Unnamed: 0
int64 0
160k
| title
stringlengths 3
1.06k
⌀ | abstract
stringlengths 3
122k
⌀ |
---|---|---|
3,800 | Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction | DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10875-019-00603-w) contains supplementary material, which is available to authorized users. |
3,801 | Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn(2+) to inhibit cysteinyl cathepsins: review and implications | ABSTRACT: Excessive activities of cysteinyl cathepsins (CysCts) contribute to the progress of many diseases; however, therapeutic inhibition has been problematic. Zn(2+) is a natural inhibitor of proteases with CysHis dyads or CysHis(Xaa) triads. Biguanide forms bidentate metal complexes through the two imino nitrogens. Here, it is discussed that phenformin (phenylethyl biguanide) is a model for recruitment of endogenous Zn(2+) to inhibit CysHis/CysHis(X) peptidolysis. Phenformin is a Zn(2+)-interactive, anti-proteolytic agent in bioassay of living tissue. Benzoyl-l-arginine amide (BAA) is a classical substrate of papain-like proteases; the amide bond is scissile. In this review, the structures of BAA and the phenformin-Zn(2+) complex were compared in silico. Their chemistry and dimensions are discussed in light of the active sites of papain-like proteases. The phenyl moieties of both structures bind to the “S2” substrate-binding site that is typical of many proteases. When the phenyl moiety of BAA binds to S2, then the scissile amide bond is directed to the position of the thiolate-imidazolium ion pair, and is then hydrolyzed. However, when the phenyl moiety of phenformin binds to S2, then the coordinated Zn(2+) is directed to the identical position; and catalysis is inhibited. Phenformin stabilizes a “Zn(2+) sandwich” between the drug and protease active site. Hundreds of biguanide derivatives have been synthesized at the 1 and 5 nitrogen positions; many more are conceivable. Various substituent moieties can register with various arrays of substrate-binding sites so as to align coordinated Zn(2+) with catalytic partners of diverse proteases. Biguanide is identified here as a modifiable pharmacophore for synthesis of therapeutic CysCt inhibitors with a wide range of potencies and specificities. GRAPHICAL ABSTRACT: Phenformin-Zn(2+) Complex [Image: see text] |
3,802 | Structural Analysis of Biomolecules through a Combination of Mobility Capillary Electrophoresis and Mass Spectrometry | [Image: see text] The 3D structures of biomolecules determine their biological function. Established methods in biomolecule structure determination typically require purification, crystallization, or modification of target molecules, which limits their applications for analyzing trace amounts of biomolecules in complex matrices. Here, we developed instruments and methods of mobility capillary electrophoresis (MCE) and its coupling with MS for the 3D structural analysis of biomolecules in the liquid phase. Biomolecules in complex matrices could be separated by MCE and sequentially detected by MS. The effective radius and the aspect ratio of each separated biomolecule were simultaneously determined through the separation by MCE, which were then used as restraints in determining biomolecule conformations through modeling. Feasibility of this method was verified by analyzing a mixture of somatostatin and bradykinin, two peptides with known liquid-phase structures. Proteins could also be structurally analyzed using this method, which was demonstrated for lysozyme. The combination of MCE and MS for complex sample analysis was also demonstrated. MCE and MCE–MS would allow us to analyze trace amounts of biomolecules in complex matrices, which has the potential to be an alternative and powerful biomolecule structure analysis technique. |
3,803 | Natural Vertical Transmission of Zika Virus in Larval Aedes aegypti Populations, Morelos, Mexico | We characterized natural vertical transmission of Zika virus in pools of Aedes aegypti larvae hatched from eggs collected in Jojutla, Morelos, Mexico. Of the 151 pools analyzed, 17 tested positive for Zika virus RNA; infectious Zika virus was successfully isolated from 1 of the larvae pools (31N) in C6/36 cells. Real-time quantitative PCR and indirect immunofluorescence assays confirmed the identity of the isolate, named Zika virus isolate 31N; plaque assays in Vero cells demonstrated the isolate’s infectivity in a mammalian cell line. We obtained the complete genome of Zika virus isolate 31N by next-generation sequencing and identified 3 single-nucleotide variants specific to Zika virus isolate 31N using the meta-CATS tool. These results demonstrate the occurrence of natural vertical transmission of Zika virus in wild Ae. aegypti mosquitoes and suggest that this transmission mode could aid in the spread and maintenance of Zika virus in nature. |
3,804 | On the diverse and opposing effects of nutrition on pathogen virulence | Climate change and anthropogenic activity are currently driving large changes in nutritional availability across ecosystems, with consequences for infectious disease. An increase in host nutrition could lead to more resources for hosts to expend on the immune system or for pathogens to exploit. In this paper, we report a meta-analysis of studies on host–pathogen systems across the tree of life, to examine the impact of host nutritional quality and quantity on pathogen virulence. We did not find broad support across studies for a one-way effect of nutrient availability on pathogen virulence. We thus discuss a hypothesis that there is a balance between the effect of host nutrition on the immune system and on pathogen resources, with the pivot point of the balance differing for vertebrate and invertebrate hosts. Our results suggest that variation in nutrition, caused by natural or anthropogenic factors, can have diverse effects on infectious disease outcomes across species. |
3,805 | G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications | Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers. |
3,806 | Deciphering Fc-mediated Antiviral Antibody Functions in Animal Models | Longstanding discordances and enigmas persist as to the specificities and other properties of antibodies (Abs) most effective in preventing or limiting many viral infections in mammals; in turn, failure to decipher key complexities has added to headwinds for both Ab-based therapeutic approaches and rational vaccine design. More recently, experimental approaches have emerged—and continue to emerge—for discerning the functional role of Ab structure, especially the Fc portion of antibody, in combating viral infections in vivo. A wide range of in vitro measures of antibody activity, from neutralization to antibody-dependent cell mediated cytotoxicity (ADCC)—each of these terms representing only an operational notion defined by the particulars of a given assay—are poised for assignment of both relevance and reliability in forecasting outcomes of infection. Of the several emergent technical opportunities for clarity, attention here is drawn to three realms: the increasing array of known modifications that can be engineered into Abs to affect their in vivo activities; the improvement of murine models involving knockouts and knock-ins of host genes including Fc receptors; and the development of additional virological design tools to differentiate Abs that act primarily by inhibiting viral entry from antibodies that mainly target viral antigens (Ags) on cell surfaces. To illustrate some of the opportunities with either zoonotic (emerging, spillover) or ancient human-adapted viruses, we draw examples from a wide range of viruses that affect humans. |
3,807 | The Capsid Protein VP1 of Coxsackievirus B Induces Cell Cycle Arrest by Up-Regulating Heat Shock Protein 70 | Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27(Kip1). Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27(Kip1). We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection. |
3,808 | A cell-based assay for CD63-containing extracellular vesicles | Extracellular vesicles (EVs) are thought to be important in cell-cell communication and have elicited extraordinary interest as potential biomarkers of disease. However, quantitative methods to enable elucidation of mechanisms underlying release are few. Here, we describe a cell-based assay for monitoring EV release using the EV-enriched tetraspanin CD63 fused to the small, ATP-independent reporter enzyme, Nanoluciferase. Release of CD63-containing EVs from stably expressing cell lines was monitored by comparing luciferase activity in culture media to that remaining in cells. HEK293, U2OS, U87 and SKMel28 cells released 0.3%-0.6% of total cellular CD63 in the form of EVs over 5 hrs, varying by cell line. To identify cellular machinery important for secretion of CD63-containing EVs, we performed a screen of biologically active chemicals in HEK293 cells. While a majority of compounds did not significantly affect EV release, treating cells with the plecomacrolides bafilomycin or concanamycin, known to inhibit the V-ATPase, dramatically increased EV release. Interestingly, alkalization of the endosomal lumen using weak bases had no effect, suggesting a pH-independent enhancement of EV release by V-ATPase inhibitors. The ability to quantify EVs in small samples will enable future detailed studies of release kinetics as well as further chemical and genetic screening to define pathways involved in EV secretion. |
3,809 | Human metapneumovirus as cause of severe community-acquired pneumonia in adults: insights from a ten-year molecular and epidemiological analysis | BACKGROUND: Information on the clinical, epidemiological and molecular characterization of human metapneumovirus in critically ill adult patients with severe community-acquired pneumonia (CAP) and the role of biomarkers identifying bacterial coinfection is scarce. METHODS: This is a retrospective epidemiological study of adult patients with hMPV severe CAP admitted to ICU during a ten-year period with admission PSI score ≥ 3. RESULTS: The 92.8% of the 28 patients with severe CAP due to human metapneumovirus were detected during the first half of the year. Median age was 62 years and 60.7% were male. The genotyping of isolated human metapneumovirus showed group B predominance (60.7%). All patients had acute respiratory failure. Median APACHE II and SOFA score were 13 and 6.55, respectively. The 25% were coinfected with Streptococcus pneumoniae. 60.7% of the patients had shock at admission and 50% underwent mechanical ventilation. Seven patients developed ARDS, three of them younger than 60 years and without comorbidities. Mortality in ICU was 14.3%. Among survivors, ICU and hospital stay were 6.5 and 14 days, respectively. Plasma levels of procalcitonin were higher in patients with bacterial coinfection (18.2 vs 0.54; p < 0.05). The levels of C-reactive protein, however, were similar. CONCLUSION: Human metapneumovirus was associated with severe CAP requiring ICU admission among elderly patients or patients with comorbidities, but also in healthy young subjects. These patients often underwent mechanical ventilation with elevated health resource consumption. While one out of four patients showed pneumococcal coinfection, plasma procalcitonin helped to implement antimicrobial stewardship. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13613-019-0559-y) contains supplementary material, which is available to authorized users. |
3,810 | Introducing a New Algorithm for Classification of Etiology in Studies on Pediatric Pneumonia: Protocol for the Trial of Respiratory Infections in Children for Enhanced Diagnostics Study | BACKGROUND: There is a need to better distinguish viral infections from antibiotic-requiring bacterial infections in children presenting with clinical community-acquired pneumonia (CAP) to assist health care workers in decision making and to improve the rational use of antibiotics. OBJECTIVE: The overall aim of the Trial of Respiratory infections in children for ENhanced Diagnostics (TREND) study is to improve the differential diagnosis of bacterial and viral etiologies in children aged below 5 years with clinical CAP, by evaluating myxovirus resistance protein A (MxA) as a biomarker for viral CAP and by evaluating an existing (multianalyte point-of-care antigen detection test system [mariPOC respi] ArcDia International Oy Ltd.) and a potential future point-of-care test for respiratory pathogens. METHODS: Children aged 1 to 59 months with clinical CAP as well as healthy, hospital-based, asymptomatic controls will be included at a pediatric emergency hospital in Stockholm, Sweden. Blood (analyzed for MxA and C-reactive protein) and nasopharyngeal samples (analyzed with real-time polymerase chain reaction as the gold standard and antigen-based mariPOC respi test as well as saved for future analyses of a novel recombinase polymerase amplification–based point-of-care test for respiratory pathogens) will be collected. A newly developed algorithm for the classification of CAP etiology will be used as the reference standard. RESULTS: A pilot study was performed from June to August 2017. The enrollment of study subjects started in November 2017. Results are expected by the end of 2019. CONCLUSIONS: The findings from the TREND study can be an important step to improve the management of children with clinical CAP. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/12705 |
3,811 | Molecular detection and genetic characterization of Mycoplasma gallisepticum, Mycoplama synoviae, and infectious bronchitis virus in poultry in Myanmar | BACKGROUND: In Southeast Asian countries, including Myanmar, poultry farming is a major industry. In order to manage and maintain stable productivity, it is important to establish policies for biosecurity. Infectious respiratory diseases are a major threat to poultry farming. Avian influenza and Newcastle disease have been reported in Myanmar, but no scientific information is available for other respiratory pathogens, such as mycoplasmas and infectious bronchitis virus (IBV). Identifying the genotypes and serotypes of IBVs is especially important to inform vaccination programs. In this study, we detected Mycoplasma gallisepticum (MG), M. synoviae (MS), and IBV in several poultry farms in Myanmar. RESULTS: Samples were collected from 20 farms in three major poultry farming areas in Myanmar, and MG, MS, and IBV were detected on two, four, and eight farms, respectively, by polymerase chain reaction. Phylogenetic analysis revealed that the observed MG and MS isolates were not identical to vaccine strains. Three different genotypes of IBV were detected, but none was an unknown variant. CONCLUSIONS: Mycoplasmas and IBV were detected on poultry farms in Myanmar. Periodic surveillance is required to establish the distribution of each pathogen, and to institute better vaccine protocols. |
3,812 | Mechanism of Cxc Chemokine Ligand 5 (CXCL5)/Cxc Chemokine Receptor 2 (CXCR2) Bio-Axis in Mice with Acute Respiratory Distress Syndrome | BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common acute and severe disease in clinic. Recent studies indicated that Cxc chemokine ligand 5 (CXCL5), an inflammatory chemokine, was associated with tumorigenesis. The present study investigated the role of the CXCL5/Cxc chemokine receptor 2 (CXCR2) bio-axis in ARDS, and explored the underlying molecular mechanism. MATERIAL/METHODS: The pathological morphology of lung tissue and degree of pulmonary edema were assessed by hematoxylin-eosin staining and pulmonary edema score, respectively. Real-time PCR and Western blot analysis were performed to detect the expression levels of CXCL5, CXCR2, Matrix metalloproteinases 2 (MMP2), and Matrix metalloproteinases 9 (MMP9) in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the expression levels of CXCL5 and inflammatory factors (IL-1β, IL-6, TNF-α, and IL-10) in serum. RESULTS: The results demonstrated that diffuse alveolar damage and pulmonary edema appeared in lipopolysaccharide (LPS)-induced ARDS and were positively correlated with the severity of ARDS. In addition, CXCL5 and its receptor CXCR2 were overexpressed by upregulation of MMP2 and MMP9 in lung tissues of ARDS. In addition, CXCL5 neutralizing antibody effectively alleviated inflammatory response, diffuse alveolar damage, and pulmonary edema, and decreased the expression levels of MMP2 and MMP9 compared to LPS-induced ARDS. CONCLUSIONS: We found that CXCL5/CXCR2 accelerated the progression of ARDS, partly by upregulation of MMP2 and MMP9 in lung tissues with the release of inflammatory factors. |
3,813 | Divergent Peptide Presentations of HLA-A(*)30 Alleles Revealed by Structures With Pathogen Peptides | Human leukocyte antigen (HLA) alleles have a high degree of polymorphism, which determines their peptide-binding motifs and subsequent T-cell receptor recognition. The simplest way to understand the cross-presentation of peptides by different alleles is to classify these alleles into supertypes. A1 and A3 HLA supertypes are widely distributed in humans. However, direct structural and functional evidence for peptide presentation features of key alleles (e.g., HLA-A(*)30:01 and -A(*)30:03) are lacking. Herein, the molecular basis of peptide presentation of HLA-A(*)30:01 and -A(*)30:03 was demonstrated by crystal structure determination and thermostability measurements of complexes with T-cell epitopes from influenza virus (NP44), human immunodeficiency virus (RT313), and Mycobacterium tuberculosis (MTB). When binding to the HIV peptide, RT313, the PΩ-Lys anchoring modes of HLA-A(*)30:01, and -A(*)30:03 were similar to those of HLA-A(*)11:01 in the A3 supertype. However, HLA-A(*)30:03, but not -A(*)30:01, also showed binding with the HLA(*)01:01-favored peptide, NP44, but with a specific structural conformation. Thus, different from our previous understanding, HLA-A(*)30:01 and -A(*)30:03 have specific peptide-binding characteristics that may lead to their distinct supertype-featured binding peptide motifs. Moreover, we also found that residue 77 in the F pocket was one of the key residues for the divergent peptide presentation characteristics of HLA-A(*)30:01 and -A(*)30:03. Interchanging residue 77 between HLA-A(*)30:01 and HLA-A(*)30:03 switched their presented peptide profiles. Our results provide important recommendations for screening virus and tumor-specific peptides among the population with prevalent HLA supertypes for vaccine development and immune interventions. |
3,814 | Successful management of refractory respiratory failure caused by avian influenza H7N9 and secondary organizing pneumonia: a case report and literature review | BACKGROUD: Organizing pneumonia (OP) is a rare complication of influenza infection that has substantial morbidity. We report the first case of OP associated with avian influenza H7N9 infection that had significant improvement with corticosteroid treatment. CASE PRESENTATION: A 35-year-old male admitted to intensive care unit because of respiratory failure. He was diagnosed as severe pneumonia caused by avian influenza H7N9 viral infection. After initial clinical improvement supported by extracorporeal membrane oxygenation (ECMO), the patient’s condition worsened with persistent fever, refractory hypoxemia. Chest x-rays and computed tomographies showed areas of consolidation and ground glass opacification. Although OP was suspected and 1 mg/kg methylprednisolone was used, the patient’s condition didn’t improved considerably. An open lung biopsy was performed, and histopathological examination of the specimen was compatible with OP. The patient was treated with methylprednisolone 1.5 mg/kg for 5 days. ECMO was weaned on day 15, and he was discharged on day 71 with good lung recovery. CONCLUSIONS: To the best of our knowledge, this was the first case of successful management of refractory severe respiratory failure caused by avian influenza H7N9 infection complicated with OP. Refractory hypoxia with clinical manifestation and radiological findings compatible with OP, a differential diagnosis should be considered among patients at the second or third week of influenza H7N9 infection, especially in patients with clinical condition deteriorated after the primary influenza pneumonia was controlled. And a steroid dose of methylprednisolone 1.5 mg/kg may be suggested for treatment of OP associated with avian influenza H7N9 infection. |
3,815 | Clinical characteristics and outcomes during a severe influenza season in China during 2017–2018 | BACKGROUND: A severe seasonal influenza epidemic was observed during 2017–2018 in China, prompting questions on clinical characteristics and outcomes of severe cases with influenza. METHODS: We retrospectively collected clinical data and outcomes of laboratory-confirmed hospitalized patients (severe to critical) during Jan-2011 to Feb-2018 from five hospitals, followed by a systematic analysis of cases from 2017 to 2018 (n = 289) and all previous epidemics during 2011–2017 (n = 169). RESULTS: In-hospital fatality was over 5-folds higher during the 2017–2018 (p < 0.01) in which 19 patients died (6.6%), whereas only 2 mortalities (1.2%) were observed during 2011–2017. Of the 289 hospitalized in 2017–2018, 153 were confirmed with influenza B virus, 110 with A/H1N1pdm09, and 26 A/H3N2, whereas A/H1N1pdm09 was the predominant cause of hospitalization in previous seasons combined (45%). Fatal cases in 2017–2018 were exclusively associated with either influenza B or A/H1N1pdm09. Our results show that a significant lower proportion of patients aged 14 or greater were treated with oseltamivir, during the 2017–2018 epidemic, and exhibited higher levels of clinical severity. CONCLUSIONS: In-hospital fatality rate might be significantly higher in the 2017–2018 season in China. A sufficient supply of oseltamivir and antiviral therapy within 48 h from onset could reduce fatality rates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12879-019-4181-2) contains supplementary material, which is available to authorized users. |
3,816 | Techniques to Study Antigen-Specific B Cell Responses | Antibodies against foreign antigens are a critical component of the overall immune response and can facilitate pathogen clearance during a primary infection and also protect against subsequent infections. Dysregulation of the antibody response can lead to an autoimmune disease, malignancy, or enhanced infection. Since the experimental delineation of a distinct B cell lineage in 1965, various methods have been developed to understand antigen-specific B cell responses in the context of autoimmune diseases, primary immunodeficiencies, infection, and vaccination. In this review, we summarize the established techniques and discuss new and emerging technologies for probing the B cell response in vitro and in vivo by taking advantage of the specificity of B cell receptor (BCR)-associated and secreted antibodies. These include ELISPOT, flow cytometry, mass cytometry, and fluorescence microscopy to identify and/or isolate primary antigen-specific B cells. We also present our approach to identify rare antigen-specific B cells using magnetic enrichment followed by flow cytometry. Once these cells are isolated, in vitro proliferation assays and adoptive transfer experiments in mice can be used to further characterize antigen-specific B cell activation, function, and fate. Transgenic mouse models of B cells targeting model antigens and of B cell signaling have also significantly advanced our understanding of antigen-specific B cell responses in vivo. |
3,817 | Recombinant vector vaccine evolution | Replicating recombinant vector vaccines consist of a fully competent viral vector backbone engineered to express an antigen from a foreign transgene. From the perspective of viral replication, the transgene is not only dispensable but may even be detrimental. Thus vaccine revertants that delete or inactivate the transgene may evolve to dominate the vaccine virus population both during the process of manufacture of the vaccine as well as during the course of host infection. A particular concern is that this vaccine evolution could reduce its antigenicity—the immunity elicited to the transgene. We use mathematical and computational models to study vaccine evolution and immunity. These models include evolution arising during the process of manufacture, the dynamics of vaccine and revertant growth, plus innate and adaptive immunity elicited during the course of infection. Although the selective basis of vaccine evolution is easy to comprehend, the immunological consequences are not. One complication is that the opportunity for vaccine evolution is limited by the short period of within-host growth before the viral population is cleared. Even less obvious, revertant growth may only weakly interfere with vaccine growth in the host and thus have a limited effect on immunity to vaccine. Overall, we find that within-host vaccine evolution can sometimes compromise vaccine immunity, but only when the extent of evolution during vaccine manufacture is severe, and this evolution can be easily avoided or mitigated. |
3,818 | Ranaviruses Bind Cells from Different Species through Interaction with Heparan Sulfate | Ranavirus cross-species infections have been documented, but the viral proteins involved in the interaction with cell receptors have not yet been identified. Here, viral cell-binding proteins and their cognate cellular receptors were investigated using two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), and two different cell lines, Chinese giant salamander thymus cells (GSTC) and Epithelioma papulosum cyprinid (EPC) cells. The heparan sulfate (HS) analog heparin inhibited plaque formation of ADRV and RGV in the two cell lines by more than 80% at a concentration of 5 μg/mL. In addition, enzymatic removal of cell surface HS by heparinase I markedly reduced plaque formation by both viruses and competition with heparin reduced virus-cell binding. These results indicate that cell surface HS is involved in ADRV and RGV cell binding and infection. Furthermore, recombinant viral envelope proteins ADRV-58L and RGV-53R bound heparin-Sepharose beads implying the potential that cell surface HS is involved in the initial interaction between ranaviruses and susceptible host cells. To our knowledge, this is the first report identifying cell surface HS as ranavirus binding factor and furthers understanding of interactions between ranaviruses and host cells. |
3,819 | Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? | Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface. In this review, we summarize the current knowledge on HSPG–virus interactions and distinguish viruses with established HS binding, viruses that bind HS only after intra-host or cell culture adaptation, and finally, viruses whose dependence on HS for infection is debated. We also provide an overview of the antiviral compounds designed to interfere with HS binding. Many questions remain about the true importance of these receptors in vivo, knowledge that is critical for the design of future antiviral therapies. |
3,820 | Immune Responses in the Eye-Associated Lymphoid Tissues of Chickens after Ocular Inoculation with Vaccine and Virulent Strains of the Respiratory Infectious Laryngotracheitis Virus (ILTV) | Infectious laryngotracheitis (ILT) is an acute respiratory disease of poultry caused by infectious laryngotracheitis virus (ILTV). Control of the disease with live attenuated vaccines administered via eye drop build upon immune responses generated by the eye-associated lymphoid tissues. The aim of this study was to assess cytokine and lymphocyte changes in the conjunctiva-associated lymphoid tissues (CALT) and Harderian gland (HG) stimulated by the ocular inoculation of the ILTV chicken embryo origin (CEO) vaccine strain and virulent strain 63140. This study offers strong evidence to support the roles that the CALT and HG play in the development of protective ILTV immune responses. It supports the premise that ILTV-mediated immunomodulation favors the B cell response over those of T cells. Further, it provides evidence that expansions of CD8α(+) cells, with the concomitant expression of the Granzyme A gene, are key to reducing viral genomes in the CALT and halting ILTV cytolytic replication in the conjunctiva. Ultimately, this study revealed that the early upregulation of interleukin (IL)-12p40 and Interferon (IFN)-γ cytokine genes, which shape the antigen-specific cell-mediated immune responses, retarded the decline of virus replication, and enhanced the development of lesions in the conjunctiva epithelium. |
3,821 | Anti-Respiratory Syncytial Virus Activity of Plantago asiatica and Clerodendrum trichotomum Extracts In Vitro and In Vivo | The herbs Plantago asiatica and Clerodendrum trichotomum have been commonly used for centuries in indigenous and folk medicine in tropical and subtropical regions of the world. In this study, we show that extracts from these herbs have antiviral effects against the respiratory syncytial virus (RSV) in vitro cell cultures and an in vivo mouse model. Treatment of HEp2 cells and A549 cells with a non-cytotoxic concentration of Plantago asiatica or Clerodendrum trichotomum extract significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and also blocked syncytia formation. Interestingly, oral inoculation with each herb extract significantly improved viral clearance in the lungs of BALB/c mice. Based on reported information and a high-performance liquid chromatography (HPLC) analysis, the phenolic glycoside acteoside was identified as an active chemical component of both herb extracts. An effective dose of acteoside exhibited similar antiviral effects as each herb extract against RSV in vitro and in vivo. Collectively, these results suggest that extracts of Plantago asiatica and Clerodendrum trichotomum could provide a potent natural source of an antiviral drug candidate against RSV infection. |
3,822 | Programmed −2/−1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism | The −2/−1 programmed ribosomal frameshifting (−2/−1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This −2/−1 PRF mechanism is transactivated by a viral protein, nsp1β, and cellular poly(rC) binding proteins (PCBPs). Critical elements for −2/−1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate −2 PRF to generate nsp2TF. The nsp1β of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both −2 and −1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1β are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus −2/−1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1β, slippery sequence, and C-rich motif in −2/−1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of −2/−1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, −2/−1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1βs of all non-EAV arteriviruses tested. Taken together, these data suggest that −2/−1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication. IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology. |
3,823 | Emerging/re-emerging viral diseases & new viruses on the Indian horizon | Infectious diseases remain as the major causes of human and animal morbidity and mortality leading to significant healthcare expenditure in India. The country has experienced the outbreaks and epidemics of many infectious diseases. However, enormous successes have been obtained against the control of major epidemic diseases, such as malaria, plague, leprosy and cholera, in the past. The country's vast terrains of extreme geo-climatic differences and uneven population distribution present unique patterns of distribution of viral diseases. Dynamic interplays of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. In this article, the major emerging and re-emerging viral infections of public health importance have been reviewed that have already been included in the Integrated Disease Surveillance Programme. |
3,824 | Viroporins in the Influenza Virus | Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host. |
3,825 | Severe odontogenic infections with septic progress – a constant and increasing challenge: a retrospective analysis | BACKGROUND: More than 90% of all infections in the head and neck region can be traced back to an odontogenic origin. In rare cases they can lead to sepsis, which may pose a vital threat to the patient. The purpose of this study was to analyse characteristics concerning etiology and progress of severe odontogenic infections with a fulminant development. METHODS: All patients with odontogenic infections requiring hospital admission were included in a retrospective analysis conducted from 02/2012 to 09/2017. Of 483 patients 16 patients (13 male, 3 female) showed severe exacerbation with septic progress. The average age was 52.8 years. All patients underwent at least one surgical procedure that involved an extraoral incision and drainage as well as high volume irrigation intraoperatively. At least one revision was required for four of the patients. Three patients showed an exceedingly severe disease progression with multiorgan dysfunction syndrome (MODS) and circulatory arrest. Antibiotic treatment was adjusted according to the results of an antibiogram and resistogram. Irrigation with saline was done several times a day. RESULTS: Sixteen patients showed odontogenic infections that spread over multiple maxillo-facial and cervical regions accompanied by septic laboratory signs. All these patients needed intensive care and a tracheostomy. The hospitalization period was 27.8 days on average. In 16 cases risk factors for the development of odontogenic abscesses like diabetes mellitus, obesity, chronic alcohol and nicotine abuse, rheumatism and poor oral hygiene were present. Intraoperative swabs showed a typical polymicrobial aerobic and anaerobic spectrum of oral bacteria, especially anaerobes and streptococci, mainly Streptocococcus viridans. CONCLUSION: Odontogenic infections with fulminant progression should be treated based on clinical and imaging data with immediate surgical incision and drainage including elimination of odontogenic foci as well as intensified intra- and postoperative irrigation. If needed, repeat imaging followed by further incisions should be performed. Immediate antibiotic treatment adapted to the antibiogram is of utmost importance. A combination of tazobactam and piperacillin has proven to be a good first choice and can be recommended for abscesses that spread over multiple levels with initial signs of severe infections. |
3,826 | Discovery of novel astrovirus genotype species in small ruminants | Astroviruses (AstV) are single-stranded, positive-sense RNA viruses, best known for causing diarrhea in humans and are also found in many other mammals; in those, the relevance in gastroenteritis remains unclear. Recently described neurotropic AstV showed associations with encephalitis in humans as well as in other mammals. In Switzerland, two different neurotropic AstV were identified in cattle, as well as one in a sheep. The high genetic similarity between the ovine and one of the bovine AstV strengthens the hypothesis of an interspecies transmission. In humans, AstV associated with encephalitis were found also in human stool samples, suggesting that in these patients the infection spreads from the gastrointestinal tract to the brain under certain conditions, such as immunosuppression. Whether a similar pathogenesis occurs in ruminants remains unknown. The aims of this study were (1) the investigation of the potential occurrence of neurotropic AstV in feces samples, (2) the discovery and analysis of so far unknown AstV in small ruminants and other ruminant species’ fecal samples and (3) the examination of a potential interspecies transmission of AstV. To achieve these aims, RNA extraction out of 164 fecal samples from different ruminant species was performed and all samples were screened for known neurotropic AstV occurring in Switzerland, as well as for various AstV using RT-PCR. Positive tested samples were submitted to next generation sequencing. The generated sequences were compared to nucleotide- and amino acid databases, virus properties were identified, and phylogenetic analyses as well as recombination analysis were performed. The excretion of neurotropic AstV in small ruminants’ feces could not be demonstrated, but this work suggests the first identification of AstV in goats as well as the discovery of multiple and highly diverse new genetic variants in small ruminants, which lead to a classification into novel genotype-species. Additionally, the prediction of multiple recombination events in four of five newly discovered full or almost full-length genome sequences suggests a plausible interspecies transmission. The findings point out the occurrence and fecal shedding of previously unknown AstV in sheep and goats and pave the way towards a better understanding of the diversity and transmission of AstV in small ruminants. |
3,827 | Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update | Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide. |
3,828 | Furin‐mediated protein processing in infectious diseases and cancer | Proteolytic cleavage regulates numerous processes in health and disease. One key player is the ubiquitously expressed serine protease furin, which cleaves a plethora of proteins at polybasic recognition motifs. Mammalian substrates of furin include cytokines, hormones, growth factors and receptors. Thus, it is not surprising that aberrant furin activity is associated with a variety of disorders including cancer. Furthermore, the enzymatic activity of furin is exploited by numerous viral and bacterial pathogens, thereby enhancing their virulence and spread. In this review, we describe the physiological and pathophysiological substrates of furin and discuss how dysregulation of a simple proteolytic cleavage event may promote infectious diseases and cancer. One major focus is the role of furin in viral glycoprotein maturation and pathogenicity. We also outline cellular mechanisms regulating the expression and activation of furin and summarise current approaches that target this protease for therapeutic intervention. |
3,829 | Projection Word Embedding Model With Hybrid Sampling Training for Classifying ICD-10-CM Codes: Longitudinal Observational Study | BACKGROUND: Most current state-of-the-art models for searching the International Classification of Diseases, Tenth Revision Clinical Modification (ICD-10-CM) codes use word embedding technology to capture useful semantic properties. However, they are limited by the quality of initial word embeddings. Word embedding trained by electronic health records (EHRs) is considered the best, but the vocabulary diversity is limited by previous medical records. Thus, we require a word embedding model that maintains the vocabulary diversity of open internet databases and the medical terminology understanding of EHRs. Moreover, we need to consider the particularity of the disease classification, wherein discharge notes present only positive disease descriptions. OBJECTIVE: We aimed to propose a projection word2vec model and a hybrid sampling method. In addition, we aimed to conduct a series of experiments to validate the effectiveness of these methods. METHODS: We compared the projection word2vec model and traditional word2vec model using two corpora sources: English Wikipedia and PubMed journal abstracts. We used seven published datasets to measure the medical semantic understanding of the word2vec models and used these embeddings to identify the three–character-level ICD-10-CM diagnostic codes in a set of discharge notes. On the basis of embedding technology improvement, we also tried to apply the hybrid sampling method to improve accuracy. The 94,483 labeled discharge notes from the Tri-Service General Hospital of Taipei, Taiwan, from June 1, 2015, to June 30, 2017, were used. To evaluate the model performance, 24,762 discharge notes from July 1, 2017, to December 31, 2017, from the same hospital were used. Moreover, 74,324 additional discharge notes collected from seven other hospitals were tested. The F-measure, which is the major global measure of effectiveness, was adopted. RESULTS: In medical semantic understanding, the original EHR embeddings and PubMed embeddings exhibited superior performance to the original Wikipedia embeddings. After projection training technology was applied, the projection Wikipedia embeddings exhibited an obvious improvement but did not reach the level of original EHR embeddings or PubMed embeddings. In the subsequent ICD-10-CM coding experiment, the model that used both projection PubMed and Wikipedia embeddings had the highest testing mean F-measure (0.7362 and 0.6693 in Tri-Service General Hospital and the seven other hospitals, respectively). Moreover, the hybrid sampling method was found to improve the model performance (F-measure=0.7371/0.6698). CONCLUSIONS: The word embeddings trained using EHR and PubMed could understand medical semantics better, and the proposed projection word2vec model improved the ability of medical semantics extraction in Wikipedia embeddings. Although the improvement from the projection word2vec model in the real ICD-10-CM coding task was not substantial, the models could effectively handle emerging diseases. The proposed hybrid sampling method enables the model to behave like a human expert. |
3,830 | Inherited IL-18BP deficiency in human fulminant viral hepatitis | Fulminant viral hepatitis (FVH) is a devastating and unexplained condition that strikes otherwise healthy individuals during primary infection with common liver-tropic viruses. We report a child who died of FVH upon infection with hepatitis A virus (HAV) at age 11 yr and who was homozygous for a private 40-nucleotide deletion in IL18BP, which encodes the IL-18 binding protein (IL-18BP). This mutation is loss-of-function, unlike the variants found in a homozygous state in public databases. We show that human IL-18 and IL-18BP are both secreted mostly by hepatocytes and macrophages in the liver. Moreover, in the absence of IL-18BP, excessive NK cell activation by IL-18 results in uncontrolled killing of human hepatocytes in vitro. Inherited human IL-18BP deficiency thus underlies fulminant HAV hepatitis by unleashing IL-18. These findings provide proof-of-principle that FVH can be caused by single-gene inborn errors that selectively disrupt liver-specific immunity. They also show that human IL-18 is toxic to the liver and that IL-18BP is its antidote. |
3,831 | A Systematic Review of Social Contact Surveys to Inform Transmission Models of Close-contact Infections | BACKGROUND: Researchers increasingly use social contact data to inform models for infectious disease spread with the aim of guiding effective policies about disease prevention and control. In this article, we undertake a systematic review of the study design, statistical analyses, and outcomes of the many social contact surveys that have been published. METHODS: We systematically searched PubMed and Web of Science for articles regarding social contact surveys. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines as closely as possible. RESULTS: In total, we identified 64 social contact surveys, with more than 80% of the surveys conducted in high-income countries. Study settings included general population (58%), schools or universities (37%), and health care/conference/research institutes (5%). The largest number of studies did not focus on a specific age group (38%), whereas others focused on adults (32%) or children (19%). Retrospective (45%) and prospective (41%) designs were used most often with 6% using both for comparison purposes. The definition of a contact varied among surveys, e.g., a nonphysical contact may require conversation, close proximity, or both. We identified age, time schedule (e.g., weekday/weekend), and household size as relevant determinants of contact patterns across a large number of studies. CONCLUSIONS: We found that the overall features of the contact patterns were remarkably robust across several countries, and irrespective of the study details. By considering the most common approach in each aspect of design (e.g., sampling schemes, data collection, definition of contact), we could identify recommendations for future contact data surveys that may be used to facilitate comparison between studies. |
3,832 | The protective and pathogenic roles of IL-17 in viral infections: friend or foe? | Viral infections cause substantial human morbidity and mortality, and are a significant health burden worldwide. Following a viral infection, the host may initiate complex antiviral immune responses to antagonize viral invasion and replication. However, proinflammatory antiviral immune responses pose a great threat to the host if not properly held in check. Interleukin (IL)-17 is a pleiotropic cytokine participating in a variety of physiological and pathophysiological conditions, including tissue integrity maintenance, cancer progression, autoimmune disease development and, more intriguingly, infectious diseases. Abundant evidence suggests that while IL-17 plays a crucial role in enhancing effective antiviral immune responses, it may also promote and exacerbate virus-induced illnesses. Accumulated experimental and clinical evidence has broadened our understanding of the seemingly paradoxical role of IL-17 in viral infections and suggests that IL-17-targeted immunotherapy may be a promising therapeutic option. Herein, we summarize current knowledge regarding the protective and pathogenic roles of IL-17 in viral infections, with emphasis on underlying mechanisms. The various and critical roles of IL-17 in viral infections necessitate the development of therapeutic strategies that are uniquely tailored to both the infectious agent and the infection environment. |
3,833 | Is Fever a Red Flag for Bacterial Pneumonia in Children With Viral Bronchiolitis? | We hypothesized that fever in children with viral bronchiolitis indicates the need for consideration of superimposed bacterial pneumonia. We conducted a retrospective study of 349 children aged 2 years and younger with diagnoses of respiratory syncytial virus (RSV) and viral upper respiratory infection. Data were analyzed using Pearson χ(2) test. One hundred seventy-eight children had RSV with no other identified virus. The majority of children (56%) who had only RSV were afebrile. Febrile children with RSV were over twice as likely to be diagnosed with bacterial pneumonia as those who were afebrile (60% vs 27%, P < .001). In the 171 children who had bronchiolitis caused by a virus other than RSV, 51% were afebrile. These children were 8 times more likely to be diagnosed with pneumonia than those who were afebrile (65% vs 8%, P < .001). Evaluation of febrile children with viral bronchiolitis may allow early diagnosis and treatment of secondary bacterial pneumonia. |
3,834 | Central Nervous System Inflammatory Aggregates in the Theiler's Virus Model of Progressive Multiple Sclerosis | Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease. |
3,835 | Screening and Identification of a Chicken Dendritic Cell Binding Peptide by Using a Phage Display Library | Dendritic cells (DCs), as antigen-presenting cells, can initiate adaptive immune responses efficiently. Although the DC-targeting strategy has attracted more attention, relevant studies on chicken are rare. Here, specific chicken bone marrow DC-binding peptides were selected using a phage display peptide library and confirmed through ELISA, flow cytometry, fluorescence microscopy, and laser confocal microscopy. The peptide candidate SPHLHTSSPWER, named SP, was fused to the infectious bursal disease virus (IBDV) structural protein and protective antigen VP2. In vitro, the expression of DC markers (CD80, CD83, CD86, DEC205, and MHCII) and some cytokines (IFN-γ, IL-12, TNF-α, IL-1β, IL-6, and CXCLi1) by VP2-SP-stimulated DCs was significantly higher than that by DCs treated with the VP2-control peptide at 4 h (p < 0.001). In addition, an oral vaccine targeting DCs was generated using chicken-borne Lactobacillus saerimneri M11 (L. sae M11) to deliver VP2 fused with SP. Anti-IBDV mucosal and humoral immune responses were induced efficiently via oral administration, resulting in higher protective efficacy in the VP2-SP group than the VP2 group. Therefore, chicken DC targeting of IBDV protective antigen VP2 delivered by L. sae provides effective immune protection in chicken. Our study may promote research on the DC-targeting strategy to enhance the effectiveness of chicken vaccines. |
3,836 | Dynamics and Differences in Systemic and Local Immune Responses After Vaccination With Inactivated and Live Commercial Vaccines and Subsequent Subclinical Infection With PRRS Virus | The goals of our study were to compare the immune response to different killed and modified live vaccines against PRRS virus and to monitor the antibody production and the cell mediated immunity both at the systemic and local level. In the experiment, we immunized four groups of piglets with two commercial inactivated (A1—Progressis, A2—Suivac) and two modified live vaccines (B3—Amervac, B4—Porcilis). Twenty-one days after the final vaccination, all piglets, including the control non-immunized group (C5), were i.n., infected with the Lelystad strain of PRRS virus. The serum antibody response (IgM and IgG) was the strongest in group A1 followed by two MLV (B3 and B4) groups. Locally, we demonstrated the highest level of IgG antibodies in bronchoalveolar lavages (BALF), and saliva in group A1, whereas low IgA antibody responses in BALF and feces were detected in all groups. We have found virus neutralization antibody at DPV 21 (days post vaccination) and higher levels in all groups including the control at DPI 21 (days post infection). Positive antigen specific cell-mediated response in lymphocyte transformation test (LTT) was observed in groups B3 and B4 at DPV 7 and in group B4 at DPV 21 and in all intervals after infection. The IFN-γ producing lymphocytes after antigen stimulation were found in CD4(−)CD8(+) and CD4(+)CD8(+) subsets of all immunized groups 7 days after infection. After infection, there were obvious differences in virus excretion. The virus was detected in all groups of piglets in serum, saliva, and occasionally in feces at DPI 3. Significantly lower virus load was found in groups A1 and B3 at DPI 21. Negative samples appeared at DPI 21 in B3 group in saliva. It can be concluded that antibodies after immunization and infection, and the virus after infection can be detected in all the compartments monitored. Immunization with inactivated vaccine A1—Progressis induces high levels of antibodies produced both systemically and locally. Immunization with MLV-vaccines (Amervac and Porcilis) produces sufficient antibody levels and also cell-mediated immunity. After infection virus secretion gradually decreases in group B3, indicating tendency to induce sterile immunity. |
3,837 | Content validity of the newly developed risk assessment tool for religious mass gathering events in an Indian setting (Mass Gathering Risk Assessment Tool-MGRAT) | BACKGROUND: Risk assessment (RA) for mass gathering events is crucial to identify potential health hazards. It aids in planning and response activities specific to the event but is often overlooked by the event organizers. This paper reports the content validity process of a newly developed tool called Mass Gathering Risk Assessment Tool (MGRAT), which intends to assess the risks associated with religious mass gathering events in Indian settings. METHODS: Qualitative approach was followed to identify the risks associated with mass gathering events and to identify the domains and items to be included in the RA tool. The draft tool was shared with six experts who were selected by the convenient method; selected experts were requested to assess the tool and give their comments about the domains, items, relevant responses, and overall presentation of the tool using content validity questionnaire. Content validity index and Fleiss kappa statistics were calculated to assess the agreement between multiple raters. RESULTS: Agreement proportion expressed as scale-level content validity index (S-CVI) calculated by the averaging method is 0.92. S-CVI; calculated by universal agreement is 0.78. Fleiss kappa statistics to measure the agreement between multiple experts after adjusting the component of the chance agreement is 0.522 (95% CI: 0.417, 0.628, P value: 0.001). CONCLUSION: MGRAT is a valid tool, which has an appropriate level of content validity. As the number of raters increases, there will be difficulty in achieving consensus among all the items, which is the reason for lower Content Validity Index/Universal Average (CVI/UA) when compared with Content Validity Index/Average (CVI/Ave). Fleiss kappa statistics also indicated moderate agreement among the raters beyond the chance agreement, which also supports the appropriate content validity of MGRAT. |
3,838 | Tumor-Treating Fields Induce RAW264.7 Macrophage Activation Via NK-κB/MAPK Signaling Pathways | OBJECTIVE: Tumor-treating fields are currently used to successfully treat various cancers; however, the specific pathways associated with its efficacy remain unknown in the immune responses. Here, we evaluated tumor-treating fields–mediated initiation of the macrophage-specific immune response. MATERIALS AND METHODS: We subjected RAW 264.7 mouse macrophages to clinically relevant levels of tumor-treating fields (0.9 V/cm, 150 kHz) and evaluated alterations in cytokine expression and release, as well as cell viability. Additionally, we investigated the status of immunomodulatory pathways to determine their roles in tumor-treating fields–mediated immune activation. RESULTS AND DISCUSSION: Our results indicated that tumor-treating fields treatment at 0.9 V/cm decreased cell viability and increased cytokine messenger RNA/protein levels, as well as levels of nitric oxide and reactive oxygen species, relative to controls. The levels of tumor necrosis factor α, interleukin 1β, and interleukin 6 were markedly increased in tumor-treating fields–treated RAW 264.7 cells cocultured with 4T1 murine mammary carcinoma cells compared with those in 4T1 or RAW 264.7 cells with or without tumor-treating fields treatment. Moreover, the viability of 4T1 cells treated with the conditioned medium of tumor-treating fields–stimulated RAW 264.7 cells decreased, indicating that macrophage activation by tumor-treating fields effectively killed the tumor cells. Moreover, tumor-treating fields treatment activated the nuclear factor κB and mitogen-activated protein kinase pathways involved in immunomodulatory signaling. CONCLUSION: These results provide critical insights into the mechanisms through which tumor-treating fields affect macrophage-specific immune responses and the efficacy of this method for cancer treatment. |
3,839 | Vaccination in Multiple Sclerosis: Friend or Foe? | Multiple sclerosis (MS) is a debilitating disease of the central nervous systems (CNS). Disease-modifying treatments (including immunosuppressive treatments) have shown positive effects on the disease course, but are associated with systemic consequences on the immune system and may increase the risk of infections and alter vaccine efficiency. Therefore, vaccination of MS patients is of major interest. Over the last years, vaccine hesitancy has steadily grown especially in Western countries, partly due to fear of sequelae arising from vaccination, especially neurological disorders. The interaction of vaccination and MS has been discussed for decades. In this review, we highlight the immunology of vaccination, provide a review of literature and discuss the clinical consideration of MS, vaccination and immunosuppression. In conclusion, there is consensus that MS cannot be caused by vaccines, neither by inactivated nor by live vaccines. However, particular attention should be paid to two aspects: First, in immunocompromised patients, live vaccines may lead to a stronger immune reaction with signs of the disease against which the patients have been vaccinated, albeit in weakened form. Second, protection provided by vaccination should be controlled in patients who have been vaccinated while receiving immunomodulatory or immunosuppressive treatment. In conclusion, there is evidence that systemic infections can worsen MS, thus vaccination will lower the risk of relapses by reducing the risk of infections. Therefore, vaccination should be in general recommended to MS patients. |
3,840 | Progeny Varicella-Zoster Virus Capsids Exit the Nucleus but Never Undergo Secondary Envelopment during Autophagic Flux Inhibition by Bafilomycin A1 | Varicella-zoster virus (VZV) is an alphaherpesvirus that lacks the herpesviral neurovirulence protein ICP34.5. The underlying hypothesis of this project was that inhibitors of autophagy reduce VZV infectivity. We selected the vacuolar proton ATPase inhibitor bafilomycin A1 for analysis because of its well-known antiautophagy property of impeding acidification during the late stage of autophagic flux. We documented that bafilomycin treatment from 48 to 72 h postinfection lowered VZV titers substantially (P ≤ 0.008). Because we were unable to define the site of the block in the infectious cycle by confocal microscopy, we turned to electron microscopy. Capsids were observed in the nucleus, in the perinuclear space, and in the cytoplasm adjacent to Golgi apparatus vesicles. Many of the capsids had an aberrant appearance, as has been observed previously in infections not treated with bafilomycin. In contrast to prior untreated infections, however, secondary envelopment of capsids was not seen in the trans-Golgi network, nor were prototypical enveloped particles with capsids (virions) seen in cytoplasmic vesicles after bafilomycin treatment. Instead, multiple particles with varying diameters without capsids (light particles) were seen in large virus assembly compartments near the disorganized Golgi apparatus. Bafilomycin treatment also led to increased numbers of multivesicular bodies in the cytoplasm, some of which contained remnants of the Golgi apparatus. In summary, we have defined a previously unrecognized property of bafilomycin whereby it disrupted the site of secondary envelopment of VZV capsids by altering the pH of the trans-Golgi network and thereby preventing the correct formation of virus assembly compartments. IMPORTANCE This study of VZV assembly in the presence of bafilomycin A1 emphasizes the importance of the Golgi apparatus/trans-Golgi network as a platform in the alphaherpesvirus life cycle. We have previously shown that VZV induces levels of autophagy far above the basal levels of autophagy in human skin, a major site of VZV assembly. The current study documented that bafilomycin treatment led to impaired assembly of VZV capsids after primary envelopment/de-envelopment but before secondary reenvelopment. This VZV study also complemented prior herpes simplex virus 1 and pseudorabies virus studies investigating two other inhibitors of endoplasmic reticulum (ER)/Golgi apparatus function: brefeldin A and monensin. Studies with porcine herpesvirus demonstrated that primary enveloped particles accumulated in the perinuclear space in the presence of brefeldin A, while studies with herpes simplex virus 1 documented an impaired secondary assembly of enveloped viral particles in the presence of monensin. |
3,841 | Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019 | BACKGROUND: As of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD cases and their contacts have been difficult for health workers to reach. We used available data on the current outbreak, with case-count time series from prior outbreaks, to project the short-term and long-term course of the outbreak. METHODS: For short- and long-term projections, we modeled Ebola virus transmission using a stochastic branching process that assumes gradually quenching transmission rates estimated from past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the current outbreak, and with multiple levels of vaccination coverage. We used two regression models to estimate similar projection periods. Short- and long-term projections were estimated using negative binomial autoregression and Theil-Sen regression, respectively. We also used Gott’s rule to estimate a baseline minimum-information projection. We then constructed an ensemble of forecasts to be compared and recorded for future evaluation against final outcomes. From August 20, 2018 to February 25, 2019, short-term model projections were validated against known case counts. RESULTS: During validation of short-term projections, from one week to four weeks, we found models consistently scored higher on shorter-term forecasts. Based on case counts as of February 25, the stochastic model projected a median case count of 933 cases by February 18 (95% prediction interval: 872–1054) and 955 cases by March 4 (95% prediction interval: 874–1105), while the auto-regression model projects median case counts of 889 (95% prediction interval: 876–933) and 898 (95% prediction interval: 877–983) cases for those dates, respectively. Projected median final counts range from 953 to 1,749. Although the outbreak is already larger than all past Ebola outbreaks other than the 2013–2016 outbreak of over 26,000 cases, our models do not project that it is likely to grow to that scale. The stochastic model estimates that vaccination coverage in this outbreak is lower than reported in its trial setting in Sierra Leone. CONCLUSIONS: Our projections are concentrated in a range up to about 300 cases beyond those already reported. While a catastrophic outbreak is not projected, it is not ruled out, and prevention and vigilance are warranted. Prospective validation of our models in real time allowed us to generate more accurate short-term forecasts, and this process may prove useful for future real-time short-term forecasting. We estimate that transmission rates are higher than would be seen under target levels of 62% coverage due to contact tracing and vaccination, and this model estimate may offer a surrogate indicator for the outbreak response challenges. |
3,842 | Capacity assessment of the health laboratory system in two resource-limited provinces in China | BACKGROUND: Strong laboratory capacity is essential for detecting and responding to emerging and re-emerging global health threats. We conducted a quantitative laboratory assessment during 2014–2015 in two resource-limited provinces in southern China, Guangxi and Guizhou in order to guide strategies for strengthening core capacities as required by the International Health Regulations (IHR 2005). METHODS: We selected 28 public health and clinical laboratories from the provincial, prefecture and county levels through a quasi-random sampling approach. The 11-module World Health Organization (WHO) laboratory assessment tool was adapted to the local context in China. At each laboratory, modules were scored 0–100% through a combination of paper surveys, in-person interviews, and visual inspections. We defined module scores as strong (> = 85%), good (70–84%), weak (50–69%), and very weak (< 50%). We estimated overall capacity and compared module scores across the provincial, prefecture, and county levels. RESULTS: Overall, laboratories in both provinces received strong or good scores for 10 of the 11 modules. These findings were primarily driven by strong and good scores from the two provincial level laboratories; prefecture and county laboratories were strong or good for only 8 and 6 modules, respectively. County laboratories received weak scores in 4 modules. The module, ‘Public Health Functions’ (e.g., surveillance and reporting practices) lagged far behind all other modules (mean score = 46%) across all three administrative levels. Findings across the two provinces were similar. CONCLUSIONS: Laboratories in Guangxi and Guizhou are generally performing well in laboratory capacity as required by IHR. However, we recommend targeted interventions particularly for county-level laboratories, where we identified a number of gaps. Given the importance of surveillance and reporting, addressing gaps in public health functions is likely to have the greatest positive impact for IHR requirements. The quantitative WHO laboratory assessment tool was useful in identifying both comparative strengths and weaknesses. However, prior to future assessments, the tool may need to be aligned with the new WHO IHR monitoring and evaluation framework. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12889-019-6777-2) contains supplementary material, which is available to authorized users. |
3,843 | Biomarker profiles of coagulopathy and alveolar epithelial injury in acute respiratory distress syndrome with idiopathic/immune-related disease or common direct risk factors | BACKGROUND: Altered coagulation and alveolar injury are the hallmarks of acute respiratory distress syndrome (ARDS). However, whether the biomarkers that reflect pathophysiology differ depending on the etiology of ARDS has not been examined. This study aimed to investigate the biomarker profiles of coagulopathy and alveolar epithelial injury in two subtypes of ARDS: patients with direct common risk factors (dARDS) and those with idiopathic or immune-related diseases (iARDS), which are classified as “ARDS without common risk factors” based on the Berlin definition. METHODS: This retrospective, observational study included adult patients who were admitted to the intensive care unit (ICU) at a university hospital with a diagnosis of ARDS with no indirect risk factors. Plasma biomarkers (thrombin–antithrombin complex [TAT], plasminogen activator inhibitor [PAI]-1, protein C [PC] activity, procalcitonin [PCT], surfactant protein [SP]-D, and KL-6) were routinely measured during the first 5 days of the patient’s ICU stay. RESULTS: Among 138 eligible patients with ARDS, 51 were excluded based on the exclusion criteria (n = 41) or other causes of ARDS (n = 10). Of the remaining 87 patients, 56 were identified as having dARDS and 31 as having iARDS. Among the iARDS patients, TAT (marker of thrombin generation) and PAI-1 (marker of inhibited fibrinolysis) were increased, and PC activity was above normal. In contrast, PC activity was significantly decreased, and TAT or PAI-1 was present at much higher levels in dARDS compared with iARDS patients. Significant differences were also observed in PCT, SP-D, and KL-6 between patients with dARDS and iARDS. The receiver operating characteristic (ROC) analysis showed that areas under the ROC curve for PC activity, PAI-1, PCT, SP-D, and KL-6 were similarly high for distinguishing between dARDS and iARDS (PC 0.86, P = 0.33; PAI-1 0.89, P = 0.95; PCT 0.89, P = 0.66; and SP-D 0.88, P = 0.16 vs. KL-6 0.90, respectively). CONCLUSIONS: Coagulopathy and alveolar epithelial injury were observed in both patients with dARDS and with iARDS. However, their biomarker profiles were significantly different between the two groups. The different patterns of PAI-1, PC activity, SP-D, and KL-6 may help in differentiating between these ARDS subtypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-019-2559-6) contains supplementary material, which is available to authorized users. |
3,844 | Genetic and biological characterisation of Zika virus isolates from different Brazilian regions | BACKGROUND: Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES: The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS: The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS: Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS: Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells. |
3,845 | Impact of ultrasound on management for dyspnea presentations in a Rwandan emergency department | BACKGROUND: The complexity of diagnosis for critically ill dyspnea presentations in the emergency department remains a challenge. Accurate and rapid recognition of associated life-threatening conditions is paramount for timely treatment. Point-of-care ultrasound (POCUS) has been shown to impact the diagnosis of dyspnea presentations in resource-rich settings, and may be of greater diagnostic benefit in resource-limited settings. METHODS: We prospectively enrolled a convenience sample of 100 patients presenting with dyspnea in the Emergency Department at University Teaching Hospital of Kigali (UTH-K) in Rwanda. After a traditional history and physical exam, the primary treating team listed their 3 main diagnoses and ranked their confidence accuracy in the leading diagnosis on a Likert scale (1–5). Multi-organ ultrasound scans performed by a separate physician sonographer assessed the heart, lungs, inferior vena cava, and evaluated for lower extremity deep vein thrombosis or features of disseminated tuberculosis. The sonographer reviewed the findings with the treating team, who then listed 3 diagnoses post-ultrasound and ranked their confidence accuracy in the leading diagnosis on a Likert scale (1–5). The hospital diagnosis at discharge was used as the standard in determining the accuracy of the pre- and post-ultrasound diagnoses. RESULTS: Of the 99 patients included in analysis, 57.6% (n = 57) were male, with a mean age of 45 years. Most of them had high-level acuity (54.5%), the dyspnea was of acute onset (45.5%) and they came from district hospitals (50.5%). The most frequent discharge diagnoses were acute decompensated heart failure (ADHF) (26.3%) and pneumonia (21.2%). Ultrasound changed the leading diagnosis in 66% of cases. The diagnostic accuracy for ADHF increased from 53.8 to 100% (p = 0.0004), from 38 to 85.7% for pneumonia (p = 0.0015), from 14.2 to 85.7% for extrapulmonary tuberculosis (p = 0.0075), respectively, pre and post-ultrasound. The overall physician diagnostic accuracy increased from 34.7 to 88.8% pre and post- ultrasound. The clinician confidence in the leading diagnosis changed from a mean of 3.5 to a mean of 4.7 (Likert scale 0–5) (p < 0.001). CONCLUSIONS: In dyspneic patients presenting to this Emergency Department, ultrasound frequently changed the leading diagnosis, significantly increased clinicians’ confidence in the leading diagnoses, and improved diagnostic accuracy. |
3,846 | Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review | Despite the significant progress in the recent efforts toward developing an effective vaccine against toxoplasmosis, the search for new protective vaccination strategy still remains a challenge and elusive goal because it becomes the appropriate way to prevent the disease. Various experimental approaches in the past few years showed that developing a potential vaccine against the disease can be achievable. The combination of multi-epitopes expressing different stages of the parasite life cycle has become an optimal strategy for acquiring a potent, safe, and effective vaccine. Epitope-based vaccines have gained attention as alternative vaccine candidates due to their ability of inducing protective immune responses. This mini-review highlights the current status and the prospects of Toxoplasma gondii vaccine development along with the application of epitope-based vaccine in the future parasite immunization as a novel under development and evaluation strategy. |
3,847 | Diversity and prevalence of parasitic infestation with zoonotic potential in dromedary camel (Camelus dromedarius) and fat-tailed sheep (dhumba) in Bangladesh | OBJECTIVE: Parasitic infestation is a major cause of losses in livestock production in tropical regions. A cross-sectional study was conducted to determine the prevalence of Gastro-intestinal (GI) parasites of dromedary camel (Camelus dromedarius) and fat-tailed sheep (dhumba), and the prevalence of hemoparasites in camel from Dhaka, Bangladesh. MATERIALS AND METHODS: A total of 87 fecal samples (32 dhumba and 55 camel) and 55 camel blood samples were collected during September–October 2015. Fecal samples were examined by direct smear, sedimentation method, flotation technique, and McMaster technique for GI parasite. Giemsa stained blood smears were examined under microscope for hemoparasite detection. RESULTS: 62% camel (n = 34; 95% confidence interval (CI): 47.7–74.6) were infected with at least one genus of parasite. 15% camel were harboring more than one genus of parasite. The prevalence of GI parasite and hemoparasite in camel were recorded as Trichuris spp. (n = 16; 29%; 95% CI: 17.6–42.9), Balantidium coli (n = 12; 22%; 95% CI: 11.8–35.0), Trichostrongylus spp. (n = 7; 13%; 95% CI: 5.3–24.5), Strongyloides spp. (n = 5; 9%; 95% CI: 3.0–20.0), Anaplasma spp. (n = 5; 9%; 95% CI: 3.02–20.0), Paragonimus spp. (n = 1; 2%; 95% CI: 0.05–9.7), Schistosoma spp. (n = 1; 2%; 95% CI: 0.05–9.7), Hymenolepis spp. (n = 1; 2%; 95% CI: 0.05–9.7), Moniezia spp. (n = 1; 2%; 95% CI: 0.05–9.7), and Babesia spp. (n = 1; 2%; 95% CI: 0.05–9.7). Mean EPG feces of camel was 291.76 ± 42.03 with a range of 0–1,400. Total 59.4% dhumba (n = 19; 95% CI: 41–76) were positive for GI parasite, including Trichostrongylus spp. (n = 10; 31.3%; 95% CI: 16.1–50), Strongyloides spp. (n = 9; 28%; 95% CI: 13.8–46.8), B. coli (n = 5; 15.6%; 95% CI: 5.3–32.8), and Trichuris spp. (n = 4; 12.5%; 95% CI: 3.5–28.9). CONCLUSIONS: High percentage of parasitic infestation in camel and dhumba in the present study refers to the necessity of use of anthelmintic for health and production improvement and to prevent zoonotic parasite transmission to animal handler and workers. |
3,848 | Molecular phylogenetics of the African horseshoe bats (Chiroptera: Rhinolophidae): expanded geographic and taxonomic sampling of the Afrotropics | BACKGROUND: The Old World insectivorous bat genus Rhinolophus is highly speciose. Over the last 15 years, the number of its recognized species has grown from 77 to 106, but knowledge of their interrelationships has not kept pace. Species limits and phylogenetic relationships of this morphologically conservative group remain problematic due both to poor sampling across the Afrotropics and to repeated instances of mitochondrial-nuclear discordance. Recent intensive surveys in East Africa and neighboring regions, coupled with parallel studies by others in West Africa and in Southern Africa, offer a new basis for understanding its evolutionary history. RESULTS: We investigated phylogenetic relationships and intraspecific genetic variation in the Afro-Palearctic clade of Rhinolophidae using broad sampling. We sequenced mitochondrial cytochrome-b (1140 bp) and four independent and informative nuclear introns (2611 bp) for 213 individuals and incorporated sequence data from 210 additional individuals on GenBank that together represent 24 of the 33 currently recognized Afrotropical Rhinolophus species. We addressed the widespread occurrence of mito-nuclear discordance in Rhinolophus by inferring concatenated and species tree phylogenies using only the nuclear data. Well resolved mitochondrial, concatenated nuclear, and species trees revealed phylogenetic relationships and population structure of the Afrotropical species and species groups. CONCLUSIONS: Multiple well-supported and deeply divergent lineages were resolved in each of the six African Rhinolophus species groups analyzed, suggesting as many as 12 undescribed cryptic species; these include several instances of sympatry among close relatives. Coalescent lineage delimitation offered support for new undescribed lineages in four of the six African groups in this study. On the other hand, two to five currently recognized species may be invalid based on combined mitochondrial and/or nuclear phylogenetic analyses. Validation of these cryptic lineages as species and formal relegation of current names to synonymy will require integrative taxonomic assessments involving morphology, ecology, acoustics, distribution, and behavior. The resulting phylogenetic framework offers a powerful basis for addressing questions regarding their ecology and evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-019-1485-1) contains supplementary material, which is available to authorized users. |
3,849 | Development of a real-time loop-mediated isothermal amplification assay for detection of porcine circovirus 3 | BACKGROUND: Porcine circovirus type 3 (PCV3) is an emerging circovirus species, that has been reported in major pig-raising countries including the United States, China, South Korea, Brazil, Spain, and Poland. RESULTS: A real-time loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of porcine circovirus 3 (PCV3). The method had a detection limit of 1 × 10(1) copies/μL with no cross-reactions with classical swine fever virus (CSFV) C strain, foot-and-mouth disease virus (FMDV), porcine circovirus 2 (PCV2) LG vaccine strain, porcine epidemic diarrhoea virus (PEDV), porcine respiratory and reproductive syndrome virus (PRRSV), or pseudorabies virus (PRV). The PCV3 positive detection rate of 203 clinical samples for the real-time LAMP assay was 89.66% (182/203). CONCLUSIONS: The real-time LAMP assay is highly sensitive, and specific for use in epidemiological investigations of PCV3. |
3,850 | Viral and bacterial pathogens identification in children hospitalised for severe pneumonia and parapneumonic empyema | Pneumonia is caused by respiratory bacteria and/or viruses. Little is known if co-infections are an aggravating factor in hospitalised children with severe pneumonia. We studied the impact of respiratory pathogens on the severity of pneumonia. Between 2007 and 2009, 52 children hospitalised with a well-documented diagnosis of community-acquired pneumonia (CAP), with or without parapneumonic empyema (PPE), were enrolled in the study. The patients were classified into 2 groups: CAP + PPE (n = 28) and CAP (n = 24). The identification of respiratory viruses and bacteria in nasopharyngeal aspirates and pleural effusion samples were performed using conventional bacterial techniques and molecular assays. Using real-time multiplex PCR and antigen detection, Streptococcus pneumoniae was the main agent identified in 76% of the cases by molecular tests and BinaxNOW® in pleural fluid. A total of 8% of pleural fluid samples remained undiagnosed. In nasopharyngeal aspirates, rhinovirus, parainfluenza viruses, human metapneumovirus, and respiratory syncytial virus were detected in both CAP and CAP + PPE populations; however, the percentage of viral co-detection was significantly higher in nasopharyngeal aspirates from CAP + PPE patients (35%) compared with CAP patients (5%). In conclusion, viral co-detection was observed mainly in patients with more severe pneumonia. Molecular biology assays improved the pathogens detection in pneumonia and confirmed the S. pneumoniae detection by BinaxNOW® in pleural effusion samples. Interestingly, the main S. pneumoniae serotypes found in PPE are not the ones targeted by the heptavalent pneumococcal conjugate vaccine. |
3,851 | Immuno-modulating properties of Tulathromycin in porcine monocyte-derived macrophages infected with porcine reproductive and respiratory syndrome virus | Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus that grows in macrophages and causes acute pneumonia in pigs. PRRSV causes devastating losses to the porcine industry. However, due to its high antigenic variability and poorly understood immunopathogenesis, there is currently no effective vaccine or treatment to control PRRSV infection. The common occurrence of PRRSV infection with bacterial infections as well as its inflammatory-driven pathobiology raises the question of the value of antibiotics with immunomodulating properties for the treatment of the disease it causes. The macrolide antibiotic Tulathromycin (TUL) has been found to exhibit potent anti-inflammatory and immunomodulating properties in cattle and pigs. The aim of this study was to characterize the anti-viral and immunomodulating properties of TUL in PRRSV-infected porcine macrophages. Our findings indicate that blood monocyte-derived macrophages are readily infected by PRRSV and can be used as an effective cellular model to study PRRSV pathogenesis. TUL did not change intracellular or extracellular viral titers, not did it alter viral receptors (CD163 and CD169) expression on porcine macrophages. In contrast, TUL exhibited potent immunomodulating properties, which therefore occurred in the absence of any direct antiviral effects against PRRSV. TUL had an additive effect with PRRSV on the induction of macrophage apoptosis, and inhibited virus-induced necrosis. TUL significantly attenuated PRRSV-induced macrophage pro-inflammatory signaling (CXCL-8 and mitochondrial ROS production) and prevented PRRSV inhibition of non-opsonized and opsonized phagocytic function. Together, these data demonstrate that TUL inhibits PRRSV-induced inflammatory responses in porcine macrophages and protects against the phagocytic impairment caused by the virus. Research in live pigs is warranted to assess the potential clinical benefits of this antibiotic in the context of virally induced inflammation and tissue injury. |
3,852 | Deciphering Biosignatures in Planetary Contexts | Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with “abiosignatures” formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the “right” spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights. |
3,853 | Evolution and containment of transmissible recombinant vector vaccines | Transmissible vaccines offer a revolutionary approach for controlling infectious disease and may provide one of the few feasible methods for eliminating pathogens from inaccessible wildlife populations. Current efforts to develop transmissible vaccines use recombinant vector technology whereby pathogen antigens are engineered to be expressed from innocuous infectious viral vectors. The resulting vaccines can transmit from host to host, amplifying the number of vaccine‐protected individuals beyond those initially vaccinated directly through parenteral inoculation. One main engineering challenge is the potential for natural selection to favor vaccine mutants that eliminate or reduce expression of antigenic inserts, resulting in immunogenic decay of the vaccine over time. Here, we study a mathematical model of vector mutation whereby continuous elimination of the antigenic insert results in reversion of the vaccine back into the insert‐free vector. We use this model to quantify the maximum allowable rate of reversion that can be tolerated for a transmissible vaccine to maintain a critical threshold level of immunogenicity against a target pathogen. Our results demonstrate that even for transmissible vaccines where reversion is frequent, performance will often substantially exceed that of conventional, directly administered vaccines. Further, our results demonstrate the feasibility of designing transmissible vaccines that yield desired levels of immunogenicity, yet degrade at a rate sufficient for persistence of the recombinant vaccine within the environment to be minimized. |
3,854 | A Competency Framework for Developing Global Laboratory Leaders | Building sustainable national health laboratory systems requires laboratory leaders who can address complex and changing demands for services and build strong collaborative networks. Global consensus on laboratory leadership competencies is critically important to ensure the harmonization of learning approaches for curriculum development across relevant health sectors. The World Health Organization (WHO), the Food and Agriculture Organization of the United Nations (FAO), the World Organisation for Animal Health (OIE), the European Centre for Disease Prevention and Control (ECDC), the U.S. Centers for Disease Control and Prevention (CDC), and the Association of Public Health Laboratories (APHL) have partnered to develop a Laboratory Leadership Competency Framework (CF) that provides a foundation for the Global Laboratory Leadership Programme (GLLP). The CF represents the first global consensus from multiple disciplines on laboratory leadership competencies and provides structure for the development of laboratory leaders with the knowledge, skills and abilities to build bridges, enhance communication, foster collaboration and develop an understanding of existing synergies between the human, animal, environmental, and other relevant health sectors. |
3,855 | Galloyl-Hexahydroxydiphenoyl (HHDP)-Glucose Isolated From Punica granatum L. Leaves Protects Against Lipopolysaccharide (LPS)-Induced Acute Lung Injury in BALB/c Mice | The hydroalcoholic extract and ethyl acetate fraction of Punica granatum leaves have been known to exhibit anti-inflammatory activities. In this study, we investigated the therapeutic effects of galloyl-hexahydroxydiphenoyl (HHDP)-glucose isolated from pomegranate leaves on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Male BALB/c mice were treated with different doses of galloyl-HHDP-glucose (5, 50, and 100 mg/Kg) or dexamethasone at 5 mg/Kg (per os) 6 h after intra-tracheal instillation of LPS. Vehicle-treated mice were used as controls. Twenty-four hours after LPS challenge, bronchoalveolar lavage fluid (BALF), and lung samples were collected for analyses. They were evaluated by monitoring the expression of NF-κB, JNK, and cytokine genes and proteins, as well as cell migration and lung function. All doses of galloyl-HHDP-glucose inhibited LPS-induced JNK and NF-κB activation. Likewise, the galloyl-HHDP-glucose-treated animals presented reduced expression of the TNF-α, IL-6, and IL-1β genes in the lungs and reduced TNF-α, IL-6, IL-1β, and IL-8 protein levels when compared with the vehicle-treated LPS-challenged mice. In addition, the ALI mice treated with galloyl-HHDP-glucose also presented reduced lung inflammatory cell accumulation, especially that of neutrophils, in their BALF and lungs. In addition, galloyl-HHDP-glucose treatment markedly ameliorated the LPS-induced pulmonary mechanism complications and attenuated weight loss. Overall, we showed for the first time that galloyl-HHDP-glucose protects against ALI, and may be useful for treating ALI and other inflammatory disorders. |
3,856 | ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation | Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions. |
3,857 | Improving adherence to lung cancer guidelines: a quality improvement project that uses chart review, audit and feedback approach | INTRODUCTION: The implementation of evidence-based clinical practice guidelines is one of the most effective interventions for improving quality of care. A gap between guidelines and clinical practice often exists, which may result in patients not receiving appropriate care. This project aimed at improving adherence to lung cancer guidelines at our institution. METHOD: The records of patients with lung cancer were evaluated for adherence to guidelines by using an auditing tool that was developed to capture pertinent information. The study team collected data about the following variables: compliance with documentation of pathological diagnosis, documentation of disease stage prior to treatment initiation, presentation at thoracic tumour board within 30 days of diagnosis, management course, and management of end of life in terms of early ‘no code’ initiation, stopping chemotherapy and referral to palliative care prior to 2 weeks of death. Annual audits were performed from 2012 to 2015. Education and discussion with team members to address the deviations were the main interventions to improve adherence. RESULTS: The baseline measurements were taken in 2012 (49 patients). Histological subtype identification improved from 94% to 100%. Presentation of new cases at the tumour board improved from 35% to 82%. Testing for epidermal growth factor receptor mutation for non-squamous cell lung cancer improved from 77% to 100%. The staging was documented in 100% of the cases. CONCLUSION: Running audits to monitor adherence to guidelines and discussions with the team have a positive effect on providing consistent evidence-based care for patients with lung cancer. |
3,858 | Long non-coding RNA MEG3 attends to morphine-mediated autophagy of HT22 cells through modulating ERK pathway | Context: Morphine is an alkaloid isolated from the poppy plants. The addiction of morphine is a very serious social issue. Some long non-coding RNAs (lncRNAs) have been proposed to engage in drug addiction. Objective: Whether lncRNA maternally expressed gene 3 (MEG3) attended to morphine-mediated autophagy of mouse hippocampal neuronal HT22 cells was probed. Materials and methods: HT22 cells were subjected to 10 µM morphine for 24 h. Cell autophagy was assessed by measuring LC3-II/LC3-I and Beclin-1 expression. qRT-PCR was carried out to measure MEG3 expression. SiRNA oligoribonucleotides targeting MEG3 (si-MEG3) was transfected to silence MEG3. The orexin1 receptor (OX1R), c-fos, p/t-ERK and p/t-PKC expressions were tested by western blotting. SCH772984 was used as an inhibitor of ERK pathway. Results: Morphine elevated OX1R (2.92 times), c-fos (2.06 times), p/t-ERK (2.04 times) and p/t-PKC (2.4 times), Beclin-1 (3.2 times) and LC3-II/LC3-I (3.96 times) expression in HT22 cells. Moreover, followed by morphine exposure, the MEG3 expression was also elevated in HT22 cells (3.03 times). The silence of MEG3 lowered the Beclin-1 (1.85 times), LC3-II/LC3-I (2.12 times), c-fos (1.39 times) and p/t-ERK (1.44 times) expressions in morphine-treated HT22 cells. Inhibitor of ERK pathway SCH772984 further promoted the influence of MEG3 silence on morphine-caused Beclin-1 (1.97 times) and LC3-II/LC3-I (1.92 times) expressions decreases. Conclusions: Up-regulation of MEG3 attended to the morphine-caused autophagy of HT22 cells might be through elevating c-fos expression and promoting ERK pathway activation. More experiments are also needed in the future to analyse the influence of other lncRNAs in drug addiction. |
3,859 | Global research trends in microbiome-gut-brain axis during 2009–2018: a bibliometric and visualized study | BACKGROUND: The pathways and mechanism by which associations between the gut microbiome and the brain, termed the microbiome-gut-brain axis (MGBA), are manifest but remain to be fully elucidated. This study aims to use bibliometric analysis to estimate the global activity within this rapidly developing field and to identify particular areas of focus that are of current relevance to the MGBA during the last decade (2009–2018). METHODS: The current study uses the Scopus for data collection. We used the key terms “microbiome-gut-brain axis” and its synonyms because we are concerned with MGBA per se as a new concept in research rather than related topics. A VOSviewer version 1.6.11 was used to visualize collaboration pattern between countries and authors, and evolving research topics by analysis of the term co-occurrence in the title and abstract of publications. RESULTS: Between 2009 and 2018, there were 51,504 published documents related to the microbiome, including 1713 articles related to the MGBA: 829 (48.4%) original articles, 658(38.4%) reviews, and 226 (13.2%) other articles such as notes, editorials or letters. The USA took the first place with 385 appearances, followed by Ireland (n = 161), China (n = 155), and Canada (n = 144).The overall citation h-index was 106, and the countries with the highest h-index values were the USA (69), Ireland (58), and Canada (43). The cluster analysis demonstrated that the dominant fields of the MGBA include four clusters with four research directions: “modeling MGBA in animal systems”, “interplay between the gut microbiota and the immune system”, “irritable bowel syndrome related to gut microbiota”, and “neurodegenerative diseases related to gut microbiota”. CONCLUSIONS: This study demonstrates that the research on the MGBA has been becoming progressively more extensive at global level over the past 10 years. Overall, our study found that a large amount of work on MGBA focused on immunomodulation, irritable bowel syndrome, and neurodevelopmental disorders. Despite considerable progress illustrating the communication between the gut microbiome and the brain over the past 10 years, many issues remain about their relevance for therapeutic intervention of many diseases. |
3,860 | Simultaneous detection of eleven sexually transmitted agents using multiplexed PCR coupled with MALDI-TOF analysis | PURPOSE: Sexually transmitted infections (STIs), representing a major global health problem, are caused by different microbes, including bacteria, viruses, and protozoa. Unfortunately, infections of different sexually transmitted pathogens often present similar clinical symptoms, so it is almost impossible to distinguish them clinically. Therefore, the aim of the current study was to develop a sensitive, multitarget, and high-throughput method that can detect various agents responsible for STIs. METHODS: We developed and tested a 23-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) assay (sexually transmitted infection-mass spectrometry, STI-MS) that simultaneously targets 11 different agents, including 8 most common clinical pathogens related to STIs (HSV-1, HSV-2, Neisseria gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, Trichomonas vaginalis, Mycoplasma genitalium, and Haemophilus ducreyi) and 3 controversial microorganisms as pathogens (Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum). RESULTS: The results showed that the STI-MS approach can accurately detect the expected agents, without cross-reaction with other organisms. The limit of detection of each STI-MS assay was ranged from 1.739 to 10.009 copies/reaction, using probit analyses. The verification rate for each target organism of the STI-MS ranged from a minimum of 89.3% to a maximum of 100%, using conventional assays and ultrasensitive digital PCR to confirm the STI-MS-positive results. To further evaluate the clinical performance of this assay, 241 clinical specimens (124 urethral/cervical swabs and 117 urine) were tested in parallel using the STI-MS assay and monoplex real-time PCR for each agent. The overall validation parameters of STI-MS were extremely high including sensitivity (from 85.7% to 100%), specificity (from 92.3% to 100%), PPV (from 50% to 100%), and NPV (from 99.1% to 100%) for each target. CONCLUSION: STI-MS is a useful high-throughput screening tool for detecting mixed infections of STIs and has great potential for application in large-scale epidemiological programs for specific microorganisms of STI. |
3,861 | Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions | SIMPLE SUMMARY: In this study, the effects of Saccharomyces boulardii (SB) supplement on the performance and physiological traits of Holstein calves under heat stress were investigated using a climatic chamber. We revealed that supplementation with SB incorporated into milk replacer can ameliorate the negative impact of heat stress on Holstein dairy calves by increasing dry matter intake (DMI), reducing rectal temperature and heart rate, and alleviating diarrhea via modulating pathogenic bacteria in the digestive tract. The results showed that SB can be used as an alternative anti-stressor in the diet of young dairy calves under heat stress (HS). ABSTRACT: The objective of this study was to determine the effects of Saccharomyces boulardii CNCM I-1079 (SB) as a feed additive on performance, diarrhea frequency, rectal temperature, heart rate, water consumption, cortisol level, and fecal bacteria population in Holstein calves (28 ± 1.6 days of age, body weight of 45.6 ± 1.44 kg, n = 16) under thermal neutral (TN) and heat stress (HS) conditions. During the TN period for 21 days (d 1 to 21), calves receiving SB showed quadratic or linear effects compared to the control group, showing higher dry matter intake (DMI, p = 0.002), and water consumption (p = 0.007) but lower frequency of fecal diarrhea (p = 0.008), rectal temperature (p < 0.001), heart rate (p < 0.001), and fecal microbiota at 21 day (Escherichia coli, p = 0.025; Enterobacteriaceae, p = 0.041). Meanwhile, calves exposed to HS for 7 days (d 22 to 28) receiving SB showed quadratic or linear effects compared to the control group, showing higher DMI (p = 0.002) but lower water consumption (p = 0.023), rectal temperature (p = 0.026), and cortisol level (p = 0.014). Our results suggest that live SB is useful in the livestock industry as an alternative to conventional medication (especially in times of suspected health problems) that can be added to milk replacer for young dairy calves experiencing HS. |
3,862 | Study design and protocol for investigating social network patterns in rural and urban schools and households in a coastal setting in Kenya using wearable proximity sensors | Background: Social contact patterns shape the transmission of respiratory infections spread via close interactions. There is a paucity of observational data from schools and households, particularly in developing countries. Portable wireless sensors can record unbiased proximity events between individuals facing each other, shedding light on pathways of infection transmission. Design and methods: The aim is to characterize face-to-face contact patterns that may shape the transmission of respiratory infections in schools and households in Kilifi, Kenya. Two schools, one each from a rural and urban area, will be purposively selected. From each school, 350 students will be randomly selected proportional to class size and gender to participate. Nine index students from each school will be randomly selected and followed-up to their households. All index household residents will be recruited into the study. A further 3-5 neighbouring households will also be recruited to give a maximum of 350 participants per household setting. The sample size per site is limited by the number of sensors available for data collection. Each participant will wear a wireless proximity sensor lying on their chest area for 7 consecutive days. Data on proximal dyadic interactions will be collected automatically by the sensors only for participants who are face-to-face. Key characteristics of interest include the distribution of degree and the frequency and duration of contacts and their variation in rural and urban areas. These will be stratified by age, gender, role, and day of the week. Expected results: Resultant data will inform on social contact patterns in rural and urban areas of a previously unstudied population. Ensuing data will be used to parameterize mathematical simulation models of transmission of a range of respiratory viruses, including respiratory syncytial virus, and used to explore the impact of intervention measures such as vaccination and social distancing. |
3,863 | Clinical correlation of influenza and respiratory syncytial virus load measured by digital PCR | Acute respiratory tract infections are a major cause of respiratory morbidity and mortality in pediatric patients worldwide. However, accurate viral and immunologic markers to predict clinical outcomes of this patient population are still lacking. Droplet digital PCR assays for influenza and respiratory syncytial virus (RSV) were designed and performed in 64 respiratory samples from 23 patients with influenza virus infection and 73 samples from 19 patients with RSV infection. Samples of patients with hematologic malignancies, solid tumors, or sickle cell disease were included. Clinical information from institutional medical records was reviewed to assess disease severity. Samples from patients with fever or respiratory symptoms had a significantly higher viral loads than those from asymptomatic patients. Samples from patients with influenza virus and RSV infection collected at presentation had significantly higher viral loads than those collected from patients after completing a course of oseltamivir or ribavirin, respectively. RSV loads correlated positively with clinical symptoms in patients ≤5 years of age, whereas influenza viral loads were associated with clinical symptoms, irrespective of age. Patients receiving antivirals for influenza and RSV had a significant reduction in viral loads after completing therapy. Digital PCR offers an effective method to monitor the efficacy of antiviral treatment for respiratory tract infections in immunocompromised hosts. |
3,864 | Blockade of EGFR Activation Promotes TNF-Induced Lung Epithelial Cell Apoptosis and Pulmonary Injury | Pneumonitis is the leading cause of death associated with the use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) against non-small cell lung cancer (NSCLC). However, the risk factors and the mechanism underlying this toxicity have not been elucidated. Tumor necrosis factor (TNF) has been reported to transactivate EGFR in pulmonary epithelial cells. Hence, we aimed to test the hypothesis that EGFR tyrosine kinase activity regulates TNF-mediated bronchial epithelial cell survival, and that inhibition of EGFR activity increases TNF-induced lung epithelial cell apoptosis. We used surfactant protein C (SPC)-TNF transgenic (tg) mice which overexpress TNF in the lungs. In this model, gefitinib, an EGFR-TKI, enhanced lung epithelial cell apoptosis and lymphocytic inflammation, indicating that EGFR tyrosine kinase prevents TNF-induced lung injury. Furthermore, IL-17A was significantly upregulated by gefitinib in SPC-TNF tg mice and p38MAPK activation was observed, indicative of a pathway involved in lung epithelial cell apoptosis. Moreover, in lung epithelial cells, BEAS-2B, TNF stimulated EGFR transactivation via the TNF-α-converting enzyme in a manner that requires heparin binding (HB)-EGF and transforming growth factor (TGF)-α. These novel findings have significant implications in understanding the role of EGFR in maintaining human bronchial epithelial cell homeostasis and in NSCLC treatment. |
3,865 | Virology Downunder, a meeting commentary from the 2019 Lorne Infection and Immunity Conference, Australia | The aim of this article is to summarise the virology content presented at the 9th Lorne Infection and Immunity Conference, Australia, in February 2019. The broad program included virology as a key theme, and the commentary herein highlights several key virology presentations at the meeting. |
3,866 | A descriptive analysis of the Spatio-temporal distribution of intestinal infectious diseases in China | BACKGROUND: Intestinal infectious diseases (IIDs) have caused numerous deaths worldwide, particularly among children. In China, eight IIDs are listed as notifiable infectious diseases, including cholera, poliomyelitis, dysentery, typhoid and paratyphoid (TAP), viral Hepatitis A, viral Hepatitis E, hand-foot-mouth disease (HFMD) and other infectious diarrhoeal diseases (OIDDs). The aim of the study is to analyse the spatio-temporal distribution of IIDs from 2006 to 2016. METHODS: Data on the incidence of IIDs from 2006 to 2016 were collected from the public health science data centre issued by the Chinese Center for Disease Control and Prevention. This study applied seasonal decomposition analysis, spatial autocorrelation analysis and space-time scan analysis. Plots and maps were constructed to visualize the spatio-temporal distribution of IIDs. RESULTS: Regarding temporal analysis, the incidence of HFMD and Hepatitis E showed a distinct increasing trend, while the incidence of TAP, dysentery, and Hepatitis A presented decreasing trends over the last decade. The incidence of OIID remained steady. Summer is the season with the greatest number of cases of different IIDs. Regarding the spatial distribution, approximately all p values for the global Moran’s I from 2006 to 2016 were less than 0.05, indicating that the incidences of the epidemics were unevenly distributed throughout the country. The high-risk areas for HFMD and OIDD were located in the Beijing-Tianjin-Tangshan (BTT) region and south China. The high-risk areas for TAP were located in some parts of southwest China. A higher incidence rates for dysentery and Hepatitis A were observed in the BTT region and some west provincial units. The high-risk areas for Hepatitis E were the BTT region and the Yangtze River Delta area. CONCLUSIONS: Based on our temporal and spatial analysis of IIDs, we identified the high-risk periods and clusters of regions for the diseases. HFMD and OIDD exhibited high incidence rates, which reflected the negligence of Class C diseases by the government. At the same time, the incidence rate of Hepatitis E gradually surpassed Hepatitis A. The authorities should pay more attention to Class C diseases and Hepatitis E. Regardless of the various distribution patterns of IIDs, disease-specific, location-specific, and disease-combined interventions should be established. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12879-019-4400-x) contains supplementary material, which is available to authorized users. |
3,867 | Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer | Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast Saccharomyces cerevisiae, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic. |
3,868 | TRIM21—From Intracellular Immunity to Therapy | Tripartite motif containing-21 (TRIM21) is a cytosolic ubiquitin ligase and antibody receptor that provides a last line of defense against invading viruses. It does so by acting as a sensor that intercepts antibody-coated viruses that have evaded extracellular neutralization and breached the cell membrane. Upon engagement of the Fc of antibodies bound to viruses, TRIM21 triggers a coordinated effector and signaling response that prevents viral replication while at the same time inducing an anti-viral cellular state. This dual effector function is tightly regulated by auto-ubiquitination and phosphorylation. Therapeutically, TRIM21 has been shown to be detrimental in adenovirus based gene therapy, while it may be favorably utilized to prevent tau aggregation in neurodegenerative disorders. In addition, TRIM21 may synergize with the complement system to block viral replication as well as transgene expression. TRIM21 can also be utilized as a research tool to deplete specific proteins in cells and zebrafish embryos. Here, we review our current biological understanding of TRIM21 in light of its versatile functions. |
3,869 | Evaluation of Diagnostic Performance of Three Indirect Enzyme-Linked Immunosorbent Assays for the Detection of IgG Antibodies to Ebola Virus in Human Sera | Filovirus serological diagnosis and epidemiological investigations are hampered due to the unavailability of validated immunoassays. Diagnostic performance of three indirect enzyme-linked immunosorbent assays (I-ELISA) was evaluated for the detection of IgG antibody to Ebola virus (EBOV) in human sera. One I-ELISA was based on a whole EBOV antigen (WAg) and two utilized recombinant nucleocapsid (NP) and glycoproteins (GP), respectively. Validation data sets derived from individual sera collected in South Africa (SA), representing an EBOV non-endemic country, and from sera collected during an Ebola disease (EBOD) outbreak in Sierra Leone (SL), were categorized according to the compounded results of the three I-ELISAs and real time reverse-transcription polymerase chain reaction (RT-PCR). At the cut-off values selected at 95% accuracy level by the two-graph receiver operating characteristic analysis, specificity in the SA EBOV negative serum panel (n = 273) ranged from 98.17% (GP ELISA) to 99.27% (WAg ELISA). Diagnostic specificity in the SL EBOV negative panel (n = 676) was 100% by the three ELISAs. The diagnostic sensitivity in 423 RT-PCR confirmed EBOD patients was dependent on the time when the serum was collected after onset of disease. It significantly increased 2 weeks post-onset, reaching 100% sensitivity by WAg and NP and 98.1% by GP I-ELISA. |
3,870 | Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41 | Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs. |
3,871 | Viral Long-Term Evolutionary Strategies Favor Stability over Proliferation | Viruses are known to have some of the highest and most diverse mutation rates found in any biological replicator, with single-stranded (ss) RNA viruses evolving the fastest, and double-stranded (ds) DNA viruses having rates approaching those of bacteria. As mutation rates are tightly and negatively correlated with genome size, selection is a clear driver of viral evolution. However, the role of intragenomic interactions as drivers of viral evolution is still unclear. To understand how these two processes affect the long-term evolution of viruses infecting humans, we comprehensively analyzed ssRNA, ssDNA, dsRNA, and dsDNA viruses, to find which virus types and which functions show evidence for episodic diversifying selection and correlated evolution. We show that selection mostly affects single stranded viruses, that correlated evolution is more prevalent in DNA viruses, and that both processes, taken independently, mostly affect viral replication. However, the genes that are jointly affected by both processes are involved in key aspects of their life cycle, favoring viral stability over proliferation. We further show that both evolutionary processes are intimately linked at the amino acid level, which suggests that it is the joint action of selection and correlated evolution, and not just selection, that shapes the evolutionary trajectories of viruses—and possibly of their epidemiological potential. |
3,872 | Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants | Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAP(TM)/WITNESS(R)): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays. |
3,873 | Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms | For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon. |
3,874 | Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties | To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro. |
3,875 | Inhibitory Effects of Antiviral Drug Candidates on Canine Parvovirus in F81 cells | Canine parvovirus (CPV) is a common etiological agent of acute enteritis, which occurs globally in domestic and wild carnivores. Despite the widespread use of inactivated or live attenuated vaccines, the emergence of antigenic variants and the influence of maternal antibodies have raised some concerns regarding the efficacy of commercial vaccines. While no specific antiviral therapy for CPV infection exists, the only treatment option for the infection is supportive therapy based on symptoms. Thus, there is an urgent medical need to develop antiviral therapeutic options to reduce the burden of CPV-related disease. In this study, a cytopathic effect (CPE)-based high-throughput screening assay was used to screen CPV inhibitors from a Food and Drug Administration (FDA)-approved drug library. After two rounds of screening, seven out of 1430 screened drugs were found to have >50% CPE inhibition. Three drugs—Nitazoxanide, Closantel Sodium, and Closantel—with higher anti-CPV effects were further evaluated in F81 cells by absolute PCR quantification and indirect immunofluorescence assay (IFA). The inhibitory effects of all three drugs were dose-dependent. Time of addition assay indicated that the drugs inhibited the early processes of the CPV replication cycle, and the inhibition effects were relatively high within 2 h postinfection. Western blot assay also showed that the three drugs had broad-spectrum antiviral activity against different subspecies of three CPV variants. In addition, antiapoptotic effects were observed within 12 h in Nitazoxanide-treated F81 cells regardless of CPV infection, while Closantel Sodium- or Closantel-treated cells had no pro- or antiapoptotic effects. In conclusion, Nitazoxanide, Closantel Sodium, and Closantel can effectively inhibit different subspecies of CPV. Since the safety profiles of FDA-approved drugs have already been extensively studied, these three drugs can potentially become specific and effective anti-CPV drugs. |
3,876 | The impact of the oral cavity in febrile neutropenia and infectious complications in patients treated with myelosuppressive chemotherapy | Febrile neutropenia (FN) is an inflammatory response causing fever that may develop during cancer therapy-induced neutropenia. FN may herald life-threatening infectious complications and should therefore be considered a medical emergency. Patients presenting with FN are routinely subjected to careful history taking and physical examination including X-rays and microbiological evaluations. Nevertheless, an infection is documented clinically in only 20–30% of cases, whereas a causative microbial pathogen is not identified in over 70% of FN cases. The oral cavity is generally only visually inspected. Although it is recognized that ulcerative oral mucositis may be involved in the development of FN, the contribution of infections of the periodontium, the dentition, and salivary glands may be underestimated. These infections can be easily overlooked, as symptoms and signs of inflammation may be limited or absent during neutropenia. This narrative review is aimed to inform the clinician on the potential role of the oral cavity as a potential source in the development of FN. Areas for future research directed to advancing optimal management strategies are discussed. |
3,877 | A multicenter RCT of noninvasive ventilation in pneumonia-induced early mild acute respiratory distress syndrome | RATIONALE: Our pilot study suggested that noninvasive ventilation (NIV) reduced the need for intubation compared with conventional administration of oxygen on patients with “early” stage of mild acute respiratory distress syndrome (ARDS, PaO(2)/FIO(2) between 200 and 300). OBJECTIVES: To evaluate whether early NIV can reduce the need for invasive ventilation in patients with pneumonia-induced early mild ARDS. METHODS: Prospective, multicenter, randomized controlled trial (RCT) of NIV compared with conventional administration of oxygen through a Venturi mask. Primary outcome included the numbers of patients who met the intubation criteria. RESULTS: Two hundred subjects were randomized to NIV (n = 102) or control (n = 98) groups from 21 centers. Baseline characteristics were similar in the two groups. In the NIV group, PaO(2)/FIO(2) became significantly higher than in the control group at 2 h after randomization and remained stable for the first 72 h. NIV did not decrease the proportion of patients requiring intubation than in the control group (11/102 vs. 9/98, 10.8% vs. 9.2%, p = 0.706). The ICU mortality was similar in the two groups (7/102 vs. 7/98, 4.9% vs. 3.1%, p = 0.721). Multivariate analysis showed minute ventilation greater than 11 L/min at 48 h was the independent risk factor for NIV failure (OR, 1.176 [95% CI, 1.005–1.379], p = 0.043). CONCLUSIONS: Treatment with NIV did not reduce the need for intubation among patients with pneumonia-induced early mild ARDS, despite the improved PaO(2)/FIO(2) observed with NIV compared with standard oxygen therapy. High minute ventilation may predict NIV failure. TRIAL REGISTRATION: NCT01581229. Registered 19 April 2012 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13054-019-2575-6) contains supplementary material, which is available to authorized users. |
3,878 | Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update | The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. With international groups volunteering to join, the “APASL ACLF Research Consortium (AARC)” was formed in 2012, which continued to collect prospective ACLF patient data. Based on the prospective data analysis of nearly 1400 patients, the AARC consensus was published in 2014. In the past nearly four-and-a-half years, the AARC database has been enriched to about 5200 cases by major hepatology centers across Asia. The data published during the interim period were carefully analyzed and areas of contention and new developments in the field of ACLF were prioritized in a systematic manner. The AARC database was also approached for answering some of the issues where published data were limited, such as liver failure grading, its impact on the ‘Golden Therapeutic Window’, extrahepatic organ dysfunction and failure, development of sepsis, distinctive features of acute decompensation from ACLF and pediatric ACLF and the issues were analyzed. These initiatives concluded in a two-day meeting in October 2018 at New Delhi with finalization of the new AARC consensus. Only those statements, which were based on evidence using the Grade System and were unanimously recommended, were accepted. Finalized statements were again circulated to all the experts and subsequently presented at the AARC investigators meeting at the AASLD in November 2018. The suggestions from the experts were used to revise and finalize the consensus. After detailed deliberations and data analysis, the original definition of ACLF was found to withstand the test of time and be able to identify a homogenous group of patients presenting with liver failure. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information and areas requiring future studies are presented here. |
3,879 | A novel method to rescue and culture duck Astrovirus type 1 in vitro | BACKGROUND: Reverse genetics systems enable the manipulation of viral genomes and therefore serve as robust reverse genetic tools to study RNA viruses. A DNA-launched rescue system initiates the transcription of viral genomic cDNA from eukaryotic promoter in transfected cells, generating homogenous RNA transcripts in vitro and thus enhancing virus rescue efficiency. As one of the hazardous pathogens to ducklings, the current knowledge of the pathogenesis of duck astrovirus type 1 (DAstV-1) is limited. The construction of a DNA-launched rescue system can help to accelerate the study of the virus pathogenesis. However, there is no report of such a system for DAstV-1. METHODS: In this study, a DNA-launched infectious clone of DAstV-1 was constructed from a cDNA plasmid, which contains a viral cDNA sequence flanked by hammerhead ribozyme (HamRz) and a hepatitis delta virus ribozyme (HdvRz) sequence at both terminals of the viral genome. A silent nucleotide mutation creating a Bgl II site in the ORF2 gene was made to distinguish the rescued virus (rDAstV-1) from the parental virus (pDAstV-1). Immunofluorescence assay (IFA) and western blot were conducted for rescued virus identification in duck embryo fibroblast (DEF) cells pre-treated with trypsin. The growth characteristics of rDAstV-1 and pDAstV-1 in DEF cells and the tissue tropism in 2-day-old ducklings of rDAstV-1 and pDAstV-1 were determined. RESULTS: The infectious DAstV-1 was successfully rescued from baby hamster kidney (BHK-21) cells and could propagate in DEF cells pre-treated with 1 μg/ml trypsin. Upon infection of DEF cells pre-treated with trypsin, DAstV-1 mRNA copies were identified after serial passaging, and the result showed that rDAstV-1 and pDAstV-1 shared similar replication kinetics. Animal experiment showed that the rDAstV-1 had an extensive tissue tropism, and the virus was capable of invading both the central and the peripheral immune organs in infected ducklings. CONCLUSIONS: An improved DNA-launched reverse genetics system for DAstV-1 was firstly constructed. Infectious virus recovered from BHK-21 cells could propagate in DEF cells pre-treated with trypsin. This is the first report of the successful in vitro cultivation of DAstV-1. We believe this valuable experimental system will contribute to the further study of DAstV-1 genome function and pathogenesis. |
3,880 | Host susceptibility to severe influenza A virus infection | Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience. |
3,881 | Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus) | Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the primary cause of acute, highly fatal, hemorrhagic diseases in young Asian elephants. Although monocytopenia is frequently observed in EEHV-HD cases, the role monocytes play in EEHV-disease pathogenesis is unknown. This study seeks to explain the responses of monocytes/macrophages in the pathogenesis of EEHV-HD. Samples of blood, frozen tissues, and formalin-fixed, paraffin-embedded (FFPE) tissues from EEHV1A-HD, EEHV4-HD, co-infected EEHV1A and 4-HD, and EEHV-negative calves were analyzed. Peripheral blood mononuclear cells (PBMCs) from the persistent EEHV4-infected and EEHV-negative calves were also studied. The results showed increased infiltration of Iba-1-positive macrophages in the inflamed tissues of the internal organs of elephant calves with EEHV-HD. In addition, cellular apoptosis also increased in the tissues of elephants with EEHV-HD, especially in the PBMCs, compared to the EEHV-negative control. In the PBMCs of persistent EEHV4-infected elephants, cytokine mRNA expression was high, particularly up-regulation of TNF-α and IFN-γ. Moreover, viral particles were observed in the cytoplasm of the persistent EEHV4-infected elephant monocytes. Our study demonstrated for the first time that apoptosis of the PBMCs increased in cases of EEHV-HD. Furthermore, this study showed that monocytes may serve as a vehicle for viral dissemination during EEHV infection in Asian elephants. |
3,882 | The need for translational research in respiratory medicine | Medical advances have failed to arrest the growing morbidity and mortality from lung diseases. COPD, lung cancer and pulmonary infections remain leading causes of death. More than any other time in human history, we need high quality, translatable, patient-focussed respiratory research that will improve clinical practice. Close teamwork of scientists and clinicians are essential. The results of these work need to be disseminated quickly and widely. The creation of an open access journal, such as Translational Respiratory Medicine, dedicated to translational respiratory research can help foster progress. |
3,883 | Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma | Nanocarrier drug delivery systems (NDDS) have been paid more attention over conventional drug delivery system for cancer therapy. However, the efficacy is hampered by the fast clearance of activated macrophage from the blood circulation system. In this study, glycyrrhizin (GL) was introduced into alginate (ALG) nanogel particles (NGPs) to construct multifunctional delivery vehicle to decrease the fast clearance of activated macrophage and enhance the anticancer efficacy with the combination therapy of GL and doxorubicin (DOX). Methods: We firstly synthesized the GL-ALG NGPs with intermolecular hydrogen bond and ionic bond as the multifunctional delivery vehicle. The immune response and phagocytosis of macrophage on GL-ALG NGPs were investigated on RAW 264.7 macrophages. The pharmacokinetic study of DOX loaded in GL-ALG NGPs was performed in rats. The active targeting effects of GL-ALG NGPs were further studied on hepatocellular carcinoma cell (HepG2) and H22 tumor-bearing mice. Moreover, the anticancer molecular mechanism of DOX/GL-ALG NGPs was investigated on HepG2 cells in vitro and tumor-bearing mice in vivo. Results: GL-ALG NGPs could not only avoid triggering the immuno-inflammatory responses of macrophages but also decreasing the phagocytosis of macrophage. The bioavailability of DOX was increased about 13.2 times by DOX/GL-ALG NGPs than free DOX in blood. The mice with normal immune functions used in constructing the tumor-bearing mice instead of the nude mouse also indicated the good biocompatibility of NGPs. GL-mediated ALG NGPs exhibited excellent hepatocellular carcinoma targeting effect in vitro and in vivo. The results suggested that the anticancer molecular mechanism of the combination therapy of glycyrrhizin and doxorubicin in ALG NGPs was performed via regulating apoptosis pathway of Bax/Bcl-2 ratio and caspase-3 activity, which was also verified in H22 tumor-bearing mice. Conclusion: DOX/GL-ALG NGPs could attenuate the activation of macrophage and enhance the therapeutic efficacy for hepatocellular carcinoma. Our results suggest that the combination therapy would provide a new strategy for liver cancer treatment. |
3,884 | DisCVR: Rapid viral diagnosis from high-throughput sequencing data | High-throughput sequencing (HTS) enables most pathogens in a clinical sample to be detected from a single analysis, thereby providing novel opportunities for diagnosis, surveillance, and epidemiology. However, this powerful technology is difficult to apply in diagnostic laboratories because of its computational and bioinformatic demands. We have developed DisCVR, which detects known human viruses in clinical samples by matching sample k-mers (twenty-two nucleotide sequences) to k-mers from taxonomically labeled viral genomes. DisCVR was validated using published HTS data for eighty-nine clinical samples from adults with upper respiratory tract infections. These samples had been tested for viruses metagenomically and also by real-time polymerase chain reaction assay, which is the standard diagnostic method. DisCVR detected human viruses with high sensitivity (79%) and specificity (100%), and was able to detect mixed infections. Moreover, it produced results comparable to those in a published metagenomic analysis of 177 blood samples from patients in Nigeria. DisCVR has been designed as a user-friendly tool for detecting human viruses from HTS data using computers with limited RAM and processing power, and includes a graphical user interface to help users interpret and validate the output. It is written in Java and is publicly available from http://bioinformatics.cvr.ac.uk/discvr.php. |
3,885 | Antiviral Properties of R. tanguticum Nanoparticles on Herpes Simplex Virus Type I In Vitro and In Vivo | Herpes simplex virus type 1 (HSV-1), an enveloped DNA virus, plays a key role in varieties of diseases including recurrent cold sores, keratoconjunctivitis, genital herpes and encephalitis in humans. Great efforts have been made in developing more effective and less side-effects anti-herpes simplex virus agents, including traditional Chinese herbal medicines. In the present study, we evaluated the antiviral efficacy of Rheum tanguticum nanoparticles against HSV-1 in vitro and in vivo. R. tanguticum nanoparticles could inactivate the HSV-1 virions and block the viral attachment and entry into cells. Time-of-addition assay indicated that R. tanguticum nanoparticles could interfere with the entire phase of viral replication. Besides, R. tanguticum nanoparticles showed the ability to inhibit the mRNA expression of HSV-1 immediate early gene ICP4 and early gene ICP8 as well as the expression of viral protein ICP4 and ICP8. Moreover, R. tanguticum nanoparticles have been proved to protect mice against HSV-1 induced lethality by decreasing the viral load and alleviated pathological changes in brain tissues. In conclusion, we demonstrated that R. tanguticum nanoparticles could inhibit HSV-1 infection through multiple mechanisms. These results suggest that R. tanguticum nanoparticles may have novel roles in the treatment of HSV-1 infection. |
3,886 | Schizophrenia is Associated With an Aberrant Immune Response to Epstein–Barr Virus | BACKGROUND: Epstein–Barr virus (EBV) is a highly prevalent human herpesvirus capable of infecting the central nervous system and establishing persistent infection. METHODS: We employed solid phase immunoassay techniques to measure immunoglobulin G (IgG) class antibodies to EBV virions and defined proteins in 432 individuals with schizophrenia and 311 individuals without a history of a psychiatric disorder. Western blot testing was performed to document reactivity to specific EBV proteins. Polygenic risk for schizophrenia was calculated from genome sequencing arrays. Levels of antibodies between the groups were compared by multivariate analyses incorporating clinical, genetic, and demographic measures. RESULTS: Individuals with schizophrenia had marked elevations in the levels of antibodies to EBV virions as compared to the control population. Further analyses indicated increased levels of reactivity to EBV-viral capsid antibody (VCA) but not to EBV nuclear antigen-1 (EBNA-1) or to other human herpesviruses. Western blot analysis confirmed increased reactivity to VCA proteins in the group of individuals with schizophrenia and documented a lack of increased levels of antibodies to EBNA-1. Genetic analyses indicated an additive effect of increased levels of antibodies to EBV virions and genetic susceptibility to schizophrenia, with individuals with elevated levels of both type of markers having a greater than 8.5-fold odds of a schizophrenia diagnosis. CONCLUSIONS: Individuals with schizophrenia have increased levels of antibodies to some but not all EBV proteins indicating an aberrant response to EBV infection. This aberrant response may contribute to the immunopathology of schizophrenia and related disorders. |
3,887 | Occurrence of feline immunodeficiency virus and feline leukaemia virus in Maputo city and province, Mozambique: a pilot study | OBJECTIVES: Feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) are immunosuppressive viruses in cats that increase their susceptibility to zoonotic pathogens. This study aimed to determine the occurrence of one or both viruses, the risk factors associated with infection, and to develop further recommendations. METHODS: This was a cross-sectional study conducted at the Veterinary Faculty of Eduardo Mondlane University, Mozambique, between March and December 2017, in 145 cats. From each of 145 cats, we took 1.5 ml of blood by jugular puncture for detection of antibodies to FIV and FeLV antigens in whole blood using a commercial test kit, DFV Test FeLV/FIV. RESULTS: We found an overall prevalence of 11.0% and 14.5% for FIV antibodies and FeLV antigens, respectively, with four (2.8%) cats coinfected by both pathogens. Male cats were more likely to be infected with FIV (odds ratio [OR] 1.1, 95% confidence interval [CI] 0.3–4.0) compared with female cats. Clinically ill cats were more likely to have a positive result for FeLV antigen infection (OR 18.8, 95% CI 5.2–68.3). Moreover, cats living in suburban areas have a greater chance of a positive result for FeLV infection (OR 3.7, 95% CI 1.4–9.6) compared with cats living in urban areas. CONCLUSIONS AND RELEVANCE: FIV and FeLV occur in cats from Maputo and possibly all over the country. Further studies should be conducted in Mozambique and other African countries to define the burden of both pathogens in cats, coinfection with other zoonotic pathogens and the possible role played by the cats on the transmission of zoonotic and opportunistic diseases to humans. |
3,888 | Combination Antifungal Therapy for Invasive Mold Infections Among Pediatric Patients with Hematological Malignancies: Data from A Real-Life Case-Series | BACKGROUND: Invasive mold infections in children with hematological malignancies are associated with high mortality rates. The use of combination antifungal therapy in cases with a severe clinical course is increasing, although information on the efficacy and safety of this approach is limited. METHODS: We present a case series of 13 children affected by hemato-oncological disorders who received combination antifungal therapy for invasive mold infections at our center (Pediatric Hematology, San Gerardo Hospital, Monza, Italy) from 2011 to 2016, with the aim of describing their clinical characteristics, types of infections, treatment regimens, clinical outcomes, and treatment safety. Medical records were retrospectively reviewed in order to describe patients' characteristics. RESULTS: Combination antifungal therapy included liposomal amphotericin associated with caspofungin (5/13, 38.4%), voriconazole (5/13, 38.4%), or posaconazole (3/13, 23.1%). The 12-week treatment response rate was 69.2% (6/13 patients showed complete response, 3/13 partial response). The crude mortality was 30.7% (4/13): half was related to invasive mold infections (2/13, 15.38%) and half to disease progression (2/13, 15.38%). Overall, treatment was well tolerated, and we did not observe any permanent discontinuation of antifungals due to related side effects. CONCLUSIONS: In our experience, combination antifungal therapy seems to be a safe option in immunocompromised children with invasive mold infections. Well-designed studies are needed to confirm the safety of this approach and to better understand its efficacy in the pediatric setting. |
3,889 | Healthcare Workers’ Strategies for Doffing Personal Protective Equipment | BACKGROUND: Personal protective equipment (PPE) helps protect healthcare workers (HCWs) from pathogens and prevents cross-contamination. PPE effectiveness is often undermined by inappropriate doffing methods. Our knowledge of how HCWs approach doffing PPE in practice is limited. In this qualitative study, we examine HCWs’ perspectives about doffing PPE. METHODS: Thirty participants at a Midwestern academic hospital were recruited and assigned to 1 of 3 doffing simulation scenarios: 3 mask designs (n = 10), 2 gown designs (n = 10), or 2 glove designs (n = 10). Participants were instructed to doff PPE as they would in routine practice. Their performances were video-recorded and reviewed with participants. Semistructured interviews about their doffing approaches were conducted and audio-recorded, then transcribed and thematically analyzed. RESULTS: Three overarching themes were identified in interviews: doffing strategies, cognitive processes, and barriers and facilitators. Doffing strategies included doffing safely (minimizing self-contamination) and doffing expediently (eg, ripping PPE off). Cognitive processes during doffing largely pertained to tracking contaminated PPE surfaces, examining PPE design cues (eg, straps), or improvising based on prior experience from training or similar PPE designs. Doffing barriers and facilitators typically related to PPE design, such as PPE fit (or lack of it) and fastener type. Some participants also described personal barriers (eg, glasses, long hair); however, some PPE designs helped mitigate these barriers. CONCLUSIONS: Efforts to improve HCWs’ doffing performance need to address HCWs’ preferences for both safety and expediency when using PPE, which has implications for PPE design, training approaches, and hospital policies and procedures. |
3,890 | #CDCGrandRounds and #VitalSigns: A Twitter Analysis | BACKGROUND: The CDC hosts monthly panel presentations titled ‘Public Health Grand Rounds’ and publishes monthly reports known as Vital Signs. Hashtags #CDCGrandRounds and #VitalSigns were used to promote them on Twitter. OBJECTIVES: This study quantified the effect of hashtag count, mention count, and URL count and attaching visual cues to #CDCGrandRounds or #VitalSigns tweets on their retweet frequency. METHODS: Through Twitter Search Application Programming Interface, original tweets containing the hashtag #CDCGrandRounds (n = 6,966; April 21, 2011–October 25, 2016) and the hashtag #VitalSigns (n = 15,015; March 19, 2013–October 31, 2016) were retrieved respectively. Negative binomial regression models were applied to each corpus to estimate the associations between retweet frequency and three predictors (hashtag count, mention count, and URL link count). Each corpus was sub-set into cycles (#CDCGrandRounds: n = 58, #VitalSigns: n = 42). We manually coded the 30 tweets with the highest number of retweets for each cycle, whether it contained visual cues (images or videos). Univariable negative binomial regression models were applied to compute the prevalence ratio (PR) of retweet frequency for each cycle, between tweets with and without visual cues. FINDINGS: URL links increased retweet frequency in both corpora; effects of hashtag count and mention count differed between the two corpora. Of the 58 #CDCGrandRounds cycles, 29 were found to have statistically significantly different retweet frequencies between tweets with and without visual cues. Of these 29 cycles, one had a PR estimate < 1; twenty-four, PR > 1 but < 3; and four, PR > 3. Of the 42 #VitalSigns cycles, 19 were statistically significant. Of these 19 cycles, six were PR > 1 and < 3; and thirteen, PR > 3. CONCLUSIONS: The increase of retweet frequency through attaching visual cues varied across cycles for original tweets with #CDCGrandRounds and #VitalSigns. Future research is needed to determine the optimal choice of visual cues to maximize the influence of public health tweets. |
3,891 | Unified feature association networks through integration of transcriptomic and proteomic data | High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different–omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease. |
3,892 | Assessing exhibition swine as potential disseminators of infectious disease through the detection of five respiratory pathogens at agricultural exhibitions | Widespread geographic movement and extensive comingling of exhibition swine facilitates the spread and transmission of infectious pathogens. Nasal samples were collected from 2862 pigs at 102 exhibitions and tested for five pathogens. At least one pathogen was molecularly detected in pigs at 63 (61.8%) exhibitions. Influenza A virus was most prevalent and was detected in 498 (17.4%) samples. Influenza D virus was detected in two (0.07%) samples. More than one pathogen was detected in 165 (5.8%) samples. Influenza A virus remains a top threat to animal and human health, but other pathogens may be disseminated through the exhibition swine population. |
3,893 | A Coding Sequence-Embedded Principle Governs Translational Reading Frame Fidelity | Upon initiation at a start codon, the ribosome must maintain the correct reading frame for hundreds of codons in order to produce functional proteins. While some sequence elements are able to trigger programmed ribosomal frameshifting (PRF), very little is known about how the ribosome normally prevents spontaneous frameshift errors that can have dire consequences if uncorrected. Using high resolution ribosome profiling data sets, we discovered that the translating ribosome uses the 3′ end of 18S rRNA to scan the AUG-like codons after the decoding process. The postdecoding mRNA:rRNA interaction not only contributes to predominant translational pausing, but also provides a retrospective mechanism to safeguard the ribosome in the correct reading frame. Partially eliminating the AUG-like “sticky” codons in the reporter message leads to increased +1 frameshift errors. Remarkably, mutating the highly conserved CAU triplet of 18S rRNA globally changes the codon “stickiness”. Further supporting the role of “sticky” sequences in reading frame maintenance, the codon composition of open reading frames is highly optimized across eukaryotic genomes. These results suggest an important layer of information embedded within the protein-coding sequences that instructs the ribosome to ensure reading frame fidelity during translation. |
3,894 | Situations Leading to Reduced Effectiveness of Current Hand Hygiene against Infectious Mucus from Influenza Virus-Infected Patients | Both antiseptic hand rubbing (AHR) using ethanol-based disinfectants (EBDs) and antiseptic hand washing (AHW) are important means of infection control to prevent seasonal influenza A virus (IAV) outbreaks. However, previous reports suggest a reduced efficacy of ethanol disinfection against pathogens in mucus. We aimed to elucidate the situations and mechanisms underlying the reduced efficacy of EBDs against IAV in infectious mucus. We evaluated IAV inactivation and ethanol concentration change using IAV-infected patients’ mucus (sputum). Additionally, AHR and AHW effectiveness against infectious mucus adhering to the hands and fingers was evaluated in 10 volunteers. Our clinical study showed that EBD effectiveness against IAV in mucus was extremely reduced compared to IAV in saline. IAV in mucus remained active despite 120 s of AHR; however, IAV in saline was completely inactivated within 30 s. Due to the low rate of diffusion/convection because of the physical properties of mucus as a hydrogel, the time required for the ethanol concentration to reach an IAV inactivation level and thus for EBDs to completely inactivate IAV was approximately eight times longer in mucus than in saline. On the other hand, AHR inactivated IAV in mucus within 30 s when the mucus dried completely because the hydrogel characteristics were lost. Additionally, AHW rapidly inactivated IAV. Until infectious mucus has completely dried, infectious IAV can remain on the hands and fingers, even after appropriate AHR using EBD, thereby increasing the risk of IAV transmission. We clarified the ineffectiveness of EBD use against IAV in infectious mucus. IMPORTANCE Antiseptic hand rubbing (AHR) and antiseptic hand washing (AHW) are important to prevent the spread of influenza A virus (IAV). This study elucidated the situations/mechanisms underlying the reduced efficacy of AHR against infectious mucus derived from IAV-infected individuals and indicated the weaknesses of the current hand hygiene regimens. Due to the low rate of diffusion/convection because of the physical properties of mucus as a hydrogel, the efficacy of AHR using ethanol-based disinfectant against mucus is greatly reduced until infectious mucus adhering to the hands/fingers has completely dried. If there is insufficient time before treating the next patient (i.e., if the infectious mucus is not completely dry), medical staff should be aware that effectiveness of AHR is reduced. Since AHW is effective against both dry and nondry infectious mucus, AHW should be adopted to compensate for these weaknesses of AHR. |
3,895 | Microbiome-Transcriptome Interactions Related to Severity of Respiratory Syncytial Virus Infection | Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections and hospital visits during infancy and childhood. Although risk factors for RSV infection have been identified, the role of microbial species in the respiratory tract is only partially known. We aimed to understand the impact of interactions between the nasal microbiome and host transcriptome on the severity and clinical outcomes of RSV infection. We used 16 S rRNA sequencing to characterize the nasal microbiome of infants with RSV infection. We used RNA sequencing to interrogate the transcriptome of CD4(+) T cells obtained from the same set of infants. After dimension reduction through principal component (PC) analysis, we performed an integrative analysis to identify significant co-variation between microbial clade and gene expression PCs. We then employed LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) to estimate the clade-gene association patterns for each infant. Our network-based integrative analysis identified several clade-gene associations significantly related to the severity of RSV infection. The microbial taxa with the highest loadings in the implicated clade PCs included Moraxella, Corynebacterium, Streptococcus, Haemophilus influenzae, and Staphylococcus. Interestingly, many of the genes with the highest loadings in the implicated gene PCs are encoded in mitochondrial DNA, while others are involved in the host immune response. This study on microbiome-transcriptome interactions provides insights into how the host immune system mounts a response against RSV and specific infectious agents in nasal microbiota. |
3,896 | Lipidome profiles of postnatal day 2 vaginal swabs reflect fat composition of gilt’s postnatal diet | We hypothesized that postnatal development of the vagina is impacted by early nutritional environment. Our objective was to determine if lipid profiles of vaginal swabs were different between postnatal gilts suckled by sow or fed milk replacer the first 48 h after birth, with or without a lard-based fat supplement. Gilts (>1.3 kg) were selected at birth across 8 litters and assigned to one of four treatments: 1) suckled by sow (S, n = 8); 2) suckled by sow plus administration of a fat supplement (SF, n = 5); 3) bottle-fed solely milk replacer (B, n = 8); or 4) bottle-fed solely milk replacer plus administration of a fat supplement (BF, n = 7). At 48 h postnatal, vaginal swabs of gilts were taken with a cytology brush, and lipids were extracted for analysis using multiple reaction monitoring (MRM)-profiling. Lipids extracted from serum collected at 48 h from gilts, milk collected at 24 h from sows, and milk replacer were also analyzed with MRM-profiling. Receiver operating characteristic curve analysis found 18 lipids recovered from vaginal swabs that highly distinguished between S and B gilts [area-under-the-curve (AUC) > 0.9], including phosphatidylethanolamine with 34 carbons and four unsaturations in the fatty acyl residues [PE (34:4)]. Twelve lipids from vaginal swabs highly correlated (r > 0.6; p < 0.01) with nutrition source. Lipids with greater abundance in milk replacer drove association. For example, mean intensity of PE (34:4) was 149-fold higher in milk replacer than colostrum. Consequently, PE (34:4) was found to have 1.6- and 2.12-fold higher levels in serum and vaginal swab samples (p < 0.001), respectively, of B gilts as compared to S gilts. Findings support that vaginal swabs can be used to noninvasively study effects of perinatal nutrition on tissue composition. |
3,897 | Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection | In this study, we developed a single leg knee joint assistance robot. Commonly used exoskeletons have a left-right pair, but when only one leg of the wearer is uncomfortable, it is effective to wear the exoskeleton on only the uncomfortable leg. The designed exoskeleton uses a lightweight material and uses a wire-driven actuator, which reduces the weight of the driving section that is attached on the knee directly. Therefore, proposed exoskeleton reduces the force of inertia that the wearer experiences. In addition, the lower frame length of the exoskeleton can be changed to align with the complex movement of the knee. Furthermore, the length between the knee center of rotation and the ankle (LBKA) is measured by using this structure, and the LBKA values are used as the data for intention detection. These value helps to detect the intention because it changes faster than a motor encoder value. A neural network was trained using the motor encoder values, and LBKA values. Neural network detects the intention of three motions (stair ascending, stair descending, and walking), Training results showed that intention detection was good in various environments. |
3,898 | Gender, HIV-Related Stigma, and Health-Related Quality of Life Among Adults Enrolling in HIV Care in Tanzania | HIV-related stigma has been associated with worse health-related quality of life (HRQoL) among people living with HIV (PLWH). Little is known about how different types of HIV-related stigma (i.e., anticipatory, internalized, or enacted HIV-related stigma) influence HRQoL and whether these relationships differ by gender. The sample included 912 PLWH aged 18 years or older enrolling in HIV care at four health facilities in Tanzania. HRQoL was assessed with the life satisfaction and overall function subscales of the HIV/AIDS-Targeted Quality of Life (HAT-QoL) instrument. Sex-stratified multivariable logistic regression modeled the association of anticipatory, internalized, and enacted HIV-related stigma on poor HRQoL. Across all participants, the mean life satisfaction score was 63.4 (IQR: 43.8, 81.3) and the mean overall function score was 72.0 (IQR: 58.3, 91.7). Mean HRQoL scores were significantly higher for women compared to men for overall function (5.1 points higher) and life satisfaction (4.3 points higher). Fourteen percent of respondents reported recent enacted HIV-related stigma and 13% reported recent medium or high levels of internalized stigma. In multivariable models, high internalized and high anticipatory stigma were significantly associated with higher odds of poor life satisfaction and poor overall function in both men and women. Psychosocial interventions to prevent or reduce the impact of internalized and anticipatory stigma may improve HRQoL among persons in HIV care. Future research should longitudinally examine mechanisms between HIV-related stigma, poor HRQoL, and HIV care outcomes. |
3,899 | Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome | Long-read sequencing (LRS) has become increasingly important in RNA research due to its strength in resolving complex transcriptomic architectures. In this regard, currently two LRS platforms have demonstrated adequate performance: the Single Molecule Real-Time Sequencing by Pacific Biosciences (PacBio) and the nanopore sequencing by Oxford Nanopore Technologies (ONT). Even though these techniques produce lower coverage and are more error prone than short-read sequencing, they continue to be more successful in identifying polycistronic RNAs, transcript isoforms including splice and transcript end variants, as well as transcript overlaps. Recent reports have successfully applied LRS for the investigation of the transcriptome of viruses belonging to various families. These studies have substantially increased the number of previously known viral RNA molecules. In this work, we used the Sequel and MinION technique from PacBio and ONT, respectively, to characterize the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). In most samples, we analyzed the poly(A) fraction of the transcriptome, but we also performed random oligonucleotide-based sequencing. Besides cDNA sequencing, we also carried out native RNA sequencing. Our investigations identified more than 2,300 previously undetected transcripts, including coding, and non-coding RNAs, multi-splice transcripts, as well as polycistronic and complex transcripts. Furthermore, we found previously unsubstantiated transcriptional start sites, polyadenylation sites, and splice sites. A large number of novel transcriptional overlaps were also detected. Random-primed sequencing revealed that each convergent gene pair produces non-polyadenylated read-through RNAs overlapping the partner genes. Furthermore, we identified novel replication-associated transcripts overlapping the HSV-1 replication origins, and novel LAT variants with very long 5’ regions, which are co-terminal with the LAT-0.7kb transcript. Overall, our results demonstrated that the HSV-1 transcripts form an extremely complex pattern of overlaps, and that entire viral genome is transcriptionally active. In most viral genes, if not in all, both DNA strands are expressed. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.