Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
2,200
Learning the Space of Deep Models
Embedding of large but redundant data, such as images or text, in a hierarchy of lower-dimensional spaces is one of the key features of representation learning approaches, which nowadays provide state-of-the-art solutions to problems once believed hard or impossible to solve. In this work, in a plot twist with a strong meta aftertaste, we show how trained deep models are as redundant as the data they are optimized to process, and how it is therefore possible to use deep learning models to embed deep learning models. In particular, we show that it is possible to use representation learning to learn a fixed-size, low-dimensional embedding space of trained deep models and that such space can be explored by interpolation or optimization to attain ready-to-use models. We find that it is possible to learn an embedding space of multiple instances of the same architecture and of multiple architectures. We address image classification and neural representation of signals, showing how our embedding space can be learnt so as to capture the notions of performance and 3D shape, respectively. In the Multi-Architecture setting we also show how an embedding trained only on a subset of architectures can learn to generate already-trained instances of architectures it never sees instantiated at training time.
2,201
On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond
The FedProx algorithm is a simple yet powerful distributed proximal point optimization method widely used for federated learning (FL) over heterogeneous data. Despite its popularity and remarkable success witnessed in practice, the theoretical understanding of FedProx is largely underinvestigated: the appealing convergence behavior of FedProx is so far characterized under certain non-standard and unrealistic dissimilarity assumptions of local functions, and the results are limited to smooth optimization problems. In order to remedy these deficiencies, we develop a novel local dissimilarity invariant convergence theory for FedProx and its minibatch stochastic extension through the lens of algorithmic stability. As a result, we contribute to derive several new and deeper insights into FedProx for non-convex federated optimization including: 1) convergence guarantees independent on local dissimilarity type conditions; 2) convergence guarantees for non-smooth FL problems; and 3) linear speedup with respect to size of minibatch and number of sampled devices. Our theory for the first time reveals that local dissimilarity and smoothness are not must-have for FedProx to get favorable complexity bounds. Preliminary experimental results on a series of benchmark FL datasets are reported to demonstrate the benefit of minibatching for improving the sample efficiency of FedProx.
2,202
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. We develop approaches for learning nonlinear state space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Transpose CNNs (T-CNNs). Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning low dimensional representations of the nonlinear Burgers equations, constrained mechanical systems, and spatial fields of reaction-diffusion systems. GD-VAEs provide methods for obtaining representations for use in learning tasks involving dynamics.
2,203
Localized adversarial artifacts for compressed sensing MRI
As interest in deep neural networks (DNNs) for image reconstruction tasks grows, their reliability has been called into question (Antun et al., 2020; Gottschling et al., 2020). However, recent work has shown that compared to total variation (TV) minimization, they show similar robustness to adversarial noise in terms of $\ell^2$-reconstruction error (Genzel et al., 2022). We consider a different notion of robustness, using the $\ell^\infty$-norm, and argue that localized reconstruction artifacts are a more relevant defect than the $\ell^2$-error. We create adversarial perturbations to undersampled MRI measurements which induce severe localized artifacts in the TV-regularized reconstruction. The same attack method is not as effective against DNN based reconstruction. Finally, we show that this phenomenon is inherent to reconstruction methods for which exact recovery can be guaranteed, as with compressed sensing reconstructions with $\ell^1$- or TV-minimization.
2,204
Human-AI Interaction Design in Machine Teaching
Machine Teaching (MT) is an interactive process where a human and a machine interact with the goal of training a machine learning model (ML) for a specified task. The human teacher communicates their task expertise and the machine student gathers the required data and knowledge to produce an ML model. MT systems are developed to jointly minimize the time spent on teaching and the learner's error rate. The design of human-AI interaction in an MT system not only impacts the teaching efficiency, but also indirectly influences the ML performance by affecting the teaching quality. In this paper, we build upon our previous work where we proposed an MT framework with three components, viz., the teaching interface, the machine learner, and the knowledge base, and focus on the human-AI interaction design involved in realizing the teaching interface. We outline design decisions that need to be addressed in developing an MT system beginning from an ML task. The paper follows the Socratic method entailing a dialogue between a curious student and a wise teacher.
2,205
Lightweight Conditional Model Extrapolation for Streaming Data under Class-Prior Shift
We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by the recent success of meta-learning. The main idea is not to attempt to learn a single classifier that would have to work well across all occurring data distributions, nor many separate classifiers, but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific classifier for any specific data distribution is derived via classifier adaptation. Assuming a multi-class classification setting with class-prior shift, the adaptation step can be performed analytically with only the classifier's bias terms being affected. Another contribution of our work is an extrapolation step that predicts suitable adaptation parameters for future time steps based on the previous data. In combination, we obtain a lightweight procedure for learning from streaming data with varying class distribution that adds no trainable parameters and almost no memory or computational overhead compared to training a single model. Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches, especially with respect to the relevant real-world metric of lowest within-day accuracy.
2,206
How Much is Enough? A Study on Diffusion Times in Score-based Generative Models
Score-based diffusion models are a class of generative models whose dynamics is described by stochastic differential equations that map noise into data. While recent works have started to lay down a theoretical foundation for these models, an analytical understanding of the role of the diffusion time T is still lacking. Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution; however, a smaller value of T should be preferred for a better approximation of the score-matching objective and higher computational efficiency. Starting from a variational interpretation of diffusion models, in this work we quantify this trade-off, and suggest a new method to improve quality and efficiency of both training and sampling, by adopting smaller diffusion times. Indeed, we show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process. Empirical results support our analysis; for image data, our method is competitive w.r.t. the state-of-the-art, according to standard sample quality metrics and log-likelihood.
2,207
Multifidelity Reinforcement Learning with Control Variates
In many computational science and engineering applications, the output of a system of interest corresponding to a given input can be queried at different levels of fidelity with different costs. Typically, low-fidelity data is cheap and abundant, while high-fidelity data is expensive and scarce. In this work we study the reinforcement learning (RL) problem in the presence of multiple environments with different levels of fidelity for a given control task. We focus on improving the RL agent's performance with multifidelity data. Specifically, a multifidelity estimator that exploits the cross-correlations between the low- and high-fidelity returns is proposed to reduce the variance in the estimation of the state-action value function. The proposed estimator, which is based on the method of control variates, is used to design a multifidelity Monte Carlo RL (MFMCRL) algorithm that improves the learning of the agent in the high-fidelity environment. The impacts of variance reduction on policy evaluation and policy improvement are theoretically analyzed by using probability bounds. Our theoretical analysis and numerical experiments demonstrate that for a finite budget of high-fidelity data samples, our proposed MFMCRL agent attains superior performance compared with that of a standard RL agent that uses only the high-fidelity environment data for learning the optimal policy.
2,208
An Image Processing Pipeline for Camera Trap Time-Lapse Recordings
A new open-source image processing pipeline for analyzing camera trap time-lapse recordings is described. This pipeline includes machine learning models to assist human-in-the-loop video segmentation and animal re-identification. We present some performance results and observations on the utility of this pipeline after using it in a year-long project studying the spatial ecology and social behavior of the gopher tortoise.
2,209
MEAT: Maneuver Extraction from Agent Trajectories
Advances in learning-based trajectory prediction are enabled by large-scale datasets. However, in-depth analysis of such datasets is limited. Moreover, the evaluation of prediction models is limited to metrics averaged over all samples in the dataset. We propose an automated methodology that allows to extract maneuvers (e.g., left turn, lane change) from agent trajectories in such datasets. The methodology considers information about the agent dynamics and information about the lane segments the agent traveled along. Although it is possible to use the resulting maneuvers for training classification networks, we exemplary use them for extensive trajectory dataset analysis and maneuver-specific evaluation of multiple state-of-the-art trajectory prediction models. Additionally, an analysis of the datasets and an evaluation of the prediction models based on the agent dynamics is provided.
2,210
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning models have shown their potential for several applications. However, most of the models are opaque and difficult to trust due to their complex reasoning - commonly known as the black-box problem. Some fields, such as medicine, require a high degree of transparency to accept and adopt such technologies. Consequently, creating explainable/interpretable models or applying post-hoc methods on classifiers to build trust in deep learning models are required. Moreover, deep learning methods can be used for segmentation tasks, which typically require hard-to-obtain, time-consuming manually-annotated segmentation labels for training. This paper introduces three inherently-explainable classifiers to tackle both of these problems as one. The localisation heatmaps provided by the networks -- representing the models' focus areas and being used in classification decision-making -- can be directly interpreted, without requiring any post-hoc methods to derive information for model explanation. The models are trained by using the input image and only the classification labels as ground-truth in a supervised fashion - without using any information about the location of the region of interest (i.e. the segmentation labels), making the segmentation training of the models weakly-supervised through classification labels. The final segmentation is obtained by thresholding these heatmaps. The models were employed for the task of multi-class brain tumour classification using two different datasets, resulting in the best F1-score of 0.93 for the supervised classification task while securing a median Dice score of 0.67$\pm$0.08 for the weakly-supervised segmentation task. Furthermore, the obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7\% accuracy.
2,211
Fast Deep Autoencoder for Federated learning
This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF (Deep Autoencoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder network in a non-iterative way, which drastically reduces its training time. Its training can be carried out in a distributed way (several partitions of the dataset in parallel) and incrementally (aggregation of partial models), and due to its mathematical formulation, the data that is exchanged does not endanger the privacy of the users. This makes DAEF a valid method for edge computing and federated learning scenarios. The method has been evaluated and compared to traditional (iterative) deep autoencoders using seven real anomaly detection datasets, and their performance have been shown to be similar despite DAEF's faster training.
2,212
Distributionally Robust End-to-End Portfolio Construction
We propose an end-to-end distributionally robust system for portfolio construction that integrates the asset return prediction model with a distributionally robust portfolio optimization model. We also show how to learn the risk-tolerance parameter and the degree of robustness directly from data. End-to-end systems have an advantage in that information can be communicated between the prediction and decision layers during training, allowing the parameters to be trained for the final task rather than solely for predictive performance. However, existing end-to-end systems are not able to quantify and correct for the impact of model risk on the decision layer. Our proposed distributionally robust end-to-end portfolio selection system explicitly accounts for the impact of model risk. The decision layer chooses portfolios by solving a minimax problem where the distribution of the asset returns is assumed to belong to an ambiguity set centered around a nominal distribution. Using convex duality, we recast the minimax problem in a form that allows for efficient training of the end-to-end system.
2,213
Stochastic Zeroth order Descent with Structured Directions
We introduce and analyze Structured Stochastic Zeroth order Descent (S-SZD), a finite difference approach which approximates a stochastic gradient on a set of $l\leq d$ orthogonal directions, where $d$ is the dimension of the ambient space. These directions are randomly chosen, and may change at each step. For smooth convex functions we prove almost sure convergence of the iterates and a convergence rate on the function values of the form $O(d/l k^{-c})$ for every $c<1/2$, which is arbitrarily close to the one of Stochastic Gradient Descent (SGD) in terms of number of iterations. Our bound also shows the benefits of using $l$ multiple directions instead of one. For non-convex functions satisfying the Polyak-{\L}ojasiewicz condition, we establish the first convergence rates for stochastic zeroth order algorithms under such an assumption. We corroborate our theoretical findings in numerical simulations where assumptions are satisfied and on the real-world problem of hyper-parameter optimization, observing that S-SZD has very good practical performances.
2,214
PAVI: Plate-Amortized Variational Inference
Given some observed data and a probabilistic generative model, Bayesian inference aims at obtaining the distribution of a model's latent parameters that could have yielded the data. This task is challenging for large population studies where thousands of measurements are performed over a cohort of hundreds of subjects, resulting in a massive latent parameter space. This large cardinality renders off-the-shelf Variational Inference (VI) computationally impractical. In this work, we design structured VI families that can efficiently tackle large population studies. To this end, our main idea is to share the parameterization and learning across the different i.i.d. variables in a generative model -symbolized by the model's plates. We name this concept plate amortization, and illustrate the powerful synergies it entitles, resulting in expressive, parsimoniously parameterized and orders of magnitude faster to train large scale hierarchical variational distributions. We illustrate the practical utility of PAVI through a challenging Neuroimaging example featuring a million latent parameters, demonstrating a significant step towards scalable and expressive Variational Inference.
2,215
Deep Multi-Agent Reinforcement Learning with Hybrid Action Spaces based on Maximum Entropy
Multi-agent deep reinforcement learning has been applied to address a variety of complex problems with either discrete or continuous action spaces and achieved great success. However, most real-world environments cannot be described by only discrete action spaces or only continuous action spaces. And there are few works having ever utilized deep reinforcement learning (drl) to multi-agent problems with hybrid action spaces. Therefore, we propose a novel algorithm: Deep Multi-Agent Hybrid Soft Actor-Critic (MAHSAC) to fill this gap. This algorithm follows the centralized training but decentralized execution (CTDE) paradigm, and extend the Soft Actor-Critic algorithm (SAC) to handle hybrid action space problems in Multi-Agent environments based on maximum entropy. Our experiences are running on an easy multi-agent particle world with a continuous observation and discrete action space, along with some basic simulated physics. The experimental results show that MAHSAC has good performance in training speed, stability, and anti-interference ability. At the same time, it outperforms existing independent deep hybrid learning method in cooperative scenarios and competitive scenarios.
2,216
Saccade Mechanisms for Image Classification, Object Detection and Tracking
We examine how the saccade mechanism from biological vision can be used to make deep neural networks more efficient for classification and object detection problems. Our proposed approach is based on the ideas of attention-driven visual processing and saccades, miniature eye movements influenced by attention. We conduct experiments by analyzing: i) the robustness of different deep neural network (DNN) feature extractors to partially-sensed images for image classification and object detection, and ii) the utility of saccades in masking image patches for image classification and object tracking. Experiments with convolutional nets (ResNet-18) and transformer-based models (ViT, DETR, TransTrack) are conducted on several datasets (CIFAR-10, DAVSOD, MSCOCO, and MOT17). Our experiments show intelligent data reduction via learning to mimic human saccades when used in conjunction with state-of-the-art DNNs for classification, detection, and tracking tasks. We observed minimal drop in performance for the classification and detection tasks while only using about 30\% of the original sensor data. We discuss how the saccade mechanism can inform hardware design via ``in-pixel'' processing.
2,217
Federated Momentum Contrastive Clustering
We present federated momentum contrastive clustering (FedMCC), a learning framework that can not only extract discriminative representations over distributed local data but also perform data clustering. In FedMCC, a transformed data pair passes through both the online and target networks, resulting in four representations over which the losses are determined. The resulting high-quality representations generated by FedMCC can outperform several existing self-supervised learning methods for linear evaluation and semi-supervised learning tasks. FedMCC can easily be adapted to ordinary centralized clustering through what we call momentum contrastive clustering (MCC). We show that MCC achieves state-of-the-art clustering accuracy results in certain datasets such as STL-10 and ImageNet-10. We also present a method to reduce the memory footprint of our clustering schemes.
2,218
Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging
Decentralized optimization is increasingly popular in machine learning for its scalability and efficiency. Intuitively, it should also provide better privacy guarantees, as nodes only observe the messages sent by their neighbors in the network graph. But formalizing and quantifying this gain is challenging: existing results are typically limited to Local Differential Privacy (LDP) guarantees that overlook the advantages of decentralization. In this work, we introduce pairwise network differential privacy, a relaxation of LDP that captures the fact that the privacy leakage from a node $u$ to a node $v$ may depend on their relative position in the graph. We then analyze the combination of local noise injection with (simple or randomized) gossip averaging protocols on fixed and random communication graphs. We also derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging. Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph, matching the privacy-utility trade-off of the trusted curator, up to factors that explicitly depend on the graph topology. Finally, we illustrate our privacy gains with experiments on synthetic and real-world datasets.
2,219
Tensor Train for Global Optimization Problems in Robotics
The convergence of many numerical optimization techniques is highly sensitive to the initial guess provided to the solver. We propose an approach based on tensor methods to initialize the existing optimization solvers close to global optima. The approach uses only the definition of the cost function and does not need access to any database of good solutions. We first transform the cost function, which is a function of task parameters and optimization variables, into a probability density function. Unlike existing approaches that set the task parameters as constant, we consider them as another set of random variables and approximate the joint probability distribution of the task parameters and the optimization variables using a surrogate probability model. For a given task, we then generate samples from the conditional distribution with respect to the given task parameter and use them as initialization for the optimization solver. As conditioning and sampling from an arbitrary density function are challenging, we use Tensor Train decomposition to obtain a surrogate probability model from which we can efficiently obtain the conditional model and the samples. The method can produce multiple solutions coming from different modes (when they exist) for a given task. We first evaluate the approach by applying it to various challenging benchmark functions for numerical optimization that are difficult to solve using gradient-based optimization solvers with a naive initialization, showing that the proposed method can produce samples close to the global optima and coming from multiple modes. We then demonstrate the generality of the framework and its relevance to robotics by applying the proposed method to inverse kinematics and motion planning problems with a 7-DoF manipulator.
2,220
Diffeomorphic Counterfactuals with Generative Models
Counterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and validate the quality of the generated counterfactuals using various qualitative and quantitative measures.
2,221
We Cannot Guarantee Safety: The Undecidability of Graph Neural Network Verification
Graph Neural Networks (GNN) are commonly used for two tasks: (whole) graph classification and node classification. We formally introduce generically formulated decision problems for both tasks, corresponding to the following pattern: given a GNN, some specification of valid inputs, and some specification of valid outputs, decide whether there is a valid input satisfying the output specification. We then prove that graph classifier verification is undecidable in general, implying that there cannot be an algorithm surely guaranteeing the absence of misclassification of any kind. Additionally, we show that verification in the node classification case becomes decidable as soon as we restrict the degree of the considered graphs. Furthermore, we discuss possible changes to these results depending on the considered GNN model and specifications.
2,222
From Labels to Priors in Capsule Endoscopy: A Prior Guided Approach for Improving Generalization with Few Labels
The lack of generalizability of deep learning approaches for the automated diagnosis of pathologies in Wireless Capsule Endoscopy (WCE) has prevented any significant advantages from trickling down to real clinical practices. As a result, disease management using WCE continues to depend on exhaustive manual investigations by medical experts. This explains its limited use despite several advantages. Prior works have considered using higher quality and quantity of labels as a way of tackling the lack of generalization, however this is hardly scalable considering pathology diversity not to mention that labeling large datasets encumbers the medical staff additionally. We propose using freely available domain knowledge as priors to learn more robust and generalizable representations. We experimentally show that domain priors can benefit representations by acting in proxy of labels, thereby significantly reducing the labeling requirement while still enabling fully unsupervised yet pathology-aware learning. We use the contrastive objective along with prior-guided views during pretraining, where the view choices inspire sensitivity to pathological information. Extensive experiments on three datasets show that our method performs better than (or closes gap with) the state-of-the-art in the domain, establishing a new benchmark in pathology classification and cross-dataset generalization, as well as scaling to unseen pathology categories.
2,223
Scalable Deep Gaussian Markov Random Fields for General Graphs
Machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to define Gaussian models on graphs by utilizing their sparsity structure. We propose a flexible GMRF model for general graphs built on the multi-layer structure of Deep GMRFs, originally proposed for lattice graphs only. By designing a new type of layer we enable the model to scale to large graphs. The layer is constructed to allow for efficient training using variational inference and existing software frameworks for Graph Neural Networks. For a Gaussian likelihood, close to exact Bayesian inference is available for the latent field. This allows for making predictions with accompanying uncertainty estimates. The usefulness of the proposed model is verified by experiments on a number of synthetic and real world datasets, where it compares favorably to other both Bayesian and deep learning methods.
2,224
Weighted Ensembles for Active Learning with Adaptivity
Labeled data can be expensive to acquire in several application domains, including medical imaging, robotics, and computer vision. To efficiently train machine learning models under such high labeling costs, active learning (AL) judiciously selects the most informative data instances to label on-the-fly. This active sampling process can benefit from a statistical function model, that is typically captured by a Gaussian process (GP). While most GP-based AL approaches rely on a single kernel function, the present contribution advocates an ensemble of GP models with weights adapted to the labeled data collected incrementally. Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules. An adaptively weighted ensemble of EGP-based acquisition functions is also introduced to further robustify performance. Extensive tests on synthetic and real datasets showcase the merits of the proposed EGP-based approaches with respect to the single GP-based AL alternatives.
2,225
The Generalized Eigenvalue Problem as a Nash Equilibrium
The generalized eigenvalue problem (GEP) is a fundamental concept in numerical linear algebra. It captures the solution of many classical machine learning problems such as canonical correlation analysis, independent components analysis, partial least squares, linear discriminant analysis, principal components, successor features and others. Despite this, most general solvers are prohibitively expensive when dealing with massive data sets and research has instead concentrated on finding efficient solutions to specific problem instances. In this work, we develop a game-theoretic formulation of the top-$k$ GEP whose Nash equilibrium is the set of generalized eigenvectors. We also present a parallelizable algorithm with guaranteed asymptotic convergence to the Nash. Current state-of-the-art methods require $\mathcal{O}(d^2k)$ complexity per iteration which is prohibitively expensive when the number of dimensions ($d$) is large. We show how to achieve $\mathcal{O}(dk)$ complexity, scaling to datasets $100\times$ larger than those evaluated by prior methods. Empirically we demonstrate that our algorithm is able to solve a variety of GEP problem instances including a large-scale analysis of neural network activations.
2,226
Zero-Shot Audio Classification using Image Embeddings
Supervised learning methods can solve the given problem in the presence of a large set of labeled data. However, the acquisition of a dataset covering all the target classes typically requires manual labeling which is expensive and time-consuming. Zero-shot learning models are capable of classifying the unseen concepts by utilizing their semantic information. The present study introduces image embeddings as side information on zero-shot audio classification by using a nonlinear acoustic-semantic projection. We extract the semantic image representations from the Open Images dataset and evaluate the performance of the models on an audio subset of AudioSet using semantic information in different domains; image, audio, and textual. We demonstrate that the image embeddings can be used as semantic information to perform zero-shot audio classification. The experimental results show that the image and textual embeddings display similar performance both individually and together. We additionally calculate the semantic acoustic embeddings from the test samples to provide an upper limit to the performance. The results show that the classification performance is highly sensitive to the semantic relation between test and training classes and textual and image embeddings can reach up to the semantic acoustic embeddings when the seen and unseen classes are semantically similar.
2,227
Convolutional Layers are Equivariant to Discrete Shifts But Not Continuous Translations
The purpose of this short and simple note is to clarify a common misconception about convolutional neural networks (CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight sharing. However, convolutional layers are not translation equivariant, even when boundary effects are ignored and when pooling and subsampling are absent. This is because shift equivariance is a discrete symmetry while translation equivariance is a continuous symmetry. This fact is well known among researchers in equivariant machine learning, but is usually overlooked among non-experts. To minimize confusion, we suggest using the term `shift equivariance' to refer to discrete shifts in pixels and `translation equivariance' to refer to continuous translations.
2,228
Refining neural network predictions using background knowledge
Recent work has showed we can use logical background knowledge in learning system to compensate for a lack of labeled training data. Many such methods work by creating a loss function that encodes this knowledge. However, often the logic is discarded after training, even if it is still useful at test-time. Instead, we ensure neural network predictions satisfy the knowledge by refining the predictions with an extra computation step. We introduce differentiable refinement functions that find a corrected prediction close to the original prediction. We study how to effectively and efficiently compute these refinement functions. Using a new algorithm, we combine refinement functions to find refined predictions for logical formulas of any complexity. This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
2,229
Causal Discovery in Hawkes Processes by Minimum Description Length
Hawkes processes are a special class of temporal point processes which exhibit a natural notion of causality, as occurrence of events in the past may increase the probability of events in the future. Discovery of the underlying influence network among the dimensions of multi-dimensional temporal processes is of high importance in disciplines where a high-frequency data is to model, e.g. in financial data or in seismological data. This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes. We formulate this problem as a model selection task in which we follow the minimum description length (MDL) principle. Moreover, we propose a general algorithm for MDL-based inference using a Monte-Carlo method and we use it for our causal discovery problem. We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world financial data. The synthetic experiments demonstrate superiority of our method incausal graph discovery compared to the baseline methods with respect to the size of the data. The results of experiments with the G-7 bonds price data are consistent with the experts knowledge.
2,230
Flexible Differentiable Optimization via Model Transformations
We introduce DiffOpt.jl, a Julia library to differentiate through the solution of convex optimization problems with respect to arbitrary parameters present in the objective and/or constraints. The library builds upon MathOptInterface, thus leveraging the rich ecosystem of solvers and composing well with modelling languages like JuMP. DiffOpt offers both forward and reverse differentiation modes, enabling multiple use cases from hyperparameter optimization to backpropagation and sensitivity analysis, bridging constrained optimization with end-to-end differentiable programming.
2,231
Deep Learning-based Massive MIMO CSI Acquisition for 5G Evolution and 6G
Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25\% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6% -- 26% compared with DL-based receivers and 33% -- 58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.
2,232
Think About the Stakeholders First! Towards an Algorithmic Transparency Playbook for Regulatory Compliance
Increasingly, laws are being proposed and passed by governments around the world to regulate Artificial Intelligence (AI) systems implemented into the public and private sectors. Many of these regulations address the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an explanation about how an AI system makes a decision that impacts them. Yet, almost all AI governance documents to date have a significant drawback: they have focused on what to do (or what not to do) with respect to making AI systems transparent, but have left the brunt of the work to technologists to figure out how to build transparent systems. We fill this gap by proposing a novel stakeholder-first approach that assists technologists in designing transparent, regulatory compliant systems. We also describe a real-world case-study that illustrates how this approach can be used in practice.
2,233
Merak: An Efficient Distributed DNN Training Framework with Automated 3D Parallelism for Giant Foundation Models
Foundation models are becoming the dominant deep learning technologies. Pretraining a foundation model is always time-consumed due to the large scale of both the model parameter and training dataset. Besides being computing-intensive, the training process is extremely memory-intensive and communication-intensive. These features make it necessary to apply 3D parallelism, which integrates data parallelism, pipeline model parallelism and tensor model parallelism, to achieve high training efficiency. To achieve this goal, some custom software frameworks such as Megatron-LM and DeepSpeed are developed. However, current 3D parallelism frameworks still meet two issues: i) they are not transparent to model developers, which need to manually modify the model to parallelize training. ii) their utilization of computation, GPU memory and network bandwidth are not sufficient. We propose Merak, an automated 3D parallelism deep learning training framework with high resource utilization. Merak automatically deploys with an automatic model partitioner, which uses a graph sharding algorithm on a proxy representation of the model. Merak also presents the non-intrusive API for scaling out foundation model training with minimal code modification. In addition, we design a high-performance 3D parallel runtime engine in Merak. It uses several techniques to exploit available training resources, including shifted critical path pipeline schedule that brings a higher computation utilization, stage-aware recomputation that makes use of idle worker memory, and sub-pipelined tensor model parallelism that overlaps communication and computation. Experiments on 64 GPUs show Merak can speedup the training performance over the state-of-the-art 3D parallelism frameworks of models with 1.5, 2.5, 8.3, and 20 billion parameters by up to 1.42X, 1.39X, 1.43X, and 1.61X, respectively.
2,234
Evolutionary Echo State Network: evolving reservoirs in the Fourier space
The Echo State Network (ESN) is a class of Recurrent Neural Network with a large number of hidden-hidden weights (in the so-called reservoir). Canonical ESN and its variations have recently received significant attention due to their remarkable success in the modeling of non-linear dynamical systems. The reservoir is randomly connected with fixed weights that don't change in the learning process. Only the weights from reservoir to output are trained. Since the reservoir is fixed during the training procedure, we may wonder if the computational power of the recurrent structure is fully harnessed. In this article, we propose a new computational model of the ESN type, that represents the reservoir weights in the Fourier space and performs a fine-tuning of these weights applying genetic algorithms in the frequency domain. The main interest is that this procedure will work in a much smaller space compared to the classical ESN, thus providing a dimensionality reduction transformation of the initial method. The proposed technique allows us to exploit the benefits of the large recurrent structure avoiding the training problems of gradient-based method. We provide a detailed experimental study that demonstrates the good performances of our approach with well-known chaotic systems and real-world data.
2,235
Deep Multi-view Semi-supervised Clustering with Sample Pairwise Constraints
Multi-view clustering has attracted much attention thanks to the capacity of multi-source information integration. Although numerous advanced methods have been proposed in past decades, most of them generally overlook the significance of weakly-supervised information and fail to preserve the feature properties of multiple views, thus resulting in unsatisfactory clustering performance. To address these issues, in this paper, we propose a novel Deep Multi-view Semi-supervised Clustering (DMSC) method, which jointly optimizes three kinds of losses during networks finetuning, including multi-view clustering loss, semi-supervised pairwise constraint loss and multiple autoencoders reconstruction loss. Specifically, a KL divergence based multi-view clustering loss is imposed on the common representation of multi-view data to perform heterogeneous feature optimization, multi-view weighting and clustering prediction simultaneously. Then, we innovatively propose to integrate pairwise constraints into the process of multi-view clustering by enforcing the learned multi-view representation of must-link samples (cannot-link samples) to be similar (dissimilar), such that the formed clustering architecture can be more credible. Moreover, unlike existing rivals that only preserve the encoders for each heterogeneous branch during networks finetuning, we further propose to tune the intact autoencoders frame that contains both encoders and decoders. In this way, the issue of serious corruption of view-specific and view-shared feature space could be alleviated, making the whole training procedure more stable. Through comprehensive experiments on eight popular image datasets, we demonstrate that our proposed approach performs better than the state-of-the-art multi-view and single-view competitors.
2,236
Decoupling Predictions in Distributed Learning for Multi-Center Left Atrial MRI Segmentation
Distributed learning has shown great potential in medical image analysis. It allows to use multi-center training data with privacy protection. However, data distributions in local centers can vary from each other due to different imaging vendors, and annotation protocols. Such variation degrades the performance of learning-based methods. To mitigate the influence, two groups of methods have been proposed for different aims, i.e., the global methods and the personalized methods. The former are aimed to improve the performance of a single global model for all test data from unseen centers (known as generic data); while the latter target multiple models for each center (denoted as local data). However, little has been researched to achieve both goals simultaneously. In this work, we propose a new framework of distributed learning that bridges the gap between two groups, and improves the performance for both generic and local data. Specifically, our method decouples the predictions for generic data and local data, via distribution-conditioned adaptation matrices. Results on multi-center left atrial (LA) MRI segmentation showed that our method demonstrated superior performance over existing methods on both generic and local data. Our code is available at https://github.com/key1589745/decouple_predict
2,237
Response to: Significance and stability of deep learning-based identification of subtypes within major psychiatric disorders. Molecular Psychiatry (2022)
Recently, Winter and Hahn [1] commented on our work on identifying subtypes of major psychiatry disorders (MPDs) based on neurobiological features using machine learning [2]. They questioned the generalizability of our methods and the statistical significance, stability, and overfitting of the results, and proposed a pipeline for disease subtyping. We appreciate their earnest consideration of our work, however, we need to point out their misconceptions of basic machine-learning concepts and delineate some key issues involved.
2,238
MAREO: Memory- and Attention- based visual REasOning
Humans continue to vastly outperform modern AI systems in their ability to parse and understand complex visual scenes flexibly. Attention and memory are two systems known to play a critical role in our ability to selectively maintain and manipulate behaviorally-relevant visual information to solve some of the most challenging visual reasoning tasks. Here, we present a novel architecture for visual reasoning inspired by the cognitive-science literature on visual reasoning, the Memory- and Attention-based (visual) REasOning (MAREO) architecture. MAREO instantiates an active-vision theory, which posits that the brain solves complex visual reasoning problems compositionally by learning to combine previously-learned elementary visual operations to form more complex visual routines. MAREO learns to solve visual reasoning tasks via sequences of attention shifts to route and maintain task-relevant visual information into a memory bank via a multi-head transformer module. Visual routines are then deployed by a dedicated reasoning module trained to judge various relations between objects in the scenes. Experiments on four types of reasoning tasks demonstrate MAREO's ability to learn visual routines in a robust and sample-efficient manner.
2,239
A bio-inspired implementation of a sparse-learning spike-based hippocampus memory model
The nervous system, more specifically, the brain, is capable of solving complex problems simply and efficiently, far surpassing modern computers. In this regard, neuromorphic engineering is a research field that focuses on mimicking the basic principles that govern the brain in order to develop systems that achieve such computational capabilities. Within this field, bio-inspired learning and memory systems are still a challenge to be solved, and this is where the hippocampus is involved. It is the region of the brain that acts as a short-term memory, allowing the learning and unstructured and rapid storage of information from all the sensory nuclei of the cerebral cortex and its subsequent recall. In this work, we propose a novel bio-inspired memory model based on the hippocampus with the ability to learn memories, recall them from a cue (a part of the memory associated with the rest of the content) and even forget memories when trying to learn others with the same cue. This model has been implemented on the SpiNNaker hardware platform using Spiking Neural Networks, and a set of experiments and tests were performed to demonstrate its correct and expected operation. The proposed spike-based memory model generates spikes only when it receives an input, being energy efficient, and it needs 7 timesteps for the learning step and 6 timesteps for recalling a previously-stored memory. This work presents the first hardware implementation of a fully functional bio-inspired spike-based hippocampus memory model, paving the road for the development of future more complex neuromorphic systems.
2,240
Offline Stochastic Shortest Path: Learning, Evaluation and Towards Optimality
Goal-oriented Reinforcement Learning, where the agent needs to reach the goal state while simultaneously minimizing the cost, has received significant attention in real-world applications. Its theoretical formulation, stochastic shortest path (SSP), has been intensively researched in the online setting. Nevertheless, it remains understudied when such an online interaction is prohibited and only historical data is provided. In this paper, we consider the offline stochastic shortest path problem when the state space and the action space are finite. We design the simple value iteration-based algorithms for tackling both offline policy evaluation (OPE) and offline policy learning tasks. Notably, our analysis of these simple algorithms yields strong instance-dependent bounds which can imply worst-case bounds that are near-minimax optimal. We hope our study could help illuminate the fundamental statistical limits of the offline SSP problem and motivate further studies beyond the scope of current consideration.
2,241
Fisher SAM: Information Geometry and Sharpness Aware Minimisation
Recent sharpness-aware minimisation (SAM) is known to find flat minima which is beneficial for better generalisation with improved robustness. SAM essentially modifies the loss function by reporting the maximum loss value within the small neighborhood around the current iterate. However, it uses the Euclidean ball to define the neighborhood, which can be inaccurate since loss functions for neural networks are typically defined over probability distributions (e.g., class predictive probabilities), rendering the parameter space non Euclidean. In this paper we consider the information geometry of the model parameter space when defining the neighborhood, namely replacing SAM's Euclidean balls with ellipsoids induced by the Fisher information. Our approach, dubbed Fisher SAM, defines more accurate neighborhood structures that conform to the intrinsic metric of the underlying statistical manifold. For instance, SAM may probe the worst-case loss value at either a too nearby or inappropriately distant point due to the ignorance of the parameter space geometry, which is avoided by our Fisher SAM. Another recent Adaptive SAM approach stretches/shrinks the Euclidean ball in accordance with the scale of the parameter magnitudes. This might be dangerous, potentially destroying the neighborhood structure. We demonstrate improved performance of the proposed Fisher SAM on several benchmark datasets/tasks.
2,242
NAGphormer: Neighborhood Aggregation Graph Transformer for Node Classification in Large Graphs
Graph Transformers have demonstrated superiority on various graph learning tasks in recent years. However, the complexity of existing Graph Transformers scales quadratically with the number of nodes, making it hard to scale to graphs with thousands of nodes. To this end, we propose a Neighborhood Aggregation Graph Transformer (NAGphormer) that is scalable to large graphs with millions of nodes. Before feeding the node features into the Transformer model, NAGphormer constructs tokens for each node by a neighborhood aggregation module called Hop2Token. For each node, Hop2Token aggregates neighborhood features from each hop into a representation, and thereby produces a sequence of token vectors. Subsequently, the resulting sequence of different hop information serves as input to the Transformer model. By considering each node as a sequence, NAGphormer could be trained in a mini-batch manner and thus could scale to large graphs. NAGphormer further develops an attention-based readout function so as to learn the importance of each hop adaptively. We conduct extensive experiments on various popular benchmarks, including six small datasets and three large datasets. The results demonstrate that NAGphormer consistently outperforms existing Graph Transformers and mainstream Graph Neural Networks.
2,243
Dynamic stability of power grids -- new datasets for Graph Neural Networks
One of the key challenges for the success of the energy transition towards renewable energies is the analysis of the dynamic stability of power grids. However, dynamic solutions are intractable and exceedingly expensive for large grids. Graph Neural Networks (GNNs) are a promising method to reduce the computational effort of predicting dynamic stability of power grids, however datasets of appropriate complexity and size do not yet exist. We introduce two new datasets of synthetically generated power grids. For each grid, the dynamic stability has been estimated using Monte-Carlo simulations. The datasets have 10 times more grids than previously published. To evaluate the potential for real-world applications, we demonstrate the successful prediction on a Texan power grid model. The performance can be improved to surprisingly high levels by training more complex models on more data. Furthermore, the investigated grids have different sizes, enabling the application of out-of-distribution evaluation and transfer learning from a small to a large domain. We invite the community to improve our benchmark models and thus aid the energy transition with better tools.
2,244
Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers
Complex time-varying systems are often studied by abstracting away from the dynamics of individual components to build a model of the population-level dynamics from the start. However, when building a population-level description, it can be easy to lose sight of each individual and how each contributes to the larger picture. In this paper, we present a novel transformer architecture for learning from time-varying data that builds descriptions of both the individual as well as the collective population dynamics. Rather than combining all of our data into our model at the onset, we develop a separable architecture that operates on individual time-series first before passing them forward; this induces a permutation-invariance property and can be used to transfer across systems of different size and order. After demonstrating that our model can be applied to successfully recover complex interactions and dynamics in many-body systems, we apply our approach to populations of neurons in the nervous system. On neural activity datasets, we show that our multi-scale transformer not only yields robust decoding performance, but also provides impressive performance in transfer. Our results show that it is possible to learn from neurons in one animal's brain and transfer the model on neurons in a different animal's brain, with interpretable neuron correspondence across sets and animals. This finding opens up a new path to decode from and represent large collections of neurons.
2,245
Learning to Estimate Shapley Values with Vision Transformers
Transformers have become a default architecture in computer vision, but understanding what drives their predictions remains a challenging problem. Current explanation approaches rely on attention values or input gradients, but these give a limited understanding of a model's dependencies. Shapley values offer a theoretically sound alternative, but their computational cost makes them impractical for large, high-dimensional models. In this work, we aim to make Shapley values practical for vision transformers (ViTs). To do so, we first leverage an attention masking approach to evaluate ViTs with partial information, and we then develop a procedure for generating Shapley value explanations via a separate, learned explainer model. Our experiments compare Shapley values to many baseline methods (e.g., attention rollout, GradCAM, LRP), and we find that our approach provides more accurate explanations than any existing method for ViTs.
2,246
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Learning heterogeneous treatment effects (HTEs) is an important problem across many fields. Most existing methods consider the setting with a single treatment arm and a single outcome metric. However, in many real world domains, experiments are run consistently - for example, in internet companies, A/B tests are run every day to measure the impacts of potential changes across many different metrics of interest. We show that even if an analyst cares only about the HTEs in one experiment for one metric, precision can be improved greatly by analyzing all of the data together to take advantage of cross-experiment and cross-outcome metric correlations. We formalize this idea in a tensor factorization framework and propose a simple and scalable model which we refer to as the low rank or LR-learner. Experiments in both synthetic and real data suggest that the LR-learner can be much more precise than independent HTE estimation.
2,247
Out of Sight, Out of Mind: A Source-View-Wise Feature Aggregation for Multi-View Image-Based Rendering
To estimate the volume density and color of a 3D point in the multi-view image-based rendering, a common approach is to inspect the consensus existence among the given source image features, which is one of the informative cues for the estimation procedure. To this end, most of the previous methods utilize equally-weighted aggregation features. However, this could make it hard to check the consensus existence when some outliers, which frequently occur by occlusions, are included in the source image feature set. In this paper, we propose a novel source-view-wise feature aggregation method, which facilitates us to find out the consensus in a robust way by leveraging local structures in the feature set. We first calculate the source-view-wise distance distribution for each source feature for the proposed aggregation. After that, the distance distribution is converted to several similarity distributions with the proposed learnable similarity mapping functions. Finally, for each element in the feature set, the aggregation features are extracted by calculating the weighted means and variances, where the weights are derived from the similarity distributions. In experiments, we validate the proposed method on various benchmark datasets, including synthetic and real image scenes. The experimental results demonstrate that incorporating the proposed features improves the performance by a large margin, resulting in the state-of-the-art performance.
2,248
Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model
Current architectures for multi-modality tasks such as visual question answering suffer from their high complexity. As a result, these architectures are difficult to train and require high computational resources. To address these problems we present a CLIP-based architecture that does not require any fine-tuning of the feature extractors. A simple linear classifier is used on the concatenated features of the image and text encoder. During training an auxiliary loss is added which operates on the answer types. The resulting classification is then used as an attention gate on the answer class selection. On the VizWiz 2022 Visual Question Answering Challenge we achieve 60.15 % accuracy on Task 1: Predict Answer to a Visual Question and AP score of 83.78 % on Task 2: Predict Answerability of a Visual Question.
2,249
Provable Guarantees for Sparsity Recovery with Deterministic Missing Data Patterns
We study the problem of consistently recovering the sparsity pattern of a regression parameter vector from correlated observations governed by deterministic missing data patterns using Lasso. We consider the case in which the observed dataset is censored by a deterministic, non-uniform filter. Recovering the sparsity pattern in datasets with deterministic missing structure can be arguably more challenging than recovering in a uniformly-at-random scenario. In this paper, we propose an efficient algorithm for missing value imputation by utilizing the topological property of the censorship filter. We then provide novel theoretical results for exact recovery of the sparsity pattern using the proposed imputation strategy. Our analysis shows that, under certain statistical and topological conditions, the hidden sparsity pattern can be recovered consistently with high probability in polynomial time and logarithmic sample complexity.
2,250
Explaining Neural Networks without Access to Training Data
We consider generating explanations for neural networks in cases where the network's training data is not accessible, for instance due to privacy or safety issues. Recently, $\mathcal{I}$-Nets have been proposed as a sample-free approach to post-hoc, global model interpretability that does not require access to training data. They formulate interpretation as a machine learning task that maps network representations (parameters) to a representation of an interpretable function. In this paper, we extend the $\mathcal{I}$-Net framework to the cases of standard and soft decision trees as surrogate models. We propose a suitable decision tree representation and design of the corresponding $\mathcal{I}$-Net output layers. Furthermore, we make $\mathcal{I}$-Nets applicable to real-world tasks by considering more realistic distributions when generating the $\mathcal{I}$-Net's training data. We empirically evaluate our approach against traditional global, post-hoc interpretability approaches and show that it achieves superior results when the training data is not accessible.
2,251
Adversarial Counterfactual Environment Model Learning
A good model for action-effect prediction, named environment model, is important to achieve sample-efficient decision-making policy learning in many domains like robot control, recommender systems, and patients' treatment selection. We can take unlimited trials with such a model to identify the appropriate actions so that the costs of queries in the real world can be saved. It requires the model to handle unseen data correctly, also called counterfactual data. However, standard data fitting techniques do not automatically achieve such generalization ability and commonly result in unreliable models. In this work, we introduce counterfactual-query risk minimization (CQRM) in model learning for generalizing to a counterfactual dataset queried by a specific target policy. Since the target policies can be various and unknown in policy learning, we propose an adversarial CQRM objective in which the model learns on counterfactual data queried by adversarial policies, and finally derive a tractable solution GALILEO. We also discover that adversarial CQRM is closely related to the adversarial model learning, explaining the effectiveness of the latter. We apply GALILEO in synthetic tasks and a real-world application. The results show that GALILEO makes accurate predictions on counterfactual data and thus significantly improves policies in real-world testing.
2,252
Deep Leakage from Model in Federated Learning
Distributed machine learning has been widely used in recent years to tackle the large and complex dataset problem. Therewith, the security of distributed learning has also drawn increasing attentions from both academia and industry. In this context, federated learning (FL) was developed as a "secure" distributed learning by maintaining private training data locally and only public model gradients are communicated between. However, to date, a variety of gradient leakage attacks have been proposed for this procedure and prove that it is insecure. For instance, a common drawback of these attacks is shared: they require too much auxiliary information such as model weights, optimizers, and some hyperparameters (e.g., learning rate), which are difficult to obtain in real situations. Moreover, many existing algorithms avoid transmitting model gradients in FL and turn to sending model weights, such as FedAvg, but few people consider its security breach. In this paper, we present two novel frameworks to demonstrate that transmitting model weights is also likely to leak private local data of clients, i.e., (DLM and DLM+), under the FL scenario. In addition, a number of experiments are performed to illustrate the effect and generality of our attack frameworks. At the end of this paper, we also introduce two defenses to the proposed attacks and evaluate their protection effects. Comprehensively, the proposed attack and defense schemes can be applied to the general distributed learning scenario as well, just with some appropriate customization.
2,253
$\mathsf{G^2Retro}$: Two-Step Graph Generative Models for Retrosynthesis Prediction
Retrosynthesis is a procedure where a molecule is transformed into potential reactants and thus the synthesis routes are identified. We propose a novel generative framework, denoted as $\mathsf{G^2Retro}$, for one-step retrosynthesis prediction. $\mathsf{G^2Retro}$ imitates the reversed logic of synthetic reactions, that is, first predicting the reaction centers to convert the target molecule into fragments named synthons, and then transforming synthons into reactants, following previous semi-template-based methods. In predicting reaction centers, $\mathsf{G^2Retro}$ defines a comprehensive set of reaction center types, and enables diversity in the predicted reactions by considering multiple reaction center candidates. In completing synthons, $\mathsf{G^2Retro}$ deploys a sequence of substructure attachments to transform synthons into reactants, which utilize a holistic view of the most updated structures of the synthons to be completed, as well as all the involved synthon and product structures. Here we show that $\mathsf{G^2Retro}$ is able to better prioritize the most possible reactants in the benchmark dataset than the state-of-the-art methods, and discover novel and highly likely reactions that are not included in the benchmark dataset.
2,254
Efficient Per-Shot Convex Hull Prediction By Recurrent Learning
Adaptive video streaming relies on the construction of efficient bitrate ladders to deliver the best possible visual quality to viewers under bandwidth constraints. The traditional method of content dependent bitrate ladder selection requires a video shot to be pre-encoded with multiple encoding parameters to find the optimal operating points given by the convex hull of the resulting rate-quality curves. However, this pre-encoding step is equivalent to an exhaustive search process over the space of possible encoding parameters, which causes significant overhead in terms of both computation and time expenditure. To reduce this overhead, we propose a deep learning based method of content aware convex hull prediction. We employ a recurrent convolutional network (RCN) to implicitly analyze the spatiotemporal complexity of video shots in order to predict their convex hulls. A two-step transfer learning scheme is adopted to train our proposed RCN-Hull model, which ensures sufficient content diversity to analyze scene complexity, while also making it possible capture the scene statistics of pristine source videos. Our experimental results reveal that our proposed model yields better approximations of the optimal convex hulls, and offers competitive time savings as compared to existing approaches. On average, the pre-encoding time was reduced by 58.0% by our method, while the average Bjontegaard delta bitrate (BD-rate) of the predicted convex hulls against ground truth was 0.08%, while the mean absolute deviation of the BD-rate distribution was 0.44%
2,255
Imitation Learning via Differentiable Physics
Existing imitation learning (IL) methods such as inverse reinforcement learning (IRL) usually have a double-loop training process, alternating between learning a reward function and a policy and tend to suffer long training time and high variance. In this work, we identify the benefits of differentiable physics simulators and propose a new IL method, i.e., Imitation Learning via Differentiable Physics (ILD), which gets rid of the double-loop design and achieves significant improvements in final performance, convergence speed, and stability. The proposed ILD incorporates the differentiable physics simulator as a physics prior into its computational graph for policy learning. It unrolls the dynamics by sampling actions from a parameterized policy, simply minimizing the distance between the expert trajectory and the agent trajectory, and back-propagating the gradient into the policy via temporal physics operators. With the physics prior, ILD policies can not only be transferable to unseen environment specifications but also yield higher final performance on a variety of tasks. In addition, ILD naturally forms a single-loop structure, which significantly improves the stability and training speed. To simplify the complex optimization landscape induced by temporal physics operations, ILD dynamically selects the learning objectives for each state during optimization. In our experiments, we show that ILD outperforms state-of-the-art methods in a variety of continuous control tasks with Brax, requiring only one expert demonstration. In addition, ILD can be applied to challenging deformable object manipulation tasks and can be generalized to unseen configurations.
2,256
Multi-fidelity Hierarchical Neural Processes
Science and engineering fields use computer simulation extensively. These simulations are often run at multiple levels of sophistication to balance accuracy and efficiency. Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs. Cheap data generated from low-fidelity simulators can be combined with limited high-quality data generated by an expensive high-fidelity simulator. Existing methods based on Gaussian processes rely on strong assumptions of the kernel functions and can hardly scale to high-dimensional settings. We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling. MF-HNP inherits the flexibility and scalability of Neural Processes. The latent variables transform the correlations among different fidelity levels from observations to latent space. The predictions across fidelities are conditionally independent given the latent states. It helps alleviate the error propagation issue in existing methods. MF-HNP is flexible enough to handle non-nested high dimensional data at different fidelity levels with varying input and output dimensions. We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation. In contrast to deep Gaussian Processes with only low-dimensional (< 10) tasks, our method shows great promise for speeding up high-dimensional complex simulations (over 7000 for epidemiology modeling and 45000 for climate modeling).
2,257
Binarizing Split Learning for Data Privacy Enhancement and Computation Reduction
Split learning (SL) enables data privacy preservation by allowing clients to collaboratively train a deep learning model with the server without sharing raw data. However, SL still has limitations such as potential data privacy leakage and high computation at clients. In this study, we propose to binarize the SL local layers for faster computation (up to 17.5 times less forward-propagation time in both training and inference phases on mobile devices) and reduced memory usage (up to 32 times less memory and bandwidth requirements). More importantly, the binarized SL (B-SL) model can reduce privacy leakage from SL smashed data with merely a small degradation in model accuracy. To further enhance the privacy preservation, we also propose two novel approaches: 1) training with additional local leak loss and 2) applying differential privacy, which could be integrated separately or concurrently into the B-SL model. Experimental results with different datasets have affirmed the advantages of the B-SL models compared with several benchmark models. The effectiveness of B-SL models against feature-space hijacking attack (FSHA) is also illustrated. Our results have demonstrated B-SL models are promising for lightweight IoT/mobile applications with high privacy-preservation requirements such as mobile healthcare applications.
2,258
Symbolic image detection using scene and knowledge graphs
Sometimes the meaning conveyed by images goes beyond the list of objects they contain; instead, images may express a powerful message to affect the viewers' minds. Inferring this message requires reasoning about the relationships between the objects, and general common-sense knowledge about the components. In this paper, we use a scene graph, a graph representation of an image, to capture visual components. In addition, we generate a knowledge graph using facts extracted from ConceptNet to reason about objects and attributes. To detect the symbols, we propose a neural network framework named SKG-Sym. The framework first generates the representations of the scene graph of the image and its knowledge graph using Graph Convolution Network. The framework then fuses the representations and uses an MLP to classify them. We extend the network further to use an attention mechanism which learn the importance of the graph representations. We evaluate our methods on a dataset of advertisements, and compare it with baseline symbolism classification methods (ResNet and VGG). Results show that our methods outperform ResNet in terms of F-score and the attention-based mechanism is competitive with VGG while it has much lower model complexity.
2,259
Conformal Prediction Intervals for Markov Decision Process Trajectories
Before delegating a task to an autonomous system, a human operator may want a guarantee about the behavior of the system. This paper extends previous work on conformal prediction for functional data and conformalized quantile regression to provide conformal prediction intervals over the future behavior of an autonomous system executing a fixed control policy on a Markov Decision Process (MDP). The prediction intervals are constructed by applying conformal corrections to prediction intervals computed by quantile regression. The resulting intervals guarantee that with probability $1-\delta$ the observed trajectory will lie inside the prediction interval, where the probability is computed with respect to the starting state distribution and the stochasticity of the MDP. The method is illustrated on MDPs for invasive species management and StarCraft2 battles.
2,260
Mixed integer linear optimization formulations for learning optimal binary classification trees
Decision trees are powerful tools for classification and regression that attract many researchers working in the burgeoning area of machine learning. One advantage of decision trees over other methods is their interpretability, which is often preferred over other higher accuracy methods that are relatively uninterpretable. A binary classification tree has two types of vertices: (i) branching vertices which have exactly two children and where datapoints are assessed on a set of discrete features; and (ii) leaf vertices at which datapoints are given a discrete prediction. An optimal binary classification tree can be obtained by solving a biobjective optimization problem that seeks to (i) maximize the number of correctly classified datapoints and (ii) minimize the number of branching vertices. In this paper, we propose four mixed integer linear optimization (MILO) formulations for designing optimal binary classification trees: two flow-based formulations and two-cut based formulations. We provide theoretical comparisons between our proposed formulations and the strongest flow-based MILO formulation of Aghaei et al. (2021). We conduct experiments on 13 publicly available datasets to show the models' ability to scale and the strength of a biobjective approach using Pareto frontiers. Our code and data are available on GitHub.
2,261
Beyond the Gates of Euclidean Space: Temporal-Discrimination-Fusions and Attention-based Graph Neural Network for Human Activity Recognition
Human activity recognition (HAR) through wearable devices has received much interest due to its numerous applications in fitness tracking, wellness screening, and supported living. As a result, we have seen a great deal of work in this field. Traditional deep learning (DL) has set a state of the art performance for HAR domain. However, it ignores the data's structure and the association between consecutive time stamps. To address this constraint, we offer an approach based on Graph Neural Networks (GNNs) for structuring the input representation and exploiting the relations among the samples. However, even when using a simple graph convolution network to eliminate this shortage, there are still several limiting factors, such as inter-class activities issues, skewed class distribution, and a lack of consideration for sensor data priority, all of which harm the HAR model's performance. To improve the current HAR model's performance, we investigate novel possibilities within the framework of graph structure to achieve highly discriminated and rich activity features. We propose a model for (1) time-series-graph module that converts raw data from HAR dataset into graphs; (2) Graph Convolutional Neural Networks (GCNs) to discover local dependencies and correlations between neighboring nodes; and (3) self-attention GNN encoder to identify sensors interactions and data priorities. To the best of our knowledge, this is the first work for HAR, which introduces a GNN-based approach that incorporates both the GCN and the attention mechanism. By employing a uniform evaluation method, our framework significantly improves the performance on hospital patient's activities dataset comparatively considered other state of the art baseline methods.
2,262
Neural Laplace: Learning diverse classes of differential equations in the Laplace domain
Neural Ordinary Differential Equations model dynamical systems with ODEs learned by neural networks. However, ODEs are fundamentally inadequate to model systems with long-range dependencies or discontinuities, which are common in engineering and biological systems. Broader classes of differential equations (DE) have been proposed as remedies, including delay differential equations and integro-differential equations. Furthermore, Neural ODE suffers from numerical instability when modelling stiff ODEs and ODEs with piecewise forcing functions. In this work, we propose Neural Laplace, a unified framework for learning diverse classes of DEs including all the aforementioned ones. Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials. To make learning more efficient, we use the geometrical stereographic map of a Riemann sphere to induce more smoothness in the Laplace domain. In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs, including the ones with complex history dependency and abrupt changes.
2,263
Hierarchical mixtures of Gaussians for combined dimensionality reduction and clustering
To avoid the curse of dimensionality, a common approach to clustering high-dimensional data is to first project the data into a space of reduced dimension, and then cluster the projected data. Although effective, this two-stage approach prevents joint optimization of the dimensionality-reduction and clustering models, and obscures how well the complete model describes the data. Here, we show how a family of such two-stage models can be combined into a single, hierarchical model that we call a hierarchical mixture of Gaussians (HMoG). An HMoG simultaneously captures both dimensionality-reduction and clustering, and its performance is quantified in closed-form by the likelihood function. By formulating and extending existing models with exponential family theory, we show how to maximize the likelihood of HMoGs with expectation-maximization. We apply HMoGs to synthetic data and RNA sequencing data, and demonstrate how they exceed the limitations of two-stage models. Ultimately, HMoGs are a rigorous generalization of a common statistical framework, and provide researchers with a method to improve model performance when clustering high-dimensional data.
2,264
A Correlation-Ratio Transfer Learning and Variational Stein's Paradox
A basic condition for efficient transfer learning is the similarity between a target model and source models. In practice, however, the similarity condition is difficult to meet or is even violated. Instead of the similarity condition, a brand-new strategy, linear correlation-ratio, is introduced in this paper to build an accurate relationship between the models. Such a correlation-ratio can be easily estimated by historical data or a part of sample. Then, a correlation-ratio transfer learning likelihood is established based on the correlation-ratio combination. On the practical side, the new framework is applied to some application scenarios, especially the areas of data streams and medical studies. Methodologically, some techniques are suggested for transferring the information from simple source models to a relatively complex target model. Theoretically, some favorable properties, including the global convergence rate, are achieved, even for the case where the source models are not similar to the target model. All in all, it can be seen from the theories and experimental results that the inference on the target model is significantly improved by the information from similar or dissimilar source models. In other words, a variational Stein's paradox is illustrated in the context of transfer learning.
2,265
In Defense of Core-set: A Density-aware Core-set Selection for Active Learning
Active learning enables the efficient construction of a labeled dataset by labeling informative samples from an unlabeled dataset. In a real-world active learning scenario, considering the diversity of the selected samples is crucial because many redundant or highly similar samples exist. Core-set approach is the promising diversity-based method selecting diverse samples based on the distance between samples. However, the approach poorly performs compared to the uncertainty-based approaches that select the most difficult samples where neural models reveal low confidence. In this work, we analyze the feature space through the lens of the density and, interestingly, observe that locally sparse regions tend to have more informative samples than dense regions. Motivated by our analysis, we empower the core-set approach with the density-awareness and propose a density-aware core-set (DACS). The strategy is to estimate the density of the unlabeled samples and select diverse samples mainly from sparse regions. To reduce the computational bottlenecks in estimating the density, we also introduce a new density approximation based on locality-sensitive hashing. Experimental results clearly demonstrate the efficacy of DACS in both classification and regression tasks and specifically show that DACS can produce state-of-the-art performance in a practical scenario. Since DACS is weakly dependent on neural architectures, we present a simple yet effective combination method to show that the existing methods can be beneficially combined with DACS.
2,266
Communication Efficient Distributed Learning for Kernelized Contextual Bandits
We tackle the communication efficiency challenge of learning kernelized contextual bandits in a distributed setting. Despite the recent advances in communication-efficient distributed bandit learning, existing solutions are restricted to simple models like multi-armed bandits and linear bandits, which hamper their practical utility. In this paper, instead of assuming the existence of a linear reward mapping from the features to the expected rewards, we consider non-linear reward mappings, by letting agents collaboratively search in a reproducing kernel Hilbert space (RKHS). This introduces significant challenges in communication efficiency as distributed kernel learning requires the transfer of raw data, leading to a communication cost that grows linearly w.r.t. time horizon $T$. We addresses this issue by equipping all agents to communicate via a common Nystr\"{o}m embedding that gets updated adaptively as more data points are collected. We rigorously proved that our algorithm can attain sub-linear rate in both regret and communication cost.
2,267
Training Neural Networks using SAT solvers
We propose an algorithm to explore the global optimization method, using SAT solvers, for training a neural net. Deep Neural Networks have achieved great feats in tasks like-image recognition, speech recognition, etc. Much of their success can be attributed to the gradient-based optimisation methods, which scale well to huge datasets while still giving solutions, better than any other existing methods. However, there exist learning problems like the parity function and the Fast Fourier Transform, where a neural network using gradient-based optimisation algorithm can not capture the underlying structure of the learning task properly. Thus, exploring global optimisation methods is of utmost interest as the gradient-based methods get stuck in local optima. In the experiments, we demonstrate the effectiveness of our algorithm against the ADAM optimiser in certain tasks like parity learning. However, in the case of image classification on the MNIST Dataset, the performance of our algorithm was less than satisfactory. We further discuss the role of the size of the training dataset and the hyper-parameter settings in keeping things scalable for a SAT solver.
2,268
The Slingshot Mechanism: An Empirical Study of Adaptive Optimizers and the Grokking Phenomenon
The grokking phenomenon as reported by Power et al. ( arXiv:2201.02177 ) refers to a regime where a long period of overfitting is followed by a seemingly sudden transition to perfect generalization. In this paper, we attempt to reveal the underpinnings of Grokking via a series of empirical studies. Specifically, we uncover an optimization anomaly plaguing adaptive optimizers at extremely late stages of training, referred to as the Slingshot Mechanism. A prominent artifact of the Slingshot Mechanism can be measured by the cyclic phase transitions between stable and unstable training regimes, and can be easily monitored by the cyclic behavior of the norm of the last layers weights. We empirically observe that without explicit regularization, Grokking as reported in ( arXiv:2201.02177 ) almost exclusively happens at the onset of Slingshots, and is absent without it. While common and easily reproduced in more general settings, the Slingshot Mechanism does not follow from any known optimization theories that we are aware of, and can be easily overlooked without an in depth examination. Our work points to a surprising and useful inductive bias of adaptive gradient optimizers at late stages of training, calling for a revised theoretical analysis of their origin.
2,269
Empirical Bayes approach to Truth Discovery problems
When aggregating information from conflicting sources, one's goal is to find the truth. Most real-value \emph{truth discovery} (TD) algorithms try to achieve this goal by estimating the competence of each source and then aggregating the conflicting information by weighing each source's answer proportionally to her competence. However, each of those algorithms requires more than a single source for such estimation and usually does not consider different estimation methods other than a weighted mean. Therefore, in this work we formulate, prove, and empirically test the conditions for an Empirical Bayes Estimator (EBE) to dominate the weighted mean aggregation. Our main result demonstrates that EBE, under mild conditions, can be used as a second step of any TD algorithm in order to reduce the expected error.
2,270
Deep learning-enhanced ensemble-based data assimilation for high-dimensional nonlinear dynamical systems
Data assimilation (DA) is a key component of many forecasting models in science and engineering. DA allows one to estimate better initial conditions using an imperfect dynamical model of the system and noisy/sparse observations available from the system. Ensemble Kalman filter (EnKF) is a DA algorithm that is widely used in applications involving high-dimensional nonlinear dynamical systems. However, EnKF requires evolving large ensembles of forecasts using the dynamical model of the system. This often becomes computationally intractable, especially when the number of states of the system is very large, e.g., for weather prediction. With small ensembles, the estimated background error covariance matrix in the EnKF algorithm suffers from sampling error, leading to an erroneous estimate of the analysis state (initial condition for the next forecast cycle). In this work, we propose hybrid ensemble Kalman filter (H-EnKF), which is applied to a two-layer quasi-geostrophic flow system as a test case. This framework utilizes a pre-trained deep learning-based data-driven surrogate that inexpensively generates and evolves a large data-driven ensemble of the states of the system to accurately compute the background error covariance matrix with less sampling error. The H-EnKF framework estimates a better initial condition without the need for any ad-hoc localization strategies. H-EnKF can be extended to any ensemble-based DA algorithm, e.g., particle filters, which are currently difficult to use for high dimensional systems.
2,271
CrowdWorkSheets: Accounting for Individual and Collective Identities Underlying Crowdsourced Dataset Annotation
Human annotated data plays a crucial role in machine learning (ML) research and development. However, the ethical considerations around the processes and decisions that go into dataset annotation have not received nearly enough attention. In this paper, we survey an array of literature that provides insights into ethical considerations around crowdsourced dataset annotation. We synthesize these insights, and lay out the challenges in this space along two layers: (1) who the annotator is, and how the annotators' lived experiences can impact their annotations, and (2) the relationship between the annotators and the crowdsourcing platforms, and what that relationship affords them. Finally, we introduce a novel framework, CrowdWorkSheets, for dataset developers to facilitate transparent documentation of key decisions points at various stages of the data annotation pipeline: task formulation, selection of annotators, platform and infrastructure choices, dataset analysis and evaluation, and dataset release and maintenance.
2,272
Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream
Online anomaly detection from a data stream is critical for the safety and security of many applications but is facing severe challenges due to complex and evolving data streams from IoT devices and cloud-based infrastructures. Unfortunately, existing approaches fall too short for these challenges; online anomaly detection methods bear the burden of handling the complexity while offline deep anomaly detection methods suffer from the evolving data distribution. This paper presents a framework for online deep anomaly detection, ARCUS, which can be instantiated with any autoencoder-based deep anomaly detection methods. It handles the complex and evolving data streams using an adaptive model pooling approach with two novel techniques: concept-driven inference and drift-aware model pool update; the former detects anomalies with a combination of models most appropriate for the complexity, and the latter adapts the model pool dynamically to fit the evolving data streams. In comprehensive experiments with ten data sets which are both high-dimensional and concept-drifted, ARCUS improved the anomaly detection accuracy of the streaming variants of state-of-the-art autoencoder-based methods and that of the state-of-the-art streaming anomaly detection methods by up to 22% and 37%, respectively.
2,273
Comprehensive Fair Meta-learned Recommender System
In recommender systems, one common challenge is the cold-start problem, where interactions are very limited for fresh users in the systems. To address this challenge, recently, many works introduce the meta-optimization idea into the recommendation scenarios, i.e. learning to learn the user preference by only a few past interaction items. The core idea is to learn global shared meta-initialization parameters for all users and rapidly adapt them into local parameters for each user respectively. They aim at deriving general knowledge across preference learning of various users, so as to rapidly adapt to the future new user with the learned prior and a small amount of training data. However, previous works have shown that recommender systems are generally vulnerable to bias and unfairness. Despite the success of meta-learning at improving the recommendation performance with cold-start, the fairness issues are largely overlooked. In this paper, we propose a comprehensive fair meta-learning framework, named CLOVER, for ensuring the fairness of meta-learned recommendation models. We systematically study three kinds of fairness - individual fairness, counterfactual fairness, and group fairness in the recommender systems, and propose to satisfy all three kinds via a multi-task adversarial learning scheme. Our framework offers a generic training paradigm that is applicable to different meta-learned recommender systems. We demonstrate the effectiveness of CLOVER on the representative meta-learned user preference estimator on three real-world data sets. Empirical results show that CLOVER achieves comprehensive fairness without deteriorating the overall cold-start recommendation performance.
2,274
Building Spatio-temporal Transformers for Egocentric 3D Pose Estimation
Egocentric 3D human pose estimation (HPE) from images is challenging due to severe self-occlusions and strong distortion introduced by the fish-eye view from the head mounted camera. Although existing works use intermediate heatmap-based representations to counter distortion with some success, addressing self-occlusion remains an open problem. In this work, we leverage information from past frames to guide our self-attention-based 3D HPE estimation procedure -- Ego-STAN. Specifically, we build a spatio-temporal Transformer model that attends to semantically rich convolutional neural network-based feature maps. We also propose feature map tokens: a new set of learnable parameters to attend to these feature maps. Finally, we demonstrate Ego-STAN's superior performance on the xR-EgoPose dataset where it achieves a 30.6% improvement on the overall mean per-joint position error, while leading to a 22% drop in parameters compared to the state-of-the-art.
2,275
On the Bias-Variance Characteristics of LIME and SHAP in High Sparsity Movie Recommendation Explanation Tasks
We evaluate two popular local explainability techniques, LIME and SHAP, on a movie recommendation task. We discover that the two methods behave very differently depending on the sparsity of the data set. LIME does better than SHAP in dense segments of the data set and SHAP does better in sparse segments. We trace this difference to the differing bias-variance characteristics of the underlying estimators of LIME and SHAP. We find that SHAP exhibits lower variance in sparse segments of the data compared to LIME. We attribute this lower variance to the completeness constraint property inherent in SHAP and missing in LIME. This constraint acts as a regularizer and therefore increases the bias of the SHAP estimator but decreases its variance, leading to a favorable bias-variance trade-off especially in high sparsity data settings. With this insight, we introduce the same constraint into LIME and formulate a novel local explainabilty framework called Completeness-Constrained LIME (CLIMB) that is superior to LIME and much faster than SHAP.
2,276
ReFace: Real-time Adversarial Attacks on Face Recognition Systems
Deep neural network based face recognition models have been shown to be vulnerable to adversarial examples. However, many of the past attacks require the adversary to solve an input-dependent optimization problem using gradient descent which makes the attack impractical in real-time. These adversarial examples are also tightly coupled to the attacked model and are not as successful in transferring to different models. In this work, we propose ReFace, a real-time, highly-transferable attack on face recognition models based on Adversarial Transformation Networks (ATNs). ATNs model adversarial example generation as a feed-forward neural network. We find that the white-box attack success rate of a pure U-Net ATN falls substantially short of gradient-based attacks like PGD on large face recognition datasets. We therefore propose a new architecture for ATNs that closes this gap while maintaining a 10000x speedup over PGD. Furthermore, we find that at a given perturbation magnitude, our ATN adversarial perturbations are more effective in transferring to new face recognition models than PGD. ReFace attacks can successfully deceive commercial face recognition services in a transfer attack setting and reduce face identification accuracy from 82% to 16.4% for AWS SearchFaces API and Azure face verification accuracy from 91% to 50.1%.
2,277
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations
Offline reinforcement learning has shown great promise in leveraging large pre-collected datasets for policy learning, allowing agents to forgo often-expensive online data collection. However, to date, offline reinforcement learning from has been relatively under-explored, and there is a lack of understanding of where the remaining challenges lie. In this paper, we seek to establish simple baselines for continuous control in the visual domain. We show that simple modifications to two state-of-the-art vision-based online reinforcement learning algorithms, DreamerV2 and DrQ-v2, suffice to outperform prior work and establish a competitive baseline. We rigorously evaluate these algorithms on both existing offline datasets and a new testbed for offline reinforcement learning from visual observations that better represents the data distributions present in real-world offline reinforcement learning problems, and open-source our code and data to facilitate progress in this important domain. Finally, we present and analyze several key desiderata unique to offline RL from visual observations, including visual distractions and visually identifiable changes in dynamics.
2,278
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
We study the problem of learning generalized linear models under adversarial corruptions. We analyze a classical heuristic called the iterative trimmed maximum likelihood estimator which is known to be effective against label corruptions in practice. Under label corruptions, we prove that this simple estimator achieves minimax near-optimal risk on a wide range of generalized linear models, including Gaussian regression, Poisson regression and Binomial regression. Finally, we extend the estimator to the more challenging setting of label and covariate corruptions and demonstrate its robustness and optimality in that setting as well.
2,279
What should AI see? Using the Public's Opinion to Determine the Perception of an AI
Deep neural networks (DNN) have made impressive progress in the interpretation of image data, so that it is conceivable and to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI algorithm should take into account the vulnerability of objects or subjects on the street that ranges from "not at all", e.g. the road itself, to "high vulnerability" of pedestrians. One way to take this into account is to define the cost of confusion of one semantic category with another and use cost-based decision rules for the interpretation of probabilities, which are the output of DNNs. However, it is an open problem how to define the cost structure, who should be in charge to do that, and thereby define what AI-algorithms will actually "see". As one possible answer, we follow a participatory approach and set up an online survey to ask the public to define the cost structure. We present the survey design and the data acquired along with an evaluation that also distinguishes between perspective (car passenger vs. external traffic participant) and gender. Using simulation based $F$-tests, we find highly significant differences between the groups. These differences have consequences on the reliable detection of pedestrians in a safety critical distance to the self-driving car. We discuss the ethical problems that are related to this approach and also discuss the problems emerging from human-machine interaction through the survey from a psychological point of view. Finally, we include comments from industry leaders in the field of AI safety on the applicability of survey based elements in the design of AI functionalities in automated driving.
2,280
Does a Technique for Building Multimodal Representation Matter? -- Comparative Analysis
Creating a meaningful representation by fusing single modalities (e.g., text, images, or audio) is the core concept of multimodal learning. Although several techniques for building multimodal representations have been proven successful, they have not been compared yet. Therefore it has been ambiguous which technique can be expected to yield the best results in a given scenario and what factors should be considered while choosing such a technique. This paper explores the most common techniques for building multimodal data representations -- the late fusion, the early fusion, and the sketch, and compares them in classification tasks. Experiments are conducted on three datasets: Amazon Reviews, MovieLens25M, and MovieLens1M datasets. In general, our results confirm that multimodal representations are able to boost the performance of unimodal models from 0.919 to 0.969 of accuracy on Amazon Reviews and 0.907 to 0.918 of AUC on MovieLens25M. However, experiments on both MovieLens datasets indicate the importance of the meaningful input data to the given task. In this article, we show that the choice of the technique for building multimodal representation is crucial to obtain the highest possible model's performance, that comes with the proper modalities combination. Such choice relies on: the influence that each modality has on the analyzed machine learning (ML) problem; the type of the ML task; the memory constraints while training and predicting phase.
2,281
Joint Entropy Search For Maximally-Informed Bayesian Optimization
Information-theoretic Bayesian optimization techniques have become popular for optimizing expensive-to-evaluate black-box functions due to their non-myopic qualities. Entropy Search and Predictive Entropy Search both consider the entropy over the optimum in the input space, while the recent Max-value Entropy Search considers the entropy over the optimal value in the output space. We propose Joint Entropy Search (JES), a novel information-theoretic acquisition function that considers an entirely new quantity, namely the entropy over the joint optimal probability density over both input and output space. To incorporate this information, we consider the reduction in entropy from conditioning on fantasized optimal input/output pairs. The resulting approach primarily relies on standard GP machinery and removes complex approximations typically associated with information-theoretic methods. With minimal computational overhead, JES shows superior decision-making, and yields state-of-the-art performance for information-theoretic approaches across a wide suite of tasks. As a light-weight approach with superior results, JES provides a new go-to acquisition function for Bayesian optimization.
2,282
Neural Bregman Divergences for Distance Learning
Many metric learning tasks, such as triplet learning, nearest neighbor retrieval, and visualization, are treated primarily as embedding tasks where the ultimate metric is some variant of the Euclidean distance (e.g., cosine or Mahalanobis), and the algorithm must learn to embed points into the pre-chosen space. The study of non-Euclidean geometries or appropriateness is often not explored, which we believe is due to a lack of tools for learning non-Euclidean measures of distance. Under the belief that the use of asymmetric methods in particular have lacked sufficient study, we propose a new approach to learning arbitrary Bergman divergences in a differentiable manner via input convex neural networks. Over a set of both new and previously studied tasks, including asymmetric regression, ranking, and clustering, we demonstrate that our method more faithfully learns divergences than prior Bregman learning approaches. In doing so we obtain the first method for learning neural Bregman divergences and with it inherit the many nice mathematical properties of Bregman divergences, providing the foundation and tooling for better developing and studying asymmetric distance learning.
2,283
Data-Efficient Double-Win Lottery Tickets from Robust Pre-training
Pre-training serves as a broadly adopted starting point for transfer learning on various downstream tasks. Recent investigations of lottery tickets hypothesis (LTH) demonstrate such enormous pre-trained models can be replaced by extremely sparse subnetworks (a.k.a. matching subnetworks) without sacrificing transferability. However, practical security-crucial applications usually pose more challenging requirements beyond standard transfer, which also demand these subnetworks to overcome adversarial vulnerability. In this paper, we formulate a more rigorous concept, Double-Win Lottery Tickets, in which a located subnetwork from a pre-trained model can be independently transferred on diverse downstream tasks, to reach BOTH the same standard and robust generalization, under BOTH standard and adversarial training regimes, as the full pre-trained model can do. We comprehensively examine various pre-training mechanisms and find that robust pre-training tends to craft sparser double-win lottery tickets with superior performance over the standard counterparts. For example, on downstream CIFAR-10/100 datasets, we identify double-win matching subnetworks with the standard, fast adversarial, and adversarial pre-training from ImageNet, at 89.26%/73.79%, 89.26%/79.03%, and 91.41%/83.22% sparsity, respectively. Furthermore, we observe the obtained double-win lottery tickets can be more data-efficient to transfer, under practical data-limited (e.g., 1% and 10%) downstream schemes. Our results show that the benefits from robust pre-training are amplified by the lottery ticket scheme, as well as the data-limited transfer setting. Codes are available at https://github.com/VITA-Group/Double-Win-LTH.
2,284
An Empirical Study on Disentanglement of Negative-free Contrastive Learning
Negative-free contrastive learning has attracted a lot of attention with simplicity and impressive performance for large-scale pretraining. But its disentanglement property remains unexplored. In this paper, we take different negative-free contrastive learning methods to study the disentanglement property of this genre of self-supervised methods empirically. We find the existing disentanglement metrics fail to make meaningful measurements for the high-dimensional representation model so we propose a new disentanglement metric based on Mutual Information between representation and data factors. With the proposed metric, we benchmark the disentanglement property of negative-free contrastive learning for the first time, on both popular synthetic datasets and a real-world dataset CelebA. Our study shows that the investigated methods can learn a well-disentangled subset of representation. We extend the study of the disentangled representation learning to high-dimensional representation space and negative-free contrastive learning for the first time. The implementation of the proposed metric is available at \url{https://github.com/noahcao/disentanglement_lib_med}.
2,285
HDTorch: Accelerating Hyperdimensional Computing with GP-GPUs for Design Space Exploration
HyperDimensional Computing (HDC) as a machine learning paradigm is highly interesting for applications involving continuous, semi-supervised learning for long-term monitoring. However, its accuracy is not yet on par with other Machine Learning (ML) approaches. Frameworks enabling fast design space exploration to find practical algorithms are necessary to make HD computing competitive with other ML techniques. To this end, we introduce HDTorch, an open-source, PyTorch-based HDC library with CUDA extensions for hypervector operations. We demonstrate HDTorch's utility by analyzing four HDC benchmark datasets in terms of accuracy, runtime, and memory consumption, utilizing both classical and online HD training methodologies. We demonstrate average (training)/inference speedups of (111x/68x)/87x for classical/online HD, respectively. Moreover, we analyze the effects of varying hyperparameters on runtime and accuracy. Finally, we demonstrate how HDTorch enables exploration of HDC strategies applied to large, real-world datasets. We perform the first-ever HD training and inference analysis of the entirety of the CHB-MIT EEG epilepsy database. Results show that the typical approach of training on a subset of the data does not necessarily generalize to the entire dataset, an important factor when developing future HD models for medical wearable devices.
2,286
Mildly Conservative Q-Learning for Offline Reinforcement Learning
Offline reinforcement learning (RL) defines the task of learning from a static logged dataset without continually interacting with the environment. The distribution shift between the learned policy and the behavior policy makes it necessary for the value function to stay conservative such that out-of-distribution (OOD) actions will not be severely overestimated. However, existing approaches, penalizing the unseen actions or regularizing with the behavior policy, are too pessimistic, which suppresses the generalization of the value function and hinders the performance improvement. This paper explores mild but enough conservatism for offline learning while not harming generalization. We propose Mildly Conservative Q-learning (MCQ), where OOD actions are actively trained by assigning them proper pseudo Q values. We theoretically show that MCQ induces a policy that behaves at least as well as the behavior policy and no erroneous overestimation will occur for OOD actions. Experimental results on the D4RL benchmarks demonstrate that MCQ achieves remarkable performance compared with prior work. Furthermore, MCQ shows superior generalization ability when transferring from offline to online, and significantly outperforms baselines.
2,287
Strong Memory Lower Bounds for Learning Natural Models
We give lower bounds on the amount of memory required by one-pass streaming algorithms for solving several natural learning problems. In a setting where examples lie in $\{0,1\}^d$ and the optimal classifier can be encoded using $\kappa$ bits, we show that algorithms which learn using a near-minimal number of examples, $\tilde O(\kappa)$, must use $\tilde \Omega( d\kappa)$ bits of space. Our space bounds match the dimension of the ambient space of the problem's natural parametrization, even when it is quadratic in the size of examples and the final classifier. For instance, in the setting of $d$-sparse linear classifiers over degree-2 polynomial features, for which $\kappa=\Theta(d\log d)$, our space lower bound is $\tilde\Omega(d^2)$. Our bounds degrade gracefully with the stream length $N$, generally having the form $\tilde\Omega\left(d\kappa \cdot \frac{\kappa}{N}\right)$. Bounds of the form $\Omega(d\kappa)$ were known for learning parity and other problems defined over finite fields. Bounds that apply in a narrow range of sample sizes are also known for linear regression. Ours are the first such bounds for problems of the type commonly seen in recent learning applications that apply for a large range of input sizes.
2,288
Mobility Improves the Convergence of Asynchronous Federated Learning
This paper studies asynchronous Federated Learning (FL) subject to clients' individual arbitrary communication patterns with the parameter server. We propose FedMobile, a new asynchronous FL algorithm that exploits the mobility attribute of the mobile FL system to improve the learning performance. The key idea is to leverage the random client-to-client communication in a mobile network to create additional indirect communication opportunities with the server via upload and download relaying. We prove that FedMobile achieves a convergence rate $O(\frac{1}{\sqrt{NT}})$, where $N$ is the number of clients and $T$ is the number of communication slots, and show that the optimal design involves an interesting trade-off on the best timing of relaying. Our analysis suggests that with an increased level of mobility, asynchronous FL converges faster using FedMobile. Experiment results on a synthetic dataset and two real-world datasets verify our theoretical findings.
2,289
Quantum Policy Iteration via Amplitude Estimation and Grover Search -- Towards Quantum Advantage for Reinforcement Learning
We present a full implementation and simulation of a novel quantum reinforcement learning (RL) method and mathematically prove a quantum advantage. Our approach shows in detail how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme. We first develop quantum policy evaluation (QPE) which is quadratically more efficient compared to an analogous classical Monte Carlo estimation and is based on a quantum mechanical realization of a finite Markov decision process (MDP). Building on QPE, we derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached. Finally, we present an implementation of our algorithm for a two-armed bandit MDP which we then simulate. The results confirm that QPE provides a quantum advantage in RL problems.
2,290
A Learning-Theoretic Framework for Certified Auditing of Machine Learning Models
Responsible use of machine learning requires that models be audited for undesirable properties. However, how to do principled auditing in a general setting has remained ill-understood. In this paper, we propose a formal learning-theoretic framework for auditing. We propose algorithms for auditing linear classifiers for feature sensitivity using label queries as well as different kinds of explanations, and provide performance guarantees. Our results illustrate that while counterfactual explanations can be extremely helpful for auditing, anchor explanations may not be as beneficial in the worst case.
2,291
I'm Me, We're Us, and I'm Us: Tri-directional Contrastive Learning on Hypergraphs
Although machine learning on hypergraphs has attracted considerable attention, most of the works have focused on (semi-)supervised learning, which may cause heavy labeling costs and poor generalization. Recently, contrastive learning has emerged as a successful unsupervised representation learning method. Despite the prosperous development of contrastive learning in other domains, contrastive learning on hypergraphs remains little explored. In this paper, we propose TriCon (Tri-directional Contrastive learning), a general framework for contrastive learning on hypergraphs. Its main idea is tri-directional contrast, and specifically, it aims to maximize in two augmented views the agreement (a) between the same node, (b) between the same group of nodes, and (c) between each group and its members. Together with simple but surprisingly effective data augmentation and negative sampling schemes, these three forms of contrast enable TriCon to capture both microscopic and mesoscopic structural information in node embeddings. Our extensive experiments using 13 baseline approaches, five datasets, and two tasks demonstrate the effectiveness of TriCon, and most noticeably, TriCon consistently outperforms not just unsupervised competitors but also (semi-)supervised competitors mostly by significant margins for node classification.
2,292
A Novel Partitioned Approach for Reduced Order Model -- Finite Element Model (ROM-FEM) and ROM-ROM Coupling
Partitioned methods allow one to build a simulation capability for coupled problems by reusing existing single-component codes. In so doing, partitioned methods can shorten code development and validation times for multiphysics and multiscale applications. In this work, we consider a scenario in which one or more of the "codes" being coupled are projection-based reduced order models (ROMs), introduced to lower the computational cost associated with a particular component. We simulate this scenario by considering a model interface problem that is discretized independently on two non-overlapping subdomains. We then formulate a partitioned scheme for this problem that allows the coupling between a ROM "code" for one of the subdomains with a finite element model (FEM) or ROM "code" for the other subdomain. The ROM "codes" are constructed by performing proper orthogonal decomposition (POD) on a snapshot ensemble to obtain a low-dimensional reduced order basis, followed by a Galerkin projection onto this basis. The ROM and/or FEM "codes" on each subdomain are then coupled using a Lagrange multiplier representing the interface flux. To partition the resulting monolithic problem, we first eliminate the flux through a dual Schur complement. Application of an explicit time integration scheme to the transformed monolithic problem decouples the subdomain equations, allowing their independent solution for the next time step. We show numerical results that demonstrate the proposed method's efficacy in achieving both ROM-FEM and ROM-ROM coupling.
2,293
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Calculation of Bayesian posteriors and model evidences typically requires numerical integration. Bayesian quadrature (BQ), a surrogate-model-based approach to numerical integration, is capable of superb sample efficiency, but its lack of parallelisation has hindered its practical applications. In this work, we propose a parallelised (batch) BQ method, employing techniques from kernel quadrature, that possesses a provably-exponential convergence rate. Additionally, just as with Nested Sampling, our method permits simultaneous inference of both posteriors and model evidence. Samples from our BQ surrogate model are re-selected to give a sparse set of samples, via a kernel recombination algorithm, requiring negligible additional time to increase the batch size. Empirically, we find that our approach significantly outperforms the sampling efficiency of both state-of-the-art BQ techniques and Nested Sampling in various real-world datasets, including lithium-ion battery analytics.
2,294
AI-MIA: COVID-19 Detection & Severity Analysis through Medical Imaging
This paper presents the baseline approach for the organized 2nd Covid-19 Competition, occurring in the framework of the AIMIA Workshop in the European Conference on Computer Vision (ECCV 2022). It presents the COV19-CT-DB database which is annotated for COVID-19 detction, consisting of about 7,700 3-D CT scans. Part of the database consisting of Covid-19 cases is further annotated in terms of four Covid-19 severity conditions. We have split the database and the latter part of it in training, validation and test datasets. The former two datasets are used for training and validation of machine learning models, while the latter will be used for evaluation of the developed models. The baseline approach consists of a deep learning approach, based on a CNN-RNN network and report its performance on the COVID19-CT-DB database.
2,295
Leveraging Centric Data Federated Learning Using Blockchain For Integrity Assurance
Machine learning abilities have become a vital component for various solutions across industries, applications, and sectors. Many organizations seek to leverage AI-based solutions across their business services to unlock better efficiency and increase productivity. Problems, however, can arise if there is a lack of quality data for AI-model training, scalability, and maintenance. We propose a data-centric federated learning architecture leveraged by a public blockchain and smart contracts to overcome this significant issue. Our proposed solution provides a virtual public marketplace where developers, data scientists, and AI-engineer can publish their models and collaboratively create and access quality data for training. We enhance data quality and integrity through an incentive mechanism that rewards contributors for data contribution and verification. Those combined with the proposed framework helped increase with only one user simulation the training dataset with an average of 100 input daily and the model accuracy by approximately 4\%.
2,296
STNDT: Modeling Neural Population Activity with a Spatiotemporal Transformer
Modeling neural population dynamics underlying noisy single-trial spiking activities is essential for relating neural observation and behavior. A recent non-recurrent method - Neural Data Transformers (NDT) - has shown great success in capturing neural dynamics with low inference latency without an explicit dynamical model. However, NDT focuses on modeling the temporal evolution of the population activity while neglecting the rich covariation between individual neurons. In this paper we introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons in the population across time and space to uncover their underlying firing rates. In addition, we propose a contrastive learning loss that works in accordance with mask modeling objective to further improve the predictive performance. We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets, demonstrating its capability to capture autonomous and non-autonomous dynamics spanning different cortical regions while being completely agnostic to the specific behaviors at hand. Furthermore, STNDT spatial attention mechanism reveals consistently important subsets of neurons that play a vital role in driving the response of the entire population, providing interpretability and key insights into how the population of neurons performs computation.
2,297
COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive Learning
Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA on various downstream tasks. The graph augmentation step is a vital but scarcely studied step of GCL. In this paper, we show that the node embedding obtained via the graph augmentations is highly biased, somewhat limiting contrastive models from learning discriminative features for downstream tasks. Thus, instead of investigating graph augmentation in the input space, we alternatively propose to perform augmentations on the hidden features (feature augmentation). Inspired by so-called matrix sketching, we propose COSTA, a novel COvariance-preServing feaTure space Augmentation framework for GCL, which generates augmented features by maintaining a "good sketch" of original features. To highlight the superiority of feature augmentation with COSTA, we investigate a single-view setting (in addition to multi-view one) which conserves memory and computations. We show that the feature augmentation with COSTA achieves comparable/better results than graph augmentation based models.
2,298
On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data
Existing theory predicts that data heterogeneity will degrade the performance of the Federated Averaging (FedAvg) algorithm in federated learning. However, in practice, the simple FedAvg algorithm converges very well. This paper explains the seemingly unreasonable effectiveness of FedAvg that contradicts the previous theoretical predictions. We find that the key assumption of bounded gradient dissimilarity in previous theoretical analyses is too pessimistic to characterize data heterogeneity in practical applications. For a simple quadratic problem, we demonstrate there exist regimes where large gradient dissimilarity does not have any negative impact on the convergence of FedAvg. Motivated by this observation, we propose a new quantity, average drift at optimum, to measure the effects of data heterogeneity, and explicitly use it to present a new theoretical analysis of FedAvg. We show that the average drift at optimum is nearly zero across many real-world federated training tasks, whereas the gradient dissimilarity can be large. And our new analysis suggests FedAvg can have identical convergence rates in homogeneous and heterogeneous data settings, and hence, leads to better understanding of its empirical success.
2,299
Principal Trade-off Analysis
This paper develops Principal Trade-off Analysis (PTA), a decomposition method, analogous to Principal Component Analysis (PCA), which permits the representation of any game as the weighted sum of disc games (continuous R-P-S games). Applying PTA to empirically generated tournament graphs produces a sequence of embeddings into orthogonal 2D feature planes representing independent strategic trade-offs. Each trade-off generates a mode of cyclic competition. Like PCA, PTA provides optimal low rank estimates of the tournament graphs that can be truncated for approximation. The complexity of cyclic competition can be quantified by computing the number of significant cyclic modes. We illustrate the PTA via application to a pair of games (Blotto, Pokemon). The resulting 2D disc game representations are shown to be well suited for visualization and are easily interpretable. In Blotto, PTA identifies game symmetries, and specifies strategic trade-offs associated with distinct win conditions. For Pokemon, PTA embeddings produce clusters in the embedding space that naturally correspond to Pokemon types, a design in the game that produces cyclic trade offs.