation including spatial, temporal and clustering structures. These correlations are either ignored by DNNs, or ad-hoc solutions are developed for specific use cases. We propose to use the mixed models framework to handle correlated data in DNNs. By treating the effects underlying the correlation structure as random effects, mixed models are able to avoid overfitted parameter estimates and ultimately yield better predictive performance. The key to combining mixed models and DNNs is using the Gaussian negative log-likelihood (NLL) as a natural loss function that is minimized with DNN machinery including stochastic gradient descent (SGD). Since NLL does not decompose like standard DNN loss functions, the use of SGD with NLL presents some theoretical and implementation challenges, which we address. Our approach which we call LMMNN is demonstrated to improve performance over natural competitors in various correlation scenarios on diverse simulated and real datasets. Our focus is on a regression setting and tabular datasets, but we also show some results for classification. Our code is available at https://github.com/gsimchoni/lmmnn.
2,570
PyTSK: A Python Toolbox for TSK Fuzzy Systems
This paper presents PyTSK, a Python toolbox for developing Takagi-Sugeno-Kang (TSK) fuzzy systems. Based on scikit-learn and PyTorch, PyTSK allows users to optimize TSK fuzzy systems using fuzzy clustering or mini-batch gradient descent (MBGD) based algorithms. Several state-of-the-art MBGD-based optimization algorithms are implemented in the toolbox, which can improve the generalization performance of TSK fuzzy systems, especially for big data applications. PyTSK can also be easily extended and customized for more complicated algorithms, such as modifying the structure of TSK fuzzy systems, developing more sophisticated training algorithms, and combining TSK fuzzy systems with neural networks. The code of PyTSK can be found at https://github.com/YuqiCui/pytsk.
2,571
Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate Model Predictive Trajectory Tracking
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation. The model needs to capture the system behavior in multiple flight regimes and operating conditions, including those producing highly nonlinear effects such as aerodynamic forces and torques, rotor interactions, or possible system configuration modifications. Classical approaches rely on handcrafted models and struggle to generalize and scale to capture these effects. In this paper, we present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience. Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions. In addition, physics constraints are embedded in the training process to facilitate the network's generalization capabilities to data outside the training distribution. Finally, we design a model predictive control approach that incorporates the learned dynamics for accurate closed-loop trajectory tracking fully exploiting the learned model predictions in a receding horizon fashion. Experimental results demonstrate that our approach accurately extracts the structure of the quadrotor's dynamics from data, capturing effects that would remain hidden to classical approaches. To the best of our knowledge, this is the first time physics-inspired deep learning is successfully applied to temporal convolutional networks and to the system identification task, while concurrently enabling predictive control.
2,572
On the balance between the training time and interpretability of neural ODE for time series modelling
Most machine learning methods are used as a black box for modelling. We may try to extract some knowledge from physics-based training methods, such as neural ODE (ordinary differential equation). Neural ODE has advantages like a possibly higher class of represented functions, the extended interpretability compared to black-box machine learning models, ability to describe both trend and local behaviour. Such advantages are especially critical for time series with complicated trends. However, the known drawback is the high training time compared to the autoregressive models and long-short term memory (LSTM) networks widely used for data-driven time series modelling. Therefore, we should be able to balance interpretability and training time to apply neural ODE in practice. The paper shows that modern neural ODE cannot be reduced to simpler models for time-series modelling applications. The complexity of neural ODE is compared to or exceeds the conventional time-series modelling tools. The only interpretation that could be extracted is the eigenspace of the operator, which is an ill-posed problem for a large system. Spectra could be extracted using different classical analysis methods that do not have the drawback of extended time. Consequently, we reduce the neural ODE to a simpler linear form and propose a new view on time-series modelling using combined neural networks and an ODE system approach.
2,573
Recent Advances in Bayesian Optimization
Bayesian optimization has emerged at the forefront of expensive black-box optimization due to its data efficiency. Recent years have witnessed a proliferation of studies on the development of new Bayesian optimization algorithms and their applications. Hence, this paper attempts to provide a comprehensive and updated survey of recent advances in Bayesian optimization and identify interesting open problems. We categorize the existing work on Bayesian optimization into nine main groups according to the motivations and focus of the proposed algorithms. For each category, we present the main advances with respect to the construction of surrogate models and adaptation of the acquisition functions. Finally, we discuss the open questions and suggest promising future research directions, in particular with regard to heterogeneity, privacy preservation, and fairness in distributed and federated optimization systems.
2,574
Generalization Error Bounds for Deep Neural Networks Trained by SGD
Generalization error bounds for deep neural networks trained by stochastic gradient descent (SGD) are derived by combining a dynamical control of an appropriate parameter norm and the Rademacher complexity estimate based on parameter norms. The bounds explicitly depend on the loss along the training trajectory, and work for a wide range of network architectures including multilayer perceptron (MLP) and convolutional neural networks (CNN). Compared with other algorithm-depending generalization estimates such as uniform stability-based bounds, our bounds do not require $L$-smoothness of the nonconvex loss function, and apply directly to SGD instead of Stochastic Langevin gradient descent (SGLD). Numerical results show that our bounds are non-vacuous and robust with the change of optimizer and network hyperparameters.
2,575
Joint Manifold Learning and Density Estimation Using Normalizing Flows
Based on the manifold hypothesis, real-world data often lie on a low-dimensional manifold, while normalizing flows as a likelihood-based generative model are incapable of finding this manifold due to their structural constraints. So, one interesting question arises: $\textit{"Can we find sub-manifold(s) of data in normalizing flows and estimate the density of the data on the sub-manifold(s)?"}$. In this paper, we introduce two approaches, namely per-pixel penalized log-likelihood and hierarchical training, to answer the mentioned question. We propose a single-step method for joint manifold learning and density estimation by disentangling the transformed space obtained by normalizing flows to manifold and off-manifold parts. This is done by a per-pixel penalized likelihood function for learning a sub-manifold of the data. Normalizing flows assume the transformed data is Gaussianizationed, but this imposed assumption is not necessarily true, especially in high dimensions. To tackle this problem, a hierarchical training approach is employed to improve the density estimation on the sub-manifold. The results validate the superiority of the proposed methods in simultaneous manifold learning and density estimation using normalizing flows in terms of generated image quality and likelihood.
2,576
Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of Semi-Supervised Learning and Active Learning
While annotating decent amounts of data to satisfy sophisticated learning models can be cost-prohibitive for many real-world applications. Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem. Some recent studies explored the potential of combining AL and SSL to better probe the unlabeled data. However, almost all these contemporary SSL-AL works use a simple combination strategy, ignoring SSL and AL's inherent relation. Further, other methods suffer from high computational costs when dealing with large-scale, high-dimensional datasets. Motivated by the industry practice of labeling data, we propose an innovative Inconsistency-based virtual aDvErsarial Active Learning (IDEAL) algorithm to further investigate SSL-AL's potential superiority and achieve mutual enhancement of AL and SSL, i.e., SSL propagates label information to unlabeled samples and provides smoothed embeddings for AL, while AL excludes samples with inconsistent predictions and considerable uncertainty for SSL. We estimate unlabeled samples' inconsistency by augmentation strategies of different granularities, including fine-grained continuous perturbation exploration and coarse-grained data transformations. Extensive experiments, in both text and image domains, validate the effectiveness of the proposed algorithm, comparing it against state-of-the-art baselines. Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
2,577
On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
Intelligent agents should have the ability to leverage knowledge from previously learned tasks in order to learn new ones quickly and efficiently. Meta-learning approaches have emerged as a popular solution to achieve this. However, meta-reinforcement learning (meta-RL) algorithms have thus far been restricted to simple environments with narrow task distributions. Moreover, the paradigm of pretraining followed by fine-tuning to adapt to new tasks has emerged as a simple yet effective solution in supervised and self-supervised learning. This calls into question the benefits of meta-learning approaches also in reinforcement learning, which typically come at the cost of high complexity. We hence investigate meta-RL approaches in a variety of vision-based benchmarks, including Procgen, RLBench, and Atari, where evaluations are made on completely novel tasks. Our findings show that when meta-learning approaches are evaluated on different tasks (rather than different variations of the same task), multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation. This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL. From these findings, we advocate for evaluating future meta-RL methods on more challenging tasks and including multi-task pretraining with fine-tuning as a simple, yet strong baseline.
2,578
Machine Learning Sensors
Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity, and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these challenges. Our vision for "sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.
2,579
Marvolo: Programmatic Data Augmentation for Practical ML-Driven Malware Detection
Data augmentation has been rare in the cyber security domain due to technical difficulties in altering data in a manner that is semantically consistent with the original data. This shortfall is particularly onerous given the unique difficulty of acquiring benign and malicious training data that runs into copyright restrictions, and that institutions like banks and governments receive targeted malware that will never exist in large quantities. We present MARVOLO, a binary mutator that programmatically grows malware (and benign) datasets in a manner that boosts the accuracy of ML-driven malware detectors. MARVOLO employs semantics-preserving code transformations that mimic the alterations that malware authors and defensive benign developers routinely make in practice , allowing us to generate meaningful augmented data. Crucially, semantics-preserving transformations also enable MARVOLO to safely propagate labels from original to newly-generated data samples without mandating expensive reverse engineering of binaries. Further, MARVOLO embeds several key optimizations that keep costs low for practitioners by maximizing the density of diverse data samples generated within a given time (or resource) budget. Experiments using wide-ranging commercial malware datasets and a recent ML-driven malware detector show that MARVOLO boosts accuracies by up to 5%, while operating on only a small fraction (15%) of the potential input binaries.
2,580
DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning
Automated Machine Learning (AutoML) is used more than ever before to support users in determining efficient hyperparameters, neural architectures, or even full machine learning pipelines. However, users tend to mistrust the optimization process and its results due to a lack of transparency, making manual tuning still widespread. We introduce DeepCAVE, an interactive framework to analyze and monitor state-of-the-art optimization procedures for AutoML easily and ad hoc. By aiming for full and accessible transparency, DeepCAVE builds a bridge between users and AutoML and contributes to establishing trust. Our framework's modular and easy-to-extend nature provides users with automatically generated text, tables, and graphic visualizations. We show the value of DeepCAVE in an exemplary use-case of outlier detection, in which our framework makes it easy to identify problems, compare multiple runs and interpret optimization processes. The package is freely available on GitHub https://github.com/automl/DeepCAVE.
2,581
Decentralized Online Regularized Learning Over Random Time-Varying Graphs
We study the decentralized online regularized linear regression algorithm over random time-varying graphs. At each time step, every node runs an online estimation algorithm consisting of an innovation term processing its own new measurement, a consensus term taking a weighted sum of estimations of its own and its neighbors with additive and multiplicative communication noises and a regularization term preventing over-fitting. It is not required that the regression matrices and graphs satisfy special statistical assumptions such as mutual independence, spatio-temporal independence or stationarity. We develop the nonnegative supermartingale inequality of the estimation error, and prove that the estimations of all nodes converge to the unknown true parameter vector almost surely if the algorithm gains, graphs and regression matrices jointly satisfy the sample path spatio-temporal persistence of excitation condition. Especially, this condition holds by choosing appropriate algorithm gains if the graphs are uniformly conditionally jointly connected and conditionally balanced, and the regression models of all nodes are uniformly conditionally spatio-temporally jointly observable, under which the algorithm converges in mean square and almost surely. In addition, we prove that the regret upper bound $\mathcal O(T^{1-\tau}\ln T)$, where $\tau\in (0.5,1)$ is a constant depending on the algorithm gains.
2,582
Analyzing the impact of feature selection on the accuracy of heart disease prediction
Heart Disease has become one of the most serious diseases that has a significant impact on human life. It has emerged as one of the leading causes of mortality among the people across the globe during the last decade. In order to prevent patients from further damage, an accurate diagnosis of heart disease on time is an essential factor. Recently we have seen the usage of non-invasive medical procedures, such as artificial intelligence-based techniques in the field of medical. Specially machine learning employs several algorithms and techniques that are widely used and are highly useful in accurately diagnosing the heart disease with less amount of time. However, the prediction of heart disease is not an easy task. The increasing size of medical datasets has made it a complicated task for practitioners to understand the complex feature relations and make disease predictions. Accordingly, the aim of this research is to identify the most important risk-factors from a highly dimensional dataset which helps in the accurate classification of heart disease with less complications. For a broader analysis, we have used two heart disease datasets with various medical features. The classification results of the benchmarked models proved that there is a high impact of relevant features on the classification accuracy. Even with a reduced number of features, the performance of the classification models improved significantly with a reduced training time as compared with models trained on full feature set.
2,583
An Analysis of Selection Bias Issue for Online Advertising
In online advertising, a set of potential advertisements can be ranked by a certain auction system where usually the top-1 advertisement would be selected and displayed at an advertising space. In this paper, we show a selection bias issue that is present in an auction system. We analyze that the selection bias destroy truthfulness of the auction, which implies that the buyers (advertisers) on the auction can not maximize their profits. Although selection bias is well known in the field of statistics and there are lot of studies for it, our main contribution is to combine the theoretical analysis of the bias with the auction mechanism. In our experiment using online A/B testing, we evaluate the selection bias on an auction system whose ranking score is the function of predicted CTR (click through rate) of advertisement. The experiment showed that the selection bias is drastically reduced by using a multi-task learning which learns the data for all advertisements.
2,584
Inferring Unfairness and Error from Population Statistics in Binary and Multiclass Classification
We propose methods for making inferences on the fairness and accuracy of a given classifier, using only aggregate population statistics. This is necessary when it is impossible to obtain individual classification data, for instance when there is no access to the classifier or to a representative individual-level validation set. We study fairness with respect to the equalized odds criterion, which we generalize to multiclass classification. We propose a measure of unfairness with respect to this criterion, which quantifies the fraction of the population that is treated unfairly. We then show how inferences on the unfairness and error of a given classifier can be obtained using only aggregate label statistics such as the rate of prediction of each label in each sub-population, as well as the true rate of each label. We derive inference procedures for binary classifiers and for multiclass classifiers, for the case where confusion matrices in each sub-population are known, and for the significantly more challenging case where they are unknown. We report experiments on data sets representing diverse applications, which demonstrate the effectiveness and the wide range of possible uses of the proposed methodology.
2,585
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
The Sliced-Wasserstein distance (SW) is a computationally efficient and theoretically grounded alternative to the Wasserstein distance. Yet, the literature on its statistical properties with respect to the distribution of slices, beyond the uniform measure, is scarce. To bring new contributions to this line of research, we leverage the PAC-Bayesian theory and the central observation that SW actually hinges on a slice-distribution-dependent Gibbs risk, the kind of quantity PAC-Bayesian bounds have been designed to characterize. We provide four types of results: i) PAC-Bayesian generalization bounds that hold on what we refer as adaptive Sliced-Wasserstein distances, i.e. distances defined with respect to any distribution of slices, ii) a procedure to learn the distribution of slices that yields a maximally discriminative SW, by optimizing our PAC-Bayesian bounds, iii) an insight on how the performance of the so-called distributional Sliced-Wasserstein distance may be explained through our theory, and iv) empirical illustrations of our findings.
2,586
Improved Cardiac Arrhythmia Prediction Based on Heart Rate Variability Analysis
Many types of ventricular and atrial cardiac arrhythmias have been discovered in clinical practice in the past 100 years, and these arrhythmias are a major contributor to sudden cardiac death. Ventricular tachycardia, ventricular fibrillation, and paroxysmal atrial fibrillation are the most commonly-occurring and dangerous arrhythmias, therefore early detection is crucial to prevent any further complications and reduce fatalities. Implantable devices such as pacemakers are commonly used in patients at high risk of sudden cardiac death. While great advances have been made in medical technology, there remain significant challenges in effective management of common arrhythmias. This thesis proposes novel arrhythmia detection and prediction methods to differentiate cardiac arrhythmias from non-life-threatening cardiac events, to increase the likelihood of detecting events that may lead to mortality, as well as reduce the incidence of unnecessary therapeutic intervention. The methods are based on detailed analysis of Heart Rate Variability (HRV) information. The results of the work show good performance of the proposed methods and support the potential for their deployment in resource-constrained devices for ventricular and atrial arrhythmia prediction, such as implantable pacemakers and defibrillators.
2,587
Deep Neural Patchworks: Coping with Large Segmentation Tasks
Convolutional neural networks are the way to solve arbitrary image segmentation tasks. However, when images are large, memory demands often exceed the available resources, in particular on a common GPU. Especially in biomedical imaging, where 3D images are common, the problems are apparent. A typical approach to solve this limitation is to break the task into smaller subtasks by dividing images into smaller image patches. Another approach, if applicable, is to look at the 2D image sections separately, and to solve the problem in 2D. Often, the loss of global context makes such approaches less effective; important global information might not be present in the current image patch, or the selected 2D image section. Here, we propose Deep Neural Patchworks (DNP), a segmentation framework that is based on hierarchical and nested stacking of patch-based networks that solves the dilemma between global context and memory limitations.
2,588
From "Where" to "What": Towards Human-Understandable Explanations through Concept Relevance Propagation
The emerging field of eXplainable Artificial Intelligence (XAI) aims to bring transparency to today's powerful but opaque deep learning models. While local XAI methods explain individual predictions in form of attribution maps, thereby identifying where important features occur (but not providing information about what they represent), global explanation techniques visualize what concepts a model has generally learned to encode. Both types of methods thus only provide partial insights and leave the burden of interpreting the model's reasoning to the user. Only few contemporary techniques aim at combining the principles behind both local and global XAI for obtaining more informative explanations. Those methods, however, are often limited to specific model architectures or impose additional requirements on training regimes or data and label availability, which renders the post-hoc application to arbitrarily pre-trained models practically impossible. In this work we introduce the Concept Relevance Propagation (CRP) approach, which combines the local and global perspectives of XAI and thus allows answering both the "where" and "what" questions for individual predictions, without additional constraints imposed. We further introduce the principle of Relevance Maximization for finding representative examples of encoded concepts based on their usefulness to the model. We thereby lift the dependency on the common practice of Activation Maximization and its limitations. We demonstrate the capabilities of our methods in various settings, showcasing that Concept Relevance Propagation and Relevance Maximization lead to more human interpretable explanations and provide deep insights into the model's representations and reasoning through concept atlases, concept composition analyses, and quantitative investigations of concept subspaces and their role in fine-grained decision making.
2,589
FairVFL: A Fair Vertical Federated Learning Framework with Contrastive Adversarial Learning
Vertical federated learning (VFL) is a privacy-preserving machine learning paradigm that can learn models from features distributed on different platforms in a privacy-preserving way. Since in real-world applications the data may contain bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias from training data and become unfair for some user groups. However, existing fair ML methods usually rely on the centralized storage of fairness-sensitive features to achieve model fairness, which are usually inapplicable in federated scenarios. In this paper, we propose a fair vertical federated learning framework (FairVFL), which can improve the fairness of VFL models. The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way. Specifically, each platform with fairness-insensitive features first learns local data representations from local features. Then, these local representations are uploaded to a server and aggregated into a unified representation for the target task. In order to learn fair unified representations, we send them to each platform storing fairness-sensitive features and apply adversarial learning to remove bias from the unified representations inherited from the biased data. Moreover, for protecting user privacy, we further propose a contrastive adversarial learning method to remove privacy information from the unified representations in server before sending them to the platforms keeping fairness-sensitive features. Experiments on two real-world datasets validate that our method can effectively improve model fairness with user privacy well-protected.
2,590
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Transfer learning (TL) is becoming a powerful tool in scientific applications of neural networks (NNs), such as weather/climate prediction and turbulence modeling. TL enables out-of-distribution generalization (e.g., extrapolation in parameters) and effective blending of disparate training sets (e.g., simulations and observations). In TL, selected layers of a NN, already trained for a base system, are re-trained using a small dataset from a target system. For effective TL, we need to know 1) what are the best layers to re-train? and 2) what physics are learned during TL? Here, we present novel analyses and a new framework to address (1)-(2) for a broad range of multi-scale, nonlinear systems. Our approach combines spectral analyses of the systems' data with spectral analyses of convolutional NN's activations and kernels, explaining the inner-workings of TL in terms of the system's nonlinear physics. Using subgrid-scale modeling of several setups of 2D turbulence as test cases, we show that the learned kernels are combinations of low-, band-, and high-pass filters, and that TL learns new filters whose nature is consistent with the spectral differences of base and target systems. We also find the shallowest layers are the best to re-train in these cases, which is against the common wisdom guiding TL in machine learning literature. Our framework identifies the best layer(s) to re-train beforehand, based on physics and NN theory. Together, these analyses explain the physics learned in TL and provide a framework to guide TL for wide-ranging applications in science and engineering, such as climate change modeling.
2,591
Generalized Data Distribution Iteration
To obtain higher sample efficiency and superior final performance simultaneously has been one of the major challenges for deep reinforcement learning (DRL). Previous work could handle one of these challenges but typically failed to address them concurrently. In this paper, we try to tackle these two challenges simultaneously. To achieve this, we firstly decouple these challenges into two classic RL problems: data richness and exploration-exploitation trade-off. Then, we cast these two problems into the training data distribution optimization problem, namely to obtain desired training data within limited interactions, and address them concurrently via i) explicit modeling and control of the capacity and diversity of behavior policy and ii) more fine-grained and adaptive control of selective/sampling distribution of the behavior policy using a monotonic data distribution optimization. Finally, we integrate this process into Generalized Policy Iteration (GPI) and obtain a more general framework called Generalized Data Distribution Iteration (GDI). We use the GDI framework to introduce operator-based versions of well-known RL methods from DQN to Agent57. Theoretical guarantee of the superiority of GDI compared with GPI is concluded. We also demonstrate our state-of-the-art (SOTA) performance on Arcade Learning Environment (ALE), wherein our algorithm has achieved 9620.33% mean human normalized score (HNS), 1146.39% median HNS and surpassed 22 human world records using only 200M training frames. Our performance is comparable to Agent57's while we consume 500 times less data. We argue that there is still a long way to go before obtaining real superhuman agents in ALE.
2,592
Asymptotic Stability in Reservoir Computing
Reservoir Computing is a class of Recurrent Neural Networks with internal weights fixed at random. Stability relates to the sensitivity of the network state to perturbations. It is an important property in Reservoir Computing as it directly impacts performance. In practice, it is desirable to stay in a stable regime, where the effect of perturbations does not explode exponentially, but also close to the chaotic frontier where reservoir dynamics are rich. Open questions remain today regarding input regularization and discontinuous activation functions. In this work, we use the recurrent kernel limit to draw new insights on stability in reservoir computing. This limit corresponds to large reservoir sizes, and it already becomes relevant for reservoirs with a few hundred neurons. We obtain a quantitative characterization of the frontier between stability and chaos, which can greatly benefit hyperparameter tuning. In a broader sense, our results contribute to understanding the complex dynamics of Recurrent Neural Networks.
2,593
A new Hyper-heuristic based on Adaptive Simulated Annealing and Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming as a result of the increasing number of freight vehicles. However, there are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability. For that reason, in this paper, a hyper-heuristic (HH) approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning (HHASA$_{RL}$) is proposed. It is composed of a multi-armed bandit method and the self-adaptive Simulated Annealing (SA) metaheuristic algorithm for solving the problem called Capacitated Electric Vehicle Routing Problem (CEVRP). Due to the limited number of charging stations and the travel range of EVs, the EVs must require battery recharging moments in advance and reduce travel times and costs. The HH implemented improves multiple minimum best-known solutions and obtains the best mean values for some high-dimensional instances for the proposed benchmark for the IEEE WCCI2020 competition.
2,594
Risk Measures and Upper Probabilities: Coherence and Stratification
Machine learning typically presupposes classical probability theory which implies that aggregation is built upon expectation. There are now multiple reasons to motivate looking at richer alternatives to classical probability theory as a mathematical foundation for machine learning. We systematically examine a powerful and rich class of such alternatives, known variously as spectral risk measures, Choquet integrals or Lorentz norms. We present a range of characterization results, and demonstrate what makes this spectral family so special. In doing so we demonstrate a natural stratification of all coherent risk measures in terms of the upper probabilities that they induce by exploiting results from the theory of rearrangement invariant Banach spaces. We empirically demonstrate how this new approach to uncertainty helps tackling practical machine learning problems.
2,595
Fooling Explanations in Text Classifiers
State-of-the-art text classification models are becoming increasingly reliant on deep neural networks (DNNs). Due to their black-box nature, faithful and robust explanation methods need to accompany classifiers for deployment in real-life scenarios. However, it has been shown in vision applications that explanation methods are susceptible to local, imperceptible perturbations that can significantly alter the explanations without changing the predicted classes. We show here that the existence of such perturbations extends to text classifiers as well. Specifically, we introduceTextExplanationFooler (TEF), a novel explanation attack algorithm that alters text input samples imperceptibly so that the outcome of widely-used explanation methods changes considerably while leaving classifier predictions unchanged. We evaluate the performance of the attribution robustness estimation performance in TEF on five sequence classification datasets, utilizing three DNN architectures and three transformer architectures for each dataset. TEF can significantly decrease the correlation between unchanged and perturbed input attributions, which shows that all models and explanation methods are susceptible to TEF perturbations. Moreover, we evaluate how the perturbations transfer to other model architectures and attribution methods, and show that TEF perturbations are also effective in scenarios where the target model and explanation method are unknown. Finally, we introduce a semi-universal attack that is able to compute fast, computationally light perturbations with no knowledge of the attacked classifier nor explanation method. Overall, our work shows that explanations in text classifiers are very fragile and users need to carefully address their robustness before relying on them in critical applications.
2,596
Learning Attention-based Representations from Multiple Patterns for Relation Prediction in Knowledge Graphs
Knowledge bases, and their representations in the form of knowledge graphs (KGs), are naturally incomplete. Since scientific and industrial applications have extensively adopted them, there is a high demand for solutions that complete their information. Several recent works tackle this challenge by learning embeddings for entities and relations, then employing them to predict new relations among the entities. Despite their aggrandizement, most of those methods focus only on the local neighbors of a relation to learn the embeddings. As a result, they may fail to capture the KGs' context information by neglecting long-term dependencies and the propagation of entities' semantics. In this manuscript, we propose {\AE}MP (Attention-based Embeddings from Multiple Patterns), a novel model for learning contextualized representations by: (i) acquiring entities' context information through an attention-enhanced message-passing scheme, which captures the entities' local semantics while focusing on different aspects of their neighborhood; and (ii) capturing the semantic context, by leveraging the paths and their relationships between entities. Our empirical findings draw insights into how attention mechanisms can improve entities' context representation and how combining entities and semantic path contexts improves the general representation of entities and the relation predictions. Experimental results on several large and small knowledge graph benchmarks show that {\AE}MP either outperforms or competes with state-of-the-art relation prediction methods.
2,597
Look Back When Surprised: Stabilizing Reverse Experience Replay for Neural Approximation
Experience replay methods, which are an essential part of reinforcement learning(RL) algorithms, are designed to mitigate spurious correlations and biases while learning from temporally dependent data. Roughly speaking, these methods allow us to draw batched data from a large buffer such that these temporal correlations do not hinder the performance of descent algorithms. In this experimental work, we consider the recently developed and theoretically rigorous reverse experience replay (RER), which has been shown to remove such spurious biases in simplified theoretical settings. We combine RER with optimistic experience replay (OER) to obtain RER++, which is stable under neural function approximation. We show via experiments that this has a better performance than techniques like prioritized experience replay (PER) on various tasks, with a significantly smaller computational complexity. It is well known in the RL literature that choosing examples greedily with the largest TD error (as in OER) or forming mini-batches with consecutive data points (as in RER) leads to poor performance. However, our method, which combines these techniques, works very well.
2,598
Decentralized Low-Latency Collaborative Inference via Ensembles on the Edge
The success of deep neural networks (DNNs) is heavily dependent on computational resources. While DNNs are often employed on cloud servers, there is a growing need to operate DNNs on edge devices. Edge devices are typically limited in their computational resources, yet, often multiple edge devices are deployed in the same environment and can reliably communicate with each other. In this work we propose to facilitate the application of DNNs on the edge by allowing multiple users to collaborate during inference to improve their accuracy. Our mechanism, coined {\em edge ensembles}, is based on having diverse predictors at each device, which form an ensemble of models during inference. To mitigate the communication overhead, the users share quantized features, and we propose a method for aggregating multiple decisions into a single inference rule. We analyze the latency induced by edge ensembles, showing that its performance improvement comes at the cost of a minor additional delay under common assumptions on the communication network. Our experiments demonstrate that collaborative inference via edge ensembles equipped with compact DNNs substantially improves the accuracy over having each user infer locally, and can outperform using a single centralized DNN larger than all the networks in the ensemble together.
2,599
Utility of Equivariant Message Passing in Cortical Mesh Segmentation
The automated segmentation of cortical areas has been a long-standing challenge in medical image analysis. The complex geometry of the cortex is commonly represented as a polygon mesh, whose segmentation can be addressed by graph-based learning methods. When cortical meshes are misaligned across subjects, current methods produce significantly worse segmentation results, limiting their ability to handle multi-domain data. In this paper, we investigate the utility of E(n)-equivariant graph neural networks (EGNNs), comparing their performance against plain graph neural networks (GNNs). Our evaluation shows that GNNs outperform EGNNs on aligned meshes, due to their ability to leverage the presence of a global coordinate system. On misaligned meshes, the performance of plain GNNs drop considerably, while E(n)-equivariant message passing maintains the same segmentation results. The best results can also be obtained by using plain GNNs on realigned data (co-registered meshes in a global coordinate system).