Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
1,600
SATBench: Benchmarking the speed-accuracy tradeoff in object recognition by humans and dynamic neural networks
The core of everyday tasks like reading and driving is active object recognition. Attempts to model such tasks are currently stymied by the inability to incorporate time. People show a flexible tradeoff between speed and accuracy and this tradeoff is a crucial human skill. Deep neural networks have emerged as promising candidates for predicting peak human object recognition performance and neural activity. However, modeling the temporal dimension i.e., the speed-accuracy tradeoff (SAT), is essential for them to serve as useful computational models for how humans recognize objects. To this end, we here present the first large-scale (148 observers, 4 neural networks, 8 tasks) dataset of the speed-accuracy tradeoff (SAT) in recognizing ImageNet images. In each human trial, a beep, indicating the desired reaction time, sounds at a fixed delay after the image is presented, and observer's response counts only if it occurs near the time of the beep. In a series of blocks, we test many beep latencies, i.e., reaction times. We observe that human accuracy increases with reaction time and proceed to compare its characteristics with the behavior of several dynamic neural networks that are capable of inference-time adaptive computation. Using FLOPs as an analog for reaction time, we compare networks with humans on curve-fit error, category-wise correlation, and curve steepness, and conclude that cascaded dynamic neural networks are a promising model of human reaction time in object recognition tasks.
1,601
Learning to Teach Fairness-aware Deep Multi-task Learning
Fairness-aware learning mainly focuses on single task learning (STL). The fairness implications of multi-task learning (MTL) have only recently been considered and a seminal approach has been proposed that considers the fairness-accuracy trade-off for each task and the performance trade-off among different tasks. Instead of a rigid fairness-accuracy trade-off formulation, we propose a flexible approach that learns how to be fair in a MTL setting by selecting which objective (accuracy or fairness) to optimize at each step. We introduce the L2T-FMT algorithm that is a teacher-student network trained collaboratively; the student learns to solve the fair MTL problem while the teacher instructs the student to learn from either accuracy or fairness, depending on what is harder to learn for each task. Moreover, this dynamic selection of which objective to use at each step for each task reduces the number of trade-off weights from 2T to T, where T is the number of tasks. Our experiments on three real datasets show that L2T-FMT improves on both fairness (12-19%) and accuracy (up to 2%) over state-of-the-art approaches.
1,602
Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks
Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.
1,603
Powershap: A Power-full Shapley Feature Selection Method
Feature selection is a crucial step in developing robust and powerful machine learning models. Feature selection techniques can be divided into two categories: filter and wrapper methods. While wrapper methods commonly result in strong predictive performances, they suffer from a large computational complexity and therefore take a significant amount of time to complete, especially when dealing with high-dimensional feature sets. Alternatively, filter methods are considerably faster, but suffer from several other disadvantages, such as (i) requiring a threshold value, (ii) not taking into account intercorrelation between features, and (iii) ignoring feature interactions with the model. To this end, we present powershap, a novel wrapper feature selection method, which leverages statistical hypothesis testing and power calculations in combination with Shapley values for quick and intuitive feature selection. Powershap is built on the core assumption that an informative feature will have a larger impact on the prediction compared to a known random feature. Benchmarks and simulations show that powershap outperforms other filter methods with predictive performances on par with wrapper methods while being significantly faster, often even reaching half or a third of the execution time. As such, powershap provides a competitive and quick algorithm that can be used by various models in different domains. Furthermore, powershap is implemented as a plug-and-play and open-source sklearn component, enabling easy integration in conventional data science pipelines. User experience is even further enhanced by also providing an automatic mode that automatically tunes the hyper-parameters of the powershap algorithm, allowing to use the algorithm without any configuration needed.
1,604
SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation
Adapting to a continuously evolving environment is a safety-critical challenge inevitably faced by all autonomous driving systems. Existing image and video driving datasets, however, fall short of capturing the mutable nature of the real world. In this paper, we introduce the largest multi-task synthetic dataset for autonomous driving, SHIFT. It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density. Featuring a comprehensive sensor suite and annotations for several mainstream perception tasks, SHIFT allows investigating the degradation of a perception system performance at increasing levels of domain shift, fostering the development of continuous adaptation strategies to mitigate this problem and assess model robustness and generality. Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift.
1,605
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
Bayesian Optimization (BO) has shown great promise for the global optimization of functions that are expensive to evaluate, but despite many successes, standard approaches can struggle in high dimensions. To improve the performance of BO, prior work suggested incorporating gradient information into a Gaussian process surrogate of the objective, giving rise to kernel matrices of size $nd \times nd$ for $n$ observations in $d$ dimensions. Na\"ively multiplying with (resp. inverting) these matrices requires $\mathcal{O}(n^2d^2)$ (resp. $\mathcal{O}(n^3d^3$)) operations, which becomes infeasible for moderate dimensions and sample sizes. Here, we observe that a wide range of kernels gives rise to structured matrices, enabling an exact $\mathcal{O}(n^2d)$ matrix-vector multiply for gradient observations and $\mathcal{O}(n^2d^2)$ for Hessian observations. Beyond canonical kernel classes, we derive a programmatic approach to leveraging this type of structure for transformations and combinations of the discussed kernel classes, which constitutes a structure-aware automatic differentiation algorithm. Our methods apply to virtually all canonical kernels and automatically extend to complex kernels, like the neural network, radial basis function network, and spectral mixture kernels without any additional derivations, enabling flexible, problem-dependent modeling while scaling first-order BO to high $d$.
1,606
Interaction-Grounded Learning with Action-inclusive Feedback
Consider the problem setting of Interaction-Grounded Learning (IGL), in which a learner's goal is to optimally interact with the environment with no explicit reward to ground its policies. The agent observes a context vector, takes an action, and receives a feedback vector, using this information to effectively optimize a policy with respect to a latent reward function. Prior analyzed approaches fail when the feedback vector contains the action, which significantly limits IGL's success in many potential scenarios such as Brain-computer interface (BCI) or Human-computer interface (HCI) applications. We address this by creating an algorithm and analysis which allows IGL to work even when the feedback vector contains the action, encoded in any fashion. We provide theoretical guarantees and large-scale experiments based on supervised datasets to demonstrate the effectiveness of the new approach.
1,607
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Estimating personalized effects of treatments is a complex, yet pervasive problem. To tackle it, recent developments in the machine learning (ML) literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools: due to their flexibility, modularity and ability to learn constrained representations, neural networks in particular have become central to this literature. Unfortunately, the assets of such black boxes come at a cost: models typically involve countless nontrivial operations, making it difficult to understand what they have learned. Yet, understanding these models can be crucial -- in a medical context, for example, discovered knowledge on treatment effect heterogeneity could inform treatment prescription in clinical practice. In this work, we therefore use post-hoc feature importance methods to identify features that influence the model's predictions. This allows us to evaluate treatment effect estimators along a new and important dimension that has been overlooked in previous work: We construct a benchmarking environment to empirically investigate the ability of personalized treatment effect models to identify predictive covariates -- covariates that determine differential responses to treatment. Our benchmarking environment then enables us to provide new insight into the strengths and weaknesses of different types of treatment effects models as we modulate different challenges specific to treatment effect estimation -- e.g. the ratio of prognostic to predictive information, the possible nonlinearity of potential outcomes and the presence and type of confounding.
1,608
Is Power-Seeking AI an Existential Risk?
This report examines what I see as the core argument for concern about existential risk from misaligned artificial intelligence. I proceed in two stages. First, I lay out a backdrop picture that informs such concern. On this picture, intelligent agency is an extremely powerful force, and creating agents much more intelligent than us is playing with fire -- especially given that if their objectives are problematic, such agents would plausibly have instrumental incentives to seek power over humans. Second, I formulate and evaluate a more specific six-premise argument that creating agents of this kind will lead to existential catastrophe by 2070. On this argument, by 2070: (1) it will become possible and financially feasible to build relevantly powerful and agentic AI systems; (2) there will be strong incentives to do so; (3) it will be much harder to build aligned (and relevantly powerful/agentic) AI systems than to build misaligned (and relevantly powerful/agentic) AI systems that are still superficially attractive to deploy; (4) some such misaligned systems will seek power over humans in high-impact ways; (5) this problem will scale to the full disempowerment of humanity; and (6) such disempowerment will constitute an existential catastrophe. I assign rough subjective credences to the premises in this argument, and I end up with an overall estimate of ~5% that an existential catastrophe of this kind will occur by 2070. (May 2022 update: since making this report public in April 2021, my estimate here has gone up, and is now at >10%.)
1,609
MixGen: A New Multi-Modal Data Augmentation
Data augmentation is a necessity to enhance data efficiency in deep learning. For vision-language pre-training, data is only augmented either for images or for text in previous works. In this paper, we present MixGen: a joint data augmentation for vision-language representation learning to further improve data efficiency. It generates new image-text pairs with semantic relationships preserved by interpolating images and concatenating text. It's simple, and can be plug-and-played into existing pipelines. We evaluate MixGen on four architectures, including CLIP, ViLT, ALBEF and TCL, across five downstream vision-language tasks to show its versatility and effectiveness. For example, adding MixGen in ALBEF pre-training leads to absolute performance improvements on downstream tasks: image-text retrieval (+6.2% on COCO fine-tuned and +5.3% on Flicker30K zero-shot), visual grounding (+0.9% on RefCOCO+), visual reasoning (+0.9% on NLVR$^{2}$), visual question answering (+0.3% on VQA2.0), and visual entailment (+0.4% on SNLI-VE).
1,610
Spatially-Adaptive Multilayer Selection for GAN Inversion and Editing
Existing GAN inversion and editing methods work well for aligned objects with a clean background, such as portraits and animal faces, but often struggle for more difficult categories with complex scene layouts and object occlusions, such as cars, animals, and outdoor images. We propose a new method to invert and edit such complex images in the latent space of GANs, such as StyleGAN2. Our key idea is to explore inversion with a collection of layers, spatially adapting the inversion process to the difficulty of the image. We learn to predict the "invertibility" of different image segments and project each segment into a latent layer. Easier regions can be inverted into an earlier layer in the generator's latent space, while more challenging regions can be inverted into a later feature space. Experiments show that our method obtains better inversion results compared to the recent approaches on complex categories, while maintaining downstream editability. Please refer to our project page at https://www.cs.cmu.edu/~SAMInversion.
1,611
OmniMAE: Single Model Masked Pretraining on Images and Videos
Transformer-based architectures have become competitive across a variety of visual domains, most notably images and videos. While prior work has studied these modalities in isolation, having a common architecture suggests that one can train a single unified model for multiple visual modalities. Prior attempts at unified modeling typically use architectures tailored for vision tasks, or obtain worse performance compared to single modality models. In this work, we show that masked autoencoding can be used to train a simple Vision Transformer on images and videos, without requiring any labeled data. This single model learns visual representations that are comparable to or better than single-modality representations on both image and video benchmarks, while using a much simpler architecture. In particular, our single pretrained model can be finetuned to achieve 86.5% on ImageNet and 75.3% on the challenging Something Something-v2 video benchmark. Furthermore, this model can be learned by dropping 90% of the image and 95% of the video patches, enabling extremely fast training.
1,612
Towards Understanding How Machines Can Learn Causal Overhypotheses
Recent work in machine learning and cognitive science has suggested that understanding causal information is essential to the development of intelligence. The extensive literature in cognitive science using the ``blicket detector'' environment shows that children are adept at many kinds of causal inference and learning. We propose to adapt that environment for machine learning agents. One of the key challenges for current machine learning algorithms is modeling and understanding causal overhypotheses: transferable abstract hypotheses about sets of causal relationships. In contrast, even young children spontaneously learn and use causal overhypotheses. In this work, we present a new benchmark -- a flexible environment which allows for the evaluation of existing techniques under variable causal overhypotheses -- and demonstrate that many existing state-of-the-art methods have trouble generalizing in this environment. The code and resources for this benchmark are available at https://github.com/CannyLab/casual_overhypotheses.
1,613
Know your audience: specializing grounded language models with the game of Dixit
Effective communication requires adapting to the idiosyncratic common ground shared with each communicative partner. We study a particularly challenging instantiation of this problem: the popular game Dixit. We formulate a round of Dixit as a multi-agent image reference game where a (trained) speaker model is rewarded for describing a target image such that one (pretrained) listener model can correctly identify it from a pool of distractors, but another listener cannot. To adapt to this setting, the speaker must exploit differences in the common ground it shares with the different listeners. We show that finetuning an attention-based adapter between a CLIP vision encoder and a large language model in this contrastive, multi-agent setting gives rise to context-dependent natural language specialization from rewards only, without direct supervision. In a series of controlled experiments, we show that the speaker can adapt according to the idiosyncratic strengths and weaknesses of various pairs of different listeners. Furthermore, we show zero-shot transfer of the speaker's specialization to unseen real-world data. Our experiments offer a step towards adaptive communication in complex multi-partner settings and highlight the interesting research challenges posed by games like Dixit. We hope that our work will inspire creative new approaches to adapting pretrained models.
1,614
iBoot: Image-bootstrapped Self-Supervised Video Representation Learning
Learning visual representations through self-supervision is an extremely challenging task as the network needs to sieve relevant patterns from spurious distractors without the active guidance provided by supervision. This is achieved through heavy data augmentation, large-scale datasets and prohibitive amounts of compute. Video self-supervised learning (SSL) suffers from added challenges: video datasets are typically not as large as image datasets, compute is an order of magnitude larger, and the amount of spurious patterns the optimizer has to sieve through is multiplied several fold. Thus, directly learning self-supervised representations from video data might result in sub-optimal performance. To address this, we propose to utilize a strong image-based model, pre-trained with self- or language supervision, in a video representation learning framework, enabling the model to learn strong spatial and temporal information without relying on the video labeled data. To this end, we modify the typical video-based SSL design and objective to encourage the video encoder to \textit{subsume} the semantic content of an image-based model trained on a general domain. The proposed algorithm is shown to learn much more efficiently (i.e. in less epochs and with a smaller batch) and results in a new state-of-the-art performance on standard downstream tasks among single-modality SSL methods.
1,615
Constrained Submodular Optimization for Vaccine Design
Advances in machine learning have enabled the prediction of immune system responses to prophylactic and therapeutic vaccines. However, the engineering task of designing vaccines remains a challenge. In particular, the genetic variability of the human immune system makes it difficult to design peptide vaccines that provide widespread immunity in vaccinated populations. We introduce a framework for evaluating and designing peptide vaccines that uses probabilistic machine learning models, and demonstrate its ability to produce designs for a SARS-CoV-2 vaccine that outperform previous designs. We provide a theoretical analysis of the approximability, scalability, and complexity of our framework.
1,616
BYOL-Explore: Exploration by Bootstrapped Prediction
We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments. On this benchmark, we solve the majority of the tasks purely through augmenting the extrinsic reward with BYOL-Explore s intrinsic reward, whereas prior work could only get off the ground with human demonstrations. As further evidence of the generality of BYOL-Explore, we show that it achieves superhuman performance on the ten hardest exploration games in Atari while having a much simpler design than other competitive agents.
1,617
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
We propose Compressed Vertical Federated Learning (C-VFL) for communication-efficient training on vertically partitioned data. In C-VFL, a server and multiple parties collaboratively train a model on their respective features utilizing several local iterations and sharing compressed intermediate results periodically. Our work provides the first theoretical analysis of the effect message compression has on distributed training over vertically partitioned data. We prove convergence of non-convex objectives at a rate of $O(\frac{1}{\sqrt{T}})$ when the compression error is bounded over the course of training. We provide specific requirements for convergence with common compression techniques, such as quantization and top-$k$ sparsification. Finally, we experimentally show compression can reduce communication by over $90\%$ without a significant decrease in accuracy over VFL without compression.
1,618
Boosting the Adversarial Transferability of Surrogate Model with Dark Knowledge
Deep neural networks (DNNs) for image classification are known to be vulnerable to adversarial examples. And, the adversarial examples have transferability, which means an adversarial example for a DNN model can fool another black-box model with a non-trivial probability. This gave birth of the transfer-based adversarial attack where the adversarial examples generated by a pretrained or known model (called surrogate model) are used to conduct black-box attack. There are some work on how to generate the adversarial examples from a given surrogate model to achieve better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. In this paper, we propose a method of training a surrogate model with abundant dark knowledge to boost the adversarial transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM), and the proposed method to train DSM consists of two key components: a teacher model extracting dark knowledge and providing soft labels, and the mixing augmentation skill which enhances the dark knowledge of training data. Extensive experiments have been conducted to show that the proposed method can substantially improve the adversarial transferability of surrogate model across different architectures of surrogate model and optimizers for generating adversarial examples. We also show that the proposed method can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification.
1,619
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare by assisting decision-makers to answer ''what-iF'' questions. Existing causal inference approaches typically consider regular, discrete-time intervals between observations and treatment decisions and hence are unable to naturally model irregularly sampled data, which is the common setting in practice. To handle arbitrary observation patterns, we interpret the data as samples from an underlying continuous-time process and propose to model its latent trajectory explicitly using the mathematics of controlled differential equations. This leads to a new approach, the Treatment Effect Neural Controlled Differential Equation (TE-CDE), that allows the potential outcomes to be evaluated at any time point. In addition, adversarial training is used to adjust for time-dependent confounding which is critical in longitudinal settings and is an added challenge not encountered in conventional time-series. To assess solutions to this problem, we propose a controllable simulation environment based on a model of tumor growth for a range of scenarios with irregular sampling reflective of a variety of clinical scenarios. TE-CDE consistently outperforms existing approaches in all simulated scenarios with irregular sampling.
1,620
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
In recent years, deep generative models have attracted increasing interest due to their capacity to model complex distributions. Among those models, variational autoencoders have gained popularity as they have proven both to be computationally efficient and yield impressive results in multiple fields. Following this breakthrough, extensive research has been done in order to improve the original publication, resulting in a variety of different VAE models in response to different tasks. In this paper we present Pythae, a versatile open-source Python library providing both a unified implementation and a dedicated framework allowing straightforward, reproducible and reliable use of generative autoencoder models. We then propose to use this library to perform a case study benchmark where we present and compare 19 generative autoencoder models representative of some of the main improvements on downstream tasks such as image reconstruction, generation, classification, clustering and interpolation. The open-source library can be found at https://github.com/clementchadebec/benchmark_VAE.
1,621
Deepfake histological images for enhancing digital pathology
An optical microscopic examination of thinly cut stained tissue on glass slides prepared from a FFPE tissue blocks is the gold standard for tissue diagnostics. In addition, the diagnostic abilities and expertise of any pathologist is dependent on their direct experience with common as well as rarer variant morphologies. Recently, deep learning approaches have been used to successfully show a high level of accuracy for such tasks. However, obtaining expert-level annotated images is an expensive and time-consuming task and artificially synthesized histological images can prove greatly beneficial. Here, we present an approach to not only generate histological images that reproduce the diagnostic morphologic features of common disease but also provide a user ability to generate new and rare morphologies. Our approach involves developing a generative adversarial network model that synthesizes pathology images constrained by class labels. We investigated the ability of this framework in synthesizing realistic prostate and colon tissue images and assessed the utility of these images in augmenting diagnostic ability of machine learning methods as well as their usability by a panel of experienced anatomic pathologists. Synthetic data generated by our framework performed similar to real data in training a deep learning model for diagnosis. Pathologists were not able to distinguish between real and synthetic images and showed a similar level of inter-observer agreement for prostate cancer grading. We extended the approach to significantly more complex images from colon biopsies and showed that the complex microenvironment in such tissues can also be reproduced. Finally, we present the ability for a user to generate deepfake histological images via a simple markup of sematic labels.
1,622
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
We study the asynchronous stochastic gradient descent algorithm for distributed training over $n$ workers which have varying computation and communication frequency over time. In this algorithm, workers compute stochastic gradients in parallel at their own pace and return those to the server without any synchronization. Existing convergence rates of this algorithm for non-convex smooth objectives depend on the maximum gradient delay $\tau_{\max}$ and show that an $\epsilon$-stationary point is reached after $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \tau_{\max}\epsilon^{-1}\right)$ iterations, where $\sigma$ denotes the variance of stochastic gradients. In this work (i) we obtain a tighter convergence rate of $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \sqrt{\tau_{\max}\tau_{avg}}\epsilon^{-1}\right)$ without any change in the algorithm where $\tau_{avg}$ is the average delay, which can be significantly smaller than $\tau_{\max}$. We also provide (ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD achieves a convergence rate of $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \tau_{avg}\epsilon^{-1}\right)$, and does not require any extra hyperparameter tuning nor extra communications. Our result allows to show for the first time that asynchronous SGD is always faster than mini-batch SGD. In addition, (iii) we consider the case of heterogeneous functions motivated by federated learning applications and improve the convergence rate by proving a weaker dependence on the maximum delay compared to prior works. In particular, we show that the heterogeneity term in convergence rate is only affected by the average delay within each worker.
1,623
Adversarial Patch Attacks and Defences in Vision-Based Tasks: A Survey
Adversarial attacks in deep learning models, especially for safety-critical systems, are gaining more and more attention in recent years, due to the lack of trust in the security and robustness of AI models. Yet the more primitive adversarial attacks might be physically infeasible or require some resources that are hard to access like the training data, which motivated the emergence of patch attacks. In this survey, we provide a comprehensive overview to cover existing techniques of adversarial patch attacks, aiming to help interested researchers quickly catch up with the progress in this field. We also discuss existing techniques for developing detection and defences against adversarial patches, aiming to help the community better understand this field and its applications in the real world.
1,624
On Scaled Methods for Saddle Point Problems
Methods with adaptive scaling of different features play a key role in solving saddle point problems, primarily due to Adam's popularity for solving adversarial machine learning problems, including GANS training. This paper carries out a theoretical analysis of the following scaling techniques for solving SPPs: the well-known Adam and RmsProp scaling and the newer AdaHessian and OASIS based on Hutchison approximation. We use the Extra Gradient and its improved version with negative momentum as the basic method. Experimental studies on GANs show good applicability not only for Adam, but also for other less popular methods.
1,625
GoodBye WaveNet -- A Language Model for Raw Audio with Context of 1/2 Million Samples
Modeling long-term dependencies for audio signals is a particularly challenging problem, as even small-time scales yield on the order of a hundred thousand samples. With the recent advent of Transformers, neural architectures became good at modeling dependencies over longer time scales, but they suffered from quadratic constraints to scale them. We propose a generative auto-regressive architecture that can model audio waveforms over quite a large context, greater than 500,000 samples. Our work is adapted to learn time dependencies by learning a latent representation by a CNN front-end, and then learning dependencies over these representations using Transformer encoders, fully trained end-to-end: thereby allowing to learn representations as it deems fit for the next sample. Unlike previous works that compared different time scales to show improvement, we use a standard dataset, with the same number of parameters/context to show improvements. We achieve a state-of-the-art performance as compared to other approaches such as Wavenet, SaSHMI, and Sample-RNN on a standard dataset for modeling long-term structure. This work gives very exciting direction for the field, given improvements in context modeling that can be scaled with more data, as well as potentially better results by using billions/trillions of parameters.
1,626
Switchable Representation Learning Framework with Self-compatibility
Real-world visual search systems involve deployments on multiple platforms with different computing and storage resources. Deploying a unified model that suits the minimal-constrain platforms leads to limited accuracy. It is expected to deploy models with different capacities adapting to the resource constraints, which requires features extracted by these models to be aligned in the metric space. The method to achieve feature alignments is called "compatible learning". Existing research mainly focuses on the one-to-one compatible paradigm, which is limited in learning compatibility among multiple models. We propose a Switchable representation learning Framework with Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models with different capacities through one training process. The optimization of sub-models faces gradients conflict, and we mitigate it from the perspective of the magnitude and direction. We adjust the priorities of sub-models dynamically through uncertainty estimation to co-optimize sub-models properly. Besides, the gradients with conflicting directions are projected to avoid mutual interference. SFSC achieves state-of-art performance on the evaluated dataset.
1,627
A machine-generated catalogue of Charon's craters and implications for the Kuiper belt
In this paper we investigate Charon's craters size distribution using a deep learning model. This is motivated by the recent results of Singer et al. (2019) who, using manual cataloging, found a change in the size distribution slope of craters smaller than 12 km in diameter, translating into a paucity of small Kuiper Belt objects. These results were corroborated by Robbins and Singer (2021), but opposed by Morbidelli et al. (2021), necessitating an independent review. Our MaskRCNN-based ensemble of models was trained on Lunar, Mercurian, and Martian crater catalogues and both optical and digital elevation images. We use a robust image augmentation scheme to force the model to generalize and transfer-learn into icy objects. With no prior bias or exposure to Charon, our model find best fit slopes of q =-1.47+-0.33 for craters smaller than 10 km, and q =-2.91+-0.51 for craters larger than 15 km. These values indicate a clear change in slope around 15 km as suggested by Singer et al. (2019) and thus independently confirm their conclusions. Our slopes however are both slightly flatter than those found more recently by Robbins and Singer (2021). Our trained models and relevant codes are available online on github.com/malidib/ACID .
1,628
Rank the triplets: A ranking-based multiple instance learning framework for detecting HPV infection in head and neck cancers using routine H&E images
The aetiology of head and neck squamous cell carcinoma (HNSCC) involves multiple carcinogens such as alcohol, tobacco and infection with human papillomavirus (HPV). As the HPV infection influences the prognosis, treatment and survival of patients with HNSCC, it is important to determine the HPV status of these tumours. In this paper, we propose a novel triplet-ranking loss function and a multiple instance learning pipeline for HPV status prediction. This achieves a new state-of-the-art performance in HPV detection using only the routine H&E stained WSIs on two HNSCC cohorts. Furthermore, a comprehensive tumour microenvironment profiling was performed, which characterised the unique patterns between HPV+/- HNSCC from genomic, immunology and cellular perspectives. Positive correlations of the proposed score with different subtypes of T cells (e.g. T cells follicular helper, CD8+ T cells), and negative correlations with macrophages and connective cells (e.g. fibroblast) were identified, which is in line with clinical findings. Unique gene expression profiles were also identified with respect to HPV infection status, and is in line with existing findings.
1,629
Concentration of Data Encoding in Parameterized Quantum Circuits
Variational quantum algorithms have been acknowledged as a leading strategy to realize near-term quantum advantages in meaningful tasks, including machine learning and combinatorial optimization. When applied to tasks involving classical data, such algorithms generally begin with quantum circuits for data encoding and then train quantum neural networks (QNNs) to minimize target functions. Although QNNs have been widely studied to improve these algorithms' performance on practical tasks, there is a gap in systematically understanding the influence of data encoding on the eventual performance. In this paper, we make progress in filling this gap by considering the common data encoding strategies based on parameterized quantum circuits. We prove that, under reasonable assumptions, the distance between the average encoded state and the maximally mixed state could be explicitly upper-bounded with respect to the width and depth of the encoding circuit. This result in particular implies that the average encoded state will concentrate on the maximally mixed state at an exponential speed on depth. Such concentration seriously limits the capabilities of quantum classifiers, and strictly restricts the distinguishability of encoded states from a quantum information perspective. We further support our findings by numerically verifying these results on both synthetic and public data sets. Our results highlight the significance of quantum data encoding in machine learning tasks and may shed light on future encoding strategies.
1,630
Learning with little mixing
We study square loss in a realizable time-series framework with martingale difference noise. Our main result is a fast rate excess risk bound which shows that whenever a trajectory hypercontractivity condition holds, the risk of the least-squares estimator on dependent data matches the iid rate order-wise after a burn-in time. In comparison, many existing results in learning from dependent data have rates where the effective sample size is deflated by a factor of the mixing-time of the underlying process, even after the burn-in time. Furthermore, our results allow the covariate process to exhibit long range correlations which are substantially weaker than geometric ergodicity. We call this phenomenon learning with little mixing, and present several examples for when it occurs: bounded function classes for which the $L^2$ and $L^{2+\epsilon}$ norms are equivalent, ergodic finite state Markov chains, various parametric models, and a broad family of infinite dimensional $\ell^2(\mathbb{N})$ ellipsoids. By instantiating our main result to system identification of nonlinear dynamics with generalized linear model transitions, we obtain a nearly minimax optimal excess risk bound after only a polynomial burn-in time.
1,631
Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching
Score-based generative models have excellent performance in terms of generation quality and likelihood. They model the data distribution by matching a parameterized score network with first-order data score functions. The score network can be used to define an ODE ("score-based diffusion ODE") for exact likelihood evaluation. However, the relationship between the likelihood of the ODE and the score matching objective is unclear. In this work, we prove that matching the first-order score is not sufficient to maximize the likelihood of the ODE, by showing a gap between the maximum likelihood and score matching objectives. To fill up this gap, we show that the negative likelihood of the ODE can be bounded by controlling the first, second, and third-order score matching errors; and we further present a novel high-order denoising score matching method to enable maximum likelihood training of score-based diffusion ODEs. Our algorithm guarantees that the higher-order matching error is bounded by the training error and the lower-order errors. We empirically observe that by high-order score matching, score-based diffusion ODEs achieve better likelihood on both synthetic data and CIFAR-10, while retaining the high generation quality.
1,632
ProGNNosis: A Data-driven Model to Predict GNN Computation Time Using Graph Metrics
Graph Neural Networks (GNN) show great promise in problems dealing with graph-structured data. One of the unique points of GNNs is their flexibility to adapt to multiple problems, which not only leads to wide applicability, but also poses important challenges when finding the best model or acceleration technique for a particular problem. An example of such challenges resides in the fact that the accuracy or effectiveness of a GNN model or acceleration technique generally depends on the structure of the underlying graph. In this paper, in an attempt to address the problem of graph-dependent acceleration, we propose ProGNNosis, a data-driven model that can predict the GNN training time of a given GNN model running over a graph of arbitrary characteristics by inspecting the input graph metrics. Such prediction is made based on a regression that was previously trained offline using a diverse synthetic graph dataset. In practice, our method allows making informed decisions on which design to use for a specific problem. In the paper, the methodology to build ProGNNosis is defined and applied for a specific use case, where it helps to decide which graph representation is better. Our results show that ProGNNosis helps achieve an average speedup of 1.22X over randomly selecting a graph representation in multiple widely used GNN models such as GCN, GIN, GAT, or GraphSAGE.
1,633
Gradient Descent for Low-Rank Functions
Several recent empirical studies demonstrate that important machine learning tasks, e.g., training deep neural networks, exhibit low-rank structure, where the loss function varies significantly in only a few directions of the input space. In this paper, we leverage such low-rank structure to reduce the high computational cost of canonical gradient-based methods such as gradient descent (GD). Our proposed \emph{Low-Rank Gradient Descent} (LRGD) algorithm finds an $\epsilon$-approximate stationary point of a $p$-dimensional function by first identifying $r \leq p$ significant directions, and then estimating the true $p$-dimensional gradient at every iteration by computing directional derivatives only along those $r$ directions. We establish that the "directional oracle complexities" of LRGD for strongly convex and non-convex objective functions are $\mathcal{O}(r \log(1/\epsilon) + rp)$ and $\mathcal{O}(r/\epsilon^2 + rp)$, respectively. When $r \ll p$, these complexities are smaller than the known complexities of $\mathcal{O}(p \log(1/\epsilon))$ and $\mathcal{O}(p/\epsilon^2)$ of {\gd} in the strongly convex and non-convex settings, respectively. Thus, LRGD significantly reduces the computational cost of gradient-based methods for sufficiently low-rank functions. In the course of our analysis, we also formally define and characterize the classes of exact and approximately low-rank functions.
1,634
Gradient-Based Adversarial and Out-of-Distribution Detection
We propose to utilize gradients for detecting adversarial and out-of-distribution samples. We introduce confounding labels -- labels that differ from normal labels seen during training -- in gradient generation to probe the effective expressivity of neural networks. Gradients depict the amount of change required for a model to properly represent given inputs, providing insight into the representational power of the model established by network architectural properties as well as training data. By introducing a label of different design, we remove the dependency on ground truth labels for gradient generation during inference. We show that our gradient-based approach allows for capturing the anomaly in inputs based on the effective expressivity of the models with no hyperparameter tuning or additional processing, and outperforms state-of-the-art methods for adversarial and out-of-distribution detection.
1,635
On the Surprising Behaviour of node2vec
Graph embedding techniques are a staple of modern graph learning research. When using embeddings for downstream tasks such as classification, information about their stability and robustness, i.e., their susceptibility to sources of noise, stochastic effects, or specific parameter choices, becomes increasingly important. As one of the most prominent graph embedding schemes, we focus on node2vec and analyse its embedding quality from multiple perspectives. Our findings indicate that embedding quality is unstable with respect to parameter choices, and we propose strategies to remedy this in practice.
1,636
Catastrophic overfitting is a bug but also a feature
Despite clear computational advantages in building robust neural networks, adversarial training (AT) using single-step methods is unstable as it suffers from catastrophic overfitting (CO): Networks gain non-trivial robustness during the first stages of adversarial training, but suddenly reach a breaking point where they quickly lose all robustness in just a few iterations. Although some works have succeeded at preventing CO, the different mechanisms that lead to this remarkable failure mode are still poorly understood. In this work, however, we find that the interplay between the structure of the data and the dynamics of AT plays a fundamental role in CO. Specifically, through active interventions on typical datasets of natural images, we establish a causal link between the structure of the data and the onset of CO in single-step AT methods. This new perspective provides important insights into the mechanisms that lead to CO and paves the way towards a better understanding of the general dynamics of robust model construction. The code to reproduce the experiments of this paper can be found at https://github.com/gortizji/co_features .
1,637
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
We investigate the problems and challenges of evaluating the robustness of Differential Equation-based (DE) networks against synthetic distribution shifts. We propose a novel and simple accuracy metric which can be used to evaluate intrinsic robustness and to validate dataset corruption simulators. We also propose methodology recommendations, destined for evaluating the many faces of neural DEs' robustness and for comparing them with their discrete counterparts rigorously. We then use this criteria to evaluate a cheap data augmentation technique as a reliable way for demonstrating the natural robustness of neural ODEs against simulated image corruptions across multiple datasets.
1,638
Simple and Efficient Architectures for Semantic Segmentation
Though the state-of-the architectures for semantic segmentation, such as HRNet, demonstrate impressive accuracy, the complexity arising from their salient design choices hinders a range of model acceleration tools, and further they make use of operations that are inefficient on current hardware. This paper demonstrates that a simple encoder-decoder architecture with a ResNet-like backbone and a small multi-scale head, performs on-par or better than complex semantic segmentation architectures such as HRNet, FANet and DDRNets. Naively applying deep backbones designed for Image Classification to the task of Semantic Segmentation leads to sub-par results, owing to a much smaller effective receptive field of these backbones. Implicit among the various design choices put forth in works like HRNet, DDRNet, and FANet are networks with a large effective receptive field. It is natural to ask if a simple encoder-decoder architecture would compare favorably if comprised of backbones that have a larger effective receptive field, though without the use of inefficient operations like dilated convolutions. We show that with minor and inexpensive modifications to ResNets, enlarging the receptive field, very simple and competitive baselines can be created for Semantic Segmentation. We present a family of such simple architectures for desktop as well as mobile targets, which match or exceed the performance of complex models on the Cityscapes dataset. We hope that our work provides simple yet effective baselines for practitioners to develop efficient semantic segmentation models.
1,639
All the World's a (Hyper)Graph: A Data Drama
We introduce Hyperbard, a dataset of diverse relational data representations derived from Shakespeare's plays. Our representations range from simple graphs capturing character co-occurrence in single scenes to hypergraphs encoding complex communication settings and character contributions as hyperedges with edge-specific node weights. By making multiple intuitive representations readily available for experimentation, we facilitate rigorous representation robustness checks in graph learning, graph mining, and network analysis, highlighting the advantages and drawbacks of specific representations. Leveraging the data released in Hyperbard, we demonstrate that many solutions to popular graph mining problems are highly dependent on the representation choice, thus calling current graph curation practices into question. As an homage to our data source, and asserting that science can also be art, we present all our points in the form of a play.
1,640
Adapting Self-Supervised Vision Transformers by Probing Attention-Conditioned Masking Consistency
Visual domain adaptation (DA) seeks to transfer trained models to unseen, unlabeled domains across distribution shift, but approaches typically focus on adapting convolutional neural network architectures initialized with supervised ImageNet representations. In this work, we shift focus to adapting modern architectures for object recognition -- the increasingly popular Vision Transformer (ViT) -- and modern pretraining based on self-supervised learning (SSL). Inspired by the design of recent SSL approaches based on learning from partial image inputs generated via masking or cropping -- either by learning to predict the missing pixels, or learning representational invariances to such augmentations -- we propose PACMAC, a simple two-stage adaptation algorithm for self-supervised ViTs. PACMAC first performs in-domain SSL on pooled source and target data to learn task-discriminative features, and then probes the model's predictive consistency across a set of partial target inputs generated via a novel attention-conditioned masking strategy, to identify reliable candidates for self-training. Our simple approach leads to consistent performance gains over competing methods that use ViTs and self-supervised initializations on standard object recognition benchmarks. Code available at https://github.com/virajprabhu/PACMAC
1,641
Functional Output Regression with Infimal Convolution: Exploring the Huber and $ε$-insensitive Losses
The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the $\epsilon$-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks.
1,642
A Closer Look at Smoothness in Domain Adversarial Training
Domain adversarial training has been ubiquitous for achieving invariant representations and is used widely for various domain adaptation tasks. In recent times, methods converging to smooth optima have shown improved generalization for supervised learning tasks like classification. In this work, we analyze the effect of smoothness enhancing formulations on domain adversarial training, the objective of which is a combination of task loss (eg. classification, regression, etc.) and adversarial terms. We find that converging to a smooth minima with respect to (w.r.t.) task loss stabilizes the adversarial training leading to better performance on target domain. In contrast to task loss, our analysis shows that converging to smooth minima w.r.t. adversarial loss leads to sub-optimal generalization on the target domain. Based on the analysis, we introduce the Smooth Domain Adversarial Training (SDAT) procedure, which effectively enhances the performance of existing domain adversarial methods for both classification and object detection tasks. Our analysis also provides insight into the extensive usage of SGD over Adam in the community for domain adversarial training.
1,643
Inherent Inconsistencies of Feature Importance
The black-box nature of modern machine learning techniques invokes a practical and ethical need for explainability. Feature importance aims to meet this need by assigning scores to features, so humans can understand their influence on predictions. Feature importance can be used to explain predictions under different settings: of the entire sample space or a specific instance; of model behavior, or the dependencies in the data themselves. However, in most cases thus far, each of these settings was studied in isolation. We attempt to develop a sound feature importance score framework by defining a small set of desired properties. Surprisingly, we prove an inconsistency theorem, showing that the expected properties cannot hold simultaneously. To overcome this difficulty, we propose the novel notion of re-partitioning the feature space into separable sets. Such sets are constructed to contain features that exhibit inter-set independence with respect to the target variable. We show that there exists a unique maximal partitioning into separable sets. Moreover, assigning scores to separable sets, instead of single features, unifies the results of commonly used feature importance scores and annihilates the inconsistencies we demonstrated.
1,644
Learning Physics between Digital Twins with Low-Fidelity Models and Physics-Informed Gaussian Processes
A digital twin is a computer model that represents an individual, for example, a component, a patient or a process. In many situations, we want to gain knowledge about an individual from its data while incorporating imperfect physical knowledge and also learn from data from other individuals. In this paper, we introduce and demonstrate a fully Bayesian methodology for learning between digital twins in a setting where the physical parameters of each individual are of interest. For each individual, the methodology is based on Bayesian calibration with model discrepancy. Through the discrepancy, modelled as a Gaussian process, the imperfect low-fidelity physical model is accounted for. Using ideas from Bayesian hierarchical models, a joint probabilistic model of digital twins is constructed by connecting them through a new level in the hierarchy. For the physical parameters, the methodology can be seen as using a prior distribution in the individual model that is the posterior of the corresponding hyperparameter in the joint model. For learning the imperfect physics between individuals two approaches are introduced, one that assumes the same discrepancy for all individuals and one that can be seen as using a prior learned from all individuals for the parameters of the Gaussian processes representing the discrepancies. Based on recent advances related to physics-informed priors, Hamiltonian Monte Carlo methods and using these for inverse problems we set up an inference methodology that allows our approach to be computational feasible also for physical models based on partial differential equations and individual data that are not aligned. The methodology is demonstrated in two synthetic case studies, a toy example previously used in the literature extended to more individuals and an example based on a cardiovascular differential equation model relevant for the treatment of hypertension.
1,645
MAGIC: Microlensing Analysis Guided by Intelligent Computation
The modeling of binary microlensing light curves via the standard sampling-based method can be challenging, because of the time-consuming light curve computation and the pathological likelihood landscape in the high-dimensional parameter space. In this work, we present MAGIC, which is a machine learning framework to efficiently and accurately infer the microlensing parameters of binary events with realistic data quality. In MAGIC, binary microlensing parameters are divided into two groups and inferred separately with different neural networks. The key feature of MAGIC is the introduction of neural controlled differential equation, which provides the capability to handle light curves with irregular sampling and large data gaps. Based on simulated light curves, we show that MAGIC can achieve fractional uncertainties of a few percent on the binary mass ratio and separation. We also test MAGIC on a real microlensing event. MAGIC is able to locate the degenerate solutions even when large data gaps are introduced. As irregular samplings are common in astronomical surveys, our method also has implications to other studies that involve time series.
1,646
ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural Networks via Normalization
Graph Neural Networks (GNNs) have attracted much attention due to their ability in learning representations from graph-structured data. Despite the successful applications of GNNs in many domains, the optimization of GNNs is less well studied, and the performance on node classification heavily suffers from the long-tailed node degree distribution. This paper focuses on improving the performance of GNNs via normalization. In detail, by studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs, which is termed ResNorm (\textbf{Res}haping the long-tailed distribution into a normal-like distribution via \textbf{norm}alization). The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes (\textit{i}.\textit{e}., low-degree nodes). We provide a theoretical interpretation and empirical evidence for understanding the mechanism of the above $scale$. In addition to the long-tailed distribution issue, over-smoothing is also a fundamental issue plaguing the community. To this end, we analyze the behavior of the standard shift and prove that the standard shift serves as a preconditioner on the weight matrix, increasing the risk of over-smoothing. With the over-smoothing issue in mind, we design a $shift$ operation for ResNorm that simulates the degree-specific parameter strategy in a low-cost manner. Extensive experiments have validated the effectiveness of ResNorm on several node classification benchmark datasets.
1,647
User Engagement in Mobile Health Applications
Mobile health apps are revolutionizing the healthcare ecosystem by improving communication, efficiency, and quality of service. In low- and middle-income countries, they also play a unique role as a source of information about health outcomes and behaviors of patients and healthcare workers, while providing a suitable channel to deliver both personalized and collective policy interventions. We propose a framework to study user engagement with mobile health, focusing on healthcare workers and digital health apps designed to support them in resource-poor settings. The behavioral logs produced by these apps can be transformed into daily time series characterizing each user's activity. We use probabilistic and survival analysis to build multiple personalized measures of meaningful engagement, which could serve to tailor content and digital interventions suiting each health worker's specific needs. Special attention is given to the problem of detecting churn, understood as a marker of complete disengagement. We discuss the application of our methods to the Indian and Ethiopian users of the Safe Delivery App, a capacity-building tool for skilled birth attendants. This work represents an important step towards a full characterization of user engagement in mobile health applications, which can significantly enhance the abilities of health workers and, ultimately, save lives.
1,648
Not All Lotteries Are Made Equal
The Lottery Ticket Hypothesis (LTH) states that for a reasonably sized neural network, a sub-network within the same network yields no less performance than the dense counterpart when trained from the same initialization. This work investigates the relation between model size and the ease of finding these sparse sub-networks. We show through experiments that, surprisingly, under a finite budget, smaller models benefit more from Ticket Search (TS).
1,649
Adversarial Privacy Protection on Speech Enhancement
Speech is easily leaked imperceptibly, such as being recorded by mobile phones in different situations. Private content in speech may be maliciously extracted through speech enhancement technology. Speech enhancement technology has developed rapidly along with deep neural networks (DNNs), but adversarial examples can cause DNNs to fail. In this work, we propose an adversarial method to degrade speech enhancement systems. Experimental results show that generated adversarial examples can erase most content information in original examples or replace it with target speech content through speech enhancement. The word error rate (WER) between an enhanced original example and enhanced adversarial example recognition result can reach 89.0%. WER of target attack between enhanced adversarial example and target example is low to 33.75% . Adversarial perturbation can bring the rate of change to the original example to more than 1.4430. This work can prevent the malicious extraction of speech.
1,650
Long Range Graph Benchmark
Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm exchange information between 1-hop neighbors to build node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI.
1,651
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models will be made publicly available at https://antoyang.github.io/frozenbilm.html.
1,652
Fault-Tolerant Collaborative Inference through the Edge-PRUNE Framework
Collaborative inference has received significant research interest in machine learning as a vehicle for distributing computation load, reducing latency, as well as addressing privacy preservation in communications. Recent collaborative inference frameworks have adopted dynamic inference methodologies such as early-exit and run-time partitioning of neural networks. However, as machine learning frameworks scale in the number of inference inputs, e.g., in surveillance applications, fault tolerance related to device failure needs to be considered. This paper presents the Edge-PRUNE distributed computing framework, built on a formally defined model of computation, which provides a flexible infrastructure for fault tolerant collaborative inference. The experimental section of this work shows results on achievable inference time savings by collaborative inference, presents fault tolerant system topologies and analyzes their cost in terms of execution time overhead.
1,653
A Contextual Combinatorial Semi-Bandit Approach to Network Bottleneck Identification
Bottleneck identification is a challenging task in network analysis, especially when the network is not fully specified. To address this task, we develop a unified online learning framework based on combinatorial semi-bandits that performs bottleneck identification alongside learning the specifications of the underlying network. Within this framework, we adapt and investigate several combinatorial semi-bandit methods such as epsilon-greedy, LinUCB, BayesUCB, and Thompson Sampling. Our framework is able to employ contextual information in the form of contextual bandits. We evaluate our framework on the real-world application of road networks and demonstrate its effectiveness in different settings.
1,654
Using adversarial images to improve outcomes of federated learning for non-IID data
One of the important problems in federated learning is how to deal with unbalanced data. This contribution introduces a novel technique designed to deal with label skewed non-IID data, using adversarial inputs, created by the I-FGSM method. Adversarial inputs guide the training process and allow the Weighted Federated Averaging to give more importance to clients with 'selected' local label distributions. Experimental results, gathered from image classification tasks, for MNIST and CIFAR-10 datasets, are reported and analyzed.
1,655
Learning to Infer Structures of Network Games
Strategic interactions between a group of individuals or organisations can be modelled as games played on networks, where a player's payoff depends not only on their actions but also on those of their neighbours. Inferring the network structure from observed game outcomes (equilibrium actions) is an important problem with numerous potential applications in economics and social sciences. Existing methods mostly require the knowledge of the utility function associated with the game, which is often unrealistic to obtain in real-world scenarios. We adopt a transformer-like architecture which correctly accounts for the symmetries of the problem and learns a mapping from the equilibrium actions to the network structure of the game without explicit knowledge of the utility function. We test our method on three different types of network games using both synthetic and real-world data, and demonstrate its effectiveness in network structure inference and superior performance over existing methods.
1,656
On Private Online Convex Optimization: Optimal Algorithms in $\ell_p$-Geometry and High Dimensional Contextual Bandits
Differentially private (DP) stochastic convex optimization (SCO) is ubiquitous in trustworthy machine learning algorithm design. This paper studies the DP-SCO problem with streaming data sampled from a distribution and arrives sequentially. We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms. Despite that numerous algorithms have been developed to achieve the optimal excess risks in different $\ell_p$ norm geometries, yet none of the existing ones can be adapted to the streaming and continual release setting. To address such a challenge as the online convex optimization with privacy protection, we propose a private variant of online Frank-Wolfe algorithm with recursive gradients for variance reduction to update and reveal the parameters upon each data. Combined with the adaptive differential privacy analysis, our online algorithm achieves in linear time the optimal excess risk when $1<p\leq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2<p\leq\infty$. Our algorithm can also be extended to the case $p=1$ to achieve nearly dimension-independent excess risk. While previous variance reduction results on recursive gradient have theoretical guarantee only in the independent and identically distributed sample setting, we establish such a guarantee in a non-stationary setting. To demonstrate the virtues of our method, we design the first DP algorithm for high-dimensional generalized linear bandits with logarithmic regret. Comparative experiments with a variety of DP-SCO and DP-Bandit algorithms exhibit the efficacy and utility of the proposed algorithms.
1,657
Closed-Form Diffeomorphic Transformations for Time Series Alignment
Time series alignment methods call for highly expressive, differentiable and invertible warping functions which preserve temporal topology, i.e diffeomorphisms. Diffeomorphic warping functions can be generated from the integration of velocity fields governed by an ordinary differential equation (ODE). Gradient-based optimization frameworks containing diffeomorphic transformations require to calculate derivatives to the differential equation's solution with respect to the model parameters, i.e. sensitivity analysis. Unfortunately, deep learning frameworks typically lack automatic-differentiation-compatible sensitivity analysis methods; and implicit functions, such as the solution of ODE, require particular care. Current solutions appeal to adjoint sensitivity methods, ad-hoc numerical solvers or ResNet's Eulerian discretization. In this work, we present a closed-form expression for the ODE solution and its gradient under continuous piecewise-affine (CPA) velocity functions. We present a highly optimized implementation of the results on CPU and GPU. Furthermore, we conduct extensive experiments on several datasets to validate the generalization ability of our model to unseen data for time-series joint alignment. Results show significant improvements both in terms of efficiency and accuracy.
1,658
Is Continual Learning Truly Learning Representations Continually?
Continual learning (CL) aims to learn from sequentially arriving tasks without forgetting previous tasks. Whereas CL algorithms have tried to achieve higher average test accuracy across all the tasks learned so far, learning continuously useful representations is critical for successful generalization and downstream transfer. To measure representational quality, we re-train only the output layers using a small balanced dataset for all the tasks, evaluating the average accuracy without any biased predictions toward the current task. We also test on several downstream tasks, measuring transfer learning accuracy of the learned representations. By testing our new formalism on ImageNet-100 and ImageNet-1000, we find that using more exemplar memory is the only option to make a meaningful difference in learned representations, and most of the regularization- or distillation-based CL algorithms that use the exemplar memory fail to learn continuously useful representations in class-incremental learning. Surprisingly, unsupervised (or self-supervised) CL with sufficient memory size can achieve comparable performance to the supervised counterparts. Considering non-trivial labeling costs, we claim that finding more efficient unsupervised CL algorithms that minimally use exemplary memory would be the next promising direction for CL research.
1,659
DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding
Recent works have shown that modern machine learning techniques can provide an alternative approach to the long-standing joint source-channel coding (JSCC) problem. Very promising initial results, superior to popular digital schemes that utilize separate source and channel codes, have been demonstrated for wireless image and video transmission using deep neural networks (DNNs). However, end-to-end training of such schemes requires a differentiable channel input representation; hence, prior works have assumed that any complex value can be transmitted over the channel. This can prevent the application of these codes in scenarios where the hardware or protocol can only admit certain sets of channel inputs, prescribed by a digital constellation. Herein, we propose DeepJSCC-Q, an end-to-end optimized JSCC solution for wireless image transmission using a finite channel input alphabet. We show that DeepJSCC-Q can achieve similar performance to prior works that allow any complex valued channel input, especially when high modulation orders are available, and that the performance asymptotically approaches that of unconstrained channel input as the modulation order increases. Importantly, DeepJSCC-Q preserves the graceful degradation of image quality in unpredictable channel conditions, a desirable property for deployment in mobile systems with rapidly changing channel conditions.
1,660
Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings
Neuroscientists and neuroengineers have long relied on multielectrode neural recordings to study the brain. However, in a typical experiment, many factors corrupt neural recordings from individual electrodes, including electrical noise, movement artifacts, and faulty manufacturing. Currently, common practice is to discard these corrupted recordings, reducing already limited data that is difficult to collect. To address this challenge, we propose Deep Neural Imputation (DNI), a framework to recover missing values from electrodes by learning from data collected across spatial locations, days, and participants. We explore our framework with a linear nearest-neighbor approach and two deep generative autoencoders, demonstrating DNI's flexibility. One deep autoencoder models participants individually, while the other extends this architecture to model many participants jointly. We evaluate our models across 12 human participants implanted with multielectrode intracranial electrocorticography arrays; participants had no explicit task and behaved naturally across hundreds of recording hours. We show that DNI recovers not only time series but also frequency content, and further establish DNI's practical value by recovering significant performance on a scientifically-relevant downstream neural decoding task.
1,661
Applications of Machine Learning to the Identification of Anomalous ER Claims
Improper health insurance payments resulting from fraud and upcoding result in tens of billions of dollars in excess health care costs annually in the United States, motivating machine learning researchers to build anomaly detection models for health insurance claims. This article describes two such strategies specifically for ER claims. The first is an upcoding model based on severity code distributions, stratified by hierarchical diagnosis code clusters. A statistically significant difference in mean upcoding anomaly scores is observed between free-standing ERs and acute care hospitals, with free-standing ERs being more anomalous. The second model is a random forest that minimizes improper payments by optimally sorting ER claims within review queues. Depending on the percentage of claims reviewed, the random forest saved 12% to 40% above a baseline approach that prioritized claims by billed amount.
1,662
On the well-spread property and its relation to linear regression
We consider the robust linear regression model $\boldsymbol{y} = X\beta^* + \boldsymbol{\eta}$, where an adversary oblivious to the design $X \in \mathbb{R}^{n \times d}$ may choose $\boldsymbol{\eta}$ to corrupt all but a (possibly vanishing) fraction of the observations $\boldsymbol{y}$ in an arbitrary way. Recent work [dLN+21, dNS21] has introduced efficient algorithms for consistent recovery of the parameter vector. These algorithms crucially rely on the design matrix being well-spread (a matrix is well-spread if its column span is far from any sparse vector). In this paper, we show that there exists a family of design matrices lacking well-spreadness such that consistent recovery of the parameter vector in the above robust linear regression model is information-theoretically impossible. We further investigate the average-case time complexity of certifying well-spreadness of random matrices. We show that it is possible to efficiently certify whether a given $n$-by-$d$ Gaussian matrix is well-spread if the number of observations is quadratic in the ambient dimension. We complement this result by showing rigorous evidence -- in the form of a lower bound against low-degree polynomials -- of the computational hardness of this same certification problem when the number of observations is $o(d^2)$.
1,663
Unsupervised Space Partitioning for Nearest Neighbor Search
Approximate Nearest Neighbor Search (ANNS) in high dimensional spaces is crucial for many real-life applications (e.g., e-commerce, web, multimedia, etc.) dealing with an abundance of data. In this paper, we propose an end-to-end learning framework that couples the partitioning (one key step of ANNS) and learning-to-search steps using a custom loss function. A key advantage of our proposed solution is that it does not require any expensive pre-processing of the dataset, which is one of the key limitations of the state-of-the-art approach. We achieve the above edge by formulating a multi-objective custom loss function that does not need ground truth labels to quantify the quality of a given partition of the data space, making it entirely unsupervised. We also propose an ensembling technique by adding varying input weights to the loss function to train an ensemble of models to enhance the search quality. On several standard benchmarks for ANNS, we show that our method beats the state-of-the-art space partitioning method and the ubiquitous K-means clustering method while using fewer parameters and shorter offline training times. Without loss of generality, our unsupervised partitioning approach is shown as a promising alternative to many widely used clustering methods like K-means clustering and DBSCAN.
1,664
Reinforcement Learning-enhanced Shared-account Cross-domain Sequential Recommendation
Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task that simultaneously considers the shared-account and cross-domain characteristics in the sequential recommendation. Existing works on SCSR are mainly based on Recurrent Neural Network (RNN) and Graph Neural Network (GNN) but they ignore the fact that although multiple users share a single account, it is mainly occupied by one user at a time. This observation motivates us to learn a more accurate user-specific account representation by attentively focusing on its recent behaviors. Furthermore, though existing works endow lower weights to irrelevant interactions, they may still dilute the domain information and impede the cross-domain recommendation. To address the above issues, we propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter. Specifically, to model the account representation in the shared-account scenario, the basic recommender first clusters users' mixed behaviors as latent users, and then leverages an attention model over them to conduct user identification. To reduce the impact of irrelevant domain information, we formulate the domain filter as a hierarchical reinforcement learning task, where a high-level task is utilized to decide whether to revise the whole transferred sequence or not, and if it does, a low-level task is further performed to determine whether to remove each interaction within it or not. To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority of our RL-ISN method compared with the state-of-the-art recommendation methods.
1,665
CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains
Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE encompasses the single-target datasets MoLane and TuLane and the multi-target dataset MuLane. These datasets are built from three different domains, which cover diverse scenes and contain a total of 163K unique images, 118K of which are annotated. In addition we evaluate and report systematic baselines, including our own method, which builds upon Prototypical Cross-domain Self-supervised Learning. We find that false positive and false negative rates of the evaluated domain adaptation methods are high compared to those of fully supervised baselines. This affirms the need for benchmarks such as CARLANE to further strengthen research in Unsupervised Domain Adaptation for lane detection. CARLANE, all evaluated models and the corresponding implementations are publicly available at https://carlanebenchmark.github.io.
1,666
TransDrift: Modeling Word-Embedding Drift using Transformer
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of transformer, our model accurately learns the dynamics of the embedding drift and predicts the future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.
1,667
A Machine Learning-based Digital Twin for Electric Vehicle Battery Modeling
The widespread adoption of Electric Vehicles (EVs) is limited by their reliance on batteries with presently low energy and power densities compared to liquid fuels and are subject to aging and performance deterioration over time. For this reason, monitoring the battery State Of Charge (SOC) and State Of Health (SOH) during the EV lifetime is a very relevant problem. This work proposes a battery digital twin structure designed to accurately reflect battery dynamics at the run time. To ensure a high degree of correctness concerning non-linear phenomena, the digital twin relies on data-driven models trained on traces of battery evolution over time: a SOH model, repeatedly executed to estimate the degradation of maximum battery capacity, and a SOC model, retrained periodically to reflect the impact of aging. The proposed digital twin structure will be exemplified on a public dataset to motivate its adoption and prove its effectiveness, with high accuracy and inference and retraining times compatible with onboard execution.
1,668
U-PET: MRI-based Dementia Detection with Joint Generation of Synthetic FDG-PET Images
Alzheimer's disease (AD) is the most common cause of dementia. An early detection is crucial for slowing down the disease and mitigating risks related to the progression. While the combination of MRI and FDG-PET is the best image-based tool for diagnosis, FDG-PET is not always available. The reliable detection of Alzheimer's disease with only MRI could be beneficial, especially in regions where FDG-PET might not be affordable for all patients. To this end, we propose a multi-task method based on U-Net that takes T1-weighted MR images as an input to generate synthetic FDG-PET images and classifies the dementia progression of the patient into cognitive normal (CN), cognitive impairment (MCI), and AD. The attention gates used in both task heads can visualize the most relevant parts of the brain, guiding the examiner and adding interpretability. Results show the successful generation of synthetic FDG-PET images and a performance increase in disease classification over the naive single-task baseline.
1,669
Neural Scene Representation for Locomotion on Structured Terrain
We propose a learning-based method to reconstruct the local terrain for locomotion with a mobile robot traversing urban environments. Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the algorithm estimates the topography in the robot's vicinity. The raw measurements from these cameras are noisy and only provide partial and occluded observations that in many cases do not show the terrain the robot stands on. Therefore, we propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement. The model consists of a 4D fully convolutional network on point clouds that learns the geometric priors to complete the scene from the context and an auto-regressive feedback to leverage spatio-temporal consistency and use evidence from the past. The network can be solely trained with synthetic data, and due to extensive augmentation, it is robust in the real world, as shown in the validation on a quadrupedal robot, ANYmal, traversing challenging settings. We run the pipeline on the robot's onboard low-power computer using an efficient sparse tensor implementation and show that the proposed method outperforms classical map representations.
1,670
Reinforcement Learning in Macroeconomic Policy Design: A New Frontier?
Agent-based computational macroeconomics is a field with a rich academic history, yet one which has struggled to enter mainstream policy design toolboxes, plagued by the challenges associated with representing a complex and dynamic reality. The field of Reinforcement Learning (RL), too, has a rich history, and has recently been at the centre of several exponential developments. Modern RL implementations have been able to achieve unprecedented levels of sophistication, handling previously-unthinkable degrees of complexity. This review surveys the historical barriers of classical agent-based techniques in macroeconomic modelling, and contemplates whether recent developments in RL can overcome any of them.
1,671
Neural tangent kernel analysis of shallow $α$-Stable ReLU neural networks
There is a recent literature on large-width properties of Gaussian neural networks (NNs), i.e. NNs whose weights are distributed according to Gaussian distributions. Two popular problems are: i) the study of the large-width behaviour of NNs, which provided a characterization of the infinitely wide limit of a rescaled NN in terms of a Gaussian process; ii) the study of the training dynamics of NNs, which set forth a large-width equivalence between training the rescaled NN and performing a kernel regression with a deterministic kernel referred to as the neural tangent kernel (NTK). In this paper, we consider these problems for $\alpha$-Stable NNs, which generalize Gaussian NNs by assuming that the NN's weights are distributed as $\alpha$-Stable distributions with $\alpha\in(0,2]$, i.e. distributions with heavy tails. For shallow $\alpha$-Stable NNs with a ReLU activation function, we show that if the NN's width goes to infinity then a rescaled NN converges weakly to an $\alpha$-Stable process, i.e. a stochastic process with $\alpha$-Stable finite-dimensional distributions. As a novelty with respect to the Gaussian setting, in the $\alpha$-Stable setting the choice of the activation function affects the scaling of the NN, namely: to achieve the infinitely wide $\alpha$-Stable process, the ReLU function requires an additional logarithmic scaling with respect to sub-linear functions. Then, our main contribution is the NTK analysis of shallow $\alpha$-Stable ReLU-NNs, which leads to a large-width equivalence between training a rescaled NN and performing a kernel regression with an $(\alpha/2)$-Stable random kernel. The randomness of such a kernel is a novelty with respect to the Gaussian setting, namely: in the $\alpha$-Stable setting the randomness of the NN at initialization does not vanish in the NTK analysis, thus inducing a distribution for the kernel of the underlying kernel regression.
1,672
Active Nearest Neighbor Regression Through Delaunay Refinement
We introduce an algorithm for active function approximation based on nearest neighbor regression. Our Active Nearest Neighbor Regressor (ANNR) relies on the Voronoi-Delaunay framework from computational geometry to subdivide the space into cells with constant estimated function value and select novel query points in a way that takes the geometry of the function graph into account. We consider the recent state-of-the-art active function approximator called DEFER, which is based on incremental rectangular partitioning of the space, as the main baseline. The ANNR addresses a number of limitations that arise from the space subdivision strategy used in DEFER. We provide a computationally efficient implementation of our method, as well as theoretical halting guarantees. Empirical results show that ANNR outperforms the baseline for both closed-form functions and real-world examples, such as gravitational wave parameter inference and exploration of the latent space of a generative model.
1,673
Generalized Leverage Scores: Geometric Interpretation and Applications
In problems involving matrix computations, the concept of leverage has found a large number of applications. In particular, leverage scores, which relate the columns of a matrix to the subspaces spanned by its leading singular vectors, are helpful in revealing column subsets to approximately factorize a matrix with quality guarantees. As such, they provide a solid foundation for a variety of machine-learning methods. In this paper we extend the definition of leverage scores to relate the columns of a matrix to arbitrary subsets of singular vectors. We establish a precise connection between column and singular-vector subsets, by relating the concepts of leverage scores and principal angles between subspaces. We employ this result to design approximation algorithms with provable guarantees for two well-known problems: generalized column subset selection and sparse canonical correlation analysis. We run numerical experiments to provide further insight on the proposed methods. The novel bounds we derive improve our understanding of fundamental concepts in matrix approximations. In addition, our insights may serve as building blocks for further contributions.
1,674
Time Interval-enhanced Graph Neural Network for Shared-account Cross-domain Sequential Recommendation
Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.
1,675
Automated analysis of continuum fields from atomistic simulations using statistical machine learning
Atomistic simulations of the molecular dynamics/statics kind are regularly used to study small scale plasticity. Contemporary simulations are performed with tens to hundreds of millions of atoms, with snapshots of these configurations written out at regular intervals for further analysis. Continuum scale constitutive models for material behavior can benefit from information on the atomic scale, in particular in terms of the deformation mechanisms, the accommodation of the total strain and partitioning of stress and strain fields in individual grains. In this work we develop a methodology using statistical data mining and machine learning algorithms to automate the analysis of continuum field variables in atomistic simulations. We focus on three important field variables: total strain, elastic strain and microrotation. Our results show that the elastic strain in individual grains exhibits a unimodal log-normal distribution, whilst the total strain and microrotation fields evidence a multimodal distribution. The peaks in the distribution of total strain are identified with a Gaussian mixture model and methods to circumvent overfitting problems are presented. Subsequently, we evaluate the identified peaks in terms of deformation mechanisms in a grain, which e.g., helps to quantify the strain for which individual deformation mechanisms are responsible. The overall statistics of the distributions over all grains are an important input for higher scale models, which ultimately also helps to be able to quantitatively discuss the implications for information transfer to phenomenological models.
1,676
Acoustic Modeling for End-to-End Empathetic Dialogue Speech Synthesis Using Linguistic and Prosodic Contexts of Dialogue History
We propose an end-to-end empathetic dialogue speech synthesis (DSS) model that considers both the linguistic and prosodic contexts of dialogue history. Empathy is the active attempt by humans to get inside the interlocutor in dialogue, and empathetic DSS is a technology to implement this act in spoken dialogue systems. Our model is conditioned by the history of linguistic and prosody features for predicting appropriate dialogue context. As such, it can be regarded as an extension of the conventional linguistic-feature-based dialogue history modeling. To train the empathetic DSS model effectively, we investigate 1) a self-supervised learning model pretrained with large speech corpora, 2) a style-guided training using a prosody embedding of the current utterance to be predicted by the dialogue context embedding, 3) a cross-modal attention to combine text and speech modalities, and 4) a sentence-wise embedding to achieve fine-grained prosody modeling rather than utterance-wise modeling. The evaluation results demonstrate that 1) simply considering prosodic contexts of the dialogue history does not improve the quality of speech in empathetic DSS and 2) introducing style-guided training and sentence-wise embedding modeling achieves higher speech quality than that by the conventional method.
1,677
AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation
Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org.
1,678
Partial Identifiability for Nonnegative Matrix Factorization
Given a nonnegative matrix factorization, $R$, and a factorization rank, $r$, Exact nonnegative matrix factorization (Exact NMF) decomposes $R$ as the product of two nonnegative matrices, $C$ and $S$ with $r$ columns, such as $R = CS^\top$. A central research topic in the literature is the conditions under which such a decomposition is unique/identifiable, up to trivial ambiguities. In this paper, we focus on partial identifiability, that is, the uniqueness of a subset of columns of $C$ and $S$. We start our investigations with the data-based uniqueness (DBU) theorem from the chemometrics literature. The DBU theorem analyzes all feasible solutions of Exact NMF, and relies on sparsity conditions on $C$ and $S$. We provide a mathematically rigorous theorem of a recently published restricted version of the DBU theorem, relying only on simple sparsity and algebraic conditions: it applies to a particular solution of Exact NMF (as opposed to all feasible solutions) and allows us to guarantee the partial uniqueness of a single column of $C$ or $S$. Second, based on a geometric interpretation of the restricted DBU theorem, we obtain a new partial identifiability result. This geometric interpretation also leads us to another partial identifiability result in the case $r=3$. Third, we show how partial identifiability results can be used sequentially to guarantee the identifiability of more columns of $C$ and $S$. We illustrate these results on several examples, including one from the chemometrics literature.
1,679
On Error and Compression Rates for Prototype Rules
We study the close interplay between error and compression in the non-parametric multiclass classification setting in terms of prototype learning rules. We focus in particular on a close variant of a recently proposed compression-based learning rule termed OptiNet. Beyond its computational merits, this rule has been recently shown to be universally consistent in any metric instance space that admits a universally consistent rule -- the first learning algorithm known to enjoy this property. However, its error and compression rates have been left open. Here we derive such rates in the case where instances reside in Euclidean space under commonly posed smoothness and tail conditions on the data distribution. We first show that OptiNet achieves non-trivial compression rates while enjoying near minimax-optimal error rates. We then proceed to study a novel general compression scheme for further compressing prototype rules that locally adapts to the noise level without sacrificing accuracy. Applying it to OptiNet, we show that under a geometric margin condition, further gain in the compression rate is achieved. Experimental results comparing the performance of the various methods are presented.
1,680
Hardness prediction of age-hardening aluminum alloy based on ensemble learning
With the rapid development of artificial intelligence, the combination of material database and machine learning has driven the progress of material informatics. Because aluminum alloy is widely used in many fields, so it is significant to predict the properties of aluminum alloy. In this thesis, the data of Al-Cu-Mg-X (X: Zn, Zr, etc.) alloy are used to input the composition, aging conditions (time and temperature) and predict its hardness. An ensemble learning solution based on automatic machine learning and an attention mechanism introduced into the secondary learner of deep neural network are proposed respectively. The experimental results show that selecting the correct secondary learner can further improve the prediction accuracy of the model. This manuscript introduces the attention mechanism to improve the secondary learner based on deep neural network, and obtains a fusion model with better performance. The R-Square of the best model is 0.9697 and the MAE is 3.4518HV.
1,681
MoDi: Unconditional Motion Synthesis from Diverse Data
The emergence of neural networks has revolutionized the field of motion synthesis. Yet, learning to unconditionally synthesize motions from a given distribution remains a challenging task, especially when the motions are highly diverse. We present MoDi, an unconditional generative model that synthesizes diverse motions. Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset and yields a well-behaved, highly semantic latent space. The design of our model follows the prolific architecture of StyleGAN and adapts two of its key technical components into the motion domain: a set of style-codes injected into each level of the generator hierarchy and a mapping function that learns and forms a disentangled latent space. We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered, and facilitates semantic editing and motion interpolation. In addition, we propose a technique to invert unseen motions into the latent space, and demonstrate latent-based motion editing operations that otherwise cannot be achieved by naive manipulation of explicit motion representations. Our qualitative and quantitative experiments show that our framework achieves state-of-the-art synthesis quality that can follow the distribution of highly diverse motion datasets. Code and trained models will be released at https://sigal-raab.github.io/MoDi.
1,682
Balancing Discriminability and Transferability for Source-Free Domain Adaptation
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations; while concurrently preserving the task-discriminability knowledge gathered from the labeled source data. However, the requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting. The trivial solution of realizing an effective original to generic domain mapping improves transferability but degrades task discriminability. Upon analyzing the hurdles from both theoretical and empirical standpoints, we derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off while duly respecting the privacy-oriented source-free setting. A simple but effective realization of the proposed insights on top of the existing source-free DA approaches yields state-of-the-art performance with faster convergence. Beyond single-source, we also outperform multi-source prior-arts across both classification and semantic segmentation benchmarks.
1,683
DCASE 2022: Comparative Analysis Of CNNs For Acoustic Scene Classification Under Low-Complexity Considerations
Acoustic scene classification is an automatic listening problem that aims to assign an audio recording to a pre-defined scene based on its audio data. Over the years (and in past editions of the DCASE) this problem has often been solved with techniques known as ensembles (use of several machine learning models to combine their predictions in the inference phase). While these solutions can show performance in terms of accuracy, they can be very expensive in terms of computational capacity, making it impossible to deploy them in IoT devices. Due to the drift in this field of study, this task has two limitations in terms of model complexity. It should be noted that there is also the added complexity of mismatching devices (the audios provided are recorded by different sources of information). This technical report makes a comparative study of two different network architectures: conventional CNN and Conv-mixer. Although both networks exceed the baseline required by the competition, the conventional CNN shows a higher performance, exceeding the baseline by 8 percentage points. Solutions based on Conv-mixer architectures show worse performance although they are much lighter solutions.
1,684
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Graph Self-Supervised Learning (GSSL) paves the way for learning graph embeddings without expert annotation, which is particularly impactful for molecular graphs since the number of possible molecules is enormous and labels are expensive to obtain. However, by design, GSSL methods are not trained to perform well on one downstream task but aim for transferability to many, making evaluating them less straightforward. As a step toward obtaining profiles of molecular graph embeddings with diverse and interpretable attributes, we introduce Molecular Graph Representation Evaluation (MolGraphEval), a suite of probe tasks, categorised into (i) topological-, (ii) substructure-, and (iii) embedding space properties. By benchmarking existing GSSL methods on both existing downstream datasets and MolGraphEval, we discover surprising discrepancies between conclusions drawn from existing datasets alone versus more fine-grained probing, suggesting that current evaluation protocols do not provide the whole picture. Our modular, automated end-to-end GSSL pipeline code will be released upon acceptance, including standardised graph loading, experiment management, and embedding evaluation.
1,685
When a RF Beats a CNN and GRU, Together -- A Comparison of Deep Learning and Classical Machine Learning Approaches for Encrypted Malware Traffic Classification
Internet traffic classification is widely used to facilitate network management. It plays a crucial role in Quality of Services (QoS), Quality of Experience (QoE), network visibility, intrusion detection, and traffic trend analyses. While there is no theoretical guarantee that deep learning (DL)-based solutions perform better than classic machine learning (ML)-based ones, DL-based models have become the common default. This paper compares well-known DL-based and ML-based models and shows that in the case of malicious traffic classification, state-of-the-art DL-based solutions do not necessarily outperform the classical ML-based ones. We exemplify this finding using two well-known datasets for a varied set of tasks, such as: malware detection, malware family classification, detection of zero-day attacks, and classification of an iteratively growing dataset. Note that, it is not feasible to evaluate all possible models to make a concrete statement, thus, the above finding is not a recommendation to avoid DL-based models, but rather empirical proof that in some cases, there are more simplistic solutions, that may perform even better.
1,686
The convergent Indian buffet process
We propose a new Bayesian nonparametric prior for latent feature models, which we call the convergent Indian buffet process (CIBP). We show that under the CIBP, the number of latent features is distributed as a Poisson distribution with the mean monotonically increasing but converging to a certain value as the number of objects goes to infinity. That is, the expected number of features is bounded above even when the number of objects goes to infinity, unlike the standard Indian buffet process under which the expected number of features increases with the number of objects. We provide two alternative representations of the CIBP based on a hierarchical distribution and a completely random measure, respectively, which are of independent interest. The proposed CIBP is assessed on a high-dimensional sparse factor model.
1,687
Differentially Private Multi-Party Data Release for Linear Regression
Differentially Private (DP) data release is a promising technique to disseminate data without compromising the privacy of data subjects. However the majority of prior work has focused on scenarios where a single party owns all the data. In this paper we focus on the multi-party setting, where different stakeholders own disjoint sets of attributes belonging to the same group of data subjects. Within the context of linear regression that allow all parties to train models on the complete data without the ability to infer private attributes or identities of individuals, we start with directly applying Gaussian mechanism and show it has the small eigenvalue problem. We further propose our novel method and prove it asymptotically converges to the optimal (non-private) solutions with increasing dataset size. We substantiate the theoretical results through experiments on both artificial and real-world datasets.
1,688
Continual Learning with Guarantees via Weight Interval Constraints
We introduce a new training paradigm that enforces interval constraints on neural network parameter space to control forgetting. Contemporary Continual Learning (CL) methods focus on training neural networks efficiently from a stream of data, while reducing the negative impact of catastrophic forgetting, yet they do not provide any firm guarantees that network performance will not deteriorate uncontrollably over time. In this work, we show how to put bounds on forgetting by reformulating continual learning of a model as a continual contraction of its parameter space. To that end, we propose Hyperrectangle Training, a new training methodology where each task is represented by a hyperrectangle in the parameter space, fully contained in the hyperrectangles of the previous tasks. This formulation reduces the NP-hard CL problem back to polynomial time while providing full resilience against forgetting. We validate our claim by developing InterContiNet (Interval Continual Learning) algorithm which leverages interval arithmetic to effectively model parameter regions as hyperrectangles. Through experimental results, we show that our approach performs well in a continual learning setup without storing data from previous tasks.
1,689
Patch-level Representation Learning for Self-supervised Vision Transformers
Recent self-supervised learning (SSL) methods have shown impressive results in learning visual representations from unlabeled images. This paper aims to improve their performance further by utilizing the architectural advantages of the underlying neural network, as the current state-of-the-art visual pretext tasks for SSL do not enjoy the benefit, i.e., they are architecture-agnostic. In particular, we focus on Vision Transformers (ViTs), which have gained much attention recently as a better architectural choice, often outperforming convolutional networks for various visual tasks. The unique characteristic of ViT is that it takes a sequence of disjoint patches from an image and processes patch-level representations internally. Inspired by this, we design a simple yet effective visual pretext task, coined SelfPatch, for learning better patch-level representations. To be specific, we enforce invariance against each patch and its neighbors, i.e., each patch treats similar neighboring patches as positive samples. Consequently, training ViTs with SelfPatch learns more semantically meaningful relations among patches (without using human-annotated labels), which can be beneficial, in particular, to downstream tasks of a dense prediction type. Despite its simplicity, we demonstrate that it can significantly improve the performance of existing SSL methods for various visual tasks, including object detection and semantic segmentation. Specifically, SelfPatch significantly improves the recent self-supervised ViT, DINO, by achieving +1.3 AP on COCO object detection, +1.2 AP on COCO instance segmentation, and +2.9 mIoU on ADE20K semantic segmentation.
1,690
Double Check Your State Before Trusting It: Confidence-Aware Bidirectional Offline Model-Based Imagination
The learned policy of model-free offline reinforcement learning (RL) methods is often constrained to stay within the support of datasets to avoid possible dangerous out-of-distribution actions or states, making it challenging to handle out-of-support region. Model-based RL methods offer a richer dataset and benefit generalization by generating imaginary trajectories with either trained forward or reverse dynamics model. However, the imagined transitions may be inaccurate, thus downgrading the performance of the underlying offline RL method. In this paper, we propose to augment the offline dataset by using trained bidirectional dynamics models and rollout policies with double check. We introduce conservatism by trusting samples that the forward model and backward model agree on. Our method, confidence-aware bidirectional offline model-based imagination, generates reliable samples and can be combined with any model-free offline RL method. Experimental results on the D4RL benchmarks demonstrate that our method significantly boosts the performance of existing model-free offline RL algorithms and achieves competitive or better scores against baseline methods.
1,691
Research Topic Flows in Co-Authorship Networks
In scientometrics, scientific collaboration is often analyzed by means of co-authorships. An aspect which is often overlooked and more difficult to quantify is the flow of expertise between authors from different research topics, which is an important part of scientific progress. With the Topic Flow Network (TFN) we propose a graph structure for the analysis of research topic flows between scientific authors and their respective research fields. Based on a multi-graph and a topic model, our proposed network structure accounts for intratopic as well as intertopic flows. Our method requires for the construction of a TFN solely a corpus of publications (i.e., author and abstract information). From this, research topics are discovered automatically through non-negative matrix factorization. The thereof derived TFN allows for the application of social network analysis techniques, such as common metrics and community detection. Most importantly, it allows for the analysis of intertopic flows on a large, macroscopic scale, i.e., between research topic, as well as on a microscopic scale, i.e., between certain sets of authors. We demonstrate the utility of TFNs by applying our method to two comprehensive corpora of altogether 20 Mio. publications spanning more than 60 years of research in the fields computer science and mathematics. Our results give evidence that TFNs are suitable, e.g., for the analysis of topical communities, the discovery of important authors in different fields, and, most notably, the analysis of intertopic flows, i.e., the transfer of topical expertise. Besides that, our method opens new directions for future research, such as the investigation of influence relationships between research fields.
1,692
Personalized Federated Learning via Variational Bayesian Inference
Federated learning faces huge challenges from model overfitting due to the lack of data and statistical diversity among clients. To address these challenges, this paper proposes a novel personalized federated learning method via Bayesian variational inference named pFedBayes. To alleviate the overfitting, weight uncertainty is introduced to neural networks for clients and the server. To achieve personalization, each client updates its local distribution parameters by balancing its construction error over private data and its KL divergence with global distribution from the server. Theoretical analysis gives an upper bound of averaged generalization error and illustrates that the convergence rate of the generalization error is minimax optimal up to a logarithmic factor. Experiments show that the proposed method outperforms other advanced personalized methods on personalized models, e.g., pFedBayes respectively outperforms other SOTA algorithms by 1.25%, 0.42% and 11.71% on MNIST, FMNIST and CIFAR-10 under non-i.i.d. limited data.
1,693
Cyclocopula Technique to Study the Relationship Between Two Cyclostationary Time Series with Fractional Brownian Motion Errors
Detection of the relationship between two time series is so important in environmental and hydrological studies. Several parametric and non-parametric approaches can be applied to detect relationships. These techniques are usually sensitive to stationarity assumptions. In this research, a new copula-based method is introduced to detect the relationship between two cylostationary time series with fractional Brownian motion (fBm) errors. The numerical studies verify the performance of the introduced approach.
1,694
BlindFL: Vertical Federated Machine Learning without Peeking into Your Data
Due to the rising concerns on privacy protection, how to build machine learning (ML) models over different data sources with security guarantees is gaining more popularity. Vertical federated learning (VFL) describes such a case where ML models are built upon the private data of different participated parties that own disjoint features for the same set of instances, which fits many real-world collaborative tasks. Nevertheless, we find that existing solutions for VFL either support limited kinds of input features or suffer from potential data leakage during the federated execution. To this end, this paper aims to investigate both the functionality and security of ML modes in the VFL scenario. To be specific, we introduce BlindFL, a novel framework for VFL training and inference. First, to address the functionality of VFL models, we propose the federated source layers to unite the data from different parties. Various kinds of features can be supported efficiently by the federated source layers, including dense, sparse, numerical, and categorical features. Second, we carefully analyze the security during the federated execution and formalize the privacy requirements. Based on the analysis, we devise secure and accurate algorithm protocols, and further prove the security guarantees under the ideal-real simulation paradigm. Extensive experiments show that BlindFL supports diverse datasets and models efficiently whilst achieves robust privacy guarantees.
1,695
Analysis and Extensions of Adversarial Training for Video Classification
Adversarial training (AT) is a simple yet effective defense against adversarial attacks to image classification systems, which is based on augmenting the training set with attacks that maximize the loss. However, the effectiveness of AT as a defense for video classification has not been thoroughly studied. Our first contribution is to show that generating optimal attacks for video requires carefully tuning the attack parameters, especially the step size. Notably, we show that the optimal step size varies linearly with the attack budget. Our second contribution is to show that using a smaller (sub-optimal) attack budget at training time leads to a more robust performance at test time. Based on these findings, we propose three defenses against attacks with variable attack budgets. The first one, Adaptive AT, is a technique where the attack budget is drawn from a distribution that is adapted as training iterations proceed. The second, Curriculum AT, is a technique where the attack budget is increased as training iterations proceed. The third, Generative AT, further couples AT with a denoising generative adversarial network to boost robust performance. Experiments on the UCF101 dataset demonstrate that the proposed methods improve adversarial robustness against multiple attack types.
1,696
Forming Effective Human-AI Teams: Building Machine Learning Models that Complement the Capabilities of Multiple Experts
Machine learning (ML) models are increasingly being used in application domains that often involve working together with human experts. In this context, it can be advantageous to defer certain instances to a single human expert when they are difficult to predict for the ML model. While previous work has focused on scenarios with one distinct human expert, in many real-world situations several human experts with varying capabilities may be available. In this work, we propose an approach that trains a classification model to complement the capabilities of multiple human experts. By jointly training the classifier together with an allocation system, the classifier learns to accurately predict those instances that are difficult for the human experts, while the allocation system learns to pass each instance to the most suitable team member -- either the classifier or one of the human experts. We evaluate our proposed approach in multiple experiments on public datasets with "synthetic" experts and a real-world medical dataset annotated by multiple radiologists. Our approach outperforms prior work and is more accurate than the best human expert or a classifier. Furthermore, it is flexibly adaptable to teams of varying sizes and different levels of expert diversity.
1,697
Distributed Online Learning Algorithm With Differential Privacy Strategy for Convex Nondecomposable Global Objectives
In this paper, we deal with a general distributed constrained online learning problem with privacy over time-varying networks, where a class of nondecomposable objective functions are considered. Under this setting, each node only controls a part of the global decision variable, and the goal of all nodes is to collaboratively minimize the global objective over a time horizon $T$ while guarantees the security of the transmitted information. For such problems, we first design a novel generic algorithm framework, named as DPSDA, of differentially private distributed online learning using the Laplace mechanism and the stochastic variants of dual averaging method. Then, we propose two algorithms, named as DPSDA-C and DPSDA-PS, under this framework. Theoretical results show that both algorithms attain an expected regret upper bound in $\mathcal{O}( \sqrt{T} )$ when the objective function is convex, which matches the best utility achievable by cutting-edge algorithms. Finally, numerical experiment results on both real-world and randomly generated datasets verify the effectiveness of our algorithms.
1,698
PROFHIT: Probabilistic Robust Forecasting for Hierarchical Time-series
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting, where the goal is to model and forecast multivariate time-series that have underlying hierarchical relations. Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions. Recent state-of-art probabilistic forecasting methods also impose hierarchical relations on point predictions and samples of distribution which does not account for coherency of forecast distributions. Previous works also silently assume that datasets are always consistent with given hierarchical relations and do not adapt to real-world datasets that show deviation from this assumption. We close both these gaps and propose PROFHIT, which is a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy. PROFHIT uses a flexible probabilistic Bayesian approach and introduces a novel Distributional Coherency regularization to learn from hierarchical relations for entire forecast distribution that enables robust and calibrated forecasts as well as adapt to datasets of varying hierarchical consistency. On evaluating PROFHIT over wide range of datasets, we observed 41-88% better performance in accuracy and calibration. Due to modeling the coherency over full distribution, we observed that PROFHIT can robustly provide reliable forecasts even if up to 10% of input time-series data is missing where other methods' performance severely degrade by over 70%.
1,699
Lifelong Wandering: A realistic few-shot online continual learning setting
Online few-shot learning describes a setting where models are trained and evaluated on a stream of data while learning emerging classes. While prior work in this setting has achieved very promising performance on instance classification when learning from data-streams composed of a single indoor environment, we propose to extend this setting to consider object classification on a series of several indoor environments, which is likely to occur in applications such as robotics. Importantly, our setting, which we refer to as online few-shot continual learning, injects the well-studied issue of catastrophic forgetting into the few-shot online learning paradigm. In this work, we benchmark several existing methods and adapted baselines within our setting, and show there exists a trade-off between catastrophic forgetting and online performance. Our findings motivate the need for future work in this setting, which can achieve better online performance without catastrophic forgetting.