ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
acb28b16-a116-4b1a-a11e-a1ee50b66645
cpp
tensorflow/tensorflow
force_xla_constants_on_host_pass
tensorflow/compiler/jit/force_xla_constants_on_host_pass.cc
tensorflow/compiler/jit/force_xla_constants_on_host_pass_test.cc
#include "tensorflow/compiler/jit/force_xla_constants_on_host_pass.h" #include "tensorflow/compiler/jit/compilability_check_util.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/core/common_runtime/optimization_registry.h" namespace tensorflow { Status ForceXlaConstantsOnHostPass::Run( const GraphOptimizationPassOptions& options) { Graph* graph = options.graph->get(); OptimizerOptions opts; auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( nullptr, options.session_options->env, nullptr, TF_GRAPH_DEF_VERSION, options.flib_def, opts); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); for (Node* node : graph->nodes()) { if (CanCreateXlaKernel(node->def())) { const FunctionBody* fbody = nullptr; std::vector<int> constant_arg_indices; std::vector<int> resource_arg_indices; NameAttrList function; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(node->def(), &function)); TF_RETURN_IF_ERROR(GetBodyAndConstantsAndResources( flr, function, &fbody, &constant_arg_indices, &resource_arg_indices)); VLOG(3) << "Found constant arg indices: " << absl::StrJoin(constant_arg_indices, ", "); node->AddAttr("_input_hostmem", constant_arg_indices); } } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/force_xla_constants_on_host_pass.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/compilability_check_util.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { Status ForceXlaConstantsOnHost(const Scope& s, FunctionLibraryDefinition* flib_def, std::unique_ptr<Graph>* result) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphOptimizationPassOptions options; SessionOptions session_options; session_options.env = Env::Default(); options.graph = &graph; options.session_options = &session_options; options.flib_def = flib_def; TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); ForceXlaConstantsOnHostPass rewriter; TF_RETURN_IF_ERROR(rewriter.Run(options)); *result = std::move(graph); return absl::OkStatus(); } TEST(ForceXlaConstantsOnHostPassTest, Simple) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; FunctionDef called_func = FunctionDefHelper::Create("TransposeCall", {"a:float", "b:int32"}, {"c:float"}, {}, {{{"t0"}, "Transpose", {"a", "b"}, { {"T", DT_FLOAT}, {"Tperm", DT_INT32}, }}}, {{"c", "t0:y:0"}}); AttrValue true_attribute; true_attribute.set_b(true); (*called_func.mutable_attr())[kXlaMustCompileAttr] = true_attribute; *library.add_function() = called_func; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); FunctionLibraryDefinition flib_def(OpRegistry::Global(), library); Output in = ops::Placeholder(root, DT_FLOAT); Output perm = ops::Const(root, {3, 1, 2, 0}); NameAttrList b_name_attr; b_name_attr.set_name("TransposeCall"); ops::PartitionedCall call(root.WithOpName("call"), {in, perm}, {DT_FLOAT}, b_name_attr); call.output.front().node()->AddAttr(kXlaMustCompileAttr, true); std::unique_ptr<Graph> graph; TF_ASSERT_OK(ForceXlaConstantsOnHost(root, &flib_def, &graph)); bool found = false; for (Node* node : graph->nodes()) { if (CanCreateXlaKernel(node->def())) { EXPECT_FALSE(found); found = true; std::vector<int32> hostmem_attr; EXPECT_TRUE(TryGetNodeAttr(node->def(), "_input_hostmem", &hostmem_attr)); EXPECT_EQ(hostmem_attr.size(), 1); EXPECT_EQ(hostmem_attr[0], 1); } } EXPECT_TRUE(found); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/force_xla_constants_on_host_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/force_xla_constants_on_host_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8b3d1a79-9e0e-4afa-b82c-826ddee12d52
cpp
tensorflow/tensorflow
xla_launch_util
tensorflow/compiler/jit/xla_launch_util.cc
tensorflow/compiler/jit/xla_launch_util_test.cc
#include "tensorflow/compiler/jit/xla_launch_util.h" #include <cstdint> #include <memory> #include <optional> #include <set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer_util.h" #include "tensorflow/compiler/jit/variable_info.h" #include "tensorflow/compiler/jit/variable_info_util.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "xla/client/local_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/framework/device_id_utils.h" #include "xla/tsl/framework/serving_device_selector_policies.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.h" #include "tensorflow/core/common_runtime/gpu_device_context.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/tfrt/common/async_value_tensor.h" #include "tensorflow/core/util/stream_executor_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using xla::ScopedShapedBuffer; using xla::ShapedBuffer; se::Platform::Id XlaPlatformInfoFromDevice(DeviceBase* device_base) { auto device = static_cast<Device*>(device_base); se::Platform::Id platform_id = nullptr; if (device->device_type() == DEVICE_CPU) { platform_id = se::host::kHostPlatformId; } return platform_id; } absl::flat_hash_map<int, int> CreateVariableLookup( const std::vector<VariableInfo>& variables) { absl::flat_hash_map<int, int> variable_lookup; for (int i = 0; i < variables.size(); i++) { variable_lookup[variables[i].index()] = i; } return variable_lookup; } } std::vector<const Tensor*> InputsFromContext(OpKernelContext* ctx) { std::vector<const Tensor*> inputs; inputs.reserve(ctx->num_inputs()); for (int input_idx = 0; input_idx < ctx->num_inputs(); input_idx++) { inputs.push_back(&ctx->input(input_idx)); } return inputs; } absl::StatusOr<std::vector<int>> GetConstantInputIndicesFromContext( OpKernelContext* ctx) { std::vector<int> constant_input_indices; TF_RETURN_IF_ERROR(GetCompileTimeConstInputs( &ctx->op_kernel(), &constant_input_indices, ctx->function_library())); if (!absl::c_all_of(constant_input_indices, [&](int idx) { return ctx->input_memory_type(idx) == HOST_MEMORY; })) { return errors::Internal("Unexpected device placement for a constant input"); } return constant_input_indices; } XlaComputationLaunchContext::XlaComputationLaunchContext( xla::LocalClient* client, se::DeviceMemoryAllocator* xla_allocator, int device_ordinal, bool allocate_xla_tensors, bool use_multiple_streams) : client_(client), xla_allocator_(xla_allocator), allocate_xla_tensors_(allocate_xla_tensors), use_multiple_streams_(use_multiple_streams), device_ordinal_(device_ordinal) { if (use_multiple_streams_) { CHECK(allocate_xla_tensors_) << "To use multiple streams correctly we must " "be allocating XLA tensors!"; } } static void PopulateExecutionInputBuffer(xla::ExecutionInput& execution_input, xla::ShapeIndex index, se::DeviceMemoryBase buffer, bool donate_buffer, int device_ordinal, se::DeviceMemoryAllocator* allocator) { xla::MaybeOwningDeviceMemory* in_buffer = execution_input.MutableBuffer(index); if (donate_buffer) { *in_buffer = se::OwningDeviceMemory(buffer, device_ordinal, allocator); } else { *in_buffer = buffer; } } absl::StatusOr<std::vector<xla::ExecutionInput>> XlaComputationLaunchContext::PopulateInputs( OpKernelContext* ctx, const XlaCompiler::CompilationResult* compilation_result, const std::map<int, const Tensor*>& resource_vars, int missing_ctx_input_prefix, const xla::HloInputOutputAliasConfig& input_output_alias) { std::vector<xla::ExecutionInput> arguments; arguments.reserve(compilation_result->xla_input_shapes.size()); for (int i = 0; i < compilation_result->xla_input_shapes.size(); ++i) { int arg_num = compilation_result->input_mapping[i]; CHECK_GE(arg_num, missing_ctx_input_prefix); const xla::Shape& device_shape = compilation_result->xla_input_shapes[i]; const xla::Shape& host_shape = xla::ShapeUtil::DeviceShapeToHostShape(device_shape); auto resource_var_it = resource_vars.find(arg_num); bool is_resource_variable = resource_var_it != resource_vars.end(); bool is_updated_resource_variable = is_resource_variable && absl::c_any_of(compilation_result->resource_updates, [&](const XlaCompiler::ResourceUpdate& update) { return update.input_index == arg_num && update.modified; }); const Tensor* t = is_resource_variable ? resource_var_it->second : &(ctx->input(arg_num - missing_ctx_input_prefix)); CHECK(t); bool donate_buffer = t->RefCountIsOne() && is_updated_resource_variable && input_output_alias.ParameterHasAlias(i, xla::ShapeIndex{}); VLOG(3) << "Processing input: " << i << "; is_resource_variable=" << is_resource_variable << "; is_updated_resource_variable=" << is_updated_resource_variable << "; donate_buffer=" << donate_buffer; if (use_multiple_streams_) { CHECK(ctx->op_device_context() && ctx->op_device_context()->stream()) << "Must have a stream available when using XLA tensors!"; XlaTensor* xla_tensor = XlaTensor::FromTensor(t); CHECK(xla_tensor); xla_tensor->WaitForDefinitionEventOnStream( ctx->op_device_context()->stream()); } arguments.emplace_back(device_shape, host_shape); xla::ExecutionInput& execution_input = arguments.back(); se::DeviceMemoryBase dmem = XlaTensor::DeviceMemoryFromTensor(*t); PopulateExecutionInputBuffer(execution_input, xla::ShapeIndex{}, dmem, donate_buffer, device_ordinal_, xla_allocator_); } return std::move(arguments); } static Tensor MakeTensor(DataType dtype, const TensorShape& shape, se::DeviceMemoryBase buffer, Allocator* allocator) { size_t expected_size = shape.num_elements() * DataTypeSize(dtype); auto* tensor_buffer = new XlaTensorBuffer(buffer.opaque(), expected_size, buffer.size(), allocator); Tensor t(dtype, shape, tensor_buffer); tensor_buffer->Unref(); return t; } static absl::StatusOr<Tensor> GetOrCreateTensorForOutput( xla::ScopedShapedBuffer& output, int output_num, OpKernelContext* ctx, int missing_ctx_input_prefix, const xla::HloInputOutputAliasConfig& input_output_alias, absl::Span<const int> input_mapping, const std::map<int, const Tensor*>& resource_vars_snapshots, DataType output_dtype, const TensorShape& output_shape, Allocator* output_allocator, bool allocate_xla_tensors, se::Stream* stream, bool use_multiple_streams, std::shared_ptr<se::Event> definition_event) { xla::ShapeIndex output_index = input_output_alias.shape().IsTuple() ? xla::ShapeIndex({output_num}) : xla::ShapeIndex({}); CHECK(input_output_alias.shape().IsTuple() || output_num == 0); if (std::optional<xla::HloInputOutputAliasConfig::Alias> alias = input_output_alias.GetAliasedParameter(output_index)) { VLOG(3) << "Found alias: " << alias->ToString(); int tf_param = input_mapping[alias->parameter_number] - missing_ctx_input_prefix; const Tensor input_tensor = ctx->input(tf_param).dtype() != DT_RESOURCE ? ctx->input(tf_param) : *resource_vars_snapshots.at(missing_ctx_input_prefix + tf_param); se::DeviceMemoryBase input_buffer = XlaTensor::DeviceMemoryFromTensor(input_tensor); se::DeviceMemoryBase output_buffer = output.buffer({output_num}); if (input_buffer.opaque() == output_buffer.opaque()) { output.set_buffer(se::OwningDeviceMemory(), {output_num}); return input_tensor; } } if (allocate_xla_tensors) { Tensor output_tensor; TF_RETURN_IF_ERROR( ctx->allocate_temp(output_dtype, output_shape, &output_tensor)); if (output_tensor.TotalBytes() > 0) { XlaTensor* xla_tensor = XlaTensor::FromTensor(&output_tensor); TF_RET_CHECK(xla_tensor); xla_tensor->set_shaped_buffer(output.TakeSubTree({output_num})); if (use_multiple_streams) { xla_tensor->ResetDefinitionEvent(definition_event, stream); } } return output_tensor; } se::DeviceMemoryBase output_buffer = output.buffer({output_num}); Tensor output_tensor = MakeTensor(output_dtype, output_shape, output_buffer, output_allocator); output.set_buffer(se::OwningDeviceMemory(), {output_num}); return output_tensor; } Status SetOutputForConstant( OpKernelContext* ctx, bool requires_copy_to_device, const XlaCompiler::CompilationResult* compilation_result, int output_num) { CHECK(compilation_result->outputs[output_num].is_constant); const Tensor& const_tensor = compilation_result->outputs[output_num].constant_value; Tensor* output_tensor; if (requires_copy_to_device && const_tensor.TotalBytes() > 0) { VLOG(1) << "Constant output tensor on device"; TF_RETURN_IF_ERROR( ctx->allocate_output(output_num, const_tensor.shape(), &output_tensor)); Device* device = dynamic_cast<Device*>(ctx->device()); if (device == nullptr) { return errors::Internal("DeviceBase was not a Device."); } ctx->op_device_context()->CopyCPUTensorToDevice( &const_tensor, device, output_tensor, [&](Status status) { TF_CHECK_OK(status); }); if (device->device_type() == DEVICE_GPU) { auto* gpu_device_context = static_cast<GPUDeviceContext*>(ctx->op_device_context()); TF_RETURN_IF_ERROR(gpu_device_context->stream()->WaitFor( gpu_device_context->host_to_device_stream())); } } else { ctx->set_output(output_num, const_tensor); output_tensor = ctx->mutable_output(output_num); } return absl::OkStatus(); } static absl::StatusOr<Var*> GetOrCreateResourceVar( OpKernelContext* ctx, const ResourceHandle& handle, const XlaCompiler::ResourceUpdate& write) { Var* variable = nullptr; TF_RETURN_IF_ERROR( LookupOrCreateResource<Var>(ctx, handle, &variable, [&write](Var** ptr) { *ptr = new Var(write.type); return absl::OkStatus(); })); return variable; } absl::StatusOr<std::vector<VariableInfo>> GatherVariableInfo( OpKernelContext* ctx, const XlaCompiler::CompilationResult& compilation_result, int missing_ctx_input_prefix) { std::vector<VariableInfo> out; out.reserve(compilation_result.resource_updates.size()); for (int i = 0; i < compilation_result.resource_updates.size(); ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result.resource_updates[i]; int actual_input_index = write.input_index - missing_ctx_input_prefix; if (actual_input_index < 0 || actual_input_index >= ctx->num_inputs()) { return errors::Internal("Invalid input index for variable write."); } const ResourceHandle handle = HandleFromInput(ctx, actual_input_index); TF_ASSIGN_OR_RETURN(Var * variable, GetOrCreateResourceVar(ctx, handle, write)); out.emplace_back(actual_input_index, handle.name(), variable, handle.definition_stack_trace()); } return std::move(out); } Status XlaComputationLaunchContext::PopulateOutputs( OpKernelContext* ctx, const XlaCompiler::CompilationResult* compilation_result, ScopedShapedBuffer output, int missing_ctx_input_prefix, absl::Span<VariableInfo> variable_infos, const xla::HloInputOutputAliasConfig& input_output_alias, const std::map<int, const Tensor*>& resource_vars) { se::Stream* stream = ctx->op_device_context() ? ctx->op_device_context()->stream() : nullptr; Allocator* allocator = ctx->device()->GetAllocator({}); VLOG(2) << "Result tuple shape: " << output.on_host_shape().DebugString(); VLOG(2) << "Result tuple shape (on device): " << output.on_device_shape().DebugString(); CHECK_EQ(ctx->num_outputs(), compilation_result->outputs.size()); if (!output.on_host_shape().IsTuple()) { ShapedBuffer nontuple_buffer = output.release(); ShapedBuffer buffer( xla::ShapeUtil::MakeTupleShape({nontuple_buffer.on_host_shape()}), xla::ShapeUtil::MakeTupleShape({nontuple_buffer.on_device_shape()}), output.device_ordinal()); buffer.buffers().CopySubtreeFrom(nontuple_buffer.buffers(), {}, {0}); output = ScopedShapedBuffer(std::move(buffer), output.memory_allocator()); } std::shared_ptr<se::Event> definition_event; if (use_multiple_streams_ && stream) { TF_ASSIGN_OR_RETURN(definition_event, stream->parent()->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(definition_event.get())); } for (const XlaOutputDescription& descr : compilation_result->outputs) { if (descr.type == DT_VARIANT) { return errors::Unimplemented( "Support for TensorList crossing the XLA/TF boundary " "is not implemented"); } } std::vector<TensorShape> output_tensor_shapes; output_tensor_shapes.reserve(ctx->num_outputs()); if (output.on_host_shape().is_dynamic()) { const se::Platform* platform = nullptr; if (stream != nullptr) { platform = stream->parent()->GetPlatform(); } else { TF_ASSIGN_OR_RETURN(platform, se::PlatformManager::PlatformWithId( XlaPlatformInfoFromDevice(ctx->device()))); } TF_ASSIGN_OR_RETURN(auto transfer_manager, xla::TransferManager::GetForPlatform(platform)); xla::Shape output_device_shape = output.on_device_shape(); TF_RETURN_IF_ERROR(transfer_manager->ReadDynamicShapes( stream, &output, &output_device_shape)); output.set_shapes(output_device_shape, output_device_shape); for (int i = 0; i < ctx->num_outputs(); ++i) { const xla::Shape& subshape = xla::ShapeUtil::GetSubshape(output_device_shape, {i}); TensorShape shape; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(subshape, &shape)); output_tensor_shapes.push_back(shape); } } else { for (int i = 0; i < ctx->num_outputs(); ++i) { output_tensor_shapes.push_back(compilation_result->outputs[i].shape); } } int output_num = 0; for (int i = 0, end = ctx->num_outputs(); i < end; ++i) { const TensorShape& shape = output_tensor_shapes[i]; const DataType& type = compilation_result->outputs[i].type; VLOG(2) << "Populating output for retval " << i << " shape " << shape.DebugString() << " type " << DataTypeString(type); if (compilation_result->outputs[i].is_constant) { TF_RETURN_IF_ERROR(SetOutputForConstant( ctx, stream != nullptr, compilation_result, i)); } else if (type == DT_RESOURCE) { int input_index = compilation_result->outputs[i].input_index - missing_ctx_input_prefix; TF_RET_CHECK(input_index >= 0 && input_index < ctx->num_inputs()) << "Invalid input for outputs " << i << ": " << input_index; ctx->set_output(i, ctx->input(input_index)); } else { TF_ASSIGN_OR_RETURN( Tensor output_tensor, GetOrCreateTensorForOutput( output, output_num, ctx, missing_ctx_input_prefix, input_output_alias, compilation_result->input_mapping, resource_vars, ctx->expected_output_dtype(i), shape, allocator, allocate_xla_tensors_, stream, use_multiple_streams_, definition_event)); ctx->set_output(i, output_tensor); ++output_num; } } absl::flat_hash_map<int, int> variable_info_lookup; for (int i = 0; i < variable_infos.size(); i++) { variable_info_lookup.emplace(variable_infos[i].index(), i); } for (int i = 0, end = compilation_result->resource_updates.size(); i < end; ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result->resource_updates[i]; int actual_input_index = write.input_index - missing_ctx_input_prefix; CHECK_GE(actual_input_index, 0); CHECK_LT(actual_input_index, ctx->num_inputs()); Var* var = variable_infos[variable_info_lookup[actual_input_index]].var(); CHECK(var); VLOG(2) << "Updating variable #" << i << " at input index: " << actual_input_index << " with shape " << write.shape.DebugString() << "; variable tensor has shape: " << var->tensor()->shape().DebugString(); if (var->is_initialized && var->tensor()->dtype() != write.type) { return errors::Internal("Mismatched type in variable write"); } TF_ASSIGN_OR_RETURN( Tensor output_tensor, GetOrCreateTensorForOutput(output, output_num, ctx, missing_ctx_input_prefix, input_output_alias, compilation_result->input_mapping, resource_vars, write.type, write.shape, allocator, allocate_xla_tensors_, stream, use_multiple_streams_, definition_event)); var->is_initialized |= write.modified; *var->tensor() = output_tensor; ++output_num; } return absl::OkStatus(); } absl::StatusOr<std::vector<XlaCompiler::Argument>> XlaComputationLaunchContext::BuildXlaCompilerArguments( absl::Span<int const> must_be_constant_idxs, absl::Span<const Tensor* const> inputs, absl::Span<VariableInfo const> variable_args, Device* device) { if (!must_be_constant_idxs.empty() && !absl::c_is_sorted(must_be_constant_idxs)) { return absl::InvalidArgumentError("must_be_constant_idxs is not sorted"); } VLOG(2) << "Must be const args: {" << absl::StrJoin(must_be_constant_idxs, ",") << "} out of " << inputs.size() << " args"; std::vector<XlaCompiler::Argument> out; out.resize(inputs.size()); DeviceContext* device_context = nullptr; if (device != nullptr) { TF_RETURN_IF_ERROR(device->TryGetDeviceContext(&device_context)); bool using_default_context = false; auto cleanup = absl::MakeCleanup([&] { if (device_context != nullptr && !using_default_context) { device_context->Unref(); } }); if (device_context == nullptr) { using_default_context = true; auto* dev_info = device->tensorflow_accelerator_device_info(); if (dev_info) device_context = dev_info->default_context; } } absl::flat_hash_map<int, const VariableInfo*> variable_info_lookup; TF_CHECK_OK(CreateVariableInfoLookup(variable_args, variable_info_lookup)); for (int64_t input_num = 0; input_num < inputs.size(); ++input_num) { const Tensor* input = inputs[input_num]; XlaCompiler::Argument& arg = out[input_num]; if (variable_info_lookup.count(input_num) && device != nullptr) { TF_RET_CHECK(input->dtype() == DT_RESOURCE); const VariableInfo& variable = *variable_info_lookup[input_num]; arg.name = std::string(variable.name()); arg.kind = XlaCompiler::Argument::kResource; arg.resource_kind = XlaResource::kVariable; arg.definition_stack_trace = variable.definition_stack_trace(); if (variable.var() && variable.var()->is_initialized) { const Tensor* value = variable.var()->tensor(); arg.type = value->dtype(); arg.shape = value->shape(); arg.initialized = true; } else { arg.initialized = false; arg.type = DT_INVALID; arg.shape = TensorShape(); } if (absl::c_binary_search(must_be_constant_idxs, input_num)) { TF_RET_CHECK(variable.var() && variable.var()->is_initialized); const Tensor* value = variable.var()->tensor(); Tensor value_on_host(value->dtype(), value->shape()); if (!device_context) { value_on_host = *value; } else { TF_RETURN_IF_ERROR(device_context->CopyDeviceTensorToCPUSync( value, "", device, &value_on_host)); } arg.kind = XlaCompiler::Argument::kConstantResource; arg.constant_value = value_on_host; } } else if (absl::c_binary_search(must_be_constant_idxs, input_num)) { arg.kind = XlaCompiler::Argument::kConstant; arg.type = input->dtype(); arg.shape = input->shape(); arg.constant_value = *input; } else { TF_RET_CHECK(input->dtype() != DT_RESOURCE); if (input->NumElements() > 0) { arg.kind = XlaCompiler::Argument::kParameter; } else { arg.kind = XlaCompiler::Argument::kConstant; arg.constant_value = *input; } arg.type = input->dtype(); arg.shape = input->shape(); } } return out; } Status PreparePjRtExecutableArguments( int num_missing_prefix_ctx_inputs, const std::vector<int>& input_mapping, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, xla::PjRtClient* pjrt_client, xla::PjRtDevice* pjrt_device, bool use_pjrt_tensor_buffer, std::vector<xla::PjRtBuffer*>* args, std::vector<std::unique_ptr<xla::PjRtBuffer>>* owned_args, absl::flat_hash_set<int>* non_donatable_input_indices) { for (auto arg_num : input_mapping) { const Tensor* tensor; if (auto it = variable_snapshots.find(arg_num); it != variable_snapshots.end()) { tensor = it->second; } else { tensor = inputs[arg_num - num_missing_prefix_ctx_inputs]; } AsyncValueTensor* av_tensor = AsyncValueTensor::FromTensor(tensor); if (use_pjrt_tensor_buffer) { if (av_tensor != nullptr) { return absl::InvalidArgumentError( "If use_pjrt_tensor_buffer is set, the input tensor should not " "contain an AsyncValueTensor."); } const PjRtTensorBuffer* pjrt_tensor_buffer = dynamic_cast<const PjRtTensorBuffer*>(DMAHelper::buffer(tensor)); if (pjrt_tensor_buffer != nullptr) { args->push_back(pjrt_tensor_buffer->pjrt_buffer()); } else { auto dmem = se::DeviceMemoryBase( const_cast<char*>(tensor->tensor_data().data()), tensor->tensor_data().size()); absl::Span<const std::shared_ptr<xla::BufferSequencingEvent>> definition_events; auto device_buffer = std::make_shared<xla::TrackedDeviceBuffer>( nullptr, pjrt_device, std::initializer_list<se::DeviceMemoryBase>{dmem}, definition_events, []() {}); xla::Shape device_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape( tensor->dtype(), tensor->shape(), &device_shape)); std::unique_ptr<xla::PjRtBuffer> pjrt_buffer = std::make_unique<xla::PjRtStreamExecutorBuffer>( device_shape, std::move(device_buffer), pjrt_client, pjrt_device, pjrt_device->default_memory_space().value_or(nullptr)); owned_args->push_back(std::move(pjrt_buffer)); args->push_back(owned_args->back().get()); } } else { if (av_tensor->GetBuffer() == nullptr) { CHECK_EQ(tensor->NumElements(), 0); continue; } args->push_back(av_tensor->GetBuffer().get()); } if (!tensor->RefCountIsOne()) { non_donatable_input_indices->insert(args->size() - 1); } } return absl::OkStatus(); } Status PopulateCtxOutputsFromPjRtExecutableOutputs( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult& compilation_result, const bool use_pjrt_tensor_buffer, std::vector<std::unique_ptr<xla::PjRtBuffer>>& executable_outputs, OpKernelContext* ctx) { int output_num = 0; for (int i = 0, end = ctx->num_outputs(); i < end; ++i) { const DataType& type = compilation_result.outputs[i].type; VLOG(2) << "Populating output for retval " << i << " type " << DataTypeString(type); if (type == DT_VARIANT) { return absl::UnimplementedError( "Support for TensorList crossing the XLA/TF boundary " "is not implemented"); } if (compilation_result.outputs[i].is_constant) { bool requires_copy_to_device = GetDeviceType(ctx) != DEVICE_CPU; TF_RETURN_IF_ERROR(SetOutputForConstant(ctx, requires_copy_to_device, &compilation_result, i)); } else if (type == DT_RESOURCE) { int input_index = compilation_result.outputs[i].input_index - num_missing_prefix_ctx_inputs; TF_RET_CHECK(input_index >= 0 && input_index < ctx->num_inputs()) << "Invalid input for outputs " << i << ": " << input_index; ctx->set_output(i, *inputs[input_index]); } else { xla::PjRtBuffer* output_buffer = executable_outputs[output_num].get(); if (output_buffer->IsTuple()) { return absl::InvalidArgumentError( "Tuple PJRT buffer output is not supported."); } absl::Span<const int64_t> dims; std::optional<std::vector<int64_t>> logical_dims_storage; if (output_buffer->has_dynamic_dimensions()) { TF_ASSIGN_OR_RETURN(std::vector<int64_t> logical_dims, output_buffer->logical_dimensions()); logical_dims_storage.emplace(std::move(logical_dims)); dims = *logical_dims_storage; } else { dims = output_buffer->dimensions(); } TensorShape tensor_shape; for (int i = 0; i < dims.size(); ++i) { TF_RETURN_IF_ERROR(tensor_shape.AddDimWithStatus(dims[i])); } if (use_pjrt_tensor_buffer) { TF_ASSIGN_OR_RETURN( Tensor output_tensor, MakeTensorFromPjRtBuffer( type, tensor_shape, std::move(executable_outputs[output_num]))); ctx->set_output(i, output_tensor); } else { Tensor* output_tensor; TF_RETURN_IF_ERROR( ctx->allocate_output(i, tensor_shape, &output_tensor)); auto output_avt = AsyncValueTensor::FromTensor(output_tensor); output_avt->SetBuffer(std::move(executable_outputs[output_num])); } ++output_num; } } const auto& variable_lookup = CreateVariableLookup(variables); for (int i = 0; i < compilation_result.resource_updates.size(); ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result.resource_updates[i]; int actual_input_index = write.input_index - num_missing_prefix_ctx_inputs; CHECK_GE(actual_input_index, 0); CHECK_LT(actual_input_index, ctx->num_inputs()); auto it = variable_lookup.find(actual_input_index); if (it == variable_lookup.end()) { continue; } Var* var = variables[it->second].var(); CHECK(var); VLOG(2) << "Updating variable #" << i << " at input index: " << actual_input_index << " with shape " << write.shape.DebugString() << "; variable tensor has shape: " << var->tensor()->shape().DebugString(); if (var->is_initialized && var->tensor()->dtype() != write.type) { return errors::Internal("Mismatched type in variable write"); } if (use_pjrt_tensor_buffer) { TF_RETURN_IF_ERROR(PjRtTensorBufferUtil::UpdateOrMakeTensorWithPjRtBuffer( write.type, write.shape, std::move(executable_outputs[output_num]), var->tensor())); } else { TF_RETURN_IF_ERROR( ctx->allocate_temp(write.type, write.shape, var->tensor())); AsyncValueTensor::FromTensor(var->tensor()) ->SetBuffer(std::move(executable_outputs[output_num])); } var->is_initialized |= write.modified; ++output_num; } return absl::OkStatus(); } xla::ExecuteOptions GetPjRtExecuteOptions( const DeviceType& device_type, absl::flat_hash_set<int> non_donatable_input_indices) { xla::ExecuteOptions options; options.arguments_are_tupled = false; options.untuple_result = true; options.launch_id = 1; if (device_type == DEVICE_GPU) { options.strict_shape_checking = false; } options.use_major_to_minor_data_layout_for_callbacks = true; options.non_donatable_input_indices = std::move(non_donatable_input_indices); return options; } DeviceType GetDeviceType(OpKernelContext* ctx) { auto* device = tensorflow::down_cast<Device*>(ctx->device()->UnderlyingDevice()); return DeviceType(device->device_type()); } Status RunPjRtExecutable( const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable, OpKernelContext* ctx) { absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } return RunPjRtExecutable(0, inputs, variable_snapshots, variables, compilation_result, pjrt_client, executable, ctx); } Status RunPjRtExecutable( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, const std::vector<VariableInfo>& updated_variables, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable, OpKernelContext* ctx) { const bool use_pjrt_tensor_buffer = ctx->device() ->tensorflow_accelerator_device_info() ->use_pjrt_tensor_buffer; const DeviceType& device_type = GetDeviceType(ctx); const int pjrt_device_id = tsl::GetDeviceIdFromDeviceParsedName(ctx->device()->parsed_name()); TF_ASSIGN_OR_RETURN(xla::PjRtDevice * device, pjrt_client->LookupAddressableDevice( xla::PjRtLocalDeviceId(pjrt_device_id))); gpu::GpuServingDeviceSelectorResource* device_selector_resource = nullptr; if (device_type == DEVICE_GPU) { auto rm = ctx->resource_manager(); TF_RETURN_IF_ERROR(rm->LookupOrCreate< gpu::GpuServingDeviceSelectorResource>( rm->default_container(), gpu::kGpuServingDeviceSelectorResourceName, &device_selector_resource, [&](gpu::GpuServingDeviceSelectorResource** device_selector_resource) { *device_selector_resource = new gpu::GpuServingDeviceSelectorResource( pjrt_client->addressable_device_count(), std::make_unique<tsl::RoundRobinPolicy>()); return absl::OkStatus(); })); core::ScopedUnref device_selector_resource_ref(device_selector_resource); TF_ASSIGN_OR_RETURN(absl::string_view fingerprint, executable->FingerprintExecutable()); device_selector_resource->selector()->Enqueue(pjrt_device_id, fingerprint); } TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs, RunPjRtExecutable(num_missing_prefix_ctx_inputs, inputs, variable_snapshots, updated_variables, device_type, use_pjrt_tensor_buffer, compilation_result, device, pjrt_client, executable)); if (device_selector_resource != nullptr) { device_selector_resource->selector()->Completed(pjrt_device_id, false); } TF_RETURN_IF_ERROR(PopulateCtxOutputsFromPjRtExecutableOutputs( num_missing_prefix_ctx_inputs, inputs, updated_variables, compilation_result, use_pjrt_tensor_buffer, execute_outputs, ctx)); return absl::OkStatus(); } absl::StatusOr<std::vector<std::unique_ptr<xla::PjRtBuffer>>> RunPjRtExecutable( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, const std::vector<VariableInfo>& updated_variables, const DeviceType& device_type, bool use_pjrt_tensor_buffer, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtDevice* device, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable) { std::vector<xla::PjRtBuffer*> executable_args; executable_args.reserve(compilation_result.input_mapping.size()); std::vector<std::unique_ptr<xla::PjRtBuffer>> owned_executable_args; absl::flat_hash_set<int> non_donatable_input_indices; TF_RETURN_IF_ERROR(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, compilation_result.input_mapping, inputs, variable_snapshots, pjrt_client, device, use_pjrt_tensor_buffer, &executable_args, &owned_executable_args, &non_donatable_input_indices)); std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs; std::optional<xla::PjRtFuture<>> future; if (executable->num_replicas() != 1 || executable->num_partitions() != 1) { TF_ASSIGN_OR_RETURN( execute_outputs, executable->ExecuteSharded( executable_args, device, GetPjRtExecuteOptions(device_type, std::move(non_donatable_input_indices)), future)); } else { TF_ASSIGN_OR_RETURN( execute_outputs, executable->ExecutePortable( executable_args, device, GetPjRtExecuteOptions(device_type, std::move(non_donatable_input_indices)), future)); } if (!owned_executable_args.empty() && future.has_value()) { future->OnReady([owned_executable_args = std::move(owned_executable_args)](Status s) {}); } return execute_outputs; } }
#include "tensorflow/compiler/jit/xla_launch_util.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "tensorflow/compiler/jit/device_compiler.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/pjrt_device_compiler_client.h" #include "tensorflow/compiler/jit/variable_info.h" #include "tensorflow/compiler/jit/variable_info_util.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/tfrt_cpu_pjrt_client.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/framework/device_id_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; using PjRtDeviceExecutablePersistor = DeviceExecutablePersistor<xla::PjRtLoadedExecutable, xla::PjRtClient>; absl::flat_hash_map<int, const Tensor*> GetVariableSnapshots( const std::vector<VariableInfo>& variables) { absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } return variable_snapshots; } class PjRtExecutionUtilTest : public OpsTestBase { public: PjRtExecutionUtilTest() { auto& rollout_config = GetXlaOpsCommonFlags()->tf_xla_use_device_api; rollout_config.enabled_for_xla_launch_ = true; rollout_config.enabled_for_compile_on_demand_ = true; GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; auto device_type = DeviceType(DEVICE_XLA_CPU); rollout_config.AllowForDeviceInXlaLaunch(device_type); rollout_config.AllowForDeviceInXlaCompileOnDemand(device_type); auto jit_device_type = DeviceType(DEVICE_CPU_XLA_JIT); auto device = DeviceFactory::NewDevice(device_type.type_string(), SessionOptions(), "/job:localhost/replica:0/task:0"); device_ = device.get(); SetDevice(device_type, std::move(device)); TF_CHECK_OK(SetPjRtClientInTFGlobalResourceManager( device_type, xla::GetTfrtCpuClient(true, 1) .value())); TF_CHECK_OK(device_->TryGetDeviceContext(&device_context_)); AllocatorAttributes host_alloc_attr; host_alloc_attr.set_on_host(true); host_allocator_ = device_->GetAllocator(host_alloc_attr); AllocatorAttributes device_alloc_attr; device_alloc_attr.set_on_host(false); device_allocator_ = device_->GetAllocator(device_alloc_attr); auto pjrt_client_or = GetOrCreatePjRtClient(device_type_); TF_CHECK_OK(pjrt_client_or.status()); pjrt_client_ = pjrt_client_or.value(); device_compiler_ = new PjRtDeviceCompiler( std::make_unique<PjRtDeviceExecutablePersistor>( PjRtDeviceExecutablePersistor::Config(), jit_device_type), std::make_unique<PjRtDeviceCompilerClient>(pjrt_client_)); profiler_ = new DeviceCompilationProfiler(); compiler_options_.device_type = jit_device_type; compiler_options_.client = nullptr; compiler_options_.flib_def = flib_def_.get(); } ~PjRtExecutionUtilTest() override { for (const auto& tensor : tensors_) { delete tensor; } tensors_.clear(); device_context_->Unref(); core::ScopedUnref device_compiler_ref(device_compiler_); core::ScopedUnref profiler_ref(profiler_); } template <typename T> Tensor* CreateHostTensor(const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* host_tensor = new Tensor(host_allocator_, DataTypeToEnum<T>::v(), shape); test::FillValues<T>(host_tensor, data); tensors_.push_back(host_tensor); return host_tensor; } template <typename T> Tensor* CreateDeviceTensor(const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* host_tensor = CreateHostTensor<T>(shape, data); Tensor* device_tensor = new Tensor(device_allocator_, DataTypeToEnum<T>::v(), shape); TF_EXPECT_OK(device_context_->CopyCPUTensorToDeviceSync( host_tensor, device_, device_tensor)); tensors_.push_back(device_tensor); return device_tensor; } Tensor* GetOutput(int output_index) { CHECK_LT(output_index, context_->num_outputs()); Tensor* device_tensor = context_->mutable_output(output_index); managed_outputs_.resize(context_->num_outputs()); if (managed_outputs_[output_index]) { return managed_outputs_[output_index]; } Tensor* host_tensor = new Tensor(host_allocator_, device_tensor->dtype(), device_tensor->shape()); TF_EXPECT_OK(device_context_->CopyDeviceTensorToCPUSync( device_tensor, "", device_, host_tensor)); managed_outputs_[output_index] = host_tensor; return host_tensor; } void CompileToExecutable(const std::vector<XlaCompiler::Argument>& args, const XlaCompiler::CompilationResult** result, xla::PjRtLoadedExecutable** executable, XlaCompiler::CompileOptions compile_options = {}) { TF_EXPECT_OK(device_compiler_->CompileSingleOpIfNeeded( compiler_options_, args, compile_options, context_.get(), profiler_, result, executable)); } absl::StatusOr<std::vector<std::unique_ptr<xla::PjRtBuffer>>> RunExecutable( const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult* result, xla::PjRtLoadedExecutable* executable) { TF_ASSIGN_OR_RETURN(auto pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(device_->parsed_name().id))); std::vector<xla::PjRtBuffer*> executable_args; executable_args.reserve(result->input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( 0, result->input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &executable_args, {}, &non_donatable_input_indices)); xla::ExecuteOptions exe_options; exe_options.arguments_are_tupled = false; exe_options.untuple_result = true; return executable->ExecutePortable(executable_args, pjrt_device, exe_options); } template <typename T> Var* CreateVariable(const string& name, const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* init_var_value = CreateDeviceTensor<T>(shape, data); Var* var = new Var(DataTypeToEnum<T>::v()); *var->tensor() = *init_var_value; var->is_initialized = true; return var; } template <typename T> void AddVariableInput(const string& name, const TensorShape& shape, const gtl::ArraySlice<T> data) { Var* var = CreateVariable<T>(name, shape, data); ResourceMgr* rm = device_->resource_manager(); TF_ASSERT_OK(rm->Create(rm->default_container(), name, var)); ResourceHandle handle; handle.set_device(device_->name()); handle.set_container(rm->default_container()); handle.set_name(name); TypeIndex type_index = TypeIndex::Make<Var>(); handle.set_hash_code(type_index.hash_code()); handle.set_maybe_type_name(type_index.name()); Tensor* input = new Tensor(host_allocator_, DT_RESOURCE, TensorShape({})); input->scalar<ResourceHandle>()() = handle; tensors_.push_back(input); inputs_.push_back({nullptr, input}); } protected: DeviceContext* device_context_; Allocator* host_allocator_; Allocator* device_allocator_; XlaCompiler::Options compiler_options_; xla::PjRtClient* pjrt_client_; PjRtDeviceCompiler* device_compiler_; DeviceCompilationProfiler* profiler_; }; TEST_F(PjRtExecutionUtilTest, PreparePjRtExecutableArguments) { std::vector<const Tensor*> inputs; inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {0, 0, 0})); inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {1, 2, 3})); inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {4, 5, 6})); int num_missing_prefix_ctx_inputs = 2; std::vector<int> input_mapping{3, 4}; std::vector<VariableInfo> variables; std::vector<xla::PjRtBuffer*> exec_args; exec_args.reserve(input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &exec_args, {}, &non_donatable_input_indices)); EXPECT_EQ(exec_args.size(), 2); std::shared_ptr<xla::Literal> literal1 = *exec_args[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal1, xla::LiteralUtil::CreateR2<int32_t>({{1, 2, 3}}))); std::shared_ptr<xla::Literal> literal2 = *exec_args[1]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal2, xla::LiteralUtil::CreateR2<int32_t>({{4, 5, 6}}))); } TEST_F(PjRtExecutionUtilTest, PreparePjRtExecutableArgumentsVariableInputs) { std::vector<VariableInfo> variables; Var* var1 = CreateVariable<int32>("v1", TensorShape({1, 2}), {1, 2}); variables.emplace_back(3, "v1", var1); Var* var2 = CreateVariable<int32>("v2", TensorShape({1, 2}), {3, 4}); variables.emplace_back(4, "v2", var2); std::vector<const Tensor*> inputs; inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {0, 0, 0})); int num_missing_prefix_ctx_inputs = 2; std::vector<int> input_mapping{3, 4}; std::vector<xla::PjRtBuffer*> exec_args; exec_args.reserve(input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &exec_args, {}, &non_donatable_input_indices)); EXPECT_EQ(exec_args.size(), 2); std::shared_ptr<xla::Literal> literal1 = *exec_args[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal1, xla::LiteralUtil::CreateR2<int32_t>({{1, 2}}))); std::shared_ptr<xla::Literal> literal2 = *exec_args[1]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal2, xla::LiteralUtil::CreateR2<int32_t>({{3, 4}}))); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* a = CreateDeviceTensor<int32>(TensorShape({1, 3}), {1, 2, 3}); Tensor* b = CreateDeviceTensor<int32>(TensorShape({1, 3}), {4, 5, 6}); inputs_.push_back({nullptr, a}); inputs_.push_back({nullptr, b}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 3}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 3}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs; inputs.push_back(a); inputs.push_back(b); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, {}, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, {}, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 3}), {5, 7, 9}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsDynamicShape) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("testWhere", "Where") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* a = CreateDeviceTensor<float>(TensorShape({2, 3}), {0., 1., 1., 0., 0., 0.}); inputs_.push_back({nullptr, a}); CreateContext(); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_FLOAT; args[0].shape = TensorShape({2, 3}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs; inputs.push_back(a); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, {}, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, {}, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int64>(TensorShape({2, 2}), {0, 1, 0, 2}); test::ExpectTensorEqual<int64>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsVariableInputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, variables, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, variables, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 2}), {4, 6}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsResourceUpdates) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AssignAddVariableOp", "AssignAddVariableOp") .Input(FakeInput(DT_RESOURCE)) .Input(FakeInput(DT_INT32)) .Attr("dtype", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var", TensorShape({1, 3}), {1, 2, 3}); Tensor* a = CreateDeviceTensor<int32>(TensorShape({1, 3}), {2, 2, 2}); inputs_.push_back({nullptr, a}); CreateContext(); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK_AND_ASSIGN(std::vector<int> constant_input_indices, GetConstantInputIndicesFromContext(context_.get())); TF_ASSERT_OK(LockVariables(absl::MakeSpan(variables))); TF_ASSERT_OK_AND_ASSIGN( std::vector<XlaCompiler::Argument> args, XlaComputationLaunchContext::BuildXlaCompilerArguments( constant_input_indices, inputs, variables, static_cast<Device*>(context_->device()))); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, variables, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, variables, *result, false, execute_outputs, context_.get())); EXPECT_EQ(context_->num_outputs(), 0); ResourceMgr* rm = device_->resource_manager(); Var* var = nullptr; TF_ASSERT_OK(rm->Lookup(rm->default_container(), "var", &var)); core::ScopedUnref var_ref(var); Tensor* device_tensor = var->tensor(); Tensor* host_tensor = new Tensor(host_allocator_, device_tensor->dtype(), device_tensor->shape()); tensors_.push_back(host_tensor); TF_ASSERT_OK(device_context_->CopyDeviceTensorToCPUSync( device_tensor, "", device_, host_tensor)); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 3}), {3, 4, 5}); test::ExpectTensorEqual<int32>(*expected, *host_tensor); } TEST(XlaLaunchUtilTest, GetPjRtExecuteOptions) { xla::ExecuteOptions options = GetPjRtExecuteOptions(DeviceType(DEVICE_GPU), {}); EXPECT_FALSE(options.arguments_are_tupled); EXPECT_TRUE(options.untuple_result); EXPECT_FALSE(options.strict_shape_checking); EXPECT_TRUE(options.use_major_to_minor_data_layout_for_callbacks); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutable) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK(RunPjRtExecutable(inputs, variables, *result, pjrt_client_, executable, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 2}), {4, 6}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutableWithVariableSnapshotsAndMissingInputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("Fill", "Fill") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("index_type", DT_INT32) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* dims = CreateHostTensor<int32>(TensorShape({1}), {2}); Tensor* value = CreateDeviceTensor<int32>(TensorShape(), {1}); inputs_.push_back({nullptr, dims}); inputs_.push_back({nullptr, value}); CreateContext(); TF_ASSERT_OK_AND_ASSIGN(std::vector<int> constant_input_indices, GetConstantInputIndicesFromContext(context_.get())); EXPECT_EQ(constant_input_indices.size(), 1); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); absl::flat_hash_map<int, const Tensor*> variable_snapshots; const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; { std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK(LockVariables(absl::MakeSpan(variables))); variable_snapshots = GetVariableSnapshots(variables); TF_ASSERT_OK_AND_ASSIGN( std::vector<XlaCompiler::Argument> args, XlaComputationLaunchContext::BuildXlaCompilerArguments( constant_input_indices, inputs, variables, static_cast<Device*>(context_->device()))); CompileToExecutable(args, &result, &executable); } inputs = {inputs.begin() + constant_input_indices.size(), inputs.end()}; { TF_ASSERT_OK_AND_ASSIGN(std::vector<VariableInfo> updated_variables, GatherVariableInfo(context_.get(), *result, constant_input_indices.size())); TF_ASSERT_OK(LockVariables(absl::MakeSpan(updated_variables))); TF_ASSERT_OK(RunPjRtExecutable( constant_input_indices.size(), inputs, variable_snapshots, updated_variables, *result, pjrt_client_, executable, context_.get())); } Tensor* expected = CreateHostTensor<int32>(TensorShape({2}), {1, 1}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutableWithoutCtx) { XlaOpRegistry::RegisterCompilationKernels(); TF_ASSERT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); const bool use_pjrt_tensor_buffer = context_->device() ->tensorflow_accelerator_device_info() ->use_pjrt_tensor_buffer; const DeviceType& device_type = GetDeviceType(context_.get()); const int pjrt_device_id = tsl::GetDeviceIdFromDeviceParsedName(context_->device()->parsed_name()); TF_ASSERT_OK_AND_ASSIGN(xla::PjRtDevice * pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(pjrt_device_id))); absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } TF_ASSERT_OK_AND_ASSIGN( std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs, RunPjRtExecutable(0, inputs, variable_snapshots, variables, device_type, use_pjrt_tensor_buffer, *result, pjrt_device, pjrt_client_, executable)); for (const auto& output : execute_outputs) { TF_ASSERT_OK(output->GetReadyFuture().Await()); } ASSERT_EQ(execute_outputs.size(), 1); std::shared_ptr<xla::Literal> literal = *execute_outputs[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal, xla::LiteralUtil::CreateR2<int32_t>({{4, 6}}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_launch_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_launch_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1049daff-5780-4d51-8e50-1ccb85757684
cpp
tensorflow/tensorflow
increase_dynamism_for_auto_jit_pass
tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.cc
tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass_test.cc
#include "tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.h" #include <iterator> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { template <class T> using StatusOrOptional = StatusOr<std::optional<T>>; StatusOrOptional<Tensor> TryToGetTensorFromConstOp(Node* n) { if (n->type_string() != "Const") { return {std::nullopt}; } const TensorProto* proto = nullptr; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "value", &proto)); Tensor tensor(proto->dtype()); TF_RET_CHECK(tensor.FromProto(*proto)); return {tensor}; } struct SliceInputs { Output slice_op; Output input; Output begin; Output size; std::vector<int64_t> size_as_vector; }; std::vector<int64_t> IntTensorAsVector(const Tensor& t) { DCHECK(t.dtype() == DT_INT32 || t.dtype() == DT_INT64); std::vector<int64_t> result; result.reserve(t.NumElements()); for (int i = 0; i < t.NumElements(); i++) { int64_t element = t.dtype() == DT_INT32 ? static_cast<int64_t>(t.flat<int32>()(i)) : t.flat<int64_t>()(i); result.push_back(element); } return result; } StatusOrOptional<SliceInputs> GetSliceInputs(Node* slice) { const int kSliceInputIndex = 0; const int kSliceBeginIndex = 1; const int kSliceSizeIndex = 2; const Edge* slice_input_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceInputIndex, &slice_input_edge)); const Edge* slice_size_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceSizeIndex, &slice_size_edge)); const Edge* slice_begin_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceBeginIndex, &slice_begin_edge)); SliceInputs slice_inputs; slice_inputs.input = Output(slice_input_edge->src(), slice_input_edge->src_output()); slice_inputs.begin = Output(slice_begin_edge->src(), slice_begin_edge->src_output()); slice_inputs.size = Output(slice_size_edge->src(), slice_size_edge->src_output()); TF_ASSIGN_OR_RETURN(std::optional<Tensor> tf_slice_size, TryToGetTensorFromConstOp(slice_inputs.size.node())); if (!tf_slice_size.has_value()) { return {std::nullopt}; } if (tf_slice_size->dims() != 1) { return {std::nullopt}; } slice_inputs.size_as_vector = IntTensorAsVector(*tf_slice_size); return {slice_inputs}; } Output MakeInt64(const Scope& host_scope, absl::string_view name, const Output& x) { return x.type() == DT_INT64 ? x : ops::Cast(host_scope.WithOpName(name, "_s64"), x, DT_INT64); } SliceInputs MakeSliceIndexAndSizeInt64(const Scope& host_scope, const SliceInputs& slice_inputs) { SliceInputs result; result.input = slice_inputs.input; result.begin = MakeInt64(host_scope, "begin", slice_inputs.begin); result.size = MakeInt64(host_scope, "size", slice_inputs.size); result.size_as_vector = slice_inputs.size_as_vector; return result; } class ConstantCache { public: explicit ConstantCache(const Scope& s, const std::vector<const Edge*>& control_deps) : scope_(s), control_deps_(control_deps) {} Output Get1DHostConstant(int64_t constant) { auto it = cache_.find(constant); if (it == cache_.end()) { Output new_const = ops::Const(scope_.WithOpName("const_", constant), {constant}); it = cache_.insert({constant, new_const}).first; for (const Edge* e : control_deps_) { scope_.graph()->AddControlEdge(e->src(), new_const.node()); } } return it->second; } private: Scope scope_; std::unordered_map<int, Output> cache_; std::vector<const Edge*> control_deps_; }; Status ComputeSliceSize(const Scope& host_scope, const SliceInputs& slice_inputs, std::vector<const Edge*> control_deps, Output* size) { if (absl::c_all_of(slice_inputs.size_as_vector, [](int64_t i) { return i >= 0; })) { *size = slice_inputs.size; return absl::OkStatus(); } Output input_shape = ops::Shape(host_scope.WithOpName("input_shape"), slice_inputs.input, ops::Shape::OutType(DT_INT64)); ConstantCache constant_pool(host_scope, control_deps); std::vector<Output> slice_size; for (int i = 0, end = slice_inputs.size_as_vector.size(); i < end; i++) { if (slice_inputs.size_as_vector[i] >= 0) { slice_size.push_back( constant_pool.Get1DHostConstant(slice_inputs.size_as_vector[i])); continue; } DCHECK_EQ(slice_inputs.size_as_vector[i], -1); Output begin_i = ops::Slice( host_scope.WithOpName("begin_", i), slice_inputs.begin, constant_pool.Get1DHostConstant(i), constant_pool.Get1DHostConstant(1)); Output input_shape_i = ops::Slice( host_scope.WithOpName("input_shape_", i), input_shape, constant_pool.Get1DHostConstant(i), constant_pool.Get1DHostConstant(1)); slice_size.push_back(ops::Sub(host_scope.WithOpName("slice_size_", i), input_shape_i, begin_i)); DCHECK_EQ(slice_size.back().type(), DT_INT64); } if (slice_size.size() == 1) { *size = slice_size[0]; } else { auto concat_axis = ops::Const(host_scope.WithOpName("concat_axis"), 0); for (const Edge* e : control_deps) { host_scope.graph()->AddControlEdge(e->src(), concat_axis.node()); } *size = ops::Concat(host_scope.WithOpName("slice_size"), slice_size, concat_axis); } return absl::OkStatus(); } Status ConvertTensorFlowSliceToStaticShapedSlice( Graph* g, Node* slice, const SliceInputs& slice_inputs, absl::string_view cluster_name, Node** result) { string host_name; TF_RETURN_IF_ERROR(DeviceNameUtils::DeviceNameToCpuDeviceName( slice->assigned_device_name(), &host_name)); Status status; Scope main_scope = NewInternalScope(g, &status, nullptr) .WithXlaCluster(string(cluster_name)) .NewSubScope(absl::StrCat(slice->name(), "/static_shaped_slice")); Scope host_scope = main_scope.WithAssignedDevice(host_name); SliceInputs slice_inputs_int64 = MakeSliceIndexAndSizeInt64(host_scope, slice_inputs); Node* old_size; std::vector<const Edge*> old_size_ctrl_deps; TF_RETURN_IF_ERROR(slice->input_node(2, &old_size)); absl::c_copy_if(old_size->in_edges(), std::back_inserter(old_size_ctrl_deps), [](const Edge* e) { return e->IsControlEdge(); }); Output slice_size; TF_RETURN_IF_ERROR(ComputeSliceSize(host_scope, slice_inputs_int64, old_size_ctrl_deps, &slice_size)); *result = ops::Slice(main_scope.WithAssignedDevice(slice->assigned_device_name()) .WithOpName("static_shaped_slice"), slice_inputs_int64.input, slice_inputs_int64.begin, slice_size) .node(); TF_RETURN_IF_ERROR(main_scope.status()); std::vector<string> compile_time_const_inputs; compile_time_const_inputs.push_back("size"); (*result)->AddAttr(kXlaCompileTimeConstantInputsAttr, compile_time_const_inputs); return status; } void ReplaceTensorFlowSliceWithStaticShapedSlice(Graph* g, Node* slice, Node* static_shaped_slice) { std::vector<const Edge*> slice_out_edges; absl::c_copy(slice->out_edges(), std::back_inserter(slice_out_edges)); for (const Edge* e : slice_out_edges) { DCHECK(e->src_output() == 0 || e->src_output() == Graph::kControlSlot); int src_output = e->src_output(); int dst_input = e->dst_input(); Node* dst = e->dst(); g->RemoveEdge(e); g->AddEdge(static_shaped_slice, src_output, dst, dst_input); } for (const Edge* e : slice->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), static_shaped_slice); } } g->RemoveNode(slice); } Status RewriteSlice(Graph* g, Node* slice, const SliceInputs& slice_inputs, absl::string_view cluster_name) { VLOG(3) << "Rewriting slice " << slice->name() << " to a \"static shaped\" Slice"; Node* static_shaped_slice; TF_RETURN_IF_ERROR(ConvertTensorFlowSliceToStaticShapedSlice( g, slice, slice_inputs, cluster_name, &static_shaped_slice)); ReplaceTensorFlowSliceWithStaticShapedSlice(g, slice, static_shaped_slice); return absl::OkStatus(); } absl::StatusOr<bool> ShouldRewriteSlice(Node* n) { if (n->type_string() != "Slice") { return false; } if (!GetXlaClusterForNode(*n).has_value()) { return false; } TF_ASSIGN_OR_RETURN(std::optional<SliceInputs> slice_inputs, GetSliceInputs(n)); if (!slice_inputs.has_value()) { return false; } bool slice_size_has_error = absl::c_all_of(slice_inputs->size_as_vector, [](int64_t size_i) { return size_i >= -1; }); if (!slice_size_has_error) { return false; } return !slice_inputs->begin.node()->IsConstant(); } Status FindAndRewriteSlices(Graph* g, bool* changed) { std::vector<Node*> slices_to_rewrite; for (Node* n : g->nodes()) { TF_ASSIGN_OR_RETURN(bool is_rewritable, ShouldRewriteSlice(n)); if (is_rewritable) { slices_to_rewrite.push_back(n); } } for (Node* n : slices_to_rewrite) { TF_ASSIGN_OR_RETURN(std::optional<SliceInputs> slice_inputs, GetSliceInputs(n)); TF_RET_CHECK(slice_inputs.has_value()); TF_RETURN_IF_ERROR( RewriteSlice(g, n, *slice_inputs, *GetXlaClusterForNode(*n))); } if (!slices_to_rewrite.empty()) { FixupSourceAndSinkEdges(g); } *changed = !slices_to_rewrite.empty(); return absl::OkStatus(); } } Status IncreaseDynamismForAutoJitPass::Run( const GraphOptimizationPassOptions& options) { MarkForCompilationPassFlags* flags = GetMarkForCompilationPassFlags(); if (flags->tf_xla_clustering_debug) { DumpGraphToFile("before_increase_dynamism_for_auto_jit_pass", **options.graph, options.flib_def); } bool changed; TF_RETURN_IF_ERROR(FindAndRewriteSlices(options.graph->get(), &changed)); if (changed && flags->tf_xla_clustering_debug) { DumpGraphToFile("increase_dynamism_for_auto_jit_pass", **options.graph, options.flib_def); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.h" #include <gmock/gmock.h> #include "absl/status/status.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/compiler/jit/node_matchers.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { using ::testing::_; using testing::matchers::AssignedDevice; using testing::matchers::Attr; using testing::matchers::Const; using testing::matchers::CtrlDeps; using testing::matchers::Inputs; using testing::matchers::Name; using testing::matchers::NodeWith; using testing::matchers::Op; using testing::matchers::Out; class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& device_attributes) : Device(nullptr, device_attributes) {} Status Sync() override { return errors::Unimplemented("FakeDevice::Sync()"); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } static std::unique_ptr<Device> Make(const string& name, const string& type) { DeviceAttributes device_attributes; device_attributes.set_name(name); device_attributes.set_device_type(DeviceType(type).type()); return std::make_unique<FakeDevice>(device_attributes); } }; const char* kHostName = "/job:worker/replica:0/task:0/device:CPU:0"; const char* kDeviceName = "/job:worker/replica:0/task:0/device:GPU:0"; Status IncreaseDynamismForAutoJit(const Scope& s, std::unique_ptr<Graph>* result) { std::vector<std::unique_ptr<Device>> devices; devices.push_back(FakeDevice::Make(kDeviceName, DEVICE_GPU)); devices.push_back(FakeDevice::Make(kHostName, DEVICE_CPU)); std::unique_ptr<DeviceSet> device_set(new DeviceSet()); for (auto& device : devices) { device_set->AddDevice(device.get()); } auto graph = std::make_unique<Graph>(OpRegistry::Global()); SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_global_jit_level(OptimizerOptions::ON_2); GraphOptimizationPassOptions options; options.graph = &graph; options.device_set = device_set.get(); options.session_options = &session_options; std::unordered_map<string, string> assigned_device_names; for (Node* n : s.graph()->nodes()) { assigned_device_names[n->name()] = n->assigned_device_name(); } TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); for (Node* n : graph->nodes()) { n->set_assigned_device_name(assigned_device_names[n->name()]); } IncreaseDynamismForAutoJitPass rewriter; TF_RETURN_IF_ERROR(rewriter.Run(options)); *result = std::move(graph); return absl::OkStatus(); } TEST(SliceToDynamicSliceRewriteTest, Basic) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); const int64_t zero_64 = 0; const int32_t zero_32 = 0; const int64_t one_64 = 1; auto m_input = Out(NodeWith(Op("Placeholder"), Name("input"))); auto m_begin_s64 = Out(NodeWith( Op("Cast"), Inputs(Out(NodeWith(Op("Placeholder"), Name("begin")))))); auto m_input_shape = Out(NodeWith(Op("Shape"), Inputs(m_input))); auto m_slice_size_0 = Out(NodeWith( Op("Sub"), AssignedDevice(kHostName), Inputs( Out(NodeWith(Op("Slice"), AssignedDevice(kHostName), Inputs(m_input_shape, Const(zero_64), Const(one_64)))), Out(NodeWith(Op("Slice"), AssignedDevice(kHostName), Inputs(m_begin_s64, Const(zero_64), Const(one_64))))))); auto m_dynamic_slice_size = Out(NodeWith(Op("ConcatV2"), AssignedDevice(kHostName), Inputs(m_slice_size_0, Const(static_cast<int64_t>(500)), Const(zero_32)))); std::vector<string> compile_time_constant_inputs; compile_time_constant_inputs.push_back("size"); auto m_dynamic_slice = NodeWith( Op("Slice"), AssignedDevice(kDeviceName), Attr(kXlaCompileTimeConstantInputsAttr, compile_time_constant_inputs), Inputs(m_input, m_begin_s64, m_dynamic_slice_size)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, m_dynamic_slice); } TEST(SliceToDynamicSliceRewriteTest, SliceFromVector) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); EXPECT_NE(static_shaped_slice, nullptr); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("ConcatV2"))))); } TEST(SliceToDynamicSliceRewriteTest, ControlDependencePreserved) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output control_pred = ops::Placeholder(root.WithOpName("control"), DT_BOOL); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); root.graph()->AddControlEdge(control_pred.node(), slice.node()); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, NodeWith(Op("Slice"), CtrlDeps(NodeWith(Op("Placeholder"), Name("control"))))); } int64_t ToInt64(int v) { return static_cast<int64_t>(v); } TEST(SliceToDynamicSliceRewriteTest, Int64Indices) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Const(root.WithOpName("size"), {ToInt64(-1), ToInt64(500)}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Cast"))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteInvalidSlice) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size_placeholder = ops::Placeholder(root.WithOpName("size_placeholder"), DT_INT32); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_placeholder); Output size = ops::Const(root.WithOpName("size"), {-8, 500}); TF_ASSERT_OK(root.graph()->UpdateEdge(size.node(), 0, slice.node(), 2)); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteUnclusteredSlice) { Scope root = Scope::NewRootScope().ExitOnError().WithAssignedDevice(kDeviceName); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteSliceWithNonConstSize) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Placeholder(root.WithOpName("size"), DT_INT64); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, ScalarSlice) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Const<int64_t>(root.WithOpName("size"), {}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr), Inputs(_, _, Out(NodeWith(Name(size.node()->name())))))); } TEST(SliceToDynamicSliceRewriteTest, IndicesNotVector) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); auto ToInt64 = [](int v) { return static_cast<int64_t>(v); }; Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size_placeholder = ops::Placeholder(root.WithOpName("size"), DT_INT64); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_placeholder); Output size = ops::Const(root.WithOpName("size"), {{ToInt64(-1)}, {ToInt64(500)}}); TF_ASSERT_OK(root.graph()->UpdateEdge(size.node(), 0, slice.node(), 2)); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, SliceWithSliceInput) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size_a = ops::Const(root.WithOpName("size_a"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_a); Output size_b = ops::Const(root.WithOpName("size_a"), {-1, 200}); Output slice_with_slice_input = ops::Slice( root.WithOpName("slice_with_slice_input"), slice, begin, size_b); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice_with_slice_input/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_EQ(static_shaped_slice->output_type(0), DT_FLOAT) << "Expected DT_FLOAT, was " << DataType_Name(static_shaped_slice->output_type(0)); EXPECT_THAT( static_shaped_slice, NodeWith( Op("Slice"), Inputs(Out(NodeWith( Op("Slice"), Name("slice/static_shaped_slice/static_shaped_slice"))), _, _))); } TEST(SliceToDynamicSliceRewriteTest, SliceWithSliceBegin) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input_float = ops::Placeholder(root.WithOpName("input_float"), DT_FLOAT); Output input_i64 = ops::Placeholder(root.WithOpName("input_i64"), DT_INT64); Output begin_begin = ops::Placeholder(root.WithOpName("begin_begin"), DT_INT32); Output begin_size = ops::Const(root.WithOpName("begin_size"), {-1}); Output begin = ops::Slice(root.WithOpName("begin"), input_i64, begin_begin, begin_size); Output size = ops::Const(root.WithOpName("size"), {ToInt64(-1), ToInt64(200)}); Output slice_with_slice_begin = ops::Slice( root.WithOpName("slice_with_slice_begin"), input_float, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice_with_slice_begin/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_EQ(static_shaped_slice->output_type(0), DT_FLOAT) << "Expected DT_FLOAT, was " << DataType_Name(static_shaped_slice->output_type(0)); EXPECT_THAT( static_shaped_slice, NodeWith( Op("Slice"), Inputs(_, Out(NodeWith( Op("Slice"), Name("begin/static_shaped_slice/static_shaped_slice"))), _))); } TEST(SliceToDynamicSliceRewriteTest, WithControlDepsToConstant) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); Output dependency = ops::Placeholder(root.WithOpName("dependency"), DT_BOOL); root.graph()->AddControlEdge(dependency.node(), size.node()); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* const_0 = testing::FindNodeByName(result.get(), "slice/static_shaped_slice/const_0"); EXPECT_NE(const_0, nullptr); EXPECT_THAT(const_0, NodeWith(Op("Const"), CtrlDeps(NodeWith(Op("Placeholder"), Name("dependency"))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteSliceWithConstBegin) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Const(root.WithOpName("begin"), {10, 10}); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* slice_node = testing::FindNodeByName(result.get(), "slice"); EXPECT_THAT(slice_node, NodeWith(Op("Slice"), Inputs(Out(NodeWith(Op("Placeholder"))), Out(NodeWith(Op("Const"))), Out(NodeWith(Op("Const")))))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
03c6a1b3-c3f5-412b-b106-c1bd4b1e3f06
cpp
tensorflow/tensorflow
xla_kernel_creator
tensorflow/compiler/jit/xla_kernel_creator.cc
tensorflow/compiler/jit/xla_kernel_creator_test.cc
#include "tensorflow/compiler/jit/xla_kernel_creator.h" #include <memory> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/compiler/jit/compilability_check_util.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/kernels/xla_ops.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/compiler/tf2xla/mlir_bridge_pass.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/node_properties.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tsl/platform/errors.h" namespace tensorflow { bool XlaKernelCreator::CanCreateKernel( const FunctionLibraryRuntime& flr, const std::shared_ptr<const NodeProperties>& props) const { return CanCreateXlaKernel(props->node_def) && !XlaOpRegistry::IsCompilationDevice(flr.device()->device_type()); } static Status CreateXlaKernel(FunctionLibraryRuntime* flr, const NodeDef& node_def, std::unique_ptr<OpKernel>* kernel) { if (!CanCreateXlaKernel(node_def)) { return errors::Internal("Invalid node: ", node_def.ShortDebugString()); } VLOG(3) << "Attempting to create XlaLaunchOp for " << node_def.DebugString(); XlaOpRegistry::RegisterCompilationKernels(); NameAttrList function; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(node_def, &function)); const FunctionBody* fbody = nullptr; std::vector<int> constant_arg_indices; std::vector<int> resource_arg_indices; TF_RETURN_IF_ERROR(GetBodyAndConstantsAndResources( flr, function, &fbody, &constant_arg_indices, &resource_arg_indices)); MemoryTypeVector input_memory_types = GetInputMemoryTypes(fbody, constant_arg_indices, resource_arg_indices); MemoryTypeVector output_memory_types = GetOutputMemoryTypes(fbody); Device* dev = flr->device(); Status s; auto props = std::make_shared<NodeProperties>( &fbody->record->fdef().signature(), node_def, fbody->arg_types, fbody->ret_types); OpKernelConstruction construction(DeviceType(dev->device_type()), dev, dev->GetAllocator(AllocatorAttributes()), flr, dev->resource_manager(), props, input_memory_types, output_memory_types, flr->graph_def_version(), &s); *kernel = std::make_unique<XlaLocalLaunchBase>( &construction, constant_arg_indices, resource_arg_indices, function, false); return s; } Status XlaKernelCreator::CreateKernel( FunctionLibraryRuntime* flr, const std::shared_ptr<const NodeProperties>& props, std::unique_ptr<OpKernel>* kernel) const { return CreateXlaKernel(flr, props->node_def, kernel); } bool RegisterLaunchOpCreator() { XlaKernelCreator* xla_kernel_creator = new XlaKernelCreator(); RegisterDefaultCustomKernelCreator(xla_kernel_creator); return true; } static bool register_me = RegisterLaunchOpCreator(); }
#include "tensorflow/compiler/jit/xla_kernel_creator.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { std::shared_ptr<NodeProperties> ToNodeProperties(const string& text) { NodeDef node_def; DataTypeVector dummy; EXPECT_TRUE(protobuf::TextFormat::MergeFromString(text, &node_def)); return std::make_shared<NodeProperties>(nullptr, std::move(node_def), dummy, dummy); } FunctionDef XTimesY() { return FunctionDefHelper::Define( "XTimesY", {"x: float", "y: resource"}, {"z: float"}, {}, { {{"y0"}, "ReadVariableOp", {"y"}, {{"dtype", DT_FLOAT}}}, {{"z"}, "Mul", {"x", "y0"}, {{"T", DT_FLOAT}}}, }); } class XlaKernelCreatorTest : public ::testing::Test { protected: void Init(const std::vector<FunctionDef>& flib) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 1}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices( options, "/job:localhost/replica:0/task:0", &devices)); FunctionDefLibrary proto; for (const auto& fdef : flib) { *(proto.add_function()) = fdef; } lib_def_ = std::make_unique<FunctionLibraryDefinition>( OpRegistry::Global(), proto); OptimizerOptions opts; device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def_.get(), opts, nullptr, nullptr); flr_ = pflr_->GetFLR("/job:localhost/replica:0/task:0/cpu:0"); } FunctionLibraryRuntime* flr_; std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<FunctionLibraryDefinition> lib_def_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; std::unique_ptr<OpKernel> kernel_; }; AttrValue BoolAttr(bool b) { AttrValue v; v.set_b(b); return v; } TEST_F(XlaKernelCreatorTest, OneFloatOneResourceArgument) { FunctionDef fdef = XTimesY(); (*fdef.mutable_attr())["_XlaMustCompile"] = BoolAttr(true); Init({fdef}); XlaKernelCreator xla_kernel_creator; auto callsite = ToNodeProperties(R"pb( name: 'XTimesY' op: 'XTimesY' input: 'a' input: 'b' )pb"); (*(callsite->node_def.mutable_attr()))["_XlaMustCompile"] = BoolAttr(true); Status status = xla_kernel_creator.CreateKernel(flr_, callsite, &kernel_); ASSERT_TRUE(status.ok()) << status.ToString(); EXPECT_EQ("XTimesY", kernel_->name()); EXPECT_EQ("XTimesY", kernel_->type_string()); EXPECT_EQ(2, kernel_->num_inputs()); EXPECT_EQ(DT_FLOAT, kernel_->input_type(0)); EXPECT_EQ(DT_RESOURCE, kernel_->input_type(1)); EXPECT_EQ(DEVICE_MEMORY, kernel_->input_memory_types()[0]); EXPECT_EQ(HOST_MEMORY, kernel_->input_memory_types()[1]); EXPECT_EQ(1, kernel_->num_outputs()); EXPECT_EQ(DT_FLOAT, kernel_->output_type(0)); EXPECT_EQ(DEVICE_MEMORY, kernel_->output_memory_types()[0]); } TEST_F(XlaKernelCreatorTest, FailsIfXlaCompileAttrNotSet) { FunctionDef fdef = XTimesY(); Init({fdef}); XlaKernelCreator xla_kernel_creator; Status status = xla_kernel_creator.CreateKernel(flr_, ToNodeProperties(R"proto( name: 'XTimesY' op: 'XTimesY' input: 'a' input: 'b' )proto"), &kernel_); EXPECT_TRUE(absl::IsInternal(status)) << status; } TEST_F(XlaKernelCreatorTest, FailsIfXlaCompileAttrIsSetToFalse) { FunctionDef fdef = XTimesY(); (*fdef.mutable_attr())["_XlaMustCompile"] = BoolAttr(false); Init({fdef}); XlaKernelCreator xla_kernel_creator; Status status = xla_kernel_creator.CreateKernel(flr_, ToNodeProperties(R"proto( name: 'XTimesY' op: 'XTimesY' input: 'a' input: 'b' )proto"), &kernel_); EXPECT_TRUE(absl::IsInternal(status)) << status; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_kernel_creator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_kernel_creator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
779e5c14-9a64-4b41-8d98-5656de7f3bb9
cpp
tensorflow/tensorflow
extract_outside_compilation_pass
tensorflow/compiler/jit/extract_outside_compilation_pass.cc
tensorflow/compiler/jit/extract_outside_compilation_pass_test.cc
#include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { std::optional<string> HostGraphControlRetMapping(const Node* n) { if (HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { return n->name(); } return std::nullopt; } absl::StatusOr<Node*> AddHostComputeKeyPlaceholder( const string& xla_cluster_name, Graph* g) { NodeDef key_def; NodeDefBuilder builder(absl::StrCat(xla_cluster_name, "_key_placeholder"), "Placeholder"); builder.Attr("dtype", DT_STRING); builder.Attr("shape", PartialTensorShape({2})); builder.Attr("_host_compute_call_node", xla_cluster_name); Status s = builder.Finalize(&key_def); if (!s.ok()) return s; Node* n = g->AddNode(key_def, &s); if (!s.ok()) return s; return n; } bool IsKeyPlaceholderNode(const Node& n) { return n.type_string() == "Placeholder" && absl::EndsWith(n.name(), "_key_placeholder"); } std::vector<Node*> GatherNodesWithType(const Graph& g, const string& type) { std::vector<Node*> result; for (Node* n : g.nodes()) { if (n->type_string() == type) { result.push_back(n); } } return result; } Status GetArgDataTypes(const std::vector<Node*>& arg_nodes, std::vector<DataType>* recv_at_host_dtypes) { recv_at_host_dtypes->resize(arg_nodes.size(), DT_INVALID); for (auto* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "T", &dtype)); (*recv_at_host_dtypes)[index] = dtype; } for (int i = 0, end = recv_at_host_dtypes->size(); i < end; i++) { if ((*recv_at_host_dtypes)[i] == DT_INVALID) { return errors::Internal("Cannot get datatype for input ", i); } } return absl::OkStatus(); } absl::StatusOr<Node*> BuildRecvAtHostNode( Graph* g, const string& oc_cluster_name, const std::vector<DataType>& recv_at_host_dtypes, Node* key_placeholder) { NodeDefBuilder recv_at_host_builder( absl::StrCat("outside_compilation_", oc_cluster_name, "_recv"), "_XlaRecvAtHost"); NodeDef recv_at_host_def; recv_at_host_builder.Attr("Toutputs", recv_at_host_dtypes); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); recv_at_host_builder.Attr("device_ordinal", device_ordinal_value); recv_at_host_builder.Attr( "key", absl::StrCat("host_compute_channel_", oc_cluster_name)); recv_at_host_builder.Attr(kXlaHasHostTransferAttrName, true); recv_at_host_builder.Input(key_placeholder->name(), 0, DT_STRING); TF_RETURN_IF_ERROR(recv_at_host_builder.Finalize(&recv_at_host_def)); TF_ASSIGN_OR_RETURN(Node * recv_at_host_node, g->AddNode(recv_at_host_def)); return recv_at_host_node; } absl::StatusOr<Node*> ReplaceArgNodesWithRecvAtHostNode( Graph* g, const string& oc_cluster_name, std::vector<DataType>* recv_at_host_dtypes, Node* key_placeholder) { std::vector<Node*> arg_nodes = GatherNodesWithType(*g, "_Arg"); TF_RETURN_IF_ERROR(GetArgDataTypes(arg_nodes, recv_at_host_dtypes)); TF_ASSIGN_OR_RETURN( Node * recv_at_host_node, BuildRecvAtHostNode(g, oc_cluster_name, *recv_at_host_dtypes, key_placeholder)); for (auto* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); std::vector<OutEdgeInfo> out_edge_info; out_edge_info.reserve(n->out_edges().size()); for (auto edge : n->out_edges()) { out_edge_info.push_back( {edge->dst(), edge->src_output(), edge->dst_input()}); } g->RemoveNode(n); for (const OutEdgeInfo& edge : out_edge_info) { if (edge.dst_input == Graph::kControlSlot) { g->AddControlEdge(recv_at_host_node, edge.dst); } else { g->AddEdge(recv_at_host_node, index, edge.dst, edge.dst_input); } } for (int i = 0, end = out_edge_info.size(); i < end; i++) { const OutEdgeInfo edge = out_edge_info[i]; if (edge.dst_input == Graph::kControlSlot) { continue; } Node* dst = edge.dst; NodeDef new_def = dst->def(); *new_def.mutable_input(edge.dst_input) = absl::StrCat(recv_at_host_node->name(), ":", index); TF_ASSIGN_OR_RETURN(Node * dst_replace, ReplaceNode(g, dst, new_def)); for (int j = i + 1, end = out_edge_info.size(); j < end; j++) { if (out_edge_info[j].dst == dst) { out_edge_info[j].dst = dst_replace; } } } } g->AddEdge(key_placeholder, 0, recv_at_host_node, 0); return recv_at_host_node; } Status GetRetDataTypes(const std::vector<Node*>& ret_nodes, std::vector<DataType>* send_from_host_dtypes) { send_from_host_dtypes->resize(ret_nodes.size(), DT_INVALID); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "T", &dtype)); (*send_from_host_dtypes)[index] = dtype; } for (int i = 0, end = send_from_host_dtypes->size(); i < end; i++) { if ((*send_from_host_dtypes)[i] == DT_INVALID) { return errors::Internal("Cannot get datatype for output ", i); } } return absl::OkStatus(); } absl::StatusOr<Node*> BuildSendFromHostNode( Graph* g, const string& oc_cluster_name, const std::vector<Node*>& ret_nodes, const std::vector<DataType>& send_from_host_dtypes, Node* key_placeholder) { NodeDefBuilder send_from_host_builder( absl::StrCat("outside_compilation_", oc_cluster_name, "_send"), "_XlaSendFromHost"); NodeDef send_from_host_def; send_from_host_builder.Attr("Tinputs", send_from_host_dtypes); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); send_from_host_builder.Attr("device_ordinal", device_ordinal_value); send_from_host_builder.Attr( "key", absl::StrCat("host_compute_channel_", oc_cluster_name)); send_from_host_builder.Attr(kXlaHasHostTransferAttrName, true); std::vector<NodeDefBuilder::NodeOut> inputs(send_from_host_dtypes.size()); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); const int num_dtypes = send_from_host_dtypes.size(); if (index < 0 || index >= num_dtypes) { return errors::Internal("Invalid _Retval index: ", index); } for (auto edge : n->in_edges()) { inputs[index] = NodeDefBuilder::NodeOut{edge->src()->name(), edge->src_output(), edge->src()->output_type(edge->src_output())}; } } send_from_host_builder.Input(inputs); send_from_host_builder.Input(key_placeholder->name(), 0, DT_STRING); TF_RETURN_IF_ERROR(send_from_host_builder.Finalize(&send_from_host_def)); TF_ASSIGN_OR_RETURN(Node * send_from_host_node, g->AddNode(send_from_host_def)); return send_from_host_node; } absl::StatusOr<Node*> ReplaceRetNodesWithSendFromHostNode( Graph* g, const string& oc_cluster_name, std::vector<DataType>* send_from_host_dtypes, Node* key_placeholder) { std::vector<Node*> ret_nodes = GatherNodesWithType(*g, "_Retval"); TF_RETURN_IF_ERROR(GetRetDataTypes(ret_nodes, send_from_host_dtypes)); TF_ASSIGN_OR_RETURN( Node * send_from_host_node, BuildSendFromHostNode(g, oc_cluster_name, ret_nodes, *send_from_host_dtypes, key_placeholder)); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); for (auto edge : n->in_edges()) { if (edge->src_output() == Graph::kControlSlot) { g->AddControlEdge(edge->src(), send_from_host_node); } else { g->AddEdge(edge->src(), edge->src_output(), send_from_host_node, index); } } g->RemoveNode(n); } g->AddEdge(key_placeholder, 0, send_from_host_node, send_from_host_dtypes->size()); return send_from_host_node; } std::optional<std::vector<PartialTensorShape>> GetInferredInputShapes( int num_inputs, Node* send_from_host_node) { std::vector<PartialTensorShape> results(num_inputs); for (int i = 0; i < num_inputs; i++) { const Edge* e; if (!send_from_host_node->input_edge(i, &e).ok()) { return std::nullopt; } std::vector<PartialTensorShape> shapes; if (!GetNodeAttr(e->src()->attrs(), kXlaInferredShapesAttrName, &shapes) .ok()) { return std::nullopt; } const PartialTensorShape shape = shapes[e->src_output()]; if (!shape.IsFullyDefined()) { return std::nullopt; } results[e->dst_input()] = shape; } return results; } string host_compute_node_name(const string& original_oc_name) { return absl::StrCat("outside_compilation_", original_oc_name, "_host_compute"); } absl::StatusOr<NodeDef> BuildXlaHostComputeNodeDef( const Node* call_node, const std::map<string, int>& host_compute_core, const absl::flat_hash_map<string, std::vector<string>>& cluster_deps) { string original_oc_name; TF_RETURN_IF_ERROR(GetNodeAttr( call_node->attrs(), "_outside_compilation_subgraph", &original_oc_name)); NodeDefBuilder host_compute_builder(host_compute_node_name(original_oc_name), "XlaHostCompute"); host_compute_builder.Attr(kXlaOriginalOutsideCompilationNodeName, host_compute_builder.node_name()); for (const auto& attr : call_node->attrs()) { host_compute_builder.Attr(attr.first, attr.second); } const auto iter = host_compute_core.find(original_oc_name); if (iter != host_compute_core.end()) { int core = iter->second; host_compute_builder.Attr("tpu_core", core); } std::vector<string> xla_token_input_nodes; xla_token_input_nodes.emplace_back(kXlaTokenArgNodeName); auto cluster_deps_it = cluster_deps.find(original_oc_name); if (cluster_deps_it != cluster_deps.end()) { for (const auto& dep : cluster_deps_it->second) { xla_token_input_nodes.emplace_back(host_compute_node_name(dep)); } } host_compute_builder.Attr(kXlaTokenInputNodesAttrName, xla_token_input_nodes); std::vector<DataType> input_dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(call_node->attrs(), "Tinputs", &input_dtypes)); std::vector<NodeDefBuilder::NodeOut> inputs(input_dtypes.size()); for (auto e : call_node->in_edges()) { if (e->IsControlEdge()) { continue; } const int input_dtypes_size = input_dtypes.size(); if (e->dst_input() < 0 || e->dst_input() >= input_dtypes_size) { return errors::Internal("Invalid dst_input: ", e->dst_input()); } inputs[e->dst_input()] = NodeDefBuilder::NodeOut{ e->src()->name(), e->src_output(), input_dtypes[e->dst_input()]}; } host_compute_builder.Input(inputs); NodeDef new_def; TF_RETURN_IF_ERROR(host_compute_builder.Finalize(&new_def)); return new_def; } TF_ATTRIBUTE_NOINLINE absl::StatusOr<Node*> ReplaceOutsideCompilationCallNode( Graph* g, Node* call_node, const std::map<string, int>& host_compute_core, const absl::flat_hash_map<string, std::vector<string>>& cluster_deps) { TF_ASSIGN_OR_RETURN( NodeDef node_def, BuildXlaHostComputeNodeDef(call_node, host_compute_core, cluster_deps)); TF_ASSIGN_OR_RETURN(Node * host_compute_node, ReplaceNode(g, call_node, node_def)); VLOG(4) << "Added HostCompute node: " << host_compute_node->DebugString(); return host_compute_node; } Status ResetDeviceOrdinalToPlaceholderValue(Graph* g) { AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); for (Node* n : g->nodes()) { if (!HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { continue; } if (n->type_string() == "_XlaRecvAtHost" || n->type_string() == "_XlaSendFromHost") { n->ClearAttr("device_ordinal"); n->AddAttr("device_ordinal", device_ordinal_value); } else if (n->IsIfNode()) { for (const string& attr_name : std::vector<string>{"then_branch", "else_branch"}) { NameAttrList branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), attr_name, &branch_func)); (*branch_func.mutable_attr())["_device_ordinal"] = device_ordinal_value; n->ClearAttr(attr_name); n->AddAttr(attr_name, branch_func); } } else if (n->IsWhileNode()) { for (const string& attr_name : std::vector<string>{"cond", "body"}) { NameAttrList branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), attr_name, &branch_func)); (*branch_func.mutable_attr())["_device_ordinal"] = device_ordinal_value; n->ClearAttr(attr_name); n->AddAttr(attr_name, branch_func); } } else if (HasNodeAttr(n->def(), "_device_ordinal")) { n->ClearAttr("_device_ordinal"); n->AddAttr("_device_ordinal", device_ordinal_value); } else { return errors::Internal("Unknown node marked with ", kXlaHasHostTransferAttrName, ": ", n->DebugString()); } } return absl::OkStatus(); } bool HasLiftedArgs(const FunctionDef& function_def) { return absl::c_any_of(function_def.node_def(), [](const NodeDef& node_def) { return (node_def.op() == "Placeholder" && node_def.attr().find(kXlaLiftedArgOutsideCompilationAttrName) != node_def.attr().end()); }); } absl::StatusOr<std::vector<std::pair<Node*, Node*>>> LiftedArgsAndOutsideCompilationNodesInFunctionBody( const FunctionBody& function_body, const std::unordered_map<string, Node*>& outside_compilation_attr_to_node) { std::vector<std::pair<Node*, Node*>> lifted_arg_nodes_and_outside_compilation_nodes; for (Node* n : function_body.graph->op_nodes()) { string oc_cluster; if (n->type_string() == "Placeholder" && GetNodeAttr(n->def(), kXlaLiftedArgOutsideCompilationAttrName, &oc_cluster) .ok()) { TF_RET_CHECK(outside_compilation_attr_to_node.find(oc_cluster) != outside_compilation_attr_to_node.end()); lifted_arg_nodes_and_outside_compilation_nodes.emplace_back( n, outside_compilation_attr_to_node.at(oc_cluster)); } } return lifted_arg_nodes_and_outside_compilation_nodes; } absl::StatusOr<std::vector<DataType>> UpdateTypesAttribute( const std::vector<std::pair<Node*, Node*>>& lifted_arg_nodes_and_outside_compilation_nodes, const string& type_attr_name, Node* n) { std::vector<DataType> data_types; data_types.reserve(lifted_arg_nodes_and_outside_compilation_nodes.size()); TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), type_attr_name, &data_types)); for (auto pair : lifted_arg_nodes_and_outside_compilation_nodes) { Node* outside_compilation_node = pair.second; DataType data_type; TF_RET_CHECK(outside_compilation_node->IsIdentity() || outside_compilation_node->type_string() == "Placeholder"); if (outside_compilation_node->IsIdentity()) { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "T", &data_type)); } else { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "dtype", &data_type)); } data_types.push_back(data_type); } n->ClearAttr(type_attr_name); n->AddAttr(type_attr_name, data_types); return data_types; } void AddEdgesFromOutsideCompilationNodes( const int original_arg_count, const int arg_to_input_edge_offset, const std::vector<DataType>& data_types, const std::vector<Node*>& outside_compilation_nodes, Graph* g, Node* n) { for (int i = original_arg_count, end = data_types.size(); i < end; i++) { Node* outside_compilation_node = outside_compilation_nodes[i - original_arg_count]; g->AddEdge(outside_compilation_node, 0, n, i + arg_to_input_edge_offset); } } absl::StatusOr<Node*> AddOutsideCompilationInputArgToFunctionBody( const FunctionBody& function_body, const int arg_idx, const DataType& data_type) { NodeDefBuilder arg_builder(absl::StrCat("arg_", arg_idx), "_Arg"); arg_builder.Attr("T", data_type); arg_builder.Attr("index", arg_idx); NodeDef arg_def; TF_RETURN_IF_ERROR(arg_builder.Finalize(&arg_def)); TF_ASSIGN_OR_RETURN(Node * arg_node, function_body.graph->AddNode(arg_def)); return arg_node; } Status AddMatchingRetvalNode(const FunctionBody& function_body, const int arg_idx, const DataType& data_type, Node* arg_node) { NodeDefBuilder ret_builder(absl::StrCat("ret_", arg_idx), "_Retval"); ret_builder.Attr("T", data_type); ret_builder.Attr("index", arg_idx); ret_builder.Input(arg_node->name(), 0, data_type); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, function_body.graph->AddNode(ret_def)); function_body.graph->AddEdge(arg_node, 0, ret_node, 0); return absl::OkStatus(); } void ReplaceLiftedArgNodePlaceholderWithArg( const FunctionBody& function_body, const int original_arg_count, const int arg_idx, const std::vector<Node*>& lifted_arg_nodes, Node* arg_node) { Node* lifted_arg_node = lifted_arg_nodes[arg_idx - original_arg_count]; if (!lifted_arg_node) { return; } for (const Edge* e : lifted_arg_node->out_edges()) { if (e->IsControlEdge()) { function_body.graph->AddControlEdge(arg_node, e->dst()); } else { function_body.graph->AddEdge(arg_node, 0, e->dst(), e->dst_input()); } } function_body.graph->RemoveNode(lifted_arg_node); } Status AddFunctionWithNewName(const std::string& new_name, const std::string& func_attr_name, const FunctionDef& function_def, NameAttrList* func_attr, Node* callsite_node, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(fld->AddFunctionDef(function_def)); func_attr->set_name(new_name); callsite_node->ClearAttr(func_attr_name); callsite_node->AddAttr(func_attr_name, *func_attr); return absl::OkStatus(); } Status PostprocessLiftedArgsForWhile( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { TF_RET_CHECK(n->IsWhileNode()); NameAttrList body_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "body", &body_func)); const FunctionDef* body_function_def = fld->Find(body_func.name()); TF_RET_CHECK(body_function_def); if (!HasLiftedArgs(*body_function_def)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> body_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*body_function_def, AttrSlice(&body_func.attr()), fld, &body_function_body)); int original_arg_count = body_function_body->arg_nodes.size(); TF_ASSIGN_OR_RETURN( auto lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *body_function_body, outside_compilation_attr_to_node)); TF_ASSIGN_OR_RETURN( std::vector<DataType> data_types, UpdateTypesAttribute(lifted_arg_nodes_and_outside_compilation_nodes, "T", n)); std::vector<Node*> outside_compilation_nodes; outside_compilation_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(outside_compilation_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.second; }); AddEdgesFromOutsideCompilationNodes(original_arg_count, 0, data_types, outside_compilation_nodes, g, n); std::vector<Node*> lifted_arg_nodes; lifted_arg_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(lifted_arg_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.first; }); for (int i = original_arg_count, end = data_types.size(); i < end; i++) { TF_ASSIGN_OR_RETURN(Node * arg_node, AddOutsideCompilationInputArgToFunctionBody( *body_function_body, i, data_types[i])); TF_RETURN_IF_ERROR( AddMatchingRetvalNode(*body_function_body, i, data_types[i], arg_node)); ReplaceLiftedArgNodePlaceholderWithArg( *body_function_body, original_arg_count, i, lifted_arg_nodes, arg_node); } const auto new_body_function_name = fld->UniqueFunctionName(absl::StrCat(body_func.name(), "_lifted_arg_")); FunctionDef rewritten_body_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *body_function_body->graph, new_body_function_name, HostGraphControlRetMapping, &rewritten_body_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName(new_body_function_name, "body", rewritten_body_function_def, &body_func, n, fld)); NameAttrList cond_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "cond", &cond_func)); const FunctionDef* cond_function_def = fld->Find(cond_func.name()); TF_RET_CHECK(cond_function_def); std::unique_ptr<FunctionBody> cond_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*cond_function_def, AttrSlice(&cond_func.attr()), fld, &cond_function_body)); for (int i = original_arg_count, end = data_types.size(); i < end; i++) { absl::StatusOr<Node*> arg_node_or = AddOutsideCompilationInputArgToFunctionBody(*cond_function_body, i, data_types[i]); TF_RETURN_IF_ERROR(arg_node_or.status()); } const auto new_cond_function_name = fld->UniqueFunctionName(absl::StrCat(cond_func.name(), "_lifted_arg_")); FunctionDef rewritten_cond_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *cond_function_body->graph, new_cond_function_name, HostGraphControlRetMapping, &rewritten_cond_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName(new_cond_function_name, "cond", rewritten_cond_function_def, &cond_func, n, fld)); return absl::OkStatus(); } Status PostprocessLiftedArgsForIf( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { TF_RET_CHECK(n->IsIfNode()); NameAttrList then_branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "then_branch", &then_branch_func)); const FunctionDef* then_branch_function_def = fld->Find(then_branch_func.name()); TF_RET_CHECK(then_branch_function_def); NameAttrList else_branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "else_branch", &else_branch_func)); const FunctionDef* else_branch_function_def = fld->Find(else_branch_func.name()); TF_RET_CHECK(else_branch_function_def); if (!HasLiftedArgs(*then_branch_function_def) && !HasLiftedArgs(*else_branch_function_def)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> then_branch_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *then_branch_function_def, AttrSlice(&then_branch_func.attr()), fld, &then_branch_function_body)); std::unique_ptr<FunctionBody> else_branch_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *else_branch_function_def, AttrSlice(&else_branch_func.attr()), fld, &else_branch_function_body)); int original_arg_count = then_branch_function_body->arg_nodes.size(); TF_ASSIGN_OR_RETURN( auto then_branch_lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *then_branch_function_body, outside_compilation_attr_to_node)); TF_ASSIGN_OR_RETURN( auto else_branch_lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *else_branch_function_body, outside_compilation_attr_to_node)); std::vector<Node*> outside_compilation_nodes; std::vector<Node*> then_branch_lifted_arg_nodes; outside_compilation_nodes.reserve( then_branch_lifted_arg_nodes_and_outside_compilation_nodes.size()); then_branch_lifted_arg_nodes.reserve( then_branch_lifted_arg_nodes_and_outside_compilation_nodes.size()); for (const auto& pair : then_branch_lifted_arg_nodes_and_outside_compilation_nodes) { outside_compilation_nodes.push_back(pair.second); then_branch_lifted_arg_nodes.push_back(pair.first); } for (const auto& pair : else_branch_lifted_arg_nodes_and_outside_compilation_nodes) { if (std::find(outside_compilation_nodes.begin(), outside_compilation_nodes.end(), pair.second) == outside_compilation_nodes.end()) { outside_compilation_nodes.push_back(pair.second); then_branch_lifted_arg_nodes.push_back(nullptr); } } std::vector<Node*> else_branch_lifted_arg_nodes( outside_compilation_nodes.size()); for (const auto& pair : else_branch_lifted_arg_nodes_and_outside_compilation_nodes) { auto iter = std::find(outside_compilation_nodes.begin(), outside_compilation_nodes.end(), pair.second); TF_RET_CHECK(iter != outside_compilation_nodes.end()); int index = iter - outside_compilation_nodes.begin(); else_branch_lifted_arg_nodes[index] = pair.first; } std::vector<DataType> data_types; data_types.reserve(outside_compilation_nodes.size()); TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "Tin", &data_types)); for (Node* n : outside_compilation_nodes) { data_types.push_back(n->output_type(0)); } n->ClearAttr("Tin"); n->AddAttr("Tin", data_types); AddEdgesFromOutsideCompilationNodes(original_arg_count, 1, data_types, outside_compilation_nodes, g, n); for (int i = original_arg_count, end = data_types.size(); i < end; ++i) { TF_ASSIGN_OR_RETURN(Node * then_branch_arg_node, AddOutsideCompilationInputArgToFunctionBody( *then_branch_function_body, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg( *then_branch_function_body, original_arg_count, i, then_branch_lifted_arg_nodes, then_branch_arg_node); TF_ASSIGN_OR_RETURN(Node * else_branch_arg_node, AddOutsideCompilationInputArgToFunctionBody( *else_branch_function_body, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg( *else_branch_function_body, original_arg_count, i, else_branch_lifted_arg_nodes, else_branch_arg_node); } const auto new_then_function_name = fld->UniqueFunctionName( absl::StrCat(then_branch_func.name(), "_lifted_arg_")); FunctionDef rewritten_then_branch_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *then_branch_function_body->graph, new_then_function_name, HostGraphControlRetMapping, &rewritten_then_branch_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName( new_then_function_name, "then_branch", rewritten_then_branch_function_def, &then_branch_func, n, fld)); const auto new_else_function_name = fld->UniqueFunctionName( absl::StrCat(else_branch_func.name(), "_lifted_arg_")); FunctionDef rewritten_else_branch_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *else_branch_function_body->graph, new_else_function_name, HostGraphControlRetMapping, &rewritten_else_branch_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName( new_else_function_name, "else_branch", rewritten_else_branch_function_def, &else_branch_func, n, fld)); return absl::OkStatus(); } Status PostprocessLiftedArgsForCall( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { const FunctionDef* fdef = fld->Find(n->type_string()); TF_RET_CHECK(fdef); if (!HasLiftedArgs(*fdef)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, n->attrs(), fld, &fbody)); int original_arg_count = fbody->arg_nodes.size(); TF_ASSIGN_OR_RETURN(auto lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *fbody, outside_compilation_attr_to_node)); std::vector<DataType> data_types(n->input_types().begin(), n->input_types().end()); for (auto pair : lifted_arg_nodes_and_outside_compilation_nodes) { Node* outside_compilation_node = pair.second; DataType data_type; TF_RET_CHECK(outside_compilation_node->IsIdentity() || outside_compilation_node->type_string() == "Placeholder"); if (outside_compilation_node->IsIdentity()) { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "T", &data_type)); } else { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "dtype", &data_type)); } data_types.push_back(data_type); } std::vector<Node*> lifted_arg_nodes; lifted_arg_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(lifted_arg_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.first; }); for (int i = original_arg_count, end = data_types.size(); i < end; ++i) { TF_ASSIGN_OR_RETURN( Node * arg_node, AddOutsideCompilationInputArgToFunctionBody(*fbody, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg(*fbody, original_arg_count, i, lifted_arg_nodes, arg_node); } FunctionDef rewritten_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*fbody->graph, n->type_string(), HostGraphControlRetMapping, &rewritten_fdef)); const auto new_function_name = fld->UniqueFunctionName(absl::StrCat(n->type_string(), "_lifted_arg_")); rewritten_fdef.mutable_signature()->set_name(new_function_name); TF_RETURN_IF_ERROR(fld->AddFunctionDef(rewritten_fdef)); NodeDef node_def = n->def(); *node_def.mutable_op() = new_function_name; for (int i = original_arg_count, end = data_types.size(); i < end; i++) { Node* outside_compilation_node = lifted_arg_nodes_and_outside_compilation_nodes[i - original_arg_count] .second; node_def.add_input(absl::StrCat(outside_compilation_node->name(), ":", 0)); } TF_ASSIGN_OR_RETURN(n, ReplaceNode(g, n, node_def)); std::vector<Node*> outside_compilation_nodes; outside_compilation_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(outside_compilation_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.second; }); AddEdgesFromOutsideCompilationNodes(original_arg_count, 0, data_types, outside_compilation_nodes, g, n); return absl::OkStatus(); } absl::StatusOr<std::unordered_map<string, Node*>> OutsideCompilationAttrToNode( const Graph& g) { std::unordered_map<string, Node*> outside_compilation_attr_to_node; for (Node* n : g.op_nodes()) { bool is_lifted_arg; string outside_compilation_attr; if (TryGetNodeAttr(n->def(), kXlaIsLiftedArgAttrName, &is_lifted_arg) && TryGetNodeAttr(n->def(), "_xla_outside_compilation", &outside_compilation_attr)) { TF_RET_CHECK(is_lifted_arg); TF_RET_CHECK(n->IsIdentity() || n->type_string() == "Placeholder"); outside_compilation_attr_to_node[outside_compilation_attr] = n; } } return outside_compilation_attr_to_node; } Status PostprocessLiftedArgs(Graph* g, FunctionLibraryDefinition* fld) { TF_ASSIGN_OR_RETURN(auto outside_compilation_attr_to_node, OutsideCompilationAttrToNode(*g)); std::vector<Node*> call_nodes; for (Node* n : g->op_nodes()) { if (!HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { continue; } if (n->IsWhileNode()) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForWhile( outside_compilation_attr_to_node, g, n, fld)); } if (n->IsIfNode()) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForIf( outside_compilation_attr_to_node, g, n, fld)); } if (fld->Contains(n->type_string())) { call_nodes.push_back(n); } } for (Node* n : call_nodes) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForCall( outside_compilation_attr_to_node, g, n, fld)); } return absl::OkStatus(); } Status ConstructHostGraph( const string& xla_cluster_name, const string& outside_compilation_attr_name, const std::vector<string>& outside_compilation_host_graphs, FunctionLibraryDefinition* fld, std::unique_ptr<Graph>* host_graph) { host_graph->reset(new Graph(fld)); NodeDefBuilder sequencer_builder(absl::StrCat(xla_cluster_name, "_sequencer"), "NoOp"); sequencer_builder.Attr("_xla_host_transfer_sequencer", xla_cluster_name); NodeDef sequencer_def; TF_RETURN_IF_ERROR(sequencer_builder.Finalize(&sequencer_def)); TF_ASSIGN_OR_RETURN(Node * sequencer, (*host_graph)->AddNode(sequencer_def)); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, host_graph->get())); for (const string& host_func : outside_compilation_host_graphs) { VLOG(4) << "Expanding host graph " << host_func; AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> host_fbody; const FunctionDef* host_fdef = fld->Find(host_func); TF_RET_CHECK(host_fdef); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*host_fdef, AttrSlice(&attrs), fld, &host_fbody)); FixupSourceAndSinkEdges(host_fbody->graph); std::map<const Node*, Node*> node_map; node_map[host_fbody->graph->source_node()] = (*host_graph)->source_node(); node_map[host_fbody->graph->sink_node()] = (*host_graph)->sink_node(); Status s; ReverseDFS( *host_fbody->graph, nullptr, [&](const Node* n) { if (!s.ok()) { return; } Node* copy; if (node_map.find(n) != node_map.end()) { copy = node_map.at(n); } else if (IsKeyPlaceholderNode(*n)) { copy = key_placeholder; node_map[n] = copy; } else { NodeDef copy_def = n->def(); copy_def.clear_device(); copy = (*host_graph)->AddNode(copy_def, &s); if (!s.ok()) { return; } node_map[n] = copy; } for (auto e : n->in_edges()) { if (node_map.find(e->src()) == node_map.end()) { s = errors::Internal("Cannot find node image for ", e->src()->DebugString()); return; } (*host_graph) ->AddEdge(node_map[e->src()], e->src_output(), copy, e->dst_input()); } if (HasNodeAttr(copy->def(), kXlaHasHostTransferAttrName)) { (*host_graph)->AddControlEdge(copy, sequencer); } }, NodeComparatorID()); if (!s.ok()) { return s; } } TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(host_graph->get())); if (!sequencer->in_edges().empty()) { (*host_graph)->AddControlEdge(sequencer, (*host_graph)->sink_node()); } PruneForReverseReachability( host_graph->get(), std::unordered_set<const Node*>{(*host_graph)->sink_node()}); TF_RETURN_IF_ERROR(PostprocessEdgesBetweenOutsideCompilations( host_graph->get(), outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PostprocessLiftedArgs(host_graph->get(), fld)); if (VLOG_IS_ON(4)) { DumpGraphToFile(absl::StrCat("extract_outside_compilation_host_graph_for_", xla_cluster_name), **host_graph, fld); } return absl::OkStatus(); } Status ExpandHostGraphIntoMainGraph(Graph* main_graph, FunctionLibraryDefinition* fld, const string& host_graph_func_name, Node* xla_computation_node, Node* pivot_node) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* host_graph_func = fld->Find(host_graph_func_name); TF_RET_CHECK(host_graph_func); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*host_graph_func, AttrSlice(&attrs), fld, &fbody)); Graph* host_graph = fbody->graph; FixupSourceAndSinkEdges(host_graph); std::map<const Node*, Node*> node_map; if (pivot_node) { node_map[host_graph->source_node()] = pivot_node; } else { node_map[host_graph->source_node()] = main_graph->source_node(); } node_map[host_graph->sink_node()] = main_graph->sink_node(); Status s = absl::OkStatus(); auto copy_node_fn = [&](const Node* n) { if (!s.ok()) { return; } Node* copy; if (node_map.find(n) != node_map.end()) { copy = node_map.at(n); } else { NodeDef copy_def = n->def(); copy = main_graph->AddNode(copy_def, &s); if (!s.ok()) { return; } node_map[n] = copy; } for (auto e : n->in_edges()) { if (node_map.find(e->src()) == node_map.end()) { s = errors::Internal("Cannot find node image for ", e->src()->DebugString()); return; } main_graph->AddEdge(node_map[e->src()], e->src_output(), copy, e->dst_input()); } if (copy->type_string() == "NoOp" && HasNodeAttr(copy->def(), "_xla_host_transfer_sequencer")) { main_graph->AddControlEdge(copy, xla_computation_node); } }; ReverseDFS(*host_graph, nullptr, copy_node_fn, NodeComparatorID()); return s; } Status RewriteShapeInferenceGraph(const string& shape_inference_graph_name, Graph* host_graph, Node* pivot_node, FunctionLibraryDefinition* fld) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* shape_inference_graph = fld->Find(shape_inference_graph_name); TF_RET_CHECK(shape_inference_graph); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*shape_inference_graph, AttrSlice(&attrs), fld, &fbody)); Graph* g = fbody->graph; Node* send_from_host = nullptr; for (Node* n : g->nodes()) { if (n->type_string() == "_XlaSendFromHost") { send_from_host = n; break; } } if (!send_from_host) { return errors::Internal("Shape inference graph ", shape_inference_graph_name, " does not have _XlaSendFromHost node."); } Node* send_node_in_host_graph = nullptr; for (Node* n : host_graph->nodes()) { if (n->name() == send_from_host->name()) { send_node_in_host_graph = n; break; } } if (send_node_in_host_graph) { std::vector<Node*> nodes; nodes.reserve(g->num_op_nodes()); for (Node* n : g->op_nodes()) { nodes.push_back(n); } for (Node* n : nodes) { g->RemoveNode(n); } Node* start_node = pivot_node ? pivot_node : host_graph->source_node(); struct Visit { Node* n; bool is_exiting; }; std::vector<Visit> stack{{send_node_in_host_graph, false}}; std::map<Node*, Node*> node_map; node_map[host_graph->source_node()] = g->source_node(); while (!stack.empty()) { Visit& curr = stack.back(); if (curr.is_exiting) { if (node_map.find(curr.n) == node_map.end()) { Node* copy = g->CopyNode(curr.n); if (curr.n != start_node) { for (const Edge* e : curr.n->in_edges()) { auto node_iter = node_map.find(e->src()); if (node_iter == node_map.end()) { return errors::Internal("Cannot find node image for ", e->src()->DebugString()); } g->AddEdge(node_iter->second, e->src_output(), copy, e->dst_input()); } } node_map[curr.n] = copy; } stack.pop_back(); } else { curr.is_exiting = true; if (curr.n != start_node) { for (const Edge* e : curr.n->in_edges()) { if (node_map.find(e->src()) != node_map.end()) { continue; } stack.push_back({e->src(), false}); } } } } send_from_host = node_map[send_node_in_host_graph]; } else { } for (auto e : g->edges()) { if (e->IsControlEdge()) { g->RemoveEdge(e); } } PruneForReverseReachability(g, std::unordered_set<const Node*>{send_from_host}); if (VLOG_IS_ON(4)) { DumpGraphToFile(shape_inference_graph_name, *g, fld); } FunctionDef fdef_replace; TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, shape_inference_graph_name, &fdef_replace)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(shape_inference_graph_name, fdef_replace)); return absl::OkStatus(); } void SetMaximalSharding(NodeDefBuilder& node_builder) { xla::OpSharding sharding; sharding.set_type(xla::OpSharding::MAXIMAL); sharding.add_tile_assignment_dimensions(1); sharding.add_tile_assignment_devices(0); node_builder.Attr("_XlaSharding", sharding.SerializeAsString()); } TF_ATTRIBUTE_NOINLINE absl::StatusOr<Node*> BuildSendIfPredNode( const string& name, const string& host_transfer_key, Node* pred_node, Graph* g) { NodeDefBuilder send_pred_builder(name, "XlaSendToHost"); send_pred_builder.Attr("Tinput", DT_BOOL); send_pred_builder.Attr("key", absl::StrCat(host_transfer_key, "_dtoh_0")); send_pred_builder.Attr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); send_pred_builder.Attr(kXlaOriginalOutsideCompilationNodeName, name); SetMaximalSharding(send_pred_builder); send_pred_builder.Input(pred_node->name(), 0, DT_BOOL); NodeDef send_pred_def; TF_RETURN_IF_ERROR(send_pred_builder.Finalize(&send_pred_def)); TF_ASSIGN_OR_RETURN(Node * send_pred_node, g->AddNode(send_pred_def)); g->AddEdge(pred_node, 0, send_pred_node, 0); return send_pred_node; } Status ReplaceKeyPlaceholderWithArgNode(const string& xla_cluster_name, const string& func_name, FunctionLibraryDefinition* fld) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* func = fld->Find(func_name); TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(*func, AttrSlice(&attrs), fld, &fbody)); Graph* g = fbody->graph; Node* key_placeholder = nullptr; for (Node* n : g->nodes()) { if (IsKeyPlaceholderNode(*n)) { key_placeholder = n; break; } } if (!key_placeholder) { TF_ASSIGN_OR_RETURN(key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, g)); } NodeDefBuilder arg_builder("key_arg", FunctionLibraryDefinition::kArgOp); arg_builder.Attr("T", DT_STRING); arg_builder.Attr("index", 0); NodeDef arg_def; TF_RETURN_IF_ERROR(arg_builder.Finalize(&arg_def)); TF_RETURN_IF_ERROR(ReplaceNode(g, key_placeholder, arg_def).status()); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(g)); FunctionDef replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *g, func_name, HostGraphControlRetMapping, &replace_fdef)); TF_RETURN_IF_ERROR(fld->ReplaceFunction(func_name, replace_fdef)); return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status BuildHostGraphForIfNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const string& if_node_name, const string& host_transfer_key, const string& host_graph_func_name, FunctionLibraryDefinition* fld, const string& then_branch_host_func_name, const string& else_branch_host_func_name) { Graph host_graph(fld); string outside_compilation_name = absl::StrCat("oc_if_", if_node_name); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); NodeDefBuilder recv_pred_builder( absl::StrCat("recv_oc_if_pred_", if_node_name), "_XlaRecvAtHost"); recv_pred_builder.Attr("Toutputs", std::vector<DataType>{DT_BOOL}); recv_pred_builder.Attr("key", host_transfer_key); recv_pred_builder.Attr("device_ordinal", device_ordinal_value); recv_pred_builder.Attr(xla_cluster_attr_name, xla_cluster_name); recv_pred_builder.Attr(outside_compilation_attr_name, outside_compilation_name); recv_pred_builder.Attr(kXlaHasHostTransferAttrName, true); recv_pred_builder.Input(key_placeholder->name(), 0, DT_STRING); NodeDef recv_pred_def; TF_RETURN_IF_ERROR(recv_pred_builder.Finalize(&recv_pred_def)); TF_ASSIGN_OR_RETURN(Node * recv_pred_node, host_graph.AddNode(recv_pred_def)); host_graph.AddEdge(key_placeholder, 0, recv_pred_node, 0); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, then_branch_host_func_name, fld)); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, else_branch_host_func_name, fld)); NodeDefBuilder if_builder(absl::StrCat("oc_if_", if_node_name), "If"); if_builder.Attr("Tcond", DT_BOOL); if_builder.Attr("Tin", std::vector<DataType>{DT_STRING}); if_builder.Attr("Tout", std::vector<DataType>{}); NameAttrList host_then_branch, host_else_branch; host_then_branch.set_name(then_branch_host_func_name); (*host_then_branch.mutable_attr())["_device_ordinal"] = device_ordinal_value; host_else_branch.set_name(else_branch_host_func_name); (*host_else_branch.mutable_attr())["_device_ordinal"] = device_ordinal_value; if_builder.Attr("then_branch", host_then_branch); if_builder.Attr("else_branch", host_else_branch); if_builder.Attr(kXlaHasHostTransferAttrName, true); if_builder.Attr(xla_cluster_attr_name, xla_cluster_name); if_builder.Attr(outside_compilation_attr_name, outside_compilation_name); if_builder.Input(recv_pred_node->name(), 0, DT_BOOL); std::vector<NodeDefBuilder::NodeOut> if_inputs{ {key_placeholder->name(), 0, DT_STRING}}; if_builder.Input(if_inputs); NodeDef if_def; TF_RETURN_IF_ERROR(if_builder.Finalize(&if_def)); TF_ASSIGN_OR_RETURN(Node * if_node, host_graph.AddNode(if_def)); host_graph.AddEdge(recv_pred_node, 0, if_node, 0); host_graph.AddEdge(key_placeholder, 0, if_node, 1); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status AddSendLoopPredToLoopCond( const string& cond_xla_func_name, const string& host_transfer_key, NameAttrList* loop_cond_func, FunctionLibraryDefinition* fld, Node* while_node) { std::unique_ptr<FunctionBody> fbody; const FunctionDef* loop_cond_fdef = fld->Find(loop_cond_func->name()); TF_RET_CHECK(loop_cond_fdef); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *loop_cond_fdef, AttrSlice(&loop_cond_func->attr()), fld, &fbody)); Graph* g = fbody->graph; Node* ret_node = nullptr; for (Node* n : g->nodes()) { if (n->type_string() == "_Retval") { if (ret_node) { return errors::Internal("Multiple return node for loop cond function ", loop_cond_func->name(), ": ", ret_node->DebugString(), " and ", n->DebugString()); } else { ret_node = n; } } } if (!ret_node) { return errors::Internal("No _Retval node for loop cond function ", loop_cond_func->name()); } Node* loop_cond; TF_RETURN_IF_ERROR(ret_node->input_node(0, &loop_cond)); NodeDefBuilder send_loop_cond_builder( absl::StrCat("send_oc_while_cond_", while_node->name()), "XlaSendToHost"); send_loop_cond_builder.Attr("Tinput", DT_BOOL); send_loop_cond_builder.Attr("key", absl::StrCat(host_transfer_key, "_dtoh_0")); send_loop_cond_builder.Attr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); send_loop_cond_builder.Attr(kXlaOriginalOutsideCompilationNodeName, send_loop_cond_builder.node_name()); SetMaximalSharding(send_loop_cond_builder); send_loop_cond_builder.Input(loop_cond->name(), 0, DT_BOOL); NodeDef send_loop_cond_def; TF_RETURN_IF_ERROR(send_loop_cond_builder.Finalize(&send_loop_cond_def)); TF_ASSIGN_OR_RETURN(Node * send_loop_cond_node, g->AddNode(send_loop_cond_def)); g->AddEdge(loop_cond, 0, send_loop_cond_node, 0); FunctionDef replace_fdef; if (loop_cond_func->name() == cond_xla_func_name) { TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, loop_cond_func->name(), &replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(loop_cond_func->name(), replace_fdef)); } else { const auto new_name = fld->UniqueFunctionName( absl::StrCat(loop_cond_func->name(), "_send_pred_added_")); TF_RETURN_IF_ERROR(GraphToFunctionDef(*g, new_name, &replace_fdef)); TF_RETURN_IF_ERROR(fld->AddFunctionDef(replace_fdef)); loop_cond_func->set_name(new_name); while_node->ClearAttr("cond"); while_node->AddAttr("cond", *loop_cond_func); } return absl::OkStatus(); } Status RewriteHostWhileLoopCond( const string& cond_host_func_name, const string& while_node_name, const string& host_transfer_key, const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& outside_compilation_name, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, cond_host_func_name, fld)); AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_temp_value; std::unique_ptr<FunctionBody> cond_fbody; const FunctionDef* cond_host_func = fld->Find(cond_host_func_name); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*cond_host_func, AttrSlice(&attrs), fld, &cond_fbody)); Graph* cond_graph = cond_fbody->graph; Node* key_arg = nullptr; for (Node* n : cond_graph->nodes()) { if (n->type_string() == "_Arg") { key_arg = n; } } if (!key_arg) { return errors::Internal( "No _Arg node found for host compute key in function ", cond_host_func_name); } NodeDefBuilder recv_pred_builder( absl::StrCat("recv_oc_while_cond_", while_node_name), "_XlaRecvAtHost"); recv_pred_builder.Attr("Toutputs", std::vector<DataType>{DT_BOOL}); recv_pred_builder.Attr("key", host_transfer_key); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); recv_pred_builder.Attr("device_ordinal", device_ordinal_value); recv_pred_builder.Attr(xla_cluster_attr_name, xla_cluster_name); recv_pred_builder.Attr(outside_compilation_attr_name, outside_compilation_name); recv_pred_builder.Attr(kXlaHasHostTransferAttrName, true); recv_pred_builder.Input(key_arg->name(), 0, DT_STRING); NodeDef recv_pred_def; TF_RETURN_IF_ERROR(recv_pred_builder.Finalize(&recv_pred_def)); TF_ASSIGN_OR_RETURN(Node * recv_pred_node, cond_graph->AddNode(recv_pred_def)); cond_graph->AddEdge(key_arg, 0, recv_pred_node, 0); NodeDefBuilder ret_builder( absl::StrCat("recv_oc_while_cond_ret_", while_node_name), "_Retval"); ret_builder.Attr("T", DT_BOOL); ret_builder.Attr("index", 0); ret_builder.Input(recv_pred_node->name(), 0, DT_BOOL); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, cond_graph->AddNode(ret_def)); cond_graph->AddEdge(recv_pred_node, 0, ret_node, 0); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(cond_graph)); FunctionDef cond_replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*cond_graph, cond_host_func_name, HostGraphControlRetMapping, &cond_replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(cond_host_func_name, cond_replace_fdef)); return absl::OkStatus(); } Status RewriteHostWhileLoopBody( const string& body_host_func_name, const string& while_node_name, const string& host_transfer_key, const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& outside_compilation_name, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, body_host_func_name, fld)); AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_temp_value; std::unique_ptr<FunctionBody> body_fbody; const FunctionDef* body_host_func = fld->Find(body_host_func_name); TF_RET_CHECK(body_host_func); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*body_host_func, AttrSlice(&attrs), fld, &body_fbody)); Graph* body_graph = body_fbody->graph; Node* key_arg = nullptr; for (Node* n : body_graph->nodes()) { if (n->type_string() == "_Arg") { key_arg = n; } } if (!key_arg) { return errors::Internal( "No _Arg node found for host compute key in function ", body_host_func_name); } NodeDefBuilder ret_builder( absl::StrCat("recv_oc_while_body_ret_", while_node_name), "_Retval"); ret_builder.Attr("T", DT_STRING); ret_builder.Attr("index", 0); ret_builder.Input(key_arg->name(), 0, DT_STRING); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, body_graph->AddNode(ret_def)); body_graph->AddEdge(key_arg, 0, ret_node, 0); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(body_graph)); FunctionDef body_replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*body_graph, body_host_func_name, HostGraphControlRetMapping, &body_replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(body_host_func_name, body_replace_fdef)); return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status BuildHostGraphForWhileNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const string& while_node_name, const string& host_transfer_key, const string& host_graph_func_name, FunctionLibraryDefinition* fld, const string& cond_host_func_name, const string& body_host_func_name) { Graph host_graph(fld); string outside_compilation_name = absl::StrCat("oc_while_", while_node_name); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); TF_RETURN_IF_ERROR(RewriteHostWhileLoopCond( cond_host_func_name, while_node_name, host_transfer_key, xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, outside_compilation_name, fld)); TF_RETURN_IF_ERROR(RewriteHostWhileLoopBody( body_host_func_name, while_node_name, host_transfer_key, xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, outside_compilation_name, fld)); NodeDefBuilder while_builder(absl::StrCat("oc_while_", while_node_name), "While"); while_builder.Attr("T", std::vector<DataType>{DT_STRING}); NameAttrList func; AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); (*func.mutable_attr())["_device_ordinal"] = device_ordinal_value; func.set_name(cond_host_func_name); while_builder.Attr("cond", func); func.set_name(body_host_func_name); while_builder.Attr("body", func); while_builder.Attr(kXlaHasHostTransferAttrName, true); while_builder.Attr(xla_cluster_attr_name, xla_cluster_name); while_builder.Attr(outside_compilation_attr_name, outside_compilation_name); while_builder.Attr("parallel_iterations", 1); std::vector<NodeDefBuilder::NodeOut> while_inputs{ {key_placeholder->name(), 0, DT_STRING}}; while_builder.Input(while_inputs); NodeDef while_def; TF_RETURN_IF_ERROR(while_builder.Finalize(&while_def)); TF_ASSIGN_OR_RETURN(Node * while_node, host_graph.AddNode(while_def)); host_graph.AddEdge(key_placeholder, 0, while_node, 0); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } Status BuildHostGraphForFuncCallNode( const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& func_call_node_name, const string& func_call_host_func_name, const string& host_graph_func_name, FunctionLibraryDefinition* fld) { Graph host_graph(fld); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, func_call_host_func_name, fld)); NodeDefBuilder call_builder(absl::StrCat("oc_call_", func_call_node_name), func_call_host_func_name, fld); call_builder.Input(key_placeholder->name(), 0, DT_STRING); call_builder.Attr("_device_ordinal", device_ordinal_value); call_builder.Attr(kXlaHasHostTransferAttrName, true); call_builder.Attr(xla_cluster_attr_name, xla_cluster_name); call_builder.Attr(outside_compilation_attr_name, call_builder.node_name()); NodeDef call_def; TF_RETURN_IF_ERROR(call_builder.Finalize(&call_def)); TF_ASSIGN_OR_RETURN(Node * call_node, host_graph.AddNode(call_def)); host_graph.AddEdge(key_placeholder, 0, call_node, 0); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, HostGraphControlRetMapping, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status ExtractOutsideCompilationForFuncCallNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { bool func_has_outside_compilation = false; NameAttrList func; if (fld->Contains(n->type_string())) { func.set_name(n->type_string()); typedef protobuf::Map<string, AttrValue> AttrMap; *func.mutable_attr() = AttrMap(n->attrs().begin(), n->attrs().end()); } else if (n->IsPartitionedCall()) { TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "f", &func)); } else { TF_RET_CHECK(n->type_string() == FunctionLibraryDefinition::kGradientOp); func.set_name(FunctionLibraryDefinition::kGradientOp); *func.mutable_attr() = n->def().attr(); } string canonical_func_name; if (func.name() == FunctionLibraryDefinition::kGradientOp) { NameAttrList forward_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "f", &forward_func)); canonical_func_name = absl::StrCat("gradient_", forward_func.name()); } else { canonical_func_name = func.name(); } string new_func_name = absl::StrCat(canonical_func_name, "_oc"); string host_func_name = absl::StrCat("oc_func_call_host_", canonical_func_name); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func, new_func_name, host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &func_has_outside_compilation)); if (!func_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; auto replace_builder = std::make_unique<NodeDefBuilder>(n->name(), new_func_name, fld); std::vector<NodeDefBuilder::NodeOut> inputs(n->num_inputs()); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { continue; } const bool input_size_check = e->dst_input() < static_cast<int>(inputs.size()); TF_RET_CHECK(e->dst_input() >= 0 && input_size_check); inputs[e->dst_input()] = NodeDefBuilder::NodeOut{e->src()->name(), e->src_output(), e->src()->output_type(e->src_output())}; } for (const auto& input : inputs) { replace_builder->Input(input); } for (const auto& attr : n->attrs()) { replace_builder->Attr(attr.first, attr.second); } auto replace_def = std::make_unique<NodeDef>(); TF_RETURN_IF_ERROR(replace_builder->Finalize(replace_def.get())); TF_ASSIGN_OR_RETURN(Node * replace, ReplaceNode(g, n, *replace_def)); replace->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); replace->AddAttr(kXlaOriginalOutsideCompilationNodeName, replace->name()); string oc_host_graph_name = absl::StrCat("oc_func_host_graph_", replace->name()); TF_RETURN_IF_ERROR(BuildHostGraphForFuncCallNode( xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, replace->name(), host_func_name, oc_host_graph_name, fld)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForIfNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { NameAttrList then_branch, else_branch; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "then_branch", &then_branch)); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "else_branch", &else_branch)); bool then_branch_has_outside_compilation = false; bool else_branch_has_outside_compilation = false; string then_branch_host_func_name = absl::StrCat("oc_then_branch_host_if_", then_branch.name()), else_branch_host_func_name = absl::StrCat("oc_else_branch_host_if_", else_branch.name()); string then_branch_xla_func_name = absl::StrCat(then_branch.name(), "_oc"), else_branch_xla_func_name = absl::StrCat(else_branch.name(), "_oc"); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, then_branch, then_branch_xla_func_name, then_branch_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &then_branch_has_outside_compilation)); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, else_branch, else_branch_xla_func_name, else_branch_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &else_branch_has_outside_compilation)); if (!then_branch_has_outside_compilation && !else_branch_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; if (then_branch_has_outside_compilation) { then_branch.set_name(then_branch_xla_func_name); n->ClearAttr("then_branch"); n->AddAttr("then_branch", then_branch); } if (else_branch_has_outside_compilation) { else_branch.set_name(else_branch_xla_func_name); n->ClearAttr("else_branch"); n->AddAttr("else_branch", else_branch); } n->AddAttr(kXlaOriginalOutsideCompilationNodeName, n->name()); string host_transfer_key = absl::StrCat("oc_if_pred_", n->name()); Node* pred_node; TF_RETURN_IF_ERROR(n->input_node(0, &pred_node)); TF_ASSIGN_OR_RETURN( Node * send_pred_node, BuildSendIfPredNode(absl::StrCat("send_oc_if_pred_", n->name()), host_transfer_key, pred_node, g)); n->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{send_pred_node->name()}); g->AddControlEdge(send_pred_node, n); if (!then_branch_has_outside_compilation) { std::unique_ptr<Graph> then_branch_host_graph(new Graph(fld)); std::vector<string> then_branch_host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph( xla_cluster_name, outside_compilation_attr_name, then_branch_host_graphs, fld, &then_branch_host_graph)); FunctionDef then_branch_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*then_branch_host_graph, then_branch_host_func_name, &then_branch_host_fdef)); if (fld->Find(then_branch_host_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(then_branch_host_func_name, then_branch_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(then_branch_host_fdef)); } } if (!else_branch_has_outside_compilation) { std::unique_ptr<Graph> else_branch_host_graph(new Graph(fld)); std::vector<string> else_branch_host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph( xla_cluster_name, outside_compilation_attr_name, else_branch_host_graphs, fld, &else_branch_host_graph)); FunctionDef else_branch_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*else_branch_host_graph, else_branch_host_func_name, &else_branch_host_fdef)); if (fld->Find(else_branch_host_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(else_branch_host_func_name, else_branch_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(else_branch_host_fdef)); } } string oc_host_graph_name = absl::StrCat("oc_if_host_graph_", n->name()); TF_RETURN_IF_ERROR(BuildHostGraphForIfNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, n->name(), host_transfer_key, oc_host_graph_name, fld, then_branch_host_func_name, else_branch_host_func_name)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForWhileNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { NameAttrList cond, body; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "cond", &cond)); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "body", &body)); bool cond_has_outside_compilation = false; bool body_has_outside_compilation = false; string cond_host_func_name = absl::StrCat("oc_cond_host_while_", cond.name()), body_host_func_name = absl::StrCat("oc_body_host_while_", body.name()); string cond_xla_func_name = absl::StrCat(cond.name(), "_oc"), body_xla_func_name = absl::StrCat(body.name(), "_oc"); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, cond, cond_xla_func_name, cond_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &cond_has_outside_compilation)); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, body, body_xla_func_name, body_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &body_has_outside_compilation)); if (!cond_has_outside_compilation && !body_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; if (cond_has_outside_compilation) { cond.set_name(cond_xla_func_name); n->ClearAttr("cond"); n->AddAttr("cond", cond); } if (body_has_outside_compilation) { body.set_name(body_xla_func_name); n->ClearAttr("body"); n->AddAttr("body", body); } n->AddAttr(kXlaOriginalOutsideCompilationNodeName, n->name()); string host_transfer_key = absl::StrCat("oc_while_pred_", n->name()); TF_RETURN_IF_ERROR(AddSendLoopPredToLoopCond( cond_xla_func_name, host_transfer_key, &cond, fld, n)); n->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); if (!cond_has_outside_compilation) { std::unique_ptr<Graph> cond_host_graph(new Graph(fld)); std::vector<string> host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, host_graphs, fld, &cond_host_graph)); FunctionDef cond_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*cond_host_graph, cond_host_func_name, &cond_host_fdef)); if (fld->Find(cond_host_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(cond_host_func_name, cond_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(cond_host_fdef)); } } if (!body_has_outside_compilation) { std::unique_ptr<Graph> body_host_graph(new Graph(fld)); std::vector<string> host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, host_graphs, fld, &body_host_graph)); FunctionDef body_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*body_host_graph, body_host_func_name, &body_host_fdef)); if (fld->Find(body_host_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(body_host_func_name, body_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(body_host_fdef)); } } string oc_host_graph_name = absl::StrCat("oc_while_host_graph_", n->name()); TF_RETURN_IF_ERROR(BuildHostGraphForWhileNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, n->name(), host_transfer_key, oc_host_graph_name, fld, cond_host_func_name, body_host_func_name)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForNodesWithAssociatedFunctions( Graph* g, const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { std::vector<Node*> if_nodes, while_nodes, func_call_nodes; for (Node* n : g->nodes()) { if (n->IsIfNode()) { if_nodes.push_back(n); } else if (n->IsWhileNode()) { while_nodes.push_back(n); } else if (IsFunctionCall(*fld, *n)) { func_call_nodes.push_back(n); } } for (Node* n : func_call_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFuncCallNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } for (Node* n : if_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForIfNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } for (Node* n : while_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForWhileNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } return absl::OkStatus(); } Status CopyOutsideCompilationConstNodes( Graph* g, const string& outside_compilation_attr_name) { for (Node* n : g->op_nodes()) { if (!n->IsConstant() || !HasNodeAttr(n->def(), outside_compilation_attr_name)) { continue; } std::vector<const Edge*> out_edges(n->out_edges().begin(), n->out_edges().end()); bool has_non_oc_output = false; for (const Edge* e : out_edges) { if (!e->IsControlEdge() && !HasNodeAttr(e->dst()->def(), outside_compilation_attr_name)) { has_non_oc_output = true; break; } } if (!has_non_oc_output) { continue; } NodeDef copy_def = n->def(); copy_def.set_name(g->NewName(n->name())); copy_def.mutable_attr()->erase(outside_compilation_attr_name); TF_ASSIGN_OR_RETURN(Node * copy_node, g->AddNode(copy_def)); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), copy_node); } } for (const Edge* e : out_edges) { if (!e->IsControlEdge() && !HasNodeAttr(e->dst()->def(), outside_compilation_attr_name)) { Node* dst = e->dst(); int dst_input = e->dst_input(); g->RemoveEdge(e); g->AddEdge(copy_node, 0, dst, dst_input); } } } return absl::OkStatus(); } } Status RewriteOutsideCompilationSubgraphFn::operator()( const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* graph, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* node_def) { string old_name = node_def->op(); string new_name = absl::StrCat(xla_cluster_name_, "_", new_function_name_, "_", old_name); node_def->set_op(new_name); node_def->set_name(new_name); FixupSourceAndSinkEdges(graph->get()); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name_, graph->get())); std::vector<DataType> recv_at_host_dtypes; TF_ASSIGN_OR_RETURN( Node * recv_at_host_node, ReplaceArgNodesWithRecvAtHostNode(graph->get(), new_name, &recv_at_host_dtypes, key_placeholder)); std::vector<DataType> send_from_host_dtypes; TF_ASSIGN_OR_RETURN( Node * send_from_host_node, ReplaceRetNodesWithSendFromHostNode( graph->get(), new_name, &send_from_host_dtypes, key_placeholder)); for (Node* n : (*graph)->nodes()) { if (IsKeyPlaceholderNode(*n)) { continue; } n->AddAttr(xla_cluster_attr_name_, xla_cluster_name_); n->AddAttr(outside_compilation_attr_name_, old_name); } std::optional<std::vector<PartialTensorShape>> shapes = GetInferredInputShapes(send_from_host_dtypes.size(), send_from_host_node); for (Node* n : (*graph)->nodes()) { n->ClearAttr(kXlaInferredShapesAttrName); } for (Node* n : (*graph)->nodes()) { if (HasNodeAttr(n->def(), kXlaConnectedToXlaComputationAttrName)) { (*graph)->AddControlEdge(n, send_from_host_node); n->ClearAttr(kXlaConnectedToXlaComputationAttrName); } if (HasNodeAttr(n->def(), kXlaConnectedFromXlaComputationAttrName)) { (*graph)->AddControlEdge(recv_at_host_node, n); n->ClearAttr(kXlaConnectedFromXlaComputationAttrName); } } if (send_from_host_node->in_edges().size() > 1) { (*graph)->AddControlEdge(send_from_host_node, (*graph)->sink_node()); } PruneForReverseReachability( graph->get(), std::unordered_set<const Node*>{(*graph)->sink_node()}); AddNodeAttr("_outside_compilation_subgraph", old_name, node_def); if (shapes) { NameAttrList shape_inference_graph; AddNodeAttr("shape_inference_graph", shape_inference_graph, node_def); AddNodeAttr("shapes", *shapes, node_def); } else { string shape_inference_func_name = absl::StrCat("_outside_compilation_shape_inference_", new_name); NameAttrList shape_inference_graph; shape_inference_graph.set_name(shape_inference_func_name); AddNodeAttr("shape_inference_graph", shape_inference_graph, node_def); AddNodeAttr("shapes", std::vector<TensorShapeProto>{}, node_def); } AddNodeAttr("ancestors", std::vector<string>{}, node_def); AddNodeAttr("Tinputs", recv_at_host_dtypes, node_def); AddNodeAttr("Toutputs", send_from_host_dtypes, node_def); AddNodeAttr("key", absl::StrCat("host_compute_channel_", new_name), node_def); return absl::OkStatus(); } Status ExtractOutsideCompilationForFunction( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const NameAttrList& func_name_attrs, const string& new_func_name, const string& host_graph_func_name, const std::map<string, int>& host_compute_core, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { const string& func_name = func_name_attrs.name(); FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR( flr->Instantiate(func_name, AttrSlice(&func_name_attrs.attr()), &handle)); Status ret_status = absl::OkStatus(); auto cleanup_handle = gtl::MakeCleanup([&]() { auto s = flr->ReleaseHandle(handle); if (!s.ok()) { ret_status.Update(s); } }); const FunctionBody* fbody = flr->GetFunctionBody(handle); *has_outside_compilation = false; for (Node* n : fbody->graph->nodes()) { if (HasNodeAttr(n->def(), outside_compilation_attr_name)) { *has_outside_compilation = true; break; } } if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("extract_outside_compilation_for_func_before_", func_name), *fbody->graph, fld); } std::unique_ptr<Graph> graph_out; std::vector<string> outside_compilation_host_graphs; std::vector<string> shape_inference_graphs_to_rewrite; if (*has_outside_compilation) { TF_RETURN_IF_ERROR(CopyOutsideCompilationConstNodes( fbody->graph, outside_compilation_attr_name)); TF_ASSIGN_OR_RETURN(auto cluster_deps, OutsideCompilationClusterDependencies( fbody->graph, outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PreprocessEdgesBetweenOutsideCompilations( fbody->graph, outside_compilation_attr_name)); auto rewrite_fn = std::make_unique<RewriteOutsideCompilationSubgraphFn>( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, new_func_name); TF_RETURN_IF_ERROR(EncapsulateSubgraphsInFunctions( outside_compilation_attr_name, *fbody->graph, *rewrite_fn, true, &graph_out, fld)); std::vector<Node*> outside_compilation_nodes; for (Node* n : graph_out->nodes()) { if (HasNodeAttr(n->def(), "_outside_compilation_subgraph")) { outside_compilation_nodes.push_back(n); outside_compilation_host_graphs.push_back(n->name()); auto shape_inference_graph = std::make_unique<NameAttrList>(); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "shape_inference_graph", shape_inference_graph.get())); if (!shape_inference_graph->name().empty()) { shape_inference_graphs->push_back(shape_inference_graph->name()); shape_inference_graphs_to_rewrite.push_back( shape_inference_graph->name()); const FunctionDef* xla_fdef = fld->Find(n->name()); if (!xla_fdef) { return errors::Internal("Cannot find XLA function ", n->name()); } auto shape_inference_fdef = std::make_unique<FunctionDef>(*xla_fdef); shape_inference_fdef->mutable_signature()->set_name( shape_inference_graph->name()); if (fld->Find(shape_inference_graph->name())) { TF_RETURN_IF_ERROR(fld->ReplaceFunction( shape_inference_graph->name(), *shape_inference_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*shape_inference_fdef)); } } } } std::map<string, Node*> host_compute_nodes; for (Node* n : outside_compilation_nodes) { auto host_compute_node_or = ReplaceOutsideCompilationCallNode( graph_out.get(), n, host_compute_core, *cluster_deps); TF_RETURN_IF_ERROR(host_compute_node_or.status()); Node* host_compute_node = host_compute_node_or.value(); host_compute_nodes[host_compute_node->name()] = host_compute_node; } for (const auto& iter : host_compute_nodes) { Node* host_compute_node = iter.second; std::vector<string> token_input_node_names; TF_RETURN_IF_ERROR(GetNodeAttr(host_compute_node->def(), kXlaTokenInputNodesAttrName, &token_input_node_names)); for (const string& node_name : token_input_node_names) { if (node_name == kXlaTokenArgNodeName) { continue; } auto iter = host_compute_nodes.find(node_name); TF_RET_CHECK(iter != host_compute_nodes.end()); graph_out->AddControlEdge(iter->second, host_compute_node); } } } Graph* g = (*has_outside_compilation) ? graph_out.get() : fbody->graph; TF_RETURN_IF_ERROR(ExtractOutsideCompilationForNodesWithAssociatedFunctions( g, xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, flr, fld, &outside_compilation_host_graphs, shape_inference_graphs, has_outside_compilation)); if (*has_outside_compilation) { std::unique_ptr<Graph> host_graph; TF_RETURN_IF_ERROR( ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, outside_compilation_host_graphs, fld, &host_graph)); auto host_graph_fdef = std::make_unique<FunctionDef>(); TF_RETURN_IF_ERROR(GraphToFunctionDef(*host_graph, host_graph_func_name, HostGraphControlRetMapping, host_graph_fdef.get())); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, *host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*host_graph_fdef)); } for (const string& shape_inference_graph : shape_inference_graphs_to_rewrite) { TF_RETURN_IF_ERROR( RewriteShapeInferenceGraph(shape_inference_graph, host_graph.get(), nullptr, fld)); } for (const string& func : outside_compilation_host_graphs) { TF_RETURN_IF_ERROR(fld->RemoveFunction(func)); } auto updated_fdef = std::make_unique<FunctionDef>(); TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, new_func_name, updated_fdef.get())); updated_fdef->mutable_signature()->set_is_stateful(true); const FunctionDef* original_fdef = fld->Find(func_name); if (original_fdef) { for (const auto& attr : original_fdef->attr()) { (*updated_fdef->mutable_attr())[attr.first] = attr.second; } } if (fld->Find(new_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(new_func_name, *updated_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*updated_fdef)); } if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("extract_outside_compilation_for_func_after_", func_name), *g, fld); } } return ret_status; } Status ExtractOutsideCompilation( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const std::unordered_map<string, XlaClusterInfo>& clusters, Graph* g, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, bool* modified) { if (VLOG_IS_ON(4)) { DumpGraphToFile("extract_outside_compilation_before", *g, fld); } *modified = false; auto node_name_index = g->BuildNodeNameIndex(); for (auto& iter : clusters) { string xla_cluster_name = iter.first; Node* n = iter.second.node; auto const& func_name_attrs = iter.second.func_name_attrs; auto const& host_compute_core = iter.second.host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; string host_graph_func_name = absl::StrCat("oc_host_graph_", xla_cluster_name); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func_name_attrs, func_name_attrs.name(), host_graph_func_name, host_compute_core, flr, fld, &shape_inference_graphs, &has_outside_compilation)); *modified |= has_outside_compilation; if (has_outside_compilation) { string pivot_name = absl::StrCat(xla_cluster_name, "/pivot"); Node* pivot_node = node_name_index[pivot_name]; TF_RETURN_IF_ERROR(ExpandHostGraphIntoMainGraph( g, fld, host_graph_func_name, n, pivot_node)); TF_RETURN_IF_ERROR(fld->RemoveFunction(host_graph_func_name)); for (const auto& shape_inference_graph_name : shape_inference_graphs) { TF_RETURN_IF_ERROR(RewriteShapeInferenceGraph( shape_inference_graph_name, g, pivot_node, fld)); } } } if (VLOG_IS_ON(4)) { DumpGraphToFile("extract_outside_compilation_after", *g, fld); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "xla/test.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { TEST(RewriteOutsideCompilationSubgraphFnTest, Basic) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg0 = ops::_Arg(s.WithOpName("arg0"), DT_INT32, 0); Output arg1 = ops::_Arg(s.WithOpName("arg1"), DT_FLOAT, 1); Output arg2 = ops::_Arg(s.WithOpName("arg2"), DT_INT32, 2); Output add = ops::Add(s.WithOpName("add"), arg0, arg0); auto ret0 = ops::_Retval(s.WithOpName("ret0"), add, 0); auto ret1 = ops::_Retval(s.WithOpName("ret1"), arg1, 1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); Node *add_node = node_name_image["add"]; EXPECT_NE(add_node, nullptr); add_node->AddAttr(kXlaConnectedToXlaComputationAttrName, "cluster"); add_node->AddAttr(kXlaConnectedFromXlaComputationAttrName, "cluster"); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); for (Node *n : g->nodes()) { EXPECT_NE(n->type_string(), "_Arg"); } Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_NE(recv_at_host, nullptr); std::vector<DataType> recv_at_host_dtypes; TF_CHECK_OK( GetNodeAttr(recv_at_host->attrs(), "Toutputs", &recv_at_host_dtypes)); EXPECT_EQ(recv_at_host_dtypes.size(), 3); EXPECT_EQ(recv_at_host_dtypes[0], DT_INT32); EXPECT_EQ(recv_at_host_dtypes[1], DT_FLOAT); EXPECT_EQ(recv_at_host_dtypes[2], DT_INT32); for (Node *n : g->nodes()) { EXPECT_NE(n->type_string(), "_Retval"); } Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_NE(send_from_host, nullptr); std::vector<DataType> send_from_host_dtypes; TF_CHECK_OK( GetNodeAttr(send_from_host->attrs(), "Tinputs", &send_from_host_dtypes)); EXPECT_EQ(send_from_host_dtypes.size(), 2); EXPECT_EQ(send_from_host_dtypes[0], DT_INT32); EXPECT_EQ(send_from_host_dtypes[1], DT_FLOAT); add_node = node_name_image["add"]; EXPECT_NE(add_node, nullptr); EXPECT_TRUE(HasNodeAttr(add_node->def(), "_xla")); EXPECT_TRUE(HasNodeAttr(add_node->def(), "_oc")); bool has_control_edge_from_recv_at_host = false; for (auto e : add_node->in_edges()) { if (e->IsControlEdge() && e->src() == recv_at_host) { has_control_edge_from_recv_at_host = true; } } EXPECT_TRUE(has_control_edge_from_recv_at_host); bool has_control_edge_to_send_from_host = false; for (auto e : add_node->out_edges()) { if (e->IsControlEdge() && e->dst() == send_from_host) { has_control_edge_to_send_from_host = true; } } EXPECT_TRUE(has_control_edge_to_send_from_host); NameAttrList shape_inference_graph; TF_CHECK_OK(GetNodeAttr(AttrSlice(&call_node_def.attr()), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), "_outside_compilation_shape_inference_cluster__0"); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoSendFromHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg0 = ops::_Arg(s.WithOpName("arg0"), DT_INT32, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_NE(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_EQ(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoRecvAtHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); auto ret = ops::_Retval(s.WithOpName("ret"), const0, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_EQ(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_NE(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoKeyPlaceholder) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_EQ(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_EQ(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_EQ(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, ShapesInferred) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); auto ret = ops::_Retval(s.WithOpName("ret"), const0, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); Node *const0_node = node_name_image["const0"]; EXPECT_NE(const0_node, nullptr); PartialTensorShape shape({2}); const0_node->AddAttr(kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); node_name_image = g->BuildNodeNameIndex(); std::vector<TensorShapeProto> shapes; TF_CHECK_OK(GetNodeAttr(AttrSlice(&call_node_def.attr()), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 1); EXPECT_EQ(shapes[0].dim_size(), 1); } class ExtractOutsideCompilationForFunctionTest : public ::testing::Test { public: void SetUp() override { SessionOptions session_options; std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); } Status ExtractOutsideCompilationTest( const string &xla_cluster_attr_name, const string &outside_compilation_attr_name, const string &xla_cluster_name, const NameAttrList &func_name_attrs, const string &new_func_name, const string &host_graph_func_name, const std::map<string, int> &host_compute_core, FunctionLibraryDefinition *fld, std::vector<string> *shape_inference_graphs, bool *has_outside_compilation) { OptimizerOptions opts; pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, fld, opts, nullptr); auto flr = pflr_->GetFLR("/job:localhost/replica:0/task:0/cpu:0"); return ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func_name_attrs, new_func_name, host_graph_func_name, host_compute_core, flr, fld, shape_inference_graphs, has_outside_compilation); } private: std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; }; TEST_F(ExtractOutsideCompilationForFunctionTest, Basic) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity(s.WithOpName("identity1"), identity0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); int tpu_core; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "tpu_core", &tpu_core)); EXPECT_EQ(tpu_core, 1); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "tpu_core", &tpu_core)); EXPECT_EQ(tpu_core, 0); std::vector<TensorShapeProto> shapes; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 0); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 1); EXPECT_EQ(shapes[0].dim_size(), 1); NameAttrList shape_inference_graph; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), ""); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), ""); EXPECT_EQ(shape_inference_graphs.size(), 0); std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper( *fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; Node *key_placeholder = nullptr, *sequencer = nullptr; for (Node *n : host_graph->nodes()) { if (n->type_string() == "Placeholder" && absl::EndsWith(n->name(), "_key_placeholder")) { EXPECT_EQ(key_placeholder, nullptr); key_placeholder = n; } else if (HasNodeAttr(n->def(), "_xla_host_transfer_sequencer")) { EXPECT_EQ(sequencer, nullptr); sequencer = n; } } EXPECT_NE(key_placeholder, nullptr); EXPECT_NE(sequencer, nullptr); int num_send_from_host = 0, num_recv_at_host = 0; std::vector<Node *> send_recv_nodes; for (Node *n : host_graph->nodes()) { if (n->type_string() == "_XlaSendFromHost") { num_send_from_host++; send_recv_nodes.push_back(n); } else if (n->type_string() == "_XlaRecvAtHost") { num_recv_at_host++; send_recv_nodes.push_back(n); } } EXPECT_EQ(num_send_from_host, 1); EXPECT_EQ(num_recv_at_host, 1); for (Node *n : send_recv_nodes) { Node *input_node; TF_CHECK_OK(n->input_node(n->num_inputs() - 1, &input_node)); EXPECT_EQ(input_node, key_placeholder); bool has_control_edge_to_sequencer = false; for (const Edge *e : n->out_edges()) { if (e->IsControlEdge() && e->dst() == sequencer) { has_control_edge_to_sequencer = true; break; } } EXPECT_TRUE(has_control_edge_to_sequencer); } } TEST_F(ExtractOutsideCompilationForFunctionTest, NoHostGraph) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); EXPECT_EQ(fld.Find("host_graph"), nullptr); } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInIf) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity_true_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_true_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_true_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *true_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "true_fn", true_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity_false_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_false_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_false_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *false_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "false_fn", false_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output cond = ops::Const(s.WithOpName("const0"), true, {2}); Output input = ops::Const(s.WithOpName("const1"), 1, {2}); NameAttrList true_fn; true_fn.set_name("true_fn"); NameAttrList false_fn; false_fn.set_name("false_fn"); auto if_op = ops::If(s.WithOpName("if"), cond, std::initializer_list<Input>{cond, input}, {DT_INT32}, true_fn, false_fn); ops::_Retval retval(s.WithOpName("retval"), if_op.output[0], 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *recv_if_pred_node = node_name_index["recv_oc_if_pred_if"]; EXPECT_NE(recv_if_pred_node, nullptr); Node *if_oc_node = node_name_index["oc_if_if"]; EXPECT_NE(if_oc_node, nullptr); Node *if_oc_node_cond_input; TF_CHECK_OK(if_oc_node->input_node(0, &if_oc_node_cond_input)); EXPECT_EQ(if_oc_node_cond_input, recv_if_pred_node); const FunctionDef *true_def = fld.Find("oc_then_branch_host_if_true_fn"); EXPECT_NE(true_def, nullptr); bool has_identity_true_fn_node = false; for (const auto &node_def : true_def->node_def()) { if (node_def.name() == "identity_true_fn") { has_identity_true_fn_node = true; break; } } EXPECT_TRUE(has_identity_true_fn_node); const FunctionDef *false_def = fld.Find("oc_else_branch_host_if_false_fn"); EXPECT_NE(false_def, nullptr); bool has_identity_false_fn_node = false; for (const auto &node_def : false_def->node_def()) { if (node_def.name() == "identity_false_fn") { has_identity_false_fn_node = true; break; } } EXPECT_TRUE(has_identity_false_fn_node); } { std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); Graph *xla_graph = xla_fbody->graph; auto node_name_index = xla_graph->BuildNodeNameIndex(); Node *send_if_pred_node = node_name_index["send_oc_if_pred_if"]; EXPECT_NE(send_if_pred_node, nullptr); bool has_control_edge_to_if = false; for (const Edge *e : send_if_pred_node->out_edges()) { if (e->IsControlEdge() && e->dst()->name() == "if") { has_control_edge_to_if = true; break; } } EXPECT_TRUE(has_control_edge_to_if); Node *if_node = node_name_index["if"]; EXPECT_NE(if_node, nullptr); std::vector<string> token_inputs; TF_CHECK_OK( GetNodeAttr(if_node->def(), "_xla_token_input_nodes", &token_inputs)); EXPECT_THAT(token_inputs, ::testing::ElementsAre("send_oc_if_pred_if")); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInWhile) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_BOOL, 0); Output identity = ops::Identity(s.WithOpName("identity_cond_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_cond_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_cond_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *cond_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cond_fn", cond_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_BOOL, 0); Output identity = ops::Identity(s.WithOpName("identity_body_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_body_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_body_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *body_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "body_fn", body_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("const0"), true, {2}); NameAttrList cond_fn; cond_fn.set_name("cond_fn"); NameAttrList body_fn; body_fn.set_name("body_fn"); auto while_op = ops::While(s.WithOpName("while"), std::initializer_list<Input>{input}, cond_fn, body_fn); ops::_Retval retval(s.WithOpName("retval"), while_op.output[0], 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *while_oc_node = node_name_index["oc_while_while"]; EXPECT_NE(while_oc_node, nullptr); const FunctionDef *cond_def = fld.Find("oc_cond_host_while_cond_fn"); EXPECT_NE(cond_def, nullptr); bool has_identity_cond_fn_node = false; for (const auto &node_def : cond_def->node_def()) { if (node_def.name() == "identity_cond_fn") { has_identity_cond_fn_node = true; break; } } EXPECT_TRUE(has_identity_cond_fn_node); const FunctionDef *body_def = fld.Find("oc_body_host_while_body_fn"); EXPECT_NE(body_def, nullptr); bool has_identity_body_fn_node = false; for (const auto &node_def : body_def->node_def()) { if (node_def.name() == "identity_body_fn") { has_identity_body_fn_node = true; break; } } EXPECT_TRUE(has_identity_body_fn_node); } { const FunctionDef *cond_def = fld.Find("cond_fn_oc"); EXPECT_NE(cond_def, nullptr); bool has_send_oc_while_cond_node = false; for (const auto &node_def : cond_def->node_def()) { if (node_def.name() == "send_oc_while_cond_while") { has_send_oc_while_cond_node = true; break; } } EXPECT_TRUE(has_send_oc_while_cond_node); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInFunction) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *true_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "fn", true_fn_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); { std::unique_ptr<Graph> g(new Graph(&fld)); tensorflow::TensorProto tensor_proto; tensor_proto.set_dtype(tensorflow::DT_INT32); tensorflow::TensorShapeProto shape; shape.add_dim()->set_size(2); *tensor_proto.mutable_tensor_shape() = shape; for (int i = 0; i < 2; ++i) { tensor_proto.add_int_val(1); } NodeDef const_def; TF_CHECK_OK(NodeDefBuilder("const", "Const") .Attr("dtype", DT_INT32) .Attr("value", tensor_proto) .Finalize(&const_def)); Status s; Node *const_node = g->AddNode(const_def, &s); TF_CHECK_OK(s); NodeDef fn_def; TF_CHECK_OK(NodeDefBuilder("fn", "fn", &fld) .Input("const", 0, DT_INT32) .Finalize(&fn_def)); Node *fn_node = g->AddNode(fn_def, &s); TF_CHECK_OK(s); g->AddEdge(const_node, 0, fn_node, 0); NodeDef ret_def; TF_CHECK_OK(NodeDefBuilder("ret", "_Retval") .Attr("index", 0) .Attr("T", DT_INT32) .Input("fn", 0, DT_INT32) .Finalize(&ret_def)); Node *ret_node = g->AddNode(ret_def, &s); TF_CHECK_OK(s); g->AddEdge(fn_node, 0, ret_node, 0); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); TF_CHECK_OK(fld.AddFunctionDef(*xla_fdef)); } protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *call_node = node_name_index["oc_call_fn"]; EXPECT_NE(call_node, nullptr); std::unique_ptr<FunctionBody> call_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("oc_func_call_host_fn"), AttrSlice(&host_func_attrs), &fld, &call_fbody)); bool has_recv = false, has_send = false; for (Node *n : call_fbody->graph->nodes()) { if (n->type_string() == "_XlaRecvAtHost") { has_recv = true; } else if (n->type_string() == "_XlaSendFromHost") { has_send = true; } } EXPECT_TRUE(has_recv); EXPECT_TRUE(has_send); } { std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); Graph *xla_graph = xla_fbody->graph; auto node_name_index = xla_graph->BuildNodeNameIndex(); Node *fn_node = node_name_index["fn"]; EXPECT_NE(fn_node, nullptr); EXPECT_EQ(fn_node->type_string(), "fn_oc"); std::unique_ptr<FunctionBody> call_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("fn_oc"), AttrSlice(), &fld, &call_fbody)); bool has_hc = false; for (Node *n : call_fbody->graph->nodes()) { if (n->type_string() == "XlaHostCompute") { has_hc = true; } } EXPECT_TRUE(has_hc); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationClusterDataDependency) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity(s.WithOpName("identity1"), identity0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); std::cout << "Graph is " << (*g).ToGraphDefDebug().DebugString() << std::endl; auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); std::vector<string> token_input_nodes; TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_0->attrs()), "_xla_token_input_nodes", &token_input_nodes)); std::vector<string> expected_token_input_nodes_0({"_xla_token_arg_node"}); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_0); token_input_nodes.clear(); std::vector<string> expected_token_input_nodes_1( {"_xla_token_arg_node", "outside_compilation_0_host_compute"}); TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_1->attrs()), "_xla_token_input_nodes", &token_input_nodes)); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_1); bool has_control_edge = false; for (const Edge *e : host_compute_1->in_edges()) { if (e->IsControlEdge() && e->src() == host_compute_0) { has_control_edge = true; break; } } EXPECT_TRUE(has_control_edge); } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationClusterControlDependency) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity( s.WithOpName("identity1").WithControlDependencies(identity0), const0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); std::cout << "Graph is " << (*g).ToGraphDefDebug().DebugString() << std::endl; auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); std::vector<string> token_input_nodes; TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_0->attrs()), "_xla_token_input_nodes", &token_input_nodes)); std::vector<string> expected_token_input_nodes_0({"_xla_token_arg_node"}); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_0); token_input_nodes.clear(); std::vector<string> expected_token_input_nodes_1( {"_xla_token_arg_node", "outside_compilation_0_host_compute"}); TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_1->attrs()), "_xla_token_input_nodes", &token_input_nodes)); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_1); bool has_control_edge = false; for (const Edge *e : host_compute_1->in_edges()) { if (e->IsControlEdge() && e->src() == host_compute_0) { has_control_edge = true; break; } } EXPECT_TRUE(has_control_edge); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/extract_outside_compilation_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/extract_outside_compilation_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2cef0ad9-29f3-4fb7-a084-6fed5363bd83
cpp
tensorflow/tensorflow
pjrt_compile_util
tensorflow/compiler/jit/pjrt_compile_util.cc
tensorflow/compiler/jit/pjrt_compile_util_test.cc
#include "tensorflow/compiler/jit/pjrt_compile_util.h" #include <vector> #include "tensorflow/compiler/jit/device_compilation_profiler.h" #include "tensorflow/compiler/jit/device_compiler.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/jit/xla_compiler_options_util.h" #include "tensorflow/compiler/jit/xla_platform_info.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; Status CompileToPjRtLoadedExecutable( const DeviceBase* device, const XlaPlatformInfo& platform_info, const NameAttrList& function, const std::vector<XlaCompiler::Argument>& args, DeviceCompileMode compile_mode, bool has_ref_vars, bool may_alias_resource_update, FunctionLibraryRuntime* flr, ResourceMgr* rm, const XlaCompiler::CompilationResult** compilation_result, xla::PjRtClient** client, xla::PjRtLoadedExecutable** executable) { PjRtDeviceCompiler* pjrt_device_compiler; DeviceCompilationProfiler* profiler; TF_RETURN_IF_ERROR(GetOrCreatePjRtDeviceCompilerAndProfiler( platform_info, rm, flr, &pjrt_device_compiler, &profiler)); core::ScopedUnref pjrt_device_compiler_ref(pjrt_device_compiler); core::ScopedUnref profiler_ref(profiler); *client = pjrt_device_compiler->client(); XlaCompiler::Options options = GenerateCompilerOptionsForPjRt( *flr, device, platform_info, pjrt_device_compiler); XlaCompiler::CompileOptions compile_options = GenerateCompileOptions(has_ref_vars, may_alias_resource_update); return pjrt_device_compiler->CompileIfNeeded( options, function, args, compile_options, compile_mode, profiler, compilation_result, executable); } Status CompileToPjRtLoadedExecutable( const OpKernelContext& ctx, const XlaPlatformInfo& platform_info, const NameAttrList& function, const std::vector<XlaCompiler::Argument>& args, DeviceCompileMode compile_mode, bool has_ref_vars, bool may_alias_resource_update, const XlaCompiler::CompilationResult** compilation_result, xla::PjRtClient** client, xla::PjRtLoadedExecutable** executable) { TF_ASSIGN_OR_RETURN(ResourceMgr * rm, GetResourceMgrForDeviceCompiler( ctx, platform_info.device_type())); return CompileToPjRtLoadedExecutable( ctx.device(), platform_info, function, args, compile_mode, has_ref_vars, may_alias_resource_update, ctx.function_library(), rm, compilation_result, client, executable); } }
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/compiler/jit/pjrt_compile_util.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tensorflow { namespace { StatusOr<std::unique_ptr<Graph>> SampleGraphAddXY() { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); return graph; } StatusOr<FunctionDef> SampleFuntionAddXY(const std::string& name) { TF_ASSIGN_OR_RETURN(auto graph, SampleGraphAddXY()); FunctionDef fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*graph, name, &fdef)); return fdef; } std::vector<XlaCompiler::Argument> SampleArgsForAddXY() { std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); return args; } TEST(PjrtCompileUtilTest, CompileToPjRtLoadedExecutable) { DeviceSetup device_setup; TF_ASSERT_OK_AND_ASSIGN(auto fdef, SampleFuntionAddXY("foo")); device_setup.AddDevicesAndSetUp({DEVICE_GPU}, fdef); Device* device = device_setup.GetDevice(DEVICE_GPU); const XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); NameAttrList function; function.set_name("foo"); ResourceMgr resource_mgr(""); const XlaCompiler::CompilationResult* compilation_result = nullptr; xla::PjRtLoadedExecutable* pjrt_executable = nullptr; xla::PjRtClient* pjrt_client = nullptr; TF_EXPECT_OK(CompileToPjRtLoadedExecutable( device, platform_info, function, SampleArgsForAddXY(), DeviceCompileMode::kStrict, true, true, device_setup.flr(), &resource_mgr, &compilation_result, &pjrt_client, &pjrt_executable)); EXPECT_TRUE(compilation_result != nullptr); EXPECT_TRUE(pjrt_executable != nullptr); EXPECT_TRUE(pjrt_client != nullptr); } TEST(PjrtCompileUtilTest, CompileToPjRtLoadedExecutableWithOpKernelContext) { DeviceSetup device_setup; TF_ASSERT_OK_AND_ASSIGN(auto fdef, SampleFuntionAddXY("foo")); device_setup.AddDevicesAndSetUp({DEVICE_GPU}, fdef); Device* device = device_setup.GetDevice(DEVICE_GPU); const XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(device); NameAttrList function; function.set_name("foo"); ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; params.device = device; params.function_library = device_setup.flr(); OpKernelContext ctx(&params, 1); const XlaCompiler::CompilationResult* compilation_result = nullptr; xla::PjRtLoadedExecutable* pjrt_executable = nullptr; xla::PjRtClient* pjrt_client = nullptr; TF_EXPECT_OK(CompileToPjRtLoadedExecutable( ctx, platform_info, function, SampleArgsForAddXY(), DeviceCompileMode::kStrict, true, true, &compilation_result, &pjrt_client, &pjrt_executable)); EXPECT_TRUE(compilation_result != nullptr); EXPECT_TRUE(pjrt_executable != nullptr); EXPECT_TRUE(pjrt_client != nullptr); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/pjrt_compile_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/pjrt_compile_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04076f27-7215-4ac2-a0ad-d0a45b77807a
cpp
tensorflow/tensorflow
build_xla_ops_pass
tensorflow/compiler/jit/build_xla_ops_pass.cc
tensorflow/compiler/jit/build_xla_ops_pass_test.cc
#include "tensorflow/compiler/jit/build_xla_ops_pass.h" #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/control_flow_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/logging_ops.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/device_util.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/cc/ops/xla_jit_ops.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { struct DebuggingOpts { bool print_outputs; bool check_input_numerics; bool check_output_numerics; }; void MoveOutgoingEdges(Graph* g, Node* old_node, Node* new_node) { std::vector<const Edge*> out_edges(old_node->out_edges().begin(), old_node->out_edges().end()); for (const Edge* edge : out_edges) { g->AddEdge(new_node, edge->src_output(), edge->dst(), edge->dst_input()); g->RemoveEdge(edge); } } Output ControlToData(const Scope& scope, Node* control) { Output data = ops::Const(scope.WithOpName("ctrl_as_data"), Tensor(DT_INT32, TensorShape({0}))); scope.graph()->AddControlEdge(control, data.node()); return Output(data.node()); } Operation DataToControl(const Scope& scope, Output data) { return Operation( ops::Identity(scope.WithOpName("data_as_ctrl"), data).node()); } void MergeOutgoingDataEdges(const Scope& s, Node* old_node, Node* new_node, absl::string_view cluster_name, const DebuggingOpts& debugging_opts) { if (!s.status().ok()) { return; } std::vector<Output> merged_outputs(old_node->num_outputs(), Output(nullptr)); std::vector<const Edge*> data_edges; absl::c_copy_if(old_node->out_edges(), std::back_inserter(data_edges), [](const Edge* e) { return !e->IsControlEdge(); }); for (const Edge* e : data_edges) { int oidx = e->src_output(); Output merged_output = merged_outputs[oidx]; if (merged_output.node() == nullptr) { Output new_output(new_node, oidx); if (debugging_opts.print_outputs) { string cpu_device = "/job:localhost/replica:0/task:0/device:CPU:0"; ops::Print print_op(s.WithOpName("print_", oidx) .WithDevice(cpu_device) .WithAssignedDevice(cpu_device), new_output, {new_output}, ops::Print::Attrs{} .Message(absl::StrCat("output ", oidx, " from ", old_node->name(), " is ")) .FirstN(1000) .Summarize(-1)); new_output = print_op; } if (debugging_opts.check_output_numerics && DataTypeIsFloating(new_output.type())) { ops::CheckNumerics check_numerics_op( s.WithOpName("check_output_", oidx) .WithDevice(new_node->requested_device()) .WithAssignedDevice(new_node->assigned_device_name()), new_output, absl::StrCat("CheckNumerics failed for output ", oidx, "(", new_output.name(), ") from cluster ", cluster_name)); new_output = check_numerics_op; } ops::_XlaMerge xla_merge_op(s.WithOpName("merge_oidx_", oidx), Output(old_node, oidx), new_output); merged_output = merged_outputs[oidx] = xla_merge_op.output; } Node* dst = e->dst(); int dst_idx = e->dst_input(); s.graph()->RemoveEdge(e); s.graph()->AddEdge(merged_output.node(), merged_output.index(), dst, dst_idx); } } void MergeOutgoingControlEdges(const Scope& s, Node* old_node, Node* new_node) { if (!s.status().ok()) { return; } std::vector<const Edge*> ctrl_edges; absl::c_copy_if(old_node->out_edges(), std::back_inserter(ctrl_edges), [](const Edge* e) { return e->IsControlEdge(); }); if (ctrl_edges.empty()) { return; } if (ctrl_edges.size() == 1 && ctrl_edges.front()->dst()->IsSink()) { s.graph()->AddControlEdge(new_node, s.graph()->sink_node()); return; } Output old_ctrl_as_data = ControlToData(s, old_node); Output new_ctrl_as_data = ControlToData(s, new_node); ops::Merge ctrl_merge_as_data(s.WithOpName("ctrl_merge"), {old_ctrl_as_data, new_ctrl_as_data}); Operation ctrl_merge = DataToControl(s, ctrl_merge_as_data.output); for (const Edge* e : ctrl_edges) { s.graph()->AddControlEdge(ctrl_merge.node(), e->dst()); s.graph()->RemoveControlEdge(e); } } struct XlaClusterInfo { std::vector<Output> constant_inputs; std::vector<Output> non_constant_inputs; std::vector<Output> resource_inputs; NameAttrList function; }; Output IncomingEdgeAsOutput(const Edge* e) { return Output(e->src(), e->src_output()); } Status GetXlaClusterInfo(Node* n, XlaClusterInfo* result) { int num_constant_inputs, num_resource_inputs; TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaNumConstantArgsAttr, &num_constant_inputs)); TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaNumResourceArgsAttr, &num_resource_inputs)); if (num_constant_inputs < 0 || num_resource_inputs < 0 || num_constant_inputs + num_resource_inputs > n->num_inputs()) { return errors::InvalidArgument( "Invalid number of constant/resource arguments to XLA kernel."); } int num_non_constant_inputs = n->num_inputs() - num_constant_inputs - num_resource_inputs; std::vector<const Edge*> input_edges_vector; TF_RETURN_IF_ERROR(n->input_edges(&input_edges_vector)); absl::Span<const Edge*> input_edges(input_edges_vector); absl::c_transform(input_edges.subspan(0, num_constant_inputs), std::back_inserter(result->constant_inputs), IncomingEdgeAsOutput); absl::c_transform( input_edges.subspan(num_constant_inputs, num_non_constant_inputs), std::back_inserter(result->non_constant_inputs), IncomingEdgeAsOutput); absl::c_transform( input_edges.subspan(num_constant_inputs + num_non_constant_inputs, num_resource_inputs), std::back_inserter(result->resource_inputs), IncomingEdgeAsOutput); result->function.set_name(n->type_string()); *result->function.mutable_attr() = n->def().attr(); return absl::OkStatus(); } Status CopyIncomingControlEdges(Graph* g, Node* from, Node* to) { for (const Edge* e : from->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), to); } } return absl::OkStatus(); } void RemoveAllIncomingControlEdges(Graph* g, Node* n) { std::vector<const Edge*> incoming_ctrl_edges; absl::c_copy_if(n->in_edges(), std::back_inserter(incoming_ctrl_edges), [](const Edge* e) { return e->IsControlEdge(); }); for (const Edge* e : incoming_ctrl_edges) { g->RemoveControlEdge(e); } } Status DeviceRequiresCompilation(const jit::DeviceInfoCache& device_info_cache, jit::DeviceId device, bool* result) { const XlaOpRegistry::DeviceRegistration* registration = device_info_cache.GetCompilationDevice(device); *result = registration->autoclustering_policy == XlaOpRegistry::AutoclusteringPolicy::kAlways; return absl::OkStatus(); } absl::StatusOr<Node*> ReplaceFunctionCallWithPartitionedCall( const GraphOptimizationPassOptions& options, const FunctionLibraryDefinition& flib_def, Node* n, Graph* g, const NameAttrList& func, const Scope& root) { string config_string = options.session_options->config.SerializeAsString(); int input_count = absl::c_count_if( n->in_edges(), [](const Edge* e) { return !e->IsControlEdge(); }); std::vector<Output> args(input_count); for (const Edge* e : n->in_edges()) { if (!e->IsControlEdge()) { args[e->dst_input()] = Output(e->src(), e->src_output()); } } ops::StatefulPartitionedCall call( root.WithOpName("stateful_partitioned_call"), args, n->output_types(), func, ops::StatefulPartitionedCall::Attrs{}.ConfigProto(config_string)); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), call.operation.node()); } } std::vector<const Edge*> edges_to_delete; for (const Edge* e : n->out_edges()) { edges_to_delete.push_back(e); if (e->IsControlEdge()) { g->AddControlEdge(call.operation.node(), e->dst()); } else { g->AddEdge(call.operation.node(), e->src_output(), e->dst(), e->dst_input()); } } for (const Edge* e : edges_to_delete) { g->RemoveEdge(e); } g->RemoveNode(n); return call.operation.node(); } absl::StatusOr<jit::DeviceId> InferDeviceForCluster( jit::DeviceInfoCache* device_info_cache, Node* n, const string& function_name, const FunctionLibraryDefinition& flib_def) { const FunctionDef* func_def = flib_def.Find(function_name); TF_RET_CHECK(func_def) << "Could not find " << function_name; jit::DeviceSet device_set; for (const NodeDef& ndef : func_def->node_def()) { VLOG(3) << ndef.DebugString(); if (!ndef.device().empty()) { TF_ASSIGN_OR_RETURN(jit::DeviceId device_id, device_info_cache->GetIdFor(ndef.device())); device_set.Insert(device_id); } } if (!n->assigned_device_name().empty()) { TF_ASSIGN_OR_RETURN(jit::DeviceId device_id, device_info_cache->GetIdFor(n->assigned_device_name())); device_set.Insert(device_id); } TF_ASSIGN_OR_RETURN(jit::DeviceId result, PickDeviceForXla(*device_info_cache, device_set, true)); VLOG(2) << "For " << function_name << " PickDeviceForXla(" << device_info_cache->DebugString(device_set) << ") -> " << device_info_cache->GetNameFor(result); return result; } std::vector<Output> GetXlaRunArgs(const Scope& s, const XlaClusterInfo& cluster_info, const DebuggingOpts& debugging_opts) { std::vector<Output> xla_run_args; xla_run_args.reserve(cluster_info.non_constant_inputs.size() + cluster_info.resource_inputs.size()); int input_idx = 0; for (const Output& o : cluster_info.non_constant_inputs) { if (debugging_opts.check_input_numerics && DataTypeIsFloating(o.type())) { ops::CheckNumerics check_numerics_op( s.WithOpName("check_input_", input_idx), o, absl::StrCat("CheckNumerics failed for input ", input_idx, "(", o.name(), ") into ", cluster_info.function.name())); xla_run_args.push_back(check_numerics_op); } else { xla_run_args.push_back(o); } input_idx++; } absl::c_copy(cluster_info.resource_inputs, std::back_inserter(xla_run_args)); return xla_run_args; } absl::StatusOr<MemoryTypeVector> GetOutputMemoryTypes(const Scope& root, Node* n) { MemoryTypeVector input_mtypes, output_mtypes; DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceNameToDeviceType(n->assigned_device_name(), &device_type)); TF_RETURN_IF_ERROR(MemoryTypesForNode(root.graph()->op_registry(), device_type, n->def(), &input_mtypes, &output_mtypes)); return output_mtypes; } Status PredicateInt32Inputs(const Scope& root, Node* n, Operation predicate_as_control) { std::vector<Output> int32_inputs; std::vector<int> int32_inputs_input_idxs; for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { continue; } if (e->src()->output_type(e->src_output()) == DT_INT32) { TF_ASSIGN_OR_RETURN(MemoryTypeVector source_output_mem_types, GetOutputMemoryTypes(root, e->src())); if (source_output_mem_types[e->src_output()] == DEVICE_MEMORY) { int32_inputs.push_back(Output(e->src(), e->src_output())); int32_inputs_input_idxs.push_back(e->dst_input()); } } } if (int32_inputs.empty()) { return absl::OkStatus(); } ops::IdentityN identity_n(root.WithOpName("int32_id_n"), int32_inputs); root.graph()->AddControlEdge(predicate_as_control.node(), identity_n.operation.node()); for (int i = 0, end = int32_inputs.size(); i < end; i++) { TF_RETURN_IF_ERROR(root.graph()->UpdateEdge(identity_n[i].node(), i, n, int32_inputs_input_idxs[i])); } return absl::OkStatus(); } Status ReplaceNodeWithXlaCompileAndXlaRun( jit::DeviceInfoCache* device_info_cache, const GraphOptimizationPassOptions& options, const FunctionLibraryDefinition& flib_def, bool lazy_compilation_enabled, const DebuggingOpts& debugging_opts, Graph* g, Node* n) { XlaClusterInfo cluster_info; TF_RETURN_IF_ERROR(GetXlaClusterInfo(n, &cluster_info)); TF_ASSIGN_OR_RETURN( jit::DeviceId device, InferDeviceForCluster(device_info_cache, n, cluster_info.function.name(), flib_def)); bool requires_compilation; TF_RETURN_IF_ERROR(DeviceRequiresCompilation(*device_info_cache, device, &requires_compilation)); if (!lazy_compilation_enabled) { requires_compilation = true; } string device_name_str = string(device_info_cache->GetNameFor(device)); Status status; Scope root = NewInternalScope(g, &status, nullptr) .NewSubScope(n->name()) .WithDevice(n->requested_device()) .WithAssignedDevice(device_name_str); ops::_XlaCompile xla_compile(root.WithOpName("xla_compile"), cluster_info.constant_inputs, cluster_info.non_constant_inputs, cluster_info.resource_inputs, requires_compilation, cluster_info.function); bool has_ref_attr; TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaHasReferenceVarsAttr, &has_ref_attr)); xla_compile.operation.node()->AddAttr(kXlaHasReferenceVarsAttr, has_ref_attr); TF_RETURN_IF_ERROR( CopyIncomingControlEdges(g, n, xla_compile.key.node())); std::vector<Output> xla_run_args = GetXlaRunArgs(root, cluster_info, debugging_opts); if (requires_compilation) { ops::_XlaRun xla_run(root.WithOpName("xla_run"), xla_run_args, xla_compile.key, n->output_types()); MoveOutgoingEdges(g, n, xla_run.operation.node()); g->RemoveNode(n); } else { ops::Switch s(root.WithOpName("predicated_compilation_key"), xla_compile.key, xla_compile.compilation_successful); Output predicated_compilation_key = s.output_true; Output inverse_predicated_compilation_key = s.output_false; ops::_XlaRun xla_run(root.WithOpName("xla_run"), xla_run_args, predicated_compilation_key, n->output_types()); MergeOutgoingControlEdges(root, n, xla_run.operation.node()); MergeOutgoingDataEdges(root, n, xla_run.operation.node(), cluster_info.function.name(), debugging_opts); TF_RETURN_IF_ERROR(root.status()); RemoveAllIncomingControlEdges(g, n); Operation inverse_predicate_as_control = DataToControl(root, inverse_predicated_compilation_key); g->AddControlEdge(inverse_predicate_as_control.node(), n); n->ClearAttr(kXlaCompiledKernelAttr); TF_ASSIGN_OR_RETURN(Node* const pco, ReplaceFunctionCallWithPartitionedCall( options, flib_def, n, g, cluster_info.function, root)); TF_RETURN_IF_ERROR( PredicateInt32Inputs(root, pco, inverse_predicate_as_control)); } return absl::OkStatus(); } } Status BuildXlaOpsPass::Run(const GraphOptimizationPassOptions& options) { Graph* graph = options.graph->get(); std::vector<Node*> xla_compiled_kernels; absl::c_copy_if(graph->op_nodes(), std::back_inserter(xla_compiled_kernels), [](const Node* n) { if (n->IsSend() || n->IsRecv() || n->IsControlFlow()) { return false; } return IsXlaCompiledKernel(*n); }); bool lazy_compilation_enabled = enable_lazy_compilation_ ? *enable_lazy_compilation_ : GetBuildXlaOpsPassFlags()->tf_xla_enable_lazy_compilation; jit::DeviceInfoCache device_info_cache; const BuildXlaOpsPassFlags& flags = *GetBuildXlaOpsPassFlags(); DebuggingOpts debugging_opts; debugging_opts.print_outputs = flags.tf_xla_print_cluster_outputs; debugging_opts.check_input_numerics = flags.tf_xla_check_cluster_input_numerics; debugging_opts.check_output_numerics = flags.tf_xla_check_cluster_output_numerics; VLOG(1) << "print_outputs = " << debugging_opts.print_outputs; VLOG(1) << "check_input_numerics = " << debugging_opts.check_input_numerics; VLOG(1) << "check_output_numerics = " << debugging_opts.check_output_numerics; for (Node* n : xla_compiled_kernels) { TF_RETURN_IF_ERROR(ReplaceNodeWithXlaCompileAndXlaRun( &device_info_cache, options, *options.flib_def, lazy_compilation_enabled, debugging_opts, graph, n)); } if (VLOG_IS_ON(1)) { DumpGraphToFile("build_xla_ops", *graph, options.flib_def); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/build_xla_ops_pass.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/node_matchers.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class BuildXlaOpsTest : public ::testing::Test { protected: void SetUp() override { CHECK(DeviceFactory::AddDevices( SessionOptions(), "/job:localhost/replica:0/task:0", &devices_) .ok()); } private: std::vector<std::unique_ptr<Device>> devices_; }; using ::tensorflow::testing::FindNodeByName; using ::tensorflow::testing::matchers::Attr; using ::tensorflow::testing::matchers::CtrlDeps; using ::tensorflow::testing::matchers::Inputs; using ::tensorflow::testing::matchers::NodeWith; using ::tensorflow::testing::matchers::Op; using ::tensorflow::testing::matchers::Out; using ::testing::_; Status BuildXlaOps(const Scope& s, const FunctionDefLibrary& fdef_lib, std::unique_ptr<Graph>* result) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(graph->op_registry(), fdef_lib); static const char* kCpuDevice = "/job:localhost/replica:0/task:0/cpu:0"; for (Node* n : graph->nodes()) { if (n->requested_device().empty()) { n->set_assigned_device_name(kCpuDevice); } else { n->set_assigned_device_name(n->requested_device()); } } FixupSourceAndSinkEdges(graph.get()); GraphOptimizationPassWrapper wrapper; GraphOptimizationPassOptions opt_options = wrapper.CreateGraphOptimizationPassOptions(&graph); opt_options.flib_def = &flib_def; BuildXlaOpsPass pass(true); TF_RETURN_IF_ERROR(pass.Run(opt_options)); VLOG(3) << graph->ToGraphDefDebug().DebugString(); *result = std::move(graph); return absl::OkStatus(); } Status MakeXlaCompiledKernel(Graph* graph, const string& callee_name, const string& node_name, int num_constant_args, int num_resource_args, Node** result) { NodeDef call_node; call_node.set_name(node_name); call_node.set_op(callee_name); AddNodeAttr(kXlaCompiledKernelAttr, true, &call_node); AddNodeAttr(kXlaNumConstantArgsAttr, num_constant_args, &call_node); AddNodeAttr(kXlaNumResourceArgsAttr, num_resource_args, &call_node); TF_ASSIGN_OR_RETURN(*result, graph->AddNode(call_node)); return absl::OkStatus(); } Status MakeXlaCompiledKernel(Graph* graph, const string& callee_name, const string& node_name, Node** result) { return MakeXlaCompiledKernel(graph, callee_name, node_name, 0, 0, result); } Node* MakeWrite(const Scope& scope, Output value_to_write, const string& id) { Output var_handle = ops::VarHandleOp(scope.WithOpName("Var_" + id), DT_FLOAT, TensorShape({})); ops::AssignVariableOp assign_op(scope.WithOpName("Assignee_" + id), var_handle, value_to_write); return assign_op.operation.node(); } Node* MakeWrite(const Scope& scope, const string& id) { return MakeWrite( scope, ops::Const(scope.WithOpName("ValueToAssign" + id), 1.0f), id); } FunctionDefLibrary CreateFunctionDefLibWithConstFunction(const string& name) { FunctionDefLibrary fdef_lib; FunctionDef func = FunctionDefHelper::Create( name, {}, {"out: float"}, {}, {FunctionDefHelper::Const("one", 1.0f)}, {{"out", "out:output:0"}}); *fdef_lib.add_function() = std::move(func); return fdef_lib; } TEST_F(BuildXlaOpsTest, ControlDepsPreserved) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:XLA_CPU:0"; Scope root = Scope::NewRootScope().WithDevice(kXlaDeviceName).ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); call->set_requested_device(kXlaDeviceName); Node* write_op = MakeWrite(root, "write"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); root.graph()->AddControlEdge(call, write_op); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, NodeWith(CtrlDeps(NodeWith(Op("_XlaRun"))))); } TEST_F(BuildXlaOpsTest, CleanFailureOnBogusAttr) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK( MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", 100, 100, &call)); Node* write_op = MakeWrite(root, "write"); root.graph()->AddControlEdge(call, write_op); std::unique_ptr<Graph> graph; Status failure_status = BuildXlaOps(root, fdef_lib, &graph); ASSERT_FALSE(failure_status.ok()); EXPECT_EQ(failure_status.code(), error::INVALID_ARGUMENT); } TEST_F(BuildXlaOpsTest, OnNonXlaDevice) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); TF_ASSERT_OK(root.DoShapeInference(call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); Node* write_op = MakeWrite(root, Output(call), "write_result"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); auto xla_compile = NodeWith(Op("_XlaCompile"), Attr("must_compile", false)); auto predicated_compilation_key = NodeWith(Op("Switch"), Inputs(Out(0, xla_compile), Out(1, xla_compile))); auto xla_run = NodeWith(Op("_XlaRun"), Inputs(Out(1, predicated_compilation_key))); auto tf_call = NodeWith(Op("StatefulPartitionedCall"), CtrlDeps(NodeWith(Op("Identity"), Inputs(Out(0, predicated_compilation_key))))); auto merge = NodeWith(Op("_XlaMerge"), Inputs(Out(tf_call), Out(xla_run))); auto assign_var = NodeWith(Op("AssignVariableOp"), Inputs(_, Out(merge))); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, assign_var); } TEST_F(BuildXlaOpsTest, OnXlaDevice) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:XLA_CPU:0"; Scope root = Scope::NewRootScope().WithDevice(kXlaDeviceName).ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->set_requested_device(kXlaDeviceName); TF_ASSERT_OK(root.DoShapeInference(call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); Node* write_op = MakeWrite(root, Output(call), "write_result"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); auto xla_op = NodeWith(Op("_XlaRun"), Inputs(Out(NodeWith(Op("_XlaCompile"))))); auto assign_var = NodeWith(Op("AssignVariableOp"), Inputs(Out(NodeWith()), Out(xla_op))); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, assign_var); } TEST_F(BuildXlaOpsTest, NoExtraMergeForEdgeToSink) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* sink_node = graph->sink_node(); EXPECT_THAT(sink_node, NodeWith(CtrlDeps(NodeWith(Op("_XlaRun")), NodeWith(Op("StatefulPartitionedCall")), NodeWith(Op("NoOp"))))); } #ifdef GOOGLE_CUDA FunctionDefLibrary CreateFunctionDefLibWithInt32Input(const string& name) { FunctionDefLibrary fdef_lib; FunctionDef func = FunctionDefHelper::Create( name, {"in: int32"}, {"out: int32"}, {}, {{{"out"}, "Identity", {"in"}}}, {{"out", "out:output:0"}}); *fdef_lib.add_function() = std::move(func); return fdef_lib; } TEST_F(BuildXlaOpsTest, NoDeviceToHostCopiesForClustersWithInt32Inputs) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:GPU:0"; Scope root = Scope::NewRootScope() .WithDevice(kXlaDeviceName) .WithAssignedDevice(kXlaDeviceName) .ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithInt32Input("cluster_int32"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK( MakeXlaCompiledKernel(root.graph(), "cluster_int32", "C", &call)); call->set_requested_device(kXlaDeviceName); call->AddAttr(kXlaHasReferenceVarsAttr, false); auto var = ops::VarHandleOp(root.WithOpName("var"), DT_INT32, TensorShape({})); auto int32_on_device = ops::ReadVariableOp(root.WithOpName("int32_on_device"), var, DT_INT32); root.graph()->AddEdge(int32_on_device.node(), 0, call, 0); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* stateful_partitioned_call_op = nullptr; for (Node* n : graph->op_nodes()) { if (n->type_string() == "StatefulPartitionedCall") { ASSERT_EQ(stateful_partitioned_call_op, nullptr); stateful_partitioned_call_op = n; } } ASSERT_NE(stateful_partitioned_call_op, nullptr); auto xla_compile = NodeWith(Op("_XlaCompile")); auto switch_on_compilation_pred = NodeWith(Op("Switch"), Inputs(Out(0, xla_compile), Out(1, xla_compile))); auto ctrl_dep = NodeWith(Op("Identity"), Inputs(Out(0, switch_on_compilation_pred))); EXPECT_THAT( stateful_partitioned_call_op, NodeWith(Inputs(Out(NodeWith(Op("IdentityN"), CtrlDeps(ctrl_dep)))))); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/build_xla_ops_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/build_xla_ops_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
abfebcd9-00e5-45bc-b724-26719c12e44e
cpp
tensorflow/tensorflow
device_compiler_client
tensorflow/compiler/jit/device_compiler_client.cc
tensorflow/compiler/jit/device_compiler_client_test.cc
#include "tensorflow/compiler/jit/device_compiler_client.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/core/util/determinism.h" namespace tensorflow { xla::ExecutableBuildOptions GetExecutableBuildOptions( const XlaCompiler::Options& options, const XlaCompiler::CompilationResult& result, int default_device_ordinal) { xla::ExecutableBuildOptions build_options; if (result.collective_info) { build_options.set_num_replicas(result.collective_info->group_size); } if (options.device_ordinal != -1) { build_options.set_device_ordinal(options.device_ordinal); } else if (default_device_ordinal != -1) { build_options.set_device_ordinal(default_device_ordinal); } build_options.set_result_layout(result.xla_output_shape); build_options.set_device_allocator(options.device_allocator.get()); build_options.set_alias_passthrough_params(options.alias_passthrough_params); build_options.mutable_debug_options()->set_xla_detailed_logging( options.detailed_logging); if (tensorflow::OpDeterminismRequired()) { build_options.mutable_debug_options()->set_xla_gpu_deterministic_ops(true); } return build_options; } }
#include "tensorflow/compiler/jit/device_compiler_client.h" #include <gtest/gtest.h> namespace tensorflow { namespace { TEST(GetExecutableOptionTest, Basic) { XlaCompiler::Options options; options.device_ordinal = 0; options.alias_passthrough_params = true; options.detailed_logging = true; XlaCompiler::CompilationResult result; xla::Shape xla_output_shape; result.xla_output_shape = xla_output_shape; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_EQ(build_option.device_ordinal(), 0); EXPECT_EQ(build_option.result_layout()->ToString(), xla_output_shape.ToString()); EXPECT_EQ(build_option.alias_passthrough_params(), true); EXPECT_EQ(build_option.debug_options().xla_detailed_logging(), true); EXPECT_EQ(build_option.debug_options().xla_enable_dumping(), true); } TEST(GetExecutableOptionTest, DefaultDeviceOrdinal) { XlaCompiler::Options options; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, 0); EXPECT_EQ(build_option.device_ordinal(), 0); } TEST(GetExecutableOptionTest, DeviceOrdinalNotSet) { XlaCompiler::Options options; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_EQ(build_option.device_ordinal(), -1); } TEST(GetExecutableOptionTest, DumpingWithoutDetailedLogging) { XlaCompiler::Options options; options.detailed_logging = false; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_FALSE(build_option.debug_options().xla_detailed_logging()); EXPECT_TRUE(build_option.debug_options().xla_enable_dumping()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compiler_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compiler_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0d3e2abc-aee0-4883-9b64-e40c9683c5e0
cpp
tensorflow/tensorflow
compilability_check_util
tensorflow/compiler/jit/compilability_check_util.cc
tensorflow/compiler/jit/compilability_check_util_test.cc
#include "tensorflow/compiler/jit/compilability_check_util.h" #include <algorithm> #include <atomic> #include <deque> #include <iterator> #include <limits> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/device_util.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/resource_operation_safety_analysis.h" #include "tensorflow/compiler/jit/xla_activity.pb.h" #include "tensorflow/compiler/jit/xla_activity_listener.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/compiler/tf2xla/resource_operation_table.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/union_find.h" #include "xla/util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { bool HasResourceInput(const Node& node) { return absl::c_count(node.input_types(), DT_RESOURCE) != 0; } void LogNotCompilable(const Node& node, absl::string_view reason = "") { VLOG(3) << "Found uncompilable node " << node.name() << " (op " << node.type_string() << ")" << (reason.empty() ? "" : ": ") << reason; } bool IsInOutsideCompilationCluster(const Node& n) { return n.attrs().Find(kXlaOutsideCompilationAttr) != nullptr; } Status MakeCallNodeFromAttribute(const Node& node, const std::string& attr_name, NodeDef* node_def) { const NameAttrList* name_attr; TF_RETURN_IF_ERROR(GetNodeAttr(node.attrs(), attr_name, &name_attr)); node_def->set_op(name_attr->name()); *(node_def->mutable_attr()) = name_attr->attr(); return absl::OkStatus(); } absl::StatusOr<std::vector<NodeDef>> MakeCallNodesFromAttribute( const Node& node, absl::string_view attr_name, absl::string_view call_name) { std::vector<NameAttrList> attr_lists; TF_RETURN_IF_ERROR(GetNodeAttr(node.attrs(), attr_name, &attr_lists)); std::vector<NodeDef> out; out.reserve(attr_lists.size()); for (int i = 0; i < attr_lists.size(); i++) { out.emplace_back(); NodeDef& inserted = out.back(); inserted.set_name(absl::StrCat(call_name, "_", i)); inserted.set_op(attr_lists[i].name()); *inserted.mutable_attr() = attr_lists[i].attr(); } return out; } class SinglePassSearch { public: explicit SinglePassSearch(absl::Span<int const> values) : current_index_(0), values_(values) {} bool ScanForValue(int value) { while (current_index_ < values_.size() && values_[current_index_] <= value) { if (values_[current_index_] == value) { current_index_++; return true; } current_index_++; } return false; } private: int current_index_; const absl::Span<int const> values_; }; } RecursiveCompilabilityChecker::UncompilableNodesMap RecursiveCompilabilityChecker::FindUncompilableNodes( const Node& node, FunctionLibraryRuntime* lib_runtime, const std::vector<RecursiveCompilabilityChecker::StackFrame>* node_stack_trace) const { std::vector<StackFrameView> stack_trace; if (node_stack_trace != nullptr) { for (const auto& frame : *node_stack_trace) { stack_trace.emplace_back( StackFrameView{frame.name, frame.function_name, frame.stack_trace}); } } stack_trace.emplace_back( StackFrameView{node.name(), "", node.GetStackTrace()}); RecursiveCompilabilityChecker::UncompilableNodesMap uncompilable_nodes; IsCompilableNode(node, lib_runtime, &stack_trace, nullptr, &uncompilable_nodes); return uncompilable_nodes; } bool RecursiveCompilabilityChecker::HasXLAKernel( const Node& node, string* uncompilable_reason) const { if (node.type_string() == "SymbolicGradient") { *uncompilable_reason = "SymbolicGradient should be handled by IsCompilableCall()."; return false; } if (node.type_string() == "Const") { const AttrValue* attr = node.attrs().Find("dtype"); if (!op_filter_.allow_string_consts && attr != nullptr && attr->type() == DT_STRING) { *uncompilable_reason = "Const op with type DT_STRING is not supported by XLA."; return false; } } if (HasForwardedRefInput(node)) { VLOG(2) << "Rejecting " << node.name() << ": Identity with unsafe cast."; *uncompilable_reason = "Identity with unsafe cast."; return false; } Status s = FindKernelDef(jit_device_type_, node.def(), nullptr, nullptr); if (!s.ok()) { *uncompilable_reason = s.message(); return false; } return true; } bool RecursiveCompilabilityChecker::IsCompilableIf( const Node& if_node, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { bool is_compilable = true; is_compilable &= ExtractNodeDefAndCheckCompilability( if_node, "then_branch", "if_then", encapsulating_function, lib_runtime, stack_trace, uncompilable_nodes); if (!uncompilable_nodes && !is_compilable) return is_compilable; is_compilable &= ExtractNodeDefAndCheckCompilability( if_node, "else_branch", "if_else", encapsulating_function, lib_runtime, stack_trace, uncompilable_nodes); return is_compilable; } bool RecursiveCompilabilityChecker::IsCompilableCase( const Node& case_node, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { absl::StatusOr<std::vector<NodeDef>> calls = MakeCallNodesFromAttribute(case_node, "branches", "branch"); if (!calls.ok()) { VLOG(2) << "Rejecting node " << case_node.name() << ": " << "missing attribute 'branches'"; return false; } bool is_compilable = true; for (const NodeDef& call : *calls) { is_compilable &= IsCompilableCall(call, lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes); } return is_compilable; } bool RecursiveCompilabilityChecker::IsCompilableWhile( const Node& while_node, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { bool is_compilable = true; is_compilable &= ExtractNodeDefAndCheckCompilability( while_node, "cond", "while_cond", encapsulating_function, lib_runtime, stack_trace, uncompilable_nodes); if (!uncompilable_nodes && !is_compilable) return is_compilable; is_compilable &= ExtractNodeDefAndCheckCompilability( while_node, "body", "while_body", encapsulating_function, lib_runtime, stack_trace, uncompilable_nodes); return is_compilable; } bool RecursiveCompilabilityChecker::ExtractNodeDefAndCheckCompilability( const Node& node, const std::string& attr_name, const std::string& call_name, NameAttrList* encapsulating_function, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { NodeDef call; call.set_name(call_name); if (!MakeCallNodeFromAttribute(node, attr_name, &call).ok()) { const auto uncompilable_reason = absl::StrCat( "missing '", attr_name, "' attribute from node", node.name()); MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); VLOG(2) << "Rejecting node " << node.name() << ": " << uncompilable_reason << "."; return false; } if (!IsCompilableCall(call, lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes)) { VLOG(2) << "Rejecting node " << node.name() << ": can't compile : " << call.op(); return false; } return true; } bool RecursiveCompilabilityChecker::IsCompilableCall( const NodeDef& call_def, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { if (stack_trace->size() > kMaxRecursionDepth) { std::string uncompilable_reason = "function depth limit exceeded"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); VLOG(2) << "Rejecting " << call_def.op() << ": " << uncompilable_reason << "."; return false; } FunctionLibraryRuntime::Handle handle; Status s; NameAttrList function; s = NameAndAttrsFromFunctionCall(call_def, &function); if (s.ok()) { s = lib_runtime->Instantiate(function.name(), AttrSlice(&function.attr()), &handle); } if (!s.ok()) { std::string uncompilable_reason = absl::StrCat("could not instantiate call: '", function.name(), "'"); MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); VLOG(2) << "Rejecting " << call_def.DebugString() << ": " << uncompilable_reason << " : " << s; return false; } auto release_handle_on_return = gtl::MakeCleanup( [&] { TF_CHECK_OK(lib_runtime->ReleaseHandle(handle)); }); const FunctionBody* fbody = lib_runtime->GetFunctionBody(handle); bool is_compilable = true; for (const Node* node : fbody->graph->op_nodes()) { stack_trace->emplace_back( StackFrameView{node->name(), function.name(), node->GetStackTrace()}); is_compilable &= IsCompilableNode(*node, lib_runtime, stack_trace, &function, uncompilable_nodes); stack_trace->pop_back(); if (!uncompilable_nodes && !is_compilable) return is_compilable; } return is_compilable; } bool RecursiveCompilabilityChecker::OpIsInaccurate(const Node& node) const { return node.type_string() == "SelfAdjointEigV2" || node.type_string() == "Svd"; } bool RecursiveCompilabilityChecker::OpIsSlow(const Node& node) const { return node.type_string() == "SelfAdjointEigV2" || node.type_string() == "Svd" || node.type_string() == "Qr" || node.type_string() == "MatrixInverse" || node.type_string() == "MatrixSolve" || node.type_string() == "ResizeBilinearGrad"; } bool RecursiveCompilabilityChecker::IsCompilableNode( const Node& node, FunctionLibraryRuntime* lib_runtime, std::vector<StackFrameView>* stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) const { auto stack_depth = stack_trace->size(); if (op_filter_.allow_outside_compiled && IsInOutsideCompilationCluster(node)) return true; if (node.IsSource() || node.IsSink()) { absl::string_view uncompilable_reason = "source or sink node"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (stack_depth == 1 && (node.type_string() == "_Arg" || node.type_string() == "_Retval")) { absl::string_view uncompilable_reason = "top level _Arg or _Retval"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (node.attrs().Find("_scoped_allocator") || node.attrs().Find("_forward_from")) { absl::string_view uncompilable_reason = "_scoped_allocator or _forward_from attribute"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } string uncompilable_reason; if (IsFunctionCall(*lib_runtime->GetFunctionLibraryDefinition(), node)) { if (!IsCompilableCall(node.def(), lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes)) { LogNotCompilable(node, "unsupported function"); return false; } } else if (!HasXLAKernel(node, &uncompilable_reason)) { MaybeMarkUncompilableNode( absl::StrCat("unsupported op: ", uncompilable_reason), *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (node.IsWhileNode() && !IsCompilableWhile(node, lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes)) { LogNotCompilable(node, "unsupported while"); return false; } if (node.IsIfNode() && !IsCompilableIf(node, lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes)) { LogNotCompilable(node, "unsupported if"); return false; } if (op_filter_.require_always_compilable && node.IsCaseNode() && !IsCompilableCase(node, lib_runtime, stack_trace, encapsulating_function, uncompilable_nodes)) { LogNotCompilable(node, "unsupported case"); return false; } if (!op_filter_.allow_stateful_rng_ops && IsStatefulRandomOp(node.type_string())) { absl::string_view uncompilable_reason = "stateful random op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_control_trigger && node.IsControlTrigger()) { absl::string_view uncompilable_reason = "not allowed control trigger"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_eliding_assert_and_checknumerics_ops && IsAssertOrCheckNumerics(node.type_string())) { absl::string_view uncompilable_reason = "Assert or CheckNumerics"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_collective_reduce_v2 && node.type_string() == "CollectiveReduceV2") { absl::string_view uncompilable_reason = "Collective op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_where_op && node.type_string() == "Where") { absl::string_view uncompilable_reason = "Where op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_unique_op && node.type_string() == "Unique") { absl::string_view uncompilable_reason = "Unique op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_ops_producing_or_consuming_variant && OpProducesOrConsumesVariant(node)) { absl::string_view uncompilable_reason = "DT_VARIANT producer/consumer"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_stack_ops && IsStackOp(node)) { absl::string_view uncompilable_reason = "Stack op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_tensor_array_ops && IsTensorArrayOp(node)) { absl::string_view uncompilable_reason = "TensorArray op"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_resource_ops_in_called_functions && stack_depth > 1 && HasResourceInput(node)) { absl::string_view uncompilable_reason = "resource variable op in called function"; MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_inaccurate_ops && OpIsInaccurate(node)) { absl::string_view uncompilable_reason = "operation with numerical accuracy issues"; BroadcastOptimizationRemark(XlaOptimizationRemark::INACCURATE_OPERATION, node.DebugString()) .IgnoreError(); MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } if (!op_filter_.allow_slow_ops && OpIsSlow(node)) { absl::string_view uncompilable_reason = "slow operation"; BroadcastOptimizationRemark(XlaOptimizationRemark::SLOW_OPERATION, node.DebugString()) .IgnoreError(); MaybeMarkUncompilableNode(uncompilable_reason, *stack_trace, encapsulating_function, uncompilable_nodes); LogNotCompilable(node, uncompilable_reason); return false; } return true; } RecursiveCompilabilityChecker::OperationFilter CreateOperationFilter( const XlaOpRegistry::DeviceRegistration& registration) { RecursiveCompilabilityChecker::OperationFilter op_filter; op_filter.allow_resource_ops_in_called_functions = registration.cluster_resource_variable_ops_unsafely; op_filter.allow_stack_ops = registration.cluster_stack_ops; op_filter.allow_tensor_array_ops = registration.cluster_tensor_array_ops; op_filter.allow_stateful_rng_ops = registration.cluster_stateful_rng_ops; op_filter.allow_control_trigger = registration.cluster_control_trigger; op_filter.allow_eliding_assert_and_checknumerics_ops = registration.elide_assert_and_checknumerics; op_filter.allow_ops_producing_or_consuming_variant = registration.cluster_variant_ops; op_filter.allow_slow_ops = registration.cluster_slow_ops; op_filter.allow_inaccurate_ops = registration.cluster_inaccurate_ops; return op_filter; } void RecursiveCompilabilityChecker::MaybeMarkUncompilableNode( const absl::string_view reason, const std::vector<StackFrameView>& stack_trace, NameAttrList* encapsulating_function, RecursiveCompilabilityChecker::UncompilableNodesMap* uncompilable_nodes) { if (!uncompilable_nodes) return; UncompilableNodeInfo node_info; node_info.uncompilable_reason = std::string(reason); absl::c_transform(stack_trace, std::back_inserter(node_info.stack_trace), [](const StackFrameView& stack_element) { return StackFrame{ std::string(stack_element.name), std::string(stack_element.function_name), stack_element.stack_trace}; }); node_info.name = std::string(stack_trace.back().name); auto function = encapsulating_function ? *encapsulating_function : NameAttrList(); auto function_identifier = function.ShortDebugString(); auto it = uncompilable_nodes->find(function_identifier); if (it == uncompilable_nodes->end()) { std::vector<RecursiveCompilabilityChecker::UncompilableNodeInfo> uncompilable_node_info{std::move(node_info)}; uncompilable_nodes->emplace( std::move(function_identifier), std::make_pair(function, std::move(uncompilable_node_info))); } else { it->second.second.emplace_back(std::move(node_info)); } } static bool HasBoolAttr(const NodeDef& node, const char* attr) { const auto& it = node.attr().find(attr); return it != node.attr().end() && it->second.b(); } bool CanCreateXlaKernel(const NodeDef& node_def) { return HasBoolAttr(node_def, kXlaMustCompileAttr); } Status GetBodyAndConstantsAndResources(FunctionLibraryRuntime* flr, const NameAttrList& function, const FunctionBody** fbody, std::vector<int>* constant_arg_indices, std::vector<int>* resource_arg_indices) { FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR( flr->Instantiate(function.name(), AttrSlice(&function.attr()), &handle)); *fbody = flr->GetFunctionBody(handle); CHECK(*fbody); const DataTypeVector& arg_types = (*fbody)->arg_types; std::vector<bool> const_args(arg_types.size()); TF_RETURN_IF_ERROR( BackwardsConstAnalysis(*((*fbody)->graph), &const_args, nullptr, flr)); for (size_t i = 0; i < const_args.size(); ++i) { if (const_args[i]) { constant_arg_indices->push_back(i); } } resource_arg_indices->reserve(arg_types.size()); for (size_t i = 0; i < arg_types.size(); ++i) { if (arg_types[i] == DT_RESOURCE) { resource_arg_indices->push_back(i); } } return absl::OkStatus(); } tensorflow::MemoryTypeVector GetInputMemoryTypes( const tensorflow::FunctionBody* fbody, absl::Span<int const> constant_arg_indices, absl::Span<int const> resource_arg_indices) { tensorflow::MemoryTypeVector input_memory_types(fbody->arg_types.size(), tensorflow::DEVICE_MEMORY); SinglePassSearch constants_search(constant_arg_indices); SinglePassSearch resources_search(resource_arg_indices); for (size_t i = 0; i < fbody->arg_types.size(); ++i) { if (resources_search.ScanForValue(i) || constants_search.ScanForValue(i)) { input_memory_types[i] = tensorflow::HOST_MEMORY; } } return input_memory_types; } tensorflow::MemoryTypeVector GetOutputMemoryTypes( const tensorflow::FunctionBody* fbody) { tensorflow::MemoryTypeVector output_memory_types(fbody->ret_types.size(), tensorflow::DEVICE_MEMORY); for (size_t i = 0; i < fbody->ret_types.size(); ++i) { if (fbody->ret_types[i] == tensorflow::DT_RESOURCE) { output_memory_types[i] = tensorflow::HOST_MEMORY; } } return output_memory_types; } static auto const ops_triggering_xla_compilation = new absl::flat_hash_set<std::string>{"XlaBroadcastHelper", "XlaCallModule", "XlaConv", "XlaConvV2", "XlaDequantize", "XlaDot", "XlaDotV2", "XlaDynamicSlice", "XlaDynamicUpdateSlice", "XlaEinsum", "XlaGather", "XlaIf", "XlaKeyValueSort", "XlaPad", "XlaRecv", "XlaReduce", "XlaReduceWindow", "XlaReplicaId", "XlaRngBitGenerator", "XlaScatter", "XlaSelectAndScatter", "XlaSelfAdjointEig", "XlaSend", "XlaSharding", "XlaSort", "XlaSpmdFullToShardShape", "XlaSpmdShardToFullShape", "XlaSvd", "XlaVariadicReduceV2", "XlaVariadicSort", "XlaWhile"}; bool NodeCanTriggerXlaCompilation(const NodeDef& node) { return node.attr().find(kXlaClusterIdAttr) != node.attr().end() || HasBoolAttr(node, kXlaMustCompileAttr) || HasBoolAttr(node, kXlaCompileAttr) || HasBoolAttr(node, kXlaScopeAttr) || HasBoolAttr(node, kXlaInternalScopeAttr) || ops_triggering_xla_compilation->count(node.op()); } bool CanTriggerXlaCompilation(const GraphDef& graph) { for (const FunctionDef& function : graph.library().function()) { for (const NodeDef& node : function.node_def()) { if (NodeCanTriggerXlaCompilation(node)) { return true; } } } for (const NodeDef& node : graph.node()) { if (NodeCanTriggerXlaCompilation(node)) { return true; } } return false; } }
#include "tensorflow/compiler/jit/compilability_check_util.h" #include "absl/memory/memory.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { AttrValue FuncListAttr(const absl::Span<const char* const> names) { AttrValue attr; for (const char* name : names) { attr.mutable_list()->add_func()->set_name(name); } return attr; } constexpr char kFunctionalIfNodeName[] = "If"; constexpr char kFunctionalCaseNodeName[] = "Case"; constexpr char kFunctionalWhileNodeName[] = "While"; constexpr char kCompilableFunctionName[] = "CompilableFn"; constexpr char kCompilableFunctionNodeName[] = "n_c"; constexpr char kUncompilableFunctionName[] = "UncompilableFn"; constexpr char kUncompilableFunctionNodeName[] = "n_c_uncompilable"; constexpr char kUncompilableFunctionTwoName[] = "UncompilableFnTwo"; constexpr char kUncompilableFunctionNodeTwoName[] = "n_d_uncompilable"; class DummyCompilableOp : public XlaOpKernel { public: explicit DummyCompilableOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { ctx->SetOutput(0, ctx->Input(0)); } }; REGISTER_OP("InputFloatOp").Output("o: float"); REGISTER_OP("CompilableOp").Input("i: float").Output("o: float"); REGISTER_XLA_OP(Name("CompilableOp").Device(DEVICE_CPU_XLA_JIT), DummyCompilableOp); REGISTER_OP("MissingKernel").Input("i: float").Output("o: float"); class CompilabilityCheckUtilTest : public ::testing::Test { protected: void SetUp() override { XlaOpRegistry::RegisterCompilationKernels(); op_filter_.allow_resource_ops_in_called_functions = false; op_filter_.allow_stack_ops = false; op_filter_.allow_tensor_array_ops = false; op_filter_.allow_stateful_rng_ops = false; op_filter_.allow_control_trigger = false; op_filter_.allow_eliding_assert_and_checknumerics_ops = false; op_filter_.allow_ops_producing_or_consuming_variant = false; op_filter_.allow_inaccurate_ops = false; op_filter_.allow_slow_ops = false; op_filter_.allow_outside_compiled = false; checker_ = CreateCompilabilityChecker(); } std::unique_ptr<RecursiveCompilabilityChecker> CreateCompilabilityChecker() { return std::make_unique<RecursiveCompilabilityChecker>(op_filter_, device_type_); } FunctionLibraryRuntime* GetFunctionLibraryRuntime() { OptimizerOptions opts; pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( nullptr, Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, flib_def_.get(), opts); return pflr_->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); } RecursiveCompilabilityChecker::OperationFilter op_filter_; DeviceType device_type_ = DeviceType(DEVICE_CPU_XLA_JIT); std::unique_ptr<FunctionDefLibrary> func_library_ = std::make_unique<FunctionDefLibrary>(); std::unique_ptr<FunctionLibraryDefinition> flib_def_ = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global(), *func_library_); std::unique_ptr<RecursiveCompilabilityChecker> checker_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; }; TEST_F(CompilabilityCheckUtilTest, CheckNonFunctionalNodes) { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); auto opts = builder.opts(); Node* const0 = ops::SourceOp("InputFloatOp", opts); Node* compilable_op = ops::UnaryOp("CompilableOp", const0, opts); Node* uncompilable_op = ops::UnaryOp("MissingKernel", compilable_op, opts); GraphDef graph_def; TF_EXPECT_OK(builder.ToGraphDef(&graph_def)); auto* flib_runtime = GetFunctionLibraryRuntime(); EXPECT_FALSE(checker_->IsCompilableNode(*const0, flib_runtime)); EXPECT_TRUE(checker_->IsCompilableNode(*compilable_op, flib_runtime)); EXPECT_FALSE(checker_->IsCompilableNode(*uncompilable_op, flib_runtime)); const auto uncompilable_nodes = checker_->FindUncompilableNodes(*uncompilable_op, flib_runtime); ASSERT_EQ(1, uncompilable_nodes.size()); auto node_info_it = uncompilable_nodes.find(NameAttrList().ShortDebugString()); ASSERT_NE(uncompilable_nodes.end(), node_info_it); const auto& uncompilable_nodes_inside_function = node_info_it->second.second; ASSERT_EQ(1, uncompilable_nodes_inside_function.size()); const auto& uncompilable_node_info = uncompilable_nodes_inside_function.at(0); EXPECT_TRUE(absl::StrContains(uncompilable_node_info.uncompilable_reason, "unsupported op")); ASSERT_EQ(1, uncompilable_node_info.stack_trace.size()); ASSERT_EQ("", uncompilable_node_info.stack_trace.at(0).function_name); } TEST_F(CompilabilityCheckUtilTest, CheckOutsideCompiledNode) { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); auto opts = builder.opts(); Node* const0 = ops::SourceOp("InputFloatOp", opts); Node* uncompilable_op = ops::UnaryOp("MissingKernel", const0, opts); uncompilable_op->AddAttr("_xla_outside_compilation", "0"); GraphDef graph_def; TF_EXPECT_OK(builder.ToGraphDef(&graph_def)); auto* flib_runtime = GetFunctionLibraryRuntime(); EXPECT_FALSE(checker_->IsCompilableNode(*uncompilable_op, flib_runtime)); const auto uncompilable_nodes = checker_->FindUncompilableNodes(*uncompilable_op, flib_runtime); ASSERT_EQ(1, uncompilable_nodes.size()); op_filter_.allow_outside_compiled = true; checker_ = CreateCompilabilityChecker(); EXPECT_TRUE(checker_->IsCompilableNode(*uncompilable_op, flib_runtime)); const auto uncompilable_nodes2 = checker_->FindUncompilableNodes(*uncompilable_op, flib_runtime); ASSERT_EQ(0, uncompilable_nodes2.size()); } TEST_F(CompilabilityCheckUtilTest, CheckSimpleFunctionNode) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionName, {"n_a:float"}, {"n_c_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeName}, "MissingKernel", {"n_a"}}}); flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately, flib_def_.get()); std::unique_ptr<Graph> graph(new Graph(flib_def_.get())); Node* const0 = ops::SourceOp("InputFloatOp", builder.opts()); Node* functional_node = ops::UnaryOp(kUncompilableFunctionName, const0, builder.opts().WithName("D")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); auto* flib_runtime = GetFunctionLibraryRuntime(); EXPECT_FALSE(checker_->IsCompilableNode(*functional_node, flib_runtime)); const auto uncompilable_nodes = checker_->FindUncompilableNodes(*functional_node, flib_runtime); EXPECT_EQ(1, uncompilable_nodes.size()); NameAttrList function; function.set_name(kUncompilableFunctionName); const auto node_info_it = uncompilable_nodes.find(function.ShortDebugString()); ASSERT_NE(uncompilable_nodes.end(), node_info_it); const auto& uncompilable_node_list = node_info_it->second.second; ASSERT_EQ(1, uncompilable_node_list.size()); const auto& node_info = uncompilable_node_list.at(0); const auto& node_stack = node_info.stack_trace; ASSERT_EQ(2, node_stack.size()); EXPECT_EQ("D", node_stack.at(0).name); EXPECT_EQ(kUncompilableFunctionNodeName, node_stack.at(1).name); EXPECT_EQ(kUncompilableFunctionNodeName, node_info.name); EXPECT_TRUE( absl::StrContains(node_info.uncompilable_reason, "unsupported op")); } TEST_F(CompilabilityCheckUtilTest, CheckFunctionalWhileNode) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Define( kCompilableFunctionName, {"n_a:float", "n_b:float"}, {"n_c:float"}, {}, {{{kCompilableFunctionNodeName}, "Add", {"n_a", "n_b"}, {{"T", DT_FLOAT}}}}); *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionName, {"n_a:float"}, {"n_c_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeName}, "MissingKernel", {"n_a"}}}); flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately, flib_def_.get()); Node* const0 = ops::SourceOp("InputFloatOp", builder.opts()); Node* input_node = ops::UnaryOp("CompilableOp", const0, builder.opts()); NameAttrList compilable; compilable.set_name(kCompilableFunctionName); NameAttrList uncompilable; uncompilable.set_name(kUncompilableFunctionName); NodeBuilder while_builder(kFunctionalWhileNodeName, "While", builder.opts().op_registry()); while_builder.Input({input_node, input_node}) .Attr("cond", compilable) .Attr("body", uncompilable); builder.opts().FinalizeBuilder(&while_builder); GraphDef graph_def; TF_EXPECT_OK(builder.ToGraphDef(&graph_def)); std::unique_ptr<Graph> graph(new Graph(flib_def_.get())); TF_CHECK_OK(GraphDefBuilderToGraph(builder, graph.get())); auto while_node_it = std::find_if( graph->nodes().begin(), graph->nodes().end(), [&](const Node* n) { return n->name() == kFunctionalWhileNodeName; }); EXPECT_NE(while_node_it, graph->nodes().end()); auto* flib_runtime = GetFunctionLibraryRuntime(); EXPECT_FALSE(checker_->IsCompilableNode(**while_node_it, flib_runtime)); const auto uncompilable_nodes = checker_->FindUncompilableNodes(**while_node_it, flib_runtime); ASSERT_EQ(1, uncompilable_nodes.size()); NameAttrList function; function.set_name(kUncompilableFunctionName); const auto node_info_it = uncompilable_nodes.find(function.ShortDebugString()); ASSERT_NE(uncompilable_nodes.end(), node_info_it); const auto& uncompilable_node_list = node_info_it->second.second; ASSERT_EQ(1, uncompilable_node_list.size()); const auto& node_info = uncompilable_node_list.at(0); const auto& node_stack = node_info.stack_trace; ASSERT_EQ(2, node_stack.size()); const auto& stacktrace_first_node_info = node_stack.at(0); EXPECT_EQ(kFunctionalWhileNodeName, stacktrace_first_node_info.name); EXPECT_EQ("", stacktrace_first_node_info.function_name); const auto& stacktrace_second_node_info = node_stack.at(1); EXPECT_EQ(kUncompilableFunctionNodeName, stacktrace_second_node_info.name); EXPECT_EQ(kUncompilableFunctionName, stacktrace_second_node_info.function_name); EXPECT_EQ(kUncompilableFunctionNodeName, node_info.name); EXPECT_TRUE( absl::StrContains(node_info.uncompilable_reason, "unsupported op")); } TEST_F(CompilabilityCheckUtilTest, CheckFunctionalIfNode) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionName, {"n_a:float"}, {"n_c_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeName}, "MissingKernel", {"n_a"}}}); *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionTwoName, {"n_a:float"}, {"n_d_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeTwoName}, "MissingKernel", {"n_a"}}}); NameAttrList uncompilable_fn1_attr; uncompilable_fn1_attr.set_name(kUncompilableFunctionName); NameAttrList uncompilable_fn2_attr; uncompilable_fn2_attr.set_name(kUncompilableFunctionTwoName); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(flib)); auto predicate = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); auto placeholder = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> if_inputs( {NodeBuilder::NodeOut(placeholder.node())}); Node* if_node; TF_ASSERT_OK( NodeBuilder(kFunctionalIfNodeName, "If", &root.graph()->flib_def()) .Input(predicate.node()) .Input(if_inputs) .Attr("then_branch", uncompilable_fn1_attr) .Attr("else_branch", uncompilable_fn2_attr) .Attr("Tout", {DT_INT32}) .Finalize(root.graph(), &if_node)); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(root.ToGraph(graph.get())); flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); auto if_node_it = std::find_if( graph->nodes().begin(), graph->nodes().end(), [&](const Node* n) { return n->name() == kFunctionalIfNodeName; }); EXPECT_NE(if_node_it, graph->nodes().end()); auto* flib_runtime = GetFunctionLibraryRuntime(); EXPECT_FALSE(checker_->IsCompilableNode(**if_node_it, flib_runtime)); const auto uncompilable_nodes = checker_->FindUncompilableNodes(**if_node_it, flib_runtime); ASSERT_EQ(2, uncompilable_nodes.size()); NameAttrList function_one; function_one.set_name(kUncompilableFunctionName); auto it = uncompilable_nodes.find(function_one.ShortDebugString()); ASSERT_NE(uncompilable_nodes.end(), it); const auto& uncompilable_node_list = it->second.second; ASSERT_EQ(1, uncompilable_node_list.size()); const auto& uncompilable_node_one = uncompilable_node_list.at(0); const auto& node_one_stack = uncompilable_node_one.stack_trace; ASSERT_EQ(2, node_one_stack.size()); const auto& node_one_stacktrace_first_node = node_one_stack.at(0); EXPECT_EQ(kFunctionalIfNodeName, node_one_stacktrace_first_node.name); EXPECT_EQ("", node_one_stacktrace_first_node.function_name); const auto& stacktrace_second_node_info = node_one_stack.at(1); EXPECT_EQ(kUncompilableFunctionNodeName, stacktrace_second_node_info.name); EXPECT_EQ(kUncompilableFunctionName, stacktrace_second_node_info.function_name); EXPECT_EQ(kUncompilableFunctionNodeName, uncompilable_node_one.name); EXPECT_TRUE(absl::StrContains(uncompilable_node_one.uncompilable_reason, "unsupported op")); NameAttrList function_two; function_two.set_name(kUncompilableFunctionTwoName); it = uncompilable_nodes.find(function_two.ShortDebugString()); ASSERT_NE(uncompilable_nodes.end(), it); const auto& uncompilable_node_two_list = it->second.second; ASSERT_EQ(1, uncompilable_node_two_list.size()); const auto& uncompilable_node_two = uncompilable_node_two_list.at(0); const auto& node_two_stack = uncompilable_node_two.stack_trace; ASSERT_EQ(2, node_two_stack.size()); const auto& node_two_stacktrace_first_node = node_two_stack.at(0); EXPECT_EQ(kFunctionalIfNodeName, node_two_stacktrace_first_node.name); EXPECT_EQ("", node_two_stacktrace_first_node.function_name); const auto& node_two_stacktrace_second_node = node_two_stack.at(1); EXPECT_EQ(kUncompilableFunctionNodeTwoName, node_two_stacktrace_second_node.name); EXPECT_EQ(kUncompilableFunctionTwoName, node_two_stacktrace_second_node.function_name); EXPECT_EQ(kUncompilableFunctionNodeTwoName, uncompilable_node_two.name); EXPECT_TRUE(absl::StrContains(uncompilable_node_one.uncompilable_reason, "unsupported op")); } TEST_F(CompilabilityCheckUtilTest, CheckFunctionalCaseNode) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionName, {"n_a:float"}, {"n_c_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeName}, "MissingKernel", {"n_a"}}}); *flib.add_function() = FunctionDefHelper::Define( kUncompilableFunctionTwoName, {"n_a:float"}, {"n_d_uncompilable:float"}, {}, {{{kUncompilableFunctionNodeTwoName}, "MissingKernel", {"n_a"}}}); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(flib)); auto branch_index = ops::Placeholder(root.WithOpName("pred"), DT_INT32); auto placeholder = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> inputes( {NodeBuilder::NodeOut(placeholder.node())}); Node* case_node; TF_ASSERT_OK( NodeBuilder(kFunctionalCaseNodeName, "Case", &root.graph()->flib_def()) .Input(branch_index.node()) .Input(inputes) .Attr("branches", FuncListAttr({kUncompilableFunctionName, kUncompilableFunctionTwoName})) .Attr("Tout", {DT_INT32}) .Finalize(root.graph(), &case_node)); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(root.ToGraph(graph.get())); flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); auto case_node_it = std::find_if( graph->nodes().begin(), graph->nodes().end(), [&](const Node* n) { return n->name() == kFunctionalCaseNodeName; }); EXPECT_NE(case_node_it, graph->nodes().end()); auto* flib_runtime = GetFunctionLibraryRuntime(); op_filter_.require_always_compilable = false; checker_ = CreateCompilabilityChecker(); EXPECT_TRUE(checker_->IsCompilableNode(**case_node_it, flib_runtime)); op_filter_.require_always_compilable = true; checker_ = CreateCompilabilityChecker(); EXPECT_FALSE(checker_->IsCompilableNode(**case_node_it, flib_runtime)); } TEST_F(CompilabilityCheckUtilTest, TestCanNotTriggerXlaCompilation) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; FunctionDef identity_func = FunctionDefHelper::Create( "IdentityFunc", {"x:float"}, {"res:float"}, {}, {{{"t0"}, "Identity", {"x"}, {{"T", DT_FLOAT}}}}, {{"res", "t0:output"}}); *library.add_function() = identity_func; Output in = ops::Placeholder(root, DT_FLOAT); NameAttrList b_name_attr; b_name_attr.set_name("IdentityFunc"); ops::PartitionedCall call(root.WithOpName("call"), {in}, {DT_FLOAT}, b_name_attr); GraphDef graph_def; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); TF_ASSERT_OK(root.ToGraphDef(&graph_def)); EXPECT_FALSE(CanTriggerXlaCompilation(graph_def)); } TEST_F(CompilabilityCheckUtilTest, TestXlaOpsCanTriggerXlaCompilation) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; FunctionDef sort_func = FunctionDefHelper::Create( "SortFunc", {"x:float"}, {"res:float"}, {}, {{{"t0"}, "XlaSort", {"x"}, {{"T", DT_FLOAT}}}}, {{"res", "t0:output"}}); *library.add_function() = sort_func; Output in = ops::Placeholder(root, DT_FLOAT); NameAttrList b_name_attr; b_name_attr.set_name("SortFunc"); ops::PartitionedCall call(root.WithOpName("call"), {in}, {DT_FLOAT}, b_name_attr); GraphDef graph_def; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); TF_ASSERT_OK(root.ToGraphDef(&graph_def)); EXPECT_TRUE(CanTriggerXlaCompilation(graph_def)); } TEST_F(CompilabilityCheckUtilTest, TestCanTriggerXlaCompilation) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; AttrValue true_attribute; true_attribute.set_b(true); FunctionDef identity_func = FunctionDefHelper::Create( "IdentityFunc", {"x:float"}, {"res:float"}, {}, {{{"t0"}, "Identity", {"x"}, {{"T", DT_FLOAT}}}}, {{"res", "t0:output"}}); (*identity_func.mutable_attr())[kXlaMustCompileAttr] = true_attribute; FunctionDef call_identity = FunctionDefHelper::Create( "CallIdentity", {"x:float"}, {"z:float"}, {}, {{{"func_call"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice({DT_FLOAT})}, {"Tout", DataTypeSlice({DT_FLOAT})}, {"f", FunctionDefHelper::FunctionRef("IdentityRef", {{"T", DT_FLOAT}})}, {kXlaMustCompileAttr, true}}}}, {{"z", "func_call:output:0"}}); *library.add_function() = identity_func; *library.add_function() = call_identity; Output in = ops::Placeholder(root, DT_FLOAT); NameAttrList b_name_attr; b_name_attr.set_name("CallIdentity"); ops::PartitionedCall call(root.WithOpName("call"), {in}, {DT_FLOAT}, b_name_attr); GraphDef graph_def; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); TF_ASSERT_OK(root.ToGraphDef(&graph_def)); EXPECT_TRUE(CanTriggerXlaCompilation(graph_def)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/compilability_check_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/compilability_check_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
39252d35-6f59-4b20-8f33-d23b8995e42d
cpp
tensorflow/tensorflow
xla_cluster_util
tensorflow/compiler/jit/xla_cluster_util.cc
tensorflow/compiler/jit/xla_cluster_util_test.cc
#include "tensorflow/compiler/jit/xla_cluster_util.h" #include <string> #include <unordered_map> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/compiler/jit/flags.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/xla_config_registry.h" namespace tensorflow { const char* const kXlaClusterAttr = "_XlaCluster"; const char* const kXlaCompileTimeConstantInputsAttr = "_XlaCompileTimeConstantInputs"; namespace { string DescribeCycle(const xla::GraphCycles* cycles, const Graph& graph, int src, int dst) { int32_t max_path_size = graph.num_node_ids() + 1; std::vector<int32> path(max_path_size); int32_t path_size = cycles->FindPath(dst, src, max_path_size, path.data()); if (path_size == 0) { return ""; } auto node_name = [&graph](int node_id) { if (!FastBoundsCheck(node_id, graph.num_node_ids())) { return string("(null)"); } auto* node = graph.FindNodeId(node_id); if (node == nullptr) { return string("(null)"); } return node->name(); }; string description; absl::StrAppend(&description, "Edge from ", node_name(src), " to ", node_name(dst), " would create a cycle.\n"); path.resize(path_size); for (int32_t node_id : path) { string ascii_art; if (node_id == dst) { ascii_art = "+-> "; } else if (node_id != src) { ascii_art = "| "; } else { ascii_art = "+-- "; } absl::StrAppend(&description, ascii_art, node_name(node_id), "\n"); } return description; } bool AlwaysForwardsRefInput(const Node& node) { return node.IsIdentity(); } } bool HasForwardedRefInput(const Node& node) { if (AlwaysForwardsRefInput(node)) { for (const Edge* incoming_edge : node.in_edges()) { if (incoming_edge->IsControlEdge()) { continue; } Node* incoming_node = incoming_edge->src(); if (IsRefType(incoming_node->output_type(incoming_edge->src_output()))) { VLOG(2) << "Node " << node.def().ShortDebugString() << " has ref input " << incoming_node->name() << " " << incoming_node->type_string(); return true; } } } return false; } absl::StatusOr<bool> CreateCycleDetectionGraph(const Graph* graph, xla::GraphCycles* cycles) { for (int i = 0; i < graph->num_node_ids(); ++i) { CHECK_EQ(i, cycles->NewNode()); } std::vector<ControlFlowInfo> control_flow_info; TF_RETURN_IF_ERROR(BuildControlFlowInfo(graph, &control_flow_info)); std::unordered_map<string, int> frame_nodes; auto GetOrAddFrameNodeId = [&frame_nodes, cycles](const string& frame_name) { int& frame_id = frame_nodes.emplace(frame_name, -1).first->second; if (frame_id < 0) { frame_id = cycles->NewNode(); } return frame_id; }; for (Edge const* edge : graph->edges()) { if (edge->dst()->IsEnter() || edge->src()->IsExit()) { const char* src_type = "pre-enter"; const char* dst_type = "post-exit"; int src = edge->src()->id(); int dst = edge->dst()->id(); if (edge->dst()->IsEnter()) { const string& frame_name = control_flow_info[edge->dst()->id()].frame_name; dst = GetOrAddFrameNodeId(frame_name); dst_type = "frame"; } if (edge->src()->IsExit()) { const string& frame_name = control_flow_info[edge->src()->id()].frame_name; src = GetOrAddFrameNodeId(frame_name); src_type = "frame"; } if (!cycles->InsertEdge(src, dst)) { VLOG(1) << "Cycle detected when adding " << src_type << "->" << dst_type << " edge: " << DescribeCycle(cycles, *graph, src, dst); return false; } continue; } if (edge->src()->IsNextIteration()) { continue; } if (!cycles->InsertEdge(edge->src()->id(), edge->dst()->id())) { return errors::Internal( "Found cycle in graph without control flow operator during XLA " "compilation: ", DescribeCycle(cycles, *graph, edge->src()->id(), edge->dst()->id())); } } return true; } std::optional<absl::string_view> GetXlaClusterForNode(const Node& node) { const AttrValue* attr_value = node.attrs().Find(kXlaClusterAttr); if (attr_value == nullptr) { return std::nullopt; } Status s = AttrValueHasType(*attr_value, "string"); if (!s.ok()) { return std::nullopt; } return attr_value->s(); } bool HasResourceInputOrOutput(const Node& node) { return std::find(node.input_types().begin(), node.input_types().end(), DT_RESOURCE) != node.input_types().end() || std::find(node.output_types().begin(), node.output_types().end(), DT_RESOURCE) != node.output_types().end(); } void RemoveFromXlaCluster(NodeDef* node_def) { node_def->mutable_attr()->erase(kXlaClusterAttr); } void RemoveFromXlaCluster(Node* node) { node->ClearAttr(kXlaClusterAttr); } namespace { typedef xla_config_registry::XlaGlobalJitLevel XlaGlobalJitLevel; XlaGlobalJitLevel GetXlaGlobalJitLevel( const OptimizerOptions::GlobalJitLevel& jit_level_in_session_opts) { XlaGlobalJitLevel result; if (jit_level_in_session_opts == OptimizerOptions::DEFAULT) { result.single_gpu = result.general = OptimizerOptions::OFF; } else { result.single_gpu = result.general = jit_level_in_session_opts; } MarkForCompilationPassFlags* flags = GetMarkForCompilationPassFlags(); if (flags->xla_auto_jit_flag.optimization_level_single_gpu != OptimizerOptions::DEFAULT) { result.single_gpu = static_cast<OptimizerOptions::GlobalJitLevel>( flags->xla_auto_jit_flag.optimization_level_single_gpu); } if (flags->xla_auto_jit_flag.optimization_level_general != OptimizerOptions::DEFAULT) { result.general = static_cast<OptimizerOptions::GlobalJitLevel>( flags->xla_auto_jit_flag.optimization_level_general); } return result; } int GetGpuNumber(const string& device_name) { DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(device_name, &parsed_name)) { return -1; } return parsed_name.type == DEVICE_GPU ? parsed_name.id : -1; } } bool IsSingleGpuGraph(const Graph& g) { int gpus_seen = 0; absl::flat_hash_set<string> devices_seen; for (Node* n : g.op_nodes()) { if (devices_seen.contains(n->assigned_device_name())) { continue; } int gpu_number = GetGpuNumber(n->assigned_device_name()); if (gpu_number != -1) { if (++gpus_seen > 1) { return false; } } devices_seen.insert(n->assigned_device_name()); } return gpus_seen == 1; } OptimizerOptions::GlobalJitLevel GetGlobalJitLevelForGraph( const GraphOptimizationPassOptions& options) { OptimizerOptions::GlobalJitLevel jit_level_in_session_opts = options.session_options->config.graph_options() .optimizer_options() .global_jit_level(); XlaGlobalJitLevel xla_global_jit_level = GetXlaGlobalJitLevel(jit_level_in_session_opts); if (xla_global_jit_level.single_gpu == xla_global_jit_level.general) { VLOG(4) << "GetGlobalJitLevelForGraph returning " << xla_global_jit_level.single_gpu; return xla_global_jit_level.single_gpu; } OptimizerOptions::GlobalJitLevel result = IsSingleGpuGraph(**options.graph) ? xla_global_jit_level.single_gpu : xla_global_jit_level.general; VLOG(4) << "GetGlobalJitLevelForGraph returning " << result; return result; } bool MayCallFunction(const Node& n, const FunctionLibraryDefinition* flib_def) { if (flib_def->Contains(n.type_string())) { return true; } return absl::c_any_of(n.def().attr(), [](const std::pair<string, AttrValue>& name_attr_pair) { return name_attr_pair.second.has_func(); }); } bool IsShapeConsumerOp(const Node& node) { return node.type_string() == "Shape" || node.type_string() == "Rank" || node.type_string() == "Size"; } namespace { struct ClusterInfo { int size; absl::flat_hash_map<absl::string_view, int> op_histogram; }; void HistogramMapToRepeatedOpAndCount( protobuf::RepeatedPtrField<XlaAutoClusteringSummary::OpAndCount>* result, const absl::flat_hash_map<absl::string_view, int>& histogram) { for (const auto& pair : histogram) { XlaAutoClusteringSummary::OpAndCount* new_entry = result->Add(); new_entry->set_op(std::string(pair.first)); new_entry->set_count(pair.second); } absl::c_sort(*result, [](const XlaAutoClusteringSummary::OpAndCount& a, const XlaAutoClusteringSummary::OpAndCount& b) { return a.op() < b.op(); }); } void ClusterInfoToProtobuf(XlaAutoClusteringSummary::Cluster* result, absl::string_view name, const ClusterInfo& info) { result->set_name(std::string(name)); result->set_size(info.size); HistogramMapToRepeatedOpAndCount(result->mutable_op_histogram(), info.op_histogram); } } XlaAutoClusteringSummary GetXlaAutoClusteringSummary(const Graph& graph) { absl::flat_hash_map<absl::string_view, ClusterInfo> cluster_name_to_info; XlaAutoClusteringSummary result; absl::flat_hash_map<absl::string_view, int> unclustered_op_histogram; for (Node* n : graph.nodes()) { std::optional<absl::string_view> cluster_name = GetXlaClusterForNode(*n); if (cluster_name) { result.set_clustered_node_count(result.clustered_node_count() + 1); ClusterInfo* info = &cluster_name_to_info[*cluster_name]; info->size++; info->op_histogram[n->type_string()]++; } else { result.set_unclustered_node_count(result.unclustered_node_count() + 1); unclustered_op_histogram[n->type_string()]++; } } for (const auto& pair : cluster_name_to_info) { XlaAutoClusteringSummary::Cluster* new_cluster = result.add_clusters(); ClusterInfoToProtobuf(new_cluster, pair.first, pair.second); } absl::c_sort(*result.mutable_clusters(), [&](const XlaAutoClusteringSummary::Cluster& a, const XlaAutoClusteringSummary::Cluster& b) { return a.name() < b.name(); }); HistogramMapToRepeatedOpAndCount(result.mutable_unclustered_op_histogram(), unclustered_op_histogram); return result; } namespace { using CallTargetListTy = absl::InlinedVector<NameAttrList, 2>; CallTargetListTy GetCallTargetListFromNode( const Node& n, FunctionLibraryRuntime* lib_runtime) { const FunctionLibraryDefinition& flib_def = *lib_runtime->GetFunctionLibraryDefinition(); if (flib_def.Find(n.type_string())) { NameAttrList callee; callee.set_name(n.type_string()); *callee.mutable_attr() = n.def().attr(); return {callee}; } CallTargetListTy result; for (const auto& name_attr_pair : n.attrs()) { const AttrValue& attr_value = name_attr_pair.second; if (attr_value.value_case() == AttrValue::kFunc) { result.push_back(attr_value.func()); } else if (attr_value.value_case() == AttrValue::kList) { result.insert(result.end(), attr_value.list().func().begin(), attr_value.list().func().end()); } } return result; } enum class Direction { kForward, kBackward }; Status GetNodesRelatedToRefVariablesInDirection( const Graph& graph, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth, absl::flat_hash_set<Node*>* result); absl::StatusOr<bool> DoesAnyCalleeHaveRefNodes( const CallTargetListTy& call_target_list, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth) { const int kMaxDepth = 10; if (depth == kMaxDepth && !call_target_list.empty()) { return true; } absl::flat_hash_set<Node*> callee_ref_nodes; for (const NameAttrList& call_target : call_target_list) { const OpRegistrationData* op_reg; if (OpRegistry::Global()->LookUp(call_target.name(), &op_reg).ok()) { const OpDef& op = op_reg->op_def; if (absl::c_any_of(op.output_arg(), [](const OpDef::ArgDef arg) { return arg.is_ref(); })) { return true; } continue; } callee_ref_nodes.clear(); FunctionLibraryRuntime::Handle handle; if (!lib_runtime ->Instantiate(call_target.name(), AttrSlice(&call_target.attr()), &handle) .ok()) { VLOG(2) << "Could not find " << call_target.name() << " in the function library."; return true; } auto release_handle_on_return = gtl::MakeCleanup( [&] { TF_CHECK_OK(lib_runtime->ReleaseHandle(handle)); }); const FunctionBody* fbody = lib_runtime->GetFunctionBody(handle); TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( *fbody->graph, lib_runtime, direction, depth + 1, &callee_ref_nodes)); if (!callee_ref_nodes.empty()) { return true; } } return false; } Status GetNodesRelatedToRefVariablesInDirection( const Graph& graph, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth, absl::flat_hash_set<Node*>* result) { std::vector<Node*> nodes_in_order; if (direction == Direction::kForward) { GetReversePostOrder(graph, &nodes_in_order, NodeComparatorName()); } else { GetPostOrder(graph, &nodes_in_order, NodeComparatorName()); } size_t old_result_size; int iterations = 0; const int kMaxIterations = 10 * 1000; std::vector<bool> callee_has_ref_nodes_cache; callee_has_ref_nodes_cache.resize(graph.num_node_ids()); auto does_callee_have_ref_nodes = [&](Node* n) -> absl::StatusOr<bool> { if (iterations == 1) { TF_ASSIGN_OR_RETURN( bool callee_has_ref_nodes, DoesAnyCalleeHaveRefNodes(GetCallTargetListFromNode(*n, lib_runtime), lib_runtime, direction, depth)); callee_has_ref_nodes_cache[n->id()] = callee_has_ref_nodes; return callee_has_ref_nodes; } else { return {callee_has_ref_nodes_cache[n->id()]}; } }; do { TF_RET_CHECK(iterations++ < kMaxIterations) << "infinite loop?"; old_result_size = result->size(); for (Node* n : nodes_in_order) { if (n->IsSource() || n->IsSink()) { continue; } bool inserted_n = false; const EdgeSet& edges = direction == Direction::kForward ? n->in_edges() : n->out_edges(); for (const Edge* e : edges) { if (result->contains(direction == Direction::kForward ? e->src() : e->dst())) { result->insert(n); inserted_n = true; break; } } if (inserted_n) { continue; } if (direction == Direction::kForward && absl::c_any_of(n->output_types(), IsRefType)) { result->insert(n); continue; } TF_ASSIGN_OR_RETURN(bool callee_has_ref_nodes, does_callee_have_ref_nodes(n)); if (callee_has_ref_nodes) { result->insert(n); continue; } } } while (result->size() != old_result_size); VLOG(2) << "# iterations = " << iterations; return absl::OkStatus(); } void SortControlInputs(GraphDef* gdef) { int64_t num_nodes = gdef->node_size(); for (int64_t i = 0; i < num_nodes; ++i) { NodeDef* node = gdef->mutable_node(i); std::stable_sort(node->mutable_input()->begin(), node->mutable_input()->end(), [](const string& a, const string& b) { bool a_is_control = absl::StartsWith(a, "^"); bool b_is_control = absl::StartsWith(b, "^"); return (!a_is_control && b_is_control) || (a_is_control && b_is_control && a < b); }); } } } absl::StatusOr<absl::flat_hash_set<Node*>> GetNodesRelatedToRefVariables( const Graph& graph, FunctionLibraryRuntime* lib_runtime) { absl::flat_hash_set<Node*> result; TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( graph, lib_runtime, Direction::kForward, 0, &result)); TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( graph, lib_runtime, Direction::kBackward, 0, &result)); VLOG(1) << "GetNodesRelatedToRefVariables() found " << result.size() << " nodes"; return result; } absl::StatusOr<std::string> SerializeGraphDeterministic(const Graph& graph) { GraphDef def; graph.ToGraphDef(&def); SortControlInputs(&def); std::string s; if (!SerializeToStringDeterministic(def, &s)) { return errors::Internal("Failed to serialize graphdef."); } return s; } absl::StatusOr<uint64> FingerprintGraph(const Graph& graph) { TF_ASSIGN_OR_RETURN(std::string serialized, SerializeGraphDeterministic(graph)); return Hash64(serialized.data(), serialized.size()); } REGISTER_XLA_CONFIG_GETTER(GetXlaGlobalJitLevel); }
#include "tensorflow/compiler/jit/xla_cluster_util.h" #include "absl/algorithm/container.h" #include "absl/strings/str_join.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { TEST(CreateCycleDetectionGraph, ConnectivityThroughEnterExitRegion) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter = ops::internal::Enter(root.WithOpName("enter"), a, "only_frame"); Output exit = ops::internal::Exit(root.WithOpName("exit"), enter); Output b = ops::Add(root.WithOpName("b"), a, exit); FixupSourceAndSinkEdges(root.graph()); xla::GraphCycles cycles; TF_ASSERT_OK(CreateCycleDetectionGraph(root.graph(), &cycles).status()); EXPECT_FALSE(cycles.CanContractEdge(a.node()->id(), b.node()->id())); } TEST(CreateCycleDetectionGraph, ConnectivityThroughMultipleEnterExitRegions) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter_0 = ops::internal::Enter(root.WithOpName("enter_0"), a, "frame_0"); Output exit_0 = ops::internal::Exit(root.WithOpName("exit_0"), enter_0); Output enter_1 = ops::internal::Enter(root.WithOpName("enter_1"), a, "frame_1"); Output exit_1 = ops::internal::Exit(root.WithOpName("exit_1"), enter_1); Output b = ops::Add(root.WithOpName("b"), a, exit_1); FixupSourceAndSinkEdges(root.graph()); xla::GraphCycles cycles; TF_ASSERT_OK(CreateCycleDetectionGraph(root.graph(), &cycles).status()); EXPECT_FALSE(cycles.CanContractEdge(a.node()->id(), b.node()->id())); } TEST(CreateCycleDetectionGraph, ReachingEnterExit) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter_0 = ops::internal::Enter(root.WithOpName("enter_0"), a, "frame_0"); Output exit_0 = ops::internal::Exit(root.WithOpName("exit_0"), enter_0); Output add = ops::Add(root.WithOpName("add"), exit_0, exit_0); Output enter_1 = ops::internal::Enter(root.WithOpName("enter_1"), add, "frame_0"); Output exit_1 = ops::internal::Exit(root.WithOpName("exit_1"), enter_1); FixupSourceAndSinkEdges(root.graph()); xla::GraphCycles cycles; TF_ASSERT_OK_AND_ASSIGN(bool ok, CreateCycleDetectionGraph(root.graph(), &cycles)); EXPECT_FALSE(ok); } const char* kCPU0 = "/job:localhost/replica:0/task:0/device:CPU:0"; const char* kGPU0 = "/job:localhost/replica:0/task:0/device:GPU:0"; const char* kGPU1 = "/job:localhost/replica:0/task:0/device:GPU:1"; TEST(IsSingleGpuGraph, ReturnsTrue) { Scope root = Scope::NewRootScope().WithAssignedDevice(kGPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b"), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_TRUE(IsSingleGpuGraph(*root.graph())); } TEST(IsSingleGpuGraph, ReturnsFalseForCpuGraph) { Scope root = Scope::NewRootScope().WithAssignedDevice(kCPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b"), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_FALSE(IsSingleGpuGraph(*root.graph())); } TEST(IsSingleGpuGraph, ReturnsFalseForMultiGpuGraph) { Scope root = Scope::NewRootScope().WithAssignedDevice(kGPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b").WithAssignedDevice(kGPU1), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_FALSE(IsSingleGpuGraph(*root.graph())); } absl::StatusOr<std::vector<string>> GetNodesRelatedToRefVarsSorted( const Scope& scope, FunctionLibraryDefinition* flib_def = nullptr) { FunctionDefLibrary flib; FunctionLibraryDefinition flib_def_local(OpRegistry::Global(), flib); if (flib_def == nullptr) { flib_def = &flib_def_local; } std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime( nullptr, Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, flib_def, OptimizerOptions{})); FunctionLibraryRuntime* lib_runtime = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<Node*> nodes_related_to_ref_vars, GetNodesRelatedToRefVariables(*graph, lib_runtime)); std::vector<string> names; absl::c_transform(nodes_related_to_ref_vars, std::back_inserter(names), [](Node* n) { return n->name(); }); absl::c_sort(names); return names; } void CreateSubgraphTouchingRefVar(const Scope& s) { Output variable = ops::Variable(s.WithOpName("variable"), PartialTensorShape{}, DT_FLOAT); Output read = ops::Identity(s.WithOpName("read_ref_var"), variable); Output neg = ops::Negate(s.WithOpName("negate_ref"), read); Output add = ops::Add(s.WithOpName("add_ref"), neg, neg); Output constant = ops::Const(s.WithOpName("constant_ref"), Input::Initializer(0.0)); s.graph()->AddControlEdge(constant.node(), variable.node()); } void CreateSubgraphNotTouchingRefVar(const Scope& s) { Output constant = ops::Const(s.WithOpName("constant_normal"), Input::Initializer(0.0)); Output neg = ops::Negate(s.WithOpName("negate_normal"), constant); Output add = ops::Add(s.WithOpName("add_normal"), neg, neg); } void CreateSubgraphCallingFunctionWithRefVar(const Scope& s) { NameAttrList ref_float_function; ref_float_function.set_name("RefFloatFn"); ops::PartitionedCall call(s.WithOpName("RefFloat"), {absl::Span<Input>{}}, {DT_FLOAT}, ref_float_function); Output constant = ops::Const(s.WithOpName("constant_ref_pco"), Input::Initializer(0.0)); s.graph()->AddControlEdge(call.operation.node(), constant.node()); } void CreateSubgraphCallingFunctionWithoutRefVar(const Scope& s) { NameAttrList regular_float_function; regular_float_function.set_name("RegularFloatFn"); ops::PartitionedCall call(s.WithOpName("RegularFloat"), {absl::Span<Input>{}}, {DT_FLOAT}, regular_float_function); Output constant = ops::Const(s.WithOpName("constant_normal_pco"), Input::Initializer(0.0)); s.graph()->AddControlEdge(call.operation.node(), constant.node()); } void AddRefFunctionFunctionDef(FunctionDefLibrary* fdef_lib) { FunctionDef make_ref_float = FunctionDefHelper::Define( "RefFloatFn", {}, {"r:float"}, {}, {{{"var"}, "VariableV2", {}, {{"dtype", DT_FLOAT}, {"shape", TensorShape({})}}}, {{"r"}, "Identity", {"var"}, {{"T", DT_FLOAT}}}}); *fdef_lib->add_function() = make_ref_float; } void AddRegularFunctionFunctionDef(FunctionDefLibrary* fdef_lib) { Tensor seven(DT_FLOAT, {}); seven.scalar<float>()() = 7; FunctionDef make_regular_float = FunctionDefHelper::Define( "RegularFloatFn", {}, {"r:float"}, {}, {{{"r"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", seven}}}}); *fdef_lib->add_function() = make_regular_float; } TEST(NodesRelatedToRefVariables, Basic) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib; CreateSubgraphTouchingRefVar(root); CreateSubgraphNotTouchingRefVar(root); AddRefFunctionFunctionDef(&fdef_lib); CreateSubgraphCallingFunctionWithRefVar(root); AddRegularFunctionFunctionDef(&fdef_lib); CreateSubgraphCallingFunctionWithoutRefVar(root); FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); TF_ASSERT_OK_AND_ASSIGN(std::vector<string> names, GetNodesRelatedToRefVarsSorted(root, &flib_def)); std::vector<string> expected({ "RefFloat", "add_ref", "constant_ref", "constant_ref_pco", "negate_ref", "read_ref_var", "variable", }); EXPECT_EQ(names, expected); } Status MakeLoop(Scope s, Output init_value, absl::string_view loop_name) { s = s.NewSubScope(std::string(loop_name)); ops::internal::Enter enter(s.WithOpName("init_value"), init_value, loop_name); ops::Merge merge(s.WithOpName("merge"), {init_value, init_value}); Output next_iteration = ops::NextIteration(s.WithOpName("next_itr"), merge.output); return s.graph()->UpdateEdge(next_iteration.node(), 0, merge.output.node(), 1); } TEST(NodesRelatedToRefVariables, Cycles) { Scope root = Scope::NewRootScope().ExitOnError(); Output variable = ops::Variable(root.WithOpName("variable"), PartialTensorShape{}, DT_FLOAT); TF_ASSERT_OK( MakeLoop(root, ops::Identity(root.WithOpName("read_ref_var"), variable), "ref_loop")); TF_ASSERT_OK(MakeLoop( root, ops::Const(root.WithOpName("constant"), Input::Initializer(0.0)), "normal_loop")); TF_ASSERT_OK_AND_ASSIGN(std::vector<string> names, GetNodesRelatedToRefVarsSorted(root)); std::vector<string> expected({"read_ref_var", "ref_loop/init_value", "ref_loop/merge", "ref_loop/next_itr", "variable"}); EXPECT_EQ(names, expected); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_cluster_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_cluster_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b00eb5a1-792c-4449-99f0-8105011eaef0
cpp
tensorflow/tensorflow
encapsulate_util
tensorflow/compiler/jit/encapsulate_util.cc
tensorflow/compiler/jit/encapsulate_util_test.cc
#include "tensorflow/compiler/jit/encapsulate_util.h" #include <algorithm> #include <iterator> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "tensorflow/compiler/jit/shape_inference.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/protobuf/error_codes.pb.h" using tsl::StatusOr; namespace tensorflow { namespace { std::optional<string> GetStringAttr(const Node& n, const string& attr_name) { auto attr = n.attrs().Find(attr_name); if (!attr) { return std::nullopt; } else { return attr->s(); } } template <typename T> Status AppendToListAttr(Node* n, const string& attr_name, const string& value) { std::vector<T> attr_value; Status s = GetNodeAttr(n->attrs(), attr_name, &attr_value); if (!s.ok() && s.code() != error::NOT_FOUND) { return s; } n->ClearAttr(attr_name); attr_value.push_back(value); n->AddAttr(attr_name, attr_value); return absl::OkStatus(); } template <typename T> void ReplaceAttr(Node* n, const string& attr_name, const T& value) { n->ClearAttr(attr_name); n->AddAttr(attr_name, value); } Status PreprocessControlEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { std::vector<const Edge*> edges_to_remove; for (const Edge* e : g->edges()) { if (!e->IsControlEdge()) { continue; } auto src_outside_compilation = GetStringAttr(*e->src(), outside_compilation_attr_name); auto dst_outside_compilation = GetStringAttr(*e->dst(), outside_compilation_attr_name); if (src_outside_compilation && dst_outside_compilation) { if (*src_outside_compilation != *dst_outside_compilation) { edges_to_remove.push_back(e); TF_RETURN_IF_ERROR(AppendToListAttr<string>( e->dst(), kXlaControlDependenciesWithinXlaClusterAttrName, e->src()->name())); } } else if (src_outside_compilation && !dst_outside_compilation) { ReplaceAttr(e->src(), kXlaConnectedToXlaComputationAttrName, true); } else if (!src_outside_compilation && dst_outside_compilation) { ReplaceAttr(e->dst(), kXlaConnectedFromXlaComputationAttrName, true); } } for (auto e : edges_to_remove) { g->RemoveEdge(e); } return absl::OkStatus(); } Status PreprocessDataEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { struct EdgeInfo { int dst_input, dst_node_id; }; std::vector<EdgeInfo> edges; for (const Edge* e : g->edges()) { if (e->IsControlEdge()) { continue; } auto src_outside_compilation = GetStringAttr(*e->src(), outside_compilation_attr_name); auto dst_outside_compilation = GetStringAttr(*e->dst(), outside_compilation_attr_name); if (src_outside_compilation && dst_outside_compilation && *src_outside_compilation != *dst_outside_compilation) { edges.push_back(EdgeInfo{e->dst_input(), e->dst()->id()}); VLOG(4) << "Oc -> oc edge: " << e->DebugString(); } } std::map<std::pair<string, int>, Node*> placeholders; for (int i = 0, end = edges.size(); i < end; i++) { Node* dst = g->FindNodeId(edges[i].dst_node_id); const Edge* e; TF_RETURN_IF_ERROR(dst->input_edge(edges[i].dst_input, &e)); Node* src = e->src(); int src_output = e->src_output(), dst_input = e->dst_input(); g->RemoveEdge(e); string new_name = absl::StrCat(src->name(), "_oc_to_oc_placeholder_", src_output); auto placeholder_index = std::make_pair(src->name(), src_output); auto iter = placeholders.find(placeholder_index); Node* placeholder_node; if (iter == placeholders.end()) { NodeDefBuilder placeholder_builder(new_name, "Placeholder"); placeholder_builder.Attr("dtype", src->output_type(src_output)); string outside_compilation_attr; TF_RETURN_IF_ERROR(GetNodeAttr(dst->attrs(), outside_compilation_attr_name, &outside_compilation_attr)); placeholder_builder.Attr(outside_compilation_attr_name, outside_compilation_attr); placeholder_builder.Attr(kOutsideCompilationOriginalNodeAttrName, src->name()); placeholder_builder.Attr(kOutsideCompilationSrcOutputAttrName, src_output); NodeDef placeholder_def; TF_RETURN_IF_ERROR(placeholder_builder.Finalize(&placeholder_def)); TF_ASSIGN_OR_RETURN(placeholder_node, g->AddNode(placeholder_def)); placeholders[placeholder_index] = placeholder_node; } else { placeholder_node = iter->second; } g->AddEdge(placeholder_node, 0, dst, dst_input); NodeDef new_def = dst->def(); *new_def.mutable_input(dst_input) = placeholder_node->name(); TF_ASSIGN_OR_RETURN(Node * dst_replace_node, ReplaceNode(g, dst, new_def)); for (int j = i + 1, end = edges.size(); j < end; j++) { if (edges[j].dst_node_id == edges[i].dst_node_id) { edges[j].dst_node_id = dst_replace_node->id(); } } } return absl::OkStatus(); } Status PostprocessDataEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { std::vector<Node*> placeholder_nodes; for (Node* n : g->nodes()) { if (n->type_string() == "Placeholder" && HasNodeAttr(n->def(), kOutsideCompilationOriginalNodeAttrName)) { placeholder_nodes.push_back(n); } } auto node_name_index = g->BuildNodeNameIndex(); for (auto n : placeholder_nodes) { string node_name; int node_src_output; TF_RETURN_IF_ERROR(GetNodeAttr( n->attrs(), kOutsideCompilationOriginalNodeAttrName, &node_name)); TF_RETURN_IF_ERROR(GetNodeAttr( n->attrs(), kOutsideCompilationSrcOutputAttrName, &node_src_output)); auto iter = node_name_index.find(node_name); if (iter == node_name_index.end()) { return errors::Internal( "Cannot find original node for oc -> host placeholder node ", node_name); } Node* original_node = iter->second; std::vector<const Edge*> control_edges; std::vector<OutEdgeInfo> data_edges; for (auto e : n->out_edges()) { if (e->IsControlEdge()) { control_edges.push_back(e); } else { data_edges.push_back({e->dst(), e->src_output(), e->dst_input()}); } } for (const Edge* e : control_edges) { g->AddControlEdge(original_node, e->dst()); g->RemoveEdge(e); } for (int i = 0, end = data_edges.size(); i < end; i++) { Node* dst = data_edges[i].dst; NodeDef new_def = dst->def(); int dst_input = data_edges[i].dst_input; *new_def.mutable_input(dst_input) = absl::StrCat(original_node->name(), ":", node_src_output); TF_ASSIGN_OR_RETURN(Node * replace_node, ReplaceNode(g, dst, new_def)); const Edge* edge_to_replace = nullptr; TF_RETURN_IF_ERROR(replace_node->input_edge(dst_input, &edge_to_replace)); g->RemoveEdge(edge_to_replace); g->AddEdge(original_node, node_src_output, replace_node, dst_input); for (int j = i + 1, end = data_edges.size(); j < end; j++) { if (data_edges[j].dst == dst) { data_edges[j].dst = replace_node; } } node_name_index[replace_node->name()] = replace_node; } g->RemoveNode(n); } return absl::OkStatus(); } Status PostprocessControlEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { auto node_name_index = g->BuildNodeNameIndex(); for (Node* n : g->nodes()) { std::vector<string> control_deps; Status s = GetNodeAttr(n->attrs(), kXlaControlDependenciesWithinXlaClusterAttrName, &control_deps); if (!s.ok()) { if (s.code() != error::NOT_FOUND) { return s; } else { continue; } } else { n->ClearAttr(kXlaControlDependenciesWithinXlaClusterAttrName); for (const string& control_input : control_deps) { auto iter = node_name_index.find(control_input); if (iter == node_name_index.end()) { return errors::Internal("Cannot find original node for ", control_input); } g->AddControlEdge(iter->second, n); } } } return absl::OkStatus(); } } const char kXlaInferredShapesAttrName[] = "_xla_inferred_shapes"; const char kXlaConnectedToXlaComputationAttrName[] = "_xla_connected_to_xla_computation"; const char kXlaConnectedFromXlaComputationAttrName[] = "_xla_connected_from_xla_computation"; const char kOutsideCompilationOriginalNodeAttrName[] = "_xla_oc_to_oc_node_name"; const char kOutsideCompilationSrcOutputAttrName[] = "_xla_oc_to_oc_src_output"; const char kXlaControlDependenciesWithinXlaClusterAttrName[] = "_xla_control_dependencies_within_xla_cluster"; const char kXlaIsLiftedArgAttrName[] = "_xla_is_lifted_arg"; const char kXlaLiftedArgOutsideCompilationAttrName[] = "_xla_lifted_arg_oc"; const char kXlaOutsideCompilationInputsAttrName[] = "_xla_oc_inputs"; const char kXlaIsPlaceholderForArg[] = "_xla_is_placeholder_for_arg"; Status PerformStaticShapeInferenceBeforeEncapsulation(Graph* g) { std::map<int, InferredShape> arg_shapes; GraphShapeInfo shape_info; TF_RETURN_IF_ERROR( InferShapes(g, arg_shapes, nullptr, &shape_info)); auto node_name_index = g->BuildNodeNameIndex(); for (auto iter : shape_info) { std::vector<PartialTensorShape> output_shapes; std::transform(iter.second.begin(), iter.second.end(), std::back_inserter(output_shapes), [](const InferredShape& inferred_shape) { return inferred_shape.shape; }); Node* n = node_name_index[iter.first]; n->AddAttr(kXlaInferredShapesAttrName, output_shapes); } return absl::OkStatus(); } absl::StatusOr< std::unique_ptr<absl::flat_hash_map<string, std::vector<string>>>> OutsideCompilationClusterDependencies( const Graph* g, const string& outside_compilation_attr_name) { auto cluster_deps = std::make_unique< absl::flat_hash_map<string, absl::flat_hash_set<string>>>(); for (const Edge* e : g->edges()) { auto src_outside_compilation = GetStringAttr(*e->src(), outside_compilation_attr_name); auto dst_outside_compilation = GetStringAttr(*e->dst(), outside_compilation_attr_name); if (src_outside_compilation && dst_outside_compilation && *src_outside_compilation != *dst_outside_compilation) { auto dst_deps_it = cluster_deps->find(*dst_outside_compilation); if (dst_deps_it == cluster_deps->end()) { cluster_deps->insert(std::make_pair( *dst_outside_compilation, absl::flat_hash_set<string>({*src_outside_compilation}))); } else { dst_deps_it->second.insert(*src_outside_compilation); } } } auto cluster_deps_ordered = std::make_unique<absl::flat_hash_map<string, std::vector<string>>>(); for (auto it = cluster_deps->begin(); it != cluster_deps->end(); it++) { std::vector<string> ordered_deps(it->second.begin(), it->second.end()); std::sort(ordered_deps.begin(), ordered_deps.end()); cluster_deps_ordered->insert(std::make_pair(it->first, ordered_deps)); } return std::move(cluster_deps_ordered); } Status PreprocessEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { std::vector<const Edge*> edges_to_remove; for (const Edge* e : g->source_node()->out_edges()) { if (HasNodeAttr(e->dst()->def(), outside_compilation_attr_name)) { edges_to_remove.push_back(e); } } for (const Edge* e : g->sink_node()->in_edges()) { if (HasNodeAttr(e->src()->def(), outside_compilation_attr_name)) { edges_to_remove.push_back(e); } } for (auto e : edges_to_remove) { g->RemoveEdge(e); } TF_RETURN_IF_ERROR(PreprocessControlEdgesBetweenOutsideCompilations( g, outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PreprocessDataEdgesBetweenOutsideCompilations( g, outside_compilation_attr_name)); return absl::OkStatus(); } Status PostprocessEdgesBetweenOutsideCompilations( Graph* g, const string& outside_compilation_attr_name) { TF_RETURN_IF_ERROR(PostprocessDataEdgesBetweenOutsideCompilations( g, outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PostprocessControlEdgesBetweenOutsideCompilations( g, outside_compilation_attr_name)); return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/encapsulate_util.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(PerformStaticShapeInferenceBeforeEncapsulationTest, Basic) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const_0 = ops::Const(s.WithOpName("const_0"), 1, {2}); Output const_1 = ops::Const(s.WithOpName("const_1"), 2, {2}); Output add = ops::Add(s.WithOpName("add"), const_0, const_1); Output identity = ops::Identity(s.WithOpName("identity"), add); Graph g(OpRegistry::Global()); TF_CHECK_OK(s.ToGraph(&g)); TF_CHECK_OK(PerformStaticShapeInferenceBeforeEncapsulation(&g)); auto node_index = g.BuildNodeNameIndex(); Node *add_node = node_index["add"]; std::vector<PartialTensorShape> output_shapes; TF_CHECK_OK(GetNodeAttr(add_node->attrs(), kXlaInferredShapesAttrName, &output_shapes)); EXPECT_EQ(output_shapes.size(), 1); TensorShapeProto shape_proto; output_shapes[0].AsProto(&shape_proto); EXPECT_EQ(shape_proto.dim_size(), 1); EXPECT_EQ(shape_proto.dim(0).size(), 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/encapsulate_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/encapsulate_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8e50f42a-d4e9-4044-b05a-302eaf7a972f
cpp
tensorflow/tensorflow
codegen
tensorflow/compiler/aot/codegen.cc
tensorflow/compiler/aot/codegen_test.cc
#include "tensorflow/compiler/aot/codegen.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/substitute.h" #include "absl/types/span.h" #include "tensorflow/compiler/aot/embedded_protocol_buffers.h" #include "tensorflow/compiler/tf2xla/tf2xla.pb.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/cpu_function_runtime.h" #include "xla/service/compiler.h" #include "xla/service/cpu/buffer_info_util.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace tfcompile { namespace { using BufferInfo = xla::cpu_function_runtime::BufferInfo; bool IsAlpha(char c) { return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'); } bool IsAlphaNum(char c) { return IsAlpha(c) || (c >= '0' && c <= '9'); } Status XLATypeToCpp(xla::PrimitiveType type, string* str) { switch (type) { case xla::PRED: *str = "bool"; break; case xla::S8: *str = "tensorflow::int8"; break; case xla::S16: *str = "tensorflow::int16"; break; case xla::S32: *str = "tensorflow::int32"; break; case xla::S64: *str = "int64_t"; break; case xla::U8: *str = "tensorflow::uint8"; break; case xla::U16: *str = "tensorflow::uint16"; break; case xla::U32: *str = "tensorflow::uint32"; break; case xla::U64: *str = "tensorflow::uint64"; break; case xla::F32: *str = "float"; break; case xla::F64: *str = "double"; break; default: return errors::Unimplemented("XLA type ", xla::PrimitiveType_Name(type), " has no equivalent in C++"); } return absl::OkStatus(); } size_t TotalBufferBytes(const std::vector<BufferInfo>& buffer_infos) { return std::accumulate(buffer_infos.begin(), buffer_infos.end(), size_t{0}, [](size_t size, const BufferInfo& buffer_info) { return size + buffer_info.size(); }); } std::vector<BufferInfo> ExtractEntryParamBufferInfos( const std::vector<BufferInfo>& buffer_infos) { std::vector<BufferInfo> result; std::copy_if(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(result), [](const BufferInfo& buffer_info) { return buffer_info.is_entry_parameter(); }); return result; } std::vector<BufferInfo> ExtractTempBufferInfos( const std::vector<BufferInfo>& buffer_infos) { std::vector<BufferInfo> result; std::copy_if(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(result), [](const BufferInfo& buffer_info) { return buffer_info.is_temp_buffer(); }); return result; } Status AddRewritesForShape(int i, const xla::Shape& shape, std::vector<std::pair<string, string>>* rewrites) { string type; TF_RETURN_IF_ERROR(XLATypeToCpp(shape.element_type(), &type)); std::vector<string> dim_vars; string dim_sizes, indices; int count = 1; if (shape.rank() == 0 || (shape.dimensions_size() == 1 && shape.dimensions(0) == 1)) { dim_sizes = "[1]"; indices = "[0]"; } else { for (int dim = 0; dim < shape.dimensions_size(); ++dim) { dim_vars.push_back(absl::StrCat("size_t dim", dim)); dim_sizes += absl::StrCat("[", shape.dimensions(dim), "]"); indices += absl::StrCat("[dim", dim, "]"); count *= shape.dimensions(dim); } } rewrites->push_back({"{{I}}", absl::StrCat(i)}); rewrites->push_back({"{{TYPE}}", type}); rewrites->push_back({"{{DIM_VARS}}", absl::StrJoin(dim_vars, ", ")}); rewrites->push_back({"{{DIM_SIZES}}", dim_sizes}); rewrites->push_back({"{{INDICES}}", indices}); rewrites->push_back({"{{COUNT}}", absl::StrCat(count)}); return absl::OkStatus(); } string RewriteWithName(const string& name, string code, const std::vector<std::pair<string, string>>& rewrites) { absl::StrReplaceAll(rewrites, &code); absl::StrReplaceAll({{"{{NAME}}", name}}, &code); return code; } Status GenArgMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, const CompileResult& compile_result, string* methods) { const int num_args = ps.parameters_size(); if (config.feed_size() + config.variable_size() < num_args) { return errors::InvalidArgument( "mismatch between feed_size(", config.feed_size(), ")+variable_size(", config.variable_size(), ") and num_args(", num_args, ")"); } for (int i = 0; i < config.feed_size(); ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR( AddRewritesForShape(i, xla::Shape(ps.parameters(i)), &rewrites)); const string code = R"( void set_arg{{NAME}}_data(const void* data) { set_arg_data({{I}}, data); } {{TYPE}}* arg{{NAME}}_data() { return static_cast<{{TYPE}}*>(arg_data({{I}})); } {{TYPE}}& arg{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } const {{TYPE}}* arg{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(arg_data({{I}})); } const {{TYPE}}& arg{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } int arg{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int arg{{NAME}}_count() const { return {{COUNT}}; } )"; *methods += RewriteWithName(absl::StrCat(i), code, rewrites); if (!config.feed(i).name().empty()) { *methods += RewriteWithName("_" + config.feed(i).name(), code, rewrites); } } return absl::OkStatus(); } Status GenResultMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, string* methods) { if (ps.result().element_type() != xla::TUPLE) { return errors::Internal("codegen requires the XLA result to be a tuple"); } size_t num_results = ps.result().tuple_shapes_size(); int readonly_variables = absl::c_count_if( config.variable(), [](const tf2xla::Variable& var) { return var.readonly(); }); const int actual_num_results = config.fetch_size() + config.variable_size() - readonly_variables; if (actual_num_results != num_results) { return errors::InvalidArgument("mismatch between fetch_size(", config.fetch_size(), ")+variable_size(", config.variable_size(), ") and tuple_size(", ps.result().tuple_shapes_size(), ")"); } for (int i = 0; i < config.fetch_size(); ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR(AddRewritesForShape( i, xla::Shape(ps.result().tuple_shapes(i)), &rewrites)); string code = R"( {{TYPE}}* result{{NAME}}_data() { return static_cast<{{TYPE}}*>(result_data({{I}})); } {{TYPE}}& result{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{TYPE}}(*){{DIM_SIZES}}>( result_data({{I}}))){{INDICES}}; } const {{TYPE}}* result{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(result_data({{I}})); } const {{TYPE}}& result{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( result_data({{I}}))){{INDICES}}; } int result{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int result{{NAME}}_count() const { return {{COUNT}}; } )"; *methods += RewriteWithName(absl::StrCat(i), code, rewrites); if (!config.fetch(i).name().empty()) { *methods += RewriteWithName("_" + config.fetch(i).name(), code, rewrites); } } return absl::OkStatus(); } Status GenVariableMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, string* methods) { const int num_args = ps.parameters_size(); for (int i = config.feed_size(); i < num_args; ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR( AddRewritesForShape(i, xla::Shape(ps.parameters(i)), &rewrites)); const string code = R"( void set_var_{{NAME}}_data({{MAYBE_CONST}}{{TYPE}}* data) { set_arg_data({{I}}, data); } {{MAYBE_CONST}}{{TYPE}}* var_{{NAME}}_data() { return static_cast<{{MAYBE_CONST}}{{TYPE}}*>(arg_data({{I}})); } {{MAYBE_CONST}}{{TYPE}}& var_{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{MAYBE_CONST}}{{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } const {{TYPE}}* var_{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(arg_data({{I}})); } const {{TYPE}}& var_{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } int var_{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int var_{{NAME}}_count() const { return {{COUNT}}; } )"; const tf2xla::Variable& var = config.variable(i - config.feed_size()); rewrites.emplace_back("{{MAYBE_CONST}}", var.readonly() ? "const " : ""); *methods += RewriteWithName( var.name().empty() ? var.node_name() : var.name(), code, rewrites); } return absl::OkStatus(); } Status GenArgShapeInfos(const xla::ProgramShapeProto& ps, string* infos) { for (int i = 0; i < ps.parameters_size(); ++i) { const xla::ShapeProto& shape = ps.parameters(i); if (shape.element_type() == xla::TUPLE) { return absl::InternalError( absl::StrCat("parameter ", i, ": codegen requires XLA parameters to " "be non-tuples.")); } *infos += absl::Substitute(R"( static constexpr int32_t kArg$0Shapes[] = { $1 }; )", i, shape.dimensions_size() > 0 ? absl::StrJoin(shape.dimensions(), ", ") : "-1"); } *infos += R"( static const ShapeInfo* ArgShapeInfos() { static constexpr ShapeInfo kArgShapeInfoTable[kNumArgs] = { )"; for (int i = 0; i < ps.parameters_size(); ++i) { const xla::ShapeProto& shape = ps.parameters(i); *infos += absl::Substitute("{ kArg$0Shapes, $1 },\n", i, shape.dimensions_size()); } *infos += R"( }; return kArgShapeInfoTable; })"; return absl::OkStatus(); } Status GenResultShapeInfos(const xla::ProgramShapeProto& ps, string* infos) { if (ps.result().element_type() != xla::TUPLE) { return absl::InternalError("codegen requires the XLA result to be a tuple"); } for (int i = 0; i < ps.result().tuple_shapes_size(); ++i) { const xla::ShapeProto& shape = ps.result().tuple_shapes(i); *infos += absl::Substitute( R"( static constexpr int32_t kResult$0Shapes[] = { $1 }; )", i, shape.dimensions_size() > 0 ? absl::StrJoin(shape.dimensions(), ", ") : "-1"); } *infos += R"( static const ShapeInfo* ResultShapeInfos() { static constexpr ShapeInfo kResultShapeInfoTable[kNumResults] = { )"; for (int i = 0; i < ps.result().tuple_shapes_size(); ++i) { const xla::ShapeProto& shape = ps.result().tuple_shapes(i); *infos += absl::Substitute("{ kResult$0Shapes, $1 },\n", i, shape.dimensions_size()); } *infos += R"( }; return kResultShapeInfoTable; })"; return absl::OkStatus(); } template <typename T> string GenNameToIndexCode(const T& entries, bool generate) { if (!generate) { return "{\n return nullptr;\n }"; } int end = entries.size(); for (int i = entries.size() - 1; i >= 0; --i) { if (!entries[i].name().empty()) { break; } end = i; } string code = "{\n static const char* kNames[] = {"; for (int i = 0; i < end; ++i) { if (i > 0) { code += ", "; } code += "\""; code += entries[i].name(); code += "\""; } if (end > 0) { code += ", "; } code += "nullptr};\n return kNames;\n }"; return code; } Status ValidateFeedFetchCppNames(const tf2xla::Config& config) { for (const tf2xla::Feed& feed : config.feed()) { if (!feed.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(feed.name(), "feed name")); } } for (const tf2xla::Fetch& fetch : config.fetch()) { if (!fetch.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(fetch.name(), "fetch name")); } } for (const tf2xla::Variable& variable : config.variable()) { if (!variable.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(variable.name(), "variable name")); } else { TF_RETURN_IF_ERROR( ValidateCppIdent(variable.node_name(), "variable name")); } } return absl::OkStatus(); } std::vector<string> BufferInfosToCppExpression( const std::vector<BufferInfo>& buffer_infos) { std::vector<string> buffer_infos_as_strings; std::transform(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(buffer_infos_as_strings), [](const BufferInfo& buffer_info) { xla::cpu_function_runtime::EncodedBufferInfo encoded = buffer_info.Encode(); auto param_to_str = [](uint32_t param) -> std::string { return param == ~0U ? "~0U" : absl::StrCat(param, "U"); }; return absl::StrCat( "::xla::cpu_function_runtime::BufferInfo(" "::xla::cpu_function_runtime::EncodedBufferInfo{", encoded.packed_kind_and_size, "ULL, ", param_to_str(encoded.entry_param_number), ", ", param_to_str(encoded.result_param_number), "})"); }); return buffer_infos_as_strings; } Status CheckEqual(size_t a, size_t b, absl::string_view error_msg) { if (a != b) { return absl::InternalError( absl::StrCat(error_msg, ". Expected ", a, ", got ", b, ".")); } return absl::OkStatus(); } } Status GenerateHeader(const CodegenOpts& opts, const tf2xla::Config& config, const CompileResult& compile_result, const MetadataResult& metadata_result, string* header) { TF_RETURN_IF_ERROR(ValidateConfig(config)); TF_RETURN_IF_ERROR(ValidateFeedFetchCppNames(config)); const int64_t result_index = compile_result.aot->result_buffer_index(); const std::vector<BufferInfo>& buffer_infos = compile_result.aot->buffer_infos(); const std::vector<int32> arg_index_table = ::xla::cpu::CreateArgIndexTableFromBufferInfos(buffer_infos); const std::vector<int32> result_index_table = ::xla::cpu::CreateResultIndexTableFromBufferInfos(buffer_infos); std::vector<string> buffer_infos_as_strings = BufferInfosToCppExpression(buffer_infos); const int64_t buffer_infos_size = buffer_infos.size(); if (result_index < 0 || result_index >= buffer_infos_size) { return errors::InvalidArgument("result index: ", result_index, " is outside the range of temp sizes: [0,", buffer_infos.size(), ")"); } std::vector<BufferInfo> buffer_infos_for_args = ExtractEntryParamBufferInfos(buffer_infos); std::vector<BufferInfo> buffer_infos_for_temps = ExtractTempBufferInfos(buffer_infos); const xla::ProgramShapeProto& ps = compile_result.program_shape; string methods_arg, methods_result, methods_variable; TF_RETURN_IF_ERROR(GenArgMethods(config, ps, compile_result, &methods_arg)); TF_RETURN_IF_ERROR(GenResultMethods(config, ps, &methods_result)); TF_RETURN_IF_ERROR(GenVariableMethods(config, ps, &methods_variable)); string arg_shape_infos, result_shape_infos; TF_RETURN_IF_ERROR(GenArgShapeInfos(ps, &arg_shape_infos)); TF_RETURN_IF_ERROR( CheckEqual(ps.parameters_size(), arg_index_table.size(), "Arg number mismatch, proto vs. arg_index_table")); TF_RETURN_IF_ERROR(GenResultShapeInfos(ps, &result_shape_infos)); TF_RETURN_IF_ERROR( CheckEqual(ps.result().tuple_shapes_size(), result_index_table.size(), "Result number mismatch, proto vs. result_index_table")); const size_t arg_bytes_aligned = xla::cpu_function_runtime::AlignedBufferBytes( buffer_infos_for_args.data(), buffer_infos_for_args.size(), true); const size_t arg_bytes_total = TotalBufferBytes(buffer_infos_for_args); const size_t temp_bytes_aligned = xla::cpu_function_runtime::AlignedBufferBytes( buffer_infos_for_temps.data(), buffer_infos_for_temps.size(), true); const size_t temp_bytes_total = TotalBufferBytes(buffer_infos_for_temps); string ns_start; for (const string& n : opts.namespaces) { ns_start += absl::StrCat("namespace ", n, " {\n"); } ns_start += "\n"; string ns_end("\n"); for (int i = opts.namespaces.size() - 1; i >= 0; --i) { const string& n = opts.namespaces[i]; ns_end += absl::StrCat("} } const string arg_names_code = GenNameToIndexCode(config.feed(), opts.gen_name_to_index); auto variable_copy = config.variable(); for (auto& var : variable_copy) { if (var.name().empty()) { var.set_name(var.node_name()); } } const string variable_names_code = GenNameToIndexCode(variable_copy, opts.gen_name_to_index); const string result_names_code = GenNameToIndexCode(config.fetch(), opts.gen_name_to_index); const string include_xla_data_proto = opts.gen_program_shape ? R"(#include "xla/xla_data.pb.h")" : ""; const string include_hlo_profile_printer_data_proto = opts.gen_hlo_profile_printer_data ? R"(#include "xla/service/hlo_profile_printer_data.pb.h")" : ""; const string assign_profile_counters_size = opts.gen_hlo_profile_printer_data ? "set_static_data_profile_counters_size(data, " "get_static_data_hlo_profile_printer_data(data)->" "profile_counters_size());" : ""; *header = R"( #ifndef TFCOMPILE_GENERATED_{{ENTRY}}_H_ #define TFCOMPILE_GENERATED_{{ENTRY}}_H_ {{INCLUDE_XLA_DATA_PROTO}} {{INCLUDE_HLO_PROFILE_PRINTER_DATA_PROTO}} #include "tensorflow/compiler/tf2xla/xla_compiled_cpu_function.h" #include "tensorflow/core/platform/types.h" namespace Eigen { struct ThreadPoolDevice; } namespace xla { class ExecutableRunOptions; } extern "C" void {{ENTRY}}( void* result, const ::xla::ExecutableRunOptions* run_options, const void** args, void** temps, XlaCustomCallStatus* status, int64_t* profile_counters); {{DECLS_FROM_OBJ_FILE}} {{NS_START}} class {{CLASS}} final : public tensorflow::XlaCompiledCpuFunction { public: static constexpr size_t kNumArgs = {{ARG_NUM}}; static constexpr size_t kNumResults = {{RESULT_NUM}}; static constexpr size_t kNumVariables = {{VARIABLE_NUM}}; static const ::int64_t ArgSize(::tensorflow::int32 index) { return BufferInfos()[ArgIndexToBufferIndex()[index]].size(); } static const tensorflow::XlaCompiledCpuFunction::StaticData& StaticData() { static XlaCompiledCpuFunction::StaticData* kStaticData = [](){ XlaCompiledCpuFunction::StaticData* data = new XlaCompiledCpuFunction::StaticData; set_static_data_raw_function(data, {{ENTRY}}); set_static_data_buffer_infos(data, BufferInfos()); set_static_data_num_buffers(data, kNumBuffers); set_static_data_result_index_table(data, ResultIndexToBufferIndex()); set_static_data_num_results(data, kNumResults); set_static_data_arg_index_table(data, ArgIndexToBufferIndex()); set_static_data_num_args(data, kNumArgs); set_static_data_num_variables(data, kNumVariables); set_static_data_result_index(data, kResultIndex); set_static_data_arg_shape_infos(data, ArgShapeInfos()); set_static_data_result_shape_infos(data, ResultShapeInfos()); set_static_data_arg_names(data, StaticArgNames()); set_static_data_variable_names(data, StaticVariableNames()); set_static_data_result_names(data, StaticResultNames()); set_static_data_program_shape(data, StaticProgramShape()); set_static_data_hlo_profile_printer_data( data, StaticHloProfilePrinterData()); {{ASSIGN_PROFILE_COUNTERS_SIZE}} return data; }(); return *kStaticData; } {{CLASS}}(AllocMode alloc_mode = AllocMode::ARGS_VARIABLES_RESULTS_PROFILES_AND_TEMPS) : XlaCompiledCpuFunction(StaticData(), alloc_mode) {} {{CLASS}}(const {{CLASS}}&) = delete; {{CLASS}}& operator=(const {{CLASS}}&) = delete; {{METHODS_ARG}} {{METHODS_RESULT}} {{METHODS_VARIABLE}} private: static constexpr size_t kNumBuffers = {{NUM_BUFFERS}}; static const ::xla::cpu_function_runtime::BufferInfo* BufferInfos() { static const ::xla::cpu_function_runtime::BufferInfo kBufferInfos[kNumBuffers] = { {{BUFFER_INFOS_AS_STRING}} }; return kBufferInfos; } static const ::tensorflow::int32* ResultIndexToBufferIndex() { static constexpr ::tensorflow::int32 kResultIndexToBufferIndex[kNumResults] = { {{RESULT_INDEX_TABLE}} }; return kResultIndexToBufferIndex; } static const ::tensorflow::int32* ArgIndexToBufferIndex() { static constexpr ::tensorflow::int32 kArgIndexToBufferIndex[kNumArgs] = { {{ARG_INDEX_TABLE}} }; return kArgIndexToBufferIndex; } static constexpr size_t kResultIndex = {{RESULT_INDEX}}; {{ARG_SHAPE_INFOS}}; {{RESULT_SHAPE_INFOS}}; static const char** StaticArgNames() {{ARG_NAMES_CODE}} static const char** StaticVariableNames() {{VARIABLE_NAMES_CODE}} static const char** StaticResultNames() {{RESULT_NAMES_CODE}} static const ::xla::ProgramShapeProto* StaticProgramShape() { static const ::xla::ProgramShapeProto* kShape = {{PROGRAM_SHAPE_SHIM_EXPRESSION}}; return kShape; } static const ::xla::HloProfilePrinterData* StaticHloProfilePrinterData() { static const ::xla::HloProfilePrinterData* kHloProfilePrinterData = {{HLO_PROFILE_PRINTER_DATA_SHIM_EXPRESSION}}; return kHloProfilePrinterData; } }; {{NS_END}} #endif )"; const std::vector<std::pair<string, string>> rewrites = { {"{{ARG_BYTES_ALIGNED}}", absl::StrCat(arg_bytes_aligned)}, {"{{ARG_BYTES_TOTAL}}", absl::StrCat(arg_bytes_total)}, {"{{ARG_NAMES_CODE}}", arg_names_code}, {"{{ARG_NUM}}", absl::StrCat(arg_index_table.size())}, {"{{ARG_SHAPE_INFOS}}", arg_shape_infos}, {"{{VARIABLE_NUM}}", absl::StrCat(config.variable_size())}, {"{{ARG_INDEX_TABLE}}", absl::StrJoin(arg_index_table, ", ")}, {"{{RESULT_NUM}}", absl::StrCat(result_index_table.size())}, {"{{RESULT_INDEX_TABLE}}", absl::StrJoin(result_index_table, ", ")}, {"{{ASSIGN_PROFILE_COUNTERS_SIZE}}", assign_profile_counters_size}, {"{{CLASS}}", opts.class_name}, {"{{DECLS_FROM_OBJ_FILE}}", absl::StrJoin(metadata_result.header_variable_decls, "\n")}, {"{{ENTRY}}", compile_result.entry_point}, {"{{HLO_PROFILE_PRINTER_DATA_SHIM_EXPRESSION}}", metadata_result.hlo_profile_printer_data_access_shim}, {"{{INCLUDE_XLA_DATA_PROTO}}", include_xla_data_proto}, {"{{INCLUDE_HLO_PROFILE_PRINTER_DATA_PROTO}}", include_hlo_profile_printer_data_proto}, {"{{METHODS_ARG}}\n", methods_arg}, {"{{METHODS_RESULT}}\n", methods_result}, {"{{METHODS_VARIABLE}}\n", methods_variable}, {"{{NS_END}}\n", ns_end}, {"{{NS_START}}\n", ns_start}, {"{{PROGRAM_SHAPE}}", xla::ShapeUtil::HumanString(xla::ProgramShape(ps))}, {"{{PROGRAM_SHAPE_SHIM_EXPRESSION}}", metadata_result.program_shape_access_shim}, {"{{VARIABLE_NAMES_CODE}}", variable_names_code}, {"{{RESULT_INDEX}}", absl::StrCat(result_index)}, {"{{RESULT_NAMES_CODE}}", result_names_code}, {"{{RESULT_SHAPE_INFOS}}", result_shape_infos}, {"{{TEMP_BYTES_ALIGNED}}", absl::StrCat(temp_bytes_aligned)}, {"{{TEMP_BYTES_TOTAL}}", absl::StrCat(temp_bytes_total)}, {"{{NUM_BUFFERS}}", absl::StrCat(buffer_infos.size())}, {"{{BUFFER_INFOS_AS_STRING}}", absl::StrJoin(buffer_infos_as_strings, ",\n")}}; absl::StrReplaceAll(rewrites, header); return absl::OkStatus(); } static string CreateUniqueIdentifier(const CodegenOpts& opts, absl::string_view suffix) { string result = "__tfcompile"; for (const string& n : opts.namespaces) { absl::StrAppend(&result, "_", n); } absl::StrAppend(&result, "_", opts.class_name, "_", suffix); return result; } Status GenerateMetadata(const CodegenOpts& opts, const CompileResult& compile_result, MetadataResult* metadata_result) { std::unique_ptr<xla::ProgramShapeProto> program_shape; if (opts.gen_program_shape) { program_shape = std::make_unique<xla::ProgramShapeProto>(compile_result.program_shape); program_shape->clear_parameter_names(); } ProtobufToEmbed program_shape_protobuf{ CreateUniqueIdentifier(opts, "ProgramShapeProto"), "::xla::ProgramShapeProto", program_shape.get()}; ProtobufToEmbed hlo_profile_printer_data_protobuf{ CreateUniqueIdentifier(opts, "HloProfilePrinterData"), "::xla::HloProfilePrinterData", compile_result.aot->hlo_profile_printer_data()}; TF_ASSIGN_OR_RETURN( EmbeddedProtocolBuffers embedded_protobufs, CreateEmbeddedProtocolBuffers( opts.target_triple, {program_shape_protobuf, hlo_profile_printer_data_protobuf})); metadata_result->program_shape_access_shim = std::move(embedded_protobufs.cpp_shims[0].expression); metadata_result->hlo_profile_printer_data_access_shim = std::move(embedded_protobufs.cpp_shims[1].expression); metadata_result->header_variable_decls.emplace_back( std::move(embedded_protobufs.cpp_shims[0].variable_decl)); metadata_result->header_variable_decls.emplace_back( std::move(embedded_protobufs.cpp_shims[1].variable_decl)); metadata_result->object_file_data = std::move(embedded_protobufs.object_file_data); return absl::OkStatus(); } Status ParseCppClass(const string& cpp_class, string* class_name, std::vector<string>* namespaces) { class_name->clear(); namespaces->clear(); if (cpp_class.empty()) { return errors::InvalidArgument("empty cpp_class: " + cpp_class); } std::vector<string> parts = absl::StrSplit(cpp_class, "::"); if (parts.front().empty()) { parts.erase(parts.begin()); } for (int i = 0, end = parts.size(); i < end; ++i) { if (i < end - 1) { TF_RETURN_IF_ERROR(ValidateCppIdent( parts[i], "in namespace component of cpp_class: " + cpp_class)); namespaces->push_back(parts[i]); } else { TF_RETURN_IF_ERROR(ValidateCppIdent( parts[i], "in class name of cpp_class: " + cpp_class)); *class_name = parts[i]; } } return absl::OkStatus(); } Status ValidateCppIdent(absl::string_view ident, absl::string_view msg) { if (ident.empty()) { return errors::InvalidArgument("empty identifier: ", msg); } if (ident[0] != '_' && !IsAlpha(ident[0])) { return errors::InvalidArgument("illegal leading char: ", msg); } for (size_t pos = 1; pos < ident.size(); ++pos) { if (ident[pos] != '_' && !IsAlphaNum(ident[pos])) { return errors::InvalidArgument("illegal char: ", msg); } } return absl::OkStatus(); } } }
#include "tensorflow/compiler/aot/codegen.h" #include <algorithm> #include <string> #include <vector> #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "llvm/Support/TargetSelect.h" #include "xla/cpu_function_runtime.h" #include "xla/shape_util.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfcompile { namespace { using ::xla::cpu_function_runtime::BufferInfo; void ExpectErrorContains(const Status& status, absl::string_view str) { EXPECT_NE(absl::OkStatus(), status); EXPECT_TRUE(absl::StrContains(status.message(), str)) << "expected error: " << status.message() << " to contain: " << str; } TEST(ValidateCppIdent, Simple) { TF_EXPECT_OK(ValidateCppIdent("a", "")); TF_EXPECT_OK(ValidateCppIdent("abc", "")); TF_EXPECT_OK(ValidateCppIdent("_abc", "")); TF_EXPECT_OK(ValidateCppIdent("_abc123", "")); string ident; for (char c = 'a'; c <= 'z'; c++) { ident.append(1, c); } for (char c = 'A'; c <= 'Z'; c++) { ident.append(1, c); } for (char c = '0'; c <= '9'; c++) { ident.append(1, c); } ident += "_"; TF_EXPECT_OK(ValidateCppIdent(ident, "")); ExpectErrorContains(ValidateCppIdent("", ""), "empty identifier"); ExpectErrorContains(ValidateCppIdent(" ", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent("0", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent(".", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent(":", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent("a.", ""), "illegal char"); ExpectErrorContains(ValidateCppIdent("a:", ""), "illegal char"); ExpectErrorContains(ValidateCppIdent("a:", ""), "illegal char"); } class ParseCppClassTest : public ::testing::Test { protected: void ExpectOK(const string& cpp_class, const string& want_class_name, const std::vector<string>& want_namespaces) { string class_name; std::vector<string> namespaces; TF_EXPECT_OK(ParseCppClass(cpp_class, &class_name, &namespaces)); EXPECT_EQ(class_name, want_class_name); EXPECT_EQ(namespaces, want_namespaces); } void ExpectFail(const string& cpp_class) { string class_name; std::vector<string> namespaces; EXPECT_NE(ParseCppClass(cpp_class, &class_name, &namespaces), absl::OkStatus()) << cpp_class; } }; TEST_F(ParseCppClassTest, ParseOK) { ExpectOK("MyClass", "MyClass", {}); ExpectOK("_MyClass", "_MyClass", {}); ExpectOK("a::MyClass", "MyClass", {"a"}); ExpectOK("a::foo::MyClass", "MyClass", {"a", "foo"}); ExpectOK("a::foo::b::MyClass", "MyClass", {"a", "foo", "b"}); ExpectOK("a::foo::b::bar::MyClass", "MyClass", {"a", "foo", "b", "bar"}); ExpectOK("foo::MyClass", "MyClass", {"foo"}); ExpectOK("_foo::MyClass", "MyClass", {"_foo"}); ExpectOK("_foo::_MyClass", "_MyClass", {"_foo"}); ExpectOK("::foo::bar::MyClass", "MyClass", {"foo", "bar"}); ExpectOK("::_foo::MyClass", "MyClass", {"_foo"}); ExpectOK("::_foo::_MyClass", "_MyClass", {"_foo"}); string ident; for (char c = 'a'; c <= 'z'; c++) { ident.append(1, c); } for (char c = 'A'; c <= 'Z'; c++) { ident.append(1, c); } for (char c = '0'; c <= '9'; c++) { ident.append(1, c); } ident += "_"; ExpectOK(ident, ident, {}); ExpectOK(ident + "::" + ident, ident, {ident}); ExpectOK(ident + "::" + ident + "::" + ident, ident, {ident, ident}); } TEST_F(ParseCppClassTest, ParseFail) { ExpectFail(""); ExpectFail("::"); ExpectFail("0"); ExpectFail("a.b"); ExpectFail("a:b"); ExpectFail(":foo::bar"); ExpectFail("good::.bad"); ExpectFail("good:::bad"); ExpectFail("good::bad::"); ExpectFail("good::::bad"); ExpectFail("::::bad"); ExpectFail("good:: bad"); ExpectFail("good::0bad"); } static void CompareWithGoldenFile( const string& tensorflow_relative_golden_file_name, const string& expected_contents, bool ignore_cr) { string sanitized_expected_contents(expected_contents); if (ignore_cr) { sanitized_expected_contents.erase( std::remove(sanitized_expected_contents.begin(), sanitized_expected_contents.end(), '\r'), sanitized_expected_contents.end()); } const bool update_golden = false; string golden_file_name = GetDataDependencyFilepath(tensorflow_relative_golden_file_name); if (update_golden) { TF_EXPECT_OK( WriteStringToFile(Env::Default(), golden_file_name, expected_contents)); } string golden_file_contents; TF_ASSERT_OK(ReadFileToString(Env::Default(), golden_file_name, &golden_file_contents)); if (ignore_cr) { golden_file_contents.erase(std::remove(golden_file_contents.begin(), golden_file_contents.end(), '\r'), golden_file_contents.end()); } EXPECT_EQ(golden_file_contents, expected_contents); } #if TF_LLVM_X86_AVAILABLE TEST(CodegenTest, Golden) { LLVMInitializeX86Target(); LLVMInitializeX86TargetInfo(); LLVMInitializeX86TargetMC(); LLVMInitializeX86AsmPrinter(); CodegenOpts opts; opts.class_name = "MyClass"; opts.target_triple = "x86_64-pc-linux"; opts.namespaces = {"foo", "bar"}; opts.gen_name_to_index = true; opts.gen_program_shape = true; tf2xla::Config config; tf2xla::Feed* feed = config.add_feed(); feed->mutable_id()->set_node_name("feed0"); feed->set_name("myfeed"); feed = config.add_feed(); feed->mutable_id()->set_node_name("feed1"); tf2xla::Fetch* fetch = config.add_fetch(); fetch->mutable_id()->set_node_name("fetch0"); fetch->set_name("myfetch"); tf2xla::Variable* variable = config.add_variable(); variable->set_node_name("myvar_readonly"); variable->mutable_shape()->add_dim()->set_size(1); variable->set_type(DT_FLOAT); variable->set_readonly(true); tf2xla::Variable* variable2 = config.add_variable(); variable2->set_node_name("myvar"); variable2->mutable_shape()->add_dim()->set_size(1); variable2->set_type(DT_FLOAT); tf2xla::Variable* variable3 = config.add_variable(); variable3->set_node_name("my/var"); variable3->set_name("myvar2"); variable3->mutable_shape()->add_dim()->set_size(5); variable3->set_type(DT_INT32); CompileResult compile_result; compile_result.aot.reset(new xla::cpu::CpuAotCompilationResult( {}, {BufferInfo::MakeTempBuffer(3 * 8), BufferInfo::MakeEntryParameter(8, 0), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 1), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 2), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 3), BufferInfo::MakeResultParameter(5 * 6 * 4, 0), BufferInfo::MakeEntryParameter(96, 4), BufferInfo::MakeResultParameter(1 * 4, 1), BufferInfo::MakeResultParameter(5 * 4, 2)}, 0, nullptr, {})); compile_result.program_shape = xla::ShapeUtil::MakeProgramShape( { xla::ShapeUtil::MakeShape(xla::F32, {1, 2}), xla::ShapeUtil::MakeShape(xla::S64, {3, 4}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::S32, {5}), }, xla::ShapeUtil::MakeTupleShape({ xla::ShapeUtil::MakeShape(xla::U32, {5, 6}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::S32, {5}), })) .ToProto(); compile_result.entry_point = "entry_point"; compile_result.pointer_size = 8; MetadataResult metadata_result; TF_ASSERT_OK(GenerateMetadata(opts, compile_result, &metadata_result)); CompareWithGoldenFile("tensorflow/compiler/aot/codegen_test_o.golden", metadata_result.object_file_data, false); string header; TF_ASSERT_OK( GenerateHeader(opts, config, compile_result, metadata_result, &header)); CompareWithGoldenFile("tensorflow/compiler/aot/codegen_test_h.golden", header, true); } #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/codegen.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/codegen_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
75b5b842-ea24-4b95-a9a0-6dbf9817814e
cpp
tensorflow/tensorflow
benchmark
tensorflow/compiler/aot/benchmark.cc
tensorflow/compiler/aot/benchmark_test.cc
#include "tensorflow/compiler/aot/benchmark.h" #include <sys/time.h> #include <algorithm> #include <string> #include <utility> #include <vector> #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace tfcompile { namespace benchmark { static uint64 NowMicros() { struct timeval tv; gettimeofday(&tv, nullptr); return static_cast<uint64>(tv.tv_sec) * 1000000 + tv.tv_usec; } void DumpStatsToStdout(const Stats& stats) { std::vector<int64_t> sorted_us(stats.per_iter_us); std::sort(sorted_us.begin(), sorted_us.end()); const size_t count_us = sorted_us.size(); double sum_us = 0; size_t count_us_trimmed = 0; double sum_us_trimmed = 0; size_t count_us_best = 0; double sum_us_best = 0; static constexpr float trim_ratio = 0.25; static constexpr float best_ratio = 0.1; const size_t count_trimmed = count_us * trim_ratio; const size_t count_best = count_us * best_ratio; for (size_t i = 0; i < sorted_us.size(); ++i) { const int64_t us = sorted_us[i]; sum_us += us; if (i >= count_trimmed && i < count_us - count_trimmed) { sum_us_trimmed += us; ++count_us_trimmed; } if (i < count_best) { sum_us_best += us; ++count_us_best; } } const int kBufSize = 1000; char buf[kBufSize]; snprintf(buf, kBufSize, "Mean with %2.0f%% trimmed:", trim_ratio * 100); std::string label_trimmed(buf); snprintf(buf, kBufSize, "Mean of %2.0f%% best:", best_ratio * 100); std::string label_best(buf); std::vector<std::pair<std::string, double>> groups = { {"Best:", sorted_us.front()}, {"Worst:", sorted_us.back()}, {"Median:", sorted_us[count_us / 2]}, {"Mean:", sum_us / count_us}, {std::move(label_trimmed), sum_us_trimmed / count_us_trimmed}, {std::move(label_best), sum_us_best / count_us_best}, }; int max_label_size = 0; double max_us = 0; for (const auto& g : groups) { if (g.first.size() > max_label_size) { max_label_size = g.first.size(); } if (g.second > max_us) { max_us = g.second; } } int max_digits = 1; while (max_us >= 10.0) { max_us /= 10.0; ++max_digits; } printf("Benchmark ran %zu iterations over %lld us\n", count_us, static_cast<long long>(stats.total_us)); for (const auto& g : groups) { printf(" %-*s %*.3f us\n", max_label_size, g.first.c_str(), max_digits + 4, g.second); } } void Benchmark(const Options& options, const BenchmarkFn& fn, Stats* stats) { const int64_t max_us = (options.max_micros <= 0 && options.max_iters <= 0) ? Options::kDefaultMicros : options.max_micros; printf("Running benchmark for %lld us\n", static_cast<long long>(max_us)); const int64_t start_us = NowMicros(); int64_t iters = 0; while (true) { const int64_t iter_start_us = NowMicros(); fn(); const int64_t end_us = NowMicros(); stats->per_iter_us.push_back(end_us - iter_start_us); const int64_t total_us = end_us - start_us; ++iters; if ((max_us > 0 && total_us >= max_us) || (options.max_iters > 0 && iters >= options.max_iters)) { stats->total_us = total_us; break; } } } } } }
#include "tensorflow/compiler/aot/benchmark.h" #include "tensorflow/compiler/aot/test_graph_tfadd.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfcompile { namespace benchmark { namespace { TEST(Benchmark, Benchmark) { AddComp add; Options options; options.max_iters = 1; Stats stats1; Benchmark(options, [&] { add.Run(); }, &stats1); EXPECT_EQ(stats1.per_iter_us.size(), 1); options.max_iters = 5; Stats stats5; Benchmark(options, [&] { add.Run(); }, &stats5); EXPECT_EQ(stats5.per_iter_us.size(), 5); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/benchmark.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/benchmark_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d3090d1e-5324-455c-99cb-9831f60b4f72
cpp
tensorflow/tensorflow
array4d
third_party/xla/xla/array4d.h
third_party/xla/xla/array4d_test.cc
#ifndef XLA_ARRAY4D_H_ #define XLA_ARRAY4D_H_ #include <algorithm> #include <functional> #include <initializer_list> #include <iterator> #include <memory> #include <numeric> #include <random> #include <string> #include <vector> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { template <typename T> class Array4D : public Array<T> { public: Array4D() : Array<T>(std::vector<int64_t>{0, 0, 0, 0}) {} Array4D(int64_t planes, int64_t depth, int64_t height, int64_t width) : Array<T>(std::vector<int64_t>{planes, depth, height, width}) {} Array4D(int64_t planes, int64_t depth, int64_t height, int64_t width, T value) : Array<T>(std::vector<int64_t>{planes, depth, height, width}, value) {} template <typename Container = std::initializer_list<T>> Array4D(int64_t planes, int64_t depth, int64_t height, int64_t width, const Container& values) : Array4D(planes, depth, height, width) { this->SetValues(values); } Array4D(std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<T>>>> values) : Array<T>(values) {} template <typename T2, array_impl::overload_for_float<T, T2> = true> Array4D(std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<T2>>>> values) : Array<T>(values) {} int64_t n4() const { return this->dim(3); } int64_t n3() const { return this->dim(2); } int64_t n2() const { return this->dim(1); } int64_t n1() const { return this->dim(0); } int64_t width() const { return this->dim(3); } int64_t height() const { return this->dim(2); } int64_t depth() const { return this->dim(1); } int64_t planes() const { return this->dim(0); } void FillWithYX(const Array2D<T>& value) { CHECK_EQ(value.height(), height()); CHECK_EQ(value.width(), width()); for (int64_t plane = 0; plane < planes(); ++plane) { for (int64_t depth = 0; depth < this->depth(); ++depth) { for (int64_t height = 0; height < this->height(); ++height) { for (int64_t width = 0; width < this->width(); ++width) { (*this)(plane, depth, height, width) = value(height, width); } } } } } void FillWithZY(const Array2D<T>& value) { CHECK_EQ(value.height(), depth()); CHECK_EQ(value.width(), height()); for (int64_t plane = 0; plane < planes(); ++plane) { for (int64_t depth = 0; depth < this->depth(); ++depth) { for (int64_t height = 0; height < this->height(); ++height) { for (int64_t width = 0; width < this->width(); ++width) { (*this)(plane, depth, height, width) = value(depth, height); } } } } } void FillWithPZ(const Array2D<T>& value) { CHECK_EQ(value.height(), planes()); CHECK_EQ(value.width(), depth()); for (int64_t height = 0; height < this->height(); ++height) { for (int64_t width = 0; width < this->width(); ++width) { for (int64_t plane = 0; plane < planes(); ++plane) { for (int64_t depth = 0; depth < this->depth(); ++depth) { (*this)(plane, depth, height, width) = value(plane, depth); } } } } } void FillWithMinorDimNum() { LOG(INFO) << "width: " << this->width(); LOG(INFO) << "height: " << this->height(); LOG(INFO) << "depth: " << this->depth(); LOG(INFO) << "planes: " << this->planes(); for (int64_t height = 0; height < this->height(); ++height) { for (int64_t width = 0; width < this->width(); ++width) { for (int64_t plane = 0; plane < planes(); ++plane) { for (int64_t depth = 0; depth < this->depth(); ++depth) { float this_val = plane * this->depth() + depth; (*this)(plane, depth, height, width) = this_val; } } } } } }; } #endif
#include "xla/array4d.h" #include <initializer_list> #include <numeric> #include <vector> #include "absl/log/log.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array2d.h" #include "xla/test.h" namespace xla { namespace { template <typename T> int64_t Array4DLinearIndex(const Array4D<T>& arr, absl::Span<const int64_t> idx) { EXPECT_EQ(4, idx.size()); return (idx[3] + idx[2] * arr.n4() + idx[1] * arr.n3() * arr.n4() + idx[0] * arr.n2() * arr.n3() * arr.n4()); } TEST(Array4dTest, UninitializedDimsCtor) { Array4D<int> empty(2, 3, 4, 5); EXPECT_EQ(empty.n1(), 2); EXPECT_EQ(empty.n2(), 3); EXPECT_EQ(empty.n3(), 4); EXPECT_EQ(empty.n4(), 5); EXPECT_EQ(empty.num_elements(), 120); } TEST(Array4dTest, FillCtor) { Array4D<int> fullof7(2, 3, 4, 5, 7); EXPECT_EQ(fullof7.n1(), 2); EXPECT_EQ(fullof7.n2(), 3); EXPECT_EQ(fullof7.n3(), 4); EXPECT_EQ(fullof7.n4(), 5); fullof7.Each( [](absl::Span<const int64_t> idx, int* cell) { EXPECT_EQ(*cell, 7); }); } TEST(Array4dTest, ContainerCtor) { std::vector<int> filler(120); std::iota(filler.begin(), filler.end(), 0); Array4D<int> arr(2, 3, 4, 5, filler); EXPECT_EQ(arr.n1(), 2); EXPECT_EQ(arr.n2(), 3); EXPECT_EQ(arr.n3(), 4); EXPECT_EQ(arr.n4(), 5); arr.Each([&arr](absl::Span<const int64_t> idx, int* cell) { EXPECT_EQ(*cell, Array4DLinearIndex(arr, idx)); }); } TEST(Array3dTest, InitializerListCtor) { Array4D<int> arr = {{{{1}, {2}}, {{3}, {4}}, {{5}, {6}}, {{7}, {8}}}, {{{9}, {10}}, {{11}, {12}}, {{13}, {14}}, {{15}, {16}}}, {{{17}, {18}}, {{19}, {20}}, {{21}, {22}}, {{23}, {24}}}}; EXPECT_EQ(arr.n1(), 3); EXPECT_EQ(arr.n2(), 4); EXPECT_EQ(arr.n3(), 2); EXPECT_EQ(arr.n4(), 1); EXPECT_EQ(arr.num_elements(), 24); EXPECT_EQ(arr(0, 0, 0, 0), 1); EXPECT_EQ(arr(0, 0, 1, 0), 2); EXPECT_EQ(arr(0, 1, 0, 0), 3); EXPECT_EQ(arr(0, 3, 1, 0), 8); EXPECT_EQ(arr(1, 0, 0, 0), 9); EXPECT_EQ(arr(1, 1, 1, 0), 12); EXPECT_EQ(arr(2, 0, 0, 0), 17); EXPECT_EQ(arr(2, 1, 1, 0), 20); EXPECT_EQ(arr(2, 2, 0, 0), 21); EXPECT_EQ(arr(2, 3, 1, 0), 24); } TEST(Array3dTest, InitializerListCtorHalf) { Array4D<Eigen::half> arr = { {{{1.0f}, {2.0f}}, {{3.0f}, {4.0f}}, {{5.0f}, {6.0f}}, {{7.0f}, {8.0f}}}, {{{9.0f}, {10.0f}}, {{11.0f}, {12.0f}}, {{13.0f}, {14.0f}}, {{15.0f}, {16.0f}}}, {{{17.0f}, {18.0f}}, {{19.0f}, {20.0f}}, {{21.0f}, {22.0f}}, {{23.0f}, {24.0f}}}}; EXPECT_EQ(arr.n1(), 3); EXPECT_EQ(arr.n2(), 4); EXPECT_EQ(arr.n3(), 2); EXPECT_EQ(arr.n4(), 1); EXPECT_EQ(arr.num_elements(), 24); EXPECT_EQ(arr(0, 0, 0, 0), static_cast<Eigen::half>(1)); EXPECT_EQ(arr(0, 0, 1, 0), static_cast<Eigen::half>(2)); EXPECT_EQ(arr(0, 1, 0, 0), static_cast<Eigen::half>(3)); EXPECT_EQ(arr(0, 3, 1, 0), static_cast<Eigen::half>(8)); EXPECT_EQ(arr(1, 0, 0, 0), static_cast<Eigen::half>(9)); EXPECT_EQ(arr(1, 1, 1, 0), static_cast<Eigen::half>(12)); EXPECT_EQ(arr(2, 0, 0, 0), static_cast<Eigen::half>(17)); EXPECT_EQ(arr(2, 1, 1, 0), static_cast<Eigen::half>(20)); EXPECT_EQ(arr(2, 2, 0, 0), static_cast<Eigen::half>(21)); EXPECT_EQ(arr(2, 3, 1, 0), static_cast<Eigen::half>(24)); } TEST(Array4dTest, Fill) { Array4D<int> fullof7(2, 3, 4, 5, 7); fullof7.Each( [](absl::Span<const int64_t> idx, int* cell) { EXPECT_EQ(*cell, 7); }); fullof7.Fill(11); fullof7.Each( [](absl::Span<const int64_t> idx, int* cell) { EXPECT_EQ(*cell, 11); }); } TEST(Array4dTest, FillWithMultiples) { Array4D<float> arr(2, 3, 4, 5); arr.FillWithMultiples(2.0f); arr.Each([&arr](absl::Span<const int64_t> idx, float* cell) { EXPECT_EQ(*cell, 2.0f * Array4DLinearIndex(arr, idx)); }); } TEST(Array4dTest, FillRasterDimensionDepthOne) { Array4D<float> array(1, 1, 128, 128); Array2D<float> raster(128, 128); for (int row = 0; row < 128; ++row) { for (int col = 0; col < 128; ++col) { raster(row, col) = row * 1000.0 + col; } } array.FillWithYX(raster); VLOG(1) << array.ToString(); EXPECT_FLOAT_EQ(raster(0, 0), array(0, 0, 0, 0)); EXPECT_FLOAT_EQ(raster(0, 1), array(0, 0, 0, 1)); EXPECT_FLOAT_EQ(raster(1, 0), array(0, 0, 1, 0)); EXPECT_FLOAT_EQ(raster(1, 1), array(0, 0, 1, 1)); EXPECT_FLOAT_EQ(raster(2, 0), array(0, 0, 2, 0)); EXPECT_FLOAT_EQ(raster(127, 127), array(0, 0, 127, 127)); EXPECT_FLOAT_EQ(0, array(0, 0, 0, 0)); EXPECT_FLOAT_EQ(1, array(0, 0, 0, 1)); EXPECT_FLOAT_EQ(2, array(0, 0, 0, 2)); EXPECT_FLOAT_EQ(1001, array(0, 0, 1, 1)); EXPECT_FLOAT_EQ(2001, array(0, 0, 2, 1)); EXPECT_FLOAT_EQ(127000, array(0, 0, 127, 0)); EXPECT_FLOAT_EQ(127127, array(0, 0, 127, 127)); } TEST(Array4dTest, FillWithPzTestDepthOne) { Array2D<float> matrix(3, 2); std::initializer_list<std::initializer_list<float>> values = { {-3.f, -0.1f}, {0.f, -0.1f}, {3.f, 0.2f}, }; int rowno = 0; for (auto row : values) { int colno = 0; for (float f : row) { matrix(rowno, colno) = f; colno++; } rowno++; } Array4D<float> actual(3, 2, 1, 1); actual.FillWithPZ(matrix); EXPECT_FLOAT_EQ(-3, actual(0, 0, 0, 0)); EXPECT_FLOAT_EQ(-0.1, actual(0, 1, 0, 0)); EXPECT_FLOAT_EQ(0, actual(1, 0, 0, 0)); EXPECT_FLOAT_EQ(-0.1, actual(1, 1, 0, 0)); EXPECT_FLOAT_EQ(3, actual(2, 0, 0, 0)); EXPECT_FLOAT_EQ(0.2, actual(2, 1, 0, 0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array4d.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array4d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d4c0666-2f4c-4f65-b796-b910e48f5143
cpp
tensorflow/tensorflow
fp_util
third_party/xla/xla/fp_util.h
third_party/xla/xla/fp_util_test.cc
#ifndef XLA_FP_UTIL_H_ #define XLA_FP_UTIL_H_ #include <algorithm> #define _USE_MATH_DEFINES #include <cmath> #include <cstdint> #include <cstdlib> #include <limits> #include <optional> #include <utility> #include "xla/types.h" #include "xla/util.h" namespace xla { template <typename T> constexpr bool IsZero(T x) { return x == static_cast<T>(0.0f); } template <typename T> constexpr bool IsSignMinus(T x) { return x < 0; } template <typename T> constexpr T Abs(T x) { if (IsZero(x)) { return x + static_cast<T>(0.0f); } return IsSignMinus(x) ? -x : x; } template <typename T> constexpr bool IsNaN(T x) { return x != x; } template <typename T> constexpr bool IsInfinite(T x) { return x == std::numeric_limits<T>::infinity() || x == -std::numeric_limits<T>::infinity(); } template <typename T> constexpr bool IsFinite(T x) { return !IsNaN(x) && !IsInfinite(x); } template <typename T> constexpr bool IsNormal(T x) { T abs_x = Abs(x); return abs_x >= std::numeric_limits<T>::min() && abs_x <= std::numeric_limits<T>::max(); } template <typename T> constexpr bool IsSubnormal(T x) { T abs_x = Abs(x); return abs_x > static_cast<T>(0) && abs_x < std::numeric_limits<T>::min(); } template <typename T> constexpr T ScaleBase(T x, int n) { static_assert(is_specialized_floating_point_v<T>); while (n > 0 && IsFinite(x) && !IsZero(x)) { int multiplier_exponent = std::min(n, std::numeric_limits<T>::max_exponent - 1); x *= IPow(static_cast<T>(std::numeric_limits<T>::radix), multiplier_exponent); n -= multiplier_exponent; } for (; n < 0 && IsFinite(x) && !IsZero(x); ++n) { T shifted_x = x / std::numeric_limits<T>::radix; if (IsSubnormal(shifted_x)) { int scale_exponent = -((std::numeric_limits<T>::min_exponent - 1) - (std::numeric_limits<T>::digits - 1)) + n; if (scale_exponent < 0) { return x * static_cast<T>(0); } return x * ScaleBase(std::numeric_limits<T>::denorm_min(), scale_exponent); } x = shifted_x; } return x; } template <typename T> constexpr std::optional<int> LogBase(T x) { if (IsNaN(x)) { return std::nullopt; } if (IsInfinite(x)) { return std::numeric_limits<int>::max(); } if (IsZero(x)) { return std::numeric_limits<int>::min(); } T abs_x = Abs(x); int exponent = 0; while (abs_x < static_cast<T>(1)) { abs_x *= std::numeric_limits<T>::radix; exponent -= 1; } while (abs_x >= std::numeric_limits<T>::radix) { abs_x /= std::numeric_limits<T>::radix; exponent += 1; } return exponent; } enum class RoundingDirection { kRoundTiesToEven, kRoundTowardsZero, }; template <typename DstT, typename SrcT> constexpr std::pair<DstT, DstT> SplitToFpPair( SrcT to_split, int num_high_trailing_zeros, RoundingDirection rounding_direction = RoundingDirection::kRoundTiesToEven) { constexpr auto kError = std::make_pair(std::numeric_limits<DstT>::quiet_NaN(), std::numeric_limits<DstT>::quiet_NaN()); if (num_high_trailing_zeros < 0) { return kError; } if (!IsFinite(to_split)) { return kError; } if (IsZero(to_split)) { DstT zero = static_cast<DstT>(to_split); return std::make_pair(zero, zero); } if (IsSignMinus(to_split)) { auto [high, low] = SplitToFpPair<DstT, SrcT>(Abs(to_split), num_high_trailing_zeros); return std::make_pair(-high, -low); } auto maybe_exponent = LogBase(to_split); if (!maybe_exponent.has_value()) { return kError; } int exponent = *maybe_exponent; constexpr int kMinNormalExponent = std::numeric_limits<DstT>::min_exponent - 1; const int effective_precision = std::numeric_limits<DstT>::digits - std::max(kMinNormalExponent - exponent, 0); const int high_bits_to_keep = effective_precision - num_high_trailing_zeros; if (high_bits_to_keep < 1) { return kError; } static_assert(std::numeric_limits<SrcT>::max_exponent - 1 >= std::numeric_limits<DstT>::digits); SrcT scaled_significand = ScaleBase(to_split, high_bits_to_keep - (exponent + 1)); uint64_t integer_part = static_cast<uint64_t>(scaled_significand); SrcT fractional_part = scaled_significand - static_cast<SrcT>(integer_part); switch (rounding_direction) { case RoundingDirection::kRoundTiesToEven: { if (fractional_part > static_cast<SrcT>(0.5f) || (fractional_part == static_cast<SrcT>(0.5f) && integer_part % 2 == 1)) { integer_part += 1; } break; } case RoundingDirection::kRoundTowardsZero: { break; } } SrcT rounded = ScaleBase(static_cast<SrcT>(integer_part), (exponent + 1) - high_bits_to_keep); DstT high = static_cast<DstT>(rounded); if (static_cast<SrcT>(high) != rounded) { return kError; } DstT low = static_cast<DstT>(to_split - double{high}); return std::make_pair(high, low); } template <typename DstT, typename SrcT> constexpr DstT RoundToPrecision( SrcT to_round, int precision = std::numeric_limits<DstT>::digits, RoundingDirection rounding_direction = RoundingDirection::kRoundTiesToEven) { auto [high, low] = SplitToFpPair<DstT, SrcT>( to_round, std::numeric_limits<DstT>::digits - precision, rounding_direction); return high; } template <typename DstT> constexpr std::pair<DstT, DstT> Log2FloatPair(int num_high_trailing_zeros) { return SplitToFpPair<DstT>(M_LN2, num_high_trailing_zeros); } template <typename T> constexpr T GoldbergUlp(T x) { if (IsZero(x) || IsSubnormal(x)) { return GoldbergUlp(std::numeric_limits<T>::min()); } std::optional<int> maybe_exponent = LogBase(x); if (maybe_exponent.has_value(); const int exponent = *maybe_exponent) { return ScaleBase(std::numeric_limits<T>::epsilon(), exponent); } if constexpr (std::numeric_limits<T>::has_quiet_NaN) { return std::numeric_limits<T>::quiet_NaN(); } else if constexpr (std::numeric_limits<T>::has_infinity) { return std::numeric_limits<T>::infinity(); } else { return GoldbergUlp(std::numeric_limits<T>::max()); } } template <typename T> int64_t CalculateDistanceInFloats(T a, T b) { auto a_sign_and_magnitude = SignAndMagnitude(a); auto b_sign_and_magnitude = SignAndMagnitude(b); uint64_t a_distance_from_zero = a_sign_and_magnitude.first ? -a_sign_and_magnitude.second : a_sign_and_magnitude.second; uint64_t b_distance_from_zero = b_sign_and_magnitude.first ? -b_sign_and_magnitude.second : b_sign_and_magnitude.second; int64_t signed_distance = a_distance_from_zero - b_distance_from_zero; return std::abs(signed_distance); } } #endif
#include "xla/fp_util.h" #include <algorithm> #include <cmath> #include <cstdint> #include <limits> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/numeric/bits.h" #include "xla/bit_cast.h" #include "xla/test.h" #include "xla/util.h" #include "tsl/platform/ml_dtypes.h" namespace xla { namespace { class FixedValueTest : public testing::TestWithParam<double> {}; TEST_P(FixedValueTest, DropBits) { double input = GetParam(); int exponent = std::ilogb(input); constexpr int kMinNormalExponent = std::numeric_limits<float>::min_exponent - 1; int normalization_loss = std::isnormal(input) ? std::max(kMinNormalExponent - exponent, 0) : 0; int max_precision = std::numeric_limits<float>::digits - normalization_loss; for (int i = 0; i < max_precision; ++i) { auto result = SplitToFpPair<float>(input, i); auto [high_float, low_float] = result; if (!std::isfinite(input)) { EXPECT_TRUE(std::isnan(high_float)); EXPECT_TRUE(std::isnan(low_float)); continue; } EXPECT_FALSE(std::isnan(high_float)); EXPECT_FALSE(std::isnan(low_float)); EXPECT_GE(absl::countr_zero(absl::bit_cast<uint32_t>(high_float)), i); double sum = double{high_float} + double{low_float}; if (input == 0.0) { EXPECT_EQ(high_float, 0.0f); EXPECT_EQ(low_float, 0.0f); } else { EXPECT_LT(std::fabs(input - double{high_float}), std::scalbn(input, -(max_precision - i))); if (std::abs(input) >= std::numeric_limits<float>::min()) { EXPECT_LT(std::fabs(input - sum), std::scalbn(std::fabs(input), -(2 * max_precision + 1 - i))); } } if (i == 0) { EXPECT_EQ(high_float + low_float, high_float); } if (input == high_float) { EXPECT_EQ(low_float, 0.0f); } else { EXPECT_GT(std::fabs(high_float), std::scalbn(low_float, max_precision - i)) << "input: " << RoundTripFpToString(input) << " high_float: " << RoundTripFpToString(high_float) << " low_float: " << RoundTripFpToString(low_float); auto no_op_split = SplitToFpPair<float>(high_float, i); EXPECT_EQ(no_op_split.first, high_float); EXPECT_EQ(no_op_split.second, 0.0f); } if (input != sum) { EXPECT_LT(absl::countr_zero(absl::bit_cast<uint64_t>(input)), std::numeric_limits<double>::digits - (2 * max_precision + 1)) << "input: " << RoundTripFpToString(input) << " high_float: " << RoundTripFpToString(high_float) << " low_float: " << RoundTripFpToString(low_float); } } } INSTANTIATE_TEST_SUITE_P( SinglePrecisionInputs, FixedValueTest, testing::Values(+0.0f, -0.0f, 1.0f, static_cast<float>(M_PI), static_cast<float>(M_1_PI), static_cast<float>(M_E), static_cast<float>(M_LN2), static_cast<float>(M_LOG2E), static_cast<float>(M_SQRT2), static_cast<float>(M_SQRT1_2), static_cast<float>(M_2_SQRTPI), 0x1.555554p+1f, 0x1.aaaaaap+1f, 0x1.fffffcp-127f, std::numeric_limits<float>::infinity(), std::numeric_limits<float>::quiet_NaN())); INSTANTIATE_TEST_SUITE_P(DoublePrecisionInputs, FixedValueTest, testing::Values(+0.0, -0.0, 1.0, M_PI, M_1_PI, M_E, M_LN2, M_LOG2E, M_SQRT2, M_SQRT1_2, M_2_SQRTPI, 0x1.5555555555555p+1, 0x1.aaaaaaaaaaaaap+1, 0x1.fffffffffffffp-127, 0x1.aaaaaaaaaaaaap-127)); template <typename T> class FP8E4M3DistanceTest : public ::testing::Test {}; using F8E4M3Types = ::testing::Types<tsl::float8_e4m3, tsl::float8_e4m3fn>; TYPED_TEST_SUITE(FP8E4M3DistanceTest, F8E4M3Types); TEST(FPDistanceTest, F8E3M4Distance) { EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>(tsl::float8_e3m4(8.0), tsl::float8_e3m4(8.0)), 0); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>(tsl::float8_e3m4(8.0), tsl::float8_e3m4(15.5)), 15); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>(tsl::float8_e3m4(8.0), tsl::float8_e3m4(6)), 8); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>( std::numeric_limits<tsl::float8_e3m4>::denorm_min(), tsl::float8_e3m4(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>( -std::numeric_limits<tsl::float8_e3m4>::denorm_min(), tsl::float8_e3m4(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>( -std::numeric_limits<tsl::float8_e3m4>::denorm_min(), std::numeric_limits<tsl::float8_e3m4>::denorm_min()), 2); EXPECT_EQ( CalculateDistanceInFloats<tsl::float8_e3m4>( std::numeric_limits<tsl::float8_e3m4>::min(), tsl::float8_e3m4(0)), 16); EXPECT_EQ( CalculateDistanceInFloats<tsl::float8_e3m4>( -std::numeric_limits<tsl::float8_e3m4>::min(), tsl::float8_e3m4(0)), 16); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e3m4>( -std::numeric_limits<tsl::float8_e3m4>::min(), std::numeric_limits<tsl::float8_e3m4>::min()), 32); } TYPED_TEST(FP8E4M3DistanceTest, F8E4M3Distance) { EXPECT_EQ( CalculateDistanceInFloats<TypeParam>(TypeParam(8.0), TypeParam(8.0)), 0); EXPECT_EQ( CalculateDistanceInFloats<TypeParam>(TypeParam(8.0), TypeParam(15.0)), 7); EXPECT_EQ( CalculateDistanceInFloats<TypeParam>(TypeParam(8.0), TypeParam(6.0)), 4); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( std::numeric_limits<TypeParam>::denorm_min(), TypeParam(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( -std::numeric_limits<TypeParam>::denorm_min(), TypeParam(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( -std::numeric_limits<TypeParam>::denorm_min(), std::numeric_limits<TypeParam>::denorm_min()), 2); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( std::numeric_limits<TypeParam>::min(), TypeParam(0)), 8); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( -std::numeric_limits<TypeParam>::min(), TypeParam(0)), 8); EXPECT_EQ(CalculateDistanceInFloats<TypeParam>( -std::numeric_limits<TypeParam>::min(), std::numeric_limits<TypeParam>::min()), 16); } TEST(FPDistanceTest, F8E5M2Distance) { EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>(tsl::float8_e5m2(8.0), tsl::float8_e5m2(8.0)), 0); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>(tsl::float8_e5m2(8.0), tsl::float8_e5m2(14)), 3); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>(tsl::float8_e5m2(8.0), tsl::float8_e5m2(6)), 2); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>( std::numeric_limits<tsl::float8_e5m2>::denorm_min(), tsl::float8_e5m2(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>( -std::numeric_limits<tsl::float8_e5m2>::denorm_min(), tsl::float8_e5m2(0)), 1); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>( -std::numeric_limits<tsl::float8_e5m2>::denorm_min(), std::numeric_limits<tsl::float8_e5m2>::denorm_min()), 2); EXPECT_EQ( CalculateDistanceInFloats<tsl::float8_e5m2>( std::numeric_limits<tsl::float8_e5m2>::min(), tsl::float8_e5m2(0)), 4); EXPECT_EQ( CalculateDistanceInFloats<tsl::float8_e5m2>( -std::numeric_limits<tsl::float8_e5m2>::min(), tsl::float8_e5m2(0)), 4); EXPECT_EQ(CalculateDistanceInFloats<tsl::float8_e5m2>( -std::numeric_limits<tsl::float8_e5m2>::min(), std::numeric_limits<tsl::float8_e5m2>::min()), 8); } TEST(FPDistanceTest, F64Distance) { EXPECT_EQ(CalculateDistanceInFloats<double>(8.0, 8.0), 0); EXPECT_EQ(CalculateDistanceInFloats<double>( std::numeric_limits<double>::denorm_min(), std::nextafter(std::numeric_limits<double>::denorm_min(), 1.0)), 1); EXPECT_EQ(CalculateDistanceInFloats<double>( std::numeric_limits<double>::min(), std::numeric_limits<double>::denorm_min()), (1ULL << 52) - 1); EXPECT_EQ(CalculateDistanceInFloats<double>( std::numeric_limits<double>::denorm_min(), 0.0), 1); EXPECT_EQ(CalculateDistanceInFloats<double>( -std::numeric_limits<double>::denorm_min(), 0.0), 1); EXPECT_EQ(CalculateDistanceInFloats<double>( -std::numeric_limits<double>::denorm_min(), std::numeric_limits<double>::denorm_min()), 2); EXPECT_EQ(CalculateDistanceInFloats<double>( std::numeric_limits<double>::min(), 0.0), 1ULL << 52); EXPECT_EQ(CalculateDistanceInFloats<double>( -std::numeric_limits<double>::min(), 0.0), 1ULL << 52); EXPECT_EQ( CalculateDistanceInFloats<double>(-std::numeric_limits<double>::min(), std::numeric_limits<double>::min()), 2 * (1ULL << 52)); EXPECT_EQ( CalculateDistanceInFloats<double>(BitCast<double>(0x7fffffffffffffff), BitCast<double>(0xffffffffffffffff)), 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/fp_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/fp_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6685bdc8-3ebc-494e-b6e0-36ecd722d50c
cpp
tensorflow/tensorflow
map_util
tensorflow/core/lib/gtl/map_util.h
third_party/xla/xla/tsl/lib/gtl/map_util_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_MAP_UTIL_H_ #define TENSORFLOW_CORE_LIB_GTL_MAP_UTIL_H_ #include "xla/tsl/lib/gtl/map_util.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::EraseKeyReturnValuePtr; using ::tsl::gtl::FindOrNull; using ::tsl::gtl::FindPtrOrNull; using ::tsl::gtl::FindWithDefault; using ::tsl::gtl::InsertIfNotPresent; using ::tsl::gtl::InsertOrUpdate; using ::tsl::gtl::LookupOrInsert; using ::tsl::gtl::ReverseMap; } } #endif
#include "xla/tsl/lib/gtl/map_util.h" #include <map> #include <set> #include <string> #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { TEST(MapUtil, Find) { typedef std::map<string, string> Map; Map m; EXPECT_EQ("", gtl::FindWithDefault(m, "foo", "")); m["foo"] = "bar"; EXPECT_EQ("bar", gtl::FindWithDefault(m, "foo", "")); EXPECT_EQ("bar", *gtl::FindOrNull(m, "foo")); EXPECT_TRUE(m.count("foo") > 0); EXPECT_EQ(m["foo"], "bar"); } TEST(MapUtil, LookupOrInsert) { typedef std::map<string, string> Map; Map m; EXPECT_EQ("xyz", gtl::LookupOrInsert(&m, "foo", "xyz")); EXPECT_EQ("xyz", gtl::LookupOrInsert(&m, "foo", "abc")); } TEST(MapUtil, InsertIfNotPresent) { typedef std::set<int> Set; Set s; EXPECT_TRUE(gtl::InsertIfNotPresent(&s, 0)); EXPECT_EQ(s.count(0), 1); EXPECT_FALSE(gtl::InsertIfNotPresent(&s, 0)); EXPECT_EQ(s.count(0), 1); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/map_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/map_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b97172ce-bd0b-4d5c-b376-b2377221647b
cpp
tensorflow/tensorflow
statusor
tensorflow/core/platform/statusor.h
third_party/xla/third_party/tsl/tsl/platform/statusor_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_STATUSOR_H_ #define TENSORFLOW_CORE_PLATFORM_STATUSOR_H_ #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { using tsl::StatusOr; } #endif
#include "tsl/platform/statusor.h" #include <memory> #include <type_traits> #include <utility> #include <vector> #include "absl/base/config.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace { class Base1 { public: virtual ~Base1() {} int pad_; }; class Base2 { public: virtual ~Base2() {} int yetotherpad_; }; class Derived : public Base1, public Base2 { public: ~Derived() override {} int evenmorepad_; }; class CopyNoAssign { public: explicit CopyNoAssign(int value) : foo_(value) {} CopyNoAssign(const CopyNoAssign& other) : foo_(other.foo_) {} int foo_; private: const CopyNoAssign& operator=(const CopyNoAssign&); }; class NoDefaultConstructor { public: explicit NoDefaultConstructor(int foo); }; static_assert(!std::is_default_constructible<NoDefaultConstructor>(), "Should not be default-constructible."); absl::StatusOr<std::unique_ptr<int>> ReturnUniquePtr() { return std::unique_ptr<int>(new int(0)); } TEST(StatusOr, NullPointerStatusOr) { absl::StatusOr<int*> null_status(nullptr); EXPECT_TRUE(null_status.ok()); EXPECT_EQ(null_status.value(), nullptr); } TEST(StatusOr, TestNoDefaultConstructorInitialization) { absl::StatusOr<NoDefaultConstructor> statusor(errors::Cancelled("")); EXPECT_FALSE(statusor.ok()); EXPECT_EQ(statusor.status().code(), absl::StatusCode::kCancelled); absl::StatusOr<NoDefaultConstructor> statusor2; EXPECT_FALSE(statusor2.ok()); EXPECT_EQ(statusor2.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOr, TestMoveOnlyInitialization) { absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr()); ASSERT_TRUE(thing.ok()); EXPECT_EQ(0, *thing.value()); int* previous = thing.value().get(); thing = ReturnUniquePtr(); EXPECT_TRUE(thing.ok()); EXPECT_EQ(0, *thing.value()); EXPECT_NE(previous, thing.value().get()); } TEST(StatusOr, TestMoveOnlyStatusCtr) { absl::StatusOr<std::unique_ptr<int>> thing(errors::Cancelled("")); ASSERT_FALSE(thing.ok()); } TEST(StatusOr, TestMoveOnlyValueExtraction) { absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr()); ASSERT_TRUE(thing.ok()); std::unique_ptr<int> ptr = std::move(thing).value(); EXPECT_EQ(0, *ptr); thing = std::move(ptr); ptr = std::move(thing.value()); EXPECT_EQ(0, *ptr); } TEST(StatusOr, TestMoveOnlyConversion) { absl::StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr()); EXPECT_TRUE(const_thing.ok()); EXPECT_EQ(0, *const_thing.value()); const int* const_previous = const_thing.value().get(); const_thing = ReturnUniquePtr(); EXPECT_TRUE(const_thing.ok()); EXPECT_EQ(0, *const_thing.value()); EXPECT_NE(const_previous, const_thing.value().get()); } TEST(StatusOr, TestMoveOnlyVector) { std::vector<absl::StatusOr<std::unique_ptr<int>>> vec; vec.push_back(ReturnUniquePtr()); vec.resize(2); auto another_vec = std::move(vec); EXPECT_EQ(0, *another_vec[0].value()); EXPECT_EQ(absl::StatusCode::kUnknown, another_vec[1].status().code()); } TEST(StatusOr, TestMoveWithValuesAndErrors) { absl::StatusOr<std::string> status_or(std::string(1000, '0')); absl::StatusOr<std::string> value1(std::string(1000, '1')); absl::StatusOr<std::string> value2(std::string(1000, '2')); absl::StatusOr<std::string> error1( absl::Status(absl::StatusCode::kUnknown, "error1")); absl::StatusOr<std::string> error2( absl::Status(absl::StatusCode::kUnknown, "error2")); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '0'), status_or.value()); status_or = std::move(value1); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '1'), status_or.value()); status_or = std::move(error1); ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error1", status_or.status().message()); status_or = std::move(error2); ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error2", status_or.status().message()); status_or = std::move(value2); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '2'), status_or.value()); } TEST(StatusOr, TestCopyWithValuesAndErrors) { absl::StatusOr<std::string> status_or(std::string(1000, '0')); absl::StatusOr<std::string> value1(std::string(1000, '1')); absl::StatusOr<std::string> value2(std::string(1000, '2')); absl::StatusOr<std::string> error1( absl::Status(absl::StatusCode::kUnknown, "error1")); absl::StatusOr<std::string> error2( absl::Status(absl::StatusCode::kUnknown, "error2")); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '0'), status_or.value()); status_or = value1; ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '1'), status_or.value()); status_or = error1; ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error1", status_or.status().message()); status_or = error2; ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error2", status_or.status().message()); status_or = value2; ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '2'), status_or.value()); EXPECT_EQ(std::string(1000, '1'), value1.value()); EXPECT_EQ("error1", error1.status().message()); EXPECT_EQ("error2", error2.status().message()); EXPECT_EQ(std::string(1000, '2'), value2.value()); } TEST(StatusOr, TestDefaultCtor) { absl::StatusOr<int> thing; EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOrDeathTest, TestDefaultCtorValue) { absl::StatusOr<int> thing; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif const absl::StatusOr<int> thing2; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestStatusCtor) { absl::StatusOr<int> thing(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled); } TEST(StatusOr, TestValueCtor) { const int kI = 4; const absl::StatusOr<int> thing(kI); EXPECT_TRUE(thing.ok()); EXPECT_EQ(kI, thing.value()); } TEST(StatusOr, TestCopyCtorStatusOk) { const int kI = 4; const absl::StatusOr<int> original(kI); const absl::StatusOr<int> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value(), copy.value()); } TEST(StatusOr, TestCopyCtorStatusNotOk) { absl::StatusOr<int> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestCopyCtorNonAssignable) { const int kI = 4; CopyNoAssign value(kI); absl::StatusOr<CopyNoAssign> original(value); absl::StatusOr<CopyNoAssign> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value().foo_, copy.value().foo_); } TEST(StatusOr, TestCopyCtorStatusOKConverting) { const int kI = 4; absl::StatusOr<int> original(kI); absl::StatusOr<double> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_DOUBLE_EQ(original.value(), copy.value()); } TEST(StatusOr, TestCopyCtorStatusNotOkConverting) { absl::StatusOr<int> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<double> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestAssignmentStatusOk) { const int kI = 4; absl::StatusOr<int> source(kI); absl::StatusOr<int> target; target = source; EXPECT_EQ(target.status(), source.status()); EXPECT_EQ(source.value(), target.value()); } TEST(StatusOr, TestAssignmentStatusNotOk) { absl::StatusOr<int> source(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int> target; target = source; EXPECT_EQ(target.status(), source.status()); } TEST(StatusOr, TestStatus) { absl::StatusOr<int> good(4); EXPECT_TRUE(good.ok()); absl::StatusOr<int> bad(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(bad.ok()); EXPECT_EQ(bad.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestValue) { const int kI = 4; absl::StatusOr<int> thing(kI); EXPECT_EQ(kI, thing.value()); } TEST(StatusOr, TestValueConst) { const int kI = 4; const absl::StatusOr<int> thing(kI); EXPECT_EQ(kI, thing.value()); } TEST(StatusOrDeathTest, TestValueNotOk) { absl::StatusOr<int> thing( absl::Status(absl::StatusCode::kCancelled, "cancelled")); #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), "cancelled"); #endif } TEST(StatusOrDeathTest, TestValueNotOkConst) { const absl::StatusOr<int> thing(absl::Status(absl::StatusCode::kUnknown, "")); #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestPointerDefaultCtor) { absl::StatusOr<int*> thing; EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) { absl::StatusOr<int*> thing; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestPointerStatusCtor) { absl::StatusOr<int*> thing(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestPointerValueCtor) { const int kI = 4; absl::StatusOr<const int*> thing(&kI); EXPECT_TRUE(thing.ok()); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestPointerCopyCtorStatusOk) { const int kI = 0; absl::StatusOr<const int*> original(&kI); absl::StatusOr<const int*> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value(), copy.value()); } TEST(StatusOr, TestPointerCopyCtorStatusNotOk) { absl::StatusOr<int*> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int*> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) { Derived derived; absl::StatusOr<Derived*> original(&derived); absl::StatusOr<Base2*> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(static_cast<const Base2*>(original.value()), copy.value()); } TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) { absl::StatusOr<Derived*> original( absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<Base2*> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestPointerAssignmentStatusOk) { const int kI = 0; absl::StatusOr<const int*> source(&kI); absl::StatusOr<const int*> target; target = source; EXPECT_EQ(target.status(), source.status()); EXPECT_EQ(source.value(), target.value()); } TEST(StatusOr, TestPointerAssignmentStatusNotOk) { absl::StatusOr<int*> source(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int*> target; target = source; EXPECT_EQ(target.status(), source.status()); } TEST(StatusOr, TestPointerStatus) { const int kI = 0; absl::StatusOr<const int*> good(&kI); EXPECT_TRUE(good.ok()); absl::StatusOr<const int*> bad( absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_EQ(bad.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestPointerValue) { const int kI = 0; absl::StatusOr<const int*> thing(&kI); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestPointerValueConst) { const int kI = 0; const absl::StatusOr<const int*> thing(&kI); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestArrowOperator) { absl::StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr(); EXPECT_EQ(*uptr->get(), 0); } TEST(StatusOr, TestStarOperator) { absl::StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr(); EXPECT_EQ(**uptr, 0); } TEST(StatusOr, TestStarOperatorDeath) { absl::StatusOr<Base1> error( absl::Status(absl::StatusCode::kCancelled, "cancelled")); EXPECT_DEATH(*error, "cancelled"); } static absl::StatusOr<int> MakeStatus() { return 100; } template <typename T> class BenchmarkFactory { public: BenchmarkFactory() : value_(new T) {} ~BenchmarkFactory() { delete value_; } T* TrivialFactory() TF_ATTRIBUTE_NOINLINE { return value_; } absl::Status ArgumentFactory(T** result) TF_ATTRIBUTE_NOINLINE { *result = value_; return absl::OkStatus(); } absl::Status ArgumentFactoryFail(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kCancelled, ""); } absl::Status ArgumentFactoryFailShortMsg(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kInternal, ""); } absl::Status ArgumentFactoryFailLongMsg(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kInternal, "a big string of message junk that will never be read"); } StatusOr<T*> StatusOrFactory() TF_ATTRIBUTE_NOINLINE { return static_cast<T*>(value_); } StatusOr<T*> StatusOrFactoryFail() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kCancelled, ""); } StatusOr<T*> StatusOrFactoryFailShortMsg() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kInternal, ""); } StatusOr<T*> StatusOrFactoryFailLongMsg() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kInternal, "a big string of message junk that will never be read"); } private: T* volatile value_; BenchmarkFactory(const BenchmarkFactory&) = delete; void operator=(const BenchmarkFactory&) = delete; }; class BenchmarkType { public: BenchmarkType() {} virtual ~BenchmarkType() {} virtual void DoWork() TF_ATTRIBUTE_NOINLINE {} private: BenchmarkType(const BenchmarkType&) = delete; void operator=(const BenchmarkType&) = delete; }; void BM_CalibrateWorkLoop(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; BenchmarkType* result = factory.TrivialFactory(); for (auto s : state) { if (result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_CalibrateWorkLoop); void BM_TrivialFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = factory.TrivialFactory(); if (result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_TrivialFactory); void BM_ArgumentFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactory(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactory); void BM_StatusOrFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactory(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactory); void BM_ArgumentFactoryFail(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFail(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFail); void BM_StatusOrFactoryFail(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFail(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFail); void BM_ArgumentFactoryFailShortMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFailShortMsg(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFailShortMsg); void BM_StatusOrFactoryFailShortMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailShortMsg(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFailShortMsg); void BM_ArgumentFactoryFailLongMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFailLongMsg(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFailLongMsg); void BM_StatusOrFactoryFailLongMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailLongMsg(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFailLongMsg); #if defined(PLATFORM_GOOGLE) absl::StatusOr<int> GetError() { return absl::InvalidArgumentError("An invalid argument error"); } absl::StatusOr<int> PropagateError() { TF_ASSIGN_OR_RETURN(int a, GetError()); return a; } absl::StatusOr<int> PropagateError2() { TF_ASSIGN_OR_RETURN(int a, PropagateError()); return a; } TEST(Status, StackTracePropagation) { absl::StatusOr<int> s = PropagateError2(); auto sources = s.status().GetSourceLocations(); ASSERT_EQ(sources.size(), 3); for (int i = 0; i < 3; ++i) { ASSERT_EQ(sources[i].file_name(), "third_party/tensorflow/tsl/platform/statusor_test.cc"); } } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/statusor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/statusor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b9e0a1bd-6fce-4357-8434-7921a81b9262
cpp
tensorflow/tensorflow
refcounting_hash_map
third_party/xla/xla/refcounting_hash_map.h
third_party/xla/xla/refcounting_hash_map_test.cc
#ifndef XLA_REFCOUNTING_HASH_MAP_H_ #define XLA_REFCOUNTING_HASH_MAP_H_ #include <functional> #include <memory> #include "absl/base/thread_annotations.h" #include "absl/container/node_hash_map.h" #include "absl/functional/function_ref.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" namespace xla { template <typename K, typename V> class RefcountingHashMap { public: RefcountingHashMap() = default; RefcountingHashMap(const RefcountingHashMap&) = delete; RefcountingHashMap(RefcountingHashMap&&) = delete; RefcountingHashMap& operator=(const RefcountingHashMap&) = delete; RefcountingHashMap& operator=(RefcountingHashMap&&) = delete; std::shared_ptr<V> GetOrCreateIfAbsent( const K& key, absl::FunctionRef<std::unique_ptr<V>(const K&)> value_factory) { absl::MutexLock lock(&mu_); auto it = map_.find(key); if (it != map_.end()) { if (std::shared_ptr<V> value = it->second.lock()) { return value; } } it = map_.emplace(key, std::weak_ptr<V>()).first; std::shared_ptr<V> value(value_factory(key).release(), Deleter{it->first, *this}); it->second = value; return value; } private: struct Deleter { const K& key; RefcountingHashMap& parent; void operator()(V* v) { delete v; absl::MutexLock lock(&parent.mu_); auto it = parent.map_.find(key); if (it != parent.map_.end() && it->second.expired()) { parent.map_.erase(it); } } }; absl::Mutex mu_; absl::node_hash_map<K, std::weak_ptr<V>> map_ ABSL_GUARDED_BY(mu_); }; } #endif
#include "xla/refcounting_hash_map.h" #include <functional> #include <memory> #include <utility> #include "xla/test.h" namespace xla { namespace { struct DeleteNotifier { DeleteNotifier() = default; DeleteNotifier(const DeleteNotifier&) = delete; DeleteNotifier& operator=(const DeleteNotifier&) = delete; DeleteNotifier(DeleteNotifier&& o) noexcept : fn(std::move(o.fn)) { o.fn = nullptr; } DeleteNotifier& operator=(DeleteNotifier&& o) noexcept { fn = o.fn; o.fn = nullptr; return *this; } ~DeleteNotifier() { if (fn) { fn(); } } std::function<void()> fn; }; TEST(RefcountingHashMapTest, PointerIdentity) { RefcountingHashMap<int, int> m; auto factory = [](const int) { return std::make_unique<int>(); }; std::shared_ptr<int> a = m.GetOrCreateIfAbsent(0, factory); std::shared_ptr<int> b = m.GetOrCreateIfAbsent(0, factory); std::shared_ptr<int> c = m.GetOrCreateIfAbsent(1, factory); EXPECT_EQ(a.get(), b.get()); EXPECT_NE(a.get(), c.get()); } TEST(RefcountingHashMapTest, DefaultInitialized) { RefcountingHashMap<int, int> m; auto factory = [](const int) { return std::make_unique<int>(); }; EXPECT_EQ(*m.GetOrCreateIfAbsent(42, factory), 0); } TEST(RefcountingHashMapTest, DeletesEagerly) { RefcountingHashMap<int, DeleteNotifier> m; bool deleted = false; auto factory = [](const int) { return std::make_unique<DeleteNotifier>(); }; auto handle = m.GetOrCreateIfAbsent(0, factory); handle->fn = [&] { deleted = true; }; EXPECT_FALSE(deleted); handle = nullptr; EXPECT_TRUE(deleted); } TEST(RefcountingHashMapTest, CustomFactory) { RefcountingHashMap<int, int> m; auto factory = [](const int x) { return std::make_unique<int>(x + 1); }; EXPECT_EQ(*m.GetOrCreateIfAbsent(0, factory), 1); EXPECT_EQ(*m.GetOrCreateIfAbsent(100, factory), 101); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/refcounting_hash_map.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/refcounting_hash_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
11b2521d-ab0f-4b91-a3a6-80f134f4eb7d
cpp
tensorflow/tensorflow
iterator_util
third_party/xla/xla/iterator_util.h
third_party/xla/xla/iterator_util_test.cc
#ifndef XLA_ITERATOR_UTIL_H_ #define XLA_ITERATOR_UTIL_H_ #include <cstddef> #include <iterator> #include <utility> #include "xla/tsl/lib/gtl/iterator_range.h" namespace xla { template <typename NestedIter> class UnwrappingIterator { public: using iterator_category = std::input_iterator_tag; using value_type = decltype(std::declval<NestedIter>()->get()); using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; explicit UnwrappingIterator(NestedIter iter) : iter_(std::move(iter)) {} auto operator*() -> value_type { return iter_->get(); } UnwrappingIterator& operator++() { ++iter_; return *this; } UnwrappingIterator operator++(int) { UnwrappingIterator temp(iter_); operator++(); return temp; } friend bool operator==(const UnwrappingIterator& a, const UnwrappingIterator& b) { return a.iter_ == b.iter_; } friend bool operator!=(const UnwrappingIterator& a, const UnwrappingIterator& b) { return !(a == b); } private: NestedIter iter_; }; template <typename NestedIter> UnwrappingIterator<NestedIter> MakeUnwrappingIterator(NestedIter iter) { return UnwrappingIterator<NestedIter>(std::move(iter)); } template <typename NestedIter, typename UnaryPredicate> class FilteringIterator { public: using iterator_category = std::input_iterator_tag; using value_type = decltype(*std::declval<NestedIter>()); using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; FilteringIterator(NestedIter iter, NestedIter end_iter, UnaryPredicate pred) : iter_(std::move(iter)), end_iter_(std::move(end_iter)), pred_(std::move(pred)) { if (iter_ != end_iter_ && !pred_(**this)) { ++*this; } } auto operator*() -> value_type { return *iter_; } FilteringIterator& operator++() { do { ++iter_; } while (iter_ != end_iter_ && !pred_(**this)); return *this; } FilteringIterator operator++(int) { FilteringIterator temp(iter_, end_iter_, pred_); operator++(); return temp; } friend bool operator==(const FilteringIterator& a, const FilteringIterator& b) { return a.iter_ == b.iter_; } friend bool operator!=(const FilteringIterator& a, const FilteringIterator& b) { return !(a == b); } private: NestedIter iter_; NestedIter end_iter_; UnaryPredicate pred_; }; template <typename NestedIter, typename UnaryPredicate> using FilteringUnwrappingIterator = FilteringIterator<UnwrappingIterator<NestedIter>, UnaryPredicate>; template <typename NestedIter, typename UnaryPredicate> FilteringUnwrappingIterator<NestedIter, UnaryPredicate> MakeFilteringUnwrappingIterator(NestedIter iter, NestedIter end_iter, UnaryPredicate pred) { return FilteringUnwrappingIterator<NestedIter, UnaryPredicate>( MakeUnwrappingIterator(iter), MakeUnwrappingIterator(end_iter), std::move(pred)); } template <typename NestedIter, typename UnaryPredicate> tsl::gtl::iterator_range< FilteringUnwrappingIterator<NestedIter, UnaryPredicate>> MakeFilteringUnwrappingIteratorRange(NestedIter begin_iter, NestedIter end_iter, UnaryPredicate pred) { return {MakeFilteringUnwrappingIterator(begin_iter, end_iter, pred), MakeFilteringUnwrappingIterator(end_iter, end_iter, pred)}; } } #endif
#include "xla/iterator_util.h" #include <algorithm> #include <functional> #include <list> #include <memory> #include <vector> #include "xla/test.h" namespace xla { namespace { TEST(UnwrappingIteratorTest, Simple) { std::vector<std::unique_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_unique<int>(i)); } int i = 0; for (auto iter = MakeUnwrappingIterator(v.begin()); iter != MakeUnwrappingIterator(v.end()); ++iter) { EXPECT_EQ(*iter, v[i].get()); ++i; } } TEST(UnwrappingIteratorTest, PostincrementOperator) { std::vector<std::shared_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_shared<int>(i)); } auto iter = MakeUnwrappingIterator(v.begin()); EXPECT_EQ(*(iter++), v[0].get()); EXPECT_EQ(*iter, v[1].get()); } TEST(UnwrappingIteratorTest, StdFind) { std::list<std::unique_ptr<int>> l; for (int i = 0; i < 3; ++i) { l.push_back(std::make_unique<int>(i)); } EXPECT_EQ(l.begin()->get(), *std::find(MakeUnwrappingIterator(l.begin()), MakeUnwrappingIterator(l.end()), l.begin()->get())); } TEST(FilteringUnwrappingIteratorTest, SimpleOdd) { std::vector<std::unique_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_unique<int>(i)); } int i = 0; std::vector<int> expected = {1}; auto pred = [](const int* value) { return *value % 2 == 1; }; for (auto iter = MakeFilteringUnwrappingIterator(v.begin(), v.end(), pred); iter != MakeFilteringUnwrappingIterator(v.end(), v.end(), pred); ++iter) { EXPECT_EQ(**iter, expected[i]); ++i; } EXPECT_EQ(i, expected.size()); } TEST(FilteringUnwrappingIteratorTest, SimpleEven) { std::vector<std::unique_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_unique<int>(i)); } int i = 0; std::vector<int> expected = {0, 2}; auto pred = [](const int* value) { return *value % 2 == 0; }; for (auto iter = MakeFilteringUnwrappingIterator(v.begin(), v.end(), pred); iter != MakeFilteringUnwrappingIterator(v.end(), v.end(), pred); ++iter) { EXPECT_EQ(**iter, expected[i]); ++i; } EXPECT_EQ(i, expected.size()); } TEST(FilteringUnwrappingIteratorTest, SimpleNone) { std::vector<std::unique_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_unique<int>(i)); } int i = 0; auto pred = [](const int* value) { return false; }; for (auto iter = MakeFilteringUnwrappingIterator(v.begin(), v.end(), pred); iter != MakeFilteringUnwrappingIterator(v.end(), v.end(), pred); ++iter) { ++i; } EXPECT_EQ(i, 0); } TEST(FilteringUnwrappingIteratorTest, PostincrementOperator) { std::vector<std::shared_ptr<int>> v; for (int i = 0; i < 3; ++i) { v.push_back(std::make_shared<int>(i)); } auto iter = MakeFilteringUnwrappingIterator( v.begin(), v.end(), [](const int* value) { return *value % 2 == 0; }); EXPECT_EQ(*(iter++), v[0].get()); EXPECT_EQ(*iter, v[2].get()); } TEST(FilteringUnwrappingIteratorTest, StdFind) { std::list<std::unique_ptr<int>> l; for (int i = 0; i < 3; ++i) { l.push_back(std::make_unique<int>(i)); } std::function<bool(const int*)> pred = [](const int* value) { return *value % 2 == 0; }; EXPECT_EQ( l.begin()->get(), *std::find(MakeFilteringUnwrappingIterator(l.begin(), l.end(), pred), MakeFilteringUnwrappingIterator(l.end(), l.end(), pred), l.begin()->get())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/iterator_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/iterator_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6bf951a5-3117-4d7c-af58-2d619f8af77e
cpp
tensorflow/tensorflow
bit_cast
third_party/xla/xla/bit_cast.h
third_party/xla/xla/bit_cast_test.cc
#ifndef XLA_BIT_CAST_H_ #define XLA_BIT_CAST_H_ #include <cstdint> #include "absl/base/casts.h" #include "Eigen/Core" #include "xla/types.h" #include "tsl/platform/bfloat16.h" namespace xla { template <typename T, typename U> T BitCast(U src) { static_assert(sizeof(T) == sizeof(U), "sizes don't match"); return absl::bit_cast<T>(src); } template <> inline tsl::bfloat16 BitCast<tsl::bfloat16, uint16_t>(uint16_t src) { return Eigen::numext::bit_cast<tsl::bfloat16>(src); } template <> inline uint16_t BitCast<uint16_t, tsl::bfloat16>(tsl::bfloat16 src) { return Eigen::numext::bit_cast<uint16_t>(src); } template <> inline Eigen::half BitCast<Eigen::half, uint16_t>(uint16_t src) { return Eigen::numext::bit_cast<Eigen::half>(src); } template <> inline uint16_t BitCast<uint16_t, Eigen::half>(Eigen::half src) { return Eigen::numext::bit_cast<uint16_t>(src); } } #endif
#include "xla/bit_cast.h" #include <cstdint> #include "Eigen/Core" #include "xla/test.h" #include "tsl/platform/bfloat16.h" namespace xla { namespace { using ::Eigen::half; using ::tsl::bfloat16; TEST(BitCastTest, BackAndForth) { for (uint32_t n = 0; n < 0x10000; ++n) { uint16_t initial_rep = n; bfloat16 float_val = BitCast<bfloat16>(initial_rep); uint16_t final_rep = BitCast<uint16_t>(float_val); EXPECT_EQ(initial_rep, final_rep); } for (uint32_t n = 0; n < 0x10000; ++n) { uint16_t initial_rep = n; half float_val = BitCast<half>(initial_rep); uint16_t final_rep = BitCast<uint16_t>(float_val); EXPECT_EQ(initial_rep, final_rep); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/bit_cast.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/bit_cast_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
654f57be-adcb-489c-a11d-b400e8cefe97
cpp
tensorflow/tensorflow
array3d
third_party/xla/xla/array3d.h
third_party/xla/xla/array3d_test.cc
#ifndef XLA_ARRAY3D_H_ #define XLA_ARRAY3D_H_ #include <algorithm> #include <functional> #include <initializer_list> #include <iterator> #include <memory> #include <numeric> #include <random> #include "xla/array.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { template <typename T> class Array3D : public Array<T> { public: Array3D() : Array<T>(std::vector<int64_t>{0, 0, 0}) {} Array3D(const int64_t n1, const int64_t n2, const int64_t n3) : Array<T>(std::vector<int64_t>{n1, n2, n3}) {} Array3D(const int64_t n1, const int64_t n2, const int64_t n3, const T value) : Array<T>(std::vector<int64_t>{n1, n2, n3}, value) {} Array3D(std::initializer_list<std::initializer_list<std::initializer_list<T>>> values) : Array<T>(values) {} template <typename T2, array_impl::overload_for_float<T, T2> = true> Array3D( std::initializer_list<std::initializer_list<std::initializer_list<T2>>> values) : Array<T>(values) {} int64_t n1() const { return this->dim(0); } int64_t n2() const { return this->dim(1); } int64_t n3() const { return this->dim(2); } }; } #endif
#include "xla/array3d.h" #include <initializer_list> #include "xla/test.h" #include "xla/types.h" namespace xla { namespace { TEST(Array3dTest, UninitializedDimsCtor) { Array3D<int> uninit(2, 3, 4); EXPECT_EQ(uninit.n1(), 2); EXPECT_EQ(uninit.n2(), 3); EXPECT_EQ(uninit.n3(), 4); EXPECT_EQ(uninit.num_elements(), 24); } TEST(Array3dTest, FillCtor) { Array3D<int> fullof7(2, 3, 4, 7); EXPECT_EQ(fullof7.n1(), 2); EXPECT_EQ(fullof7.n2(), 3); EXPECT_EQ(fullof7.n3(), 4); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { for (int64_t n3 = 0; n3 < fullof7.n3(); ++n3) { EXPECT_EQ(fullof7(n1, n2, n3), 7); } } } } TEST(Array3dTest, InitializerListCtor) { Array3D<int> arr = {{{1, 2}, {3, 4}, {5, 6}, {7, 8}}, {{9, 10}, {11, 12}, {13, 14}, {15, 16}}, {{17, 18}, {19, 20}, {21, 22}, {23, 24}}}; EXPECT_EQ(arr.n1(), 3); EXPECT_EQ(arr.n2(), 4); EXPECT_EQ(arr.n3(), 2); EXPECT_EQ(arr.num_elements(), 24); EXPECT_EQ(arr(0, 0, 0), 1); EXPECT_EQ(arr(0, 0, 1), 2); EXPECT_EQ(arr(0, 1, 0), 3); EXPECT_EQ(arr(0, 3, 1), 8); EXPECT_EQ(arr(1, 0, 0), 9); EXPECT_EQ(arr(1, 1, 1), 12); EXPECT_EQ(arr(2, 0, 0), 17); EXPECT_EQ(arr(2, 1, 1), 20); EXPECT_EQ(arr(2, 2, 0), 21); EXPECT_EQ(arr(2, 3, 1), 24); } TEST(Array3dTest, InitializerListCtorHalf) { Array3D<Eigen::half> arr = { {{1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}, {7.0f, 8.0f}}, {{9.0f, 10.0f}, {11.0f, 12.0f}, {13.0f, 14.0f}, {15.0f, 16.0f}}, {{17.0f, 18.0f}, {19.0f, 20.0f}, {21.0f, 22.0f}, {23.0f, 24.0f}}}; EXPECT_EQ(arr.n1(), 3); EXPECT_EQ(arr.n2(), 4); EXPECT_EQ(arr.n3(), 2); EXPECT_EQ(arr.num_elements(), 24); EXPECT_EQ(arr(0, 0, 0), static_cast<Eigen::half>(1)); EXPECT_EQ(arr(0, 0, 1), static_cast<Eigen::half>(2)); EXPECT_EQ(arr(0, 1, 0), static_cast<Eigen::half>(3)); EXPECT_EQ(arr(0, 3, 1), static_cast<Eigen::half>(8)); EXPECT_EQ(arr(1, 0, 0), static_cast<Eigen::half>(9)); EXPECT_EQ(arr(1, 1, 1), static_cast<Eigen::half>(12)); EXPECT_EQ(arr(2, 0, 0), static_cast<Eigen::half>(17)); EXPECT_EQ(arr(2, 1, 1), static_cast<Eigen::half>(20)); EXPECT_EQ(arr(2, 2, 0), static_cast<Eigen::half>(21)); EXPECT_EQ(arr(2, 3, 1), static_cast<Eigen::half>(24)); } TEST(Array3dTest, Fill) { Array3D<int> fullof7(2, 3, 4, 7); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { for (int64_t n3 = 0; n3 < fullof7.n3(); ++n3) { EXPECT_EQ(fullof7(n1, n2, n3), 7); } } } fullof7.Fill(11); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { for (int64_t n3 = 0; n3 < fullof7.n3(); ++n3) { EXPECT_EQ(fullof7(n1, n2, n3), 11); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array3d.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array3d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5187626f-d2e3-4804-8df7-fa079abdd8b9
cpp
tensorflow/tensorflow
debug_options_parsers
third_party/xla/xla/debug_options_parsers.h
third_party/xla/xla/debug_options_parsers_test.cc
#ifndef XLA_DEBUG_OPTIONS_PARSERS_H_ #define XLA_DEBUG_OPTIONS_PARSERS_H_ #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "xla/xla.pb.h" namespace xla { template <typename T> void parse_xla_backend_extra_options(T* extra_options_map, std::string comma_separated_values) { std::vector<std::string> extra_options_parts = absl::StrSplit(comma_separated_values, ','); for (const auto& part : extra_options_parts) { size_t eq_pos = part.find_first_of('='); if (eq_pos == std::string::npos) { (*extra_options_map)[part] = ""; } else { std::string value = ""; if (eq_pos + 1 < part.size()) { value = part.substr(eq_pos + 1); } (*extra_options_map)[part.substr(0, eq_pos)] = value; } } } } #endif
#include "xla/debug_options_parsers.h" #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "xla/debug_options_flags.h" #include "xla/parse_flags_from_env.h" #include "xla/tsl/util/command_line_flags.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(DebugOptionsFlags, ParseXlaBackendExtraOptions) { absl::flat_hash_map<std::string, std::string> test_map; std::string test_string = "aa=bb,cc,dd=,ee=ff=gg"; parse_xla_backend_extra_options(&test_map, test_string); EXPECT_EQ(test_map.size(), 4); EXPECT_EQ(test_map.at("aa"), "bb"); EXPECT_EQ(test_map.at("cc"), ""); EXPECT_EQ(test_map.at("dd"), ""); EXPECT_EQ(test_map.at("ee"), "ff=gg"); } struct UppercaseStringSetterTestSpec { std::string user_max_isa; std::string expected_max_isa; }; class UppercaseStringSetterTest : public ::testing::Test, public ::testing::WithParamInterface<UppercaseStringSetterTestSpec> { public: UppercaseStringSetterTest() : flag_values_(DefaultDebugOptionsIgnoringFlags()) { MakeDebugOptionsFlags(&flag_objects_, &flag_values_); } static std::string Name( const ::testing::TestParamInfo<UppercaseStringSetterTestSpec>& info) { return info.param.user_max_isa; } DebugOptions flag_values() const { return flag_values_; } std::vector<tsl::Flag> flag_objects() { return flag_objects_; } private: DebugOptions flag_values_; std::vector<tsl::Flag> flag_objects_; }; TEST_P(UppercaseStringSetterTest, XlaCpuMaxIsa) { UppercaseStringSetterTestSpec spec = GetParam(); tsl::setenv("XLA_FLAGS", absl::StrCat("--xla_cpu_max_isa=", spec.user_max_isa).c_str(), true); int* pargc; std::vector<char*>* pargv; ResetFlagsFromEnvForTesting("XLA_FLAGS", &pargc, &pargv); ParseFlagsFromEnvAndDieIfUnknown("XLA_FLAGS", flag_objects()); EXPECT_EQ(flag_values().xla_cpu_max_isa(), spec.expected_max_isa); } std::vector<UppercaseStringSetterTestSpec> GetUppercaseStringSetterTestCases() { return std::vector<UppercaseStringSetterTestSpec>({ UppercaseStringSetterTestSpec{"sse4_2", "SSE4_2"}, UppercaseStringSetterTestSpec{"aVx512", "AVX512"}, UppercaseStringSetterTestSpec{"AMx_fP16", "AMX_FP16"}, }); } INSTANTIATE_TEST_SUITE_P( UppercaseStringSetterTestInstantiation, UppercaseStringSetterTest, ::testing::ValuesIn(GetUppercaseStringSetterTestCases()), UppercaseStringSetterTest::Name); } } int main(int argc, char* argv[]) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/debug_options_parsers.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/debug_options_parsers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
84f6e6ee-611f-4184-955c-815d484011a5
cpp
tensorflow/tensorflow
array2d
third_party/xla/xla/array2d.h
third_party/xla/xla/array2d_test.cc
#ifndef XLA_ARRAY2D_H_ #define XLA_ARRAY2D_H_ #include <algorithm> #include <cstdint> #include <functional> #include <initializer_list> #include <iterator> #include <memory> #include <random> #include <vector> #include "absl/functional/function_ref.h" #include "absl/strings/str_cat.h" #include "xla/array.h" #include "xla/types.h" #include "xla/util.h" namespace xla { template <typename T> class Array2D : public Array<T> { public: Array2D() : Array<T>(std::vector<int64_t>{0, 0}) {} Array2D(const int64_t n1, const int64_t n2) : Array<T>(std::vector<int64_t>{n1, n2}) {} Array2D(const int64_t n1, const int64_t n2, const T value) : Array<T>({n1, n2}, value) {} Array2D(std::initializer_list<std::initializer_list<T>> values) : Array<T>(values) {} template <typename T2, array_impl::overload_for_float<T, T2> = true> Array2D(std::initializer_list<std::initializer_list<T2>> values) : Array<T>(values) {} Array2D(const Array2D<T>& other) : Array<T>(other) {} int64_t n1() const { return this->dim(0); } int64_t n2() const { return this->dim(1); } int64_t height() const { return this->dim(0); } int64_t width() const { return this->dim(1); } void FillUnique(T start_value = 0) { int shift = Log2Ceiling<uint64_t>(n2()); for (int64_t i0 = 0; i0 < n1(); ++i0) { for (int64_t i1 = 0; i1 < n2(); ++i1) { (*this)(i0, i1) = ((i0 << shift) | i1) + start_value; } } } void Each(absl::FunctionRef<void(int64_t, int64_t, T*)> f) { for (int64_t i0 = 0; i0 < n1(); ++i0) { for (int64_t i1 = 0; i1 < n2(); ++i1) { f(i0, i1, &(*this)(i0, i1)); } } } }; template <typename NativeT = float> std::unique_ptr<Array2D<NativeT>> MakeLinspaceArray2D(double from, double to, int64_t n1, int64_t n2) { auto array = std::make_unique<Array2D<NativeT>>(n1, n2); int64_t count = n1 * n2; double step = static_cast<double>((count > 1) ? (to - from) / (count - 1) : 0); auto set = [&array, n2](int64_t index, NativeT value) { (*array)(index / n2, index % n2) = value; }; for (int64_t i = 0; i < count - 1; ++i) { set(i, (static_cast<NativeT>(from + i * step))); } set(count - 1, static_cast<NativeT>(to)); return array; } } #endif
#include "xla/array2d.h" #include <initializer_list> #include <string> #include "Eigen/Core" #include "xla/test.h" #include "tsl/platform/ml_dtypes.h" namespace xla { namespace { TEST(Array2dTest, DefaultCtor) { Array2D<int> empty; EXPECT_EQ(empty.n1(), 0); EXPECT_EQ(empty.n2(), 0); EXPECT_EQ(empty.num_elements(), 0); } TEST(Array2dTest, UninitializedDimsCtor) { Array2D<int> uninit(2, 3); EXPECT_EQ(uninit.n1(), 2); EXPECT_EQ(uninit.n2(), 3); EXPECT_EQ(uninit.num_elements(), 6); } TEST(Array2dTest, FillCtor) { Array2D<int> fullof7(2, 3, 7); EXPECT_EQ(fullof7.n1(), 2); EXPECT_EQ(fullof7.n2(), 3); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { EXPECT_EQ(fullof7(n1, n2), 7); } } } TEST(Array2dTest, InitializerListCtor) { Array2D<int> arr = {{1, 2, 3}, {4, 5, 6}}; EXPECT_EQ(arr.n1(), 2); EXPECT_EQ(arr.n2(), 3); EXPECT_EQ(arr(0, 0), 1); EXPECT_EQ(arr(0, 1), 2); EXPECT_EQ(arr(0, 2), 3); EXPECT_EQ(arr(1, 0), 4); EXPECT_EQ(arr(1, 1), 5); EXPECT_EQ(arr(1, 2), 6); } TEST(Array2dTest, InitializerListCtorHalf) { Array2D<Eigen::half> arr = {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}; EXPECT_EQ(arr.n1(), 2); EXPECT_EQ(arr.n2(), 3); EXPECT_EQ(arr(0, 0), static_cast<Eigen::half>(1)); EXPECT_EQ(arr(0, 1), static_cast<Eigen::half>(2)); EXPECT_EQ(arr(0, 2), static_cast<Eigen::half>(3)); EXPECT_EQ(arr(1, 0), static_cast<Eigen::half>(4)); EXPECT_EQ(arr(1, 1), static_cast<Eigen::half>(5)); EXPECT_EQ(arr(1, 2), static_cast<Eigen::half>(6)); } TEST(Array2dTest, Accessors) { Array2D<int> arr = {{1, 2, 3}, {4, 5, 6}}; EXPECT_EQ(arr.n1(), 2); EXPECT_EQ(arr.n2(), 3); EXPECT_EQ(arr.height(), 2); EXPECT_EQ(arr.width(), 3); EXPECT_EQ(arr.num_elements(), 6); } TEST(Array2dTest, IndexingReadWrite) { Array2D<int> arr = {{1, 2, 3}, {4, 5, 6}}; EXPECT_EQ(arr(1, 1), 5); EXPECT_EQ(arr(1, 2), 6); arr(1, 1) = 51; arr(1, 2) = 61; EXPECT_EQ(arr(1, 1), 51); EXPECT_EQ(arr(1, 2), 61); } TEST(Array2dTest, IndexingReadWriteBool) { Array2D<bool> arr = {{false, true, false}, {true, true, false}}; EXPECT_EQ(arr(1, 1), true); EXPECT_EQ(arr(1, 2), false); arr(1, 1) = false; arr(1, 2) = true; EXPECT_EQ(arr(1, 1), false); EXPECT_EQ(arr(1, 2), true); } TEST(Array2dTest, Fill) { Array2D<int> fullof7(2, 3, 7); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { EXPECT_EQ(fullof7(n1, n2), 7); } } fullof7.Fill(11); for (int64_t n1 = 0; n1 < fullof7.n1(); ++n1) { for (int64_t n2 = 0; n2 < fullof7.n2(); ++n2) { EXPECT_EQ(fullof7(n1, n2), 11); } } } TEST(Array2dTest, DataPointer) { Array2D<int> arr = {{1, 2, 3}, {4, 5, 6}}; EXPECT_EQ(arr.data()[0], 1); } TEST(Array2dTest, Linspace) { auto arr = MakeLinspaceArray2D(1.0, 3.5, 3, 2); EXPECT_EQ(arr->n1(), 3); EXPECT_EQ(arr->n2(), 2); EXPECT_FLOAT_EQ((*arr)(0, 0), 1.0); EXPECT_FLOAT_EQ((*arr)(0, 1), 1.5); EXPECT_FLOAT_EQ((*arr)(1, 0), 2.0); EXPECT_FLOAT_EQ((*arr)(1, 1), 2.5); EXPECT_FLOAT_EQ((*arr)(2, 0), 3.0); EXPECT_FLOAT_EQ((*arr)(2, 1), 3.5); } TEST(Array2dTest, LinspaceF8E5M2) { auto arr = MakeLinspaceArray2D<tsl::float8_e5m2>(1.0, 3.5, 3, 2); EXPECT_EQ(arr->n1(), 3); EXPECT_EQ(arr->n2(), 2); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 0)), 1.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 1)), 1.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 0)), 2.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 1)), 2.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 0)), 3.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 1)), 3.5); } TEST(Array2dTest, LinspaceF8E4M3) { auto arr = MakeLinspaceArray2D<tsl::float8_e4m3>(1.0, 3.5, 3, 2); EXPECT_EQ(arr->n1(), 3); EXPECT_EQ(arr->n2(), 2); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 0)), 1.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 1)), 1.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 0)), 2.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 1)), 2.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 0)), 3.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 1)), 3.5); } TEST(Array2dTest, LinspaceF8E4M3Fn) { auto arr = MakeLinspaceArray2D<tsl::float8_e4m3fn>(1.0, 3.5, 3, 2); EXPECT_EQ(arr->n1(), 3); EXPECT_EQ(arr->n2(), 2); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 0)), 1.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 1)), 1.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 0)), 2.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 1)), 2.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 0)), 3.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 1)), 3.5); } TEST(Array2dTest, LinspaceF8E4M3FnNoNan) { auto arr = MakeLinspaceArray2D<tsl::float8_e4m3fn>(0, 1, 23, 42); for (int64_t n1 = 0; n1 < arr->n1(); ++n1) { for (int64_t n2 = 0; n2 < arr->n2(); ++n2) { EXPECT_EQ((*arr)(n1, n2), (*arr)(n1, n2)); } } } TEST(Array2dTest, LinspaceF8E3M4) { auto arr = MakeLinspaceArray2D<tsl::float8_e3m4>(1.0, 3.5, 3, 2); EXPECT_EQ(arr->n1(), 3); EXPECT_EQ(arr->n2(), 2); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 0)), 1.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(0, 1)), 1.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 0)), 2.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(1, 1)), 2.5); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 0)), 3.0); EXPECT_FLOAT_EQ(static_cast<float>((*arr)(2, 1)), 3.5); } TEST(Array2dTest, Stringification) { auto arr = MakeLinspaceArray2D(1.0, 3.5, 3, 2); const std::string expected = R"([[1, 1.5], [2, 2.5], [3, 3.5]])"; EXPECT_EQ(expected, arr->ToString()); } TEST(Array2dTest, Equals) { Array2D<int> arr0 = {{1, 2}, {3, 4}, {5, 6}}; Array2D<int> arr1 = {{1, 2}, {3, 4}, {5, 6}}; EXPECT_TRUE(arr0 == arr1); EXPECT_FALSE(arr0 != arr1); EXPECT_TRUE(arr1 == arr0); EXPECT_FALSE(arr1 != arr0); Array2D<int> arr2 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; EXPECT_TRUE(arr0 != arr2); EXPECT_FALSE(arr0 == arr2); EXPECT_TRUE(arr2 != arr0); EXPECT_FALSE(arr2 == arr0); Array2D<int> arr3 = {{1, 2, 3}, {4, 5, 6}}; EXPECT_TRUE(arr0 != arr3); EXPECT_FALSE(arr0 == arr3); EXPECT_TRUE(arr3 != arr0); EXPECT_FALSE(arr3 == arr0); Array2D<int> arr4 = {{1, 2}, {3, 4}}; EXPECT_TRUE(arr0 != arr4); EXPECT_FALSE(arr0 == arr4); EXPECT_TRUE(arr4 != arr0); EXPECT_FALSE(arr4 == arr0); Array2D<int> arr5 = {{1, 2}, {13, 4}, {5, 6}}; EXPECT_TRUE(arr0 != arr5); EXPECT_FALSE(arr0 == arr5); EXPECT_TRUE(arr5 != arr0); EXPECT_FALSE(arr5 == arr0); Array2D<bool> bool_arr0 = {{false}, {true}}; Array2D<bool> bool_arr1 = {{false}, {true}}; EXPECT_TRUE(bool_arr0 == bool_arr1); EXPECT_FALSE(bool_arr0 != bool_arr1); Array2D<bool> bool_arr2 = {{false}, {false}}; EXPECT_FALSE(bool_arr0 == bool_arr2); EXPECT_TRUE(bool_arr0 != bool_arr2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array2d.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/array2d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2486c2e3-6592-4428-a86c-aeecaa457f0c
cpp
tensorflow/tensorflow
lru_cache
third_party/xla/xla/pjrt/lru_cache.h
third_party/xla/xla/pjrt/lru_cache_test.cc
#ifndef XLA_PJRT_LRU_CACHE_H_ #define XLA_PJRT_LRU_CACHE_H_ #include <optional> #include <unordered_map> #include "absl/container/node_hash_map.h" #include "tsl/platform/logging.h" namespace xla { template <typename Key, typename Value, typename Hash = typename absl::node_hash_map<Key, Value>::hasher, typename Eq = typename absl::node_hash_map<Key, Value>::key_equal> class LRUCache { private: struct LRUListEntry { LRUListEntry* next; LRUListEntry* prev; }; public: class LRUList { public: explicit LRUList(int capacity) : capacity_(capacity) { head_.next = &head_; head_.prev = &head_; } ~LRUList() { CHECK(head_.next == &head_); CHECK(head_.prev == &head_); } LRUList(const LRUList&) = delete; LRUList(LRUList&&) = delete; LRUList& operator=(const LRUList&) = delete; LRUList& operator=(LRUList&&) = delete; int Capacity() const { return capacity_; } int Size() const { return size_; } void Clear(); private: friend class LRUCache; int capacity_; int size_ = 0; LRUListEntry head_; }; explicit LRUCache(LRUList* lru_list) : lru_list_(lru_list) {} ~LRUCache(); LRUCache(const LRUCache&) = delete; LRUCache(LRUCache&&) = delete; LRUCache& operator=(const LRUCache&) = delete; LRUCache& operator=(LRUCache&&) = delete; Value GetOrCreateIfAbsent(const Key& key, const std::function<Value(const Key&)>& factory); void Remove(const Key& key); void Clear(); int Size() const { return entries_.size(); } int Capacity() const { return lru_list_->Capacity(); } auto begin() const { return entries_.begin(); } auto end() const { return entries_.end(); } private: LRUList* lru_list_; struct Entry : public LRUListEntry { Entry() = default; const Key* key; LRUCache* container; std::optional<Value> value; }; std::unordered_map<Key, Entry, Hash, Eq> entries_; }; template <typename Key, typename Value, typename Hash, typename Eq> void LRUCache<Key, Value, Hash, Eq>::LRUList::Clear() { while (head_.next != &head_) { static_cast<Entry*>(head_.next)->container->Clear(); } size_ = 0; } template <typename Key, typename Value, typename Hash, typename Eq> void LRUCache<Key, Value, Hash, Eq>::Clear() { for (auto& e : entries_) { LRUListEntry* l = &e.second; l->next->prev = l->prev; l->prev->next = l->next; --lru_list_->size_; } entries_.clear(); } template <typename Key, typename Value, typename Hash, typename Eq> LRUCache<Key, Value, Hash, Eq>::~LRUCache() { Clear(); } template <typename Key, typename Value, typename Hash, typename Eq> void LRUCache<Key, Value, Hash, Eq>::Remove(const Key& key) { LRUListEntry* l = &entries_[key]; l->next->prev = l->prev; l->prev->next = l->next; --lru_list_->size_; entries_.erase(key); } template <typename Key, typename Value, typename Hash, typename Eq> Value LRUCache<Key, Value, Hash, Eq>::GetOrCreateIfAbsent( const Key& key, const std::function<Value(const Key&)>& factory) { auto [it, inserted] = entries_.try_emplace(key); Entry& entry = it->second; if (inserted) { entry.key = &it->first; entry.value = factory(*entry.key); ++lru_list_->size_; } else { entry.prev->next = entry.next; entry.next->prev = entry.prev; } LRUListEntry& lru_head = lru_list_->head_; entry.container = this; entry.prev = lru_head.prev; entry.next = &lru_head; lru_head.prev->next = &entry; lru_head.prev = &entry; Value v = *entry.value; if (lru_list_->size_ > lru_list_->capacity_) { Entry* to_remove = static_cast<Entry*>(lru_head.next); to_remove->next->prev = &lru_head; lru_head.next = to_remove->next; to_remove->container->entries_.extract(*to_remove->key); --lru_list_->size_; } return v; } } #endif
#include "xla/pjrt/lru_cache.h" #include <random> #include "xla/test.h" namespace xla { namespace { TEST(LRUCache, Basics) { LRUCache<int, int>::LRUList list(3); LRUCache<int, int> cache(&list); EXPECT_EQ(3, cache.Capacity()); EXPECT_EQ(0, cache.Size()); EXPECT_EQ(0, cache.GetOrCreateIfAbsent(0, [](int) { return 0; })); EXPECT_EQ(1, cache.Size()); EXPECT_EQ(1, cache.GetOrCreateIfAbsent(1, [](int) { return 1; })); EXPECT_EQ(2, cache.Size()); EXPECT_EQ(2, cache.GetOrCreateIfAbsent(2, [](int) { return 2; })); EXPECT_EQ(3, cache.Size()); EXPECT_EQ(0, cache.GetOrCreateIfAbsent(0, [](int) { return 3; })); EXPECT_EQ(3, cache.Size()); EXPECT_EQ(4, cache.GetOrCreateIfAbsent(3, [](int) { return 4; })); EXPECT_EQ(3, cache.Size()); EXPECT_EQ(2, cache.GetOrCreateIfAbsent(2, [](int) { return 5; })); EXPECT_EQ(3, cache.Size()); EXPECT_EQ(6, cache.GetOrCreateIfAbsent(1, [](int) { return 6; })); EXPECT_EQ(3, cache.Size()); cache.Clear(); EXPECT_EQ(0, cache.Size()); EXPECT_EQ(6, cache.GetOrCreateIfAbsent(1, [](int) { return 6; })); EXPECT_EQ(1, cache.Size()); } TEST(LRUCache, SharedLRUList) { LRUCache<int, int>::LRUList list(2); LRUCache<int, int> cache1(&list); LRUCache<int, int> cache2(&list); EXPECT_EQ(2, list.Capacity()); EXPECT_EQ(0, cache1.Size()); EXPECT_EQ(0, cache2.Size()); EXPECT_EQ(0, cache1.GetOrCreateIfAbsent(0, [](int) { return 0; })); EXPECT_EQ(1, list.Size()); EXPECT_EQ(1, cache1.Size()); EXPECT_EQ(0, cache2.Size()); EXPECT_EQ(1, cache2.GetOrCreateIfAbsent(1, [](int) { return 1; })); EXPECT_EQ(2, list.Size()); EXPECT_EQ(1, cache1.Size()); EXPECT_EQ(1, cache2.Size()); EXPECT_EQ(2, cache1.GetOrCreateIfAbsent(2, [](int) { return 2; })); EXPECT_EQ(2, list.Size()); EXPECT_EQ(1, cache1.Size()); EXPECT_EQ(1, cache2.Size()); EXPECT_EQ(1, cache2.GetOrCreateIfAbsent(1, [](int) { return -1; })); EXPECT_EQ(2, list.Size()); EXPECT_EQ(1, cache1.Size()); EXPECT_EQ(1, cache2.Size()); cache1.Clear(); EXPECT_EQ(1, list.Size()); EXPECT_EQ(0, cache1.Size()); EXPECT_EQ(1, cache2.Size()); EXPECT_EQ(1, cache2.GetOrCreateIfAbsent(1, [](int) { return 4; })); EXPECT_EQ(1, list.Size()); EXPECT_EQ(0, cache1.Size()); EXPECT_EQ(1, cache2.Size()); EXPECT_EQ(7, cache1.GetOrCreateIfAbsent(7, [](int) { return 7; })); EXPECT_EQ(2, list.Size()); EXPECT_EQ(1, cache1.Size()); EXPECT_EQ(1, cache2.Size()); list.Clear(); EXPECT_EQ(0, list.Size()); EXPECT_EQ(0, cache1.Size()); EXPECT_EQ(0, cache2.Size()); EXPECT_EQ(2, cache1.GetOrCreateIfAbsent(2, [](int) { return 2; })); } TEST(LRUCache, RandomInsertions) { LRUCache<int, int>::LRUList list(7); LRUCache<int, int> cache(&list); std::random_device rng; std::uniform_int_distribution<int> dist(0, 100); for (int i = 0; i < 1000; ++i) { EXPECT_LE(cache.Size(), std::min(cache.Capacity(), i)); int key = dist(rng); int k = -1; int v = cache.GetOrCreateIfAbsent(key, [&](int k_arg) { CHECK_EQ(k_arg, key); k = k_arg; return k_arg * 37; }); EXPECT_TRUE(k == -1 || k == key); EXPECT_EQ(v, key * 37); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/lru_cache.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/lru_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b576bd0b-f67d-4f76-a31b-799406585c21
cpp
tensorflow/tensorflow
pjrt_c_api
third_party/xla/xla/pjrt/c/pjrt_c_api.h
third_party/xla/xla/pjrt/c/pjrt_c_api_test.cc
#ifndef XLA_PJRT_C_PJRT_C_API_H_ #define XLA_PJRT_C_PJRT_C_API_H_ #include <stdbool.h> #include <stddef.h> #include <stdint.h> #define PJRT_STRUCT_SIZE(struct_type, last_field) \ offsetof(struct_type, last_field) + sizeof(((struct_type*)0)->last_field) #define PJRT_DEFINE_STRUCT_TRAITS(sname, last_field) \ typedef struct sname sname; \ enum { sname##_STRUCT_SIZE = PJRT_STRUCT_SIZE(sname, last_field) } #ifdef __cplusplus extern "C" { #endif typedef enum { PJRT_Extension_Type_Gpu_Custom_Call = 0, PJRT_Extension_Type_Profiler, PJRT_Extension_Type_Custom_Partitioner, PJRT_Extension_Type_Stream, PJRT_Extension_Type_Layouts, PJRT_Extension_Type_FFI, } PJRT_Extension_Type; typedef struct PJRT_Extension_Base { size_t struct_size; PJRT_Extension_Type type; struct PJRT_Extension_Base* next; } PJRT_Extension_Base; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Extension_Base, next); #define PJRT_API_MAJOR 0 #define PJRT_API_MINOR 55 struct PJRT_Api_Version { size_t struct_size; PJRT_Extension_Base* extension_start; int major_version; int minor_version; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Api_Version, minor_version); typedef struct PJRT_Error PJRT_Error; struct PJRT_Error_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Error* error; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_Destroy_Args, error); typedef void PJRT_Error_Destroy(PJRT_Error_Destroy_Args* args); struct PJRT_Error_Message_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Error* error; const char* message; size_t message_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_Message_Args, message_size); typedef void PJRT_Error_Message(PJRT_Error_Message_Args* args); typedef enum { PJRT_Error_Code_CANCELLED = 1, PJRT_Error_Code_UNKNOWN = 2, PJRT_Error_Code_INVALID_ARGUMENT = 3, PJRT_Error_Code_DEADLINE_EXCEEDED = 4, PJRT_Error_Code_NOT_FOUND = 5, PJRT_Error_Code_ALREADY_EXISTS = 6, PJRT_Error_Code_PERMISSION_DENIED = 7, PJRT_Error_Code_RESOURCE_EXHAUSTED = 8, PJRT_Error_Code_FAILED_PRECONDITION = 9, PJRT_Error_Code_ABORTED = 10, PJRT_Error_Code_OUT_OF_RANGE = 11, PJRT_Error_Code_UNIMPLEMENTED = 12, PJRT_Error_Code_INTERNAL = 13, PJRT_Error_Code_UNAVAILABLE = 14, PJRT_Error_Code_DATA_LOSS = 15, PJRT_Error_Code_UNAUTHENTICATED = 16 } PJRT_Error_Code; struct PJRT_Error_GetCode_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Error* error; PJRT_Error_Code code; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_GetCode_Args, code); typedef PJRT_Error* PJRT_Error_GetCode(PJRT_Error_GetCode_Args* args); typedef PJRT_Error* (*PJRT_CallbackError)(PJRT_Error_Code code, const char* message, size_t message_size); typedef enum { PJRT_NamedValue_kString = 0, PJRT_NamedValue_kInt64, PJRT_NamedValue_kInt64List, PJRT_NamedValue_kFloat, PJRT_NamedValue_kBool, } PJRT_NamedValue_Type; struct PJRT_NamedValue { size_t struct_size; PJRT_Extension_Base* extension_start; const char* name; size_t name_size; PJRT_NamedValue_Type type; union { const char* string_value; int64_t int64_value; const int64_t* int64_array_value; float float_value; bool bool_value; }; size_t value_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_NamedValue, value_size); struct PJRT_Plugin_Initialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Plugin_Initialize_Args, extension_start); typedef PJRT_Error* PJRT_Plugin_Initialize(PJRT_Plugin_Initialize_Args* args); struct PJRT_Plugin_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_NamedValue* attributes; size_t num_attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Plugin_Attributes_Args, attributes); typedef PJRT_Error* PJRT_Plugin_Attributes(PJRT_Plugin_Attributes_Args* args); typedef struct PJRT_Event PJRT_Event; struct PJRT_Event_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Destroy_Args, event); typedef PJRT_Error* PJRT_Event_Destroy(PJRT_Event_Destroy_Args* args); struct PJRT_Event_IsReady_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; bool is_ready; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_IsReady_Args, is_ready); typedef PJRT_Error* PJRT_Event_IsReady(PJRT_Event_IsReady_Args* args); struct PJRT_Event_Error_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Error_Args, event); typedef PJRT_Error* PJRT_Event_Error(PJRT_Event_Error_Args* args); struct PJRT_Event_Await_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Await_Args, event); typedef PJRT_Error* PJRT_Event_Await(PJRT_Event_Await_Args* args); typedef void (*PJRT_Event_OnReadyCallback)(PJRT_Error* error, void* user_arg); struct PJRT_Event_OnReady_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; PJRT_Event_OnReadyCallback callback; void* user_arg; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_OnReady_Args, user_arg); typedef PJRT_Error* PJRT_Event_OnReady(PJRT_Event_OnReady_Args* args); typedef struct PJRT_Client PJRT_Client; typedef struct PJRT_Device PJRT_Device; typedef struct PJRT_Memory PJRT_Memory; typedef struct PJRT_DeviceDescription PJRT_DeviceDescription; typedef struct PJRT_TopologyDescription PJRT_TopologyDescription; typedef struct PJRT_Executable PJRT_Executable; typedef struct PJRT_LoadedExecutable PJRT_LoadedExecutable; typedef struct PJRT_Buffer PJRT_Buffer; typedef void (*PJRT_KeyValueGetCallback_ValueDeleter)(char* value); struct PJRT_KeyValueGetCallback_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* key; size_t key_size; int timeout_in_ms; PJRT_CallbackError* callback_error; void* user_arg; char* value; size_t value_size; PJRT_KeyValueGetCallback_ValueDeleter value_deleter_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_KeyValueGetCallback_Args, value_deleter_callback); typedef PJRT_Error* (*PJRT_KeyValueGetCallback)( PJRT_KeyValueGetCallback_Args* args); struct PJRT_KeyValuePutCallback_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* key; size_t key_size; const char* value; size_t value_size; PJRT_CallbackError* callback_error; void* user_arg; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_KeyValuePutCallback_Args, user_arg); typedef PJRT_Error* (*PJRT_KeyValuePutCallback)( PJRT_KeyValuePutCallback_Args* args); struct PJRT_Client_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_NamedValue* create_options; size_t num_options; PJRT_KeyValueGetCallback kv_get_callback; void* kv_get_user_arg; PJRT_KeyValuePutCallback kv_put_callback; void* kv_put_user_arg; PJRT_Client* client; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Create_Args, client); typedef PJRT_Error* PJRT_Client_Create(PJRT_Client_Create_Args* args); struct PJRT_Client_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Destroy_Args, client); typedef PJRT_Error* PJRT_Client_Destroy(PJRT_Client_Destroy_Args* args); struct PJRT_Client_PlatformName_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* platform_name; size_t platform_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_PlatformName_Args, platform_name_size); typedef PJRT_Error* PJRT_Client_PlatformName( PJRT_Client_PlatformName_Args* args); struct PJRT_Client_ProcessIndex_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int process_index; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_ProcessIndex_Args, process_index); typedef PJRT_Error* PJRT_Client_ProcessIndex( PJRT_Client_ProcessIndex_Args* args); struct PJRT_Client_PlatformVersion_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* platform_version; size_t platform_version_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_PlatformVersion_Args, platform_version_size); typedef PJRT_Error* PJRT_Client_PlatformVersion( PJRT_Client_PlatformVersion_Args* args); struct PJRT_Client_TopologyDescription_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_TopologyDescription_Args, topology); typedef PJRT_Error* PJRT_Client_TopologyDescription( PJRT_Client_TopologyDescription_Args* args); struct PJRT_Client_Devices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Device* const* devices; size_t num_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Devices_Args, num_devices); typedef PJRT_Error* PJRT_Client_Devices(PJRT_Client_Devices_Args* args); struct PJRT_Client_AddressableDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Device* const* addressable_devices; size_t num_addressable_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_AddressableDevices_Args, num_addressable_devices); typedef PJRT_Error* PJRT_Client_AddressableDevices( PJRT_Client_AddressableDevices_Args* args); struct PJRT_Client_LookupDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int id; PJRT_Device* device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_LookupDevice_Args, device); typedef PJRT_Error* PJRT_Client_LookupDevice( PJRT_Client_LookupDevice_Args* args); struct PJRT_Client_LookupAddressableDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int local_hardware_id; PJRT_Device* addressable_device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_LookupAddressableDevice_Args, addressable_device); typedef PJRT_Error* PJRT_Client_LookupAddressableDevice( PJRT_Client_LookupAddressableDevice_Args* args); struct PJRT_Client_AddressableMemories_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Memory* const* addressable_memories; size_t num_addressable_memories; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_AddressableMemories_Args, num_addressable_memories); typedef PJRT_Error* PJRT_Client_AddressableMemories( PJRT_Client_AddressableMemories_Args* args); struct PJRT_Program { size_t struct_size; PJRT_Extension_Base* extension_start; char* code; size_t code_size; const char* format; size_t format_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Program, format_size); struct PJRT_Client_Compile_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const PJRT_Program* program; const char* compile_options; size_t compile_options_size; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Compile_Args, executable); typedef PJRT_Error* PJRT_Client_Compile(PJRT_Client_Compile_Args* args); struct PJRT_Client_DefaultDeviceAssignment_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int num_replicas; int num_partitions; size_t default_assignment_size; int* default_assignment; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_DefaultDeviceAssignment_Args, default_assignment); typedef PJRT_Error* PJRT_Client_DefaultDeviceAssignment( PJRT_Client_DefaultDeviceAssignment_Args* args); typedef enum { PJRT_Buffer_Type_INVALID, PJRT_Buffer_Type_PRED, PJRT_Buffer_Type_S8, PJRT_Buffer_Type_S16, PJRT_Buffer_Type_S32, PJRT_Buffer_Type_S64, PJRT_Buffer_Type_U8, PJRT_Buffer_Type_U16, PJRT_Buffer_Type_U32, PJRT_Buffer_Type_U64, PJRT_Buffer_Type_F16, PJRT_Buffer_Type_F32, PJRT_Buffer_Type_F64, PJRT_Buffer_Type_BF16, PJRT_Buffer_Type_C64, PJRT_Buffer_Type_C128, PJRT_Buffer_Type_F8E5M2, PJRT_Buffer_Type_F8E4M3FN, PJRT_Buffer_Type_F8E4M3B11FNUZ, PJRT_Buffer_Type_F8E5M2FNUZ, PJRT_Buffer_Type_F8E4M3FNUZ, PJRT_Buffer_Type_S4, PJRT_Buffer_Type_U4, PJRT_Buffer_Type_TOKEN, PJRT_Buffer_Type_S2, PJRT_Buffer_Type_U2, PJRT_Buffer_Type_F8E4M3, PJRT_Buffer_Type_F8E3M4, } PJRT_Buffer_Type; typedef enum { PJRT_HostBufferSemantics_kImmutableOnlyDuringCall, PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes, PJRT_HostBufferSemantics_kImmutableZeroCopy, PJRT_HostBufferSemantics_kMutableZeroCopy, } PJRT_HostBufferSemantics; typedef enum { PJRT_Buffer_MemoryLayout_Type_Tiled = 0, PJRT_Buffer_MemoryLayout_Type_Strides, } PJRT_Buffer_MemoryLayout_Type; struct PJRT_Buffer_MemoryLayout_Tiled { size_t struct_size; PJRT_Extension_Base* extension_start; const int64_t* minor_to_major; size_t minor_to_major_size; const int64_t* tile_dims; const size_t* tile_dim_sizes; size_t num_tiles; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout_Tiled, num_tiles); struct PJRT_Buffer_MemoryLayout_Strides { size_t struct_size; PJRT_Extension_Base* extension_start; const int64_t* byte_strides; size_t num_byte_strides; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout_Strides, num_byte_strides); struct PJRT_Buffer_MemoryLayout { size_t struct_size; PJRT_Extension_Base* extension_start; union { PJRT_Buffer_MemoryLayout_Tiled tiled; PJRT_Buffer_MemoryLayout_Strides strides; }; PJRT_Buffer_MemoryLayout_Type type; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout, type); struct PJRT_Client_BufferFromHostBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const void* data; PJRT_Buffer_Type type; const int64_t* dims; size_t num_dims; const int64_t* byte_strides; size_t num_byte_strides; PJRT_HostBufferSemantics host_buffer_semantics; PJRT_Device* device; PJRT_Memory* memory; PJRT_Buffer_MemoryLayout* device_layout; PJRT_Event* done_with_host_buffer; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_BufferFromHostBuffer_Args, buffer); typedef PJRT_Error* PJRT_Client_BufferFromHostBuffer( PJRT_Client_BufferFromHostBuffer_Args* args); struct PJRT_Client_CreateViewOfDeviceBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; void* device_buffer_ptr; const int64_t* dims; size_t num_dims; PJRT_Buffer_Type element_type; PJRT_Buffer_MemoryLayout* layout; PJRT_Device* device; void (*on_delete_callback)(void* device_buffer_ptr, void* user_arg); void* on_delete_callback_arg; intptr_t stream; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_CreateViewOfDeviceBuffer_Args, buffer); typedef PJRT_Error* PJRT_Client_CreateViewOfDeviceBuffer( PJRT_Client_CreateViewOfDeviceBuffer_Args* args); struct PJRT_DeviceDescription_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; int id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Id_Args, id); typedef PJRT_Error* PJRT_DeviceDescription_Id( PJRT_DeviceDescription_Id_Args* args); struct PJRT_DeviceDescription_ProcessIndex_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; int process_index; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_ProcessIndex_Args, process_index); typedef PJRT_Error* PJRT_DeviceDescription_ProcessIndex( PJRT_DeviceDescription_ProcessIndex_Args* args); struct PJRT_DeviceDescription_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; size_t num_attributes; const PJRT_NamedValue* attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Attributes_Args, attributes); typedef PJRT_Error* PJRT_DeviceDescription_Attributes( PJRT_DeviceDescription_Attributes_Args* args); struct PJRT_DeviceDescription_Kind_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* device_kind; size_t device_kind_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Kind_Args, device_kind_size); typedef PJRT_Error* PJRT_DeviceDescription_Kind( PJRT_DeviceDescription_Kind_Args* args); struct PJRT_DeviceDescription_DebugString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* debug_string; size_t debug_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_DebugString_Args, debug_string_size); typedef PJRT_Error* PJRT_DeviceDescription_DebugString( PJRT_DeviceDescription_DebugString_Args* args); struct PJRT_DeviceDescription_ToString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* to_string; size_t to_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_ToString_Args, to_string_size); typedef PJRT_Error* PJRT_DeviceDescription_ToString( PJRT_DeviceDescription_ToString_Args* args); struct PJRT_Device_GetDescription_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_DeviceDescription* device_description; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_GetDescription_Args, device_description); typedef PJRT_Error* PJRT_Device_GetDescription( PJRT_Device_GetDescription_Args* args); struct PJRT_Device_IsAddressable_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; bool is_addressable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_IsAddressable_Args, is_addressable); typedef PJRT_Error* PJRT_Device_IsAddressable( PJRT_Device_IsAddressable_Args* args); struct PJRT_Device_LocalHardwareId_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; int local_hardware_id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_LocalHardwareId_Args, local_hardware_id); typedef PJRT_Error* PJRT_Device_LocalHardwareId( PJRT_Device_LocalHardwareId_Args* args); struct PJRT_Device_AddressableMemories_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_Memory* const* memories; size_t num_memories; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_AddressableMemories_Args, num_memories); typedef PJRT_Error* PJRT_Device_AddressableMemories( PJRT_Device_AddressableMemories_Args* args); struct PJRT_Device_DefaultMemory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_Memory* memory; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_DefaultMemory_Args, memory); typedef PJRT_Error* PJRT_Device_DefaultMemory( PJRT_Device_DefaultMemory_Args* args); struct PJRT_Device_MemoryStats_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; int64_t bytes_in_use; int64_t peak_bytes_in_use; bool peak_bytes_in_use_is_set; int64_t num_allocs; bool num_allocs_is_set; int64_t largest_alloc_size; bool largest_alloc_size_is_set; int64_t bytes_limit; bool bytes_limit_is_set; int64_t bytes_reserved; bool bytes_reserved_is_set; int64_t peak_bytes_reserved; bool peak_bytes_reserved_is_set; int64_t bytes_reservable_limit; bool bytes_reservable_limit_is_set; int64_t largest_free_block_bytes; bool largest_free_block_bytes_is_set; int64_t pool_bytes; bool pool_bytes_is_set; int64_t peak_pool_bytes; bool peak_pool_bytes_is_set; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_MemoryStats_Args, peak_pool_bytes_is_set); typedef PJRT_Error* PJRT_Device_MemoryStats(PJRT_Device_MemoryStats_Args* args); struct PJRT_Memory_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; int id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Id_Args, id); typedef PJRT_Error* PJRT_Memory_Id(PJRT_Memory_Id_Args* args); struct PJRT_Memory_Kind_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* kind; size_t kind_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Kind_Args, kind_size); typedef PJRT_Error* PJRT_Memory_Kind(PJRT_Memory_Kind_Args* args); struct PJRT_Memory_Kind_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; int kind_id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Kind_Id_Args, kind_id); typedef PJRT_Error* PJRT_Memory_Kind_Id(PJRT_Memory_Kind_Id_Args* args); struct PJRT_Memory_DebugString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* debug_string; size_t debug_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_DebugString_Args, debug_string_size); typedef PJRT_Error* PJRT_Memory_DebugString(PJRT_Memory_DebugString_Args* args); struct PJRT_Memory_ToString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* to_string; size_t to_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_ToString_Args, to_string_size); typedef PJRT_Error* PJRT_Memory_ToString(PJRT_Memory_ToString_Args* args); struct PJRT_Memory_AddressableByDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; PJRT_Device* const* devices; size_t num_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_AddressableByDevices_Args, num_devices); typedef PJRT_Error* PJRT_Memory_AddressableByDevices( PJRT_Memory_AddressableByDevices_Args* args); typedef struct PJRT_ExecuteContext PJRT_ExecuteContext; struct PJRT_ExecuteContext_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_ExecuteContext* context; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteContext_Create_Args, context); typedef PJRT_Error* PJRT_ExecuteContext_Create( PJRT_ExecuteContext_Create_Args* args); struct PJRT_ExecuteContext_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_ExecuteContext* context; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteContext_Destroy_Args, context); typedef PJRT_Error* PJRT_ExecuteContext_Destroy( PJRT_ExecuteContext_Destroy_Args* args); struct PJRT_Executable_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Destroy_Args, executable); typedef PJRT_Error* PJRT_Executable_Destroy(PJRT_Executable_Destroy_Args* args); struct PJRT_LoadedExecutable_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Destroy_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_Destroy( PJRT_LoadedExecutable_Destroy_Args* args); struct PJRT_LoadedExecutable_GetExecutable_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* loaded_executable; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_GetExecutable_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_GetExecutable( PJRT_LoadedExecutable_GetExecutable_Args* args); struct PJRT_Executable_Name_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; const char* executable_name; size_t executable_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Name_Args, executable_name_size); typedef PJRT_Error* PJRT_Executable_Name(PJRT_Executable_Name_Args* args); struct PJRT_Executable_NumReplicas_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_replicas; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumReplicas_Args, num_replicas); typedef PJRT_Error* PJRT_Executable_NumReplicas( PJRT_Executable_NumReplicas_Args* args); struct PJRT_Executable_NumPartitions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_partitions; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumPartitions_Args, num_partitions); typedef PJRT_Error* PJRT_Executable_NumPartitions( PJRT_Executable_NumPartitions_Args* args); struct PJRT_LoadedExecutable_AddressableDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; PJRT_Device* const* addressable_devices; size_t num_addressable_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_AddressableDevices_Args, num_addressable_devices); typedef PJRT_Error* PJRT_LoadedExecutable_AddressableDevices( PJRT_LoadedExecutable_AddressableDevices_Args* args); struct PJRT_Executable_OptimizedProgram_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; PJRT_Program* program; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OptimizedProgram_Args, program); typedef PJRT_Error* PJRT_Executable_OptimizedProgram( PJRT_Executable_OptimizedProgram_Args* args); struct PJRT_LoadedExecutable_Delete_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Delete_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_Delete( PJRT_LoadedExecutable_Delete_Args* args); struct PJRT_LoadedExecutable_IsDeleted_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; bool is_deleted; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_IsDeleted_Args, is_deleted); typedef PJRT_Error* PJRT_LoadedExecutable_IsDeleted( PJRT_LoadedExecutable_IsDeleted_Args* args); typedef struct PJRT_Chunk { void* data; size_t size; void (*deleter)(void* data, void* deleter_arg); void* deleter_arg; } PJRT_Chunk; typedef struct PJRT_CopyToDeviceStream PJRT_CopyToDeviceStream; struct PJRT_TransferMetadata; typedef PJRT_Error* (*PJRT_SendCallback)(PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done, void* user_arg); typedef void (*PJRT_RecvCallback)(PJRT_CopyToDeviceStream* stream, void* user_arg); struct PJRT_SendCallbackInfo { int64_t channel_id; void* user_arg; PJRT_SendCallback send_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_SendCallbackInfo, send_callback); struct PJRT_RecvCallbackInfo { int64_t channel_id; void* user_arg; PJRT_RecvCallback recv_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_RecvCallbackInfo, recv_callback); struct PJRT_ExecuteOptions { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_SendCallbackInfo** send_callbacks; PJRT_RecvCallbackInfo** recv_callbacks; size_t num_send_ops; size_t num_recv_ops; int launch_id; const int64_t* non_donatable_input_indices; size_t num_non_donatable_input_indices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteOptions, num_non_donatable_input_indices); struct PJRT_LoadedExecutable_Execute_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; PJRT_ExecuteOptions* options; PJRT_Buffer* const* const* argument_lists; size_t num_devices; size_t num_args; PJRT_Buffer** const* output_lists; PJRT_Event** device_complete_events; PJRT_Device* execute_device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Execute_Args, execute_device); typedef PJRT_Error* PJRT_LoadedExecutable_Execute( PJRT_LoadedExecutable_Execute_Args* args); struct PJRT_Executable_NumOutputs_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumOutputs_Args, num_outputs); typedef PJRT_Error* PJRT_Executable_NumOutputs( PJRT_Executable_NumOutputs_Args* args); struct PJRT_Executable_SizeOfGeneratedCodeInBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; int64_t size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_SizeOfGeneratedCodeInBytes_Args, size_in_bytes); typedef PJRT_Error* PJRT_Executable_SizeOfGeneratedCodeInBytes( PJRT_Executable_SizeOfGeneratedCodeInBytes_Args* args); struct PJRT_Executable_Fingerprint_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; const char* executable_fingerprint; size_t executable_fingerprint_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Fingerprint_Args, executable_fingerprint_size); typedef PJRT_Error* PJRT_Executable_Fingerprint( PJRT_Executable_Fingerprint_Args* args); struct PJRT_Executable_GetCostAnalysis_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_properties; const PJRT_NamedValue* properties; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_GetCostAnalysis_Args, properties); typedef PJRT_Error* PJRT_Executable_GetCostAnalysis( PJRT_Executable_GetCostAnalysis_Args* args); struct PJRT_Executable_GetCompiledMemoryStats_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; int64_t generated_code_size_in_bytes; int64_t argument_size_in_bytes; int64_t output_size_in_bytes; int64_t alias_size_in_bytes; int64_t temp_size_in_bytes; int64_t host_generated_code_size_in_bytes; int64_t host_argument_size_in_bytes; int64_t host_output_size_in_bytes; int64_t host_alias_size_in_bytes; int64_t host_temp_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_GetCompiledMemoryStats_Args, host_temp_size_in_bytes); typedef PJRT_Error* PJRT_Executable_GetCompiledMemoryStats( PJRT_Executable_GetCompiledMemoryStats_Args* args); struct PJRT_Executable_OutputElementTypes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; PJRT_Buffer_Type* output_types; size_t num_output_types; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputElementTypes_Args, num_output_types); typedef PJRT_Error* PJRT_Executable_OutputElementTypes( PJRT_Executable_OutputElementTypes_Args* args); struct PJRT_Executable_OutputDimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; const int64_t* dims; const size_t* dim_sizes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputDimensions_Args, dim_sizes); typedef PJRT_Error* PJRT_Executable_OutputDimensions( PJRT_Executable_OutputDimensions_Args* args); struct PJRT_Executable_OutputMemoryKinds_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; const char* const* memory_kinds; const size_t* memory_kind_sizes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputMemoryKinds_Args, memory_kind_sizes); typedef PJRT_Error* PJRT_Executable_OutputMemoryKinds( PJRT_Executable_OutputMemoryKinds_Args* args); typedef struct PJRT_SerializedExecutable PJRT_SerializedExecutable; struct PJRT_Executable_Serialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Executable* executable; const char* serialized_bytes; size_t serialized_bytes_size; PJRT_SerializedExecutable* serialized_executable; void (*serialized_executable_deleter)( PJRT_SerializedExecutable* exec); }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Serialize_Args, serialized_executable_deleter); typedef PJRT_Error* PJRT_Executable_Serialize( PJRT_Executable_Serialize_Args* args); struct PJRT_Executable_DeserializeAndLoad_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* serialized_executable; size_t serialized_executable_size; PJRT_LoadedExecutable* loaded_executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_DeserializeAndLoad_Args, loaded_executable); typedef PJRT_Error* PJRT_Executable_DeserializeAndLoad( PJRT_Executable_DeserializeAndLoad_Args* args); struct PJRT_LoadedExecutable_Fingerprint_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; const char* executable_fingerprint; size_t executable_fingerprint_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Fingerprint_Args, executable_fingerprint_size); typedef PJRT_Error* PJRT_LoadedExecutable_Fingerprint( PJRT_LoadedExecutable_Fingerprint_Args* args); struct PJRT_Buffer_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Destroy_Args, buffer); typedef PJRT_Error* PJRT_Buffer_Destroy(PJRT_Buffer_Destroy_Args* args); struct PJRT_Buffer_ElementType_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Buffer_Type type; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ElementType_Args, type); typedef PJRT_Error* PJRT_Buffer_ElementType(PJRT_Buffer_ElementType_Args* args); struct PJRT_Buffer_Dimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const int64_t* dims; size_t num_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Dimensions_Args, num_dims); typedef PJRT_Error* PJRT_Buffer_Dimensions(PJRT_Buffer_Dimensions_Args* args); struct PJRT_Buffer_UnpaddedDimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const int64_t* unpadded_dims; size_t num_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_UnpaddedDimensions_Args, num_dims); typedef PJRT_Error* PJRT_Buffer_UnpaddedDimensions( PJRT_Buffer_UnpaddedDimensions_Args* args); struct PJRT_Buffer_DynamicDimensionIndices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const size_t* dynamic_dim_indices; size_t num_dynamic_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_DynamicDimensionIndices_Args, num_dynamic_dims); typedef PJRT_Error* PJRT_Buffer_DynamicDimensionIndices( PJRT_Buffer_DynamicDimensionIndices_Args* args); struct PJRT_Buffer_GetMemoryLayout_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Buffer_MemoryLayout layout; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_GetMemoryLayout_Args, layout); typedef PJRT_Error* PJRT_Buffer_GetMemoryLayout( PJRT_Buffer_GetMemoryLayout_Args* args); struct PJRT_Buffer_ToHostBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* src; PJRT_Buffer_MemoryLayout* host_layout; void* dst; size_t dst_size; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ToHostBuffer_Args, event); typedef PJRT_Error* PJRT_Buffer_ToHostBuffer( PJRT_Buffer_ToHostBuffer_Args* args); struct PJRT_Buffer_OnDeviceSizeInBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; size_t on_device_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_OnDeviceSizeInBytes_Args, on_device_size_in_bytes); typedef PJRT_Error* PJRT_Buffer_OnDeviceSizeInBytes( PJRT_Buffer_OnDeviceSizeInBytes_Args* args); struct PJRT_Buffer_Delete_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Delete_Args, buffer); typedef PJRT_Error* PJRT_Buffer_Delete(PJRT_Buffer_Delete_Args* args); struct PJRT_Buffer_IsDeleted_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; bool is_deleted; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IsDeleted_Args, is_deleted); typedef PJRT_Error* PJRT_Buffer_IsDeleted(PJRT_Buffer_IsDeleted_Args* args); struct PJRT_Buffer_CopyToDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Device* dst_device; PJRT_Buffer* dst_buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_CopyToDevice_Args, dst_buffer); typedef PJRT_Error* PJRT_Buffer_CopyToDevice( PJRT_Buffer_CopyToDevice_Args* args); struct PJRT_Buffer_CopyToMemory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Memory* dst_memory; PJRT_Buffer* dst_buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_CopyToMemory_Args, dst_buffer); typedef PJRT_Error* PJRT_Buffer_CopyToMemory( PJRT_Buffer_CopyToMemory_Args* args); struct PJRT_Buffer_IsOnCpu_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; bool is_on_cpu; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IsOnCpu_Args, is_on_cpu); typedef PJRT_Error* PJRT_Buffer_IsOnCpu(PJRT_Buffer_IsOnCpu_Args* args); struct PJRT_Buffer_Device_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Device* device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Device_Args, device); typedef PJRT_Error* PJRT_Buffer_Device(PJRT_Buffer_Device_Args* args); struct PJRT_Buffer_Memory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Memory* memory; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Memory_Args, memory); typedef PJRT_Error* PJRT_Buffer_Memory(PJRT_Buffer_Memory_Args* args); struct PJRT_Buffer_ReadyEvent_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ReadyEvent_Args, event); typedef PJRT_Error* PJRT_Buffer_ReadyEvent(PJRT_Buffer_ReadyEvent_Args* args); struct PJRT_Buffer_UnsafePointer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; uintptr_t buffer_pointer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_UnsafePointer_Args, buffer_pointer); typedef PJRT_Error* PJRT_Buffer_UnsafePointer( PJRT_Buffer_UnsafePointer_Args* args); struct PJRT_Buffer_IncreaseExternalReferenceCount_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IncreaseExternalReferenceCount_Args, buffer); typedef PJRT_Error* PJRT_Buffer_IncreaseExternalReferenceCount( PJRT_Buffer_IncreaseExternalReferenceCount_Args* args); struct PJRT_Buffer_DecreaseExternalReferenceCount_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_DecreaseExternalReferenceCount_Args, buffer); typedef PJRT_Error* PJRT_Buffer_DecreaseExternalReferenceCount( PJRT_Buffer_DecreaseExternalReferenceCount_Args* args); struct PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; void* device_memory_ptr; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args, device_memory_ptr); typedef PJRT_Error* PJRT_Buffer_OpaqueDeviceMemoryDataPointer( PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args* args); struct PJRT_CopyToDeviceStream_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_Destroy_Args, stream); typedef PJRT_Error* PJRT_CopyToDeviceStream_Destroy( PJRT_CopyToDeviceStream_Destroy_Args* args); struct PJRT_CopyToDeviceStream_AddChunk_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; PJRT_Chunk* chunk; PJRT_Event* transfer_complete; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_AddChunk_Args, transfer_complete); typedef PJRT_Error* PJRT_CopyToDeviceStream_AddChunk( PJRT_CopyToDeviceStream_AddChunk_Args* args); struct PJRT_CopyToDeviceStream_TotalBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t total_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_TotalBytes_Args, total_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_TotalBytes( PJRT_CopyToDeviceStream_TotalBytes_Args* args); struct PJRT_CopyToDeviceStream_GranuleSize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t granule_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_GranuleSize_Args, granule_size_in_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_GranuleSize( PJRT_CopyToDeviceStream_GranuleSize_Args* args); struct PJRT_CopyToDeviceStream_CurrentBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t current_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_CurrentBytes_Args, current_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_CurrentBytes( PJRT_CopyToDeviceStream_CurrentBytes_Args* args); struct PJRT_TopologyDescription_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* topology_name; size_t topology_name_size; const PJRT_NamedValue* create_options; size_t num_options; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Create_Args, topology); typedef PJRT_Error* PJRT_TopologyDescription_Create( PJRT_TopologyDescription_Create_Args* args); struct PJRT_TopologyDescription_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Destroy_Args, topology); typedef PJRT_Error* PJRT_TopologyDescription_Destroy( PJRT_TopologyDescription_Destroy_Args* args); struct PJRT_TopologyDescription_PlatformVersion_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* platform_version; size_t platform_version_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_PlatformVersion_Args, platform_version_size); typedef PJRT_Error* PJRT_TopologyDescription_PlatformVersion( PJRT_TopologyDescription_PlatformVersion_Args* args); struct PJRT_TopologyDescription_PlatformName_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* platform_name; size_t platform_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_PlatformName_Args, platform_name_size); typedef PJRT_Error* PJRT_TopologyDescription_PlatformName( PJRT_TopologyDescription_PlatformName_Args* args); struct PJRT_TopologyDescription_GetDeviceDescriptions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; PJRT_DeviceDescription* const* descriptions; size_t num_descriptions; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_GetDeviceDescriptions_Args, num_descriptions); typedef PJRT_Error* PJRT_TopologyDescription_GetDeviceDescriptions( PJRT_TopologyDescription_GetDeviceDescriptions_Args* args); typedef struct PJRT_SerializedTopology PJRT_SerializedTopology; struct PJRT_TopologyDescription_Serialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* serialized_bytes; size_t serialized_bytes_size; PJRT_SerializedTopology* serialized_topology; void (*serialized_topology_deleter)( PJRT_SerializedTopology* serialized_topology); }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Serialize_Args, serialized_topology_deleter); typedef PJRT_Error* PJRT_TopologyDescription_Serialize( PJRT_TopologyDescription_Serialize_Args* args); struct PJRT_TopologyDescription_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const PJRT_NamedValue* attributes; size_t num_attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Attributes_Args, num_attributes); typedef PJRT_Error* PJRT_TopologyDescription_Attributes( PJRT_TopologyDescription_Attributes_Args* args); struct PJRT_Compile_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_TopologyDescription* topology; const PJRT_Program* program; const char* compile_options; size_t compile_options_size; PJRT_Client* client; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Compile_Args, executable); typedef PJRT_Error* PJRT_Compile(PJRT_Compile_Args* args); #define _PJRT_API_STRUCT_FIELD(fn_type) fn_type* fn_type typedef struct PJRT_Api { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Api_Version pjrt_api_version; _PJRT_API_STRUCT_FIELD(PJRT_Error_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Error_Message); _PJRT_API_STRUCT_FIELD(PJRT_Error_GetCode); _PJRT_API_STRUCT_FIELD(PJRT_Plugin_Initialize); _PJRT_API_STRUCT_FIELD(PJRT_Plugin_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_Event_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Event_IsReady); _PJRT_API_STRUCT_FIELD(PJRT_Event_Error); _PJRT_API_STRUCT_FIELD(PJRT_Event_Await); _PJRT_API_STRUCT_FIELD(PJRT_Event_OnReady); _PJRT_API_STRUCT_FIELD(PJRT_Client_Create); _PJRT_API_STRUCT_FIELD(PJRT_Client_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Client_PlatformName); _PJRT_API_STRUCT_FIELD(PJRT_Client_ProcessIndex); _PJRT_API_STRUCT_FIELD(PJRT_Client_PlatformVersion); _PJRT_API_STRUCT_FIELD(PJRT_Client_Devices); _PJRT_API_STRUCT_FIELD(PJRT_Client_AddressableDevices); _PJRT_API_STRUCT_FIELD(PJRT_Client_LookupDevice); _PJRT_API_STRUCT_FIELD(PJRT_Client_LookupAddressableDevice); _PJRT_API_STRUCT_FIELD(PJRT_Client_AddressableMemories); _PJRT_API_STRUCT_FIELD(PJRT_Client_Compile); _PJRT_API_STRUCT_FIELD(PJRT_Client_DefaultDeviceAssignment); _PJRT_API_STRUCT_FIELD(PJRT_Client_BufferFromHostBuffer); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Id); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_ProcessIndex); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Kind); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_DebugString); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_ToString); _PJRT_API_STRUCT_FIELD(PJRT_Device_GetDescription); _PJRT_API_STRUCT_FIELD(PJRT_Device_IsAddressable); _PJRT_API_STRUCT_FIELD(PJRT_Device_LocalHardwareId); _PJRT_API_STRUCT_FIELD(PJRT_Device_AddressableMemories); _PJRT_API_STRUCT_FIELD(PJRT_Device_DefaultMemory); _PJRT_API_STRUCT_FIELD(PJRT_Device_MemoryStats); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Id); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Kind); _PJRT_API_STRUCT_FIELD(PJRT_Memory_DebugString); _PJRT_API_STRUCT_FIELD(PJRT_Memory_ToString); _PJRT_API_STRUCT_FIELD(PJRT_Memory_AddressableByDevices); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Name); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumReplicas); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumPartitions); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumOutputs); _PJRT_API_STRUCT_FIELD(PJRT_Executable_SizeOfGeneratedCodeInBytes); _PJRT_API_STRUCT_FIELD(PJRT_Executable_GetCostAnalysis); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputMemoryKinds); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OptimizedProgram); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Serialize); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_GetExecutable); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_AddressableDevices); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Delete); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_IsDeleted); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Execute); _PJRT_API_STRUCT_FIELD(PJRT_Executable_DeserializeAndLoad); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Fingerprint); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ElementType); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Dimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_UnpaddedDimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_DynamicDimensionIndices); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_GetMemoryLayout); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_OnDeviceSizeInBytes); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Device); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Memory); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Delete); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IsDeleted); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_CopyToDevice); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ToHostBuffer); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IsOnCpu); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ReadyEvent); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_UnsafePointer); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IncreaseExternalReferenceCount); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_DecreaseExternalReferenceCount); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_OpaqueDeviceMemoryDataPointer); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_AddChunk); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_TotalBytes); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_GranuleSize); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_CurrentBytes); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Create); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_PlatformName); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_PlatformVersion); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_GetDeviceDescriptions); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Serialize); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_Compile); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputElementTypes); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputDimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_CopyToMemory); _PJRT_API_STRUCT_FIELD(PJRT_Client_CreateViewOfDeviceBuffer); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Fingerprint); _PJRT_API_STRUCT_FIELD(PJRT_Client_TopologyDescription); _PJRT_API_STRUCT_FIELD(PJRT_Executable_GetCompiledMemoryStats); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Kind_Id); _PJRT_API_STRUCT_FIELD(PJRT_ExecuteContext_Create); _PJRT_API_STRUCT_FIELD(PJRT_ExecuteContext_Destroy); } PJRT_Api; enum { PJRT_Api_STRUCT_SIZE = PJRT_STRUCT_SIZE(PJRT_Api, PJRT_Client_TopologyDescription) }; #undef _PJRT_API_STRUCT_FIELD #ifdef __cplusplus } #endif #endif
#include "xla/pjrt/c/pjrt_c_api_test.h" #include <cstddef> #include <functional> #include <memory> #include <numeric> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_test_base.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace pjrt { namespace { constexpr absl::string_view module_add_one = R"(module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { %0 = "mhlo.copy"(%arg0) : (tensor<f32>) -> tensor<f32> %1 = mhlo.constant dense<1.000000e+00> : tensor<f32> %2 = mhlo.add %0, %1 : tensor<f32> return %2 : tensor<f32> }})"; constexpr absl::string_view kHloString = R"( HloModule TupleCreate_module: ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )"; class TestCApiFactory { public: void Register(std::function<const PJRT_Api*()> factory, absl::string_view platform_name) { absl::MutexLock lock(&mu_); CHECK(!factory_); factory_ = std::move(factory); CHECK(platform_name_.empty()) << "Platform name already provided"; CHECK(!platform_name.empty()) << "Provided platform name is empty"; platform_name_ = platform_name; } std::function<const PJRT_Api*()> Get() const { absl::MutexLock lock(&mu_); CHECK(factory_) << "Test didn't call RegisterPjRtCApiTestFactory()"; return factory_; } std::string GetPlatformName() const { absl::MutexLock lock(&mu_); CHECK(!platform_name_.empty()) << "Test didn't call RegisterPjRtCApiTestFactory()"; return platform_name_; } private: mutable absl::Mutex mu_; std::function<const PJRT_Api*()> factory_ ABSL_GUARDED_BY(mu_); std::string platform_name_; }; TestCApiFactory& GetGlobalTestCApiFactory() { static auto* const factory = new TestCApiFactory; return *factory; } const PJRT_Api* GetCApi() { return GetGlobalTestCApiFactory().Get()(); } std::string GetPlatformName() { return GetGlobalTestCApiFactory().GetPlatformName(); } } void RegisterPjRtCApiTestFactory(std::function<const PJRT_Api*()> factory, absl::string_view platform_name) { GetGlobalTestCApiFactory().Register(std::move(factory), platform_name); } namespace { class PjrtCApiTest : public PjrtCApiTestBase { protected: PjrtCApiTest() : PjrtCApiTestBase(GetCApi()) {} std::string platform_name_ = GetPlatformName(); }; TEST_F(PjrtCApiTest, ApiVersion) { CHECK_EQ(api_->pjrt_api_version.major_version, PJRT_API_MAJOR); CHECK_EQ(api_->pjrt_api_version.minor_version, PJRT_API_MINOR); } TEST_F(PjrtCApiTest, PlatformName) { PJRT_Client_PlatformName_Args args; args.client = client_; args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; PJRT_Error* error = api_->PJRT_Client_PlatformName(&args); ASSERT_EQ(error, nullptr); absl::string_view platform_name(args.platform_name, args.platform_name_size); ASSERT_EQ(platform_name_, platform_name); } TEST_F(PjrtCApiTest, ClientProcessIndex) { PJRT_Client_ProcessIndex_Args process_index_args = PJRT_Client_ProcessIndex_Args{ .struct_size = PJRT_Client_ProcessIndex_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .process_index = -1, }; PJRT_Error* error = api_->PJRT_Client_ProcessIndex(&process_index_args); CHECK_EQ(error, nullptr); CHECK_EQ(process_index_args.process_index, 0); } TEST_F(PjrtCApiTest, ClientDevices) { absl::Span<PJRT_Device* const> devices = GetClientDevices(); ASSERT_FALSE(devices.empty()); for (auto& device : devices) { ASSERT_TRUE(this->IsValidDeviceId(device)); } } TEST_F(PjrtCApiTest, ClientAddressableDevices) { absl::Span<PJRT_Device* const> addressable_devices = GetClientAddressableDevices(); ASSERT_FALSE(addressable_devices.empty()); for (auto& device : addressable_devices) { ASSERT_TRUE(this->IsValidDeviceId(device)); } absl::Span<PJRT_Device* const> client_devices = GetClientDevices(); for (auto& addressable_device : addressable_devices) { ASSERT_THAT(client_devices, ::testing::Contains(addressable_device)); } } TEST_F(PjrtCApiTest, LookupDevice) { PJRT_Client_LookupDevice_Args lookup_device_args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = 0, .device = nullptr, }; PJRT_Error* lookup_device_error = api_->PJRT_Client_LookupDevice(&lookup_device_args); ASSERT_EQ(lookup_device_error, nullptr); int id = GetDeviceId(lookup_device_args.device); ASSERT_EQ(id, 0); } TEST_F(PjrtCApiTest, LookupAddressableDevice) { PJRT_Client_LookupAddressableDevice_Args lookup_addressable_device_args = PJRT_Client_LookupAddressableDevice_Args{ .struct_size = PJRT_Client_LookupAddressableDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .local_hardware_id = 0, .addressable_device = nullptr, }; PJRT_Error* lookup_addressable_device_error = api_->PJRT_Client_LookupAddressableDevice( &lookup_addressable_device_args); ASSERT_EQ(lookup_addressable_device_error, nullptr); int local_hardware_id = GetLocalHardwareId(lookup_addressable_device_args.addressable_device); ASSERT_EQ(local_hardware_id, 0); } TEST_F(PjrtCApiTest, GetDefaultDeviceAssignmentNominal) { constexpr int kNumReplicas = 2; constexpr int kNumPartitions = 1; std::vector<int> assignment_buffer(kNumReplicas * kNumPartitions); PJRT_Client_DefaultDeviceAssignment_Args args{ .struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .num_replicas = kNumReplicas, .num_partitions = kNumPartitions, .default_assignment_size = assignment_buffer.size(), .default_assignment = assignment_buffer.data(), }; auto error = ToUniquePtr(api_->PJRT_Client_DefaultDeviceAssignment(&args)); EXPECT_EQ(error, nullptr); } TEST_F(PjrtCApiTest, GetDefaultDeviceAssignmentBufferTooSmall) { constexpr int kNumReplicas = 4; constexpr int kNumPartitions = 2; constexpr size_t kBufferSize = 7; std::vector<int> assignment_buffer(kBufferSize); PJRT_Client_DefaultDeviceAssignment_Args args{ .struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .num_replicas = kNumReplicas, .num_partitions = kNumPartitions, .default_assignment_size = assignment_buffer.size(), .default_assignment = assignment_buffer.data(), }; auto error = ToUniquePtr(api_->PJRT_Client_DefaultDeviceAssignment(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); EXPECT_EQ(status.code(), absl::StatusCode::kFailedPrecondition); EXPECT_EQ(status.message(), "PJRT_Client_DefaultDeviceAssignment: `default_assignment_size` 7" " < `num_replicas * num_partitions`, 4 * 2 = 8"); } TEST_F(PjrtCApiTest, LookupDeviceNegativeId) { PJRT_Client_LookupDevice_Args args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = -1, .device = nullptr, }; absl::Status expected = absl::Status(absl::StatusCode::kInvalidArgument, "No matching device found for device_id -1"); auto error = ToUniquePtr(api_->PJRT_Client_LookupDevice(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); ASSERT_EQ(status, expected); } TEST_F(PjrtCApiTest, LookupDeviceOutOfRangeId) { int out_of_range_id = GetNumDevices(); PJRT_Client_LookupDevice_Args args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = out_of_range_id, .device = nullptr, }; absl::Status expected = absl::Status( absl::StatusCode::kInvalidArgument, absl::StrCat("No matching device found for device_id ", out_of_range_id)); auto error = ToUniquePtr(api_->PJRT_Client_LookupDevice(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); ASSERT_EQ(status, expected); } static constexpr std::string_view kExecutableName = "operation"; void destroy_executable(PJRT_LoadedExecutable* executable, const PJRT_Api* api) { PJRT_LoadedExecutable_Destroy_Args args{ .struct_size = PJRT_LoadedExecutable_Destroy_Args_STRUCT_SIZE, .extension_start = nullptr, .executable = executable, }; PJRT_Error* error = api->PJRT_LoadedExecutable_Destroy(&args); CHECK_EQ(error, nullptr); } TEST_F(PjrtCApiTest, BufferTransferImmutableUntilTransferCompletes) { xla::Shape shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); PJRT_Client_BufferFromHostBuffer_Args args = CreateBufferFromHostBufferArgs( float_data, shape, xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes); PJRT_Error* error = api_->PJRT_Client_BufferFromHostBuffer(&args); CHECK_EQ(error, nullptr); std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer( args.buffer, ::pjrt::MakeBufferDeleter(api_)); std::unique_ptr<PJRT_Event, ::pjrt::PJRT_EventDeleter> event( args.done_with_host_buffer, ::pjrt::MakeEventDeleter(api_)); PJRT_Event_Await_Args await_args; await_args.struct_size = PJRT_Event_Await_Args_STRUCT_SIZE; await_args.extension_start = nullptr; await_args.event = event.get(); PJRT_Error* event_error = api_->PJRT_Event_Await(&await_args); ASSERT_EQ(event_error, nullptr); } TEST_F(PjrtCApiTest, Compile) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format(::pjrt::kMlirFormat); std::string program_code{module_add_one}; PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = program_code.data(), .code_size = program_code.length(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); ::pjrt::LogFatalIfPjrtError(error, api_); ASSERT_EQ(error, nullptr); destroy_executable(args.executable, api_); } TEST_F(PjrtCApiTest, CompileXlaComputation) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; xla::DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = 0; xla::DeviceAssignmentProto proto; device_assignment.Serialize(&proto); std::string device_assignment_str = proto.SerializeAsString(); std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); absl::StatusOr<std::unique_ptr<xla::HloModule>> hlo_module = xla::ParseAndReturnUnverifiedModule(kHloString); ASSERT_EQ(hlo_module.ok(), true); std::string module_str = hlo_module->get()->ToProto().SerializeAsString(); std::string format(::pjrt::kHloFormat); PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = module_str.data(), .code_size = module_str.size(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); ::pjrt::LogFatalIfPjrtError(error, api_); ASSERT_EQ(error, nullptr); destroy_executable(args.executable, api_); } TEST_F(PjrtCApiTest, CompileInvalidOption) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; std::string options_str = "invalid compile options"; args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format(::pjrt::kMlirFormat); std::string program_code{module_add_one}; PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = program_code.data(), .code_size = program_code.length(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); absl::Status status = ::pjrt::PjrtErrorToStatus(error, api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "PJRT_Client_Compile: failed to deserialize CompileOptionsProto"); destroy_executable(args.executable, api_); ::pjrt::MakeErrorDeleter(api_)(error); } TEST_F(PjrtCApiTest, CompileInvalidProgramFormat) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; xla::DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = 0; xla::DeviceAssignmentProto proto; device_assignment.Serialize(&proto); std::string device_assignment_str = proto.SerializeAsString(); std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format("invalid"); PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = nullptr, .code_size = 0, .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); absl::Status status = ::pjrt::PjrtErrorToStatus(error, api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "Unknown program format 'invalid'."); destroy_executable(args.executable, api_); ::pjrt::MakeErrorDeleter(api_)(error); } TEST_F(PjrtCApiTest, DeviceId) { auto* device = GetClientDevices()[0]; int id = GetDeviceId(device); CHECK_EQ(id, 0); } TEST_F(PjrtCApiTest, DeviceProcessIndex) { PJRT_DeviceDescription_ProcessIndex_Args args = PJRT_DeviceDescription_ProcessIndex_Args{ .struct_size = PJRT_DeviceDescription_ProcessIndex_Args_STRUCT_SIZE, .extension_start = nullptr, .device_description = ::pjrt::GetDeviceDescription(api_, GetClientDevices()[0]), .process_index = -1, }; PJRT_Error* error = api_->PJRT_DeviceDescription_ProcessIndex(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.process_index, 0); } TEST_F(PjrtCApiTest, DeviceIsAddressable) { PJRT_Device_IsAddressable_Args args = PJRT_Device_IsAddressable_Args{ .struct_size = PJRT_Device_IsAddressable_Args_STRUCT_SIZE, .extension_start = nullptr, .device = GetClientDevices()[0], .is_addressable = false, }; PJRT_Error* error = api_->PJRT_Device_IsAddressable(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.is_addressable, true); } TEST_F(PjrtCApiTest, DeviceLocalHardwareId) { PJRT_Device_LocalHardwareId_Args args = PJRT_Device_LocalHardwareId_Args{ .struct_size = PJRT_Device_LocalHardwareId_Args_STRUCT_SIZE, .extension_start = nullptr, .device = GetClientDevices()[0], .local_hardware_id = -1, }; PJRT_Error* error = api_->PJRT_Device_LocalHardwareId(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.local_hardware_id, 0); } class PjrtCApiBufferTest : public PjrtCApiTest { protected: void SetUp() override { PjrtCApiTest::SetUp(); auto buffer_and_event = create_buffer(); buffer_ = std::move(buffer_and_event.first); event_ = buffer_and_event.second; } void TearDown() override { TF_CHECK_OK(event_.Await()); buffer_.reset(nullptr); PjrtCApiTest::TearDown(); } std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer_; xla::PjRtFuture<> event_; }; TEST_F(PjrtCApiBufferTest, IsDeleted) { PJRT_Buffer_IsDeleted_Args is_deleted_args; is_deleted_args.struct_size = PJRT_Buffer_IsDeleted_Args_STRUCT_SIZE; is_deleted_args.extension_start = nullptr; is_deleted_args.buffer = buffer_.get(); PJRT_Error* is_deleted_error = api_->PJRT_Buffer_IsDeleted(&is_deleted_args); ASSERT_EQ(is_deleted_error, nullptr); ASSERT_FALSE(is_deleted_args.is_deleted); PJRT_Buffer_Delete_Args delete_args; delete_args.struct_size = PJRT_Buffer_Delete_Args_STRUCT_SIZE; delete_args.extension_start = nullptr; delete_args.buffer = buffer_.get(); PJRT_Error* delete_error = api_->PJRT_Buffer_Delete(&delete_args); ASSERT_EQ(delete_error, nullptr); is_deleted_error = api_->PJRT_Buffer_IsDeleted(&is_deleted_args); ASSERT_EQ(is_deleted_error, nullptr); ASSERT_TRUE(is_deleted_args.is_deleted); } TEST_F(PjrtCApiBufferTest, GetOnDeviceSizeInBytes) { PJRT_Buffer_OnDeviceSizeInBytes_Args args; args.struct_size = PJRT_Buffer_OnDeviceSizeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); PJRT_Error* on_device_size_bytes_error = api_->PJRT_Buffer_OnDeviceSizeInBytes(&args); ASSERT_EQ(on_device_size_bytes_error, nullptr); ASSERT_GT(args.on_device_size_in_bytes, 0); } TEST_F(PjrtCApiBufferTest, ReadyEvent) { PJRT_Buffer_ReadyEvent_Args get_event_args; get_event_args.struct_size = PJRT_Buffer_ReadyEvent_Args_STRUCT_SIZE; get_event_args.extension_start = nullptr; get_event_args.buffer = buffer_.get(); auto error = ToUniquePtr(api_->PJRT_Buffer_ReadyEvent(&get_event_args)); ASSERT_EQ(error, nullptr); PJRT_Event* event = get_event_args.event; ASSERT_NE(event, nullptr); PJRT_Event_Await_Args await_args; await_args.struct_size = PJRT_Event_Await_Args_STRUCT_SIZE; await_args.extension_start = nullptr; await_args.event = event; error.reset(api_->PJRT_Event_Await(&await_args)); ASSERT_EQ(error, nullptr); PJRT_Event_IsReady_Args ready_args; ready_args.struct_size = PJRT_Event_IsReady_Args_STRUCT_SIZE; ready_args.extension_start = nullptr; ready_args.event = event; error.reset(api_->PJRT_Event_IsReady(&ready_args)); ASSERT_EQ(error, nullptr); EXPECT_TRUE(ready_args.is_ready); PJRT_Event_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Event_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.event = event; error.reset(api_->PJRT_Event_Destroy(&destroy_args)); EXPECT_EQ(error, nullptr); } TEST_F(PjrtCApiBufferTest, ToHostBufferNoHostLayout) { PJRT_Buffer_ToHostBuffer_Args args; args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.src = buffer_.get(); xla::Shape host_shape = xla::ShapeUtil::MakeShape(xla::F32, {4}); auto literal = std::make_shared<xla::Literal>(host_shape); args.host_layout = nullptr; args.dst = literal->untyped_data(); args.dst_size = xla::ShapeUtil::ByteSizeOfElements(host_shape); args.event = nullptr; PJRT_Error* error = api_->PJRT_Buffer_ToHostBuffer(&args); xla::PjRtFuture<> transfer_to_host = ::pjrt::ConvertCEventToCppFuture(args.event, api_); TF_CHECK_OK(transfer_to_host.Await()); EXPECT_EQ(error, nullptr); ASSERT_EQ(literal->data<float>().size(), 4); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); EXPECT_TRUE(xla::LiteralTestUtil::Equal( xla::LiteralUtil::CreateR1<float>(float_data), *literal)); } TEST_F(PjrtCApiBufferTest, IncreaseAndDecreaseReferenceCount) { PJRT_Buffer_IncreaseExternalReferenceCount_Args increase_reference_count_args; increase_reference_count_args.struct_size = PJRT_Buffer_IncreaseExternalReferenceCount_Args_STRUCT_SIZE; increase_reference_count_args.extension_start = nullptr; increase_reference_count_args.buffer = buffer_.get(); PJRT_Error* increase_reference_count_error = api_->PJRT_Buffer_IncreaseExternalReferenceCount( &increase_reference_count_args); EXPECT_EQ(increase_reference_count_error, nullptr); PJRT_Buffer_DecreaseExternalReferenceCount_Args decrease_reference_count_args; decrease_reference_count_args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; decrease_reference_count_args.extension_start = nullptr; decrease_reference_count_args.buffer = buffer_.get(); PJRT_Error* decrease_reference_error = api_->PJRT_Buffer_DecreaseExternalReferenceCount( &decrease_reference_count_args); EXPECT_EQ(decrease_reference_error, nullptr); } TEST_F(PjrtCApiBufferTest, DecreaseReferenceCountReturnsError) { PJRT_Buffer_DecreaseExternalReferenceCount_Args args; args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); auto error = ToUniquePtr(api_->PJRT_Buffer_DecreaseExternalReferenceCount(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "Attempting to decrease reference on a buffer with zero reference " "count."); } TEST_F(PjrtCApiBufferTest, OpaqueDeviceMemoryDataPointer) { PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args args; args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); PJRT_Error* error = api_->PJRT_Buffer_OpaqueDeviceMemoryDataPointer(&args); EXPECT_EQ(error, nullptr); EXPECT_NE(args.device_memory_ptr, nullptr); } class PjrtCommonCApiHelpersTest : public PjrtCApiTest {}; TEST_F(PjrtCommonCApiHelpersTest, PjrtErrorToStatus) { EXPECT_TRUE(::pjrt::PjrtErrorToStatus(nullptr, api_).ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
855867c7-e9c3-4aca-9d4d-c16ccd2ae5a3
cpp
tensorflow/tensorflow
future
tensorflow/core/tfrt/mlrt/interpreter/future.h
tensorflow/core/tfrt/mlrt/interpreter/future_test.cc
#ifndef TENSORFLOW_CORE_TFRT_MLRT_INTERPRETER_FUTURE_H_ #define TENSORFLOW_CORE_TFRT_MLRT_INTERPRETER_FUTURE_H_ #include <atomic> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/log/check.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tfrt/concurrency/async_value.h" #include "tfrt/concurrency/async_value_ref.h" namespace mlrt { namespace future_internal { void GetArgumentType(void (*)()); template <typename F> void GetArgumentType(void (F::*)()); template <typename F> void GetArgumentType(void (F::*)() const); template <typename Arg> Arg GetArgumentType(void (*)(Arg)); template <typename F, typename Arg> Arg GetArgumentType(void (F::*)(Arg)); template <typename F, typename Arg> Arg GetArgumentType(void (F::*)(Arg) const); template <typename F> decltype(GetArgumentType(&F::operator())) GetArgumentType(F); template <typename F> using ArgumentType = decltype(GetArgumentType(std::declval<F>())); template <typename T> struct ArgTag {}; template <typename F, typename T> ABSL_ATTRIBUTE_ALWAYS_INLINE void InvokeThen(F&& then, tsl::AsyncValue* shared_state, ArgTag<T>) { auto& arg = shared_state->get<T>(); if (shared_state->IsUnique()) { std::forward<F>(then)(std::move(arg)); } else { std::forward<F>(then)(arg); } } template <typename F> ABSL_ATTRIBUTE_ALWAYS_INLINE void InvokeThen(F&& then, tsl::AsyncValue* shared_state, ArgTag<absl::Status>) { if (shared_state->IsError()) { std::forward<F>(then)(shared_state->GetError()); } else { std::forward<F>(then)(absl::OkStatus()); } } template <typename F, typename T> ABSL_ATTRIBUTE_ALWAYS_INLINE void InvokeThen(F&& then, tsl::AsyncValue* shared_state, ArgTag<absl::StatusOr<T>>) { if (shared_state->IsError()) { std::forward<F>(then)(shared_state->GetError()); } else { InvokeThen(std::forward<F>(then), shared_state, ArgTag<T>()); } } } struct Control {}; class Future { public: template <typename T> explicit Future(tsl::AsyncValueRef<T> async_value) : shared_state_(std::move(async_value)) {} Future(const Future& other) = default; Future& operator=(const Future& other) = default; Future(Future&& other) = default; Future& operator=(Future&& other) = default; explicit operator bool() const { return shared_state_ != nullptr; } bool IsReady() const { DCHECK(shared_state_); return shared_state_->IsAvailable(); } bool IsError() const { DCHECK(shared_state_); return shared_state_->IsError(); } template <typename T> const T& Get() const { DCHECK(shared_state_); return shared_state_->get<T>(); } const absl::Status& GetError() const { DCHECK(shared_state_); return shared_state_->GetError(); } template <typename F, typename Arg = std::decay_t<future_internal::ArgumentType<F>>> typename std::enable_if_t<!std::is_void_v<Arg>, void> Then(F then) && { DCHECK(shared_state_); auto* shared_state_ptr = shared_state_.get(); shared_state_ptr->AndThen([shared_state = std::move(shared_state_), then = std::move(then)]() mutable { future_internal::InvokeThen(std::move(then), shared_state.get(), future_internal::ArgTag<Arg>()); }); } template <typename F, typename Arg = std::decay_t<future_internal::ArgumentType<F>>> typename std::enable_if_t<std::is_void_v<Arg>, void> Then(F then) && { DCHECK(shared_state_); auto* shared_state_ptr = shared_state_.get(); shared_state_ptr->AndThen( [shared_state = std::move(shared_state_), then = std::move(then)]() mutable { std::move(then)(); }); } size_t UseCount() const { DCHECK(shared_state_); return shared_state_->NumRef(); } private: friend class Promise; explicit Future(tsl::RCReference<tsl::AsyncValue> shared_state) : shared_state_(std::move(shared_state)) {} tsl::RCReference<tsl::AsyncValue> shared_state_; }; class Promise { public: template <typename T> static Promise Allocate() { return Promise(tsl::MakeUnconstructedAsyncValueRef<T>().ReleaseRCRef()); } ~Promise() { DCHECK(!shared_state_ || shared_state_->IsAvailable()) << "A non-empty promise must be fulfilled."; } Promise(const Promise&) = delete; Promise& operator=(const Promise&) = delete; Promise(Promise&&) = default; Promise& operator=(Promise&&) = default; Future GetFuture() const { return Future(shared_state_); } template <typename T, typename... Args> void Set(Args&&... args) && { DCHECK(shared_state_); auto shared_state = std::move(shared_state_); auto* shared_state_ptr = shared_state.get(); if (!shared_state->IsUnique()) { shared_state.reset(); } shared_state_ptr->emplace<T>(std::forward<Args>(args)...); } void SetError(absl::Status status) && { DCHECK(shared_state_); DCHECK(!status.ok()); shared_state_->SetError(std::move(status)); shared_state_.reset(); } void HandleError(Value* arg) && { if (!shared_state_ || shared_state_->IsAvailable()) { return; } auto& execution_context = *arg->Get<ExecutionContext*>(); DCHECK(!execution_context.status().ok()); std::move(*this).SetError(execution_context.status()); } explicit operator bool() const { return shared_state_ != nullptr; } private: explicit Promise(tsl::RCReference<tsl::AsyncValue> shared_state) : shared_state_(std::move(shared_state)) {} tsl::RCReference<tsl::AsyncValue> shared_state_; }; namespace future_internal { struct State { State(int size, mlrt::Promise promise) : count(size), promise(std::move(promise)) {} std::atomic<int> count; mlrt::Promise promise; absl::Mutex mu; absl::Status status; void SetError(absl::Status status) { absl::MutexLock lock(&mu); this->status = std::move(status); } bool DecrementCount() { if (count.fetch_sub(1, std::memory_order_acq_rel) == 1) { if (status.ok()) { std::move(promise).Set<Control>(Control()); } else { std::move(promise).SetError(std::move(status)); } return true; } return false; } }; } template <typename T, typename FutureLikeContainer, typename ResultRefContainer> ABSL_ATTRIBUTE_ALWAYS_INLINE Future AwaitAll(FutureLikeContainer futures, ResultRefContainer results) { DCHECK(!futures.empty()); auto promise = Promise::Allocate<Control>(); auto await_all = promise.GetFuture(); auto* state = new future_internal::State(futures.size(), std::move(promise)); DCHECK_EQ(futures.size(), results.size()); for (int i = 0; i < futures.size(); ++i) { auto& future = futures[i]; std::move(future).Then( [state, result = &results[i]](absl::StatusOr<T> value) { if (value.ok()) { result->Set(std::move(*value)); } else { state->SetError(std::move(value).status()); } if (state->DecrementCount()) { delete state; } }); } return await_all; } template <typename FutureLikeContainer> ABSL_ATTRIBUTE_ALWAYS_INLINE Future AwaitAll(FutureLikeContainer futures) { DCHECK(!futures.empty()); auto promise = Promise::Allocate<Control>(); auto await_all = promise.GetFuture(); auto* state = new future_internal::State(futures.size(), std::move(promise)); for (int i = 0; i < futures.size(); ++i) { auto& future = futures[i]; std::move(future).Then([state](absl::Status status) { if (!status.ok()) { state->SetError(std::move(status)); } if (state->DecrementCount()) { delete state; } }); } return await_all; } } #endif
#include "tensorflow/core/tfrt/mlrt/interpreter/future.h" #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/status_matchers.h" namespace mlrt { namespace { TEST(FutureTest, Basic) { { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); std::move(promise).Set<int>(1); EXPECT_FALSE(promise); ASSERT_TRUE(future); ASSERT_TRUE(future.IsReady()); EXPECT_EQ(future.Get<int>(), 1); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); int u = 0; ASSERT_TRUE(future); std::move(future).Then( [&](absl::StatusOr<int> result) { u = result.value(); }); EXPECT_FALSE(future); EXPECT_EQ(u, 0); std::move(promise).Set<int>(1); EXPECT_EQ(u, 1); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); int v = 0; ASSERT_TRUE(future); std::move(future).Then([&](int result) { v = result; }); EXPECT_FALSE(future); EXPECT_EQ(v, 0); std::move(promise).Set<int>(1); EXPECT_EQ(v, 1); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); int w = 0; ASSERT_TRUE(future); std::move(future).Then([&]() { w = 2; }); EXPECT_FALSE(future); EXPECT_EQ(w, 0); std::move(promise).Set<int>(1); EXPECT_EQ(w, 2); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); absl::Status s = absl::InternalError("error"); ASSERT_TRUE(future); std::move(future).Then([&](absl::Status status) { s = status; }); EXPECT_FALSE(future); EXPECT_FALSE(s.ok()); std::move(promise).Set<int>(1); EXPECT_TRUE(s.ok()); } } TEST(FutureTest, CopyAndMove) { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); EXPECT_EQ(future.UseCount(), 2); { auto copy = future; EXPECT_EQ(copy.UseCount(), 3); } auto move = std::move(future); EXPECT_EQ(move.UseCount(), 2); std::move(promise).Set<int>(1); EXPECT_EQ(move.UseCount(), 1); } TEST(FutureTest, CreateFromAsyncValue) { auto promise = tsl::MakeUnconstructedAsyncValueRef<int>(); mlrt::Future future(promise); int v = 0; std::move(future).Then([&](int result) { v = result; }); EXPECT_EQ(v, 0); promise.emplace(1); EXPECT_EQ(v, 1); } TEST(FutureTest, Error) { { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); std::move(promise).SetError(absl::InternalError("test error")); ASSERT_TRUE(future.IsError()); EXPECT_THAT( future.GetError(), ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); absl::StatusOr<int> r; std::move(future).Then( [&](absl::StatusOr<int> result) { r = std::move(result); }); std::move(promise).SetError(absl::InternalError("test error")); EXPECT_THAT( r, ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } { auto promise = Promise::Allocate<int>(); auto future = promise.GetFuture(); absl::Status s; std::move(future).Then([&](absl::Status status) { s = std::move(status); }); std::move(promise).SetError(absl::InternalError("test error")); EXPECT_THAT( s, ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/future.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/future_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f9ae76a2-0074-419d-8e7e-40f7fcdfd6d3
cpp
tensorflow/tensorflow
real_time_in_memory_metric
third_party/xla/xla/tsl/framework/real_time_in_memory_metric.h
third_party/xla/xla/tsl/framework/real_time_in_memory_metric_test.cc
#ifndef XLA_TSL_FRAMEWORK_REAL_TIME_IN_MEMORY_METRIC_H_ #define XLA_TSL_FRAMEWORK_REAL_TIME_IN_MEMORY_METRIC_H_ #include <atomic> namespace tsl { template <typename T> class RealTimeInMemoryMetric { public: RealTimeInMemoryMetric() : value_(T{0}) {} T Get() const { return value_.load(std::memory_order_relaxed); } void Set(T new_value) { value_.store(new_value, std::memory_order_relaxed); } RealTimeInMemoryMetric(const RealTimeInMemoryMetric&) = delete; RealTimeInMemoryMetric& operator=(const RealTimeInMemoryMetric&) = delete; RealTimeInMemoryMetric(RealTimeInMemoryMetric&&) = delete; RealTimeInMemoryMetric& operator=(RealTimeInMemoryMetric&&) = delete; static_assert(std::is_arithmetic_v<T>); private: std::atomic<T> value_; }; } #endif
#include "xla/tsl/framework/real_time_in_memory_metric.h" #include <cstdint> #include "tsl/platform/test.h" namespace tsl { namespace { TEST(RealTimeInMemoryMetric, SetAndGet) { RealTimeInMemoryMetric<int64_t> m; EXPECT_EQ(m.Get(), 0); m.Set(100); EXPECT_EQ(m.Get(), 100); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/real_time_in_memory_metric.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/real_time_in_memory_metric_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6179176a-3ede-48e4-aaad-e68588ded661
cpp
tensorflow/tensorflow
eigen_spatial_convolutions
tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h
third_party/xla/xla/tsl/framework/convolution/eigen_spatial_convolutions_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_EIGEN_SPATIAL_CONVOLUTIONS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_EIGEN_SPATIAL_CONVOLUTIONS_H_ #define EIGEN_USE_CUSTOM_THREAD_POOL #define EIGEN_USE_THREADS #define Eigen EigenForTFLite #define TFLITE_REDUCE_INSTANTIATIONS #if defined(TFLITE_REDUCE_INSTANTIATIONS) #define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \ if (this->m_lhs_inner_dim_contiguous && this->m_rhs_inner_dim_contiguous && \ !this->m_rhs_inner_dim_reordered) { \ METHOD<true, true, false, ALIGNMENT> ARGS; \ } else { \ eigen_assert(false && "Unsupported contraction formats"); \ } #endif #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h" #endif
#include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" #include "absl/strings/str_cat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace Eigen { #define EigenApprox(a, b) \ { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } static int ceil_div(int a, int b) { return (a + b - 1) / b; } TEST(EigenSpatialConvolutionsTest, Simple) { const int input_depth = 7; const int input_rows = 4; const int input_cols = 5; const int output_depth = 10; const int patch_rows = 3; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3> input(input_depth, input_rows, input_cols); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 3> result(output_depth, output_rows, output_cols); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < output_rows && c - 1 + j < output_cols) { expected += input(id, r - 1 + i, c - 1 + j) * kernel(od, id, r, c); } } } } EigenApprox(result(od, i, j), expected); } } } } TEST(EigenSpatialConvolutionsTest, SimpleRowMajor) { const int input_depth = 7; const int input_rows = 4; const int input_cols = 5; const int output_depth = 10; const int patch_rows = 3; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3, RowMajor> input(input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 3, RowMajor> result(output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), output_cols); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_depth); for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < output_rows && c - 1 + j < output_cols) { expected += input(c - 1 + j, r - 1 + i, id) * kernel(c, r, id, od); } } } } EigenApprox(result(j, i, od), expected); } } } } TEST(EigenSpatialConvolutionsTest, BatchedSpatialConvolution) { Tensor<float, 4> input(10, 5, 5, 13); Tensor<float, 4> kernel(7, 10, 3, 3); Tensor<float, 4> result(7, 5, 5, 13); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), 7); EXPECT_EQ(result.dimension(1), 5); EXPECT_EQ(result.dimension(2), 5); for (int b = 0; b < 13; ++b) { for (int od = 0; od < 7; ++od) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { float expected = 0.0f; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int id = 0; id < 10; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < 5 && c - 1 + j < 5) { expected += input(id, r - 1 + i, c - 1 + j, b) * kernel(od, id, r, c); } } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, BatchedSpatialConvolutionRowMajor) { Tensor<float, 4, RowMajor> input(13, 5, 5, 10); Tensor<float, 4, RowMajor> kernel(3, 3, 10, 7); Tensor<float, 4, RowMajor> result(13, 5, 5, 7); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(1), 5); EXPECT_EQ(result.dimension(2), 5); EXPECT_EQ(result.dimension(3), 7); for (int b = 0; b < 13; ++b) { for (int od = 0; od < 7; ++od) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { float expected = 0.0f; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int id = 0; id < 10; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < 5 && c - 1 + j < 5) { expected += input(b, c - 1 + j, r - 1 + i, id) * kernel(c, r, id, od); } } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolution) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); const int stride = 1; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + i, c + j, b) * kernel(od, id, r, c); } } } if (result(od, i, j, b) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(od, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolutionUnequalStrides) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int row_stride = 1; const int col_stride = 2; const int output_rows = 2; const int output_cols = 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel, row_stride, col_stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); if ( (true)) return; for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + row_stride * i, c + col_stride * j, b) * kernel(od, id, r, c); } } } if (result(od, i, j, b) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(od, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolutionRowMajor) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); const int stride = 1; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_rows; ++c) { for (int r = 0; r < patch_cols; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, c + j, r + i, id) * kernel(c, r, id, od); } } } if (result(b, j, i, od) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, od) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, StridedSpatialConvolution) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + stride * i, c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, KernelSmallerThanStride) { const int input_depth = 2; const int input_rows = 3; const int input_cols = 3; const int num_batches = 5; const int output_depth = 6; const int patch_rows = 1; const int patch_cols = 1; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + stride * i, c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, StridedSpatialConvolutionRowMajor) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, c + stride * j, r + stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatial) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 3; const int output_cols = 3; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 1; int in_stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID, in_stride, in_stride); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, in_stride * r + stride * i, in_stride * c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatialRowMajor) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 3; const int output_cols = 3; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 1; int in_stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID, in_stride, in_stride); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, in_stride * c + stride * j, in_stride * r + stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatialRowMajorUnequalStrides) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 1; const int output_cols = 3; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int row_stride = 1; int col_stride = 2; int row_in_stride = 3; int col_in_stride = 1; result = SpatialConvolution(input, kernel, row_stride, col_stride, PADDING_VALID, row_in_stride, col_in_stride); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, col_in_stride * c + col_stride * j, row_in_stride * r + row_stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, SpatialConvContractionMapper) { typedef Tensor<float, 1>::DimensionPair DimPair; Tensor<float, 4> out(1, 1, 2, 1); Tensor<float, 4> kern(1, 1, 2, 2); for (int i = 0; i < kern.size(); ++i) { kern.coeffRef(i) = static_cast<float>(i) + 1; } for (int i = 0; i < out.size(); ++i) { out.coeffRef(i) = static_cast<float>(i) + 1; } DSizes<ptrdiff_t, 4> strides; strides[0] = 1; strides[1] = 2; strides[2] = 2; strides[3] = 1; array<std::pair<ptrdiff_t, ptrdiff_t>, 4> paddings; paddings[0] = std::make_pair(0, 0); paddings[1] = std::make_pair(1, 2); paddings[2] = std::make_pair(1, 1); paddings[3] = std::make_pair(0, 0); DSizes<ptrdiff_t, 3> out_dim; out_dim[0] = 1; out_dim[1] = 4; out_dim[2] = 12; array<bool, 4> kernel_reverse; kernel_reverse[0] = false; kernel_reverse[1] = false; kernel_reverse[2] = true; kernel_reverse[3] = true; DSizes<ptrdiff_t, 3> k_dims; k_dims[0] = 1; k_dims[1] = 1; k_dims[2] = 4; array<DimPair, 2> contract_dims; contract_dims[0] = DimPair(0, 0); contract_dims[1] = DimPair(2, 1); DSizes<ptrdiff_t, 4> in_dim; in_dim[0] = 1; in_dim[1] = 3; in_dim[2] = 4; in_dim[3] = 1; DSizes<ptrdiff_t, 2> in_dbg_dim; in_dbg_dim[0] = 3; in_dbg_dim[1] = 4; DSizes<ptrdiff_t, 2> out_dbg_dim; out_dbg_dim[0] = 4; out_dbg_dim[1] = 12; Tensor<float, 4> direct = kern.reverse(kernel_reverse) .reshape(k_dims) .contract( out.extract_image_patches(2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 0) .reshape(out_dim), contract_dims) .reshape(in_dim); Tensor<float, 4> indirect = kern.reverse(kernel_reverse) .reshape(k_dims) .contract( out.inflate(strides) .pad(paddings) .extract_image_patches(2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) .reshape(out_dim), contract_dims) .reshape(in_dim); eigen_assert(dimensions_match(direct.dimensions(), indirect.dimensions())); for (size_t i = 0; i < direct.dimensions().TotalSize(); ++i) { EigenApprox(direct.data()[i], indirect.data()[i]); } EigenApprox(1.0f, direct(0, 0, 0, 0)); EigenApprox(3.0f, direct(0, 0, 1, 0)); EigenApprox(2.0f, direct(0, 0, 2, 0)); EigenApprox(6.0f, direct(0, 0, 3, 0)); EigenApprox(2.0f, direct(0, 1, 0, 0)); EigenApprox(4.0f, direct(0, 1, 1, 0)); EigenApprox(4.0f, direct(0, 1, 2, 0)); EigenApprox(8.0f, direct(0, 1, 3, 0)); } template <typename T> static void PackRhsHelper(::testing::benchmark::State& state, int input_batches, int input_cols, int input_rows, int input_depth, int filter_count, int filter_cols, int filter_rows, Eigen::PaddingType padding, int col_strides, int row_strides, int patch_col_inflate_stride, int patch_row_inflate_stride, Index block_rows, Index block_cols) { srand(12345); using Dimensions = Eigen::DSizes<Eigen::Index, 4>; Dimensions input_dims(input_depth, input_rows, input_cols, input_batches); static const int packet_size = Eigen::internal::packet_traits<T>::size; using NewDimension = Eigen::DSizes<Index, 2>; using nocontract_t = Eigen::array<Eigen::Index, 1>; using contract_t = Eigen::array<Eigen::Index, 1>; using ArgType = TensorMap<Tensor<T, 4>, Eigen::Aligned>; using Evaluator = TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp<Dynamic, Dynamic, ArgType>>, Eigen::DefaultDevice>; using InputMapper = Eigen::internal::TensorContractionInputMapper< T, Index, Eigen::internal::Rhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; using SubMapper = Eigen::internal::TensorContractionSubMapper< T, Index, Eigen::internal::Rhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) using PackRhsImpl = Eigen::internal::gemm_pack_colmajor_block<T, Eigen::Index, SubMapper, ColMajor>; #else using Traits = typename Eigen::internal::gebp_traits<T, T>; using PackRhsImpl = Eigen::internal::gemm_pack_rhs<T, Eigen::Index, SubMapper, Traits::nr, ColMajor, false, false>; #endif Eigen::DefaultDevice device; const Eigen::Index not_important = -1234; nocontract_t nocontract_dim = {not_important}; contract_t contract_dim = {not_important}; Tensor<T, 4> packed(input_dims); size_t input_bytes = input_dims.TotalSize() * sizeof(T); size_t mem_size_bytes = 1024 * 1024 * 512; size_t num_inputs = std::max(static_cast<size_t>(1), mem_size_bytes / input_bytes); std::vector<Tensor<T, 4>> inputs; std::vector<Evaluator> evaluators; std::vector<InputMapper> input_mappers; inputs.reserve(num_inputs); evaluators.reserve(num_inputs); input_mappers.reserve(num_inputs); for (int i = 0; i < num_inputs; ++i) { inputs.emplace_back(input_dims); inputs[i].setRandom(); ArgType tensor_map(inputs[i].data(), input_dims); const auto image_patch_op = TensorImagePatchOp<Dynamic, Dynamic, ArgType>( tensor_map, filter_rows, filter_cols, row_strides, col_strides, 1, 1, patch_row_inflate_stride, patch_col_inflate_stride, padding, 0.0); Index input_rows_eff = (input_rows - 1) * patch_row_inflate_stride + 1; Index input_cols_eff = (input_cols - 1) * patch_col_inflate_stride + 1; Index output_rows = 0; Index output_cols = 0; if (padding == Eigen::PADDING_SAME) { output_rows = input_rows_eff / row_strides; output_cols = input_cols_eff / col_strides; } else if (padding == Eigen::PADDING_VALID) { output_rows = numext::ceil((input_rows_eff - filter_rows + 1.f) / row_strides); output_cols = numext::ceil((input_cols_eff - filter_cols + 1.f) / col_strides); } else { eigen_assert(false && "not supported"); } NewDimension reshape_dims; reshape_dims[0] = input_depth * filter_rows * filter_cols; reshape_dims[1] = output_rows * output_cols * input_batches; const auto reshape_op = TensorReshapingOp<NewDimension, decltype(image_patch_op)>( image_patch_op, reshape_dims); evaluators.emplace_back(reshape_op, device); input_mappers.emplace_back(evaluators[i], nocontract_dim, nocontract_dim, contract_dim, contract_dim); } const Index patch_depth = evaluators[0].impl().dimensions()[0]; const Index patch_rows = evaluators[0].impl().dimensions()[1]; const Index patch_cols = evaluators[0].impl().dimensions()[2]; const Index num_patches = evaluators[0].impl().dimensions()[3]; const Index patch_size = patch_depth * patch_rows * patch_cols; PackRhsImpl pack_rhs; const Index packed_total_size = input_dims.TotalSize(); const auto round_up = [](const Index idx) { return (idx / packet_size) * packet_size; }; for (auto s : state) { int input_idx = num_inputs == 1 ? 1 : internal::random<int>(0, num_inputs - 1); Index depth_offset = (patch_size > block_rows) ? round_up(internal::random<Index>(0, patch_size - 10)) : 0; Index col_offset = internal::random<Index>(0, num_patches - 10); Index depth = std::min(block_rows, patch_size - depth_offset); Index cols = std::min(block_cols, num_patches - col_offset); Index packed_size = depth * cols; Index packed_offset = internal::random<Index>(0, packed_total_size - packed_size - 1); SubMapper sub_mapper = input_mappers[input_idx].getSubMapper(depth_offset, col_offset); pack_rhs(packed.data() + packed_offset, sub_mapper, depth, cols); } state.SetLabel( absl::StrCat("patch: ", patch_rows, "x", patch_cols, " D", patch_depth, "; num_patches=", num_patches, " patch_size=", patch_size, " num_inputs=", num_inputs, " padding=", padding)); } template <typename T> static void PackLhsHelper(::testing::benchmark::State& state, int input_depth, int filter_count, int filter_cols, int filter_rows, Index block_rows, Index block_cols) { srand(12345); eigen_assert(block_rows <= filter_count); eigen_assert(block_cols <= input_depth * filter_rows * filter_cols); using Dimensions = Eigen::DSizes<Eigen::Index, 4>; Dimensions filter_dims(filter_count, filter_rows, filter_cols, input_depth); static const int packet_size = Eigen::internal::packet_traits<T>::size; using NewDimension = Eigen::DSizes<Index, 2>; using nocontract_t = Eigen::array<Eigen::Index, 1>; using contract_t = Eigen::array<Eigen::Index, 1>; using ArgType = TensorMap<Tensor<T, 4>, Eigen::Aligned>; using Evaluator = TensorEvaluator<const TensorReshapingOp<NewDimension, ArgType>, Eigen::DefaultDevice>; using InputMapper = Eigen::internal::TensorContractionInputMapper< T, Index, Eigen::internal::Lhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; using SubMapper = Eigen::internal::TensorContractionSubMapper< T, Index, Eigen::internal::Lhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) using PackLhsImpl = Eigen::internal::gemm_pack_colmajor_block<T, Eigen::Index, SubMapper, ColMajor>; #else using Traits = typename Eigen::internal::gebp_traits<T, T>; using PackLhsImpl = Eigen::internal::gemm_pack_lhs<T, Eigen::Index, SubMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>; #endif Eigen::DefaultDevice device; NewDimension reshape_dims; reshape_dims[0] = filter_count; reshape_dims[1] = input_depth * filter_rows * filter_cols; nocontract_t nocontract_strides = {1}; contract_t contract_strides = {filter_count}; nocontract_t i_strides = {1}; contract_t k_strides = {1}; Tensor<T, 4> packed(filter_dims); size_t input_bytes = filter_dims.TotalSize() * sizeof(T); size_t mem_size_bytes = 1024 * 1024 * 512; size_t num_filters = std::max(static_cast<size_t>(1), mem_size_bytes / input_bytes); std::vector<Tensor<T, 4>> filters; std::vector<Evaluator> evaluators; std::vector<InputMapper> input_mappers; filters.reserve(num_filters); evaluators.reserve(num_filters); input_mappers.reserve(num_filters); for (int i = 0; i < num_filters; ++i) { filters.emplace_back(filter_dims); filters[i].setRandom(); ArgType tensor_map(filters[i].data(), filter_dims); const auto reshape_op = TensorReshapingOp<NewDimension, ArgType>(tensor_map, reshape_dims); evaluators.emplace_back(reshape_op, device); input_mappers.emplace_back(evaluators[i], nocontract_strides, i_strides, contract_strides, k_strides); } PackLhsImpl pack_lhs; const Index packed_total_size = filter_dims.TotalSize(); const auto round_up = [](const Index idx) { return (idx / packet_size) * packet_size; }; const Index max_row = filter_count; const Index max_col = filter_rows * filter_cols * input_depth; for (auto s : state) { int filter_idx = num_filters == 1 ? 1 : internal::random<int>(0, num_filters - 1); Index row_offset = round_up(internal::random<Index>(0, max_row - 10)); Index col_offset = round_up(internal::random<Index>(0, max_col - 10)); Index rows = std::min(block_rows, max_row - row_offset); Index cols = std::min(block_cols, max_col - col_offset); Index packed_offset = round_up( internal::random<Index>(0, packed_total_size - rows * cols - 1)); SubMapper sub_mapper = input_mappers[filter_idx].getSubMapper(row_offset, col_offset); #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) pack_lhs(packed.data() + packed_offset, sub_mapper, rows, cols); #else pack_lhs(packed.data() + packed_offset, sub_mapper, cols, rows); #endif } state.SetLabel(absl::StrCat( "filter: count=", filter_count, " dims=", filter_rows, "x", filter_cols, "; input: depth=", input_depth, "; num_filers=", num_filters)); } #define BM_CONCAT(a, b) a##b #define BM_RHS_NAME(prefix, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, ISW, \ BR, BC) \ BM_CONCAT( \ BM_##prefix##_##T##_##N##_##H##x##W##_IC##C##_FC##FC##_##FH##x##FW, \ _##PAD##_s##SH##x##SW##_is##ISH##x##ISW##_B##BR##x##BC) #define BM_PackRhs(T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, ISW, BR, BC) \ static void BM_RHS_NAME(PackRhs, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, \ ISH, ISW, BR, \ BC)(::testing::benchmark::State & state) { \ PackRhsHelper<T>(state, N, H, W, C, FC, FH, FW, PADDING_##PAD, SH, SW, \ ISH, ISW, BR, BC); \ } \ BENCHMARK(BM_RHS_NAME(PackRhs, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, \ ISW, BR, BC)) \ ->UseRealTime() BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, VALID, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, SAME, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, SAME, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, VALID, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, SAME, 2, 4, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, VALID, 2, 4, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, SAME, 1, 1, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, VALID, 1, 1, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, SAME, 2, 2, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, VALID, 2, 2, 1, 1, 36, 432); BM_PackRhs( float, 32, 32, 32, 96, 96, 5, 5, SAME, 1, 1, 2, 2, 272, 240); BM_PackRhs( float, 32, 32, 32, 96, 96, 5, 5, VALID, 1, 1, 2, 2, 272, 240); #if defined(TENSORFLOW_USE_CUSTOM_CONTRACTION_KERNEL) using qint8 = Eigen::QInt8; BM_PackRhs( qint8, 32, 64, 64, 32, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); #endif #define BM_LHS_NAME(prefix, T, C, FC, FH, FW, BR, BC) \ BM_CONCAT(BM_##prefix##_##T##_##C##_FC##FC##_##FH##x##FW, _B##BR##x##BC) #define BM_PackLhs(T, C, FC, FH, FW, BR, BC) \ static void BM_LHS_NAME(PackLhs, T, C, FC, FH, FW, BR, \ BC)(::testing::benchmark::State & state) { \ PackLhsHelper<T>(state, C, FC, FH, FW, BR, BC); \ } \ BENCHMARK(BM_LHS_NAME(PackLhs, T, C, FC, FH, FW, BR, BC))->UseRealTime() BM_PackLhs( float, 128, 1024, 3, 3, 256, 56); BM_PackLhs( float, 128, 1024, 3, 3, 56, 256); BM_PackLhs( float, 30, 64, 3, 3, 256, 56); BM_PackLhs( float, 50, 64, 3, 3, 56, 256); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/convolution/eigen_spatial_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8961def6-4231-4c6e-8688-9ca6ff3df268
cpp
tensorflow/tensorflow
concurrent_vector
third_party/xla/xla/tsl/concurrency/concurrent_vector.h
third_party/xla/xla/tsl/concurrency/concurrent_vector_test.cc
#ifndef XLA_TSL_CONCURRENCY_CONCURRENT_VECTOR_H_ #define XLA_TSL_CONCURRENCY_CONCURRENT_VECTOR_H_ #include <algorithm> #include <array> #include <atomic> #include <cassert> #include <cstddef> #include <cstdint> #include <vector> #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace tsl { namespace internal { template <typename T> class ConcurrentVector { public: explicit ConcurrentVector(size_t initial_capacity) : state_(0ull) { auto& v = all_allocated_elements_[0]; v.reserve(std::max(static_cast<size_t>(1), initial_capacity)); } const T& operator[](size_t index) const { auto state = State::Decode(state_.load(std::memory_order_acquire)); DCHECK_LT(index, state.size); return all_allocated_elements_.data()[state.last_allocated].data()[index]; } absl::Span<const T> ToConstSpan() const { auto state = State::Decode(state_.load(std::memory_order_acquire)); auto& storage = all_allocated_elements_[state.last_allocated]; return absl::MakeConstSpan(storage.data(), state.size); } size_t size() const { return State::Decode(state_.load(std::memory_order_relaxed)).size; } template <typename... Args> size_t emplace_back(Args&&... args) { absl::MutexLock lock(&mutex_); auto state = State::Decode(state_.load(std::memory_order_relaxed)); auto& last = all_allocated_elements_[state.last_allocated]; if (last.size() < last.capacity()) { last.emplace_back(std::forward<Args>(args)...); state.size += 1; state_.store(state.Encode(), std::memory_order_release); return state.size - 1; } auto& new_last = all_allocated_elements_[state.last_allocated + 1]; new_last.reserve(last.capacity() * 2); DCHECK_EQ(last.size(), last.capacity()); new_last.insert(new_last.begin(), last.begin(), last.end()); new_last.emplace_back(std::forward<Args>(args)...); state.last_allocated += 1; state.size += 1; state_.store(state.Encode(), std::memory_order_release); return state.size - 1; } private: static constexpr uint64_t kLastAllocatedMask = (1ull << 32) - 1; static constexpr uint64_t kSizeMask = ((1ull << 32) - 1) << 32; struct State { uint64_t last_allocated; uint64_t size; static State Decode(uint64_t state) { uint64_t last_allocated = (state & kLastAllocatedMask); uint64_t size = (state & kSizeMask) >> 32; return {last_allocated, size}; } uint64_t Encode() const { return (size << 32) | last_allocated; } }; std::atomic<uint64_t> state_; absl::Mutex mutex_; std::array<std::vector<T>, 64> all_allocated_elements_; }; } } #endif
#include "xla/tsl/concurrency/concurrent_vector.h" #include <algorithm> #include <vector> #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { using ::tsl::internal::ConcurrentVector; TEST(ConcurrentVectorTest, SingleThreaded) { ConcurrentVector<int> vec(1); constexpr int kCount = 1000; for (int i = 0; i < kCount; ++i) { ASSERT_EQ(i, vec.emplace_back(i)); } for (int i = 0; i < kCount; ++i) { EXPECT_EQ(i, vec[i]); } } TEST(ConcurrentVectorTest, OneWriterOneReader) { ConcurrentVector<int> vec(1); thread::ThreadPool pool(Env::Default(), "concurrent-vector", 4); constexpr int kCount = 1000; pool.Schedule([&] { for (int i = 0; i < kCount; ++i) { ASSERT_EQ(i, vec.emplace_back(i)); } }); pool.Schedule([&] { for (int i = 0; i < kCount; ++i) { while (i >= vec.size()) { } EXPECT_EQ(i, vec[i]); } }); } TEST(ConcurrentVectorTest, TwoWritersTwoReaders) { ConcurrentVector<int> vec(1); thread::ThreadPool pool(Env::Default(), "concurrent-vector", 4); constexpr int kCount = 1000; auto writer = [&] { for (int i = 0; i < kCount / 2; ++i) { vec.emplace_back(i); } }; pool.Schedule(writer); pool.Schedule(writer); auto reader = [&] { std::vector<int> stored; for (int i = 0; i < kCount; ++i) { while (i >= vec.size()) { } stored.emplace_back(vec[i]); } std::sort(stored.begin(), stored.end()); for (int i = 0; i < kCount / 2; ++i) { ASSERT_EQ(stored[2 * i], i); ASSERT_EQ(stored[2 * i + 1], i); } }; pool.Schedule(reader); pool.Schedule(reader); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/concurrent_vector.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/concurrent_vector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aae77314-eb0b-4792-8519-6a254ba3f7fb
cpp
tensorflow/tensorflow
bits
tensorflow/lite/experimental/microfrontend/lib/bits.h
third_party/xla/xla/tsl/lib/core/bits_test.cc
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_ #ifdef __cplusplus #include <cstdint> extern "C" { #endif static inline int CountLeadingZeros32Slow(uint64_t n) { int zeroes = 28; if (n >> 16) zeroes -= 16, n >>= 16; if (n >> 8) zeroes -= 8, n >>= 8; if (n >> 4) zeroes -= 4, n >>= 4; return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes; } static inline int CountLeadingZeros32(uint32_t n) { #if !defined(__clang__) && defined(_MSC_VER) unsigned long result = 0; if (_BitScanReverse(&result, n)) { return 31 - result; } return 32; #elif defined(__clang__) && defined(__GNUC__) if (n == 0) { return 32; } return __builtin_clz(n); #else return CountLeadingZeros32Slow(n); #endif } static inline int MostSignificantBit32(uint32_t n) { return 32 - CountLeadingZeros32(n); } static inline int CountLeadingZeros64Slow(uint64_t n) { int zeroes = 60; if (n >> 32) zeroes -= 32, n >>= 32; if (n >> 16) zeroes -= 16, n >>= 16; if (n >> 8) zeroes -= 8, n >>= 8; if (n >> 4) zeroes -= 4, n >>= 4; return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes; } static inline int CountLeadingZeros64(uint64_t n) { #if !defined(__clang__) && defined(_MSC_VER) && defined(_M_X64) unsigned long result = 0; if (_BitScanReverse64(&result, n)) { return 63 - result; } return 64; #elif !defined(__clang__) && defined(_MSC_VER) unsigned long result = 0; if ((n >> 32) && _BitScanReverse(&result, n >> 32)) { return 31 - result; } if (_BitScanReverse(&result, n)) { return 63 - result; } return 64; #elif defined(__clang__) || defined(__GNUC__) if (n == 0) { return 64; } return __builtin_clzll(n); #else return CountLeadingZeros64Slow(n); #endif } static inline int MostSignificantBit64(uint64_t n) { return 64 - CountLeadingZeros64(n); } #ifdef __cplusplus } #endif #endif
#include "xla/tsl/lib/core/bits.h" #include <cstdint> #include "tsl/platform/test.h" namespace tsl { namespace { TEST(BitsTest, NextPowerOfTwoS64) { constexpr int64_t kMaxRepresentablePowerOfTwo = static_cast<int64_t>(uint64_t{1} << 62); EXPECT_EQ(NextPowerOfTwoS64(0), 1); EXPECT_EQ(NextPowerOfTwoS64(1), 1); EXPECT_EQ(NextPowerOfTwoS64(2), 2); EXPECT_EQ(NextPowerOfTwoS64(3), 4); EXPECT_EQ(NextPowerOfTwoS64(kMaxRepresentablePowerOfTwo - 1), kMaxRepresentablePowerOfTwo); EXPECT_EQ(NextPowerOfTwoS64(kMaxRepresentablePowerOfTwo), kMaxRepresentablePowerOfTwo); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/lib/bits.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/core/bits_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
708fd6f0-6f63-4b65-9f78-85af47149678
cpp
tensorflow/tensorflow
buffered_file
third_party/xla/xla/tsl/lib/io/buffered_file.h
third_party/xla/xla/tsl/lib/io/buffered_file_test.cc
#ifndef XLA_TSL_LIB_IO_BUFFERED_FILE_H_ #define XLA_TSL_LIB_IO_BUFFERED_FILE_H_ #include <algorithm> #include <memory> #include <string> #include <utility> #include "xla/tsl/lib/hash/crc32c.h" #include "tsl/platform/cord.h" #include "tsl/platform/file_system.h" #include "tsl/platform/status.h" namespace tsl { class BufferedWritableFile : public WritableFile { public: explicit BufferedWritableFile(std::unique_ptr<WritableFile> file, int64_t buffer_size = kDefaultBufferSize) : file_(std::move(file)) { buffer_.resize(buffer_size); } ~BufferedWritableFile() override { Close().IgnoreError(); } absl::Status Append(absl::string_view str_data) override { int64_t bytes_left = str_data.size(); const char* data = str_data.data(); while (bytes_left > 0) { int64_t append_bytes = std::min( static_cast<int64_t>(buffer_.size() - buffer_pos_), bytes_left); std::copy_n(data, append_bytes, buffer_.begin() + buffer_pos_); crc32_ = crc32c::Extend(crc32_, &buffer_[buffer_pos_], append_bytes); buffer_pos_ += append_bytes; if (buffer_pos_ == buffer_.size()) { TF_RETURN_IF_ERROR(file_->Append(buffer_)); buffer_pos_ = 0; } data = data + append_bytes; bytes_left -= append_bytes; } return absl::OkStatus(); } absl::Status Append(const absl::Cord& data) override { for (absl::string_view fragment : data.Chunks()) { TF_RETURN_IF_ERROR(Append(fragment)); } return absl::OkStatus(); } absl::Status Close() override { TF_RETURN_IF_ERROR(Flush()); return file_->Close(); } absl::Status Flush() override { if (buffer_pos_ > 0) { TF_RETURN_IF_ERROR( file_->Append(absl::string_view(&buffer_[0], buffer_pos_))); buffer_pos_ = 0; } return file_->Flush(); } absl::Status Tell(int64_t* position) override { int64_t bytes_written; absl::Status status = file_->Tell(&bytes_written); if (status.ok()) { *position = bytes_written + buffer_pos_; return absl::OkStatus(); } else { return status; } } absl::Status Sync() override { return file_->Sync(); } uint32_t crc32() const { return crc32_; } void reset_crc32() { crc32_ = 0; } private: static constexpr int64_t kDefaultBufferSize = 1048576; std::string buffer_; int64_t buffer_pos_ = 0; std::unique_ptr<WritableFile> file_; uint32_t crc32_ = 0; BufferedWritableFile(const BufferedWritableFile&) = delete; void operator=(const BufferedWritableFile&) = delete; }; } #endif
#include "xla/tsl/lib/io/buffered_file.h" #include <memory> #include <utility> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace io { namespace { TEST(BufferedInputStream, Tell) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); std::unique_ptr<WritableFile> write_file; TF_ASSERT_OK(env->NewWritableFile(fname, &write_file)); BufferedWritableFile file(std::move(write_file), 8); int64_t position; TF_ASSERT_OK(file.Append("foo")); TF_ASSERT_OK(file.Tell(&position)); EXPECT_EQ(position, 3); TF_ASSERT_OK(file.Append("bar")); TF_ASSERT_OK(file.Tell(&position)); EXPECT_EQ(position, 6); TF_ASSERT_OK(file.Append("baz")); TF_ASSERT_OK(file.Tell(&position)); EXPECT_EQ(position, 9); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/buffered_file.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/buffered_file_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ed071fc0-b1a7-41b0-b171-402f275ef9fc
cpp
tensorflow/tensorflow
math_util
tensorflow/core/lib/math/math_util.h
third_party/xla/xla/tsl/lib/math/math_util_test.cc
#ifndef TENSORFLOW_CORE_LIB_MATH_MATH_UTIL_H_ #define TENSORFLOW_CORE_LIB_MATH_MATH_UTIL_H_ #include "xla/tsl/lib/math/math_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { using tsl::MathUtil; } #endif
#include "xla/tsl/lib/math/math_util.h" #include <cmath> #include <limits> #include <vector> #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace { const int kNumTestArguments = 4; template <typename IntegralType, typename TestDataType> void TestCeilOfRatio(const TestDataType test_data[][kNumTestArguments], int num_tests) { for (int i = 0; i < num_tests; ++i) { const IntegralType numerator = test_data[i][0]; const IntegralType denominator = test_data[i][1]; const IntegralType expected_floor = test_data[i][2]; const IntegralType expected_ceil = test_data[i][3]; IntegralType floor_1 = tsl::MathUtil::FloorOfRatio(numerator, denominator); IntegralType floor_2 = tsl::MathUtil::CeilOrFloorOfRatio<IntegralType, false>(numerator, denominator); EXPECT_EQ(floor_1, floor_2); EXPECT_EQ(expected_floor, floor_1) << "FloorOfRatio fails with numerator = " << numerator << ", denominator = " << denominator << " " << (8 * sizeof(IntegralType)) << " bits"; IntegralType ceil_1 = tsl::MathUtil::CeilOfRatio(numerator, denominator); IntegralType ceil_2 = tsl::MathUtil::CeilOrFloorOfRatio<IntegralType, true>( numerator, denominator); EXPECT_EQ(ceil_1, ceil_2); EXPECT_EQ(expected_ceil, ceil_1) << "CeilOfRatio fails with numerator = " << numerator << ", denominator = " << denominator << " " << (8 * sizeof(IntegralType)) << " bits"; } } template <typename UnsignedIntegralType> void TestCeilOfRatioUnsigned(uint64 kMax) { const int kNumTests = 12; const uint64 kTestData[kNumTests][kNumTestArguments] = { {0, 1, 0, 0}, {0, 2, 0, 0}, {0, kMax, 0, 0}, {1, 1, 1, 1}, {5, 2, 2, 3}, {kMax, 1, kMax, kMax}, {kMax, 2, kMax / 2, kMax / 2 + ((kMax % 2 != 0) ? 1 : 0)}, {kMax, 3, kMax / 3, kMax / 3 + ((kMax % 3 != 0) ? 1 : 0)}, {1, kMax, 0, 1}, {2, kMax, 0, 1}, {3, kMax, 0, 1}, {kMax, kMax, 1, 1}, }; TestCeilOfRatio<UnsignedIntegralType, uint64>(kTestData, kNumTests); } template <typename SignedInteger> void TestCeilOfRatioSigned(int64_t kMin, int64_t kMax) { const int kNumTests = 30; const int64_t kTestData[kNumTests][kNumTestArguments] = { {0, 1, 0, 0}, {0, -1, 0, 0}, {0, 2, 0, 0}, {0, kMin, 0, 0}, {0, kMax, 0, 0}, {1, 1, 1, 1}, {-1, 1, -1, -1}, {1, -1, -1, -1}, {-1, -1, 1, 1}, {5, 2, 2, 3}, {-5, 2, -3, -2}, {5, -2, -3, -2}, {-5, -2, 2, 3}, {kMax, 1, kMax, kMax}, {kMax, -1, -kMax, -kMax}, {kMax, 2, kMax / 2, kMax / 2 + ((kMax % 2 != 0) ? 1 : 0)}, {kMax, 3, kMax / 3, kMax / 3 + ((kMax % 3 != 0) ? 1 : 0)}, {kMin, 1, kMin, kMin}, {kMin, 2, kMin / 2 - ((kMin % 2 != 0) ? 1 : 0), kMin / 2}, {kMin, 3, kMin / 3 - ((kMin % 3 != 0) ? 1 : 0), kMin / 3}, {1, kMax, 0, 1}, {2, kMax, 0, 1}, {3, kMax, 0, 1}, {1, kMin, -1, 0}, {2, kMin, -1, 0}, {3, kMin, -1, 0}, {kMin, kMin, 1, 1}, {kMin, kMax, -2, -1}, {kMax, kMin, -1, 0}, {kMax, kMax, 1, 1}, }; TestCeilOfRatio<SignedInteger, int64_t>(kTestData, kNumTests); } template <typename IntegralType> static IntegralType CeilOfRatioDenomMinusOne(IntegralType numerator, IntegralType denominator) { const IntegralType kOne(1); return (numerator + denominator - kOne) / denominator; } template <typename IntegralType> static IntegralType FloorOfRatioByDivision(IntegralType numerator, IntegralType denominator) { return numerator / denominator; } template <typename Integer, bool ComputeCeil> static Integer CeilOrFloorOfRatioArithmetic(Integer numerator, Integer denominator) { if (ComputeCeil) { return CeilOfRatioDenomMinusOne(numerator, denominator); } else { return FloorOfRatioByDivision(numerator, denominator); } } void TestThatCeilOfRatioDenomMinusOneIsIncorrect(int64_t numerator, int64_t denominator, int64_t expected_error) { const int64_t correct_result = tsl::MathUtil::CeilOfRatio(numerator, denominator); const int64_t result_by_denom_minus_one = CeilOfRatioDenomMinusOne(numerator, denominator); EXPECT_EQ(result_by_denom_minus_one + expected_error, correct_result) << "numerator = " << numerator << " denominator = " << denominator << " expected error = " << expected_error << " Actual difference: " << (correct_result - result_by_denom_minus_one); } void TestThatCeilOfRatioDenomMinusOneIsIncorrect() { TestThatCeilOfRatioDenomMinusOneIsIncorrect(-1LL, -2LL, -1LL); } TEST(MathUtil, CeilOfRatio) { TestCeilOfRatioUnsigned<uint8>(kuint8max); TestCeilOfRatioUnsigned<uint16>(kuint16max); TestCeilOfRatioUnsigned<uint32>(kuint32max); TestCeilOfRatioUnsigned<uint64>(kuint64max); TestCeilOfRatioSigned<int8>(kint8min, kint8max); TestCeilOfRatioSigned<int16>(kint16min, kint16max); TestCeilOfRatioSigned<int32>(kint32min, kint32max); TestCeilOfRatioSigned<int64_t>(kint64min, kint64max); #if 0 TestThatCeilOfRatioDenomMinusOneIsIncorrect(); #endif } struct GCDTestCase { unsigned int x; unsigned int y; unsigned int gcd; }; TEST(MathUtil, GCD) { std::vector<GCDTestCase> testcases({ {10, 20, 10}, {27, 8, 1}, {4, 3, 1}, {6, 8, 2}, {5, 0, 5}, {5, 5, 5}, {0, 0, 0} }); for (const auto& tc : testcases) { EXPECT_EQ(tc.gcd, tsl::MathUtil::GCD<uint32>(tc.x, tc.y)); EXPECT_EQ(tc.gcd, tsl::MathUtil::GCD<uint32>(tc.y, tc.x)); EXPECT_EQ(tc.gcd, tsl::MathUtil::GCD<uint64>(tc.x, tc.y)); EXPECT_EQ(tc.gcd, tsl::MathUtil::GCD<uint64>(tc.y, tc.x)); } const uint64 biggish_prime = 1666666667; EXPECT_EQ(biggish_prime, tsl::MathUtil::GCD<uint64>(biggish_prime * 3, biggish_prime * 4)); } template <typename T> void TestOneIPowN() { const T one{1}; for (int i = 0; i < 1024; ++i) { EXPECT_EQ(tsl::MathUtil::IPow(one, i), one); } } template <typename T> void TestTwoIPowN() { int limit = std::is_integral<T>::value ? std::numeric_limits<T>::digits : 63; for (int i = 0; i < limit; ++i) { EXPECT_EQ(tsl::MathUtil::IPow(T{2}, i), static_cast<T>(1ull << i)); } } template <typename T> void TestFloatIPow(const int max_exponent, const T start, const T end, const T step) { for (T f = start; f < end; f += step) { for (int i = 0; i < max_exponent; ++i) { EXPECT_FLOAT_EQ(tsl::MathUtil::IPow(f, i), std::pow(f, i)); } } } TEST(MathUtil, IPow) { TestOneIPowN<double>(); TestOneIPowN<float>(); TestOneIPowN<int>(); TestOneIPowN<int64_t>(); TestTwoIPowN<double>(); TestTwoIPowN<float>(); TestTwoIPowN<int>(); TestTwoIPowN<int64_t>(); EXPECT_EQ(tsl::MathUtil::IPow(3, 0), 1); EXPECT_EQ(tsl::MathUtil::IPow(3, 1), 3); EXPECT_EQ(tsl::MathUtil::IPow(3, 2), 9); EXPECT_EQ(tsl::MathUtil::IPow(3, 3), 27); EXPECT_EQ(tsl::MathUtil::IPow(3, 4), 81); EXPECT_EQ(tsl::MathUtil::IPow(3, 5), 243); TestFloatIPow<float>(13, -16.0f, 16.0f, 1.0f / 8); TestFloatIPow<double>(13, -16.0, 16.0, 1.0 / 8); TestFloatIPow<float>(13, -1.0f / (1 << 12), -1.0f / (1 << 12), 1.0f / (1 << 16)); TestFloatIPow<double>(13, -1.0 / (1 << 12), -1.0 / (1 << 12), 1.0 / (1 << 16)); } TEST(MathUtil, IPowEdgeCases) { constexpr const double kInf = std::numeric_limits<double>::infinity(); EXPECT_EQ(tsl::MathUtil::IPow(-12345.0, 79), -kInf); EXPECT_EQ(tsl::MathUtil::IPow(-12345.0, 80), +kInf); EXPECT_EQ(tsl::MathUtil::IPow(+0.0, 3), +0.0); EXPECT_EQ(tsl::MathUtil::IPow(-0.0, 3), -0.0); EXPECT_EQ(tsl::MathUtil::IPow(+0.0, 42), +0.0); EXPECT_EQ(tsl::MathUtil::IPow(-0.0, 42), +0.0); EXPECT_EQ(tsl::MathUtil::IPow(-kInf, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(-2.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(-1.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(-0.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(+0.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(+1.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(+2.0, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(+kInf, 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(std::numeric_limits<double>::quiet_NaN(), 0.0), 1.0); EXPECT_EQ(tsl::MathUtil::IPow(-kInf, 43), -kInf); EXPECT_EQ(tsl::MathUtil::IPow(-kInf, 42), +kInf); EXPECT_EQ(tsl::MathUtil::IPow(+kInf, 42), +kInf); EXPECT_EQ(tsl::MathUtil::IPow(+kInf, 43), +kInf); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/math/math_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/math/math_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
38da609b-05a2-4452-af29-1e55ce366fdc
cpp
tensorflow/tensorflow
iterator_range
tensorflow/core/lib/gtl/iterator_range.h
third_party/xla/xla/tsl/lib/gtl/iterator_range_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_ITERATOR_RANGE_H_ #define TENSORFLOW_CORE_LIB_GTL_ITERATOR_RANGE_H_ #include "xla/tsl/lib/gtl/iterator_range.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::iterator_range; using ::tsl::gtl::make_range; } } #endif
#include "xla/tsl/lib/gtl/iterator_range.h" #include <vector> #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { TEST(IteratorRange, WholeVector) { std::vector<int> v = {2, 3, 5, 7, 11, 13}; iterator_range<std::vector<int>::iterator> range(v.begin(), v.end()); int index = 0; for (int prime : range) { ASSERT_LT(index, v.size()); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(v.size(), index); } TEST(IteratorRange, VectorMakeRange) { std::vector<int> v = {2, 3, 5, 7, 11, 13}; auto range = make_range(v.begin(), v.end()); int index = 0; for (int prime : range) { ASSERT_LT(index, v.size()); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(v.size(), index); } TEST(IteratorRange, PartArray) { int v[] = {2, 3, 5, 7, 11, 13}; iterator_range<int*> range(&v[1], &v[4]); int index = 1; for (int prime : range) { ASSERT_LT(index, TF_ARRAYSIZE(v)); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(4, index); } TEST(IteratorRange, ArrayMakeRange) { int v[] = {2, 3, 5, 7, 11, 13}; auto range = make_range(&v[1], &v[4]); int index = 1; for (int prime : range) { ASSERT_LT(index, TF_ARRAYSIZE(v)); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(4, index); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/iterator_range.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/iterator_range_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ba4bb99e-6122-4932-bfa9-b7e6c0737093
cpp
tensorflow/tensorflow
flatmap
tensorflow/core/lib/gtl/flatmap.h
third_party/xla/xla/tsl/lib/gtl/flatmap_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_FLATMAP_H_ #define TENSORFLOW_CORE_LIB_GTL_FLATMAP_H_ #include "xla/tsl/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/flatrep.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace gtl { using tsl::gtl::FlatMap; } } #endif
#include "xla/tsl/lib/gtl/flatmap.h" #include <algorithm> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "tsl/platform/hash.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { typedef FlatMap<int64_t, int32> NumMap; int32 Get(const NumMap& map, int64_t k, int32_t def = -1) { auto iter = map.find(k); if (iter == map.end()) { EXPECT_EQ(map.count(k), 0); return def; } else { EXPECT_EQ(map.count(k), 1); EXPECT_EQ(&map.at(k), &iter->second); EXPECT_EQ(iter->first, k); return iter->second; } } typedef std::vector<std::pair<int64_t, int32>> NumMapContents; NumMapContents Contents(const NumMap& map) { NumMapContents result; for (const auto& p : map) { result.push_back({p.first, p.second}); } std::sort(result.begin(), result.end()); return result; } void Fill(NumMap* map, int64_t start, int64_t limit) { for (int64_t i = start; i < limit; i++) { map->insert({i, i * 100}); } } TEST(FlatMapTest, Find) { NumMap map; EXPECT_EQ(Get(map, 1), -1); map.insert({1, 100}); map.insert({2, 200}); EXPECT_EQ(Get(map, 1), 100); EXPECT_EQ(Get(map, 2), 200); EXPECT_EQ(Get(map, 3), -1); } TEST(FlatMapTest, Insert) { NumMap map; EXPECT_EQ(Get(map, 1), -1); auto result = map.insert({1, 100}); EXPECT_TRUE(result.second); EXPECT_EQ(result.first->first, 1); EXPECT_EQ(result.first->second, 100); EXPECT_EQ(Get(map, 1), 100); result = map.insert({1, 200}); EXPECT_FALSE(result.second); EXPECT_EQ(result.first->first, 1); EXPECT_EQ(result.first->second, 100); EXPECT_EQ(Get(map, 1), 100); result.first->second = 300; EXPECT_EQ(result.first->second, 300); EXPECT_EQ(Get(map, 1), 300); result = map.insert({1, 400}); EXPECT_FALSE(result.second); EXPECT_EQ(result.first->first, 1); EXPECT_EQ(result.first->second, 300); EXPECT_EQ(Get(map, 1), 300); } TEST(FlatMapTest, InsertGrowth) { NumMap map; const int n = 100; Fill(&map, 0, 100); EXPECT_EQ(map.size(), n); for (int i = 0; i < n; i++) { EXPECT_EQ(Get(map, i), i * 100) << i; } } TEST(FlatMapTest, Emplace) { NumMap map; auto result = map.emplace(1, 100); EXPECT_TRUE(result.second); EXPECT_EQ(result.first->first, 1); EXPECT_EQ(result.first->second, 100); EXPECT_EQ(Get(map, 1), 100); result = map.emplace(1, 200); EXPECT_FALSE(result.second); EXPECT_EQ(result.first->first, 1); EXPECT_EQ(result.first->second, 100); EXPECT_EQ(Get(map, 1), 100); result.first->second = 300; EXPECT_EQ(result.first->second, 300); EXPECT_EQ(Get(map, 1), 300); result = map.emplace(2, 400); EXPECT_TRUE(result.second); EXPECT_EQ(result.first->first, 2); EXPECT_EQ(result.first->second, 400); EXPECT_EQ(Get(map, 2), 400); } TEST(FlatMapTest, EmplaceUniquePtr) { FlatMap<int64_t, std::unique_ptr<string>> smap; smap.emplace(1, std::make_unique<string>("hello")); } TEST(FlatMapTest, Size) { NumMap map; EXPECT_EQ(map.size(), 0); map.insert({1, 100}); map.insert({2, 200}); EXPECT_EQ(map.size(), 2); } TEST(FlatMapTest, Empty) { NumMap map; EXPECT_TRUE(map.empty()); map.insert({1, 100}); map.insert({2, 200}); EXPECT_FALSE(map.empty()); } TEST(FlatMapTest, ArrayOperator) { NumMap map; auto v1 = &map[1]; EXPECT_EQ(*v1, 0); EXPECT_EQ(Get(map, 1), 0); *v1 = 100; EXPECT_EQ(map[1], 100); EXPECT_EQ(Get(map, 1), 100); auto v1a = &map[1]; EXPECT_EQ(v1, v1a); EXPECT_EQ(*v1, 100); map[2] = 200; EXPECT_EQ(Get(map, 1), 100); EXPECT_EQ(Get(map, 2), 200); } TEST(FlatMapTest, Count) { NumMap map; EXPECT_EQ(map.count(1), 0); EXPECT_EQ(map.count(2), 0); map.insert({1, 100}); EXPECT_EQ(map.count(1), 1); EXPECT_EQ(map.count(2), 0); map.insert({2, 200}); EXPECT_EQ(map.count(1), 1); EXPECT_EQ(map.count(2), 1); } TEST(FlatMapTest, Iter) { NumMap map; EXPECT_EQ(Contents(map), NumMapContents()); map.insert({1, 100}); map.insert({2, 200}); EXPECT_EQ(Contents(map), NumMapContents({{1, 100}, {2, 200}})); } TEST(FlatMapTest, Erase) { NumMap map; EXPECT_EQ(map.erase(1), 0); map[1] = 100; map[2] = 200; EXPECT_EQ(map.erase(3), 0); EXPECT_EQ(map.erase(1), 1); EXPECT_EQ(map.size(), 1); EXPECT_EQ(Get(map, 2), 200); EXPECT_EQ(Contents(map), NumMapContents({{2, 200}})); EXPECT_EQ(map.erase(2), 1); EXPECT_EQ(Contents(map), NumMapContents()); } TEST(FlatMapTest, EraseIter) { NumMap map; Fill(&map, 1, 11); size_t size = 10; for (auto iter = map.begin(); iter != map.end();) { iter = map.erase(iter); size--; EXPECT_EQ(map.size(), size); } EXPECT_EQ(Contents(map), NumMapContents()); } TEST(FlatMapTest, EraseIterPair) { NumMap map; Fill(&map, 1, 11); NumMap expected; auto p1 = map.begin(); expected.insert(*p1); ++p1; expected.insert(*p1); ++p1; auto p2 = map.end(); EXPECT_EQ(map.erase(p1, p2), map.end()); EXPECT_EQ(map.size(), 2); EXPECT_EQ(Contents(map), Contents(expected)); } TEST(FlatMapTest, EraseLongChains) { NumMap map; const int num = 128; Fill(&map, 0, num); for (int i = 0; i < num; i += 3) { EXPECT_EQ(map.erase(i), 1); } for (int i = 0; i < num; i++) { if ((i % 3) != 0) { EXPECT_EQ(Get(map, i), i * 100); } else { EXPECT_EQ(map.count(i), 0); } } const size_t orig_buckets = map.bucket_count(); for (int i = 0; i < num; i++) { map.erase(i); } EXPECT_TRUE(map.empty()); EXPECT_EQ(map.bucket_count(), orig_buckets); map[1] = 100; EXPECT_LT(map.bucket_count(), orig_buckets); } TEST(FlatMap, AlternatingInsertRemove) { NumMap map; map.insert({1000, 1000}); map.insert({2000, 1000}); map.insert({3000, 1000}); for (int i = 0; i < 10000; i++) { map.insert({i, i}); map.erase(i); } } TEST(FlatMap, ClearNoResize) { NumMap map; Fill(&map, 0, 100); const size_t orig = map.bucket_count(); map.clear_no_resize(); EXPECT_EQ(map.size(), 0); EXPECT_EQ(Contents(map), NumMapContents()); EXPECT_EQ(map.bucket_count(), orig); } TEST(FlatMap, Clear) { NumMap map; Fill(&map, 0, 100); const size_t orig = map.bucket_count(); map.clear(); EXPECT_EQ(map.size(), 0); EXPECT_EQ(Contents(map), NumMapContents()); EXPECT_LT(map.bucket_count(), orig); } TEST(FlatMap, Copy) { for (int n = 0; n < 10; n++) { NumMap src; Fill(&src, 0, n); NumMap copy = src; EXPECT_EQ(Contents(src), Contents(copy)); NumMap copy2; copy2 = src; EXPECT_EQ(Contents(src), Contents(copy2)); copy2 = *&copy2; EXPECT_EQ(Contents(src), Contents(copy2)); } } TEST(FlatMap, InitFromIter) { for (int n = 0; n < 10; n++) { NumMap src; Fill(&src, 0, n); auto vec = Contents(src); NumMap dst(vec.begin(), vec.end()); EXPECT_EQ(Contents(dst), vec); } } TEST(FlatMap, InitializerList) { NumMap a{{1, 10}, {2, 20}, {3, 30}}; NumMap b({{1, 10}, {2, 20}, {3, 30}}); NumMap c = {{1, 10}, {2, 20}, {3, 30}}; typedef std::unordered_map<int64_t, int32> StdNumMap; StdNumMap std({{1, 10}, {2, 20}, {3, 30}}); StdNumMap::value_type std_r1 = *std.find(1); StdNumMap::value_type std_r2 = *std.find(2); StdNumMap::value_type std_r3 = *std.find(3); NumMap d{std_r1, std_r2, std_r3}; NumMap e({std_r1, std_r2, std_r3}); NumMap f = {std_r1, std_r2, std_r3}; for (NumMap* map : std::vector<NumMap*>({&a, &b, &c, &d, &e, &f})) { EXPECT_EQ(Get(*map, 1), 10); EXPECT_EQ(Get(*map, 2), 20); EXPECT_EQ(Get(*map, 3), 30); EXPECT_EQ(Contents(*map), NumMapContents({{1, 10}, {2, 20}, {3, 30}})); } } TEST(FlatMap, InsertIter) { NumMap a, b; Fill(&a, 1, 10); Fill(&b, 8, 20); b[9] = 10000; a.insert(b.begin(), b.end()); NumMap expected; Fill(&expected, 1, 20); EXPECT_EQ(Contents(a), Contents(expected)); } TEST(FlatMap, Eq) { NumMap empty; NumMap elems; Fill(&elems, 0, 5); EXPECT_FALSE(empty == elems); EXPECT_TRUE(empty != elems); NumMap copy = elems; EXPECT_TRUE(copy == elems); EXPECT_FALSE(copy != elems); NumMap changed = elems; changed[3] = 1; EXPECT_FALSE(changed == elems); EXPECT_TRUE(changed != elems); NumMap changed2 = elems; changed2.erase(3); EXPECT_FALSE(changed2 == elems); EXPECT_TRUE(changed2 != elems); } TEST(FlatMap, Swap) { NumMap a, b; Fill(&a, 1, 5); Fill(&b, 100, 200); NumMap c = a; NumMap d = b; EXPECT_EQ(c, a); EXPECT_EQ(d, b); c.swap(d); EXPECT_EQ(c, b); EXPECT_EQ(d, a); } TEST(FlatMap, Reserve) { NumMap src; Fill(&src, 1, 100); NumMap a = src; a.reserve(10); EXPECT_EQ(a, src); NumMap b = src; b.rehash(1000); EXPECT_EQ(b, src); } TEST(FlatMap, EqualRangeMutable) { NumMap map; Fill(&map, 1, 10); auto p1 = map.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(p1.first->first, 3); EXPECT_EQ(p1.first->second, 300); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = map.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatMap, EqualRangeConst) { NumMap tmp; Fill(&tmp, 1, 10); const NumMap map = tmp; auto p1 = map.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(p1.first->first, 3); EXPECT_EQ(p1.first->second, 300); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = map.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatMap, Prefetch) { NumMap map; Fill(&map, 0, 1000); for (int i = 0; i < 2000; i++) { map.prefetch_value(i); } } struct NA { int64_t value; NA() : value(-1) {} explicit NA(int64_t v) : value(v) {} NA(const NA& x) : value(x.value) {} bool operator==(const NA& x) const { return value == x.value; } }; struct HashNA { size_t operator()(NA x) const { return x.value; } }; TEST(FlatMap, NonAssignable) { FlatMap<NA, NA, HashNA> map; for (int i = 0; i < 100; i++) { map[NA(i)] = NA(i * 100); } for (int i = 0; i < 100; i++) { EXPECT_EQ(map.count(NA(i)), 1); auto iter = map.find(NA(i)); EXPECT_NE(iter, map.end()); EXPECT_EQ(iter->first, NA(i)); EXPECT_EQ(iter->second, NA(i * 100)); EXPECT_EQ(map[NA(i)], NA(i * 100)); } map.erase(NA(10)); EXPECT_EQ(map.count(NA(10)), 0); } TEST(FlatMap, ForwardIterator) { typedef FlatMap<NA, NA, HashNA> NAMap; NAMap map({{NA(1), NA(10)}, {NA(2), NA(20)}}); NAMap::iterator it1 = map.find(NA(1)); NAMap::iterator it2 = map.find(NA(2)); EXPECT_TRUE(it1 != map.end()); EXPECT_TRUE(it2 != map.end()); EXPECT_FALSE(it1 == map.end()); EXPECT_FALSE(it2 == map.end()); EXPECT_TRUE(it1 != it2); EXPECT_FALSE(it1 == it2); EXPECT_EQ((*it1).first, NA(1)); EXPECT_EQ((*it1).second, NA(10)); EXPECT_EQ((*it2).first, NA(2)); EXPECT_EQ((*it2).second, NA(20)); EXPECT_EQ(it1->first, NA(1)); EXPECT_EQ(it1->second, NA(10)); EXPECT_EQ(it2->first, NA(2)); EXPECT_EQ(it2->second, NA(20)); NAMap::iterator copy_it1 = it1; NAMap::iterator copy_it2 = it2; EXPECT_EQ(copy_it1->first, NA(1)); EXPECT_EQ(copy_it1->second, NA(10)); EXPECT_EQ(copy_it2->first, NA(2)); EXPECT_EQ(copy_it2->second, NA(20)); NAMap::iterator& pp_copy_it1 = ++copy_it1; NAMap::iterator& pp_copy_it2 = ++copy_it2; EXPECT_TRUE(pp_copy_it1 == copy_it1); EXPECT_TRUE(pp_copy_it2 == copy_it2); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == map.end()) { EXPECT_TRUE(copy_it2 != map.end()); EXPECT_EQ(copy_it2->first, NA(1)); EXPECT_EQ(copy_it2->second, NA(10)); EXPECT_EQ(pp_copy_it2->first, NA(1)); EXPECT_EQ(pp_copy_it2->second, NA(10)); } else { EXPECT_TRUE(copy_it2 == map.end()); EXPECT_EQ(copy_it1->first, NA(2)); EXPECT_EQ(copy_it1->second, NA(20)); EXPECT_EQ(pp_copy_it1->first, NA(2)); EXPECT_EQ(pp_copy_it1->second, NA(20)); } EXPECT_EQ(it1->first, NA(1)); EXPECT_EQ(it1->second, NA(10)); EXPECT_EQ(it2->first, NA(2)); EXPECT_EQ(it2->second, NA(20)); copy_it1 = it1; copy_it2 = it2; EXPECT_EQ(copy_it1->first, NA(1)); EXPECT_EQ(copy_it1->second, NA(10)); EXPECT_EQ(copy_it2->first, NA(2)); EXPECT_EQ(copy_it2->second, NA(20)); NAMap::iterator copy_it1_pp = copy_it1++; NAMap::iterator copy_it2_pp = copy_it2++; EXPECT_TRUE(copy_it1_pp != copy_it1); EXPECT_TRUE(copy_it2_pp != copy_it2); EXPECT_TRUE(copy_it1_pp == it1); EXPECT_TRUE(copy_it2_pp == it2); EXPECT_EQ(copy_it1_pp->first, NA(1)); EXPECT_EQ(copy_it1_pp->second, NA(10)); EXPECT_EQ(copy_it2_pp->first, NA(2)); EXPECT_EQ(copy_it2_pp->second, NA(20)); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == map.end()) { EXPECT_TRUE(copy_it2 != map.end()); EXPECT_EQ(copy_it2->first, NA(1)); EXPECT_EQ(copy_it2->second, NA(10)); } else { EXPECT_TRUE(copy_it2 == map.end()); EXPECT_EQ(copy_it1->first, NA(2)); EXPECT_EQ(copy_it1->second, NA(20)); } EXPECT_EQ(it1->first, NA(1)); EXPECT_EQ(it1->second, NA(10)); EXPECT_EQ(it2->first, NA(2)); EXPECT_EQ(it2->second, NA(20)); } TEST(FlatMap, ConstructDestruct) { FlatMap<string, string> map; string k1 = "the quick brown fox jumped over the lazy dog"; string k2 = k1 + k1; string k3 = k1 + k2; map[k1] = k2; map[k3] = k1; EXPECT_EQ(k1, map.find(k1)->first); EXPECT_EQ(k2, map.find(k1)->second); EXPECT_EQ(k1, map[k3]); map.erase(k3); EXPECT_EQ(string(), map[k3]); map.clear(); map[k1] = k2; EXPECT_EQ(k2, map[k1]); map.reserve(100); EXPECT_EQ(k2, map[k1]); } struct CustomCmpKey { int64_t a; int64_t b; CustomCmpKey(int64_t v1, int64_t v2) : a(v1), b(v2) {} bool operator==(const CustomCmpKey& x) const { return a == x.a && b == x.b; } }; struct HashA { size_t operator()(CustomCmpKey x) const { return x.a; } }; struct EqA { bool operator()(CustomCmpKey x, CustomCmpKey y) const { return x.a == y.a; } }; TEST(FlatMap, CustomCmp) { FlatMap<CustomCmpKey, int, HashA, EqA> map; map[CustomCmpKey(100, 200)] = 300; EXPECT_EQ(300, map[CustomCmpKey(100, 200)]); EXPECT_EQ(300, map[CustomCmpKey(100, 500)]); } typedef std::unique_ptr<int> UniqInt; static UniqInt MakeUniq(int i) { return std::make_unique<int>(i); } struct HashUniq { size_t operator()(const UniqInt& p) const { return *p; } }; struct EqUniq { bool operator()(const UniqInt& a, const UniqInt& b) const { return *a == *b; } }; typedef FlatMap<UniqInt, UniqInt, HashUniq, EqUniq> UniqMap; TEST(FlatMap, UniqueMap) { UniqMap map; const int N = 10; for (int i = 0; i < N; i++) { if ((i % 2) == 0) { map[MakeUniq(i)] = MakeUniq(i + 100); } else { map.emplace(MakeUniq(i), MakeUniq(i + 100)); } } EXPECT_EQ(map.size(), N); UniqMap map2(std::move(map)); for (int i = 0; i < N; i++) { EXPECT_EQ(*map2.at(MakeUniq(i)), i + 100); } UniqMap map3; map3 = std::move(map2); EXPECT_EQ(map3.count(MakeUniq(2)), 1); map3.erase(MakeUniq(2)); EXPECT_EQ(map3.count(MakeUniq(2)), 0); map3.clear(); EXPECT_EQ(map3.size(), 0); EXPECT_GE(map.size(), 0); EXPECT_GE(map2.size(), 0); EXPECT_TRUE(map.emplace(MakeUniq(-1), MakeUniq(-1)).second); } TEST(FlatMap, UniqueMapIter) { UniqMap map; const int kCount = 10; const int kValueDelta = 100; for (int i = 1; i <= kCount; i++) { map[MakeUniq(i)] = MakeUniq(i + kValueDelta); } int key_sum = 0; int val_sum = 0; for (const auto& p : map) { key_sum += *p.first; val_sum += *p.second; } EXPECT_EQ(key_sum, (kCount * (kCount + 1)) / 2); EXPECT_EQ(val_sum, key_sum + (kCount * kValueDelta)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/flatmap.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/flatmap_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b8debb4c-34f9-42e0-8dc5-dcfb180414bb
cpp
tensorflow/tensorflow
flatset
tensorflow/core/lib/gtl/flatset.h
third_party/xla/xla/tsl/lib/gtl/flatset_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_FLATSET_H_ #define TENSORFLOW_CORE_LIB_GTL_FLATSET_H_ #include "xla/tsl/lib/gtl/flatset.h" namespace tensorflow { namespace gtl { using tsl::gtl::FlatSet; } } #endif
#include "xla/tsl/lib/gtl/flatset.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "tsl/platform/hash.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { typedef FlatSet<int64_t> NumSet; bool Has(const NumSet& set, int64_t k) { auto iter = set.find(k); if (iter == set.end()) { EXPECT_EQ(set.count(k), 0); return false; } else { EXPECT_EQ(set.count(k), 1); EXPECT_EQ(*iter, k); return true; } } typedef std::vector<int64_t> NumSetContents; NumSetContents Contents(const NumSet& set) { NumSetContents result(set.begin(), set.end()); std::sort(result.begin(), result.end()); return result; } void Fill(NumSet* set, int64_t start, int64_t limit) { for (int64_t i = start; i < limit; i++) { set->insert(i); } } TEST(FlatSetTest, Find) { NumSet set; EXPECT_FALSE(Has(set, 1)); set.insert(1); set.insert(2); EXPECT_TRUE(Has(set, 1)); EXPECT_TRUE(Has(set, 2)); EXPECT_FALSE(Has(set, 3)); } TEST(FlatSetTest, Insert) { NumSet set; EXPECT_FALSE(Has(set, 1)); auto result = set.insert(1); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 1); EXPECT_TRUE(Has(set, 1)); result = set.insert(1); EXPECT_FALSE(result.second); EXPECT_EQ(*result.first, 1); EXPECT_TRUE(Has(set, 1)); } TEST(FlatSetTest, InsertGrowth) { NumSet set; const int n = 100; Fill(&set, 0, 100); EXPECT_EQ(set.size(), n); for (int i = 0; i < n; i++) { EXPECT_TRUE(Has(set, i)) << i; } } TEST(FlatSetTest, Emplace) { NumSet set; auto result = set.emplace(73); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 73); EXPECT_TRUE(Has(set, 73)); result = set.emplace(73); EXPECT_FALSE(result.second); EXPECT_EQ(*result.first, 73); EXPECT_TRUE(Has(set, 73)); result = set.emplace(103); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 103); EXPECT_TRUE(Has(set, 103)); } TEST(FlatSetTest, Size) { NumSet set; EXPECT_EQ(set.size(), 0); set.insert(1); set.insert(2); EXPECT_EQ(set.size(), 2); } TEST(FlatSetTest, Empty) { NumSet set; EXPECT_TRUE(set.empty()); set.insert(1); set.insert(2); EXPECT_FALSE(set.empty()); } TEST(FlatSetTest, Count) { NumSet set; EXPECT_EQ(set.count(1), 0); EXPECT_EQ(set.count(2), 0); set.insert(1); EXPECT_EQ(set.count(1), 1); EXPECT_EQ(set.count(2), 0); set.insert(2); EXPECT_EQ(set.count(1), 1); EXPECT_EQ(set.count(2), 1); } TEST(FlatSetTest, Iter) { NumSet set; EXPECT_EQ(Contents(set), NumSetContents()); set.insert(1); set.insert(2); EXPECT_EQ(Contents(set), NumSetContents({1, 2})); } TEST(FlatSetTest, Erase) { NumSet set; EXPECT_EQ(set.erase(1), 0); set.insert(1); set.insert(2); EXPECT_EQ(set.erase(3), 0); EXPECT_EQ(set.erase(1), 1); EXPECT_EQ(set.size(), 1); EXPECT_TRUE(Has(set, 2)); EXPECT_EQ(Contents(set), NumSetContents({2})); EXPECT_EQ(set.erase(2), 1); EXPECT_EQ(Contents(set), NumSetContents()); } TEST(FlatSetTest, EraseIter) { NumSet set; Fill(&set, 1, 11); size_t size = 10; for (auto iter = set.begin(); iter != set.end();) { iter = set.erase(iter); size--; EXPECT_EQ(set.size(), size); } EXPECT_EQ(Contents(set), NumSetContents()); } TEST(FlatSetTest, EraseIterPair) { NumSet set; Fill(&set, 1, 11); NumSet expected; auto p1 = set.begin(); expected.insert(*p1); ++p1; expected.insert(*p1); ++p1; auto p2 = set.end(); EXPECT_EQ(set.erase(p1, p2), set.end()); EXPECT_EQ(set.size(), 2); EXPECT_EQ(Contents(set), Contents(expected)); } TEST(FlatSetTest, EraseLongChains) { NumSet set; const int num = 128; Fill(&set, 0, num); for (int i = 0; i < num; i += 3) { EXPECT_EQ(set.erase(i), 1); } for (int i = 0; i < num; i++) { EXPECT_EQ(Has(set, i), ((i % 3) != 0)) << i; } const size_t orig_buckets = set.bucket_count(); for (int i = 0; i < num; i++) { set.erase(i); } EXPECT_TRUE(set.empty()); EXPECT_EQ(set.bucket_count(), orig_buckets); set.insert(1); EXPECT_LT(set.bucket_count(), orig_buckets); } TEST(FlatSet, ClearNoResize) { NumSet set; Fill(&set, 0, 100); const size_t orig = set.bucket_count(); set.clear_no_resize(); EXPECT_EQ(set.size(), 0); EXPECT_EQ(Contents(set), NumSetContents()); EXPECT_EQ(set.bucket_count(), orig); } TEST(FlatSet, Clear) { NumSet set; Fill(&set, 0, 100); const size_t orig = set.bucket_count(); set.clear(); EXPECT_EQ(set.size(), 0); EXPECT_EQ(Contents(set), NumSetContents()); EXPECT_LT(set.bucket_count(), orig); } TEST(FlatSet, Copy) { for (int n = 0; n < 10; n++) { NumSet src; Fill(&src, 0, n); NumSet copy = src; EXPECT_EQ(Contents(src), Contents(copy)); NumSet copy2; copy2 = src; EXPECT_EQ(Contents(src), Contents(copy2)); copy2 = *&copy2; EXPECT_EQ(Contents(src), Contents(copy2)); } } TEST(FlatSet, InitFromIter) { for (int n = 0; n < 10; n++) { NumSet src; Fill(&src, 0, n); auto vec = Contents(src); NumSet dst(vec.begin(), vec.end()); EXPECT_EQ(Contents(dst), vec); } } TEST(FlatSet, InitializerList) { NumSet a{1, 2, 3}; NumSet b({1, 2, 3}); NumSet c = {1, 2, 3}; for (NumSet* set : std::vector<NumSet*>({&a, &b, &c})) { EXPECT_TRUE(Has(*set, 1)); EXPECT_TRUE(Has(*set, 2)); EXPECT_TRUE(Has(*set, 3)); EXPECT_EQ(Contents(*set), NumSetContents({1, 2, 3})); } } TEST(FlatSet, InsertIter) { NumSet a, b; Fill(&a, 1, 10); Fill(&b, 8, 20); b.insert(9); a.insert(b.begin(), b.end()); NumSet expected; Fill(&expected, 1, 20); EXPECT_EQ(Contents(a), Contents(expected)); } TEST(FlatSet, Eq) { NumSet empty; NumSet elems; Fill(&elems, 0, 5); EXPECT_FALSE(empty == elems); EXPECT_TRUE(empty != elems); NumSet copy = elems; EXPECT_TRUE(copy == elems); EXPECT_FALSE(copy != elems); NumSet changed = elems; changed.insert(7); EXPECT_FALSE(changed == elems); EXPECT_TRUE(changed != elems); NumSet changed2 = elems; changed2.erase(3); EXPECT_FALSE(changed2 == elems); EXPECT_TRUE(changed2 != elems); } TEST(FlatSet, Swap) { NumSet a, b; Fill(&a, 1, 5); Fill(&b, 100, 200); NumSet c = a; NumSet d = b; EXPECT_EQ(c, a); EXPECT_EQ(d, b); c.swap(d); EXPECT_EQ(c, b); EXPECT_EQ(d, a); } TEST(FlatSet, Reserve) { NumSet src; Fill(&src, 1, 100); NumSet a = src; a.reserve(10); EXPECT_EQ(a, src); NumSet b = src; b.rehash(1000); EXPECT_EQ(b, src); } TEST(FlatSet, EqualRangeMutable) { NumSet set; Fill(&set, 1, 10); auto p1 = set.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(*p1.first, 3); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = set.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatSet, EqualRangeConst) { NumSet tmp; Fill(&tmp, 1, 10); const NumSet set = tmp; auto p1 = set.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(*p1.first, 3); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = set.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatSet, Prefetch) { NumSet set; Fill(&set, 0, 1000); for (int i = 0; i < 2000; i++) { set.prefetch_value(i); } } struct NA { int64_t value; NA() : value(-1) {} explicit NA(int64_t v) : value(v) {} NA(const NA& x) : value(x.value) {} bool operator==(const NA& x) const { return value == x.value; } }; struct HashNA { size_t operator()(NA x) const { return x.value; } }; TEST(FlatSet, NonAssignable) { FlatSet<NA, HashNA> set; for (int i = 0; i < 100; i++) { set.insert(NA(i)); } for (int i = 0; i < 100; i++) { EXPECT_EQ(set.count(NA(i)), 1); auto iter = set.find(NA(i)); EXPECT_NE(iter, set.end()); EXPECT_EQ(*iter, NA(i)); } set.erase(NA(10)); EXPECT_EQ(set.count(NA(10)), 0); } TEST(FlatSet, ForwardIterator) { typedef FlatSet<NA, HashNA> NASet; NASet set({NA(1), NA(2)}); NASet::iterator it1 = set.find(NA(1)); NASet::iterator it2 = set.find(NA(2)); EXPECT_TRUE(it1 != set.end()); EXPECT_TRUE(it2 != set.end()); EXPECT_FALSE(it1 == set.end()); EXPECT_FALSE(it2 == set.end()); EXPECT_TRUE(it1 != it2); EXPECT_FALSE(it1 == it2); EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); EXPECT_EQ(it1->value, 1); EXPECT_EQ(it2->value, 2); NASet::iterator copy_it1 = it1; NASet::iterator copy_it2 = it2; EXPECT_EQ(*copy_it1, NA(1)); EXPECT_EQ(*copy_it2, NA(2)); NASet::iterator& pp_copy_it1 = ++copy_it1; NASet::iterator& pp_copy_it2 = ++copy_it2; EXPECT_TRUE(pp_copy_it1 == copy_it1); EXPECT_TRUE(pp_copy_it2 == copy_it2); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == set.end()) { EXPECT_TRUE(copy_it2 != set.end()); EXPECT_EQ(*copy_it2, NA(1)); EXPECT_EQ(*pp_copy_it2, NA(1)); } else { EXPECT_TRUE(copy_it2 == set.end()); EXPECT_EQ(*copy_it1, NA(2)); EXPECT_EQ(*pp_copy_it1, NA(2)); } EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); copy_it1 = it1; copy_it2 = it2; EXPECT_EQ(*copy_it1, NA(1)); EXPECT_EQ(*copy_it2, NA(2)); NASet::iterator copy_it1_pp = copy_it1++; NASet::iterator copy_it2_pp = copy_it2++; EXPECT_TRUE(copy_it1_pp != copy_it1); EXPECT_TRUE(copy_it2_pp != copy_it2); EXPECT_TRUE(copy_it1_pp == it1); EXPECT_TRUE(copy_it2_pp == it2); EXPECT_EQ(*copy_it1_pp, NA(1)); EXPECT_EQ(*copy_it2_pp, NA(2)); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == set.end()) { EXPECT_TRUE(copy_it2 != set.end()); EXPECT_EQ(*copy_it2, NA(1)); } else { EXPECT_TRUE(copy_it2 == set.end()); EXPECT_EQ(*copy_it1, NA(2)); } EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); } TEST(FlatSet, ConstructDestruct) { FlatSet<string> set; string k1 = "the quick brown fox jumped over the lazy dog"; string k2 = k1 + k1; string k3 = k1 + k2; set.insert(k1); set.insert(k3); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k2), 0); EXPECT_EQ(set.count(k3), 1); set.erase(k3); EXPECT_EQ(set.count(k3), 0); set.clear(); set.insert(k1); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k3), 0); set.reserve(100); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k3), 0); } struct CustomCmpKey { int64_t a; int64_t b; CustomCmpKey(int64_t v1, int64_t v2) : a(v1), b(v2) {} bool operator==(const CustomCmpKey& x) const { return a == x.a && b == x.b; } }; struct HashA { size_t operator()(CustomCmpKey x) const { return x.a; } }; struct EqA { bool operator()(CustomCmpKey x, CustomCmpKey y) const { return x.a == y.a; } }; TEST(FlatSet, CustomCmp) { FlatSet<CustomCmpKey, HashA, EqA> set; set.insert(CustomCmpKey(100, 200)); EXPECT_EQ(set.count(CustomCmpKey(100, 200)), 1); EXPECT_EQ(set.count(CustomCmpKey(100, 500)), 1); } typedef std::unique_ptr<int> UniqInt; static UniqInt MakeUniq(int i) { return std::make_unique<int>(i); } struct HashUniq { size_t operator()(const UniqInt& p) const { return *p; } }; struct EqUniq { bool operator()(const UniqInt& a, const UniqInt& b) const { return *a == *b; } }; typedef FlatSet<UniqInt, HashUniq, EqUniq> UniqSet; TEST(FlatSet, UniqueSet) { UniqSet set; const int N = 10; for (int i = 0; i < N; i++) { set.emplace(MakeUniq(i)); } EXPECT_EQ(set.size(), N); UniqSet set2(std::move(set)); for (int i = 0; i < N; i++) { EXPECT_EQ(set2.count(MakeUniq(i)), 1); } UniqSet set3; set3 = std::move(set2); set3.erase(MakeUniq(2)); EXPECT_EQ(set3.count(MakeUniq(2)), 0); set.clear(); EXPECT_EQ(set.size(), 0); EXPECT_GE(set.size(), 0); EXPECT_GE(set2.size(), 0); EXPECT_TRUE(set.emplace(MakeUniq(-1)).second); } TEST(FlatSet, UniqueSetIter) { UniqSet set; const int kCount = 10; for (int i = 1; i <= kCount; i++) { set.emplace(MakeUniq(i)); } int sum = 0; for (const auto& p : set) { sum += *p; } EXPECT_EQ(sum, (kCount * (kCount + 1)) / 2); } TEST(FlatSet, InsertUncopyable) { UniqSet set; EXPECT_TRUE(set.insert(MakeUniq(0)).second); EXPECT_EQ(set.size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/flatset.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/flatset_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ceb9b732-936e-47e9-ba8d-ae0b7dd21e7e
cpp
tensorflow/tensorflow
compactptrset
tensorflow/core/lib/gtl/compactptrset.h
third_party/xla/xla/tsl/lib/gtl/compactptrset_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_COMPACTPTRSET_H_ #define TENSORFLOW_CORE_LIB_GTL_COMPACTPTRSET_H_ #include "xla/tsl/lib/gtl/compactptrset.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::CompactPointerSet; } } #endif
#include "xla/tsl/lib/gtl/compactptrset.h" #include "tsl/platform/hash.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { typedef CompactPointerSet<const char*> StringSet; static std::vector<const char*> SortedContents(const StringSet& set) { std::vector<const char*> contents(set.begin(), set.end()); std::sort(contents.begin(), contents.end()); return contents; } TEST(CompactPointerSetTest, Simple) { string data = "ABCDEFG"; const char* a = &data[0]; const char* b = &data[1]; const char* c = &data[2]; const char* d = &data[3]; const char* e = &data[4]; const char* f = &data[5]; const char* g = &data[6]; for (const auto& list : std::vector<std::vector<const char*>>({{ {}, {a}, {b}, {nullptr}, {a, b, c, d, e, f, g}, }})) { LOG(INFO) << list.size(); StringSet set; ASSERT_TRUE(set.empty()); for (auto p : list) { ASSERT_EQ(set.count(p), 0); ASSERT_TRUE(set.insert(p).second); ASSERT_EQ(set.count(p), 1); ASSERT_TRUE(set.find(p) != set.end()); } ASSERT_EQ(set.size(), list.size()); ASSERT_EQ(SortedContents(set), list); { StringSet set2(set); ASSERT_EQ(SortedContents(set2), list); } for (const auto& initial : std::vector<std::vector<const char*>>({{ {}, {a}, {b}, {nullptr}, {a, b, c, d}, }})) { StringSet dst; for (auto p : initial) { dst.insert(p); } ASSERT_EQ(dst.size(), initial.size()); dst = set; ASSERT_EQ(SortedContents(dst), list); dst.clear(); ASSERT_EQ(dst.size(), 0); } for (auto p : list) { ASSERT_EQ(set.erase(p), 1); ASSERT_EQ(set.erase(p), 0); } ASSERT_TRUE(set.empty()); ASSERT_EQ(set.size(), 0); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/compactptrset.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/compactptrset_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6288d502-0a37-48dc-8f80-6013bf3a35e7
cpp
tensorflow/tensorflow
int_type
tensorflow/core/lib/gtl/int_type.h
third_party/xla/xla/tsl/lib/gtl/int_type_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_INT_TYPE_H_ #define TENSORFLOW_CORE_LIB_GTL_INT_TYPE_H_ #include "xla/tsl/lib/gtl/int_type.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::IntType; } } #endif
#include "xla/tsl/lib/gtl/int_type.h" #include <memory> #include <unordered_map> #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { TSL_LIB_GTL_DEFINE_INT_TYPE(Int8_IT, int8); TSL_LIB_GTL_DEFINE_INT_TYPE(UInt8_IT, uint8); TSL_LIB_GTL_DEFINE_INT_TYPE(Int16_IT, int16); TSL_LIB_GTL_DEFINE_INT_TYPE(UInt16_IT, uint16); TSL_LIB_GTL_DEFINE_INT_TYPE(Int32_IT, int32); TSL_LIB_GTL_DEFINE_INT_TYPE(Int64_IT, int64_t); TSL_LIB_GTL_DEFINE_INT_TYPE(UInt32_IT, uint32); TSL_LIB_GTL_DEFINE_INT_TYPE(UInt64_IT, uint64); TSL_LIB_GTL_DEFINE_INT_TYPE(Long_IT, long); template <typename IntType_Type> class IntTypeTest : public ::testing::Test {}; typedef ::testing::Types<Int8_IT, UInt8_IT, Int16_IT, UInt16_IT, Int32_IT, Int64_IT, UInt64_IT, Long_IT> SupportedIntTypes; TYPED_TEST_SUITE(IntTypeTest, SupportedIntTypes); TYPED_TEST(IntTypeTest, TestInitialization) { constexpr TypeParam a; constexpr TypeParam b(1); constexpr TypeParam c(b); EXPECT_EQ(0, a); EXPECT_EQ(1, b); EXPECT_EQ(1, c); } TYPED_TEST(IntTypeTest, TestOperators) { TypeParam a(0); TypeParam b(1); TypeParam c(2); constexpr TypeParam d(3); constexpr TypeParam e(4); EXPECT_EQ(0, (a++).value()); EXPECT_EQ(2, (++a).value()); EXPECT_EQ(2, (a--).value()); EXPECT_EQ(0, (--a).value()); EXPECT_EQ(true, !a); EXPECT_EQ(false, !b); static_assert(!d == false, "Unary operator! failed"); EXPECT_EQ(a.value(), +a); static_assert(+d == d.value(), "Unary operator+ failed"); EXPECT_EQ(-a.value(), -a); static_assert(-d == -d.value(), "Unary operator- failed"); EXPECT_EQ(~a.value(), ~a); EXPECT_EQ(~b.value(), ~b); static_assert(~d == ~d.value(), "Unary operator~ failed"); c = a = b; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = b = 2; EXPECT_EQ(2, b.value()); EXPECT_EQ(2, c.value()); c = a += b; EXPECT_EQ(3, a.value()); EXPECT_EQ(3, c.value()); c = a -= b; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a *= b; EXPECT_EQ(2, a.value()); EXPECT_EQ(2, c.value()); c = a /= b; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a <<= b; EXPECT_EQ(4, a.value()); EXPECT_EQ(4, c.value()); c = a >>= b; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a %= b; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a += 2; EXPECT_EQ(3, a.value()); EXPECT_EQ(3, c.value()); c = a -= 2; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a *= 2; EXPECT_EQ(2, a.value()); EXPECT_EQ(2, c.value()); c = a /= 2; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a <<= 2; EXPECT_EQ(4, a.value()); EXPECT_EQ(4, c.value()); c = a >>= 2; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); c = a %= 2; EXPECT_EQ(1, a.value()); EXPECT_EQ(1, c.value()); a = 0; b = 1; EXPECT_FALSE(a == b); EXPECT_TRUE(a == 0); EXPECT_FALSE(1 == a); static_assert(d == d, "operator== failed"); static_assert(d == 3, "operator== failed"); static_assert(3 == d, "operator== failed"); EXPECT_TRUE(a != b); EXPECT_TRUE(a != 1); EXPECT_FALSE(0 != a); static_assert(d != e, "operator!= failed"); static_assert(d != 4, "operator!= failed"); static_assert(4 != d, "operator!= failed"); EXPECT_TRUE(a < b); EXPECT_TRUE(a < 1); EXPECT_FALSE(0 < a); static_assert(d < e, "operator< failed"); static_assert(d < 4, "operator< failed"); static_assert(3 < e, "operator< failed"); EXPECT_TRUE(a <= b); EXPECT_TRUE(a <= 1); EXPECT_TRUE(0 <= a); static_assert(d <= e, "operator<= failed"); static_assert(d <= 4, "operator<= failed"); static_assert(3 <= e, "operator<= failed"); EXPECT_FALSE(a > b); EXPECT_FALSE(a > 1); EXPECT_FALSE(0 > a); static_assert(e > d, "operator> failed"); static_assert(e > 3, "operator> failed"); static_assert(4 > d, "operator> failed"); EXPECT_FALSE(a >= b); EXPECT_FALSE(a >= 1); EXPECT_TRUE(0 >= a); static_assert(e >= d, "operator>= failed"); static_assert(e >= 3, "operator>= failed"); static_assert(4 >= d, "operator>= failed"); a = 1; b = 3; EXPECT_EQ(4, (a + b).value()); EXPECT_EQ(4, (a + 3).value()); EXPECT_EQ(4, (1 + b).value()); static_assert((d + e).value() == 7, "Binary operator+ failed"); static_assert((d + 4).value() == 7, "Binary operator+ failed"); static_assert((3 + e).value() == 7, "Binary operator+ failed"); EXPECT_EQ(2, (b - a).value()); EXPECT_EQ(2, (b - 1).value()); EXPECT_EQ(2, (3 - a).value()); static_assert((e - d).value() == 1, "Binary operator- failed"); static_assert((e - 3).value() == 1, "Binary operator- failed"); static_assert((4 - d).value() == 1, "Binary operator- failed"); EXPECT_EQ(3, (a * b).value()); EXPECT_EQ(3, (a * 3).value()); EXPECT_EQ(3, (1 * b).value()); static_assert((d * e).value() == 12, "Binary operator* failed"); static_assert((d * 4).value() == 12, "Binary operator* failed"); static_assert((3 * e).value() == 12, "Binary operator* failed"); EXPECT_EQ(0, (a / b).value()); EXPECT_EQ(0, (a / 3).value()); EXPECT_EQ(0, (1 / b).value()); static_assert((d / e).value() == 0, "Binary operator/ failed"); static_assert((d / 4).value() == 0, "Binary operator/ failed"); static_assert((3 / e).value() == 0, "Binary operator/ failed"); EXPECT_EQ(8, (a << b).value()); EXPECT_EQ(8, (a << 3).value()); EXPECT_EQ(8, (1 << b).value()); static_assert((d << e).value() == 48, "Binary operator<< failed"); static_assert((d << 4).value() == 48, "Binary operator<< failed"); static_assert((3 << e).value() == 48, "Binary operator<< failed"); b = 8; EXPECT_EQ(4, (b >> a).value()); EXPECT_EQ(4, (b >> 1).value()); EXPECT_EQ(4, (8 >> a).value()); static_assert((d >> e).value() == 0, "Binary operator>> failed"); static_assert((d >> 4).value() == 0, "Binary operator>> failed"); static_assert((3 >> e).value() == 0, "Binary operator>> failed"); b = 3; a = 2; EXPECT_EQ(1, (b % a).value()); EXPECT_EQ(1, (b % 2).value()); EXPECT_EQ(1, (3 % a).value()); static_assert((e % d).value() == 1, "Binary operator% failed"); static_assert((e % 3).value() == 1, "Binary operator% failed"); static_assert((4 % d).value() == 1, "Binary operator% failed"); } TYPED_TEST(IntTypeTest, TestHashFunctor) { std::unordered_map<TypeParam, char, typename TypeParam::Hasher> map; TypeParam a(0); map[a] = 'c'; EXPECT_EQ('c', map[a]); map[++a] = 'o'; EXPECT_EQ('o', map[a]); TypeParam b(a); EXPECT_EQ(typename TypeParam::Hasher()(a), typename TypeParam::Hasher()(b)); } TYPED_TEST(IntTypeTest, TestValueAccessor) { constexpr typename TypeParam::ValueType i = -1; constexpr TypeParam int_type(i); EXPECT_EQ(i, int_type.value()); static_assert(int_type.value() == i, "value() failed"); EXPECT_EQ(static_cast<int>(i), int_type.template value<int>()); EXPECT_EQ(static_cast<int8>(i), int_type.template value<int8>()); EXPECT_EQ(static_cast<int16>(i), int_type.template value<int16>()); EXPECT_EQ(static_cast<int32>(i), int_type.template value<int32>()); EXPECT_EQ(static_cast<uint32>(i), int_type.template value<uint32>()); EXPECT_EQ(static_cast<int64_t>(i), int_type.template value<int64_t>()); EXPECT_EQ(static_cast<uint64>(i), int_type.template value<uint64>()); EXPECT_EQ(static_cast<long>(i), int_type.template value<long>()); static_assert(int_type.template value<int>() == static_cast<int>(i), "value<Value>() failed"); } TYPED_TEST(IntTypeTest, TestMove) { struct NotCopyable { TypeParam inttype; std::unique_ptr<int> ptr; static NotCopyable Make(int i) { NotCopyable f; f.inttype = TypeParam(i); f.ptr.reset(new int(i)); return f; } }; NotCopyable foo = NotCopyable::Make(123); EXPECT_EQ(123, foo.inttype); EXPECT_EQ(123, *foo.ptr); foo = NotCopyable::Make(321); EXPECT_EQ(321, foo.inttype); EXPECT_EQ(321, *foo.ptr); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/int_type.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/int_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
992ee0d8-2b56-4259-a01e-6a37f75f1b53
cpp
tensorflow/tensorflow
philox_random
tensorflow/core/lib/random/philox_random.h
third_party/xla/xla/tsl/lib/random/philox_random_test.cc
#ifndef TENSORFLOW_CORE_LIB_RANDOM_PHILOX_RANDOM_H_ #define TENSORFLOW_CORE_LIB_RANDOM_PHILOX_RANDOM_H_ #include "xla/tsl/lib/random/philox_random.h" namespace tensorflow { namespace random { using tsl::random::Array; using tsl::random::PhiloxRandom; } } #endif
#include "xla/tsl/lib/random/philox_random.h" #include <math.h> #include <algorithm> #include <functional> #include <unordered_map> #include <vector> #include "xla/tsl/lib/random/philox_random_test_utils.h" #include "xla/tsl/lib/random/random_distributions.h" #include "tsl/platform/logging.h" #include "tsl/platform/random.h" #include "tsl/platform/test.h" namespace tsl { namespace random { namespace { class TrivialPhiloxDistribution { public: static constexpr int kResultElementCount = PhiloxRandom::kResultElementCount; typedef PhiloxRandom::ResultType ResultType; typedef PhiloxRandom::ResultElementType ResultElementType; PHILOX_DEVICE_INLINE ResultType operator()(PhiloxRandom* gen) { return (*gen)(); } }; TEST(PhiloxRandomTest, SkipMatchTest) { constexpr int count = 1024; constexpr int skip_count = 2048; uint64 test_seed = GetTestSeed(); std::vector<uint32> v1(count); { PhiloxRandom gen(test_seed); gen.Skip(skip_count / 4); FillRandoms<TrivialPhiloxDistribution>(gen, &v1[0], v1.size()); } std::vector<uint32> v2(count + skip_count); { PhiloxRandom gen(test_seed); FillRandoms<TrivialPhiloxDistribution>(gen, &v2[0], v2.size()); } for (int i = 0; i < count; ++i) { ASSERT_EQ(v1[i], v2[i + skip_count]); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/random/philox_random.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/philox_random_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2a66fc09-36a5-4a49-b77b-1dfda971ec7d
cpp
tensorflow/tensorflow
gauge
tensorflow/core/lib/monitoring/gauge.h
tensorflow/core/lib/monitoring/gauge_test.cc
#ifndef TENSORFLOW_CORE_LIB_MONITORING_GAUGE_H_ #define TENSORFLOW_CORE_LIB_MONITORING_GAUGE_H_ #include "xla/tsl/lib/monitoring/gauge.h" #include "tensorflow/core/lib/monitoring/collection_registry.h" #include "tensorflow/core/lib/monitoring/metric_def.h" namespace tensorflow { namespace monitoring { using tsl::monitoring::Gauge; using tsl::monitoring::GaugeCell; } } #endif
#include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { auto* gauge_with_labels = Gauge<int64_t, 1>::New( "/tensorflow/test/gauge_with_labels", "Gauge with one label.", "MyLabel"); TEST(LabeledGaugeTest, InitializedWithZero) { EXPECT_EQ(0, gauge_with_labels->GetCell("Empty")->value()); } TEST(LabeledGaugeTest, GetCell) { auto* cell = gauge_with_labels->GetCell("GetCellOp"); EXPECT_EQ(0, cell->value()); cell->Set(1); EXPECT_EQ(1, cell->value()); auto* same_cell = gauge_with_labels->GetCell("GetCellOp"); EXPECT_EQ(1, same_cell->value()); same_cell->Set(10); EXPECT_EQ(10, cell->value()); EXPECT_EQ(10, same_cell->value()); } auto* gauge_without_labels = Gauge<int64_t, 0>::New( "/tensorflow/test/gauge_without_labels", "Gauge without any labels."); TEST(UnlabeledGaugeTest, InitializedWithZero) { EXPECT_EQ(0, gauge_without_labels->GetCell()->value()); } TEST(UnlabeledGaugeTest, GetCell) { auto* cell = gauge_without_labels->GetCell(); EXPECT_EQ(0, cell->value()); cell->Set(1); EXPECT_EQ(1, cell->value()); auto* same_cell = gauge_without_labels->GetCell(); EXPECT_EQ(1, same_cell->value()); same_cell->Set(10); EXPECT_EQ(10, cell->value()); EXPECT_EQ(10, same_cell->value()); } auto* string_gauge = Gauge<string, 0>::New("/tensorflow/test/string_gauge", "Gauge of string value."); TEST(GaugeOfStringValue, InitializedWithEmptyString) { EXPECT_EQ("", string_gauge->GetCell()->value()); } TEST(GaugeOfStringValue, GetCell) { auto* cell = string_gauge->GetCell(); EXPECT_EQ("", cell->value()); cell->Set("foo"); EXPECT_EQ("foo", cell->value()); auto* same_cell = string_gauge->GetCell(); EXPECT_EQ("foo", cell->value()); same_cell->Set("bar"); EXPECT_EQ("bar", cell->value()); EXPECT_EQ("bar", same_cell->value()); } auto* bool_gauge = Gauge<bool, 0>::New("/tensorflow/test/bool_gauge", "Gauge of bool value."); TEST(GaugeOfBoolValue, InitializedWithFalseValue) { EXPECT_EQ(false, bool_gauge->GetCell()->value()); } TEST(GaugeOfBoolValue, GetCell) { auto* cell = bool_gauge->GetCell(); EXPECT_EQ(false, cell->value()); cell->Set(true); EXPECT_EQ(true, cell->value()); auto* same_cell = bool_gauge->GetCell(); EXPECT_EQ(true, cell->value()); same_cell->Set(false); EXPECT_EQ(false, cell->value()); EXPECT_EQ(false, same_cell->value()); } TEST(LabeledGaugeTest, SameName) { auto* same_gauge = Gauge<int64_t, 1>::New( "/tensorflow/test/gauge_with_labels", "Gauge with one label.", "MyLabel"); EXPECT_TRUE(gauge_with_labels->GetStatus().ok()); EXPECT_TRUE(same_gauge->GetStatus().ok()); delete same_gauge; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/gauge.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/gauge_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce88d644-ba62-4366-b77d-45d407940f71
cpp
tensorflow/tensorflow
cell_reader
tensorflow/core/lib/monitoring/cell_reader.h
tensorflow/core/lib/monitoring/cell_reader_test.cc
#ifndef TENSORFLOW_CORE_LIB_MONITORING_CELL_READER_H_ #define TENSORFLOW_CORE_LIB_MONITORING_CELL_READER_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/tsl/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/cell_reader-inl.h" #include "tensorflow/core/lib/monitoring/collected_metrics.h" #include "tensorflow/core/lib/monitoring/metric_def.h" namespace tensorflow { namespace monitoring { namespace testing { using tsl::monitoring::testing::CellReader; } } } #endif
#include "tensorflow/core/lib/monitoring/cell_reader.h" #include <cstdint> #include <string> #include <vector> #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/lib/monitoring/percentile_sampler.h" #include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/lib/monitoring/test_utils.h" #include "tensorflow/core/lib/monitoring/types.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace testing { namespace { std::vector<double> GetDefaultPercentiles() { return {25.0, 50.0, 80.0, 90.0, 95.0, 99.0}; } auto* test_counter = monitoring::Counter<0>::New( "/tensorflow/monitoring/test/counter", "Test counter."); auto* test_counter_with_labels = monitoring::Counter<2>::New( "/tensorflow/monitoring/test/counter_with_labels", "Test counter with two labels.", "label1", "label2"); auto* test_sampler = monitoring::Sampler<0>::New( {"/tensorflow/monitoring/test/sampler", "Test sampler."}, monitoring::Buckets::Explicit( {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0})); auto* test_sampler_with_labels = monitoring::Sampler<2>::New( {"/tensorflow/monitoring/test/sampler_with_labels", "Test sampler.", "label1", "label2"}, monitoring::Buckets::Exponential( 1, 10, 5)); auto* test_int_gauge = monitoring::Gauge<int64_t, 0>::New( "/tensorflow/monitoring/test/int_gauge", "Test gauge."); auto* test_int_gauge_with_labels = monitoring::Gauge<int64_t, 2>::New( "/tensorflow/monitoring/test/int_gauge_with_labels", "Test gauge.", "label1", "label2"); auto* test_string_gauge = monitoring::Gauge<std::string, 0>::New( "/tensorflow/monitoring/test/string_gauge", "Test gauge."); auto* test_string_gauge_with_labels = monitoring::Gauge<std::string, 2>::New( "/tensorflow/monitoring/test/string_gauge_with_labels", "Test gauge.", "label1", "label2"); auto* test_bool_gauge = monitoring::Gauge<bool, 0>::New( "/tensorflow/monitoring/test/bool_gauge", "Test gauge."); auto* test_bool_gauge_with_labels = monitoring::Gauge<bool, 2>::New( "/tensorflow/monitoring/test/bool_gauge_with_labels", "Test gauge.", "label1", "label2"); auto* test_percentiles = monitoring::PercentileSampler<0>::New( {"/tensorflow/monitoring/test/percentiles", "Test percentiles."}, GetDefaultPercentiles(), 1024, monitoring::UnitOfMeasure::kTime); auto* test_percentiles_with_labels = monitoring::PercentileSampler<2>::New( {"/tensorflow/monitoring/test/percentiles_with_labels", "Test percentiles.", "label1", "label2"}, GetDefaultPercentiles(), 1024, monitoring::UnitOfMeasure::kTime); TEST(CellReaderTest, CounterDeltaNoLabels) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); EXPECT_EQ(cell_reader.Delta(), 0); test_counter->GetCell()->IncrementBy(5); EXPECT_EQ(cell_reader.Delta(), 5); test_counter->GetCell()->IncrementBy(10); EXPECT_EQ(cell_reader.Delta(), 10); test_counter->GetCell()->IncrementBy(100); EXPECT_EQ(cell_reader.Delta(), 100); } TEST(CellReaderTest, CounterReadNoLabels) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); EXPECT_EQ(cell_reader.Read(), 0); test_counter->GetCell()->IncrementBy(5); EXPECT_EQ(cell_reader.Read(), 5); test_counter->GetCell()->IncrementBy(10); EXPECT_EQ(cell_reader.Read(), 15); test_counter->GetCell()->IncrementBy(100); EXPECT_EQ(cell_reader.Read(), 115); } TEST(CellReaderTest, CounterDeltaAndReadNoLabels) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); EXPECT_EQ(cell_reader.Delta(), 0); EXPECT_EQ(cell_reader.Read(), 0); test_counter->GetCell()->IncrementBy(5); EXPECT_EQ(cell_reader.Delta(), 5); EXPECT_EQ(cell_reader.Read(), 5); test_counter->GetCell()->IncrementBy(10); EXPECT_EQ(cell_reader.Delta(), 10); EXPECT_EQ(cell_reader.Read(), 15); test_counter->GetCell()->IncrementBy(100); EXPECT_EQ(cell_reader.Delta(), 100); EXPECT_EQ(cell_reader.Read(), 115); } TEST(CellReaderTest, CounterDeltaWithLabels) { CellReader<int64_t> cell_reader( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(10); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(100); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 1); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 10); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 100); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(5); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(50); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(500); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 5); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 50); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 500); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1000); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(1000); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 1000); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 1000); } TEST(CellReaderTest, CounterReadWithLabels) { CellReader<int64_t> cell_reader( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x1", "y2"), 0); EXPECT_EQ(cell_reader.Read("x2", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(10); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(100); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x1", "y2"), 10); EXPECT_EQ(cell_reader.Read("x2", "y1"), 100); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(5); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(50); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(500); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x1", "y2"), 15); EXPECT_EQ(cell_reader.Read("x2", "y1"), 150); EXPECT_EQ(cell_reader.Read("x2", "y2"), 500); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1000); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(1000); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1001); EXPECT_EQ(cell_reader.Read("x1", "y2"), 15); EXPECT_EQ(cell_reader.Read("x2", "y1"), 150); EXPECT_EQ(cell_reader.Read("x2", "y2"), 1500); } TEST(CellReaderTest, CounterDeltaAndReadWithLabels) { CellReader<int64_t> cell_reader( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x1", "y2"), 0); EXPECT_EQ(cell_reader.Read("x2", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(10); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(100); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 1); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 10); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 100); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x1", "y2"), 10); EXPECT_EQ(cell_reader.Read("x2", "y1"), 100); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_counter_with_labels->GetCell("x1", "y2")->IncrementBy(5); test_counter_with_labels->GetCell("x2", "y1")->IncrementBy(50); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(500); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 5); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 50); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 500); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x1", "y2"), 15); EXPECT_EQ(cell_reader.Read("x2", "y1"), 150); EXPECT_EQ(cell_reader.Read("x2", "y2"), 500); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1000); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(1000); EXPECT_EQ(cell_reader.Delta("x1", "y1"), 1000); EXPECT_EQ(cell_reader.Delta("x1", "y2"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y1"), 0); EXPECT_EQ(cell_reader.Delta("x2", "y2"), 1000); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1001); EXPECT_EQ(cell_reader.Read("x1", "y2"), 15); EXPECT_EQ(cell_reader.Read("x2", "y1"), 150); EXPECT_EQ(cell_reader.Read("x2", "y2"), 1500); } TEST(CellReaderTest, TwoCounterReaders) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); CellReader<int64_t> cell_reader_with_labels( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_EQ(cell_reader.Delta(), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read(), 0); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 0); test_counter->GetCell()->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(100); EXPECT_EQ(cell_reader.Delta(), 1); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read(), 1); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 0); test_counter->GetCell()->IncrementBy(5); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(500); EXPECT_EQ(cell_reader.Delta(), 5); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 500); EXPECT_EQ(cell_reader.Read(), 6); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 500); test_counter->GetCell()->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(1); test_counter_with_labels->GetCell("x2", "y2")->IncrementBy(1); EXPECT_EQ(cell_reader.Delta(), 1); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 1); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 1); EXPECT_EQ(cell_reader.Read(), 7); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 101); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 501); } TEST(CellReaderTest, RepeatedReads) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); CellReader<int64_t> cell_reader_with_labels( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_EQ(cell_reader.Delta(), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read(), 0); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 0); test_counter->GetCell()->IncrementBy(1); test_counter_with_labels->GetCell("x1", "y1")->IncrementBy(100); EXPECT_EQ(cell_reader.Delta(), 1); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read(), 1); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 0); EXPECT_EQ(cell_reader.Delta(), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x1", "y1"), 0); EXPECT_EQ(cell_reader_with_labels.Delta("x2", "y2"), 0); EXPECT_EQ(cell_reader.Read(), 1); EXPECT_EQ(cell_reader_with_labels.Read("x1", "y1"), 100); EXPECT_EQ(cell_reader_with_labels.Read("x2", "y2"), 0); } TEST(CellReaderTest, SamplerDeltaNoLabels) { CellReader<Histogram> cell_reader("/tensorflow/monitoring/test/sampler"); Histogram histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(0.1); histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.1); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.01); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 1.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(1.1); histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), 1.1); EXPECT_FLOAT_EQ(histogram.sum_squares(), 1.21); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 1.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(100); histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), 100); EXPECT_FLOAT_EQ(histogram.sum_squares(), 10000); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 1.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); } TEST(CellReaderTest, SamplerReadNoLabels) { CellReader<Histogram> cell_reader("/tensorflow/monitoring/test/sampler"); Histogram histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(0.1); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.1); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.01); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 1.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(1.1); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 1.2); EXPECT_FLOAT_EQ(histogram.sum_squares(), 1.22); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 1.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 1.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(100); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), 101.2); EXPECT_FLOAT_EQ(histogram.sum_squares(), 10001.22); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 1.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 1.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 1.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); } TEST(CellReaderTest, SamplerDeltaAndReadNoLabels) { CellReader<Histogram> cell_reader("/tensorflow/monitoring/test/sampler"); Histogram histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(0.1); test_sampler->GetCell()->Add(0.1); histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.2); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.02); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 2.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.2); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.02); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 2.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 0.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); test_sampler->GetCell()->Add(100); test_sampler->GetCell()->Add(100); histogram = cell_reader.Delta(); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 200); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 2.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); histogram = cell_reader.Read(); EXPECT_FLOAT_EQ(histogram.num(), 4.0); EXPECT_FLOAT_EQ(histogram.sum(), 200.2); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.02); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 2.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); EXPECT_FLOAT_EQ(histogram.num(6), 0.0); EXPECT_FLOAT_EQ(histogram.num(7), 0.0); EXPECT_FLOAT_EQ(histogram.num(8), 0.0); EXPECT_FLOAT_EQ(histogram.num(9), 0.0); EXPECT_FLOAT_EQ(histogram.num(10), 0.0); EXPECT_FLOAT_EQ(histogram.num(11), 2.0); EXPECT_FLOAT_EQ(histogram.num(12), 0.0); } TEST(CellReaderTest, SamplerDeltaWithLabels) { CellReader<Histogram> cell_reader( "/tensorflow/monitoring/test/sampler_with_labels"); Histogram histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), -200.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.0); EXPECT_FLOAT_EQ(histogram.num(0), 2.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 200.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100000000); test_sampler_with_labels->GetCell("x2", "y2")->Add(100000000); histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), -100000000); EXPECT_FLOAT_EQ(histogram.num(0), 1.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 1.0); EXPECT_FLOAT_EQ(histogram.sum(), 100000000); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 1.0); } TEST(CellReaderTest, SamplerReadWithLabels) { CellReader<Histogram> cell_reader( "/tensorflow/monitoring/test/sampler_with_labels"); Histogram histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), -200.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.0); EXPECT_FLOAT_EQ(histogram.num(0), 2.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), -200.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.0); EXPECT_FLOAT_EQ(histogram.num(0), 2.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 2.0); EXPECT_FLOAT_EQ(histogram.sum(), 200.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 20000.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100000000); test_sampler_with_labels->GetCell("x2", "y2")->Add(100000000); histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), -100000200); EXPECT_FLOAT_EQ(histogram.num(0), 3.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), 100000200); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 1.0); } TEST(CellReaderTest, SamplerRepeatedReads) { CellReader<Histogram> cell_reader( "/tensorflow/monitoring/test/sampler_with_labels"); Histogram histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.sum_squares(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); test_sampler_with_labels->GetCell("x2", "y2")->Add(100); test_sampler_with_labels->GetCell("x1", "y1")->Add(-100000000); test_sampler_with_labels->GetCell("x2", "y2")->Add(100000000); histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), -100000200); EXPECT_FLOAT_EQ(histogram.num(0), 3.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), 100000200); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 1.0); histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), -100000200); EXPECT_FLOAT_EQ(histogram.num(0), 3.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), 100000200); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 1.0); histogram = cell_reader.Delta("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Delta("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 0.0); EXPECT_FLOAT_EQ(histogram.sum(), 0.0); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x1", "y1"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), -100000200); EXPECT_FLOAT_EQ(histogram.num(0), 3.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 0.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 0.0); histogram = cell_reader.Read("x2", "y2"); EXPECT_FLOAT_EQ(histogram.num(), 3.0); EXPECT_FLOAT_EQ(histogram.sum(), 100000200); EXPECT_FLOAT_EQ(histogram.num(0), 0.0); EXPECT_FLOAT_EQ(histogram.num(1), 0.0); EXPECT_FLOAT_EQ(histogram.num(2), 0.0); EXPECT_FLOAT_EQ(histogram.num(3), 2.0); EXPECT_FLOAT_EQ(histogram.num(4), 0.0); EXPECT_FLOAT_EQ(histogram.num(5), 1.0); } TEST(CellReaderTest, IntGaugeRead) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/int_gauge"); EXPECT_EQ(cell_reader.Read(), 0); test_int_gauge->GetCell()->Set(100); EXPECT_EQ(cell_reader.Read(), 100); test_int_gauge->GetCell()->Set(-100); EXPECT_EQ(cell_reader.Read(), -100); test_int_gauge->GetCell()->Set(0); EXPECT_EQ(cell_reader.Read(), 0); } TEST(CellReaderTest, IntGaugeReadWithLabels) { CellReader<int64_t> cell_reader( "/tensorflow/monitoring/test/int_gauge_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(100000); EXPECT_EQ(cell_reader.Read("x1", "y1"), 100000); EXPECT_EQ(cell_reader.Read("x2", "y2"), 0); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(-100000); EXPECT_EQ(cell_reader.Read("x1", "y1"), 100000); EXPECT_EQ(cell_reader.Read("x2", "y2"), -100000); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(-100000); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(100000); EXPECT_EQ(cell_reader.Read("x1", "y1"), -100000); EXPECT_EQ(cell_reader.Read("x2", "y2"), 100000); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(0); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), 100000); } TEST(CellReaderTest, IntGaugeRepeatedSetAndRead) { CellReader<int64_t> cell_reader( "/tensorflow/monitoring/test/int_gauge_with_labels"); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(-1); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(1); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(1); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(-1); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x2", "y2"), -1); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x2", "y2"), -1); EXPECT_EQ(cell_reader.Read("x1", "y1"), 1); EXPECT_EQ(cell_reader.Read("x2", "y2"), -1); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(0); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(500); test_int_gauge_with_labels->GetCell("x1", "y1")->Set(0); test_int_gauge_with_labels->GetCell("x2", "y2")->Set(-500); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), -500); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), -500); EXPECT_EQ(cell_reader.Read("x1", "y1"), 0); EXPECT_EQ(cell_reader.Read("x2", "y2"), -500); } TEST(CellReaderTest, StringGaugeRead) { CellReader<std::string> cell_reader( "/tensorflow/monitoring/test/string_gauge"); EXPECT_EQ(cell_reader.Read(), ""); test_string_gauge->GetCell()->Set("gauge value"); EXPECT_EQ(cell_reader.Read(), "gauge value"); test_string_gauge->GetCell()->Set("Updated gauge value"); EXPECT_EQ(cell_reader.Read(), "Updated gauge value"); test_string_gauge->GetCell()->Set(""); EXPECT_EQ(cell_reader.Read(), ""); } TEST(CellReaderTest, StringGaugeReadWithLabels) { CellReader<std::string> cell_reader( "/tensorflow/monitoring/test/string_gauge_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), ""); EXPECT_EQ(cell_reader.Read("x2", "y2"), ""); test_string_gauge_with_labels->GetCell("x1", "y1")->Set("Value 1"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 1"); EXPECT_EQ(cell_reader.Read("x2", "y2"), ""); test_string_gauge_with_labels->GetCell("x2", "y2")->Set("Value 2"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 1"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "Value 2"); test_string_gauge_with_labels->GetCell("x1", "y1")->Set("Value 3"); test_string_gauge_with_labels->GetCell("x2", "y2")->Set("Value 3"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 3"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "Value 3"); test_string_gauge_with_labels->GetCell("x1", "y1")->Set(""); test_string_gauge_with_labels->GetCell("x2", "y2")->Set(""); EXPECT_EQ(cell_reader.Read("x1", "y1"), ""); EXPECT_EQ(cell_reader.Read("x2", "y2"), ""); } TEST(CellReaderTest, StringGaugeRepeatedSetAndRead) { CellReader<std::string> cell_reader( "/tensorflow/monitoring/test/string_gauge_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), ""); EXPECT_EQ(cell_reader.Read("x2", "y2"), ""); test_string_gauge_with_labels->GetCell("x1", "y1")->Set("Value 1"); test_string_gauge_with_labels->GetCell("x2", "y2")->Set("Value 2"); test_string_gauge_with_labels->GetCell("x1", "y1")->Set("Value 3"); test_string_gauge_with_labels->GetCell("x2", "y2")->Set("Value 3"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 3"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "Value 3"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 3"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "Value 3"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "Value 3"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "Value 3"); test_string_gauge_with_labels->GetCell("x1", "y1")->Set(""); test_string_gauge_with_labels->GetCell("x2", "y2")->Set(""); test_string_gauge_with_labels->GetCell("x1", "y1")->Set("-10"); test_string_gauge_with_labels->GetCell("x2", "y2")->Set("-10"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "-10"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "-10"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "-10"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "-10"); EXPECT_EQ(cell_reader.Read("x1", "y1"), "-10"); EXPECT_EQ(cell_reader.Read("x2", "y2"), "-10"); } TEST(CellReaderTest, BoolGaugeRead) { CellReader<bool> cell_reader("/tensorflow/monitoring/test/bool_gauge"); EXPECT_EQ(cell_reader.Read(), false); test_bool_gauge->GetCell()->Set(true); EXPECT_EQ(cell_reader.Read(), true); test_bool_gauge->GetCell()->Set(false); EXPECT_EQ(cell_reader.Read(), false); } TEST(CellReaderTest, BoolGaugeReadWithLabels) { CellReader<bool> cell_reader( "/tensorflow/monitoring/test/bool_gauge_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), false); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(true); EXPECT_EQ(cell_reader.Read("x1", "y1"), true); EXPECT_EQ(cell_reader.Read("x2", "y2"), false); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(true); EXPECT_EQ(cell_reader.Read("x1", "y1"), true); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(false); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(true); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(false); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(false); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), false); } TEST(CellReaderTest, BoolGaugeRepeatedSetAndRead) { CellReader<bool> cell_reader( "/tensorflow/monitoring/test/bool_gauge_with_labels"); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), false); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(true); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(false); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(true); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(true); EXPECT_EQ(cell_reader.Read("x1", "y1"), true); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); EXPECT_EQ(cell_reader.Read("x1", "y1"), true); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); EXPECT_EQ(cell_reader.Read("x1", "y1"), true); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(false); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(true); test_bool_gauge_with_labels->GetCell("x1", "y1")->Set(false); test_bool_gauge_with_labels->GetCell("x2", "y2")->Set(true); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); EXPECT_EQ(cell_reader.Read("x1", "y1"), false); EXPECT_EQ(cell_reader.Read("x2", "y2"), true); } TEST(CellReaderTest, PercentilesDeltaNoLabels) { CellReader<Percentiles> cell_reader( "/tensorflow/monitoring/test/percentiles"); Percentiles percentiles = cell_reader.Delta(); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); test_percentiles->GetCell()->Add(1.0); percentiles = cell_reader.Delta(); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1.0); test_percentiles->GetCell()->Add(-10.0); percentiles = cell_reader.Delta(); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), -10.0); test_percentiles->GetCell()->Add(1000.0); percentiles = cell_reader.Delta(); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1000.0); } TEST(CellReaderTest, PercentilesReadNoLabels) { CellReader<Percentiles> cell_reader( "/tensorflow/monitoring/test/percentiles"); Percentiles percentiles = cell_reader.Read(); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); test_percentiles->GetCell()->Add(1.0); percentiles = cell_reader.Read(); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1.0); test_percentiles->GetCell()->Add(-10.0); percentiles = cell_reader.Read(); EXPECT_EQ(percentiles.num(), 2); EXPECT_FLOAT_EQ(percentiles.sum(), -9.0); test_percentiles->GetCell()->Add(1000.0); percentiles = cell_reader.Read(); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), 991.0); } TEST(CellReaderTest, PercentilesWithLabels) { CellReader<Percentiles> cell_reader( "/tensorflow/monitoring/test/percentiles_with_labels"); Percentiles percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); test_percentiles_with_labels->GetCell("x1", "y1")->Add(-1.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), -1.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), -1.0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); test_percentiles_with_labels->GetCell("x2", "y2")->Add(1.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1.0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), -1.0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1.0); test_percentiles_with_labels->GetCell("x1", "y1")->Add(100.0); test_percentiles_with_labels->GetCell("x2", "y2")->Add(-100.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 100.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), -100.0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 2); EXPECT_FLOAT_EQ(percentiles.sum(), 99.0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 2); EXPECT_FLOAT_EQ(percentiles.sum(), -99.0); } TEST(CellReaderTest, PercentilesRepeatedSetAndRead) { CellReader<Percentiles> cell_reader( "/tensorflow/monitoring/test/percentiles_with_labels"); Percentiles percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0.0); test_percentiles_with_labels->GetCell("x1", "y1")->Add(1.0); test_percentiles_with_labels->GetCell("x2", "y2")->Add(-1.0); test_percentiles_with_labels->GetCell("x1", "y1")->Add(10.0); test_percentiles_with_labels->GetCell("x2", "y2")->Add(-10.0); test_percentiles_with_labels->GetCell("x1", "y1")->Add(100.0); test_percentiles_with_labels->GetCell("x2", "y2")->Add(-100.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), 111.0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), 111.0); percentiles = cell_reader.Delta("x1", "y1"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0); percentiles = cell_reader.Read("x1", "y1"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), 111.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), -111.0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), -111.0); percentiles = cell_reader.Delta("x2", "y2"); EXPECT_EQ(percentiles.num(), 0); EXPECT_FLOAT_EQ(percentiles.sum(), 0); percentiles = cell_reader.Read("x2", "y2"); EXPECT_EQ(percentiles.num(), 3); EXPECT_FLOAT_EQ(percentiles.sum(), -111.0); } #if GTEST_HAS_DEATH_TEST TEST(CellReaderTest, WrongNumberOfLabels) { CellReader<int64_t> cell_reader("/tensorflow/monitoring/test/counter"); EXPECT_EQ(cell_reader.Read(), 0); EXPECT_DEATH(cell_reader.Read("label1"), "has 0 labels"); EXPECT_DEATH(cell_reader.Read("label1", "label2"), "has 0 labels"); EXPECT_DEATH(cell_reader.Read("label1", "label2", "label3"), "has 0 labels"); CellReader<int64_t> cell_reader_with_labels( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_DEATH(cell_reader_with_labels.Read(), "has 2 labels"); EXPECT_DEATH(cell_reader_with_labels.Read("label1"), "has 2 labels"); EXPECT_EQ(cell_reader_with_labels.Read("label1", "label2"), 0); EXPECT_DEATH(cell_reader_with_labels.Read("label1", "label2", "label3"), "has 2 labels"); } TEST(CellReaderTest, MetricIsNotFound) { CellReader<int64_t> cell_reader("/metric/does/not/exist"); CellReader<int64_t> empty_cell_reader(""); EXPECT_DEATH(cell_reader.Read(), "Metric descriptor is not found"); EXPECT_DEATH(empty_cell_reader.Read(), "Metric descriptor is not found"); } TEST(CellReaderTest, StringGaugeDelta) { CellReader<std::string> cell_reader( "/tensorflow/monitoring/test/string_gauge"); CellReader<std::string> cell_reader_with_labels( "/tensorflow/monitoring/test/string_gauge_with_labels"); EXPECT_DEATH(cell_reader.Delta(), "Please use `Read` instead."); EXPECT_DEATH(cell_reader_with_labels.Delta("x", "y"), "Please use `Read` instead."); } TEST(CellReaderTest, BoolGaugeDelta) { CellReader<bool> cell_reader("/tensorflow/monitoring/test/bool_gauge"); CellReader<bool> cell_reader_with_labels( "/tensorflow/monitoring/test/bool_gauge_with_labels"); EXPECT_DEATH(cell_reader.Delta(), "Please use `Read` instead."); EXPECT_DEATH(cell_reader_with_labels.Delta("x", "y"), "Please use `Read` instead."); } TEST(CellReaderTest, InvalidType) { CellReader<std::vector<int>> cell_reader( "/tensorflow/monitoring/test/counter"); CellReader<std::vector<int>> cell_reader_with_labels( "/tensorflow/monitoring/test/counter_with_labels"); EXPECT_DEATH(cell_reader.Read(), "Tensorflow CellReader does not support type"); EXPECT_DEATH(cell_reader_with_labels.Delta("x", "y"), "Tensorflow CellReader does not support type"); test_counter->GetCell()->IncrementBy(1); test_counter_with_labels->GetCell("x", "y")->IncrementBy(1); EXPECT_DEATH(cell_reader.Read(), "Tensorflow CellReader does not support type"); EXPECT_DEATH(cell_reader_with_labels.Delta("x", "y"), "Tensorflow CellReader does not support type"); } #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/cell_reader.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/cell_reader_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2d2db3f4-da87-49d6-a8e3-2b09a3889fe9
cpp
tensorflow/tensorflow
counter
tensorflow/core/lib/monitoring/counter.h
tensorflow/core/lib/monitoring/counter_test.cc
#ifndef TENSORFLOW_CORE_LIB_MONITORING_COUNTER_H_ #define TENSORFLOW_CORE_LIB_MONITORING_COUNTER_H_ #include "xla/tsl/lib/monitoring/counter.h" #ifdef IS_MOBILE_PLATFORM #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" #else #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/monitoring/collection_registry.h" #include "tensorflow/core/lib/monitoring/metric_def.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/thread_annotations.h" #endif namespace tensorflow { namespace monitoring { using tsl::monitoring::Counter; using tsl::monitoring::CounterCell; } } #endif
#include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { auto* counter_with_labels = Counter<1>::New("/tensorflow/test/counter_with_labels", "Counter with one label.", "MyLabel"); TEST(LabeledCounterTest, InitializedWithZero) { EXPECT_EQ(0, counter_with_labels->GetCell("Empty")->value()); } TEST(LabeledCounterTest, GetCell) { auto* cell = counter_with_labels->GetCell("GetCellOp"); EXPECT_EQ(0, cell->value()); cell->IncrementBy(42); EXPECT_EQ(42, cell->value()); auto* same_cell = counter_with_labels->GetCell("GetCellOp"); EXPECT_EQ(42, same_cell->value()); same_cell->IncrementBy(58); EXPECT_EQ(100, cell->value()); EXPECT_EQ(100, same_cell->value()); } TEST(LabeledCounterDeathTest, DiesOnDecrement) { EXPECT_DEBUG_DEATH( { counter_with_labels->GetCell("DyingOp")->IncrementBy(-1); }, "decrement"); } auto* init_counter_without_labels = Counter<0>::New( "/tensorflow/test/init_counter_without_labels", "Counter without any labels to check if it is initialized as 0."); TEST(UnlabeledCounterTest, InitializedWithZero) { EXPECT_EQ(0, init_counter_without_labels->GetCell()->value()); } auto* counter_without_labels = Counter<0>::New( "/tensorflow/test/counter_without_labels", "Counter without any labels."); TEST(UnlabeledCounterTest, GetCell) { auto* cell = counter_without_labels->GetCell(); EXPECT_EQ(0, cell->value()); cell->IncrementBy(42); EXPECT_EQ(42, cell->value()); auto* same_cell = counter_without_labels->GetCell(); EXPECT_EQ(42, same_cell->value()); same_cell->IncrementBy(58); EXPECT_EQ(100, cell->value()); EXPECT_EQ(100, same_cell->value()); } auto* dead_counter_without_labels = Counter<0>::New( "/tensorflow/test/dead_counter_without_labels", "Counter without any labels which goes on to die on decrement."); TEST(UnlabeledCounterDeathTest, DiesOnDecrement) { EXPECT_DEBUG_DEATH( { dead_counter_without_labels->GetCell()->IncrementBy(-1); }, "decrement"); } TEST(LabeledCounterTest, SameName) { auto* same_counter = Counter<1>::New("/tensorflow/test/counter_with_labels", "Counter with one label.", "MyLabel"); EXPECT_TRUE(counter_with_labels->GetStatus().ok()); EXPECT_TRUE(same_counter->GetStatus().ok()); delete same_counter; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/counter.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/counter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3b4a14ae-fa50-425d-8ad4-aec55977753d
cpp
tensorflow/tensorflow
metric_def
tensorflow/core/lib/monitoring/metric_def.h
tensorflow/core/lib/monitoring/metric_def_test.cc
#ifndef TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_ #define TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_ #include <array> #include <functional> #include <string> #include <vector> #include "xla/tsl/lib/monitoring/metric_def.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/monitoring/types.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace monitoring { using tsl::monitoring::MetricDef; using tsl::monitoring::MetricKind; using tsl::monitoring::ValueType; } } #endif
#include "tensorflow/core/lib/monitoring/metric_def.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { TEST(MetricDefTest, Simple) { const MetricDef<MetricKind::kCumulative, int64_t, 0> metric_def0( "/tensorflow/metric0", "An example metric with no labels."); const MetricDef<MetricKind::kGauge, HistogramProto, 1> metric_def1( "/tensorflow/metric1", "An example metric with one label.", "LabelName"); EXPECT_EQ("/tensorflow/metric0", metric_def0.name()); EXPECT_EQ("/tensorflow/metric1", metric_def1.name()); EXPECT_EQ(MetricKind::kCumulative, metric_def0.kind()); EXPECT_EQ(MetricKind::kGauge, metric_def1.kind()); EXPECT_EQ("An example metric with no labels.", metric_def0.description()); EXPECT_EQ("An example metric with one label.", metric_def1.description()); EXPECT_EQ(0, metric_def0.label_descriptions().size()); ASSERT_EQ(1, metric_def1.label_descriptions().size()); EXPECT_EQ("LabelName", metric_def1.label_descriptions()[0]); } TEST(MetricDefTest, StringsPersist) { string name = "/tensorflow/metric0"; string description = "test description"; string label_description = "test label description"; const MetricDef<MetricKind::kCumulative, int64_t, 1> metric_def( name, description, label_description); name[4] = 'A'; description[4] = 'B'; label_description[4] = 'C'; EXPECT_NE(name, metric_def.name()); EXPECT_NE(description, metric_def.description()); EXPECT_NE(label_description, metric_def.label_descriptions()[0]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/metric_def.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/metric_def_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10fac47b-79d0-4e11-8153-c2ff1b272ea0
cpp
tensorflow/tensorflow
lock_free_queue
third_party/xla/xla/tsl/profiler/utils/lock_free_queue.h
third_party/xla/xla/tsl/profiler/utils/lock_free_queue_test.cc
#ifndef XLA_TSL_PROFILER_UTILS_LOCK_FREE_QUEUE_H_ #define XLA_TSL_PROFILER_UTILS_LOCK_FREE_QUEUE_H_ #include <stddef.h> #include <algorithm> #include <atomic> #include <cstddef> #include <optional> #include <utility> #include "xla/tsl/profiler/utils/no_init.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" namespace tsl { namespace profiler { namespace QueueBaseInternal { template <typename T, size_t kBlockSize> struct InternalBlock { static constexpr size_t kNumSlots = (kBlockSize - (sizeof(size_t ) + sizeof(InternalBlock* ))) / sizeof(NoInit<T>); size_t start; InternalBlock* next; NoInit<T> slots[kNumSlots]; }; template <bool kIsAtomic> struct Index; template <> struct Index<false> { size_t value; explicit Index(size_t pos = 0) : value(pos) {} size_t Get() const { return value; } void Set(size_t pos) { value = pos; } }; template <> struct Index<true> { std::atomic<size_t> value; explicit Index(size_t pos = 0) : value(pos) {} size_t Get() const { return value.load(std::memory_order_acquire); } void Set(size_t pos) { value.store(pos, std::memory_order_release); } }; template <typename T, size_t kBlockSize, bool kAtomicEnd> class BlockedQueueBase { using Block = InternalBlock<T, kBlockSize>; public: static constexpr size_t kNumSlotsPerBlockForTesting = Block::kNumSlots; BlockedQueueBase() : start_block_(new Block{0, nullptr}), start_(start_block_->start), end_block_(start_block_), end_(end_block_->start) {} ~BlockedQueueBase() { Clear(); DCHECK(Empty()); delete end_block_; } void Push(T&& element) { size_t end = End(); auto& slot = end_block_->slots[end++ - end_block_->start]; slot.Emplace(std::move(element)); if (TF_PREDICT_FALSE(end - end_block_->start == Block::kNumSlots)) { auto* new_block = new Block{end, nullptr}; end_block_ = (end_block_->next = new_block); } SetEnd(end); } void Clear() { size_t end = End(); while (start_ != end) { PopImpl(); } } std::optional<T> Pop() { std::optional<T> element; size_t end = End(); if (start_ != end) { element = PopImpl(); } return element; } protected: void SetEnd(size_t end) { end_.Set(end); } size_t End() const { return end_.Get(); } bool Empty() const { return (start_ == End()); } T PopImpl() { DCHECK(!Empty()); auto& slot = start_block_->slots[start_++ - start_block_->start]; T element = std::move(slot).Consume(); if (TF_PREDICT_FALSE(start_ - start_block_->start == Block::kNumSlots)) { auto* old_block = std::exchange(start_block_, start_block_->next); delete old_block; DCHECK_EQ(start_, start_block_->start); } return element; } Block* start_block_; size_t start_; Block* end_block_; Index<kAtomicEnd> end_; }; } template <typename T, size_t kBlockSize> class LockFreeQueue; template <typename T, size_t kBlockSize = 1 << 16 > class BlockedQueue final : public QueueBaseInternal::BlockedQueueBase<T, kBlockSize, false> { using Block = QueueBaseInternal::InternalBlock<T, kBlockSize>; friend class LockFreeQueue<T, kBlockSize>; public: BlockedQueue() = default; BlockedQueue(BlockedQueue&& src) { *this = std::move(src); } BlockedQueue& operator=(BlockedQueue&& src) { this->Clear(); std::swap(this->start_block_, src.start_block_); std::swap(this->start_, src.start_); std::swap(this->end_block_, src.end_block_); auto origin_end = this->End(); this->SetEnd(src.End()); src.SetEnd(origin_end); return *this; } class Iterator { public: bool operator==(const Iterator& another) const { return (index_ == another.index_) && (queue_ == another.queue_); } bool operator!=(const Iterator& another) const { return !(*this == another); } T& operator*() const { DCHECK(block_ != nullptr); DCHECK_GE(index_, block_->start); DCHECK_LT(index_, block_->start + Block::kNumSlots); DCHECK_LT(index_, queue_->End()); return block_->slots[index_ - block_->start].value; } T* operator->() const { return &(this->operator*()); } Iterator& operator++() { DCHECK(queue_ != nullptr); DCHECK(block_ != nullptr); if (index_ < queue_->End()) { ++index_; auto next_block_start = block_->start + Block::kNumSlots; DCHECK_LE(index_, next_block_start); if (index_ == next_block_start) { block_ = block_->next; DCHECK_NE(block_, nullptr); } } return (*this); } Iterator operator++(int) { auto temp(*this); this->operator++(); return temp; } private: friend class BlockedQueue; Iterator(BlockedQueue* queue, BlockedQueue::Block* block, size_t index) : queue_(queue), block_(block), index_(index) {}; BlockedQueue* queue_ = nullptr; BlockedQueue::Block* block_ = nullptr; size_t index_ = 0; }; Iterator begin() { return Iterator(this, this->start_block_, this->start_); } Iterator end() { return Iterator(this, this->end_block_, this->End()); } }; template <typename T, size_t kBlockSize = 1 << 16 > class LockFreeQueue final : public QueueBaseInternal::BlockedQueueBase<T, kBlockSize, true> { using Block = QueueBaseInternal::InternalBlock<T, kBlockSize>; public: BlockedQueue<T, kBlockSize> PopAll() { BlockedQueue<T, kBlockSize> result; auto* empty_block = result.start_block_; result.start_block_ = result.end_block_ = nullptr; result.start_ = this->start_; size_t end = this->End(); result.SetEnd(end); while (this->start_block_->start + Block::kNumSlots <= end) { auto* old_block = std::exchange(this->start_block_, this->start_block_->next); this->start_ = this->start_block_->start; old_block->next = nullptr; if (result.end_block_) { result.end_block_->next = old_block; } else { result.start_block_ = old_block; } result.end_block_ = old_block; } empty_block->start = this->start_block_->start; if (result.end_block_ == nullptr) { result.end_block_ = result.start_block_ = empty_block; } else { result.end_block_->next = empty_block; result.end_block_ = empty_block; } size_t bs = this->start_block_->start; for (size_t i = std::max(this->start_, bs); i < end; i++) { auto& src_slot = this->start_block_->slots[i - bs]; auto& dst_slot = result.end_block_->slots[i - bs]; dst_slot.Emplace(std::move(src_slot).Consume()); } this->start_ = end; return result; } }; } } #endif
#include "xla/tsl/profiler/utils/lock_free_queue.h" #include <cstddef> #include <cstdint> #include <string> #include <vector> #include "absl/synchronization/notification.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { template <typename T, size_t block_size_in_bytes> void RetriveEvents(LockFreeQueue<T, block_size_in_bytes>& queue, absl::Notification& stopped, std::vector<T>& result) { result.clear(); do { while (auto event = queue.Pop()) { result.emplace_back(*event); } } while (!stopped.HasBeenNotified()); while (auto event = queue.Pop()) { result.emplace_back(*event); } } template <typename T, size_t block_size_in_bytes, typename Generator> void FillEvents2Stage(LockFreeQueue<T, block_size_in_bytes>& queue, Generator gen, size_t event_count1, size_t event_count2, absl::Notification& stage1_filled, absl::Notification& stage1_grabbed, absl::Notification& stage2_filled, std::vector<T>& expected1, std::vector<T>& expected2) { expected1.clear(); expected2.clear(); for (size_t i = 0; i < event_count1; ++i) { T event = gen(i); expected1.emplace_back(event); queue.Push(std::move(event)); } stage1_filled.Notify(); stage1_grabbed.WaitForNotification(); for (size_t i = 0; i < event_count2; ++i) { T event = gen(i + event_count1); expected2.emplace_back(event); queue.Push(std::move(event)); } stage2_filled.Notify(); } template <typename T, size_t block_size_in_bytes, typename Generator> void TestProducerConsumer(size_t event_count1, size_t event_count2, Generator gen) { LockFreeQueue<T, block_size_in_bytes> queue; std::vector<T> expected1; std::vector<T> expected2; absl::Notification stage1_filled; absl::Notification stage1_grabbed; absl::Notification stage2_filled; auto producer = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "producer", [&, gen, event_count1, event_count2]() { FillEvents2Stage(queue, gen, event_count1, event_count2, stage1_filled, stage1_grabbed, stage2_filled, expected1, expected2); })); std::vector<T> result1; auto consumer1 = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "consumer1", [&queue, &result1, &stage1_filled]() { RetriveEvents(queue, stage1_filled, result1); })); consumer1.reset(); EXPECT_THAT(result1, ::testing::ContainerEq(expected1)); stage1_grabbed.Notify(); std::vector<T> result2; auto consumer2 = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "consumer2", [&queue, &result2, &stage2_filled]() { RetriveEvents(queue, stage2_filled, result2); })); consumer2.reset(); EXPECT_THAT(result2, ::testing::ContainerEq(expected2)); producer.reset(); } template <typename T, size_t block_size_in_bytes, typename Generator> void TestPopAll(size_t event_count1, size_t event_count2, Generator gen) { using TLockFreeQueue = LockFreeQueue<T, block_size_in_bytes>; using TBlockedQueue = BlockedQueue<T, block_size_in_bytes>; TLockFreeQueue queue; std::vector<T> expected1; std::vector<T> expected2; absl::Notification stage1_filled; absl::Notification stage1_grabbed; absl::Notification stage2_filled; auto producer = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "producer", [&, gen, event_count1, event_count2]() { FillEvents2Stage(queue, gen, event_count1, event_count2, stage1_filled, stage1_grabbed, stage2_filled, expected1, expected2); })); stage1_filled.WaitForNotification(); TBlockedQueue dumped_queue1 = queue.PopAll(); std::vector<T> result1; while (auto event = dumped_queue1.Pop()) { result1.emplace_back(*event); } EXPECT_THAT(result1, ::testing::ContainerEq(expected1)); stage1_grabbed.Notify(); producer.reset(); TBlockedQueue dumped_queue2 = queue.PopAll(); std::vector<T> result2; for (auto it = dumped_queue2.begin(), ite = dumped_queue2.end(); it != ite; ++it) { result2.emplace_back(*it); } EXPECT_THAT(result2, ::testing::ContainerEq(expected2)); } template <typename T, size_t block_size_in_bytes, typename Generator> void TestIterator(size_t event_count1, size_t event_count2, Generator gen) { BlockedQueue<T, block_size_in_bytes> queue; std::vector<T> expected1; for (size_t i = 0; i < event_count1; i++) { queue.Push(gen(i)); expected1.emplace_back(gen(i)); } std::vector<T> result1; while (auto event = queue.Pop()) { result1.emplace_back(*event); } EXPECT_THAT(result1, ::testing::ContainerEq(expected1)); std::vector<T> expected2; for (size_t i = 0; i < event_count2; i++) { queue.Push(gen(i + event_count1)); expected2.emplace_back(gen(i + event_count1)); } std::vector<T> result2; for (auto it = queue.begin(), ite = queue.end(); it != ite; ++it) { result2.emplace_back(*it); } EXPECT_THAT(result2, ::testing::ContainerEq(expected2)); } TEST(LockFreeQueueTest, Int64Event_ProducerConsumer) { auto gen = [](size_t i) -> int64_t { return static_cast<int64_t>(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, StringEvent_ProducerConsumer) { auto gen = [](size_t i) { return std::to_string(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots, gen); TestProducerConsumer<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestProducerConsumer<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestProducerConsumer<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, Int64Event_PopAll) { auto gen = [](size_t i) -> int64_t { return static_cast<int64_t>(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestPopAll<T, kBS, G>(kNumSlots - 3, 2, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, 3, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, 5, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestPopAll<T, kBS, G>(kNumSlots, 2, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestPopAll<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestPopAll<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, 2, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, StringEvent_PopAll) { auto gen = [](size_t i) -> std::string { return std::to_string(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestPopAll<T, kBS, G>(kNumSlots - 3, 2, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, 3, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, 5, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestPopAll<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestPopAll<T, kBS, G>(kNumSlots, 2, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots, gen); TestPopAll<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestPopAll<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestPopAll<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, 2, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestPopAll<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestPopAll<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, Int64Event_Iterator) { auto gen = [](size_t i) -> int64_t { return static_cast<int64_t>(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestIterator<T, kBS, G>(kNumSlots - 3, 2, gen); TestIterator<T, kBS, G>(kNumSlots - 3, 3, gen); TestIterator<T, kBS, G>(kNumSlots - 3, 5, gen); TestIterator<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestIterator<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestIterator<T, kBS, G>(kNumSlots, 2, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestIterator<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestIterator<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestIterator<T, kBS, G>(kNumSlots + 3, 2, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, StringEvent_Iterator) { auto gen = [](size_t i) { return std::to_string(i); }; using T = decltype(gen(0)); constexpr size_t kBS = 512; using G = decltype(gen); constexpr size_t kNumSlots = LockFreeQueue<T, kBS>::kNumSlotsPerBlockForTesting; EXPECT_GE(kNumSlots, 10); TestIterator<T, kBS, G>(kNumSlots - 3, 2, gen); TestIterator<T, kBS, G>(kNumSlots - 3, 3, gen); TestIterator<T, kBS, G>(kNumSlots - 3, 5, gen); TestIterator<T, kBS, G>(kNumSlots - 3, kNumSlots + 3, gen); TestIterator<T, kBS, G>(kNumSlots - 3, kNumSlots * 2 + 5, gen); TestIterator<T, kBS, G>(kNumSlots, 2, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots - 1, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots, gen); TestIterator<T, kBS, G>(kNumSlots, kNumSlots + 1, gen); TestIterator<T, kBS, G>(kNumSlots * 2, kNumSlots + 1, gen); TestIterator<T, kBS, G>(kNumSlots * 3, kNumSlots - 1, gen); TestIterator<T, kBS, G>(kNumSlots + 3, 2, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 4, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 3, gen); TestIterator<T, kBS, G>(kNumSlots + 3, kNumSlots - 2, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots - 5, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots, gen); TestIterator<T, kBS, G>(kNumSlots * 2 + 3, kNumSlots + 3, gen); } TEST(LockFreeQueueTest, Iterator_Basics) { BlockedQueue<int32_t, 512> queue; auto it = queue.begin(); EXPECT_EQ(it, queue.end()); EXPECT_EQ(++it, queue.end()); queue.Push(1); it = queue.begin(); EXPECT_NE(it, queue.end()); ++it; EXPECT_EQ(it, queue.end()); it = queue.begin(); auto it2 = it++; EXPECT_NE(it2, queue.end()); EXPECT_EQ(it, queue.end()); it2 = it++; EXPECT_EQ(it2, queue.end()); EXPECT_EQ(it, queue.end()); queue.Push(2); queue.Pop(); it = queue.begin(); EXPECT_NE(it, queue.end()); ++it; EXPECT_EQ(it, queue.end()); it = queue.begin(); it2 = it++; EXPECT_NE(it2, queue.end()); EXPECT_EQ(it, queue.end()); it2 = it++; EXPECT_EQ(it2, queue.end()); EXPECT_EQ(it, queue.end()); BlockedQueue<std::string, 512> str_queue; str_queue.Push("abcd"); auto str_it = str_queue.begin(); EXPECT_EQ(*str_it, std::string("abcd")); EXPECT_EQ(str_it->size(), 4); str_queue.Push("123456"); str_it++; EXPECT_EQ(*str_it, std::string("123456")); EXPECT_EQ(str_it->size(), 6); str_it++; EXPECT_EQ(str_it, str_queue.end()); const auto const_str_it = str_queue.begin(); EXPECT_EQ(*const_str_it, std::string("abcd")); EXPECT_EQ(const_str_it->size(), 4); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/lock_free_queue.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/lock_free_queue_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1e32686d-4ea4-44d1-9ca4-98c76bc91348
cpp
tensorflow/tensorflow
per_thread
third_party/xla/xla/tsl/profiler/utils/per_thread.h
third_party/xla/xla/tsl/profiler/utils/per_thread_test.cc
#ifndef XLA_TSL_PROFILER_UTILS_PER_THREAD_H_ #define XLA_TSL_PROFILER_UTILS_PER_THREAD_H_ #include <memory> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/synchronization/mutex.h" namespace tsl { namespace profiler { template <typename T> class PerThread { public: static T& Get() { static thread_local ThreadLocalPtr thread; return thread.Get(); } static std::vector<std::shared_ptr<T>> StartRecording() { return Registry::Get().StartRecording(); } static std::vector<std::shared_ptr<T>> StopRecording() { return Registry::Get().StopRecording(); } private: PerThread() = delete; ~PerThread() = delete; class Registry { public: static Registry& Get() { static Registry* singleton = new Registry(); return *singleton; } std::vector<std::shared_ptr<T>> StartRecording() { std::vector<std::shared_ptr<T>> threads; absl::MutexLock lock(&mutex_); threads.reserve(threads_.size()); for (auto iter = threads_.begin(); iter != threads_.end(); ++iter) { threads.push_back(iter->first); } recording_ = true; return threads; } std::vector<std::shared_ptr<T>> StopRecording() { std::vector<std::shared_ptr<T>> threads; absl::MutexLock lock(&mutex_); threads.reserve(threads_.size()); for (auto iter = threads_.begin(); iter != threads_.end();) { if (!iter->second) { threads.push_back(std::move(iter->first)); threads_.erase(iter++); } else { threads.push_back(iter->first); ++iter; } } recording_ = false; return threads; } void Register(std::shared_ptr<T> thread) { absl::MutexLock lock(&mutex_); threads_.insert_or_assign(std::move(thread), true); } void Unregister(const std::shared_ptr<T>& thread) { absl::MutexLock lock(&mutex_); if (!recording_) { threads_.erase(thread); } else { if (auto it = threads_.find(thread); it != threads_.end()) { it->second = false; } } } private: Registry() = default; Registry(const Registry&) = delete; void operator=(const Registry&) = delete; absl::Mutex mutex_; absl::flat_hash_map<std::shared_ptr<T>, bool> threads_ ABSL_GUARDED_BY(mutex_); bool recording_ ABSL_GUARDED_BY(mutex_) = false; }; class ThreadLocalPtr { public: ThreadLocalPtr() : ptr_(std::make_shared<T>()) { Registry::Get().Register(ptr_); } ~ThreadLocalPtr() { Registry::Get().Unregister(ptr_); } T& Get() { return *ptr_; } private: std::shared_ptr<T> ptr_; }; }; } } #endif
#include "xla/tsl/profiler/utils/per_thread.h" #include <cstdint> #include <list> #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/notification.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { enum ProfilingStage { kBeforeT1 = 1, kDuringT1T2 = 2, kAfterT2 = 3, kNever = 4 }; struct ThreadSyncControl { ThreadSyncControl() : could_start_profiling_1(4), could_stop_profiling_1(6), could_exit_all(6) {} absl::Notification profiling_1_started; absl::Notification profiling_1_stopped; absl::Notification exiting_all; absl::BlockingCounter could_start_profiling_1; absl::BlockingCounter could_stop_profiling_1; absl::BlockingCounter could_exit_all; }; static ThreadSyncControl& GetSyncContols() { static ThreadSyncControl* control = new ThreadSyncControl(); return *control; } void ThreadMain(int32_t id, ProfilingStage firstUseStage, ProfilingStage exitStage) { if (firstUseStage == kBeforeT1) { auto& td = PerThread<int32_t>::Get(); td = id; GetSyncContols().could_start_profiling_1.DecrementCount(); } if (exitStage == kBeforeT1) { return; } GetSyncContols().profiling_1_started.WaitForNotification(); if (firstUseStage == kDuringT1T2) { auto& td = PerThread<int32_t>::Get(); td = id; GetSyncContols().could_stop_profiling_1.DecrementCount(); } if (exitStage == kDuringT1T2) { return; } GetSyncContols().profiling_1_stopped.WaitForNotification(); if (firstUseStage == kAfterT2) { auto& td = PerThread<int32_t>::Get(); td = id; GetSyncContols().could_exit_all.DecrementCount(); } if (exitStage == kAfterT2) { return; } GetSyncContols().exiting_all.WaitForNotification(); } class ThreadFactory { public: ThreadFactory() : threads_existing_at_(kNever + 1) {} void Start(int32_t id, ProfilingStage firstUseStage, ProfilingStage exitStage) { std::string name = absl::StrCat("thread_", id); threads_existing_at_[exitStage].emplace_back(absl::WrapUnique( Env::Default()->StartThread(ThreadOptions(), name, [=]() { ThreadMain(id, firstUseStage, exitStage); }))); } void StopAllAt(ProfilingStage exitStage) { threads_existing_at_[exitStage].clear(); } private: std::vector<std::list<std::unique_ptr<tsl::Thread>>> threads_existing_at_; }; using ::testing::ElementsAre; using ::testing::WhenSorted; TEST(PerThreadRecordingTest, Lifecycles) { auto get_ids = [](std::vector<std::shared_ptr<int32_t>>& threads_data) { std::vector<int> threads_values; for (const auto& ptd : threads_data) { threads_values.push_back(*ptd); } return threads_values; }; ThreadFactory thread_factory; auto threads_data = PerThread<int32_t>::StartRecording(); auto threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, ::testing::SizeIs(0)); thread_factory.Start(111, kBeforeT1, kBeforeT1); thread_factory.Start(112, kBeforeT1, kDuringT1T2); thread_factory.Start(113, kBeforeT1, kAfterT2); thread_factory.Start(114, kBeforeT1, kNever); thread_factory.Start(122, kDuringT1T2, kDuringT1T2); thread_factory.Start(123, kDuringT1T2, kAfterT2); thread_factory.Start(124, kDuringT1T2, kNever); thread_factory.Start(133, kAfterT2, kAfterT2); thread_factory.Start(134, kAfterT2, kNever); thread_factory.Start(141, kNever, kBeforeT1); thread_factory.Start(142, kNever, kDuringT1T2); thread_factory.Start(143, kNever, kAfterT2); thread_factory.Start(144, kNever, kNever); GetSyncContols().could_start_profiling_1.Wait(); thread_factory.StopAllAt(kBeforeT1); threads_data = PerThread<int32_t>::StopRecording(); threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, WhenSorted(ElementsAre(111, 112, 113, 114))); threads_data = PerThread<int32_t>::StartRecording(); threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, WhenSorted(ElementsAre(112, 113, 114))); GetSyncContols().profiling_1_started.Notify(); thread_factory.Start(222, kDuringT1T2, kDuringT1T2); thread_factory.Start(223, kDuringT1T2, kAfterT2); thread_factory.Start(224, kDuringT1T2, kNever); thread_factory.Start(233, kAfterT2, kAfterT2); thread_factory.Start(234, kAfterT2, kNever); thread_factory.Start(242, kNever, kDuringT1T2); thread_factory.Start(243, kNever, kAfterT2); thread_factory.Start(244, kNever, kNever); GetSyncContols().could_stop_profiling_1.Wait(); thread_factory.StopAllAt(kDuringT1T2); threads_data = PerThread<int32_t>::StopRecording(); threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, WhenSorted(ElementsAre(112, 113, 114, 122, 123, 124, 222, 223, 224))); threads_data = PerThread<int32_t>::StartRecording(); threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, WhenSorted(ElementsAre(113, 114, 123, 124, 223, 224))); GetSyncContols().profiling_1_stopped.Notify(); thread_factory.Start(333, kAfterT2, kAfterT2); thread_factory.Start(334, kAfterT2, kNever); thread_factory.Start(343, kNever, kAfterT2); thread_factory.Start(344, kNever, kNever); GetSyncContols().could_exit_all.Wait(); thread_factory.StopAllAt(kAfterT2); threads_data = PerThread<int32_t>::StopRecording(); threads_values = get_ids(threads_data); EXPECT_THAT(threads_values, WhenSorted(ElementsAre(113, 114, 123, 124, 133, 134, 223, 224, 233, 234, 333, 334))); GetSyncContols().exiting_all.Notify(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/per_thread.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/per_thread_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0b4ecda2-0703-4893-9d1d-fe839e027d1e
cpp
tensorflow/tensorflow
timespan
third_party/xla/xla/tsl/profiler/utils/timespan.h
third_party/xla/xla/tsl/profiler/utils/timespan_test.cc
#ifndef XLA_TSL_PROFILER_UTILS_TIMESPAN_H_ #define XLA_TSL_PROFILER_UTILS_TIMESPAN_H_ #include <algorithm> #include <string> #include "absl/strings/str_cat.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "tsl/platform/logging.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { class Timespan { public: static Timespan FromEndPoints(uint64 begin_ps, uint64 end_ps) { if (begin_ps > end_ps) { return Timespan(begin_ps, 0); } return Timespan(begin_ps, end_ps - begin_ps); } explicit Timespan(uint64 begin_ps = 0, uint64 duration_ps = 0) : begin_ps_(begin_ps), duration_ps_(duration_ps) {} uint64 begin_ps() const { return begin_ps_; } uint64 middle_ps() const { return begin_ps_ + duration_ps_ / 2; } uint64 end_ps() const { return begin_ps_ + duration_ps_; } uint64 duration_ps() const { return duration_ps_; } bool Instant() const { return duration_ps() == 0; } bool Empty() const { return begin_ps() == 0 && duration_ps() == 0; } bool Overlaps(const Timespan& other) const { return begin_ps() <= other.end_ps() && other.begin_ps() <= end_ps(); } bool Includes(const Timespan& other) const { return begin_ps() <= other.begin_ps() && other.end_ps() <= end_ps(); } bool Includes(uint64 time_ps) const { return Includes(Timespan(time_ps)); } uint64 OverlappedDurationPs(const Timespan& other) const { if (!Overlaps(other)) return 0; return std::min(end_ps(), other.end_ps()) - std::max(begin_ps(), other.begin_ps()); } void ExpandToInclude(const Timespan& other) { *this = FromEndPoints(std::min(begin_ps(), other.begin_ps()), std::max(end_ps(), other.end_ps())); } bool operator<(const Timespan& other) const { if (begin_ps_ < other.begin_ps_) return true; if (begin_ps_ > other.begin_ps_) return false; return duration_ps_ > other.duration_ps_; } bool operator==(const Timespan& other) const { return begin_ps_ == other.begin_ps_ && duration_ps_ == other.duration_ps_; } std::string DebugString() const { return absl::StrCat("[", begin_ps(), ", ", end_ps(), "]"); } static bool ByDuration(const Timespan& a, const Timespan& b) { if (a.duration_ps_ < b.duration_ps_) return true; if (a.duration_ps_ > b.duration_ps_) return false; return a.begin_ps_ < b.begin_ps_; } private: uint64 begin_ps_; uint64 duration_ps_; }; inline Timespan PicoSpan(uint64 start_ps, uint64 end_ps) { return Timespan::FromEndPoints(start_ps, end_ps); } inline Timespan MilliSpan(double start_ms, double end_ms) { return PicoSpan(MilliToPico(start_ms), MilliToPico(end_ms)); } } } #endif
#include "xla/tsl/profiler/utils/timespan.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { TEST(TimespanTests, NonInstantSpanIncludesSingleTimeTests) { EXPECT_TRUE(Timespan(10, 2).Includes(12)); EXPECT_TRUE(Timespan(12, 1).Includes(12)); } TEST(TimespanTests, NonInstantSpanIncludesInstantSpanTests) { EXPECT_TRUE(Timespan(10, 2).Includes(Timespan(10, 0))); EXPECT_TRUE(Timespan(10, 2).Includes(Timespan(12, 0))); } TEST(TimespanTests, NonInstantSpanIncludesNonInstantSpanTests) { EXPECT_TRUE(Timespan(10, 5).Includes(Timespan(10, 4))); EXPECT_TRUE(Timespan(10, 5).Includes(Timespan(10, 5))); EXPECT_FALSE(Timespan(10, 5).Includes(Timespan(10, 6))); } TEST(TimespanTests, InstantSpanIncludesSingleTimeTests) { EXPECT_TRUE(Timespan(10, 0).Includes(10)); EXPECT_FALSE(Timespan(10, 0).Includes(9)); } TEST(TimespanTests, InstantSpanIncludesInstantSpanTests) { EXPECT_TRUE(Timespan(10, 0).Includes(Timespan(10, 0))); EXPECT_FALSE(Timespan(10, 0).Includes(Timespan(8, 0))); } TEST(TimespanTests, InstantSpanIncludesNonInstantSpanTests) { EXPECT_FALSE(Timespan(10, 0).Includes(Timespan(10, 1))); EXPECT_FALSE(Timespan(12, 0).Includes(Timespan(9, 100))); } TEST(TimespanTests, NonInstantSpanInstantSpanOverlappedDuration) { EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(8, 0))); EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(13, 0))); EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(14, 0))); } TEST(TimespanTests, NonInstantSpanNonInstantSpanOverlappedDuration) { EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(9, 3))); EXPECT_EQ(1, Timespan(12, 2).OverlappedDurationPs(Timespan(9, 4))); EXPECT_EQ(2, Timespan(12, 2).OverlappedDurationPs(Timespan(9, 5))); EXPECT_EQ(2, Timespan(12, 2).OverlappedDurationPs(Timespan(9, 6))); EXPECT_EQ(1, Timespan(12, 2).OverlappedDurationPs(Timespan(13, 1))); EXPECT_EQ(1, Timespan(12, 2).OverlappedDurationPs(Timespan(13, 2))); EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(14, 1))); EXPECT_EQ(0, Timespan(12, 2).OverlappedDurationPs(Timespan(14, 2))); EXPECT_EQ(2, Timespan(12, 5).OverlappedDurationPs(Timespan(13, 2))); EXPECT_EQ(2, Timespan(12, 2).OverlappedDurationPs(Timespan(12, 2))); } TEST(TimespanTests, InstantSpanInstantSpanOverlappedDuration) { EXPECT_EQ(0, Timespan(12, 0).OverlappedDurationPs(Timespan(9, 0))); EXPECT_EQ(0, Timespan(12, 0).OverlappedDurationPs(Timespan(12, 0))); } TEST(TimespanTests, InstantSpanNonInstantSpanOverlappedDuration) { EXPECT_EQ(0, Timespan(12, 0).OverlappedDurationPs(Timespan(8, 3))); EXPECT_EQ(0, Timespan(12, 0).OverlappedDurationPs(Timespan(8, 16))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/timespan.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/timespan_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
97fd9238-bf9e-4cb6-a0bf-0dc0fcda564c
cpp
tensorflow/tensorflow
xla_op_utils
third_party/xla/xla/tsl/profiler/convert/xla_op_utils.h
third_party/xla/xla/tsl/profiler/convert/xla_op_utils_test.cc
#ifndef XLA_TSL_PROFILER_CONVERT_XLA_OP_UTILS_H_ #define XLA_TSL_PROFILER_CONVERT_XLA_OP_UTILS_H_ #include <string> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace tsl { namespace profiler { inline bool IsFusion(absl::string_view category) { return absl::EndsWith(category, " fusion"); } inline std::string HloModuleNameWithProgramId(absl::string_view hlo_module_name, uint64_t program_id) { return absl::StrCat(hlo_module_name, "(", program_id, ")"); } } } #endif
#include "xla/tsl/profiler/convert/xla_op_utils.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(XlaOpUtilsTest, HloModuleNameWithProgramId) { EXPECT_EQ("module(123)", HloModuleNameWithProgramId("module", 123)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/xla_op_utils.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/xla_op_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c282ff11-8b1f-4ce2-90b0-556c13f12219
cpp
tensorflow/tensorflow
concurrency
third_party/xla/xla/backends/cpu/runtime/concurrency.h
third_party/xla/xla/backends/cpu/runtime/concurrency_test.cc
#ifndef XLA_BACKENDS_CPU_RUNTIME_CONCURRENCY_H_ #define XLA_BACKENDS_CPU_RUNTIME_CONCURRENCY_H_ #include <cstdint> #include <functional> #include <memory> #include <type_traits> #include "tsl/platform/logging.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/ThreadPool" namespace xla::cpu { template <typename F, std::enable_if_t<std::is_invocable_v<F, int64_t>>* = nullptr> void ScheduleAll(const Eigen::ThreadPoolDevice* intra_op_threadpool, int64_t n, F&& f) { DCHECK(n >= 0) << "n must be non-negative"; if (n == 0) return; if (n == 1) { f(0); return; } struct State { State(const Eigen::ThreadPoolDevice* intra_op_threadpool, F&& f) : intra_op_threadpool(intra_op_threadpool), f(std::forward<F>(f)) {} void Execute(std::shared_ptr<State> self, int64_t start, int64_t end) { while (end - start > 1) { uint64_t mid = (start + end) / 2; intra_op_threadpool->getPool()->Schedule( std::bind(&State::Execute, this, self, mid, end)); end = mid; } f(start); } const Eigen::ThreadPoolDevice* intra_op_threadpool; F f; }; auto s = std::make_shared<State>(intra_op_threadpool, std::forward<F>(f)); s->Execute(std::move(s), 0, n); } } #endif
#include "xla/backends/cpu/runtime/concurrency.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/synchronization/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { TEST(ConcurrencyTest, ScheduleAll) { tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "test", 10); std::vector<int64_t> tasks(64, 0); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); absl::BlockingCounter counter(64); ScheduleAll(&device, 64, [&](int64_t index) { tasks[index] += 1; counter.DecrementCount(); }); counter.Wait(); ASSERT_TRUE(absl::c_all_of(tasks, [](int64_t task) { return task == 1; })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/concurrency.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/concurrency_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cc7acb88-4403-4bed-a00b-7e0ce9b987e8
cpp
tensorflow/tensorflow
ffi
third_party/xla/xla/ffi/api/ffi.h
third_party/xla/xla/ffi/api/ffi_test.cc
#ifndef XLA_FFI_API_FFI_H_ #define XLA_FFI_API_FFI_H_ #ifdef XLA_FFI_FFI_H_ #error Two different XLA FFI implementations cannot be included together. \ See README.md for more details. #endif #include <algorithm> #include <atomic> #include <cassert> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <iostream> #include <limits> #include <memory> #include <numeric> #include <optional> #include <ostream> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "xla/ffi/api/c_api.h" #include "xla/ffi/api/api.h" namespace xla::ffi { using TypeId = XLA_FFI_TypeId; enum class DataType : uint8_t { INVALID = XLA_FFI_DataType_INVALID, PRED = XLA_FFI_DataType_PRED, S8 = XLA_FFI_DataType_S8, S16 = XLA_FFI_DataType_S16, S32 = XLA_FFI_DataType_S32, S64 = XLA_FFI_DataType_S64, U8 = XLA_FFI_DataType_U8, U16 = XLA_FFI_DataType_U16, U32 = XLA_FFI_DataType_U32, U64 = XLA_FFI_DataType_U64, F16 = XLA_FFI_DataType_F16, F32 = XLA_FFI_DataType_F32, F64 = XLA_FFI_DataType_F64, BF16 = XLA_FFI_DataType_BF16, C64 = XLA_FFI_DataType_C64, C128 = XLA_FFI_DataType_C128, TOKEN = XLA_FFI_DataType_TOKEN, F8E5M2 = XLA_FFI_DataType_F8E5M2, F8E4M3 = XLA_FFI_DataType_F8E4M3, F8E4M3FN = XLA_FFI_DataType_F8E4M3FN, F8E4M3B11FNUZ = XLA_FFI_DataType_F8E4M3B11FNUZ, F8E5M2FNUZ = XLA_FFI_DataType_F8E5M2FNUZ, F8E4M3FNUZ = XLA_FFI_DataType_F8E4M3FNUZ, F8E3M4 = XLA_FFI_DataType_F8E3M4, }; inline constexpr DataType PRED = DataType::PRED; inline constexpr DataType S8 = DataType::S8; inline constexpr DataType S16 = DataType::S16; inline constexpr DataType S32 = DataType::S32; inline constexpr DataType S64 = DataType::S64; inline constexpr DataType U8 = DataType::U8; inline constexpr DataType U16 = DataType::U16; inline constexpr DataType U32 = DataType::U32; inline constexpr DataType U64 = DataType::U64; inline constexpr DataType F16 = DataType::F16; inline constexpr DataType F32 = DataType::F32; inline constexpr DataType F64 = DataType::F64; inline constexpr DataType BF16 = DataType::BF16; inline constexpr DataType C64 = DataType::C64; inline constexpr DataType C128 = DataType::C128; inline constexpr DataType TOKEN = DataType::TOKEN; inline constexpr DataType F8E5M2 = DataType::F8E5M2; inline constexpr DataType F8E4M3 = DataType::F8E4M3; inline constexpr DataType F8E4M3FN = DataType::F8E4M3FN; inline constexpr DataType F8E4M3B11FNUZ = DataType::F8E4M3B11FNUZ; inline constexpr DataType F8E5M2FNUZ = DataType::F8E5M2FNUZ; inline constexpr DataType F8E4M3FNUZ = DataType::F8E4M3FNUZ; inline constexpr DataType F8E3M4 = DataType::F8E3M4; inline std::ostream& operator<<(std::ostream& os, const DataType dtype) { return os << static_cast<XLA_FFI_DataType>(dtype); } constexpr size_t ByteWidth(DataType dtype) { switch (dtype) { case DataType::INVALID: case DataType::TOKEN: return 0; case DataType::PRED: return 1; case DataType::S8: case DataType::U8: case DataType::F8E5M2: case DataType::F8E4M3: case DataType::F8E4M3FN: case DataType::F8E4M3B11FNUZ: case DataType::F8E5M2FNUZ: case DataType::F8E4M3FNUZ: case DataType::F8E3M4: return 1; case DataType::S16: case DataType::U16: case DataType::F16: case DataType::BF16: return 2; case DataType::S32: case DataType::U32: case DataType::F32: return 4; case DataType::S64: case DataType::U64: case DataType::F64: return 8; case DataType::C64: return 8; case DataType::C128: return 16; } } template <typename T> class Span { public: constexpr Span() : data_(nullptr), size_(0) {} Span(T* data, size_t size) : data_(data), size_(size) {} Span(const std::vector<std::remove_const_t<T>>& vec) : Span(vec.data(), vec.size()) {} T& operator[](size_t index) const { return data_[index]; } bool operator==(const Span<T>& other) const { return size() == other.size() && std::equal(begin(), end(), other.begin()); } T& front() const { return data_[0]; } T& back() const { return data_[size_ - 1]; } Span<T> first(size_t n) const { return Span<T>(data_, n); } Span<T> last(size_t n) const { return Span<T>(data_ + size_ - n, n); } size_t size() const { return size_; } T* begin() const { return data_; } T* end() const { return data_ + size_; } private: T* data_; size_t size_; }; enum class ErrorCode : uint8_t { kOk = XLA_FFI_Error_Code_OK, kCancelled = XLA_FFI_Error_Code_CANCELLED, kUnknown = XLA_FFI_Error_Code_UNKNOWN, kInvalidArgument = XLA_FFI_Error_Code_INVALID_ARGUMENT, kDeadlineExceeded = XLA_FFI_Error_Code_DEADLINE_EXCEEDED, kNotFound = XLA_FFI_Error_Code_NOT_FOUND, kAlreadyExists = XLA_FFI_Error_Code_ALREADY_EXISTS, kPermissionDenied = XLA_FFI_Error_Code_PERMISSION_DENIED, kResourceExhausted = XLA_FFI_Error_Code_RESOURCE_EXHAUSTED, kFailedPrecondition = XLA_FFI_Error_Code_FAILED_PRECONDITION, kAborted = XLA_FFI_Error_Code_ABORTED, kOutOfRange = XLA_FFI_Error_Code_OUT_OF_RANGE, kUnimplemented = XLA_FFI_Error_Code_UNIMPLEMENTED, kInternal = XLA_FFI_Error_Code_INTERNAL, kUnavailable = XLA_FFI_Error_Code_UNAVAILABLE, kDataLoss = XLA_FFI_Error_Code_DATA_LOSS, kUnauthenticated = XLA_FFI_Error_Code_UNAUTHENTICATED, }; class Error { public: Error() = default; Error(ErrorCode errc, std::string message) : errc_(errc), message_(std::move(message)) {} Error(XLA_FFI_Error_Code errc, std::string message) : Error(static_cast<ErrorCode>(errc), std::move(message)) {} bool success() const { return errc_ == ErrorCode::kOk; } bool failure() const { return !success(); } std::optional<ErrorCode> errc() const { return errc_; } const std::string& message() const { return message_; } static Error Success() { return Error(); } static Error Internal(std::string message) { return Error(ErrorCode::kInternal, std::move(message)); } static Error InvalidArgument(std::string message) { return Error(ErrorCode::kInvalidArgument, std::move(message)); } private: ErrorCode errc_ = ErrorCode::kOk; std::string message_; }; template <typename E> class Unexpected; template <typename T, typename E> class Expected { public: constexpr Expected(T value) : data_(std::move(value)) {} constexpr Expected(Unexpected<E> u); constexpr operator bool() const { return has_value(); } constexpr T& operator*() & { return value(); } constexpr const T& operator*() const& { return value(); } constexpr T&& operator*() && { return std::move(value()); } constexpr const T& operator*() const&& { return std::move(value()); } constexpr T* operator->() { return &value(); } constexpr const T* operator->() const { return &value(); } constexpr bool has_value() const { return std::holds_alternative<T>(data_); } constexpr bool has_error() const { return std::holds_alternative<E>(data_); } constexpr T& value() & { return std::get<T>(data_); } constexpr const T& value() const& { return std::get<T>(data_); } constexpr T&& value() && { return std::get<T>(std::move(data_)); } constexpr const T& value() const&& { return std::get<T>(std::move(data_)); } constexpr E& error() & { return std::get<E>(data_); } constexpr const E& error() const& { return std::get<E>(data_); } constexpr E&& error() && { return std::get<E>(std::move(data_)); } constexpr const E&& error() const&& { return std::get<E>(std::move(data_)); } private: std::variant<T, E> data_; }; template <typename E> class Unexpected { public: constexpr Unexpected(E error) : error_(std::move(error)) {} private: template <typename, typename> friend class Expected; E error_; }; Unexpected(const char*) -> Unexpected<std::string>; template <typename T, typename E> constexpr Expected<T, E>::Expected(Unexpected<E> u) : data_(std::move(u.error_)) {} template <typename T> class ErrorOr : public Expected<T, Error> { public: using Expected<T, Error>::Expected; }; class Promise; class Future { public: explicit Future(const Promise& promise); Future(Future&&) = default; Future& operator=(Future&&) = default; template <typename F> void OnReady(F&& f); private: friend class Promise; using Waiter = std::function<void(const std::optional<Error>& error)>; enum class State : uint8_t { kPending, kAvailable, kError }; struct WaiterAndState { static_assert(alignof(std::max_align_t) >= 8 && sizeof(Waiter*) == 8); static constexpr uint64_t kStateMask = (1ull << 2) - 1; static constexpr uint64_t kPointerMask = ~kStateMask; WaiterAndState(Waiter* ptr, State state) { value = (reinterpret_cast<uintptr_t>(ptr) & kPointerMask) | (static_cast<uintptr_t>(state) & kStateMask); } WaiterAndState() : WaiterAndState(nullptr, State::kPending) {} State state() const { return static_cast<State>(value & kStateMask); } Waiter* waiter() const { return reinterpret_cast<Waiter*>(value & kPointerMask); } uintptr_t value; }; static_assert(std::atomic<WaiterAndState>::is_always_lock_free, "WaiterAndState atomic must be lock-free"); struct Data { std::atomic<WaiterAndState> waiter_and_state = WaiterAndState(); std::optional<Error> error; }; std::shared_ptr<Data> data_; }; class Promise { public: Promise() : data_(std::make_shared<Future::Data>()) {} Promise(Promise&&) = default; Promise& operator=(Promise&&) = default; void SetAvailable(); void SetError(Error error); private: friend class Future; void SetCompleted(Future::State state); std::shared_ptr<Future::Data> data_; }; inline Future::Future(const Promise& promise) : data_(promise.data_) { assert(data_.use_count() == 2 && "Promise can be used to create at most one Future"); } template <typename F> void Future::OnReady(F&& f) { static_assert(std::is_invocable_v<F, const std::optional<Error>&>, "F must be compatible with Waiter signature"); WaiterAndState old_value = data_->waiter_and_state.load(std::memory_order_acquire); if (old_value.state() != State::kPending) { f(data_->error); return; } auto* waiter = new Waiter(std::forward<F>(f)); auto new_value = WaiterAndState(waiter, State::kPending); while (!data_->waiter_and_state.compare_exchange_weak( old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire)) { if (old_value.state() != State::kPending) { assert(old_value.waiter() == nullptr); (*waiter)(data_->error); delete waiter; return; } } assert(old_value.state() == State::kPending); } inline void Promise::SetAvailable() { SetCompleted(Future::State::kAvailable); } inline void Promise::SetError(Error error) { assert(error.errc() != ErrorCode::kOk); assert(data_->error == std::nullopt); data_->error = std::move(error); SetCompleted(Future::State::kError); } inline void Promise::SetCompleted(Future::State state) { Future::WaiterAndState old_value = data_->waiter_and_state.exchange( {nullptr, state}, std::memory_order_acq_rel); assert(old_value.state() == Future::State::kPending); if (Future::Waiter* waiter = old_value.waiter()) { (*waiter)(data_->error); delete waiter; } } class AnyBuffer { public: using Dimensions = Span<const int64_t>; explicit AnyBuffer(const XLA_FFI_Buffer* buf) : buf_(buf) { assert(buf != nullptr && "XLA_FFI_Buffer must be non-null"); } DataType element_type() const { return DataType(buf_->dtype); } Dimensions dimensions() const { return Dimensions(buf_->dims, buf_->rank); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t size_bytes() const { return ByteWidth(element_type()) * element_count(); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t element_count() const { Dimensions dims = dimensions(); return std::accumulate(dims.begin(), dims.end(), int64_t{1}, std::multiplies<>()); } void* untyped_data() const { return buf_->data; } private: const XLA_FFI_Buffer* buf_; }; namespace internal { template <DataType dtype> struct always_false : std::false_type {}; template <DataType dtype> struct DataTypeToNative { static_assert(always_false<dtype>::value, "unsupported data type"); }; #define XLA_FFI_REGISTER_DATATYPE_MAPPING(data_type_value, actual_type) \ template <> \ struct DataTypeToNative<data_type_value> { \ using type = actual_type; \ }; XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::PRED, bool); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U8, uint8_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U32, uint32_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U64, uint64_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S8, int8_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S16, int16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S32, int32_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S64, int64_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F32, float); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F64, double); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::BF16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::C64, std::complex<float>); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::C128, std::complex<double>); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::TOKEN, void); #undef XLA_FFI_REGISTER_DATATYPE_MAPPING inline constexpr size_t kDynamicRank = std::numeric_limits<size_t>::max(); } constexpr DataType ToComplex(DataType dtype) { switch (dtype) { case DataType::F32: return DataType::C64; case DataType::F64: return DataType::C128; default: return DataType::INVALID; } } constexpr DataType ToReal(DataType dtype) { switch (dtype) { case DataType::C64: return DataType::F32; case DataType::C128: return DataType::F64; default: return dtype; } } constexpr DataType ToImag(DataType dtype) { switch (dtype) { case DataType::C64: return DataType::F32; case DataType::C128: return DataType::F64; default: return dtype; } } template <DataType dtype> using NativeType = typename internal::DataTypeToNative<dtype>::type; template <DataType dtype> constexpr bool IsComplexType() { return std::is_same_v<NativeType<dtype>, std::complex<NativeType<ToReal(dtype)>>>; } static_assert(ToReal(DataType::C64) == DataType::F32); static_assert(ToReal(DataType::C128) == DataType::F64); static_assert(ToReal(DataType::F32) == DataType::F32); static_assert(ToComplex(DataType::F32) == DataType::C64); static_assert(ToComplex(DataType::F64) == DataType::C128); static_assert(ToComplex(DataType::S32) == DataType::INVALID); static_assert(ToComplex(ToReal(DataType::C64)) == DataType::C64); static_assert(ToComplex(ToImag(DataType::C128)) == DataType::C128); static_assert(IsComplexType<DataType::C64>()); static_assert(IsComplexType<DataType::C128>()); static_assert(!IsComplexType<DataType::F32>()); template <DataType dtype, size_t rank = internal::kDynamicRank> class Buffer { public: using Dimensions = AnyBuffer::Dimensions; explicit Buffer(const XLA_FFI_Buffer* buf) : buf_(buf) { assert(buf_ != nullptr && "XLA_FFI_Buffer must be non-null"); } DataType element_type() const { return dtype; } Dimensions dimensions() const { return Dimensions(buf_->dims, rank == internal::kDynamicRank ? buf_->rank : rank); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t size_bytes() const { return ByteWidth(dtype) * element_count(); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t element_count() const { Dimensions dims = dimensions(); return std::accumulate(dims.begin(), dims.end(), int64_t{1}, std::multiplies<>()); } void* untyped_data() const { return buf_->data; } NativeType<dtype>* typed_data() const { return reinterpret_cast<NativeType<dtype>*>(untyped_data()); } private: const XLA_FFI_Buffer* buf_; }; template <DataType dtype> using BufferR0 = Buffer<dtype, 0>; template <DataType dtype> using BufferR1 = Buffer<dtype, 1>; template <DataType dtype> using BufferR2 = Buffer<dtype, 2>; template <DataType dtype> using BufferR3 = Buffer<dtype, 3>; template <DataType dtype> using BufferR4 = Buffer<dtype, 4>; using Token = BufferR0<DataType::TOKEN>; namespace internal { template <DataType dtype, size_t rank> XLA_FFI_ATTRIBUTE_ALWAYS_INLINE std::optional<Buffer<dtype, rank>> DecodeBuffer( XLA_FFI_Buffer* buf, DiagnosticEngine& diagnostic) { if (auto buf_dtype = static_cast<DataType>(buf->dtype); XLA_FFI_PREDICT_FALSE(buf_dtype != dtype)) { return diagnostic.Emit("Wrong buffer dtype: expected ") << dtype << " but got " << buf_dtype; } if constexpr (rank != internal::kDynamicRank) { if (XLA_FFI_PREDICT_FALSE(buf->rank != rank)) { return diagnostic.Emit("Wrong buffer rank: expected ") << rank << " but got " << buf->rank; } } return Buffer<dtype, rank>(buf); } } template <DataType dtype, size_t rank = internal::kDynamicRank> using ResultBuffer = Result<Buffer<dtype, rank>>; template <DataType dtype> using ResultBufferR0 = ResultBuffer<dtype, 0>; template <DataType dtype> using ResultBufferR1 = ResultBuffer<dtype, 1>; template <DataType dtype> using ResultBufferR2 = ResultBuffer<dtype, 2>; template <DataType dtype> using ResultBufferR3 = ResultBuffer<dtype, 3>; template <DataType dtype> using ResultBufferR4 = ResultBuffer<dtype, 4>; template <> struct ArgBinding<AnyBuffer> { using Arg = AnyBuffer; }; template <DataType dtype, size_t rank> struct ArgBinding<Buffer<dtype, rank>> { using Arg = Buffer<dtype, rank>; }; template <> struct RetBinding<Result<AnyBuffer>> { using Ret = AnyBuffer; }; template <DataType dtype, size_t rank> struct RetBinding<Result<Buffer<dtype, rank>>> { using Ret = Buffer<dtype, rank>; }; inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_ArgType type) { switch (type) { case XLA_FFI_ArgType_BUFFER: return os << "buffer"; } } template <> struct ArgDecoding<AnyBuffer> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<AnyBuffer> Decode(XLA_FFI_ArgType type, void* arg, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_ArgType_BUFFER)) { return diagnostic.Emit("Wrong argument type: expected ") << XLA_FFI_ArgType_BUFFER << " but got " << type; } return AnyBuffer(reinterpret_cast<XLA_FFI_Buffer*>(arg)); } }; template <DataType dtype, size_t rank> struct ArgDecoding<Buffer<dtype, rank>> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Buffer<dtype, rank>> Decode( XLA_FFI_ArgType type, void* arg, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_ArgType_BUFFER)) { return diagnostic.Emit("Wrong argument type: expected ") << XLA_FFI_ArgType_BUFFER << " but got " << type; } return internal::DecodeBuffer<dtype, rank>( reinterpret_cast<XLA_FFI_Buffer*>(arg), diagnostic); } }; class RemainingArgs : public internal::RemainingArgsBase { public: using internal::RemainingArgsBase::RemainingArgsBase; template <typename T> ErrorOr<T> get(size_t index) const { size_t idx = offset() + index; if (XLA_FFI_PREDICT_FALSE(idx >= args()->size)) { return Unexpected( Error(ErrorCode::kInvalidArgument, "Index out of range")); } DiagnosticEngine diagnostic; std::optional<T> value = ArgDecoding<T>::Decode( args()->types[idx], args()->args[idx], diagnostic); if (XLA_FFI_PREDICT_FALSE(!value.has_value())) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::RemainingArgsTag> { static std::optional<RemainingArgs> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return RemainingArgs(&ctx.call_frame->args, offsets.args); } }; inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_RetType type) { switch (type) { case XLA_FFI_RetType_BUFFER: return os << "buffer"; } } template <> struct RetDecoding<AnyBuffer> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Result<AnyBuffer>> Decode(XLA_FFI_RetType type, void* ret, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_RetType_BUFFER)) { return diagnostic.Emit("Wrong result type: expected ") << XLA_FFI_RetType_BUFFER << " but got " << type; } return AnyBuffer(reinterpret_cast<XLA_FFI_Buffer*>(ret)); } }; template <DataType dtype, size_t rank> struct RetDecoding<Buffer<dtype, rank>> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Result<Buffer<dtype, rank>>> Decode( XLA_FFI_RetType type, void* ret, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_RetType_BUFFER)) { return diagnostic.Emit("Wrong result type: expected ") << XLA_FFI_RetType_BUFFER << " but got " << type; } return internal::DecodeBuffer<dtype, rank>( reinterpret_cast<XLA_FFI_Buffer*>(ret), diagnostic); } }; class RemainingRets : public internal::RemainingRetsBase { public: using internal::RemainingRetsBase::RemainingRetsBase; template <typename T> ErrorOr<Result<T>> get(size_t index) const { size_t idx = offset() + index; if (XLA_FFI_PREDICT_FALSE(idx >= rets()->size)) { return Unexpected( Error(ErrorCode::kInvalidArgument, "Index out of range")); } DiagnosticEngine diagnostic; std::optional<Result<T>> value = RetDecoding<T>::Decode( rets()->types[idx], rets()->rets[idx], diagnostic); if (XLA_FFI_PREDICT_FALSE(!value.has_value())) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::RemainingRetsTag> { static std::optional<RemainingRets> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return RemainingRets(&ctx.call_frame->rets, offsets.rets); } }; #define XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(T, TYPE) \ template <> \ struct AttrDecoding<Span<const T>> { \ using Type = Span<const T>; \ static std::optional<Type> Decode(XLA_FFI_AttrType type, void* attr, \ DiagnosticEngine& diagnostic) { \ if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_ARRAY)) { \ return diagnostic.Emit("Wrong attribute type: expected ") \ << XLA_FFI_AttrType_ARRAY << " but got " << type; \ } \ \ auto* array = reinterpret_cast<XLA_FFI_Array*>(attr); \ if (XLA_FFI_PREDICT_FALSE(array->dtype != TYPE)) { \ return diagnostic.Emit("Wrong array data type: expected ") \ << TYPE << " but got " << array->dtype; \ } \ \ return Span<const T>(reinterpret_cast<T*>(array->data), array->size); \ } \ } XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int8_t, XLA_FFI_DataType_S8); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int16_t, XLA_FFI_DataType_S16); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int32_t, XLA_FFI_DataType_S32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int64_t, XLA_FFI_DataType_S64); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint8_t, XLA_FFI_DataType_U8); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint16_t, XLA_FFI_DataType_U16); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint32_t, XLA_FFI_DataType_U32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint64_t, XLA_FFI_DataType_U64); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(float, XLA_FFI_DataType_F32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(double, XLA_FFI_DataType_F64); #undef XLA_FFI_REGISTER_ARRAY_ATTR_DECODING template <typename T> struct Pointer {}; template <typename T> struct AttrDecoding<Pointer<T>> { using Type = T*; static std::optional<Type> Decode(XLA_FFI_AttrType type, void* attr, DiagnosticEngine& diagnostic) { auto* scalar = reinterpret_cast<XLA_FFI_Scalar*>(attr); if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_SCALAR || scalar->dtype != XLA_FFI_DataType_S64)) { return diagnostic.Emit("Wrong attribute type: ") << "expected i64 scalar for passing pointer but got " << type; } static_assert(sizeof(uintptr_t) == sizeof(int64_t)); uintptr_t ptr = *reinterpret_cast<uintptr_t*>(scalar->value); return reinterpret_cast<Type>(ptr); } }; class Dictionary : public internal::DictionaryBase { public: using internal::DictionaryBase::DictionaryBase; template <typename T> ErrorOr<T> get(std::string_view name) const { DiagnosticEngine diagnostic; std::optional<T> value = internal::DictionaryBase::get<T>(name, diagnostic); if (!value.has_value()) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::AttrsTag<Dictionary>> { static std::optional<Dictionary> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return Dictionary(&ctx.call_frame->attrs); } }; template <> struct AttrDecoding<Dictionary> { using Type = Dictionary; static std::optional<Dictionary> Decode(XLA_FFI_AttrType type, void* attr, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_DICTIONARY)) { return diagnostic.Emit("Wrong attribute type: expected ") << XLA_FFI_AttrType_DICTIONARY << " but got " << type; } return Dictionary(reinterpret_cast<XLA_FFI_Attrs*>(attr)); } }; namespace internal { inline XLA_FFI_Error* CreateError(const XLA_FFI_Api* api, const Error& error) { XLA_FFI_Error_Create_Args args; args.struct_size = XLA_FFI_Error_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.errc = static_cast<XLA_FFI_Error_Code>(*error.errc()); args.message = error.message().c_str(); return api->XLA_FFI_Error_Create(&args); } inline void DestroyError(const XLA_FFI_Api* api, XLA_FFI_Error* error) { XLA_FFI_Error_Destroy_Args args; args.struct_size = XLA_FFI_Error_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; api->XLA_FFI_Error_Destroy(&args); } inline const char* GetErrorMessage(const XLA_FFI_Api* api, XLA_FFI_Error* error) { XLA_FFI_Error_GetMessage_Args args; args.struct_size = XLA_FFI_Error_GetMessage_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; api->XLA_FFI_Error_GetMessage(&args); return args.message; } } template <ExecutionStage stage> struct ResultEncoding<stage, Error> { static XLA_FFI_Error* Encode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, Error error) { if (XLA_FFI_PREDICT_TRUE(error.success())) { return nullptr; } return internal::CreateError(api, error); } }; template <typename T> struct ResultEncoding<ExecutionStage::kInstantiate, ErrorOr<std::unique_ptr<T>>> { static_assert(std::is_same_v<decltype(T::id), TypeId>, "State type must have a static `TypeId id` field"); static XLA_FFI_Error* Encode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, ErrorOr<std::unique_ptr<T>> state) { if (XLA_FFI_PREDICT_TRUE(state.has_value())) { XLA_FFI_State_Set_Args args; args.struct_size = XLA_FFI_State_Set_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.state = state.value().release(); args.deleter = +[](void* state) { delete reinterpret_cast<T*>(state); }; return api->XLA_FFI_State_Set(&args); } return internal::CreateError(api, state.error()); } }; template <ExecutionStage stage> struct ResultEncoding<stage, Future> { static std::variant<XLA_FFI_Error*, XLA_FFI_Future*> Encode( const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, Future future) { XLA_FFI_Future_Create_Args args; args.struct_size = XLA_FFI_Future_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = nullptr; if (auto* err = api->XLA_FFI_Future_Create(&args)) { return err; } assert(args.future != nullptr && "XLA_FFI_Future_Create failed"); future.OnReady([api, f = args.future](const std::optional<Error>& error) { auto abort_on_error = [api](XLA_FFI_Error* err) { if (XLA_FFI_PREDICT_TRUE(err == nullptr)) { return; } std::cerr << "Failed to signal XLA_FFI_Future completion: " << internal::GetErrorMessage(api, err) << std::endl; internal::DestroyError(api, err); std::abort(); }; if (XLA_FFI_PREDICT_FALSE(error.has_value())) { XLA_FFI_Future_SetError_Args args; args.struct_size = XLA_FFI_Future_SetError_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = f; args.error = internal::CreateError(api, *error); abort_on_error(api->XLA_FFI_Future_SetError(&args)); } else { XLA_FFI_Future_SetAvailable_Args args; args.struct_size = XLA_FFI_Future_SetAvailable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = f; abort_on_error(api->XLA_FFI_Future_SetAvailable(&args)); } }); return args.future; } }; template <typename T> struct PlatformStream {}; template <typename T> struct CtxDecoding<PlatformStream<T>> { using Type = T; static_assert(std::is_pointer_v<T>, "stream type must be a pointer"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_Stream_Get_Args args; args.struct_size = XLA_FFI_Stream_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.stream = nullptr; if (XLA_FFI_Error* error = api->XLA_FFI_Stream_Get(&args)) { diagnostic.Emit("Failed to get platform stream: ") << internal::GetErrorMessage(api, error); internal::DestroyError(api, error); return std::nullopt; } return reinterpret_cast<T>(args.stream); } }; class ScratchAllocator { public: ~ScratchAllocator(); ScratchAllocator(ScratchAllocator&&) = default; ScratchAllocator& operator=(ScratchAllocator&&) = default; std::optional<void*> Allocate(size_t size, size_t alignment = 1); private: friend struct CtxDecoding<ScratchAllocator>; ScratchAllocator(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic); struct Allocation { size_t size; void* data; }; const XLA_FFI_Api* api_; XLA_FFI_ExecutionContext* ctx_; DiagnosticEngine& diagnostic_; std::vector<Allocation> allocations_; }; template <> struct CtxDecoding<ScratchAllocator> { using Type = ScratchAllocator; static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { return ScratchAllocator(api, ctx, diagnostic); } }; inline std::optional<void*> ScratchAllocator::Allocate(size_t size, size_t alignment) { XLA_FFI_DeviceMemory_Allocate_Args args; args.struct_size = XLA_FFI_DeviceMemory_Allocate_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.size = size; args.alignment = alignment; args.data = nullptr; if (XLA_FFI_Error* error = api_->XLA_FFI_DeviceMemory_Allocate(&args)) { diagnostic_.Emit("Failed to allocate scratch memory: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); return std::nullopt; } allocations_.push_back({size, args.data}); return args.data; } inline ScratchAllocator::ScratchAllocator(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) : api_(api), ctx_(ctx), diagnostic_(diagnostic) {} inline ScratchAllocator::~ScratchAllocator() { for (Allocation& alloc : allocations_) { XLA_FFI_DeviceMemory_Free_Args args; args.struct_size = XLA_FFI_DeviceMemory_Free_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.size = alloc.size; args.data = alloc.data; if (XLA_FFI_Error* error = api_->XLA_FFI_DeviceMemory_Free(&args)) { diagnostic_.Emit("Failed to free scratch memory: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); } } } class ThreadPool { public: template <typename F> void Schedule(F&& f) { XLA_FFI_Task* task = +[](void* data) { auto* f = reinterpret_cast<F*>(data); (*f)(); delete f; }; F* data = new F(std::forward<F>(f)); XLA_FFI_ThreadPool_Schedule_Args args; args.struct_size = XLA_FFI_ThreadPool_Schedule_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.task = task; args.data = data; if (XLA_FFI_Error* error = api_->XLA_FFI_ThreadPool_Schedule(&args)) { diagnostic_.Emit("Failed to schedule task on a thread pool: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); task(data); } } private: friend struct CtxDecoding<ThreadPool>; ThreadPool(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic); const XLA_FFI_Api* api_; XLA_FFI_ExecutionContext* ctx_; DiagnosticEngine& diagnostic_; }; template <> struct CtxDecoding<ThreadPool> { using Type = ThreadPool; static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { return ThreadPool(api, ctx, diagnostic); } }; inline ThreadPool::ThreadPool(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) : api_(api), ctx_(ctx), diagnostic_(diagnostic) {} namespace internal { inline XLA_FFI_Error* RegisterType(const XLA_FFI_Api* api, std::string_view name, XLA_FFI_TypeId* type_id) { XLA_FFI_TypeId_Register_Args args; args.struct_size = XLA_FFI_TypeId_Register_Args_STRUCT_SIZE; args.extension_start = nullptr; args.name = XLA_FFI_ByteSpan{name.data(), name.size()}; args.type_id = type_id; return api->XLA_FFI_TypeId_Register(&args); } } #define XLA_FFI_REGISTER_TYPE(API, NAME, TYPE_ID) \ XLA_FFI_REGISTER_TYPE_(API, NAME, TYPE_ID, __COUNTER__) #define XLA_FFI_REGISTER_TYPE_(API, NAME, TYPE_ID, N) \ XLA_FFI_REGISTER_TYPE__(API, NAME, TYPE_ID, N) #define XLA_FFI_REGISTER_TYPE__(API, NAME, TYPE_ID, N) \ XLA_FFI_ATTRIBUTE_UNUSED static const XLA_FFI_Error* \ xla_ffi_type_##N##_registered_ = [] { \ return ::xla::ffi::internal::RegisterType(API, NAME, TYPE_ID); \ }() template <typename T> struct UserData {}; template <typename T> struct CtxDecoding<UserData<T>> { using Type = T*; static_assert(std::is_same_v<decltype(T::id), TypeId>, "UserData type must have a static `TypeId id` field"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_ExecutionContext_Get_Args args; args.struct_size = XLA_FFI_ExecutionContext_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.data = nullptr; assert(args.type_id->type_id > 0 && "type must be registered with XLA FFI"); if (XLA_FFI_Error* err = api->XLA_FFI_ExecutionContext_Get(&args); err) { diagnostic.Emit("Failed to get user data from execution context: ") << internal::GetErrorMessage(api, err); internal::DestroyError(api, err); return std::nullopt; } return static_cast<Type>(args.data); } }; template <typename T> struct State {}; template <typename T> struct CtxDecoding<State<T>> { using Type = T*; static_assert(std::is_same_v<decltype(T::id), TypeId>, "State type must have a static `TypeId id` field"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_State_Get_Args args; args.struct_size = XLA_FFI_State_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.state = nullptr; assert(args.type_id->type_id > 0 && "type must be registered with XLA FFI"); if (XLA_FFI_Error* err = api->XLA_FFI_State_Get(&args); err) { diagnostic.Emit("Failed to get state from execution context: ") << internal::GetErrorMessage(api, err); internal::DestroyError(api, err); return std::nullopt; } return static_cast<Type>(args.state); } }; } #endif
#include "xla/ffi/api/ffi.h" #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/synchronization/blocking_counter.h" #include "xla/ffi/api/c_api.h" #include "xla/ffi/call_frame.h" #include "xla/ffi/execution_context.h" #include "xla/ffi/execution_state.h" #include "xla/ffi/ffi_api.h" #include "xla/ffi/type_id_registry.h" #include "xla/primitive_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/chain.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" namespace xla::ffi { enum class Int32BasedEnum : int32_t { kOne = 1, kTwo = 2, }; static constexpr int64_t kI32MaxValue = std::numeric_limits<int32_t>::max(); enum class Int64BasedEnum : int64_t { kOne = kI32MaxValue + 1, kTwo = kI32MaxValue + 2, }; } XLA_FFI_REGISTER_ENUM_ATTR_DECODING(::xla::ffi::Int32BasedEnum); XLA_FFI_REGISTER_ENUM_ATTR_DECODING(::xla::ffi::Int64BasedEnum); namespace xla::ffi { struct PairOfI32AndF32 { int32_t i32; float f32; }; struct TupleOfI32 { int32_t i32_0; int32_t i32_1; int32_t i32_2; int32_t i32_3; }; } XLA_FFI_REGISTER_STRUCT_ATTR_DECODING(::xla::ffi::PairOfI32AndF32, ::xla::ffi::StructMember<int32_t>("i32"), ::xla::ffi::StructMember<float>("f32")); XLA_FFI_REGISTER_STRUCT_ATTR_DECODING( ::xla::ffi::TupleOfI32, ::xla::ffi::StructMember<int32_t>("i32_0"), ::xla::ffi::StructMember<int32_t>("i32_1"), ::xla::ffi::StructMember<int32_t>("i32_2"), ::xla::ffi::StructMember<int32_t>("i32_3")); namespace xla::ffi { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(FfiTest, DataTypeEnumValue) { auto encoded = [](auto value) { return static_cast<uint8_t>(value); }; EXPECT_EQ(encoded(PrimitiveType::PRED), encoded(DataType::PRED)); EXPECT_EQ(encoded(PrimitiveType::S8), encoded(DataType::S8)); EXPECT_EQ(encoded(PrimitiveType::S16), encoded(DataType::S16)); EXPECT_EQ(encoded(PrimitiveType::S32), encoded(DataType::S32)); EXPECT_EQ(encoded(PrimitiveType::S64), encoded(DataType::S64)); EXPECT_EQ(encoded(PrimitiveType::U8), encoded(DataType::U8)); EXPECT_EQ(encoded(PrimitiveType::U16), encoded(DataType::U16)); EXPECT_EQ(encoded(PrimitiveType::U32), encoded(DataType::U32)); EXPECT_EQ(encoded(PrimitiveType::U64), encoded(DataType::U64)); EXPECT_EQ(encoded(PrimitiveType::F16), encoded(DataType::F16)); EXPECT_EQ(encoded(PrimitiveType::F32), encoded(DataType::F32)); EXPECT_EQ(encoded(PrimitiveType::F64), encoded(DataType::F64)); EXPECT_EQ(encoded(PrimitiveType::BF16), encoded(DataType::BF16)); EXPECT_EQ(encoded(PrimitiveType::C64), encoded(DataType::C64)); EXPECT_EQ(encoded(PrimitiveType::C128), encoded(DataType::C128)); EXPECT_EQ(encoded(PrimitiveType::TOKEN), encoded(DataType::TOKEN)); EXPECT_EQ(encoded(PrimitiveType::F8E5M2), encoded(DataType::F8E5M2)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3), encoded(DataType::F8E4M3)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3FN), encoded(DataType::F8E4M3FN)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3B11FNUZ), encoded(DataType::F8E4M3B11FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E5M2FNUZ), encoded(DataType::F8E5M2FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3FNUZ), encoded(DataType::F8E4M3FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E3M4), encoded(DataType::F8E3M4)); } TEST(FfiTest, DataTypeByteWidth) { EXPECT_EQ(0, ByteWidth(DataType::TOKEN)); EXPECT_EQ(0, ByteWidth(DataType::INVALID)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::PRED), ByteWidth(DataType::PRED)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S8), ByteWidth(DataType::S8)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S16), ByteWidth(DataType::S16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S32), ByteWidth(DataType::S32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S64), ByteWidth(DataType::S64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U8), ByteWidth(DataType::U8)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U16), ByteWidth(DataType::U16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U32), ByteWidth(DataType::U32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U64), ByteWidth(DataType::U64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F16), ByteWidth(DataType::F16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F32), ByteWidth(DataType::F32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F64), ByteWidth(DataType::F64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::BF16), ByteWidth(DataType::BF16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::C64), ByteWidth(DataType::C64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::C128), ByteWidth(DataType::C128)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E5M2), ByteWidth(DataType::F8E5M2)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3), ByteWidth(DataType::F8E4M3)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3FN), ByteWidth(DataType::F8E4M3FN)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3B11FNUZ), ByteWidth(DataType::F8E4M3B11FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E5M2FNUZ), ByteWidth(DataType::F8E5M2FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3FNUZ), ByteWidth(DataType::F8E4M3FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E3M4), ByteWidth(DataType::F8E3M4)); } TEST(FfiTest, ErrorEnumValue) { auto encoded = [](auto value) { return static_cast<uint8_t>(value); }; EXPECT_EQ(encoded(absl::StatusCode::kOk), encoded(ErrorCode::kOk)); EXPECT_EQ(encoded(absl::StatusCode::kCancelled), encoded(ErrorCode::kCancelled)); EXPECT_EQ(encoded(absl::StatusCode::kUnknown), encoded(ErrorCode::kUnknown)); EXPECT_EQ(encoded(absl::StatusCode::kInvalidArgument), encoded(ErrorCode::kInvalidArgument)); EXPECT_EQ(encoded(absl::StatusCode::kNotFound), encoded(ErrorCode::kNotFound)); EXPECT_EQ(encoded(absl::StatusCode::kAlreadyExists), encoded(ErrorCode::kAlreadyExists)); EXPECT_EQ(encoded(absl::StatusCode::kPermissionDenied), encoded(ErrorCode::kPermissionDenied)); EXPECT_EQ(encoded(absl::StatusCode::kResourceExhausted), encoded(ErrorCode::kResourceExhausted)); EXPECT_EQ(encoded(absl::StatusCode::kFailedPrecondition), encoded(ErrorCode::kFailedPrecondition)); EXPECT_EQ(encoded(absl::StatusCode::kAborted), encoded(ErrorCode::kAborted)); EXPECT_EQ(encoded(absl::StatusCode::kOutOfRange), encoded(ErrorCode::kOutOfRange)); EXPECT_EQ(encoded(absl::StatusCode::kUnimplemented), encoded(ErrorCode::kUnimplemented)); EXPECT_EQ(encoded(absl::StatusCode::kInternal), encoded(ErrorCode::kInternal)); EXPECT_EQ(encoded(absl::StatusCode::kUnavailable), encoded(ErrorCode::kUnavailable)); EXPECT_EQ(encoded(absl::StatusCode::kDataLoss), encoded(ErrorCode::kDataLoss)); EXPECT_EQ(encoded(absl::StatusCode::kUnauthenticated), encoded(ErrorCode::kUnauthenticated)); } TEST(FfiTest, Expected) { ErrorOr<int32_t> value(42); EXPECT_TRUE(value.has_value()); EXPECT_FALSE(value.has_error()); EXPECT_EQ(*value, 42); ErrorOr<int32_t> error(Error(ErrorCode::kInternal, "Test error")); EXPECT_FALSE(error.has_value()); EXPECT_TRUE(error.has_error()); EXPECT_THAT(error.error().message(), HasSubstr("Test error")); } TEST(FfiTest, FutureSetAvailable) { Promise promise; Future future(promise); promise.SetAvailable(); future.OnReady([](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); }); } TEST(FfiTest, FutureSetError) { Promise promise; Future future(promise); promise.SetError(Error(ErrorCode::kInternal, "Test error")); future.OnReady([](const std::optional<Error>& error) { EXPECT_TRUE(error.has_value()); EXPECT_THAT(error->message(), HasSubstr("Test error")); }); } TEST(FfiTest, FutureSetAvailableFromThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Promise promise; Future future(promise); int32_t value = 0; absl::BlockingCounter counter(1); future.OnReady([&](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); EXPECT_EQ(value, 42); counter.DecrementCount(); }); pool.Schedule([&]() { value = 42; promise.SetAvailable(); }); counter.Wait(); } TEST(FfiTest, FutureSetErrorFromThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Promise promise; Future future(promise); int32_t value = 0; absl::BlockingCounter counter(1); future.OnReady([&](const std::optional<Error>& error) { EXPECT_TRUE(error.has_value()); EXPECT_THAT(error->message(), HasSubstr("Test error")); EXPECT_EQ(value, 42); counter.DecrementCount(); }); pool.Schedule([&]() { value = 42; promise.SetError(Error(ErrorCode::kInternal, "Test error")); }); counter.Wait(); } TEST(FfiTest, FutureRace) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); for (int32_t i = 0; i < 1000; ++i) { Promise promise; Future future(promise); absl::BlockingCounter counter(1); pool.Schedule([&]() { promise.SetAvailable(); }); pool.Schedule([&]() { future.OnReady([&](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); counter.DecrementCount(); }); }); counter.Wait(); } } TEST(FfiTest, ReturnError) { CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto handler = Ffi::Bind().To( []() { return Error(ErrorCode::kInternal, "Test error"); }); auto status = Call(*handler, call_frame); EXPECT_EQ(status, absl::InternalError("Test error")); } TEST(FfiTest, AnyBufferArgument) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([&](auto buffer) { EXPECT_EQ(buffer.untyped_data(), storage.data()); EXPECT_EQ(buffer.dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, BufferArgument) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR2<F32>>().To([&](auto buffer) { EXPECT_EQ(buffer.typed_data(), storage.data()); EXPECT_EQ(buffer.dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AnyBufferResult) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 1); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Ret<AnyBuffer>().To([&](Result<AnyBuffer> buffer) { EXPECT_EQ(buffer->untyped_data(), storage.data()); EXPECT_EQ(buffer->dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, MissingBufferArgument) { CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR1<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong number of arguments"))); } TEST(FfiTest, WrongRankBufferArgument) { std::vector<int32_t> storage(4, 0.0); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(int32_t)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR1<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong buffer rank: expected 1 but got 2"))); } TEST(FfiTest, WrongTypeBufferArgument) { std::vector<int32_t> storage(4, 0.0); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(int32_t)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::S32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR2<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT( status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong buffer dtype: expected F32 but got S32"))); } TEST(FfiTest, TokenArgument) { CallFrameBuilder builder(1, 0); builder.AddBufferArg(se::DeviceMemoryBase(), PrimitiveType::TOKEN, {}); auto call_frame = builder.Build(); auto fn = [&](Token tok) { EXPECT_EQ(tok.typed_data(), nullptr); EXPECT_EQ(tok.dimensions().size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().Arg<Token>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, RemainingArgs) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto fn = [&](RemainingArgs args) { EXPECT_EQ(args.size(), 1); ErrorOr<AnyBuffer> arg0 = args.get<AnyBuffer>(0); ErrorOr<AnyBuffer> arg1 = args.get<AnyBuffer>(1); EXPECT_TRUE(arg0.has_value()); EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().RemainingArgs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, RemainingRets) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 2); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto fn = [&](Result<AnyBuffer> ret, RemainingRets rets) { EXPECT_EQ(rets.size(), 1); ErrorOr<Result<AnyBuffer>> ret0 = rets.get<AnyBuffer>(0); ErrorOr<Result<AnyBuffer>> ret1 = rets.get<AnyBuffer>(1); EXPECT_TRUE(ret0.has_value()); EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ret<AnyBuffer>().RemainingRets().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, OptionalArgs) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); { auto fn = [&](std::optional<AnyBuffer> arg0) { EXPECT_TRUE(arg0.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<AnyBuffer> arg0, std::optional<AnyBuffer> arg1) { EXPECT_TRUE(arg0.has_value()); EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](AnyBuffer arg0, std::optional<AnyBuffer> arg1) { EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Arg<AnyBuffer>().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<AnyBuffer> arg0, RemainingArgs args) { EXPECT_TRUE(arg0.has_value()); EXPECT_EQ(args.size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().RemainingArgs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } } TEST(FfiTest, OptionalRets) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 1); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); { auto fn = [&](std::optional<Result<AnyBuffer>> ret0) { EXPECT_TRUE(ret0.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<Result<AnyBuffer>> ret0, std::optional<Result<AnyBuffer>> ret1) { EXPECT_TRUE(ret0.has_value()); EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](Result<AnyBuffer> ret0, std::optional<Result<AnyBuffer>> ret1) { EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ret<AnyBuffer>().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<Result<AnyBuffer>> ret0, RemainingRets rets) { EXPECT_TRUE(ret0.has_value()); EXPECT_EQ(rets.size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().RemainingRets().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } } TEST(FfiTest, AutoBinding) { static constexpr char kI32[] = "i32"; auto handler = Ffi::BindTo(+[](AnyBuffer buffer, Attr<int32_t, kI32> foo) { EXPECT_EQ(*foo, 42); return Error::Success(); }); std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert(kI32, 42); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingResult) { auto handler = Ffi::BindTo(+[](Result<AnyBuffer> buffer) { return Error::Success(); }); CallFrameBuilder builder(0, 1); builder.AddBufferRet(se::DeviceMemoryBase(), PrimitiveType::F32, {}); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingStructs) { auto handler = Ffi::BindTo(+[](PairOfI32AndF32 attrs) { EXPECT_EQ(attrs.i32, 42); EXPECT_EQ(attrs.f32, 42.0f); return Error::Success(); }); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingDictionary) { auto handler = Ffi::BindTo(+[](Dictionary attrs) { EXPECT_EQ(*attrs.get<int32_t>("i32"), 42); EXPECT_EQ(*attrs.get<float>("f32"), 42.0f); return Error::Success(); }); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } struct TestStreamSt; using TestStream = TestStreamSt*; template <> struct CtxBinding<TestStream> { using Ctx = PlatformStream<TestStream>; }; TEST(FfiTest, BindingPlatformStreamInference) { (void)Ffi::BindTo(+[](TestStream stream) { return Error::Success(); }); } TEST(FfiTest, ArrayAttr) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("arr0", std::vector<int8_t>({1, 2, 3, 4})); attrs.Insert("arr1", std::vector<int16_t>({1, 2, 3, 4})); attrs.Insert("arr2", std::vector<int32_t>({1, 2, 3, 4})); attrs.Insert("arr3", std::vector<int64_t>({1, 2, 3, 4})); attrs.Insert("arr4", std::vector<uint8_t>({1, 2, 3, 4})); attrs.Insert("arr5", std::vector<uint16_t>({1, 2, 3, 4})); attrs.Insert("arr6", std::vector<uint32_t>({1, 2, 3, 4})); attrs.Insert("arr7", std::vector<uint64_t>({1, 2, 3, 4})); attrs.Insert("arr8", std::vector<float>({1, 2, 3, 4})); attrs.Insert("arr9", std::vector<double>({1, 2, 3, 4})); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](auto arr0, auto arr1, auto arr2, auto arr3, auto arr4, auto arr5, auto arr6, auto arr7, auto arr8, auto arr9) { EXPECT_EQ(arr0, Span<const int8_t>({1, 2, 3, 4})); EXPECT_EQ(arr1, Span<const int16_t>({1, 2, 3, 4})); EXPECT_EQ(arr2, Span<const int32_t>({1, 2, 3, 4})); EXPECT_EQ(arr3, Span<const int64_t>({1, 2, 3, 4})); EXPECT_EQ(arr4, Span<const uint8_t>({1, 2, 3, 4})); EXPECT_EQ(arr5, Span<const uint16_t>({1, 2, 3, 4})); EXPECT_EQ(arr6, Span<const uint32_t>({1, 2, 3, 4})); EXPECT_EQ(arr7, Span<const uint64_t>({1, 2, 3, 4})); EXPECT_EQ(arr8, Span<const float>({1, 2, 3, 4})); EXPECT_EQ(arr9, Span<const double>({1, 2, 3, 4})); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Span<const int8_t>>("arr0") .Attr<Span<const int16_t>>("arr1") .Attr<Span<const int32_t>>("arr2") .Attr<Span<const int64_t>>("arr3") .Attr<Span<const uint8_t>>("arr4") .Attr<Span<const uint16_t>>("arr5") .Attr<Span<const uint32_t>>("arr6") .Attr<Span<const uint64_t>>("arr7") .Attr<Span<const float>>("arr8") .Attr<Span<const double>>("arr9") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AttrsAsDictionary) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); attrs.Insert("str", "foo"); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Dictionary dict) { EXPECT_EQ(dict.size(), 3); EXPECT_TRUE(dict.contains("i32")); EXPECT_TRUE(dict.contains("f32")); EXPECT_TRUE(dict.contains("str")); ErrorOr<int32_t> i32 = dict.get<int32_t>("i32"); ErrorOr<float> f32 = dict.get<float>("f32"); ErrorOr<std::string_view> str = dict.get<std::string_view>("str"); EXPECT_TRUE(i32.has_value()); EXPECT_TRUE(f32.has_value()); EXPECT_TRUE(str.has_value()); if (i32.has_value()) EXPECT_EQ(*i32, 42); if (f32.has_value()) EXPECT_EQ(*f32, 42.0f); if (str.has_value()) EXPECT_EQ(*str, "foo"); EXPECT_FALSE(dict.contains("i64")); EXPECT_FALSE(dict.get<int64_t>("i32").has_value()); EXPECT_FALSE(dict.get<int64_t>("i64").has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Attrs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, DictionaryAttr) { CallFrameBuilder::AttributesMap dict0; dict0.try_emplace("i32", 42); CallFrameBuilder::AttributesMap dict1; dict1.try_emplace("f32", 42.0f); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("dict0", dict0); attrs.Insert("dict1", dict1); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Dictionary dict0, Dictionary dict1) { EXPECT_EQ(dict0.size(), 1); EXPECT_EQ(dict1.size(), 1); EXPECT_TRUE(dict0.contains("i32")); EXPECT_TRUE(dict1.contains("f32")); ErrorOr<int32_t> i32 = dict0.get<int32_t>("i32"); ErrorOr<float> f32 = dict1.get<float>("f32"); EXPECT_TRUE(i32.has_value()); EXPECT_TRUE(f32.has_value()); if (i32.has_value()) EXPECT_EQ(*i32, 42); if (f32.has_value()) EXPECT_EQ(*f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind().Attr<Dictionary>("dict0").Attr<Dictionary>("dict1").To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, StructAttr) { CallFrameBuilder::AttributesMap dict; dict.try_emplace("i32", 42); dict.try_emplace("f32", 42.0f); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("str", "foo"); attrs.Insert("i32_and_f32", dict); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](std::string_view str, PairOfI32AndF32 i32_and_f32) { EXPECT_EQ(str, "foo"); EXPECT_EQ(i32_and_f32.i32, 42); EXPECT_EQ(i32_and_f32.f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<std::string_view>("str") .Attr<PairOfI32AndF32>("i32_and_f32") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AttrsAsStruct) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](PairOfI32AndF32 i32_and_f32) { EXPECT_EQ(i32_and_f32.i32, 42); EXPECT_EQ(i32_and_f32.f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind().Attrs<PairOfI32AndF32>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, PointerAttr) { std::string foo = "foo"; auto ptr = reinterpret_cast<uintptr_t>(&foo); static_assert(sizeof(ptr) == sizeof(int64_t)); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("ptr", static_cast<int64_t>(ptr)); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](const std::string* str) { EXPECT_EQ(*str, "foo"); return Error::Success(); }; auto handler = Ffi::Bind().Attr<Pointer<std::string>>("ptr").To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, EnumAttr) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_one", static_cast<std::underlying_type_t<Int32BasedEnum>>( Int32BasedEnum::kOne)); attrs.Insert("i32_two", static_cast<std::underlying_type_t<Int32BasedEnum>>( Int32BasedEnum::kTwo)); attrs.Insert("i64_one", static_cast<std::underlying_type_t<Int64BasedEnum>>( Int64BasedEnum::kOne)); attrs.Insert("i64_two", static_cast<std::underlying_type_t<Int64BasedEnum>>( Int64BasedEnum::kTwo)); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Int32BasedEnum i32_one, Int32BasedEnum i32_two, Int64BasedEnum i64_one, Int64BasedEnum i64_two) { EXPECT_EQ(i32_one, Int32BasedEnum::kOne); EXPECT_EQ(i32_two, Int32BasedEnum::kTwo); EXPECT_EQ(i64_one, Int64BasedEnum::kOne); EXPECT_EQ(i64_two, Int64BasedEnum::kTwo); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Int32BasedEnum>("i32_one") .Attr<Int32BasedEnum>("i32_two") .Attr<Int64BasedEnum>("i64_one") .Attr<Int64BasedEnum>("i64_two") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, WrongEnumAttrType) { CallFrameBuilder::AttributesMap dict; dict.try_emplace("i32", 42); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_enum1", dict); attrs.Insert("i32_enum0", 42u); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [](Int32BasedEnum, Int32BasedEnum) { return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Int32BasedEnum>("i32_enum0") .Attr<Int32BasedEnum>("i32_enum1") .To(fn); auto status = Call(*handler, call_frame); EXPECT_TRUE(absl::StrContains( status.message(), "Failed to decode all FFI handler operands (bad operands at: 0, 1)")) << "status.message():\n" << status.message() << "\n"; EXPECT_TRUE(absl::StrContains(status.message(), "Wrong scalar data type: expected S32 but got")) << "status.message():\n" << status.message() << "\n"; EXPECT_TRUE(absl::StrContains( status.message(), "Wrong attribute type: expected scalar but got dictionary")) << "status.message():\n" << status.message() << "\n"; } struct MyData { static TypeId id; std::string str; }; TypeId MyData::id = {}; XLA_FFI_REGISTER_TYPE(GetXlaFfiApi(), "my_data", &MyData::id); TEST(FfiTest, UserData) { MyData data{"foo"}; ExecutionContext execution_context; TF_ASSERT_OK(execution_context.Insert( TypeIdRegistry::TypeId(MyData::id.type_id), &data)); CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto fn = [&](MyData* data) { EXPECT_EQ(data->str, "foo"); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<UserData<MyData>>().To(fn); CallOptions options; options.execution_context = &execution_context; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); } struct MyState { static TypeId id; explicit MyState(int32_t value) : value(value) {} int32_t value; }; TypeId MyState::id = {}; XLA_FFI_REGISTER_TYPE(GetXlaFfiApi(), "state", &MyState::id); TEST(FfiTest, StatefulHandler) { ExecutionState execution_state; CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); CallOptions options; options.execution_state = &execution_state; auto instantiate = Ffi::BindInstantiate().To([]() -> ErrorOr<std::unique_ptr<MyState>> { return std::make_unique<MyState>(42); }); auto execute = Ffi::Bind().Ctx<State<MyState>>().To([](MyState* state) { EXPECT_EQ(state->value, 42); return Error::Success(); }); TF_ASSERT_OK( Call(*instantiate, call_frame, options, ExecutionStage::kInstantiate)); TF_ASSERT_OK(Call(*execute, call_frame, options)); } TEST(FfiTest, ScratchAllocator) { static void* kAddr = reinterpret_cast<void*>(0xDEADBEEF); struct TestDeviceMemoryAllocator final : public se::DeviceMemoryAllocator { size_t count; TestDeviceMemoryAllocator() : se::DeviceMemoryAllocator(nullptr), count(0) {} absl::StatusOr<se::OwningDeviceMemory> Allocate(int, uint64_t size, bool, int64_t) final { count++; return se::OwningDeviceMemory(se::DeviceMemoryBase(kAddr, size), 0, this); } absl::Status Deallocate(int, se::DeviceMemoryBase mem) final { count--; EXPECT_EQ(mem.opaque(), kAddr); return absl::OkStatus(); } absl::StatusOr<se::Stream*> GetStream(int) final { return absl::UnimplementedError("Not implemented"); } }; auto fn = [&](ScratchAllocator scratch_allocator) { auto mem = scratch_allocator.Allocate(1024); EXPECT_EQ(*mem, kAddr); return Error::Success(); }; TestDeviceMemoryAllocator allocator; auto handler = Ffi::Bind().Ctx<ScratchAllocator>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::GpuOptions{nullptr, &allocator}; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); EXPECT_EQ(allocator.count, 0); } TEST(FfiTest, ScratchAllocatorUnimplemented) { auto fn = [&](ScratchAllocator scratch_allocator) { auto mem = scratch_allocator.Allocate(1024); EXPECT_FALSE(mem.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<ScratchAllocator>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, ThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); auto fn = [&](ThreadPool thread_pool) { absl::BlockingCounter prepare(1); absl::BlockingCounter execute(1); thread_pool.Schedule([&] { prepare.Wait(); execute.DecrementCount(); }); prepare.DecrementCount(); execute.Wait(); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<ThreadPool>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::CpuOptions{&device}; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); } TEST(FfiTest, AsyncHandler) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); int32_t value = 0; auto fn = [&](ThreadPool thread_pool) -> Future { Promise promise; Future future(promise); thread_pool.Schedule([&, promise = std::move(promise)]() mutable { value = 42; promise.SetAvailable(); }); return future; }; auto handler = Ffi::Bind().Ctx<ThreadPool>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::CpuOptions{&device}; { absl::Status status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); EXPECT_EQ(value, 42); } value = 0; { tsl::AsyncValueRef<tsl::Chain> async_value = CallAsync(*handler, call_frame, options); tsl::BlockUntilReady(async_value); ASSERT_TRUE(async_value.IsConcrete()); EXPECT_EQ(value, 42); } } TEST(FfiTest, Metadata) { auto api = GetXlaFfiApi(); auto handler = Ffi::BindTo([]() { return Error::Success(); }); auto maybe_metadata = GetMetadata(*handler); EXPECT_TRUE(maybe_metadata.ok()); auto metadata = maybe_metadata.value(); EXPECT_EQ(metadata.api_version.major_version, api->api_version.major_version); EXPECT_EQ(metadata.api_version.minor_version, api->api_version.minor_version); EXPECT_EQ(metadata.traits, 0); } TEST(FfiTest, MetadataTraits) { auto handler = Ffi::BindTo([]() { return Error::Success(); }, {Traits::kCmdBufferCompatible}); auto maybe_metadata = GetMetadata(*handler); EXPECT_TRUE(maybe_metadata.ok()); auto metadata = maybe_metadata.value(); EXPECT_EQ(metadata.api_version.major_version, XLA_FFI_API_MAJOR); EXPECT_EQ(metadata.api_version.minor_version, XLA_FFI_API_MINOR); EXPECT_EQ(metadata.traits, XLA_FFI_HANDLER_TRAITS_COMMAND_BUFFER_COMPATIBLE); } static CallFrameBuilder WithBufferArgs(size_t num_args, size_t rank = 4) { se::DeviceMemoryBase memory; std::vector<int64_t> dims(4, 1); CallFrameBuilder builder(num_args, 0); for (size_t i = 0; i < num_args; ++i) { builder.AddBufferArg(memory, PrimitiveType::F32, dims); } return builder; } void BM_AnyBufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AnyBufferArgX1); void BM_AnyBufferArgX4(benchmark::State& state) { auto call_frame = WithBufferArgs(4).Build(); auto handler = Ffi::Bind() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .To([](auto b0, auto b1, auto b2, auto b3) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AnyBufferArgX4); void BM_AsyncAnyBufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); Promise promise; promise.SetAvailable(); return Future(promise); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AsyncAnyBufferArgX1); void BM_BufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<BufferR4<F32>>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX1); void BM_BufferArgX4(benchmark::State& state) { auto call_frame = WithBufferArgs(4).Build(); auto handler = Ffi::Bind() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .To([](auto b0, auto b1, auto b2, auto b3) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX4); void BM_BufferArgX8(benchmark::State& state) { auto call_frame = WithBufferArgs(8).Build(); auto handler = Ffi::Bind() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .To([](auto b0, auto b1, auto b2, auto b3, auto b4, auto b5, auto b6, auto b7) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); benchmark::DoNotOptimize(b4); benchmark::DoNotOptimize(b5); benchmark::DoNotOptimize(b6); benchmark::DoNotOptimize(b7); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX8); void BM_TupleOfI32Attrs(benchmark::State& state) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_0", 1); attrs.Insert("i32_1", 2); attrs.Insert("i32_2", 3); attrs.Insert("i32_3", 4); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Attrs<TupleOfI32>().To([](auto tuple) { benchmark::DoNotOptimize(tuple); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_TupleOfI32Attrs); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/api/ffi.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/api/ffi_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
73a594f2-3fb4-4581-a0fc-baaa11a9b95c
cpp
tensorflow/tensorflow
hlo_casting_utils
third_party/xla/xla/hlo/ir/hlo_casting_utils.h
third_party/xla/xla/service/hlo_casting_utils_test.cc
#ifndef XLA_HLO_IR_HLO_CASTING_UTILS_H_ #define XLA_HLO_IR_HLO_CASTING_UTILS_H_ #include <type_traits> #include "xla/hlo/ir/hlo_instruction.h" #include "tsl/platform/logging.h" namespace xla { template <class T> using EnableIfDerivedFromHlo = typename std::enable_if<std::is_base_of<HloInstruction, T>::value>::type; template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* Cast(const HloInstruction* instruction) { CHECK(instruction != nullptr); CHECK(T::ClassOf(instruction)) << "Invalid HloInstruction casting. Destination type: " << typeid(T).name() << ". Instruction: " << instruction->name(); const T* casted = static_cast<const T*>(instruction); #ifndef NDEBUG const T* dynamic_casted = dynamic_cast<const T*>(instruction); CHECK(dynamic_casted != nullptr) << "Invalid HloInstruction casting. Destination type: " << typeid(T).name() << ". Instruction: " << instruction->name(); #endif return casted; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* Cast(HloInstruction* instruction) { return const_cast<T*>( Cast<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* CastOrNull(const HloInstruction* instruction) { return instruction != nullptr ? Cast<T>(instruction) : nullptr; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* CastOrNull(HloInstruction* instruction) { return const_cast<T*>( CastOrNull<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* DynCast(const HloInstruction* instruction) { CHECK(instruction != nullptr); const T* casted = T::ClassOf(instruction) ? static_cast<const T*>(instruction) : nullptr; #ifndef NDEBUG CHECK_EQ(casted, dynamic_cast<const T*>(instruction)); #endif return casted; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* DynCast(HloInstruction* instruction) { return const_cast<T*>( DynCast<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* DynCastOrNull(const HloInstruction* instruction) { return instruction != nullptr ? DynCast<T>(instruction) : nullptr; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* DynCastOrNull(HloInstruction* instruction) { return const_cast<T*>( DynCastOrNull<T>(const_cast<const HloInstruction*>(instruction))); } } #endif
#include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "tsl/platform/test.h" namespace xla { namespace { class DummyInstruction : public HloInstruction { public: DummyInstruction() : HloInstruction(HloOpcode::kConstant, ShapeUtil::MakeShape(F32, {})) {} static bool ClassOf(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kConstant; } }; class AnotherDummyInstruction : public HloInstruction { public: AnotherDummyInstruction() : HloInstruction(HloOpcode::kParameter, ShapeUtil::MakeShape(F32, {})) {} static bool ClassOf(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kParameter; } }; TEST(HloCastingUtilsTest, CastSucceeds) { DummyInstruction instruction; DummyInstruction* casted = Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, CastDiesForWrongType) { AnotherDummyInstruction instruction; ASSERT_DEATH( Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)), ""); } TEST(HloCastingUtilsTest, CastDiesForNullptr) { HloInstruction* null = nullptr; ASSERT_DEATH(Cast<DummyInstruction>(null), ""); } TEST(HloCastingUtilsTest, CastOrNullSucceeds) { DummyInstruction instruction; DummyInstruction* casted = Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, CastOrNullDiesForWrongType) { AnotherDummyInstruction instruction; ASSERT_DEATH( Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)), ""); } TEST(HloCastingUtilsTest, CastOrNullReturnsNullptrForNullptr) { HloInstruction* null = nullptr; DummyInstruction* casted = CastOrNull<DummyInstruction>(null); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastSucceeds) { DummyInstruction instruction; DummyInstruction* casted = DynCast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, DynCastReturnsNullptrForWrongType) { AnotherDummyInstruction instruction; DummyInstruction* casted = DynCast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastDiesForNullptr) { HloInstruction* null = nullptr; ASSERT_DEATH(DynCast<DummyInstruction>(null), ""); } TEST(HloCastingUtilsTest, DynCastOrNullSucceeds) { DummyInstruction instruction; DummyInstruction* casted = DynCastOrNull<DummyInstruction>( static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, DynCastOrNullReturnsNullptrForWrongType) { AnotherDummyInstruction instruction; DummyInstruction* casted = DynCastOrNull<DummyInstruction>( static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastOrNullReturnsNullptrForNullptr) { HloInstruction* null = nullptr; DummyInstruction* casted = DynCastOrNull<DummyInstruction>(null); ASSERT_EQ(casted, nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_casting_utils.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_casting_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6506a74-564b-4421-9121-be913bba8ef3
cpp
tensorflow/tensorflow
dfs_hlo_visitor_with_default
third_party/xla/xla/hlo/ir/dfs_hlo_visitor_with_default.h
third_party/xla/xla/service/dfs_hlo_visitor_with_default_test.cc
#ifndef XLA_HLO_IR_DFS_HLO_VISITOR_WITH_DEFAULT_H_ #define XLA_HLO_IR_DFS_HLO_VISITOR_WITH_DEFAULT_H_ #include <memory> #include <utility> #include "absl/base/optimization.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "tsl/platform/status.h" namespace xla { template <typename HloInstructionPtr> class DfsHloVisitorWithDefaultBase : public DfsHloVisitorBase<HloInstructionPtr> { public: DfsHloVisitorWithDefaultBase() = default; ~DfsHloVisitorWithDefaultBase() override = default; virtual absl::Status DefaultAction(HloInstructionPtr hlo_instruction) = 0; absl::Status HandleElementwiseUnary(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleElementwiseBinary(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormTraining(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormInference(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormGrad(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleClamp(HloInstructionPtr clamp) override { return DefaultAction(clamp); } absl::Status HandleConcatenate(HloInstructionPtr concatenate) override { return DefaultAction(concatenate); } absl::Status HandleSelect(HloInstructionPtr select) override { return DefaultAction(select); } absl::Status HandleDot(HloInstructionPtr dot) override { return DefaultAction(dot); } absl::Status HandleConvolution(HloInstructionPtr convolution) override { return DefaultAction(convolution); } absl::Status HandleFft(HloInstructionPtr fft) override { return DefaultAction(fft); } absl::Status HandleTriangularSolve(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCholesky(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleOptimizationBarrier(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllGather(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllGatherStart(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllGatherDone(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllReduce(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleReduceScatter(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllReduceStart(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllReduceDone(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllToAll(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectiveBroadcast(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermute(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermuteStart(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermuteDone(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleReplicaId(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandlePartitionId(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleRng(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleRngBitGenerator(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleRngGetAndUpdateState(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleInfeed(HloInstructionPtr infeed) override { return DefaultAction(infeed); } absl::Status HandleOutfeed(HloInstructionPtr outfeed) override { return DefaultAction(outfeed); } absl::Status HandleReverse(HloInstructionPtr reverse) override { return DefaultAction(reverse); } absl::Status HandleSort(HloInstructionPtr sort) override { return DefaultAction(sort); } absl::Status HandleConstant(HloInstructionPtr constant) override { return DefaultAction(constant); } absl::Status HandleIota(HloInstructionPtr iota) override { return DefaultAction(iota); } absl::Status HandleGetTupleElement( HloInstructionPtr get_tuple_element) override { return DefaultAction(get_tuple_element); } absl::Status HandleParameter(HloInstructionPtr parameter) override { return DefaultAction(parameter); } absl::Status HandleFusion(HloInstructionPtr fusion) override { return DefaultAction(fusion); } absl::Status HandleCall(HloInstructionPtr call) override { return DefaultAction(call); } absl::Status HandleCustomCall(HloInstructionPtr custom_call) override { return DefaultAction(custom_call); } absl::Status HandleSlice(HloInstructionPtr slice) override { return DefaultAction(slice); } absl::Status HandleDynamicSlice(HloInstructionPtr dynamic_slice) override { return DefaultAction(dynamic_slice); } absl::Status HandleDynamicUpdateSlice( HloInstructionPtr dynamic_update_slice) override { return DefaultAction(dynamic_update_slice); } absl::Status HandleTuple(HloInstructionPtr tuple) override { return DefaultAction(tuple); } absl::Status HandleMap(HloInstructionPtr map) override { return DefaultAction(map); } absl::Status HandleReduce(HloInstructionPtr reduce) override { return DefaultAction(reduce); } absl::Status HandleReduceWindow(HloInstructionPtr reduce_window) override { return DefaultAction(reduce_window); } absl::Status HandleSelectAndScatter( HloInstructionPtr select_and_scatter) override { return DefaultAction(select_and_scatter); } absl::Status HandleBitcast(HloInstructionPtr bitcast) override { return DefaultAction(bitcast); } absl::Status HandleBroadcast(HloInstructionPtr broadcast) override { return DefaultAction(broadcast); } absl::Status HandlePad(HloInstructionPtr pad) override { return DefaultAction(pad); } absl::Status HandleDynamicReshape( HloInstructionPtr dynamic_reshape) override { return DefaultAction(dynamic_reshape); } absl::Status HandleReshape(HloInstructionPtr reshape) override { return DefaultAction(reshape); } absl::Status HandleTranspose(HloInstructionPtr transpose) override { return DefaultAction(transpose); } absl::Status HandleWhile(HloInstructionPtr xla_while) override { return DefaultAction(xla_while); } absl::Status HandleConditional(HloInstructionPtr conditional) override { return DefaultAction(conditional); } absl::Status HandleAsyncStart(HloInstructionPtr async_start) override { return DefaultAction(async_start); } absl::Status HandleAsyncUpdate(HloInstructionPtr async_update) override { return DefaultAction(async_update); } absl::Status HandleAsyncDone(HloInstructionPtr async_done) override { return DefaultAction(async_done); } absl::Status HandleCopyStart(HloInstructionPtr copy_start) override { return DefaultAction(copy_start); } absl::Status HandleCopyDone(HloInstructionPtr copy_done) override { return DefaultAction(copy_done); } absl::Status HandleRecv(HloInstructionPtr recv) override { return DefaultAction(recv); } absl::Status HandleRecvDone(HloInstructionPtr recv_done) override { return DefaultAction(recv_done); } absl::Status HandleSend(HloInstructionPtr send) override { return DefaultAction(send); } absl::Status HandleTopK(HloInstructionPtr topk) override { return DefaultAction(topk); } absl::Status HandleSendDone(HloInstructionPtr send_done) override { return DefaultAction(send_done); } absl::Status HandleGather(HloInstructionPtr gather) override { return DefaultAction(gather); } absl::Status HandleScatter(HloInstructionPtr scatter) override { return DefaultAction(scatter); } absl::Status HandleAfterAll(HloInstructionPtr token) override { return DefaultAction(token); } absl::Status HandleGetDimensionSize(HloInstructionPtr get_size) override { return DefaultAction(get_size); } absl::Status HandleSetDimensionSize(HloInstructionPtr get_size) override { return DefaultAction(get_size); } absl::Status HandleAddDependency(HloInstructionPtr add_dependency) override { return DefaultAction(add_dependency); } absl::Status FinishVisit(HloInstructionPtr ) override { return absl::OkStatus(); } private: DfsHloVisitorWithDefaultBase(const DfsHloVisitorWithDefaultBase&) = delete; DfsHloVisitorWithDefaultBase& operator=(const DfsHloVisitorWithDefaultBase&) = delete; }; using DfsHloVisitorWithDefault = DfsHloVisitorWithDefaultBase<HloInstruction*>; using ConstDfsHloVisitorWithDefault = DfsHloVisitorWithDefaultBase<const HloInstruction*>; class DfsHloRewriteVisitor : public DfsHloVisitorWithDefault { public: absl::StatusOr<bool> RunOnModule( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads = {}) { absl::Status status; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { status = computation->Accept(this); if (ABSL_PREDICT_FALSE(!status.ok())) return status; } return changed(); } absl::Status DefaultAction(HloInstruction* ) override { return absl::OkStatus(); } bool changed() const { return changed_; } protected: absl::Status ReplaceWithNewInstruction( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction) { VLOG(3) << "Replacing instruction:" << "\n old: " << old_instruction->ToString() << "\n new: " << new_instruction->ToString(); absl::Status status = old_instruction->parent()->ReplaceWithNewInstruction( old_instruction, std::move(new_instruction)); if (ABSL_PREDICT_TRUE(status.ok())) { changed_ = true; } return status; } absl::StatusOr<bool> ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding) { VLOG(3) << "Replacing instruction:" << "\n old: " << old_instruction->ToString() << "\n new: " << new_instruction->ToString(); absl::StatusOr<bool> changed_or = old_instruction->parent()->ReplaceInstruction( old_instruction, new_instruction, preserve_sharding); if (ABSL_PREDICT_TRUE(changed_or.ok())) { changed_ |= changed_or.value(); } return changed_or; } absl::Status ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction) { absl::StatusOr<bool> changed_or = ReplaceInstruction(old_instruction, new_instruction, false); if (ABSL_PREDICT_TRUE(changed_or.ok())) { DCHECK(changed_or.value()); } return changed_or.status(); } void MarkAsChanged() { changed_ = true; } private: bool changed_ = false; }; template <typename HloInstructionPtr> class FunctionVisitorBase : public DfsHloVisitorWithDefaultBase<HloInstructionPtr> { public: explicit FunctionVisitorBase( std::function<absl::Status(HloInstructionPtr)> visitor_func) : visitor_func_(std::move(visitor_func)) {} absl::Status DefaultAction(HloInstructionPtr hlo_instruction) override { return visitor_func_(hlo_instruction); } private: FunctionVisitorBase(const FunctionVisitorBase&) = delete; FunctionVisitorBase& operator=(const FunctionVisitorBase&) = delete; std::function<absl::Status(HloInstructionPtr)> visitor_func_; }; using FunctionVisitor = FunctionVisitorBase<HloInstruction*>; using ConstFunctionVisitor = FunctionVisitorBase<const HloInstruction*>; } #endif
#include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_runner.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { class DfsHloVisitorWithDefaultTest : public HloTestBase {}; TEST_F(DfsHloVisitorWithDefaultTest, DefaultElementwiseTest) { class ElementwiseTestVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* hlo) override { TF_RET_CHECK(!(hlo->IsElementwise() && hlo->operand_count() == 2)) << hlo->ToString(); TF_RET_CHECK(!(hlo->IsElementwise() && hlo->operand_count() == 1)) << hlo->ToString(); return absl::OkStatus(); } absl::Status HandleElementwiseBinary(HloInstruction* hlo) override { TF_RET_CHECK(hlo->IsElementwise() && hlo->operand_count() == 2) << hlo->ToString(); return absl::OkStatus(); } absl::Status HandleElementwiseUnary(HloInstruction* hlo) override { TF_RET_CHECK(hlo->IsElementwise() && hlo->operand_count() == 1) << hlo->ToString(); return absl::OkStatus(); } }; const std::string& hlo_string = R"( HloModule TestModule ENTRY TestComputation { arg = f32[] parameter(0) tuple = (f32[]) tuple(arg) gte = f32[] get-tuple-element(tuple), index=0 abs = f32[] abs(arg) add = f32[] add(arg, gte) broadcast = f32[42] broadcast(add), dimensions={} slice = f32[1] slice(broadcast), slice={[1:2]} copy = f32[] copy(arg) eq = pred[] compare(arg, gte), direction=EQ neg = f32[] negate(arg) ROOT convert = f64[] convert(f32[] arg) })"; std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_string).value(); ElementwiseTestVisitor visitor; TF_EXPECT_OK(module->entry_computation()->Accept(&visitor)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/dfs_hlo_visitor_with_default.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dfs_hlo_visitor_with_default_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef2e10a4-b4e8-4a54-96cd-ad5096524559
cpp
tensorflow/tensorflow
ptrvec
third_party/xla/xla/hlo/ir/ptrvec.h
third_party/xla/xla/hlo/ir/ptrvec_test.cc
#ifndef XLA_HLO_IR_PTRVEC_H_ #define XLA_HLO_IR_PTRVEC_H_ #include <cstddef> #include <cstdint> #include <cstdlib> #include <limits> #include <type_traits> #include <vector> #include "absl/log/check.h" #include "tsl/platform/logging.h" namespace xla { template <typename T> class PtrVec { public: static_assert(std::is_pointer<T>::value); PtrVec(); ~PtrVec(); PtrVec(const PtrVec& x); PtrVec& operator=(const PtrVec& x); PtrVec(PtrVec&& x); PtrVec& operator=(PtrVec&& x); using difference_type = std::ptrdiff_t; using value_type = T; using pointer = T*; using reference = T&; using const_reference = T const&; using const_iterator = T const*; const_iterator begin() const; const_iterator end() const; size_t size() const; bool empty() const; T* data(); T const* data() const; T& operator[](size_t i); T operator[](size_t i) const; T at(size_t i) const; T front() const; T back() const; void clear(); void pop_back(); void push_back(T x); void erase(const_iterator iter); operator std::vector<T>() const; private: static constexpr uintptr_t kEmptyTag = 0x1; static constexpr uintptr_t kBigTag = 0x3; static constexpr uintptr_t kTagMask = 0x3; struct Big { size_t size; size_t capacity; T data[]; }; inline static bool can_inline(T ptr) { if constexpr (alignof(decltype(*ptr)) >= 2) { DCHECK_EQ(reinterpret_cast<uintptr_t>(ptr) & 0x1, 0); return true; } return ((reinterpret_cast<uintptr_t>(ptr) & 0x1) == 0); } inline bool is_big() const { return (rep_ & kTagMask) == kBigTag; } inline Big* big() const { DCHECK(is_big()); return reinterpret_cast<Big*>(rep_ & ~kTagMask); } inline static size_t big_size(size_t n) { static constexpr size_t kMaxFit = (std::numeric_limits<size_t>::max() - sizeof(Big)) / sizeof(T); DCHECK_LE(n, kMaxFit); const size_t result = sizeof(Big) + n * sizeof(T); DCHECK_GE(result, sizeof(Big)); return result; } inline Big* MakeBig(size_t capacity) { Big* big = static_cast<Big*>(malloc(big_size(capacity))); big->size = 0; big->capacity = capacity; rep_ = reinterpret_cast<uintptr_t>(big) | kBigTag; return big; } inline static void FreeBig(Big* big) { free(big); } uintptr_t rep_; }; template <class T> inline PtrVec<T>::PtrVec() : rep_(kEmptyTag) {} template <class T> inline PtrVec<T>::~PtrVec() { if (is_big()) FreeBig(big()); } template <class T> inline PtrVec<T>::PtrVec(const PtrVec& x) : rep_(kEmptyTag) { *this = x; } template <class T> inline PtrVec<T>& PtrVec<T>::operator=(const PtrVec& x) { if (this == &x) { return *this; } const size_t n = x.size(); Big* b; if (!is_big()) { if (n < 2) { if (n == 0) { rep_ = kEmptyTag; return *this; } T single = x.front(); if (can_inline(single)) { rep_ = reinterpret_cast<uintptr_t>(single); DCHECK(!empty()); DCHECK(!is_big()); return *this; } } b = MakeBig(x.size()); } else { if (n == 0) { clear(); return *this; } b = big(); if (b->capacity < n) { FreeBig(b); b = MakeBig(n); } } memcpy(b->data, x.data(), n * sizeof(T)); b->size = n; return *this; } template <class T> inline PtrVec<T>::PtrVec(PtrVec&& x) : rep_(x.rep_) { x.rep_ = kEmptyTag; } template <class T> inline PtrVec<T>& PtrVec<T>::operator=(PtrVec&& x) { if (this != &x) { if (is_big()) { FreeBig(big()); } rep_ = x.rep_; x.rep_ = kEmptyTag; } return *this; } template <class T> inline size_t PtrVec<T>::size() const { return is_big() ? big()->size : (rep_ != kEmptyTag ? 1 : 0); } template <class T> inline bool PtrVec<T>::empty() const { return rep_ == kEmptyTag; } template <class T> inline T* PtrVec<T>::data() { return is_big() ? big()->data : reinterpret_cast<T*>(&rep_); } template <class T> inline T const* PtrVec<T>::data() const { return is_big() ? big()->data : reinterpret_cast<T const*>(&rep_); } template <class T> inline T& PtrVec<T>::operator[](size_t i) { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::operator[](size_t i) const { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::at(size_t i) const { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::front() const { return (*this)[0]; } template <class T> inline T PtrVec<T>::back() const { return (*this)[size() - 1]; } template <class T> inline typename PtrVec<T>::const_iterator PtrVec<T>::begin() const { return data(); } template <class T> inline typename PtrVec<T>::const_iterator PtrVec<T>::end() const { return data() + size(); } template <class T> inline void PtrVec<T>::clear() { if (is_big()) { FreeBig(big()); } rep_ = kEmptyTag; } template <class T> inline void PtrVec<T>::pop_back() { DCHECK(!empty()); if (is_big()) { big()->size--; if (big()->size == 0) { clear(); } } else { rep_ = kEmptyTag; } } template <class T> inline void PtrVec<T>::push_back(T x) { if (!is_big()) { if (rep_ == kEmptyTag) { if (can_inline(x)) { rep_ = reinterpret_cast<uintptr_t>(x); DCHECK(!empty()); DCHECK(!is_big()); } else { Big* b = MakeBig(1); b->size = 1; b->data[0] = x; } } else { T singleton = front(); Big* b = MakeBig(2); b->size = 2; b->data[0] = singleton; b->data[1] = x; } } else { Big* b = big(); const size_t n = b->size; DCHECK_LE(n, b->capacity); if (n == b->capacity) { Big* old = b; b = MakeBig(std::max<size_t>(2, 2 * old->capacity)); memcpy(b->data, old->data, n * sizeof(T)); FreeBig(old); } b->data[n] = x; b->size = n + 1; } } template <class T> inline void PtrVec<T>::erase(const_iterator iter) { DCHECK_GE(iter, begin()); DCHECK_LT(iter, end()); if (!is_big()) { rep_ = kEmptyTag; } else { Big* b = big(); const size_t index = iter - b->data; memmove(b->data + index, b->data + index + 1, (b->size - index - 1) * sizeof(T)); b->size--; if (b->size == 0) { clear(); } } } template <class T> inline PtrVec<T>::operator std::vector<T>() const { if (empty()) return {}; return std::vector<T>(begin(), end()); } template <typename T> bool operator==(const PtrVec<T>& a, const PtrVec<T>& b) { auto a_data = a.data(); auto b_data = b.data(); return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size()); } template <typename T> bool operator!=(const PtrVec<T>& a, const PtrVec<T>& b) { return !(a == b); } } #endif
#include "xla/hlo/ir/ptrvec.h" #include <cstdint> #include <initializer_list> #include <memory> #include <utility> #include <vector> #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class PtrVecTest : public testing::Test { public: int* NewInt(int v) { ints_.push_back(std::make_unique<int>(v)); return ints_.back().get(); } void Fill(PtrVec<int*>& dst, absl::Span<const int> src) { for (int v : src) { dst.push_back(NewInt(v)); } } std::vector<int> Pointees(const PtrVec<int*>& src) { std::vector<int> result; result.reserve(src.size()); for (int* ptr : src) { result.push_back(*ptr); } return result; } private: std::vector<std::unique_ptr<int>> ints_; }; std::vector<std::vector<int>> TestCases() { return std::vector<std::vector<int>>{ {}, {100}, {200, 300}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, }; } TEST_F(PtrVecTest, Accessors) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); ASSERT_EQ(v.empty(), c.empty()); ASSERT_EQ(v.size(), c.size()); if (!c.empty()) { ASSERT_EQ(*v.front(), c.front()); ASSERT_EQ(*v.back(), c.back()); } } } TEST_F(PtrVecTest, Iteration) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); int i = 0; for (auto ptr : v) { ASSERT_EQ(*ptr, c[i]); i++; } } } TEST_F(PtrVecTest, Indexing) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*v[i], c[i]); ASSERT_EQ(*v.at(i), c[i]); } } } TEST_F(PtrVecTest, Data) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); int** data = v.data(); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*data[i], c[i]); } } } TEST_F(PtrVecTest, ConversionToVector) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); std::vector<int*> vec = v; ASSERT_EQ(vec.size(), c.size()); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*vec[i], c[i]); } } } TEST_F(PtrVecTest, Clear) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); v.clear(); EXPECT_EQ(Pointees(v), std::vector<int>{}); } } TEST_F(PtrVecTest, PopBack) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); auto model = c; while (!model.empty()) { model.pop_back(); v.pop_back(); EXPECT_EQ(Pointees(v), model); } } } TEST_F(PtrVecTest, Erase) { for (const auto& c : TestCases()) { if (c.empty()) { continue; } SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); auto model = c; int offset = c.size() / 2; model.erase(model.begin() + offset); v.erase(v.begin() + offset); EXPECT_EQ(Pointees(v), model); } } TEST_F(PtrVecTest, Assign) { const auto cases = TestCases(); for (const auto& x : cases) { for (const auto& y : cases) { SCOPED_TRACE(absl::StrFormat("from %d to %d", x.size(), y.size())); { PtrVec<int*> b; Fill(b, y); PtrVec<int*> a = b; ASSERT_EQ(Pointees(a), y); } { PtrVec<int*> b; Fill(b, y); PtrVec<int*> a = std::move(b); ASSERT_EQ(Pointees(a), y); ASSERT_EQ(Pointees(b), std::vector<int>{}); } { PtrVec<int*> a; Fill(a, x); ASSERT_EQ(Pointees(a), x); PtrVec<int*> b; Fill(b, y); a = b; ASSERT_EQ(Pointees(a), y); } { PtrVec<int*> a; Fill(a, x); PtrVec<int*> b; Fill(b, y); a = std::move(b); ASSERT_EQ(Pointees(a), y); ASSERT_EQ(Pointees(b), std::vector<int>{}); } } } } TEST_F(PtrVecTest, ReducedAlignment) { const char* str = "hello world"; for (int i = 0; i < 11; i++) { PtrVec<const char*> vec; vec.push_back(&str[i]); EXPECT_EQ(vec.size(), 1); EXPECT_EQ(vec[0], &str[i]); PtrVec<const char*> copy; copy = vec; EXPECT_EQ(copy.size(), 1); EXPECT_EQ(copy[0], &str[i]); } } struct Elem { int64_t number; }; void BM_PtrVecIter(::testing::benchmark::State& state) { const int n = state.range(0); std::vector<Elem> storage(n); PtrVec<Elem*> vec; for (int i = 0; i < n; i++) { storage[i].number = i; vec.push_back(&storage[i]); } uintptr_t sum = 0; for (auto s : state) { for (int i = 0; i < vec.size(); i++) { sum += reinterpret_cast<uintptr_t>(vec[i]); } } VLOG(1) << sum; } BENCHMARK(BM_PtrVecIter)->Arg(0)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(1024); void BM_StdVecIter(::testing::benchmark::State& state) { const int n = state.range(0); std::vector<Elem> storage(n); std::vector<Elem*> vec; for (int i = 0; i < n; i++) { storage[i].number = i; vec.push_back(&storage[i]); } uintptr_t sum = 0; for (auto s : state) { for (int i = 0; i < vec.size(); i++) { sum += reinterpret_cast<uintptr_t>(vec[i]); } } VLOG(1) << sum; } BENCHMARK(BM_StdVecIter)->Arg(0)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/ptrvec.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/ptrvec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e69fde1a-b1ac-484c-b566-41a0b2e4cb3a
cpp
tensorflow/tensorflow
pattern_matcher
third_party/xla/xla/service/pattern_matcher.h
third_party/xla/xla/service/pattern_matcher_test.cc
#ifndef XLA_SERVICE_PATTERN_MATCHER_H_ #define XLA_SERVICE_PATTERN_MATCHER_H_ #include <cstddef> #include <cstdint> #include <ios> #include <memory> #include <optional> #include <ostream> #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/utility/utility.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { struct MatchOption { bool capture; bool single_user_only; std::ostream* explain_os; }; template <typename Value, typename Pattern> bool Match(Value* value, const Pattern& pattern, MatchOption option = {true, false, nullptr}) { if (option.capture) { auto new_option = option; new_option.capture = false; if (!pattern.Match(value, new_option)) { return false; } } return pattern.Match(value, option); } template <typename Value, typename Pattern> bool MatchSingleUserOnly(Value* value, const Pattern& pattern) { MatchOption option = {true, true, nullptr}; return Match(value, pattern, option); } template <typename FilterPattern, typename Pattern> bool MatchAndLogIfFailed(HloInstruction* instr, absl::string_view desc, const Pattern& pattern, bool enable_logging, const FilterPattern& filter_pattern) { bool matched = Match(instr, pattern); if (matched || !enable_logging || !Match(instr, filter_pattern)) { return matched; } std::stringstream os; CHECK(!Match( instr, pattern, {false, false, &os})); LOG(ERROR) << "Failed to match " << desc << ":\n" << os.str(); return false; } namespace match { namespace detail { #pragma push_macro("EXPLAIN") #define EXPLAIN \ if (option.explain_os) *option.explain_os enum { kIndentInc = 2, }; inline void Indent(std::ostream* os, int64_t indent) { *os << "\n"; for (int64_t i = 0; i < indent; ++i) { *os << " "; } } template <typename T, typename Dummy = void> struct IsTrivialMatcher { static constexpr bool value = false; }; template <typename T> struct IsTrivialMatcher<T, typename std::enable_if<T::kIsTrivialMatcher>::type> { static constexpr bool value = true; }; template <typename Item, typename... Patterns> class AllOfPattern { public: explicit AllOfPattern(const Patterns&... patterns) : patterns_(patterns...) {} bool Match(const Item* item, MatchOption option) const { bool matched = MatchImpl(item, option, std::integral_constant<size_t, 0>()); DCHECK(matched || !option.capture); return matched; } bool Match(Item* item, MatchOption option) const { bool matched = MatchImpl(item, option, std::integral_constant<size_t, 0>()); DCHECK(matched || !option.capture); return matched; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { DescribeToImpl(os, std::integral_constant<size_t, 0>(), indent); } const std::tuple<Patterns...>& patterns() const { return patterns_; } private: template <typename ItemType, size_t index> bool MatchImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, index>) const { return std::get<index>(patterns_).Match(item, option) && MatchImpl(item, option, std::integral_constant<size_t, index + 1>()); } template <typename ItemType> bool MatchImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, sizeof...(Patterns)>) const { return true; } template <size_t index> void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, index>, int64_t indent) const { constexpr bool first_is_trivial = IsTrivialMatcher<typename std::remove_reference<decltype(std::get<0>( patterns_))>::type>::value; constexpr bool is_last = index == sizeof...(Patterns) - 1; const auto& submatcher = std::get<index>(patterns_); auto print_bulleted_item = [&] { *os << " * "; submatcher.DescribeTo(os, indent + 3); if (!is_last) { *os << " AND"; Indent(os, indent); } }; if (index == 0) { if (first_is_trivial || is_last) { submatcher.DescribeTo(os, indent + kIndentInc); if (sizeof...(Patterns) > 2) { *os << ":"; Indent(os, indent); } } else { *os << "all of:"; Indent(os, indent); print_bulleted_item(); } } else if (first_is_trivial && index == 1 && sizeof...(Patterns) == 2) { *os << " "; submatcher.DescribeTo(os, indent); } else { print_bulleted_item(); } DescribeToImpl(os, std::integral_constant<size_t, index + 1>(), indent); } void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, sizeof...(Patterns)>, int64_t indent) const {} std::tuple<Patterns...> patterns_; }; } template <typename Item, typename... Patterns> auto AllOf(const Patterns&... patterns) { return detail::AllOfPattern<typename std::remove_const<Item>::type, Patterns...>(patterns...); } template <typename Item, typename... InnerPs, typename... OuterPs> auto AllOf(const detail::AllOfPattern<Item, InnerPs...>& inner_p, const OuterPs&... outer_ps) { auto make_all_of = [](const InnerPs&... inner_ps, const OuterPs&... outer_ps) { return detail::AllOfPattern<typename std::remove_const<Item>::type, InnerPs..., OuterPs...>(inner_ps..., outer_ps...); }; return absl::apply(make_all_of, std::tuple_cat(inner_p.patterns(), std::make_tuple(outer_ps...))); } namespace detail { template <typename LayoutType, typename Impl> class LayoutPattern; class LayoutPatternBaseImpl { public: bool Match(const ::xla::Layout* layout, MatchOption option) const { if (layout == nullptr) { EXPLAIN << "Layout is null"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "a layout"; } static constexpr bool kIsTrivialMatcher = true; }; class LayoutPatternEqualImpl { public: explicit constexpr LayoutPatternEqualImpl(const ::xla::Layout* layout) : layout_(layout) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (!LayoutUtil::Equal(*layout_, *layout)) { EXPLAIN << "Layout " << LayoutUtil::HumanString(*layout) << " is not equal to expected " << LayoutUtil::HumanString(*layout_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "equal to " << LayoutUtil::HumanString(*layout_); } private: const ::xla::Layout* layout_; }; class LayoutPatternMinorToMajorImpl { public: explicit LayoutPatternMinorToMajorImpl( absl::Span<const int64_t> minor_to_major) : minor_to_major_(minor_to_major.begin(), minor_to_major.end()) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (layout->minor_to_major() != minor_to_major_) { EXPLAIN << "Layout does not have minor to major [" << absl::StrJoin(minor_to_major_, ",") << "]"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with minor to major [" << absl::StrJoin(minor_to_major_, ",") << "]"; } private: absl::InlinedVector<int64_t, 8> minor_to_major_; }; template <typename LayoutType, typename Impl> class LayoutPattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_allof = AllOf<::xla::Layout>(impl_, std::move(new_impl)); return LayoutPattern<LayoutType, decltype(new_allof)>(std::move(new_allof), matched_layout_); } public: explicit constexpr LayoutPattern(const Impl& impl, LayoutType** matched_layout) : impl_(impl), matched_layout_(matched_layout) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (impl_.Match(layout, option)) { if (option.capture && matched_layout_) { *matched_layout_ = layout; } return true; } return false; } bool Match(::xla::Layout* layout, MatchOption option) const { if (impl_.Match(layout, option)) { if (option.capture && matched_layout_) { *matched_layout_ = layout; } return true; } return false; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { impl_.DescribeTo(os, indent); } constexpr auto EqualTo(const ::xla::Layout* layout) const { return AppendImpl(LayoutPatternEqualImpl(layout)); } constexpr auto WithMinorToMajor( absl::Span<const int64_t> minor_to_major) const { return AppendImpl(LayoutPatternMinorToMajorImpl(minor_to_major)); } private: Impl impl_; LayoutType** matched_layout_; }; template <typename Item, typename... Patterns> class AnyOfPattern { public: explicit AnyOfPattern(const Patterns&... patterns) : patterns_(patterns...) {} bool Match(const Item* item, MatchOption option) const { return MatchImpl(item, option); } bool Match(Item* item, MatchOption option) const { return MatchImpl(item, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "any of:"; Indent(os, indent); DescribeToImpl(os, std::integral_constant<size_t, 0>(), indent); } private: template <typename ItemType> bool MatchImpl(ItemType* item, MatchOption option) const { std::optional<std::stringstream> explanation; MatchOption new_option = option; if (option.explain_os) { new_option.explain_os = &explanation.emplace(); } bool rv = MatchRecursiveImpl(item, new_option, std::integral_constant<size_t, 0>()); if (!rv && option.explain_os) { EXPLAIN << "None of the following matchers succeeded:"; EXPLAIN << explanation->str(); } return rv; } template <typename ItemType, size_t index> bool MatchRecursiveImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, index>) const { auto new_option = option; new_option.capture = false; std::optional<std::stringstream> explanation; if (option.explain_os) { new_option.explain_os = &explanation.emplace(); } if (std::get<index>(patterns_).Match(item, new_option)) { if (option.capture) { bool matched = std::get<index>(patterns_).Match(item, option); DCHECK(matched); } return true; } if (option.explain_os) { EXPLAIN << "\nMatcher #" << index + 1; EXPLAIN << "\n - "; std::get<index>(patterns_).DescribeTo(option.explain_os, 3); EXPLAIN << "\nfailed with"; EXPLAIN << "\n - "; EXPLAIN << absl::StrReplaceAll(explanation->str(), {{"\n", "\n "}}); } return MatchRecursiveImpl(item, option, std::integral_constant<size_t, index + 1>()); } template <typename ItemType> bool MatchRecursiveImpl( ItemType* item, MatchOption option, std::integral_constant<size_t, sizeof...(Patterns)>) const { return false; } template <size_t index> void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, index>, int64_t indent) const { *os << " - "; std::get<index>(patterns_).DescribeTo(os, indent + 3); if (index != sizeof...(Patterns) - 1) { *os << " OR"; Indent(os, indent); } DescribeToImpl(os, std::integral_constant<size_t, index + 1>(), indent); } void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, sizeof...(Patterns)>, int64_t indent) const {} std::tuple<Patterns...> patterns_; }; } inline constexpr auto Layout(const ::xla::Layout** matched_layout = nullptr) { return detail::LayoutPattern<const ::xla::Layout, detail::LayoutPatternBaseImpl>( detail::LayoutPatternBaseImpl(), matched_layout); } inline constexpr auto Layout(::xla::Layout** matched_layout) { return detail::LayoutPattern<::xla::Layout, detail::LayoutPatternBaseImpl>( detail::LayoutPatternBaseImpl(), matched_layout); } namespace detail { template <typename ShapeType, typename Impl> class ShapePattern; class ShapePatternBaseImpl { public: bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape == nullptr) { EXPLAIN << "Shape is null"; } return shape != nullptr; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "a shape"; } static constexpr bool kIsTrivialMatcher = true; }; class ShapePatternEqualImpl { public: explicit constexpr ShapePatternEqualImpl(const ::xla::Shape* shape) : shape_(shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::Equal(*shape_, *shape)) { EXPLAIN << "Shape not equal to " << ShapeUtil::HumanStringWithLayout(*shape_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "equal to " << ShapeUtil::HumanStringWithLayout(*shape_); } private: const ::xla::Shape* shape_; }; class ShapePatternCompatibleImpl { public: explicit constexpr ShapePatternCompatibleImpl(const ::xla::Shape* shape) : shape_(shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::Compatible(*shape_, *shape)) { EXPLAIN << "Shape not compatible with " << ShapeUtil::HumanString(*shape_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "compatible with " << ShapeUtil::HumanString(*shape_); } private: const ::xla::Shape* shape_; }; class ShapePatternElementTypeImpl { public: explicit constexpr ShapePatternElementTypeImpl(PrimitiveType element_type) : element_type_(element_type) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->element_type() != element_type_) { EXPLAIN << "Shape does not have element type " << PrimitiveType_Name(element_type_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with element type " << PrimitiveType_Name(element_type_); } private: PrimitiveType element_type_; }; class ShapePatternDimsImpl { public: explicit ShapePatternDimsImpl(absl::Span<const int64_t> dims) : dims_(dims.begin(), dims.end()) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->dimensions() != dims_) { EXPLAIN << "Shape does not have dimensions [" << absl::StrJoin(dims_, ",") << "]"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with dimensions [" << absl::StrJoin(dims_, ",") << "]"; } private: absl::InlinedVector<int64_t, 8> dims_; }; class ShapePatternIsScalarImpl { public: explicit constexpr ShapePatternIsScalarImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::IsScalar(*shape)) { EXPLAIN << "Shape is not a scalar"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a scalar"; } }; class ShapePatternIsArrayImpl { public: explicit constexpr ShapePatternIsArrayImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!shape->IsArray()) { EXPLAIN << "Shape is not an array"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents an array"; } }; class ShapePatternIsDenseArrayImpl { public: explicit constexpr ShapePatternIsDenseArrayImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!LayoutUtil::IsDenseArray(*shape)) { EXPLAIN << "Shape is not a dense array"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a dense array"; } }; class ShapePatternIsTupleImpl { public: explicit constexpr ShapePatternIsTupleImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!shape->IsTuple()) { EXPLAIN << "Shape is not a tuple"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a tuple"; } }; class ShapePatternEffectiveScalarImpl { public: explicit constexpr ShapePatternEffectiveScalarImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::IsEffectiveScalar(*shape)) { EXPLAIN << "Shape is not an effective scalar"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that is an effective scalar"; } }; class ShapePatternRankImpl { public: explicit constexpr ShapePatternRankImpl(int64_t rank) : rank_(rank) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->rank() != rank_) { if (rank_ == 0) { EXPLAIN << "Shape is not a scalar"; } else { EXPLAIN << "Shape does not have rank " << rank_; } return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (rank_ == 0) { *os << "that is a scalar"; } else { *os << "that has " << rank_ << " dimension" << (rank_ != 1 ? "s" : ""); } } private: int64_t rank_; }; template <typename LayoutType, typename LayoutImpl> class ShapePatternLayoutImpl { public: explicit constexpr ShapePatternLayoutImpl( const LayoutPattern<LayoutType, LayoutImpl>& layout) : layout_(layout) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { return LayoutUtil::HasLayout(*shape) && layout_.Match(&shape->layout(), option); } bool Match(::xla::Shape* shape, MatchOption option) const { if (!LayoutUtil::HasLayout(*shape)) { EXPLAIN << "Shape does not have a layout"; return false; } if (!layout_.Match(shape->mutable_layout(), option)) { EXPLAIN << "\nin layout"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with"; Indent(os, indent + kIndentInc); layout_.DescribeTo(os, indent + kIndentInc); } private: LayoutPattern<LayoutType, LayoutImpl> layout_; }; template <typename SubshapeType, typename SubshapeImpl> class ShapePatternSubshapeImpl { public: explicit ShapePatternSubshapeImpl( ShapeIndexView index, const ShapePattern<SubshapeType, SubshapeImpl>& subshape) : index_(index), subshape_(subshape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { return MatchImpl(shape, option); } bool Match(::xla::Shape* shape, MatchOption option) const { return MatchImpl(shape, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with subshape at index " << ShapeIndex(index_) << " which is"; Indent(os, indent + kIndentInc); subshape_.DescribeTo(os, indent + kIndentInc); } private: ::xla::Shape* GetSubshape(::xla::Shape* shape) const { return ShapeUtil::GetMutableSubshape(shape, index_); } const ::xla::Shape* GetSubshape(const ::xla::Shape* shape) const { return &ShapeUtil::GetSubshape(*shape, index_); } template <typename ShapeType> bool MatchImpl(ShapeType* shape, MatchOption option) const { if (!ShapeUtil::IndexIsValid(*shape, index_)) { EXPLAIN << "No subshape at " << ShapeIndex(index_); return false; } if (!subshape_.Match(GetSubshape(shape), option)) { EXPLAIN << "\nin subshape at " << ShapeIndex(index_); return false; } return true; } ShapeIndexView index_; ShapePattern<SubshapeType, SubshapeImpl> subshape_; }; template <typename ShapeType, typename Impl> class ShapePattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_all_of = AllOf<::xla::Shape>(impl_, std::move(new_impl)); return ShapePattern<ShapeType, decltype(new_all_of)>(std::move(new_all_of), matched_shape_); } public: explicit constexpr ShapePattern(const Impl& impl, ShapeType** matched_shape) : impl_(impl), matched_shape_(matched_shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (impl_.Match(shape, option)) { if (option.capture && matched_shape_) { *matched_shape_ = shape; } return true; } if (shape) { EXPLAIN << "\nin " << (shape->has_layout() ? ShapeUtil::HumanStringWithLayout(*shape) : ShapeUtil::HumanString(*shape)); } return false; } bool Match(::xla::Shape* shape, MatchOption option) const { if (impl_.Match(shape, option)) { if (option.capture && matched_shape_) { *matched_shape_ = shape; } return true; } EXPLAIN << "\nin " << (shape->has_layout() ? ShapeUtil::HumanStringWithLayout(*shape) : ShapeUtil::HumanString(*shape)); return false; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { return impl_.DescribeTo(os, indent); } constexpr auto EqualTo(const ::xla::Shape* shape) const { return AppendImpl(ShapePatternEqualImpl(shape)); } constexpr auto CompatibleTo(const ::xla::Shape* shape) const { return AppendImpl(ShapePatternCompatibleImpl(shape)); } constexpr auto WithElementType(PrimitiveType element_type) const { return AppendImpl(ShapePatternElementTypeImpl(element_type)); } constexpr auto WithDims(absl::Span<const int64_t> dims) const { return AppendImpl(ShapePatternDimsImpl(dims)); } constexpr auto IsScalar() const { return AppendImpl(ShapePatternIsScalarImpl()); } constexpr auto IsArray() const { return AppendImpl(ShapePatternIsArrayImpl()); } constexpr auto IsTuple() const { return AppendImpl(ShapePatternIsTupleImpl()); } constexpr auto IsEffectiveScalar() const { return AppendImpl(ShapePatternEffectiveScalarImpl()); } constexpr auto WithRank(int64_t rank) const { return AppendImpl(ShapePatternRankImpl(rank)); } template <typename LayoutType, typename LayoutImpl> auto WithLayout(const LayoutPattern<LayoutType, LayoutImpl>& layout) const { return AppendImpl(ShapePatternLayoutImpl<LayoutType, LayoutImpl>(layout)); } constexpr auto WithLayout(absl::Span<const int64_t> minor_to_major) const { return WithLayout(Layout().WithMinorToMajor(minor_to_major)); } constexpr auto WithLayoutEqualTo(const ::xla::Layout* layout) const { return WithLayout(Layout().EqualTo(layout)); } constexpr auto IsDenseArray() const { return AppendImpl(ShapePatternIsDenseArrayImpl()); } template <typename SubshapeType, typename SubshapeImpl> auto WithSubshape( ShapeIndexView index, const ShapePattern<SubshapeType, SubshapeImpl>& subshape) const { return AppendImpl( ShapePatternSubshapeImpl<SubshapeType, SubshapeImpl>(index, subshape)); } ShapePattern<ShapeType, AllOfPattern<::xla::Shape, Impl, ShapePatternSubshapeImpl< const ::xla::Shape, AllOfPattern<::xla::Shape, ShapePatternBaseImpl, ShapePatternEqualImpl>>>> WithSubshapeEqualTo(ShapeIndexView index, const ::xla::Shape* shape) const { return WithSubshape(index, ShapePattern<const ::xla::Shape, ShapePatternBaseImpl>( ShapePatternBaseImpl(), nullptr) .EqualTo(shape)); } ShapePattern<ShapeType, AllOfPattern<::xla::Shape, Impl, ShapePatternSubshapeImpl< const ::xla::Shape, AllOfPattern<::xla::Shape, ShapePatternBaseImpl, ShapePatternCompatibleImpl>>>> WithSubshapeCompatibleTo(ShapeIndexView index, const ::xla::Shape* shape) const { return WithSubshape(index, ShapePattern<const ::xla::Shape, ShapePatternBaseImpl>( ShapePatternBaseImpl(), nullptr) .CompatibleTo(shape)); } private: Impl impl_; ShapeType** matched_shape_; }; } inline constexpr auto Shape(const ::xla::Shape** matched_shape = nullptr) { return detail::ShapePattern<const ::xla::Shape, detail::ShapePatternBaseImpl>( detail::ShapePatternBaseImpl(), matched_shape); } inline constexpr auto Shape(::xla::Shape** matched_shape) { return detail::ShapePattern<::xla::Shape, detail::ShapePatternBaseImpl>( detail::ShapePatternBaseImpl(), matched_shape); } namespace detail { inline HloInstruction* HloOperand(HloInstruction* instr, int64_t idx) { return instr->mutable_operand(idx); } inline const HloInstruction* HloOperand(const HloInstruction* instr, int64_t idx) { return instr->operand(idx); } inline std::string InstToString(const HloInstruction* inst) { return inst->ToString( HloPrintOptions().set_print_metadata(false).set_print_percent(false)); } template <typename HloInstructionType, typename Impl> class HloInstructionPattern; class HloInstructionPatternBaseImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst == nullptr) { EXPLAIN << "HloInstruction* is null"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "an HloInstruction"; } static constexpr bool kIsTrivialMatcher = true; }; class HloInstructionPatternNameImpl { public: explicit HloInstructionPatternNameImpl(absl::string_view name) : name_(name) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->name() != name_) { EXPLAIN << "HloInstruction not named \"" << name_ << "\""; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "named \"" << name_ << "\""; } private: absl::string_view name_; }; class HloInstructionIsImpl { public: explicit HloInstructionIsImpl(const HloInstruction* inst) : inst_(inst) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst != inst_) { EXPLAIN << "HloInstruction " << std::hex << std::nouppercase << std::showbase << reinterpret_cast<uint64_t>(inst) << " is not " << reinterpret_cast<uint64_t>(inst_) << " (" << InstToString(inst_) << ")"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is " << std::hex << std::nouppercase << std::showbase << reinterpret_cast<uint64_t>(inst_) << " (" << InstToString(inst_) << ")"; } private: const HloInstruction* inst_; }; class HloInstructionPatternOpcodeImpl { public: explicit constexpr HloInstructionPatternOpcodeImpl(HloOpcode opcode, bool invert) : opcode_(opcode), invert_(invert) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (invert_ && inst->opcode() == opcode_) { EXPLAIN << "HloInstruction has opcode " << opcode_ << ", expected anything else"; return false; } if (!invert_ && inst->opcode() != opcode_) { EXPLAIN << "HloInstruction doesn't have opcode " << opcode_; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (!invert_) { *os << "with opcode " << opcode_; } else { *os << "with any opcode other than " << opcode_; } } private: HloOpcode opcode_; bool invert_; }; class HloInstructionCustomCallTargetImpl { public: explicit HloInstructionCustomCallTargetImpl( absl::Span<const absl::string_view> custom_call_targets) : custom_call_targets_(custom_call_targets.begin(), custom_call_targets.end()) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kCustomCall || !absl::c_linear_search(custom_call_targets_, inst->custom_call_target())) { if (custom_call_targets_.size() == 1) { EXPLAIN << "HloInstruction is not a custom call with a target '" << custom_call_targets_.front() << "'"; } else { EXPLAIN << "HloInstruction is not a custom call with a target in {" << absl::StrJoin(custom_call_targets_, ", ") << "}"; } return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (custom_call_targets_.size() == 1) { *os << "custom call with target '" << custom_call_targets_.front() << "'"; } else { *os << "custom call with target in {" << absl::StrJoin(custom_call_targets_, ", ") << "}"; } } private: absl::InlinedVector<std::string, 1> custom_call_targets_; }; class HloInstructionPatternNumOperandsImpl { public: explicit constexpr HloInstructionPatternNumOperandsImpl(int64_t num_operands) : num_operands_(num_operands) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->operand_count() != num_operands_) { EXPLAIN << "HloInstruction doesn't have " << num_operands_ << " operands"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with " << num_operands_ << " operand" << (num_operands_ != 1 ? "s" : ""); } private: int64_t num_operands_; }; template <typename ShapeType, typename ShapeImpl> class HloInstructionPatternShapeImpl { public: explicit constexpr HloInstructionPatternShapeImpl( const ShapePattern<ShapeType, ShapeImpl>& shape) : shape_(shape) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (!shape_.Match(&inst->shape(), option)) { EXPLAIN << "\nin output shape"; return false; } return true; } bool Match(::xla::HloInstruction* inst, MatchOption option) const { if (!shape_.Match(inst->mutable_shape(), option)) { EXPLAIN << "\nin output shape"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "outputting"; Indent(os, indent + kIndentInc); shape_.DescribeTo(os, indent + kIndentInc); } private: ShapePattern<ShapeType, ShapeImpl> shape_; }; template <typename OperandType, typename OperandImpl> class HloInstructionPatternOperandImpl { public: explicit constexpr HloInstructionPatternOperandImpl( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) : operand_index_(operand_index), operand_(operand) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with operand " << operand_index_ << " which is:"; Indent(os, indent + kIndentInc); operand_.DescribeTo(os, indent + kIndentInc); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (operand_index_ >= inst->operand_count()) { EXPLAIN << "desired operand index " << operand_index_ << " is out of bounds"; return false; } if (!operand_.Match(HloOperand(inst, operand_index_), option)) { EXPLAIN << "\nin operand " << operand_index_; return false; } if (option.single_user_only && inst->operand(operand_index_)->user_count() != 1) { EXPLAIN << "Operand " << operand_index_ << " of HloInstruction has " << inst->operand(operand_index_)->user_count() << " users. Expected 1."; return false; } return true; } int64_t operand_index_; HloInstructionPattern<OperandType, OperandImpl> operand_; }; template <typename OperandType, typename OperandImpl> class HloInstructionPatternOperandIfPresentImpl { public: explicit constexpr HloInstructionPatternOperandIfPresentImpl( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) : operand_index_(operand_index), operand_(operand) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "either with fewer than " << operand_index_ + 1 << " operand" << (operand_index_ + 1 != 1 ? "s" : "") << ", or with an operand " << operand_index_ << " which is:"; Indent(os, indent + kIndentInc); operand_.DescribeTo(os, indent + kIndentInc); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (operand_index_ >= inst->operand_count()) { return true; } if (!operand_.Match(HloOperand(inst, operand_index_), option)) { EXPLAIN << "\nin operand " << operand_index_; return false; } return true; } int64_t operand_index_; HloInstructionPattern<OperandType, OperandImpl> operand_; }; template <typename OperandType1, typename OperandImpl1, typename OperandType2, typename OperandImpl2> class HloInstructionPatternBinaryOperandsAnyOrderImpl { public: explicit constexpr HloInstructionPatternBinaryOperandsAnyOrderImpl( const HloInstructionPattern<OperandType1, OperandImpl1>& op1, const HloInstructionPattern<OperandType2, OperandImpl2>& op2) : op1_(op1), op2_(op2) {} bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with two operands in either order:"; Indent(os, indent); *os << " - "; op1_.DescribeTo(os, indent + 3); Indent(os, indent); *os << " - "; op2_.DescribeTo(os, indent + 3); } private: HloInstruction* operand(HloInstruction* inst, int64_t idx) const { return inst->mutable_operand(idx); } const HloInstruction* operand(const HloInstruction* inst, int64_t idx) const { return inst->operand(idx); } template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->operand_count() != 2) { EXPLAIN << "HloInstruction did not have two operands"; return false; } if (option.single_user_only) { for (int i = 0; i < 2; ++i) { if (inst->operand(i)->user_count() != 1) { EXPLAIN << "Operand " << i << " of HloInstruction has " << inst->operand(i)->user_count() << " users. Expected 1."; return false; } } } if (!option.explain_os) { auto try_match = [&](int64_t idx1, int64_t idx2) { MatchOption new_option = option; new_option.capture = false; if (op1_.Match(operand(inst, idx1), new_option) && op2_.Match(operand(inst, idx2), new_option)) { if (option.capture) { bool matched = op1_.Match(operand(inst, idx1), option) && op2_.Match(operand(inst, idx2), option); DCHECK(matched); } return true; } return false; }; return try_match(0, 1) || try_match(1, 0); } bool matches[ 2][ 2]; std::stringstream explanations[ 2][ 2]; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { MatchOption new_option = option; new_option.capture = false; new_option.explain_os = &explanations[i][j]; matches[i][j] = i == 0 ? op1_.Match(operand(inst, j), new_option) : op2_.Match(operand(inst, j), new_option); } } for (int i = 0; i < 2; ++i) { if (matches[0][i] && matches[1][(i + 1) % 2]) { if (option.capture) { auto* operand1 = operand(inst, i); auto* operand2 = operand(inst, (i + 1) % 2); bool matched = op1_.Match(operand1, option) && op2_.Match(operand2, option); DCHECK(matched); } return true; } } auto describe_matcher = [&](int matcher_idx) { EXPLAIN << "\n - "; if (matcher_idx == 0) { op1_.DescribeTo(option.explain_os, 3); } else { CHECK_EQ(matcher_idx, 1); op2_.DescribeTo(option.explain_os, 3); } for (int i = 0; i < 2; ++i) { if (matches[matcher_idx][ i]) { continue; } EXPLAIN << "\ndoes not match " << (i == 0 ? "LHS" : "RHS") << ":\n"; EXPLAIN << " - "; EXPLAIN << absl::StrReplaceAll( explanations[matcher_idx][ i].str(), {{"\n", "\n "}}); } }; bool wrote_explanation = false; for (int i = 0; !wrote_explanation && i < 2; ++i) { if (!matches[i][0] && !matches[i][1]) { EXPLAIN << "HloInstruction's operands (ignoring order) did not match " << (i == 0 ? "first" : "second") << " matcher. Specifically,"; describe_matcher(i); wrote_explanation = true; } } for (int i = 0; !wrote_explanation && i < 2; ++i) { if (matches[ 0][ i] && matches[ 1][ i]) { CHECK(!matches[0][(i + 1) % 2]); CHECK(!matches[1][(i + 1) % 2]); CHECK(!wrote_explanation); EXPLAIN << "HloInstruction's " << (i == 1 ? "LHS" : "RHS") << " operand did not match either of the two matchers. " "Specifically,"; describe_matcher(0); EXPLAIN << "\nand"; describe_matcher(1); wrote_explanation = true; } } CHECK(wrote_explanation); return false; } HloInstructionPattern<OperandType1, OperandImpl1> op1_; HloInstructionPattern<OperandType2, OperandImpl2> op2_; }; class HloInstructionPatternFusionKindImpl { public: explicit constexpr HloInstructionPatternFusionKindImpl( ::xla::HloInstruction::FusionKind kind) : kind_(kind) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with fusion kind " << ToString(kind_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kFusion) { EXPLAIN << "HloInstruction does not have fusion kind " << ToString(kind_) << "; it's not a fusion"; return false; } if (inst->fusion_kind() != kind_) { EXPLAIN << "HloInstruction does not have fusion kind " << ToString(kind_); return false; } return true; } ::xla::HloInstruction::FusionKind kind_; }; class HloInstructionPatternTupleIndexImpl { public: explicit constexpr HloInstructionPatternTupleIndexImpl(int64_t tuple_index) : tuple_index_(tuple_index) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is a GTE with index " << tuple_index_; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kGetTupleElement) { EXPLAIN << "HloInstruction is not a GTE with index " << tuple_index_ << "; it's not a GTE at all"; return false; } if (inst->tuple_index() != tuple_index_) { EXPLAIN << "HloInstruction is not a GTE with index " << tuple_index_; return false; } return true; } int64_t tuple_index_; }; class HloInstructionPatternParameterNumImpl { public: explicit constexpr HloInstructionPatternParameterNumImpl( int64_t parameter_num) : parameter_num_(parameter_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is parameter " << parameter_num_; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kParameter || inst->parameter_number() != parameter_num_) { EXPLAIN << "HloInstruction is not parameter " << parameter_num_; return false; } return true; } int64_t parameter_num_; }; class HloInstructionPatternOneUseOrUserImpl { protected: bool MatchOneUser(const HloInstruction* inst, MatchOption option) const { if (inst->user_count() != 1) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected exactly one."; if (inst->user_count() > 1) { EXPLAIN << "\nAll users:"; for (const HloInstruction* user : inst->users()) { EXPLAIN << "\n - " << InstToString(user); } } return false; } return true; } }; class HloInstructionPatternOneUseImpl : public HloInstructionPatternOneUseOrUserImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (!MatchOneUser(inst, option)) { return false; } int64_t use_count = absl::c_count_if( inst->users()[0]->operands(), [&](const HloInstruction* operand) { return operand == inst; }); if (use_count != 1) { EXPLAIN << "HloInstruction is used " << use_count << " times by its user, but is expected to be used just once: " << InstToString(inst->users()[0]); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly one use"; } }; class HloInstructionPatternOneUserImpl : public HloInstructionPatternOneUseOrUserImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchOneUser(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly one user (but possibly is used multiple times by " "that instruction)"; } }; class HloInstructionPatternNumUserImpl { public: explicit constexpr HloInstructionPatternNumUserImpl(int64_t user_num) : user_num_(user_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->user_count() != user_num_) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected exactly " << user_num_ << " users."; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly " << user_num_ << " users (but possibly is used multiple times by " "same instruction)"; } private: int64_t user_num_; }; class HloInstructionPatternAtMostNumUserImpl { public: explicit constexpr HloInstructionPatternAtMostNumUserImpl(int64_t user_num) : user_num_(user_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->user_count() > user_num_) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected less than or equal " << user_num_ << " users."; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has less than or equal " << user_num_ << " users (but possibly is used multiple times by " "same instruction)"; } private: int64_t user_num_; }; class HloInstructionPatternComparisonDirectionImpl { public: explicit constexpr HloInstructionPatternComparisonDirectionImpl( ComparisonDirection direction) : direction_(direction) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has comparison direction " << ComparisonDirectionToString(direction_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kCompare || inst->comparison_direction() != direction_) { EXPLAIN << "HloInstruction is not comparison " << ComparisonDirectionToString(direction_); return false; } return true; } ComparisonDirection direction_; }; class HloInstructionPatternConvDnumsImpl { public: explicit HloInstructionPatternConvDnumsImpl(absl::string_view dnums) : HloInstructionPatternConvDnumsImpl( ParseConvolutionDimensionNumbers(dnums).value()) {} explicit HloInstructionPatternConvDnumsImpl(ConvolutionDimensionNumbers dnums) : dnums_(std::move(dnums)) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has convolution dimension numbers " << ConvolutionDimensionNumbersToString(dnums_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kConvolution && inst->opcode() != HloOpcode::kCustomCall) { EXPLAIN << "HloInstruction is not convolution or custom-call and so " "can't have convolution_dimension_numbers"; return false; } const ConvolutionDimensionNumbers& actual_dnums = inst->convolution_dimension_numbers(); if (!tsl::protobuf::util::MessageDifferencer::Equals(dnums_, actual_dnums)) { EXPLAIN << "convolution_dimension_numbers " << ConvolutionDimensionNumbersToString(actual_dnums) << " don't match expected " << ConvolutionDimensionNumbersToString(dnums_); return false; } return true; } ConvolutionDimensionNumbers dnums_; }; class HloInstructionPredicateImpl { public: explicit HloInstructionPredicateImpl(HloPredicate fn) : fn_(std::move(fn)) {} bool Match(const HloInstruction* inst, MatchOption option) const { bool match = fn_(inst); if (!match) { EXPLAIN << "HloInstruction does not match user-specified predicate"; } return match; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which matches a user-specified predicate"; } private: HloPredicate fn_; }; class HloInstructionContractingDimsImpl { public: explicit HloInstructionContractingDimsImpl( absl::Span<const int64_t> lhs_contracting_dims, absl::Span<const int64_t> rhs_contracting_dims) : lhs_contracting_dims_(lhs_contracting_dims.begin(), lhs_contracting_dims.end()), rhs_contracting_dims_(rhs_contracting_dims.begin(), rhs_contracting_dims.end()) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with lhs_contracting_dims {" << absl::StrJoin(lhs_contracting_dims_, ",") << "} and rhs_contracting_dims {" << absl::StrJoin(rhs_contracting_dims_, ",") << "}"; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kDot) { EXPLAIN << "HloInstruction is not dot so " "can't have dot_dimension_numbers"; return false; } const DotDimensionNumbers& dnums = inst->dot_dimension_numbers(); if (absl::MakeSpan(dnums.lhs_contracting_dimensions()) != lhs_contracting_dims_) { EXPLAIN << "lhs_contracting_dimensions {" << absl::StrJoin(dnums.lhs_contracting_dimensions(), ",") << "} don't match expected {" << absl::StrJoin(lhs_contracting_dims_, ",") << "}"; return false; } if (absl::MakeSpan(dnums.rhs_contracting_dimensions()) != rhs_contracting_dims_) { EXPLAIN << "rhs_contracting_dimensions {" << absl::StrJoin(dnums.rhs_contracting_dimensions(), ",") << "} don't match expected {" << absl::StrJoin(rhs_contracting_dims_, ",") << "}"; return false; } return true; } absl::InlinedVector<int64_t, 8> lhs_contracting_dims_; absl::InlinedVector<int64_t, 8> rhs_contracting_dims_; }; class HloInstructionReplicaGroupsImpl { public: explicit HloInstructionReplicaGroupsImpl( std::vector<std::vector<int64_t>> replica_groups) : replica_groups_(std::move(replica_groups)) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { std::vector<std::string> replica_group_strs; replica_group_strs.reserve(replica_groups_.size()); for (const std::vector<int64_t>& replica_group : replica_groups_) { replica_group_strs.push_back( absl::StrCat("{", absl::StrJoin(replica_group, ","), "}")); } *os << "with replica_group {" << absl::StrJoin(replica_group_strs, ",") << "}"; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { const HloCollectiveInstruction* collective = DynCast<HloCollectiveInstruction>(inst); if (!collective) { EXPLAIN << "HloInstruction is not a collective"; return false; } if (absl::c_equal(collective->replica_groups(), replica_groups_, [](const ReplicaGroup& a, const std::vector<int64_t>& b) { return absl::c_equal(a.replica_ids(), b); })) { return true; } std::ostringstream desc_stream; DescribeTo(&desc_stream); std::vector<std::string> replica_group_strs; replica_group_strs.reserve(replica_groups_.size()); for (const ReplicaGroup& replica_group : collective->replica_groups()) { replica_group_strs.push_back(absl::StrCat( "{", absl::StrJoin(replica_group.replica_ids(), ","), "}")); } EXPLAIN << "replica_group {" << absl::StrJoin(replica_group_strs, ",") << "} don't match expected " << desc_stream.str(); return false; } std::vector<std::vector<int64_t>> replica_groups_; }; class HloInstructionShardingImpl { public: explicit HloInstructionShardingImpl( const std::optional<HloSharding>& sharding) : sharding_(sharding) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (sharding_.has_value()) { *os << "with sharding " << sharding_->ToString(); } else { *os << "with no sharding"; } } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (!sharding_.has_value()) { if (!inst->has_sharding()) { return true; } EXPLAIN << "HloInstruction is expected to have no sharding."; return false; } if (inst->has_sharding()) { if (inst->sharding() == sharding_.value()) { return true; } EXPLAIN << "sharding " << inst->sharding().ToString() << " don't match expected " << sharding_->ToString(); return false; } else { EXPLAIN << "HloInstruction has no sharding. Expected: " << sharding_->ToString(); return false; } } std::optional<HloSharding> sharding_; }; class HloInstructionControlDepsImpl { public: explicit HloInstructionControlDepsImpl( absl::Span<HloInstruction* const> preds, absl::Span<HloInstruction* const> succs) : preds_(preds), succs_(succs) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { auto print_deps = [os](absl::Span<HloInstruction* const> deps, absl::string_view type) { if (deps.empty()) { *os << "no control " << type; } else { *os << "control " << type << " {" << absl::StrJoin(deps, ",", fmt) << "}"; } }; *os << "with "; print_deps(preds_, "predecessors"); *os << " and "; print_deps(succs_, "successors"); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { auto match_deps = [&](absl::Span<HloInstruction* const> expected_deps, const PtrVec<HloInstruction*>& actual_deps, absl::string_view type) { if (!absl::c_equal(expected_deps, actual_deps)) { EXPLAIN << "HloInstruction expected to have control " << type << " {" << absl::StrJoin(expected_deps, ",", fmt) << "} but has {" << absl::StrJoin(actual_deps, ",", fmt) << "}"; return false; } return true; }; return match_deps(preds_, inst->control_predecessors(), "predecessors") && match_deps(succs_, inst->control_successors(), "successors"); } static void fmt(std::string* out, const HloInstruction* inst) { absl::StrAppend(out, inst->name()); }; absl::Span<HloInstruction* const> preds_, succs_; }; template <typename ScalarTy> class HloConstantScalarImpl { public: explicit constexpr HloConstantScalarImpl(bool match_effective_scalar) : val_(std::nullopt), match_effective_scalar_(match_effective_scalar) {} constexpr HloConstantScalarImpl(ScalarTy val, bool match_effective_scalar) : val_(val), match_effective_scalar_(match_effective_scalar) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is a constant " << (match_effective_scalar_ ? "effective " : "") << "scalar"; if (val_.has_value()) { *os << " with value " << *val_; } } private: template <typename InstTy> bool MatchImpl(InstTy* inst, MatchOption option) const { const auto* const_inst = DynCast<HloConstantInstruction>(inst); if (!const_inst) { EXPLAIN << "HloInstruction is not a constant"; return false; } if (match_effective_scalar_ && !ShapeUtil::IsEffectiveScalar(inst->shape())) { EXPLAIN << "HloInstruction is not an effective scalar"; return false; } if (!match_effective_scalar_ && !ShapeUtil::IsScalar(inst->shape())) { EXPLAIN << "HloInstruction is not a scalar"; return false; } if (!val_.has_value()) { return true; } auto const_inst_scalar_or = const_inst->literal().Reshape({}); if (!const_inst_scalar_or.ok()) { EXPLAIN << "could not convert matched literal to effective scalar"; return false; } Literal const_inst_scalar = std::move(const_inst_scalar_or).value(); if (!const_inst_scalar.IsEqualAt({}, *val_)) { EXPLAIN << "HloInstruction's constant value " << const_inst_scalar.ToStringWithoutShape() << " did not match expected value " << *val_; return false; } return true; } std::optional<ScalarTy> val_; bool match_effective_scalar_; }; template <typename HloInstructionType, typename Impl> class HloInstructionPattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_allof = AllOf<::xla::HloInstruction>(impl_, std::move(new_impl)); return HloInstructionPattern<HloInstructionType, decltype(new_allof)>( std::move(new_allof), matched_inst_); } public: explicit constexpr HloInstructionPattern(const Impl& impl, HloInstructionType** matched_inst) : impl_(impl), matched_inst_(matched_inst) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (impl_.Match(inst, option)) { if (option.capture && matched_inst_) { *matched_inst_ = inst; } return true; } if (inst != nullptr) { EXPLAIN << "\nin " << InstToString(inst); } return false; } bool Match(::xla::HloInstruction* inst, MatchOption option, bool explain_instruction = true) const { if (impl_.Match(inst, option)) { if (option.capture && matched_inst_) { *matched_inst_ = inst; } return true; } if (explain_instruction) { EXPLAIN << "\nin " << InstToString(inst); } return false; } auto WithName(absl::string_view name) const { return AppendImpl(HloInstructionPatternNameImpl(name)); } auto WithOpcode(HloOpcode opcode) const { return AppendImpl(HloInstructionPatternOpcodeImpl(opcode, false)); } auto WithCustomCallTarget( absl::Span<const absl::string_view> custom_call_targets) const { return AppendImpl(HloInstructionCustomCallTargetImpl(custom_call_targets)); } auto WithNumOperands(int64_t num_operands) const { return AppendImpl(HloInstructionPatternNumOperandsImpl(num_operands)); } auto WithoutOpcode(HloOpcode opcode) const { return AppendImpl(HloInstructionPatternOpcodeImpl(opcode, true)); } constexpr auto Is(const HloInstruction* instr) const { return AppendImpl(HloInstructionIsImpl(instr)); } constexpr auto IsConstant() const { return WithOpcode(HloOpcode::kConstant); } constexpr auto IsConstantScalar() const { return AppendImpl( HloConstantScalarImpl< int>(false)); } template <typename ScalarTy> constexpr auto IsConstantScalar(const ScalarTy& val) const { return AppendImpl( HloConstantScalarImpl<ScalarTy>(val, false)); } constexpr auto IsConstantEffectiveScalar() const { return AppendImpl( HloConstantScalarImpl< int>(true)); } template <typename ScalarTy> constexpr auto IsConstantEffectiveScalar(const ScalarTy& val) const { return AppendImpl( HloConstantScalarImpl<ScalarTy>(val, true)); } constexpr auto IsNonConstant() const { return WithoutOpcode(HloOpcode::kConstant); } template <typename ShapeType, typename ShapeImpl> constexpr auto WithShape( const ShapePattern<ShapeType, ShapeImpl>& shape) const { return AppendImpl( HloInstructionPatternShapeImpl<ShapeType, ShapeImpl>(shape)); } constexpr auto WithShape(PrimitiveType ty, absl::Span<const int64_t> dims) { return WithShape(Shape().WithElementType(ty).WithDims(dims)); } constexpr auto WithShape(PrimitiveType ty, absl::Span<const int64_t> dims, absl::Span<const int64_t> minor_to_major) { return WithShape( Shape().WithElementType(ty).WithDims(dims).WithLayout(minor_to_major)); } template <typename Dummy = void> constexpr auto WithShapeEqualTo(const ::xla::Shape* shape) const { return WithShape(Shape().EqualTo(shape)); } template <typename Dummy = void> constexpr auto WithShapeCompatibleTo(const ::xla::Shape* shape) const { return WithShape(Shape().CompatibleTo(shape)); } constexpr auto WithElementType(PrimitiveType ty) { return WithShape(Shape().WithElementType(ty)); } template <typename OperandType, typename OperandImpl> constexpr auto WithOperand( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) const { return AppendImpl( HloInstructionPatternOperandImpl<OperandType, OperandImpl>( operand_index, operand)); } template <typename OperandType, typename OperandImpl> constexpr auto WithOperandIfPresent( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) const { return AppendImpl( HloInstructionPatternOperandIfPresentImpl<OperandType, OperandImpl>( operand_index, operand)); } template <typename OperandType1, typename OperandImpl1, typename OperandType2, typename OperandImpl2> constexpr auto WithBinaryOperandsAnyOrder( const HloInstructionPattern<OperandType1, OperandImpl1>& op1, const HloInstructionPattern<OperandType2, OperandImpl2>& op2) const { return AppendImpl( HloInstructionPatternBinaryOperandsAnyOrderImpl< OperandType1, OperandImpl1, OperandType2, OperandImpl2>(op1, op2)); } constexpr auto WithFusionKind(HloInstruction::FusionKind kind) const { return AppendImpl(HloInstructionPatternFusionKindImpl(kind)); } constexpr auto WithTupleIndex(int64_t tuple_index) const { return AppendImpl(HloInstructionPatternTupleIndexImpl(tuple_index)); } constexpr auto WithParameterNum(int64_t parameter_num) const { return AppendImpl(HloInstructionPatternParameterNumImpl(parameter_num)); } constexpr auto WithOneUse() const { return AppendImpl(HloInstructionPatternOneUseImpl()); } constexpr auto WithOneUser() const { return AppendImpl(HloInstructionPatternOneUserImpl()); } constexpr auto WithNumUser(int64_t user_num) const { return AppendImpl(HloInstructionPatternNumUserImpl(user_num)); } constexpr auto WithAtMostNumUser(int64_t user_num) const { return AppendImpl(HloInstructionPatternAtMostNumUserImpl(user_num)); } auto WithComparisonDirection(ComparisonDirection direction) const { return AppendImpl(HloInstructionPatternComparisonDirectionImpl(direction)); } auto WithConvDnums(absl::string_view dnums) const { return AppendImpl(HloInstructionPatternConvDnumsImpl(dnums)); } auto WithConvDnums(ConvolutionDimensionNumbers dnums) const { return AppendImpl(HloInstructionPatternConvDnumsImpl(dnums)); } auto WithPredicate(HloPredicate fn) const { return AppendImpl(HloInstructionPredicateImpl(std::move(fn))); } auto WithContractingDims( absl::Span<const int64_t> lhs_contracting_dims, absl::Span<const int64_t> rhs_contracting_dims) const { return AppendImpl(HloInstructionContractingDimsImpl(lhs_contracting_dims, rhs_contracting_dims)); } auto WithReplicaGroups( std::vector<std::vector<int64_t>> replica_groups) const { return AppendImpl( HloInstructionReplicaGroupsImpl(std::move(replica_groups))); } auto WithSharding(absl::string_view sharding) const { return AppendImpl( HloInstructionShardingImpl(ParseSharding(sharding).value())); } auto WithControlDeps(absl::Span<HloInstruction* const> preds, absl::Span<HloInstruction* const> succs) { return AppendImpl(HloInstructionControlDepsImpl(preds, succs)); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { impl_.DescribeTo(os, indent); } private: Impl impl_; HloInstructionType** matched_inst_; }; template <typename Item, typename... Patterns> struct AnyOfImpl { auto operator()(const Patterns&... patterns) const { return AnyOfPattern<typename std::remove_const<Item>::type, Patterns...>( patterns...); } }; template <typename... Patterns> struct AnyOfImpl<HloInstruction, Patterns...> { auto operator()(const Patterns&... patterns) const { auto any_of = AnyOfPattern<HloInstruction, Patterns...>(patterns...); return HloInstructionPattern<HloInstruction, decltype(any_of)>( std::move(any_of), nullptr); } }; } template <typename Item, typename... Patterns> auto AnyOf(const Patterns&... patterns) { return detail::AnyOfImpl<Item, Patterns...>()(patterns...); } inline constexpr auto Op(const ::xla::HloInstruction** matched_inst = nullptr) { return detail::HloInstructionPattern<const ::xla::HloInstruction, detail::HloInstructionPatternBaseImpl>( detail::HloInstructionPatternBaseImpl(), matched_inst); } inline constexpr auto Op(::xla::HloInstruction** matched_inst) { return detail::HloInstructionPattern<::xla::HloInstruction, detail::HloInstructionPatternBaseImpl>( detail::HloInstructionPatternBaseImpl(), matched_inst); } #define XLA_NULLOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } XLA_NULLOP_PATTERN(Constant) XLA_NULLOP_PATTERN(Parameter) XLA_NULLOP_PATTERN(Iota) XLA_NULLOP_PATTERN(Rng) XLA_NULLOP_PATTERN(PartitionId) XLA_NULLOP_PATTERN(ReplicaId) #undef XLA_NULLOP_PATTERN #define XLA_UNOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } \ \ template <typename Arg> \ inline auto NAME(Arg&& arg) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg)); \ } \ \ template <typename HloInstructionType, typename Arg> \ inline auto NAME(HloInstructionType** matched_inst, Arg&& arg) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg)); \ } XLA_UNOP_PATTERN(Abs) XLA_UNOP_PATTERN(RoundNearestAfz) XLA_UNOP_PATTERN(Bitcast) XLA_UNOP_PATTERN(BitcastConvert) XLA_UNOP_PATTERN(Broadcast) XLA_UNOP_PATTERN(Cbrt) XLA_UNOP_PATTERN(Ceil) XLA_UNOP_PATTERN(Convert) XLA_UNOP_PATTERN(Copy) XLA_UNOP_PATTERN(Cos) XLA_UNOP_PATTERN(AllReduceStart) XLA_UNOP_PATTERN(AllReduceDone) XLA_UNOP_PATTERN(AllToAll) XLA_UNOP_PATTERN(AsyncDone) XLA_UNOP_PATTERN(CollectiveBroadcast) XLA_UNOP_PATTERN(CollectivePermute) XLA_UNOP_PATTERN(CollectivePermuteStart) XLA_UNOP_PATTERN(CollectivePermuteDone) XLA_UNOP_PATTERN(Domain) XLA_UNOP_PATTERN(Erf) XLA_UNOP_PATTERN(Exp) XLA_UNOP_PATTERN(Expm1) XLA_UNOP_PATTERN(Fft) XLA_UNOP_PATTERN(Floor) XLA_UNOP_PATTERN(GetTupleElement) XLA_UNOP_PATTERN(Imag) XLA_UNOP_PATTERN(Infeed) XLA_UNOP_PATTERN(IsFinite) XLA_UNOP_PATTERN(Log) XLA_UNOP_PATTERN(Logistic) XLA_UNOP_PATTERN(Not) XLA_UNOP_PATTERN(Negate) XLA_UNOP_PATTERN(OptimizationBarrier) XLA_UNOP_PATTERN(Real) XLA_UNOP_PATTERN(Recv) XLA_UNOP_PATTERN(RecvDone) XLA_UNOP_PATTERN(ReducePrecision) XLA_UNOP_PATTERN(Reshape) XLA_UNOP_PATTERN(Reverse) XLA_UNOP_PATTERN(Rsqrt) XLA_UNOP_PATTERN(SendDone) XLA_UNOP_PATTERN(Sign) XLA_UNOP_PATTERN(Sin) XLA_UNOP_PATTERN(Slice) XLA_UNOP_PATTERN(Sqrt) XLA_UNOP_PATTERN(Tan) XLA_UNOP_PATTERN(Tanh) XLA_UNOP_PATTERN(Transpose) XLA_UNOP_PATTERN(While) #undef XLA_UNOP_PATTERN #define XLA_BINOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)); \ } \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)); \ } #define XLA_COMMUTATIVE_BINOP_PATTERN(NAME) \ XLA_BINOP_PATTERN(NAME) \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(HloInstructionType** matched_inst, Lhs&& lhs, \ Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithBinaryOperandsAnyOrder(std::forward<Lhs>(lhs), \ std::forward<Rhs>(rhs)); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(Lhs&& lhs, Rhs&& rhs) { \ return NAME##AnyOrder<const HloInstruction>( \ nullptr, std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)); \ } XLA_COMMUTATIVE_BINOP_PATTERN(Add) XLA_BINOP_PATTERN(Atan2) XLA_BINOP_PATTERN(Divide) XLA_BINOP_PATTERN(Complex) XLA_BINOP_PATTERN(Compare) XLA_BINOP_PATTERN(Convolution) XLA_BINOP_PATTERN(Dot) XLA_BINOP_PATTERN(Gather) XLA_COMMUTATIVE_BINOP_PATTERN(Maximum) XLA_COMMUTATIVE_BINOP_PATTERN(Minimum) XLA_COMMUTATIVE_BINOP_PATTERN(Multiply) XLA_BINOP_PATTERN(Outfeed) XLA_BINOP_PATTERN(Pad) XLA_BINOP_PATTERN(Power) XLA_BINOP_PATTERN(Remainder) XLA_BINOP_PATTERN(Send) XLA_BINOP_PATTERN(Subtract) XLA_COMMUTATIVE_BINOP_PATTERN(And) XLA_COMMUTATIVE_BINOP_PATTERN(Or) XLA_BINOP_PATTERN(ShiftLeft) XLA_BINOP_PATTERN(ShiftRightArithmetic) XLA_BINOP_PATTERN(ShiftRightLogical) XLA_COMMUTATIVE_BINOP_PATTERN(Xor) #undef XLA_COMMUTATIVE_BINOP_PATTERN #undef XLA_BINOP_PATTERN #define XLA_TERNOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename Arg0, typename Arg1, typename Arg2> \ inline auto NAME(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2)); \ } \ \ template <typename HloInstructionType, typename Arg0, typename Arg1, \ typename Arg2> \ inline auto NAME(HloInstructionType** matched_inst, Arg0&& arg0, \ Arg1&& arg1, Arg2&& arg2) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2)); \ } XLA_TERNOP_PATTERN(Clamp); XLA_TERNOP_PATTERN(Select); XLA_TERNOP_PATTERN(SelectAndScatter); #undef XLA_TERNOP_PATTERN namespace detail { template <typename Matcher, typename FirstArg> inline auto WithOperands(Matcher&& m, int64_t operand_num, FirstArg&& first_arg) { return m.WithOperand(operand_num, std::forward<FirstArg>(first_arg)); } template <typename Matcher, typename FirstArg, typename... Args> inline auto WithOperands(Matcher&& m, int64_t operand_num, FirstArg&& first_arg, Args&&... args) { return WithOperands( m.WithOperand(operand_num, std::forward<FirstArg>(first_arg)), operand_num + 1, std::forward<Args>(args)...); } } #define XLA_VARIADIC_OP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename... Args> \ inline auto NAME(Args&&... args) { \ return detail::WithOperands( \ Op().WithOpcode(HloOpcode::k##NAME).WithNumOperands(sizeof...(Args)), \ 0, std::forward<Args>(args)...); \ } \ \ template <typename HloInstructionType, typename... Args> \ inline auto NAME(HloInstructionType** matched_inst, Args&&... args) { \ return detail::WithOperands(Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithNumOperands(sizeof...(Args)), \ 0, \ std::forward<Args>(args)...); \ } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } XLA_VARIADIC_OP_PATTERN(AfterAll); XLA_VARIADIC_OP_PATTERN(AllGather) XLA_VARIADIC_OP_PATTERN(AllReduce) XLA_VARIADIC_OP_PATTERN(AsyncStart) XLA_VARIADIC_OP_PATTERN(Concatenate); XLA_VARIADIC_OP_PATTERN(Conditional); XLA_VARIADIC_OP_PATTERN(DynamicSlice) XLA_VARIADIC_OP_PATTERN(DynamicUpdateSlice) XLA_VARIADIC_OP_PATTERN(Fusion); XLA_VARIADIC_OP_PATTERN(Map) XLA_VARIADIC_OP_PATTERN(Reduce); XLA_VARIADIC_OP_PATTERN(ReduceScatter) XLA_VARIADIC_OP_PATTERN(ReduceWindow) XLA_VARIADIC_OP_PATTERN(Scatter); XLA_VARIADIC_OP_PATTERN(Sort); XLA_VARIADIC_OP_PATTERN(Tuple); XLA_VARIADIC_OP_PATTERN(Call); inline auto CustomCall() { return Op().WithOpcode(HloOpcode::kCustomCall); } template <typename HloInstructionType> auto CustomCall(HloInstructionType** matched_inst) { return Op(matched_inst).WithOpcode(HloOpcode::kCustomCall); } template < typename Arg0, typename... Args, typename std::enable_if< !std::is_convertible<Arg0, absl::string_view>::value && !std::is_convertible<Arg0, HloInstruction**>::value && !std::is_convertible<Arg0, const HloInstruction**>::value>::type* = nullptr> auto CustomCall(Arg0&& arg0, Args&&... args) { return detail::WithOperands(CustomCall().WithNumOperands(sizeof...(Args) + 1), 0, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } template <typename... Args> auto CustomCall(absl::Span<const absl::string_view> custom_call_targets, Args&&... args) { return CustomCall(std::forward<Args>(args)...) .WithCustomCallTarget(custom_call_targets); } template <typename HloInstructionType, typename Arg0, typename... Args, typename std::enable_if<!std::is_convertible< Arg0, absl::string_view>::value>::type* = nullptr> auto CustomCall(HloInstructionType** matched_inst, Arg0&& arg0, Args&&... args) { return detail::WithOperands( CustomCall(matched_inst).WithNumOperands(sizeof...(Args) + 1), 0, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } template <typename HloInstructionType, typename... Args> auto CustomCall(HloInstructionType** matched_inst, absl::Span<const absl::string_view> custom_call_targets, Args&&... args) { return CustomCall(matched_inst, std::forward<Args>(args)...) .WithCustomCallTarget(custom_call_targets); } #define XLA_COMPARE_PATTERN(NAME) \ inline auto NAME() { \ return Op() \ .WithOpcode(HloOpcode::kCompare) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } \ \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return Op() \ .WithOpcode(HloOpcode::kCompare) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::kCompare) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } #define XLA_COMMUTATIVE_COMPARE_PATTERN(NAME) \ XLA_COMPARE_PATTERN(NAME) \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(HloInstructionType** matched_inst, Lhs&& lhs, \ Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::kCompare) \ .WithBinaryOperandsAnyOrder(std::forward<Lhs>(lhs), \ std::forward<Rhs>(rhs)); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(Lhs&& lhs, Rhs&& rhs) { \ return NAME##AnyOrder<const HloInstruction>( \ nullptr, std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)); \ } XLA_COMMUTATIVE_COMPARE_PATTERN(Eq); XLA_COMMUTATIVE_COMPARE_PATTERN(Ne); XLA_COMPARE_PATTERN(Ge); XLA_COMPARE_PATTERN(Gt); XLA_COMPARE_PATTERN(Le); XLA_COMPARE_PATTERN(Lt); inline auto NonConstant() { return Op().IsNonConstant(); } template <typename HloInstructionType> inline auto NonConstant(HloInstructionType** matched_inst) { return Op(matched_inst).IsNonConstant(); } template <typename Arg> inline auto GetTupleElement(Arg&& arg, int64_t tuple_index) { return Op() .WithOpcode(HloOpcode::kGetTupleElement) .WithOperand(0, std::forward<Arg>(arg)) .WithTupleIndex(tuple_index); } template <typename HloInstructionType, typename Arg> inline auto GetTupleElement(HloInstructionType** matched_inst, Arg&& arg, int64_t tuple_index) { return Op(matched_inst) .WithOpcode(HloOpcode::kGetTupleElement) .WithOperand(0, std::forward<Arg>(arg)) .WithTupleIndex(tuple_index); } inline auto Parameter(int64_t parameter_num) { return Op().WithOpcode(HloOpcode::kParameter).WithParameterNum(parameter_num); } template <typename HloInstructionType> inline auto Parameter(HloInstructionType** matched_inst, int64_t parameter_num) { return Op(matched_inst) .WithOpcode(HloOpcode::kParameter) .WithParameterNum(parameter_num); } inline auto ConstantScalar() { return Op().IsConstantScalar(); } template <typename HloInstructionType> inline auto ConstantScalar(HloInstructionType** matched_inst) { return Op(matched_inst).IsConstantScalar(); } template <typename ScalarTy> inline auto ConstantScalar(ScalarTy val) { return Op().IsConstantScalar(val); } template <typename HloInstructionType, typename ScalarTy> inline auto ConstantScalar(HloInstructionType** matched_inst, ScalarTy val) { return Op(matched_inst).IsConstantScalar(val); } inline auto ConstantEffectiveScalar() { return Op().IsConstantEffectiveScalar(); } template <typename HloInstructionType> inline auto ConstantEffectiveScalar(HloInstructionType** matched_inst) { return Op(matched_inst).IsConstantEffectiveScalar(); } template <typename ScalarTy> inline auto ConstantEffectiveScalar(ScalarTy val) { return Op().IsConstantEffectiveScalar(val); } template <typename HloInstructionType, typename ScalarTy> inline auto ConstantEffectiveScalar(HloInstructionType** matched_inst, ScalarTy val) { return Op(matched_inst).IsConstantEffectiveScalar(val); } namespace detail { class InstructionPatternInterface { public: virtual ~InstructionPatternInterface() = default; virtual bool Match(::xla::HloInstruction* instr, MatchOption option) const = 0; virtual void DescribeTo(std::ostream* os, int64_t indent) const = 0; }; template <typename Pattern> class TypedInstructionPattern : public InstructionPatternInterface { public: explicit TypedInstructionPattern(Pattern pattern) : pattern_(std::move(pattern)) {} bool Match(::xla::HloInstruction* instr, MatchOption option) const override { return pattern_.Match(instr, option); } void DescribeTo(std::ostream* os, int64_t indent) const override { pattern_.DescribeTo(os, indent); } private: Pattern pattern_; }; class HloInstructionPatternSharedImpl { public: template <typename Pattern> explicit HloInstructionPatternSharedImpl(Pattern pattern) : pattern_(std::make_shared<TypedInstructionPattern<Pattern>>( std::move(pattern))) {} bool Match(::xla::HloInstruction* instr, MatchOption option) const { return pattern_->Match(instr, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { pattern_->DescribeTo(os, indent); } private: std::shared_ptr<InstructionPatternInterface> pattern_; }; } template <typename HloInstructionType, typename OriginalImpl> inline auto SharedSubpattern( detail::HloInstructionPattern<HloInstructionType, OriginalImpl> pattern) { auto impl = detail::HloInstructionPatternSharedImpl(std::move(pattern)); return detail::HloInstructionPattern<HloInstructionType, decltype(impl)>( std::move(impl), nullptr); } } } #undef EXPLAIN #pragma pop_macro("EXPLAIN") #endif
#include "xla/service/pattern_matcher.h" #include <memory> #include <sstream> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = match; using PatternMatcherTest = HloTestBase; TEST_F(PatternMatcherTest, AddOp) { constexpr char kModuleStr[] = R"(HloModule two_plus_two_module ENTRY %two_plus_two_computation () -> f32[] { %two = f32[] constant(2) ROOT %two_plus_two = f32[] add(f32[] %two, f32[] %two) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); const HloInstruction* matched_inst; HloInstruction* matched_operand; Shape* matched_shape; ASSERT_TRUE(Match( hlo_module->entry_computation()->root_instruction(), match::Op(&matched_inst) .WithName("two_plus_two") .WithOpcode(HloOpcode::kAdd) .WithShape(match::Shape(&matched_shape).IsDenseArray()) .WithOperand( 0, match::Op(&matched_operand).WithOpcode(HloOpcode::kConstant)))); ASSERT_NE(matched_inst, nullptr); EXPECT_EQ(matched_inst->name(), "two_plus_two"); EXPECT_EQ(matched_inst->opcode(), HloOpcode::kAdd); EXPECT_TRUE(Match(hlo_module->entry_computation()->root_instruction(), match::Add(match::Constant(), match::Constant()))); EXPECT_FALSE(Match(hlo_module->entry_computation()->root_instruction(), match::Op().WithName("bad_name"))); matched_inst = nullptr; EXPECT_FALSE(Match(hlo_module->entry_computation()->root_instruction(), match::Multiply(&matched_inst, match::Op(), match::Op()))); } TEST_F(PatternMatcherTest, ScalarShape) { auto scalar_shape = ShapeUtil::MakeShape(F32, {}); Shape* matched_shape; EXPECT_TRUE(Match(&scalar_shape, match::Shape(&matched_shape).IsScalar())); EXPECT_EQ(matched_shape, &scalar_shape); EXPECT_TRUE(Match(&scalar_shape, match::Shape().IsArray())); EXPECT_TRUE(Match(&scalar_shape, match::Shape().IsDenseArray())); EXPECT_FALSE(Match(&scalar_shape, match::Shape().IsTuple())); EXPECT_TRUE(Match(&scalar_shape, match::Shape().WithElementType(F32))); EXPECT_TRUE(Match(&scalar_shape, match::Shape().WithRank(0))); EXPECT_FALSE(Match( &scalar_shape, match::Shape().WithSubshape({0}, match::Shape()).WithElementType(F32))); } TEST_F(PatternMatcherTest, DenseArrayShape) { auto array_shape = ShapeUtil::MakeShape(F32, {2, 3, 4}); Shape* matched_shape; EXPECT_TRUE(Match(&array_shape, match::Shape(&matched_shape).IsArray())); EXPECT_EQ(matched_shape, &array_shape); EXPECT_TRUE(Match(&array_shape, match::Shape().IsDenseArray())); EXPECT_FALSE(Match(&array_shape, match::Shape().IsScalar())); EXPECT_FALSE(Match(&array_shape, match::Shape().IsTuple())); EXPECT_TRUE(Match(&array_shape, match::Shape().WithElementType(F32))); EXPECT_TRUE(Match(&array_shape, match::Shape().WithRank(3))); EXPECT_FALSE( Match(&array_shape, match::Shape().WithSubshape({0}, match::Shape()))); EXPECT_TRUE(Match(&array_shape, match::Shape().WithLayout({2, 1, 0}))); EXPECT_FALSE(Match(&array_shape, match::Shape().WithLayout({0, 1, 2}))); Layout* matched_layout; EXPECT_TRUE(Match(&array_shape, match::Shape().WithLayout(match::Layout(&matched_layout)))); EXPECT_EQ(matched_layout, &array_shape.layout()); EXPECT_TRUE(Match(&array_shape, match::Shape().IsDenseArray())); } TEST_F(PatternMatcherTest, DenseArrayShapeWithLayout) { auto array_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 2, 3}, {1, 2, 0}); Shape* matched_shape; EXPECT_TRUE( Match(&array_shape, match::Shape(&matched_shape).WithLayout({1, 2, 0}))); EXPECT_EQ(matched_shape, &array_shape); EXPECT_FALSE(Match(&array_shape, match::Shape().WithLayout({2, 0, 1}))); Layout* matched_layout; EXPECT_TRUE( Match(&array_shape, match::Shape().WithLayout( match::Layout(&matched_layout).WithMinorToMajor({1, 2, 0})))); EXPECT_EQ(matched_layout, &array_shape.layout()); } TEST_F(PatternMatcherTest, TupleShape) { auto tuple_shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {1, 2, 3}), ShapeUtil::MakeShape(S32, {4, 5}), }); EXPECT_TRUE(Match(&tuple_shape, match::Shape().IsTuple())); EXPECT_FALSE(Match(&tuple_shape, match::Shape().IsArray())); EXPECT_FALSE(Match(&tuple_shape, match::Shape().IsScalar())); Shape* subshape; ASSERT_TRUE(Match( &tuple_shape, match::Shape().WithSubshape( {0}, match::Shape(&subshape).WithElementType(F32).WithRank(3)))); ASSERT_NE(subshape, nullptr); EXPECT_TRUE( ShapeUtil::Equal(*subshape, ShapeUtil::GetSubshape(tuple_shape, {0}))); EXPECT_TRUE(Match(&tuple_shape, match::Shape().WithSubshape( {0}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {0}))))); EXPECT_FALSE(Match(&tuple_shape, match::Shape().WithSubshape( {0}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {1}))))); ASSERT_TRUE(Match( &tuple_shape, match::Shape().WithSubshape( {1}, match::Shape(&subshape).WithElementType(S32).WithRank(2)))); ASSERT_NE(subshape, nullptr); EXPECT_TRUE( ShapeUtil::Equal(*subshape, ShapeUtil::GetSubshape(tuple_shape, {1}))); EXPECT_TRUE(Match(&tuple_shape, match::Shape().WithSubshape( {1}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {1}))))); EXPECT_FALSE(Match(&tuple_shape, match::Shape().WithSubshape( {1}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {0}))))); EXPECT_FALSE( Match(&tuple_shape, match::Shape().WithSubshape({2}, match::Shape()))); EXPECT_FALSE( Match(&tuple_shape, match::Shape().WithSubshape({0, 0}, match::Shape()))); } TEST_F(PatternMatcherTest, FusionKind) { constexpr char kModuleStr[] = R"( HloModule test_module fused_computation { ROOT fp0 = f32[] parameter(0) } ENTRY while.v11 { p0 = f32[] parameter(0) ROOT fusion = f32[] fusion(p0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match( root, match::Op().WithFusionKind(HloInstruction::FusionKind::kLoop))); EXPECT_FALSE(Match( root, match::Op().WithFusionKind(HloInstruction::FusionKind::kInput))); EXPECT_FALSE(Match(root->operand(0), match::Op().WithFusionKind( HloInstruction::FusionKind::kLoop))); } TEST_F(PatternMatcherTest, GetTupleElement) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY while.v11 { p0 = (f32[], f32[], f32[]) parameter(0) ROOT gte = f32[] get-tuple-element(p0), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_FALSE(Match(root, match::Op().WithTupleIndex(0))); EXPECT_TRUE(Match(root, match::Op().WithTupleIndex(1))); EXPECT_FALSE(Match(root, match::Op().WithTupleIndex(2))); EXPECT_FALSE(Match(root, match::GetTupleElement(match::Op(), 0))); EXPECT_TRUE(Match(root, match::GetTupleElement(match::Op(), 1))); } TEST_F(PatternMatcherTest, AnyOf) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)))); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(1), match::ConstantScalar(0)))); EXPECT_FALSE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(2)))); } TEST_F(PatternMatcherTest, AnyOfInstructionIsInstructionPattern) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)))); EXPECT_FALSE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)) .WithName("foo"))); } TEST_F(PatternMatcherTest, ConstantScalar) { using match::ConstantEffectiveScalar; using match::ConstantScalar; using match::Op; using match::Tuple; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { a = s32[] constant(1) b = s32[1,1] constant({{2}}) c = s32[1,2] constant({{2,2}}) d = f32[] constant(1) e = f32[] constant(1.25) ROOT tuple = (s32[], s32[1,1], s32[1,2], f32[], f32[]) tuple(a,b,c,d,e) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* a = root->operand(0); const HloInstruction* b = root->operand(1); const HloInstruction* c = root->operand(2); const HloInstruction* d = root->operand(3); const HloInstruction* e = root->operand(4); EXPECT_TRUE(Match(a, ConstantScalar())); EXPECT_TRUE(Match(a, ConstantScalar(1))); EXPECT_TRUE(Match(a, ConstantEffectiveScalar())); EXPECT_TRUE(Match(a, ConstantEffectiveScalar(1))); EXPECT_FALSE(Match(a, ConstantScalar(2))); EXPECT_FALSE(Match(a, ConstantScalar(2.01))); EXPECT_FALSE(Match(a, ConstantEffectiveScalar(2))); EXPECT_FALSE(Match(a, ConstantEffectiveScalar(1.01))); EXPECT_FALSE(Match(b, ConstantScalar())); EXPECT_FALSE(Match(b, ConstantScalar(2))); EXPECT_TRUE(Match(b, ConstantEffectiveScalar())); EXPECT_TRUE(Match(b, ConstantEffectiveScalar(2))); EXPECT_FALSE(Match(c, ConstantScalar())); EXPECT_FALSE(Match(c, ConstantScalar(2))); EXPECT_FALSE(Match(c, ConstantEffectiveScalar())); EXPECT_FALSE(Match(c, ConstantEffectiveScalar(2))); EXPECT_TRUE(Match(d, ConstantScalar(1))); EXPECT_TRUE(Match(d, ConstantEffectiveScalar(1))); EXPECT_TRUE(Match(d, ConstantScalar(1.0))); EXPECT_TRUE(Match(d, ConstantEffectiveScalar(1.0))); EXPECT_TRUE(Match(e, ConstantScalar(1.25f))); EXPECT_TRUE(Match(e, ConstantScalar(1.25))); EXPECT_TRUE(Match(e, ConstantEffectiveScalar(1.25))); EXPECT_FALSE(Match(e, ConstantScalar(1))); EXPECT_FALSE(Match(e, ConstantEffectiveScalar(1))); const HloInstruction* instr = nullptr; EXPECT_TRUE(Match(a, ConstantScalar(&instr))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantScalar(&instr, 1))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantEffectiveScalar(&instr))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantEffectiveScalar(&instr, 1))); EXPECT_EQ(instr, a); } TEST_F(PatternMatcherTest, MultiplyAnyOrder) { using match::ConstantScalar; using match::MultiplyAnyOrder; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { lhs = f16[] constant(42) rhs = f16[] constant(52) ROOT multiply = f16[] multiply(lhs, rhs) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* instr; EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(42), ConstantScalar(52)))); EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(52), ConstantScalar(42)))); EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(42), ConstantScalar(52)) .IsNonConstant())); EXPECT_TRUE( Match(root, MultiplyAnyOrder(ConstantScalar(42), ConstantScalar(52)) .IsNonConstant())); } TEST_F(PatternMatcherTest, AnyOfShortCircuit) { using match::AnyOf; using match::Multiply; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { lhs = f16[] constant(42) rhs = f16[] constant(52) ROOT multiply = f16[] multiply(lhs, rhs) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); { const HloInstruction* mul = nullptr; const HloInstruction* any = nullptr; ASSERT_TRUE(Match( root, AnyOf<HloInstruction>(Multiply(&mul, Op(), Op()), Op(&any)))); EXPECT_NE(nullptr, mul); EXPECT_EQ(nullptr, any); } { const HloInstruction* mul = nullptr; const HloInstruction* any = nullptr; ASSERT_TRUE(Match( root, AnyOf<HloInstruction>(Op(&any), Multiply(&mul, Op(), Op())))); EXPECT_NE(nullptr, any); EXPECT_EQ(nullptr, mul); } } TEST_F(PatternMatcherTest, AllOf) { using match::AllOf; using match::Broadcast; using match::Constant; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); auto f16_scalar = ShapeUtil::MakeShape(F16, {}); auto f16_pattern = Constant().WithShapeEqualTo(&f16_scalar); auto f16_compatible_pattern = Constant().WithShapeCompatibleTo(&f16_scalar); auto scalar_pattern = Constant().WithShape(match::Shape().IsScalar()); ASSERT_TRUE(Match(root, scalar_pattern)); ASSERT_TRUE(Match(root, f16_pattern)); ASSERT_TRUE(Match(root, f16_compatible_pattern)); EXPECT_TRUE(Match(root, AllOf<HloInstruction>(scalar_pattern, f16_pattern, f16_compatible_pattern))); EXPECT_TRUE( Match(root, AllOf<HloInstruction>(f16_pattern, f16_compatible_pattern, scalar_pattern))); EXPECT_FALSE( Match(root, AllOf<HloInstruction>(Broadcast(Op()), f16_pattern))); EXPECT_FALSE(Match( root, AllOf<HloInstruction>(Broadcast(Op()), f16_compatible_pattern))); EXPECT_FALSE( Match(root, AllOf<HloInstruction>(Broadcast(Op()), scalar_pattern))); } TEST_F(PatternMatcherTest, AllOfNoCaptureIfNotMatch) { using match::AllOf; using match::Broadcast; using match::Constant; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* constant = nullptr; ASSERT_FALSE( Match(root, AllOf<HloInstruction>(Constant(&constant), Broadcast(Op())))); EXPECT_EQ(nullptr, constant); ASSERT_TRUE(Match(root, Constant(&constant))); EXPECT_NE(nullptr, constant); } TEST_F(PatternMatcherTest, TestNoCapture) { using match::Constant; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* constant = nullptr; ASSERT_TRUE(Match(root, Constant(&constant), {false})); EXPECT_EQ(nullptr, constant); } TEST_F(PatternMatcherTest, TestCaptureMatchedSubPatternForAnyOf) { using match::Add; using match::AddAnyOrder; using match::AnyOf; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { u = f16[] parameter(0) v = f16[] parameter(1) ROOT add = f16[] add(u, v) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* addend0 = nullptr; const HloInstruction* addend1 = nullptr; const HloInstruction* addend2 = nullptr; auto add2_pattern = Add(Op(&addend0), Op(&addend1)); auto add3_pattern = AnyOf<HloInstruction>( AddAnyOrder(add2_pattern, Op(&addend2)), add2_pattern, Op(&addend0)); ASSERT_TRUE(Match(root, add3_pattern)); EXPECT_NE(nullptr, addend0); EXPECT_NE(nullptr, addend1); EXPECT_EQ(nullptr, addend2); } TEST_F(PatternMatcherTest, TestConcat) { using match::Concatenate; using match::ConstantScalar; using match::Op; using match::Reshape; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { c1 = u32[] constant(1) c2 = u32[] constant(2) c3 = u32[] constant(3) c4 = u32[] constant(4) r1 = u32[1] reshape(c1) r2 = u32[1] reshape(c2) r3 = u32[1] reshape(c3) r4 = u32[1] reshape(c4) ROOT concat = u32[4] concatenate(r1, r2, r3, r4), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); ASSERT_TRUE(Match( root, Concatenate(Reshape(ConstantScalar(1)), Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(2)), Reshape(ConstantScalar(1)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(1)), Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); } TEST_F(PatternMatcherTest, TestWithElementType) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::Op().WithElementType(F16))); EXPECT_FALSE(Match(root, m::Op().WithElementType(F32))); } TEST_F(PatternMatcherTest, TestWithOperandIfPresent) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { a = f16[] constant(42) b = f16[] add(a, a) ROOT root = tuple(a, b) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); auto* a = root->operand(0); auto* b = root->operand(1); EXPECT_TRUE(Match(a, m::Op().WithOperandIfPresent(0, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(0, m::Constant()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(1, m::Constant()))); EXPECT_FALSE(Match(b, m::Op().WithOperandIfPresent(0, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(2, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(3, m::Iota()))); } TEST_F(PatternMatcherTest, TestWithPredicate) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT a = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, m::Op().WithPredicate([&](const HloInstruction* instr) { return instr == root; }))); EXPECT_FALSE( Match(root, m::Op().WithPredicate([&](const HloInstruction* instr) { return instr != root; }))); } template <typename Pattern> std::string Description(const Pattern& pattern) { std::stringstream ss; pattern.DescribeTo(&ss); return ss.str(); } template <typename Elem, typename Pattern> std::string Explanation(Elem* elem, const Pattern& pattern, bool single_user_only = false) { std::stringstream ss; MatchOption options{true, single_user_only, &ss}; Match(elem, pattern, options); return ss.str(); } template <typename Elem, typename Pattern> std::string Explanation(const std::unique_ptr<Elem>& elem, const Pattern& pattern) { return Explanation(elem.get(), pattern); } template <typename Elem, typename Pattern> std::string Explanation(const Elem& elem, const Pattern& pattern) { return Explanation(&elem, pattern); } #define EXPECT_DESC_AND_EXPLANATION(elem, pattern, expected_desc, \ expected_explanation) \ do { \ EXPECT_EQ(Description(pattern), (expected_desc)); \ EXPECT_EQ(Explanation((elem), (pattern)), expected_explanation); \ } while (0) TEST_F(PatternMatcherTest, LayoutDescribeToAndExplain) { auto layout = LayoutUtil::MakeLayout({1, 2}); auto layout2 = LayoutUtil::MakeLayout({2, 2}); EXPECT_DESC_AND_EXPLANATION(static_cast<const Layout*>(nullptr), m::Layout(), "a layout", "Layout is null"); EXPECT_DESC_AND_EXPLANATION(layout2, m::Layout().EqualTo(&layout), "a layout equal to {1,2}", "Layout {2,2} is not equal to expected {1,2}"); } TEST_F(PatternMatcherTest, CustomCallTargetMatcherDescribeAndExplain) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT out = f32[] custom-call(), custom_call_target="test_target" } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, match::Op().WithCustomCallTarget({"test_target"}))); EXPECT_TRUE(Match( root, match::Op().WithCustomCallTarget({"test_target", "other_target"}))); EXPECT_TRUE(Match( root, match::Op().WithCustomCallTarget({"other_target", "test_target"}))); EXPECT_FALSE(Match(root, match::Op().WithCustomCallTarget({"other_target"}))); EXPECT_FALSE(Match(root, match::Op().WithCustomCallTarget( {"other_target", "other_target2"}))); EXPECT_DESC_AND_EXPLANATION( root, match::Op().WithCustomCallTarget({"other_target"}), "an HloInstruction custom call with target 'other_target'", "HloInstruction is not a custom call with a target 'other_target'\nin " "out = f32[] custom-call(), custom_call_target=\"test_target\""); EXPECT_DESC_AND_EXPLANATION( root, match::Op().WithCustomCallTarget({"other_target", "other_target2"}), "an HloInstruction custom call with target in {other_target, " "other_target2}", "HloInstruction is not a custom call with a target in {other_target, " "other_target2}\nin " "out = f32[] custom-call(), custom_call_target=\"test_target\""); } TEST_F(PatternMatcherTest, ShapeDescribeToAndExplain) { auto shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {0, 1}); auto layout = shape.layout(); EXPECT_DESC_AND_EXPLANATION(static_cast<const Shape*>(nullptr), m::Shape(), "a shape", "Shape is null"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {1, 0}), m::Shape().EqualTo(&shape), "a shape equal to f32[1,2]{0,1}", "Shape not equal to f32[1,2]{0,1}\n" "in f32[1,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeShape(F32, {2, 2}), m::Shape().CompatibleTo(&shape), "a shape compatible with f32[1,2]", "Shape not compatible with f32[1,2]\n" "in f32[2,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithElementType(F16), "a shape with element type F16", "Shape does not have element type F16\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsScalar(), "a shape that represents a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeNil(), m::Shape().IsArray(), "a shape that represents an array", "Shape is not an array\n" "in ()"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsTuple(), "a shape that represents a tuple", "Shape is not a tuple\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsEffectiveScalar(), "a shape that is an effective scalar", "Shape is not an effective scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(42), "a shape that has 42 dimensions", "Shape does not have rank 42\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(0), "a shape that is a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(1).IsArray(), "a shape:\n" " * that has 1 dimension AND\n" " * that represents an array", "Shape does not have rank 1\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeNil(), m::Shape().IsArray().WithRank(1), "a shape:\n" " * that represents an array AND\n" " * that has 1 dimension", "Shape is not an array\n" "in ()"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {1, 0}), m::Shape().WithLayoutEqualTo(&layout), "a shape with\n a layout equal to {0,1}", "Layout {1,0} is not equal to expected {0,1}\n" "in f32[1,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithSubshapeEqualTo({10}, &shape), "a shape with subshape at index {10} which is\n" " a shape equal to f32[1,2]{0,1}", "No subshape at {10}\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {2, 2})}), m::Shape().WithSubshapeEqualTo({0}, &shape), "a shape with subshape at index {0} which is\n" " a shape equal to f32[1,2]{0,1}", "Shape not equal to f32[1,2]{0,1}\n" "in f32[2,2]{1,0}\n" "in subshape at {0}\n" "in (f32[2,2])"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithSubshapeCompatibleTo({10}, &shape), "a shape with subshape at index {10} which is\n" " a shape compatible with f32[1,2]", "No subshape at {10}\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {2, 2})}), m::Shape().WithSubshapeCompatibleTo({0}, &shape), "a shape with subshape at index {0} which is\n" " a shape compatible with f32[1,2]", "Shape not compatible with f32[1,2]\n" "in f32[2,2]{1,0}\n" "in subshape at {0}\n" "in (f32[2,2])"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTupleShape({shape})}), m::Shape().WithSubshape({0, 0}, m::Shape().IsScalar()), "a shape with subshape at index {0,0} which is\n" " a shape that represents a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}\n" "in subshape at {0,0}\n" "in ((f32[1,2]))"); } std::unique_ptr<HloInstruction> SetName(absl::string_view name, std::unique_ptr<HloInstruction> instr) { instr->SetAndSanitizeName(name); return instr; } TEST_F(PatternMatcherTest, HloInstructionDescribeToAndExplain) { std::unique_ptr<HloInstruction> iota = SetName("i", HloInstruction::CreateIota(ShapeUtil::MakeShape(S32, {42}), 0)); std::unique_ptr<HloInstruction> constant = SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(0))); EXPECT_DESC_AND_EXPLANATION(static_cast<const HloInstruction*>(nullptr), m::Op(), "an HloInstruction", "HloInstruction* is null"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithName("foo"), "an HloInstruction named \"foo\"", "HloInstruction not named \"foo\"\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithOpcode(HloOpcode::kAdd), "an HloInstruction with opcode add", "HloInstruction doesn't have opcode add\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().IsNonConstant(), "an HloInstruction with any opcode other than constant", "HloInstruction has opcode constant, expected anything else\n" "in c = s32[] constant(0)"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithNumOperands(42), "an HloInstruction with 42 operands", "HloInstruction doesn't have 42 operands\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(m::Shape().IsTuple()), "an HloInstruction outputting\n" " a shape that represents a tuple", "Shape is not a tuple\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(F32, {42}), "an HloInstruction outputting\n" " a shape:\n" " * with element type F32 AND\n" " * with dimensions [42]", "Shape does not have element type F32\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(S32, {128}), "an HloInstruction outputting\n" " a shape:\n" " * with element type S32 AND\n" " * with dimensions [128]", "Shape does not have dimensions [128]\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithOperand(2, m::Op().WithOpcode(HloOpcode::kAdd)), "an HloInstruction with operand 2 which is:\n" " an HloInstruction with opcode add", "desired operand index 2 is out of bounds\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary(ShapeUtil::MakeShape(S32, {}), HloOpcode::kAdd, constant.get(), constant.get())), m::Op().WithOperand(1, m::Op().IsNonConstant()), "an HloInstruction with operand 1 which is:\n" " an HloInstruction with any opcode other than constant", "HloInstruction has opcode constant, expected anything else\n" "in c = s32[] constant(0)\n" "in operand 1\n" "in a = s32[] add(s32[] c, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithFusionKind(HloInstruction::FusionKind::kLoop), "an HloInstruction with fusion kind kLoop", "HloInstruction does not have fusion kind kLoop; it's not a fusion\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithTupleIndex(42), "an HloInstruction which is a GTE with index 42", "HloInstruction is not a GTE with index 42; it's not a GTE at all\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().IsConstantScalar(), "an HloInstruction which is a constant scalar", "HloInstruction is not a constant\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR1<int>({1, 2}))), m::Op().IsConstantEffectiveScalar(), "an HloInstruction which is a constant effective scalar", "HloInstruction is not an effective scalar\n" "in c = s32[2]{0} constant({1, 2})"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(10))), m::Op().IsConstantScalar(42), "an HloInstruction which is a constant scalar with value 42", "HloInstruction's constant value 10 did not match expected value 42\n" "in c = s32[] constant(10)"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(2.25))), m::Op().IsConstantEffectiveScalar(1.25), "an HloInstruction which is a constant effective scalar with value 1.25", "HloInstruction's constant value 2.25 did not match expected value 1.25\n" "in c = f64[] constant(2.25)"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().Is(iota.get()), absl::StrCat("an HloInstruction which is 0x", absl::Hex(iota.get()), " (i = s32[42]{0} iota(), iota_dimension=0)"), absl::StrCat("HloInstruction 0x", absl::Hex(constant.get()), " is not 0x", absl::Hex(iota.get()), " (i = s32[42]{0} iota(), iota_dimension=0)\n" "in c = s32[] constant(0)")); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary(constant->shape(), HloOpcode::kAdd, constant.get(), constant.get())), m::Op().WithOperandIfPresent(0, m::Iota()), "an HloInstruction either with fewer than 1 operand, or with an operand " "0 which is:\n" " an HloInstruction with opcode iota", "HloInstruction doesn't have opcode iota\n" "in c = s32[] constant(0)\n" "in operand 0\n" "in a = s32[] add(s32[] c, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().WithPredicate(HloPredicateFalse), "an HloInstruction which matches a user-specified predicate", "HloInstruction does not match user-specified predicate\n" "in c = s32[] constant(0)"); } TEST_F(PatternMatcherTest, HloInstructionMatcherAnyOrderDescribeTo) { auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, SetName("b", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get(), SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get())), m::AddAnyOrder(m::Op().WithName("b"), m::Op().WithName("bar")), "an HloInstruction:\n" " * with opcode add AND\n" " * with two operands in either order:\n" " - an HloInstruction named \"b\"\n" " - an HloInstruction named \"bar\"", "HloInstruction's operands (ignoring order) did not match second " "matcher. Specifically,\n" " - an HloInstruction named \"bar\"\n" "does not match LHS:\n" " - HloInstruction not named \"bar\"\n" " in b = s32[] constant(0)\n" "does not match RHS:\n" " - HloInstruction not named \"bar\"\n" " in c = s32[] constant(0)\n" "in a = s32[] add(s32[] b, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, HloInstruction::CreateParameter(0, scalar_s32, "p").get(), SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get())), m::AddAnyOrder(m::Op().IsConstantScalar(), m::Op().IsConstant()), "an HloInstruction:\n" " * with opcode add AND\n" " * with two operands in either order:\n" " - an HloInstruction which is a constant scalar\n" " - an HloInstruction with opcode constant", "HloInstruction's LHS operand did not match either of the two matchers. " "Specifically,\n" " - an HloInstruction which is a constant scalar\n" "does not match LHS:\n" " - HloInstruction is not a constant\n" " in p = s32[] parameter(0)\n" "and\n" " - an HloInstruction with opcode constant\n" "does not match LHS:\n" " - HloInstruction doesn't have opcode constant\n" " in p = s32[] parameter(0)\n" "in a = s32[] add(s32[] p, s32[] c)"); } TEST_F(PatternMatcherTest, AnyOfMatcherDescribeToAndExplain) { EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeScalarShape(S32), m::AnyOf<Shape>(m::Shape().WithRank(1), m::Shape().WithElementType(F32)), "any of:\n" " - a shape that has 1 dimension OR\n" " - a shape with element type F32", "None of the following matchers succeeded:\n" "Matcher #1\n" " - a shape that has 1 dimension\n" "failed with\n" " - Shape does not have rank 1\n" " in s32[]\n" "Matcher #2\n" " - a shape with element type F32\n" "failed with\n" " - Shape does not have element type F32\n" " in s32[]"); } TEST_F(PatternMatcherTest, Parameter) { auto param = HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "p1"); auto non_param = SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(0))); EXPECT_FALSE(Match(param.get(), m::Parameter(0))); EXPECT_TRUE(Match(param.get(), m::Parameter())); EXPECT_TRUE(Match(param.get(), m::Parameter(1))); EXPECT_FALSE(Match(non_param.get(), m::Parameter())); EXPECT_FALSE(Match(non_param.get(), m::Parameter(1))); EXPECT_DESC_AND_EXPLANATION(non_param, m::Parameter(1), "an HloInstruction:\n" " * with opcode parameter AND\n" " * which is parameter 1", "HloInstruction doesn't have opcode parameter\n" "in c = s32[] constant(0)"); EXPECT_EQ(Explanation(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "p0"), m::Parameter(1)), "HloInstruction is not parameter 1\n" "in p0 = f32[] parameter(0)"); } TEST_F(PatternMatcherTest, OneUseAndOneUser) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_DESC_AND_EXPLANATION( param, m::Op().WithOneUse(), "an HloInstruction which has exactly one use", "HloInstruction has 0 users, but expected exactly one.\n" "in p0 = f32[] parameter(0)"); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUser())); EXPECT_DESC_AND_EXPLANATION( param, m::Op().WithOneUser(), "an HloInstruction which has exactly one user (but possibly is used " "multiple times by that instruction)", "HloInstruction has 0 users, but expected exactly one.\n" "in p0 = f32[] parameter(0)"); { auto reshape = SetName("r", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUse())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUser())); auto reshape1 = SetName("r1", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUser())); const char* kMultipleUserExplanation = "HloInstruction has 2 users, but expected exactly one.\n" "All users:\n" " - r = f32[1]{0} reshape(f32[] p0)\n" " - r1 = f32[1]{0} reshape(f32[] p0)\n" "in p0 = f32[] parameter(0)"; EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUse()), kMultipleUserExplanation); EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUser()), kMultipleUserExplanation); } auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param.get(), param.get())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUser())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUse()), "HloInstruction is used 2 times by its user, but is expected to be " "used just once: add = f32[] add(f32[] p0, f32[] p0)\n" "in p0 = f32[] parameter(0)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyUnaryOpOneUser) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p"); auto reshape = SetName("reshape", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(MatchSingleUserOnly(reshape.get(), m::Reshape(m::Op()))); EXPECT_TRUE(Match(reshape.get(), m::Reshape(m::Op().WithOneUser()))); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyUnaryOpTwoUsers) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p"); auto reshape = SetName("reshape", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); auto bitcast = SetName("bitcast", HloInstruction::CreateBitcast( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(MatchSingleUserOnly(param.get(), m::Op())); EXPECT_TRUE(Match(param.get(), m::Op())); EXPECT_TRUE(MatchSingleUserOnly(bitcast.get(), m::Bitcast())); EXPECT_TRUE(Match(bitcast.get(), m::Bitcast())); EXPECT_FALSE(MatchSingleUserOnly(bitcast.get(), m::Bitcast(m::Op()))); EXPECT_FALSE(Match(bitcast.get(), m::Bitcast(m::Op().WithOneUser()))); EXPECT_EQ(Explanation(bitcast.get(), m::Bitcast(m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin bitcast " "= f32[1]{0} bitcast(f32[] p)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpOneUser) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); EXPECT_TRUE(MatchSingleUserOnly(add.get(), m::Add(m::Op(), m::Op()))); EXPECT_TRUE( Match(add.get(), m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()))); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpTwoUsers) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto param1 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); auto mul = SetName("mul", HloInstruction::CreateBinary(ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, param1.get(), param0.get())); EXPECT_TRUE(MatchSingleUserOnly(mul.get(), m::Multiply())); EXPECT_TRUE(Match(mul.get(), m::Multiply())); EXPECT_FALSE(MatchSingleUserOnly(mul.get(), m::Multiply(m::Op(), m::Op()))); EXPECT_FALSE(Match( mul.get(), m::Multiply(m::Op().WithOneUser(), m::Op().WithOneUser()))); EXPECT_EQ(Explanation(mul.get(), m::Multiply(m::Op(), m::Op()), true), "Operand 1 of HloInstruction has 2 users. Expected 1.\nin mul = " "f32[] multiply(f32[] p1, f32[] p0)"); EXPECT_FALSE(MatchSingleUserOnly(add.get(), m::Add(m::Op(), m::Op()))); EXPECT_FALSE( Match(add.get(), m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()))); EXPECT_EQ(Explanation(add.get(), m::Add(m::Op(), m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin add = " "f32[] add(f32[] p0, f32[] p0)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpTwoUsersLowerLevel) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto param1 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); auto mul = SetName("mul", HloInstruction::CreateBinary(ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, param1.get(), param0.get())); auto div = SetName("div", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kDivide, add.get(), mul.get())); EXPECT_TRUE( MatchSingleUserOnly(div.get(), m::Divide(m::Add(), m::Multiply()))); EXPECT_TRUE(Match(div.get(), m::Divide(m::Add().WithOneUser(), m::Multiply().WithOneUser()))); EXPECT_FALSE(MatchSingleUserOnly( div.get(), m::Divide(m::Add(m::Op(), m::Op()), m::Multiply()))); EXPECT_FALSE(Match( div.get(), m::Divide( m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()).WithOneUser(), m::Multiply().WithOneUser()))); EXPECT_EQ(Explanation(add.get(), m::Add(m::Op(), m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin add = " "f32[] add(f32[] p0, f32[] p0)"); } TEST_F(PatternMatcherTest, Comparison) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto p0 = HloInstruction::CreateParameter(0, shape, "param.0"); auto p1 = HloInstruction::CreateParameter(1, shape, "param.1"); auto eq = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kEq); auto ne = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kNe); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0.get(), p1.get()); auto le = HloInstruction::CreateCompare(shape, p0.get(), add.get(), ComparisonDirection::kLe); EXPECT_TRUE(Match(eq.get(), m::Compare())); EXPECT_TRUE(Match(eq.get(), m::Eq())); EXPECT_TRUE(Match(eq.get(), m::Eq(m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(eq.get(), m::EqAnyOrder(m::Parameter(1), m::Parameter(0)))); EXPECT_TRUE(Match(ne.get(), m::Compare())); EXPECT_TRUE(Match(ne.get(), m::Ne())); EXPECT_TRUE(Match( le.get(), m::Compare(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_TRUE(Match(le.get(), m::Le(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_FALSE(Match(eq.get(), m::Add())); EXPECT_FALSE(Match(eq.get(), m::Ne())); EXPECT_FALSE( Match(le.get(), m::Eq(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_FALSE(Match(eq.get(), m::Eq(m::Parameter(1), m::Parameter(0)))); EXPECT_DESC_AND_EXPLANATION( eq, m::Ne().WithOneUser(), "an HloInstruction:\n" " * with opcode compare AND\n" " * which has comparison direction NE AND\n" " * which has exactly one user (but possibly is used " "multiple times by that instruction)", "HloInstruction is not comparison NE\n" "in compare = f32[1]{0} compare(f32[1]{0} param.0, f32[1]{0} param.1), " "direction=EQ"); } TEST_F(PatternMatcherTest, ConvDnums) { TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers("bf01_oi01->bf01")); auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto op = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); op->set_convolution_dimension_numbers(dnums); EXPECT_TRUE(Match(op.get(), m::CustomCall().WithConvDnums(dnums))); EXPECT_TRUE( Match(op.get(), m::CustomCall().WithConvDnums("bf01_oi01->bf01"))); TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers different_dnums, ParseConvolutionDimensionNumbers("b01f_oi01->bf01")); EXPECT_FALSE(Match(op.get(), m::CustomCall().WithConvDnums(different_dnums))); EXPECT_FALSE( Match(op.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"))); EXPECT_FALSE( Match(param.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"))); EXPECT_DESC_AND_EXPLANATION( op.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"), "an HloInstruction:\n" " * with opcode custom-call AND\n" " * which has convolution dimension numbers b01f_oi01->bf01", "convolution_dimension_numbers bf01_oi01->bf01 don't match expected " "b01f_oi01->bf01\n" "in custom-call = f32[] custom-call(), dim_labels=bf01_oi01->bf01, " "custom_call_target=\"foo\""); } TEST_F(PatternMatcherTest, CustomCallMatchers) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT out = f32[] custom-call(p0, p1), custom_call_target="test_target" } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::CustomCall())); EXPECT_TRUE(Match(root, m::CustomCall({"test_target"}))); EXPECT_TRUE(Match( root, m::CustomCall({"test_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(root, m::CustomCall({"test_target", "other_target"}))); EXPECT_TRUE(Match(root, m::CustomCall({"other_target", "test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall({"test_target", "other_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(root, m::CustomCall({"other_target", "test_target"}, m::Parameter(0), m::Parameter(1)))); HloInstruction* instr; EXPECT_TRUE(Match(root, m::CustomCall(&instr))); EXPECT_TRUE(Match(root, m::CustomCall(&instr, {"test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall(&instr, {"test_target"}, m::Parameter(0), m::Parameter(1)))); const HloInstruction* const_instr; EXPECT_TRUE(Match(root, m::CustomCall(&const_instr))); EXPECT_TRUE(Match(root, m::CustomCall(&const_instr, {"test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall(&const_instr, {"test_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_FALSE(Match(root, m::CustomCall({"other_target"}))); EXPECT_FALSE(Match(root, m::CustomCall({"other_target", "other_target2"}))); EXPECT_FALSE(Match( root, m::CustomCall({"test_target"}, m::Parameter(1), m::Parameter(0)))); } TEST_F(PatternMatcherTest, SharedSubpatternPreservesTheSemantics) { auto scalar0 = m::SharedSubpattern(m::ConstantScalar(0)); auto pattern0 = m::AnyOf<HloInstruction>(m::Convert(scalar0), scalar0); auto scalar1 = m::SharedSubpattern(m::ConstantScalar(1)); auto pattern1 = m::AnyOf<HloInstruction>(m::Convert(scalar1), scalar1); { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { constant = f16[] constant(0) ROOT convert = f32[] convert(constant) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } } TEST_F(PatternMatcherTest, SharedSubpatternCanBeNested) { auto scalar0 = m::SharedSubpattern(match::ConstantScalar(0)); auto subpattern0 = m::SharedSubpattern( m::AnyOf<HloInstruction>(m::Convert(scalar0), scalar0)); auto pattern0 = m::AnyOf<HloInstruction>(m::Convert(subpattern0), subpattern0); auto scalar1 = m::SharedSubpattern(match::ConstantScalar(1)); auto subpattern1 = m::SharedSubpattern( m::AnyOf<HloInstruction>(m::Convert(scalar1), scalar1)); auto pattern1 = m::AnyOf<HloInstruction>(m::Convert(subpattern1), subpattern1); { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { constant = f16[] constant(0) convert = f32[] convert(constant) ROOT convert1 = f32[] convert(convert) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } } TEST_F(PatternMatcherTest, TestWithContractingDims) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { %param1 = f32[2048,1024] parameter(0) %param2 = f32[1024,33708] parameter(1) ROOT %dot1 = f32[2048,33708]{1,0} dot(f32[2048,1024]{1,0} %param1, f32[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::Dot().WithContractingDims({1}, {0}))); EXPECT_FALSE(Match(root, m::Dot().WithContractingDims({0}, {1}))); EXPECT_FALSE(Match(root, m::Dot().WithContractingDims({1}, {0, 1}))); EXPECT_DESC_AND_EXPLANATION( root, m::Dot().WithContractingDims({1}, {0, 1}), "an HloInstruction:\n" " * with opcode dot AND\n" " * with lhs_contracting_dims {1} and rhs_contracting_dims {0,1}", "rhs_contracting_dimensions {0} don't match expected {0,1}\n" "in dot1 = f32[2048,33708]{1,0} dot(f32[2048,1024]{1,0} param1, " "f32[1024,33708]{1,0} param2), lhs_contracting_dims={1}, " "rhs_contracting_dims={0}"); } TEST_F(PatternMatcherTest, TestWithReplicaGroups) { constexpr char kModuleStr[] = R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY test { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups={{0,1},{2,3}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::AllReduce().WithReplicaGroups({{0, 1}, {2, 3}}))); EXPECT_FALSE(Match(root, m::AllReduce().WithReplicaGroups({{}, {}}))); EXPECT_FALSE(Match(root, m::AllReduce().WithReplicaGroups({{1, 0}, {3, 2}}))); EXPECT_DESC_AND_EXPLANATION( root, m::AllReduce().WithReplicaGroups({{1, 0}, {3, 2}}), "an HloInstruction:\n" " * with opcode all-reduce AND\n" " * with replica_group {{1,0},{3,2}}", "replica_group {{0,1},{2,3}} don't match expected with replica_group " "{{1,0},{3,2}}\n" "in all-reduce = f32[128,32]{0,1} all-reduce(f32[128,32]{0,1} input), " "replica_groups={{0,1},{2,3}}, to_apply=add"); } TEST_F(PatternMatcherTest, TestWithSharding) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[5,7,11,13]{3,2,1,0} parameter(0), sharding={devices=[1,2,2,1]0,1,2,3}, metadata={op_name="test"} ROOT copy = f32[5,7,11,13]{3,2,1,0} copy(p0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* instruction = FindInstruction(hlo_module.get(), "p0"); EXPECT_TRUE( Match(instruction, m::Op().WithSharding("{devices=[1,2,2,1]0,1,2,3}"))); EXPECT_FALSE( Match(instruction, m::Op().WithSharding("{devices=[2,2,1,1]0,1,2,3}"))); EXPECT_DESC_AND_EXPLANATION( instruction, m::Op().WithSharding("{devices=[2,2,1,1]0,1,2,3}"), "an HloInstruction with sharding {devices=[2,2,1,1]0,1,2,3}", "sharding {devices=[1,2,2,1]0,1,2,3} don't match expected " "{devices=[2,2,1,1]0,1,2,3}\n" "in p0 = f32[5,7,11,13]{3,2,1,0} parameter(0), " "sharding={devices=[1,2,2,1]0,1,2,3}"); } TEST_F(PatternMatcherTest, TestWithControlDeps) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[4] parameter(0) p1 = f32[4] parameter(1) add = f32[4] add(p0, p1) mul = f32[4] multiply(p0, p1), control-predecessors={add} div = f32[4] divide(p0, p1), control-predecessors={mul} ROOT t = (f32[4], f32[4], f32[4]) tuple(add, mul, div) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* add = FindInstruction(hlo_module.get(), "add"); auto* mul = FindInstruction(hlo_module.get(), "mul"); auto* div = FindInstruction(hlo_module.get(), "div"); EXPECT_TRUE(Match(add, m::Op().WithControlDeps({}, {mul}))); EXPECT_TRUE(Match(mul, m::Op().WithControlDeps({add}, {div}))); EXPECT_TRUE(Match(div, m::Op().WithControlDeps({mul}, {}))); EXPECT_FALSE(Match(div, m::Op().WithControlDeps({mul}, {div}))); EXPECT_DESC_AND_EXPLANATION( div, m::Op().WithControlDeps({mul}, {div}), "an HloInstruction with control predecessors {mul} and control " "successors {div}", "HloInstruction expected to have control successors {div} but has {}\n" "in div = f32[4]{0} divide(f32[4]{0} p0, f32[4]{0} p1), " "control-predecessors={mul}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d6649578-7be7-42e1-8e40-fd3691a3885d
cpp
tensorflow/tensorflow
mapped_ptr_container_sorter
third_party/xla/xla/service/mapped_ptr_container_sorter.h
third_party/xla/xla/service/mapped_ptr_container_sorter_test.cc
#ifndef XLA_SERVICE_MAPPED_PTR_CONTAINER_SORTER_H_ #define XLA_SERVICE_MAPPED_PTR_CONTAINER_SORTER_H_ #include <array> #include <cstddef> #include <functional> #include <limits> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { template <typename PointedToTy> class MappedPtrContainerSorter { public: using MapPtrFn = absl::FunctionRef<const PointedToTy*(const PointedToTy*)>; using UnmappedPtrIndexFn = absl::FunctionRef<size_t(const PointedToTy*)>; static UnmappedPtrIndexFn IndexBeforeMappedElementsFn(); static UnmappedPtrIndexFn IndexAfterMappedElementsFn(); static UnmappedPtrIndexFn InvalidIndexFn(); template <typename OrderedTy, typename UnorderedTy> static absl::Status Sort(MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, UnorderedTy& unordered_container); private: class SortedIndices { public: SortedIndices(size_t max_partial_order_exclusive, size_t unordered_container_size) : max_partial_order_exclusive_(max_partial_order_exclusive), unordered_container_size_(unordered_container_size), mapped_element_indices_by_partial_order_( max_partial_order_exclusive) {} absl::Status AddMappedElement(size_t unordered_container_index, size_t partial_order); void AddUnmappedElement(size_t unordered_container_index, size_t target_index_amongst_mapped_elements); std::string ToString() const; absl::StatusOr<std::vector<size_t>> Flatten() const; private: SortedIndices() = delete; size_t max_partial_order_exclusive_; size_t unordered_container_size_; std::vector<std::vector<size_t>> mapped_element_indices_by_partial_order_; absl::flat_hash_map<size_t, std::vector<size_t>> target_index_to_unmapped_element_index_; }; static size_t IndexBeforeMappedElements() { return std::numeric_limits<size_t>::max() - 2; } static size_t IndexAfterMappedElements() { return std::numeric_limits<size_t>::max() - 1; } static size_t InvalidIndex() { return std::numeric_limits<size_t>::max(); } template <typename OrderedTy, typename UnorderedTy> static absl::StatusOr<std::vector<size_t>> ComputeNewIndices( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, const UnorderedTy& unordered_container); template <typename UnorderedTy> static void Reorder(std::vector<size_t> new_indices, UnorderedTy& unordered_container); }; namespace mapped_ptr_container_sorter_internal { template <typename I, typename O> struct PtrGetter { static O Get(I i); }; template <typename T> struct PtrGetter<T* const&, const T*> { static const T* Get(T* const& p) { return p; } }; template <typename T> struct PtrGetter<T const* const&, const T*> { static const T* Get(T const* const& p) { return p; } }; template <typename T> struct PtrGetter<T*&, T*> { static T* Get(T*& p) { return p; } }; template <typename T> struct PtrGetter<const std::unique_ptr<T>&, const T*> { static const T* Get(const std::unique_ptr<T>& p) { return p.get(); } }; template <typename T> struct PtrGetter<std::unique_ptr<T>&, T*> { static T* Get(std::unique_ptr<T>& p) { return p.get(); } }; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::IndexBeforeMappedElementsFn() { static const auto fn = [](const PointedToTy*) { return IndexBeforeMappedElements(); }; return fn; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::IndexAfterMappedElementsFn() { static const auto fn = [](const PointedToTy*) { return IndexAfterMappedElements(); }; return fn; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::InvalidIndexFn() { static const auto fn = [](const PointedToTy*) { return InvalidIndex(); }; return fn; } template <typename PointedToTy> absl::Status MappedPtrContainerSorter<PointedToTy>::SortedIndices::AddMappedElement( size_t unordered_container_index, size_t partial_order) { if (partial_order >= mapped_element_indices_by_partial_order_.size()) { return InternalStrCat("invalid partial order: ", partial_order, " v max(", mapped_element_indices_by_partial_order_.size(), ")"); } mapped_element_indices_by_partial_order_[partial_order].push_back( unordered_container_index); return absl::OkStatus(); } template <typename PointedToTy> void MappedPtrContainerSorter<PointedToTy>::SortedIndices::AddUnmappedElement( size_t unordered_container_index, size_t target_index_amongst_mapped_elements) { target_index_to_unmapped_element_index_[target_index_amongst_mapped_elements] .push_back(unordered_container_index); } template <typename PointedToTy> std::string MappedPtrContainerSorter<PointedToTy>::SortedIndices::ToString() const { std::vector<std::string> mapped_element_strs; mapped_element_strs.reserve(mapped_element_indices_by_partial_order_.size()); for (const auto& indices : mapped_element_indices_by_partial_order_) { mapped_element_strs.push_back( absl::StrCat("[", absl::StrJoin(indices, ", "), "]")); } std::vector<std::string> unmapped_element_strs; unmapped_element_strs.reserve(target_index_to_unmapped_element_index_.size()); for (const auto& kv : target_index_to_unmapped_element_index_) { std::string key = absl::StrCat(kv.first); if (kv.first == IndexBeforeMappedElements()) { key = "before_mapped"; } if (kv.first == IndexAfterMappedElements()) { key = "after_mapped"; } if (kv.first == InvalidIndex()) { key = "invalid"; } unmapped_element_strs.push_back( absl::StrCat(key, ": [", absl::StrJoin(kv.second, ", "), "]")); } return absl::StrCat( "max_partial_order_exclusive_: ", max_partial_order_exclusive_, "\n", "unordered_container_size_: ", unordered_container_size_, "\n", "mapped_element_indices_by_partial_order_: [", absl::StrJoin(mapped_element_strs, ", "), "]\n", "target_index_to_unmapped_element_index_: {", absl::StrJoin(unmapped_element_strs, ", "), "}\n"); } template <typename PointedToTy> absl::StatusOr<std::vector<size_t>> MappedPtrContainerSorter<PointedToTy>::SortedIndices::Flatten() const { std::vector<size_t> result(unordered_container_size_, InvalidIndex()); size_t next_available_index = 0; auto next_index_fn = [&]() -> absl::StatusOr<size_t> { if (next_available_index >= unordered_container_size_) { return InternalStrCat( "invalid unordered_container index: ", next_available_index, " v size(", unordered_container_size_, ")"); } return next_available_index++; }; if (target_index_to_unmapped_element_index_.contains( IndexBeforeMappedElements())) { const auto& indices = target_index_to_unmapped_element_index_.at(IndexBeforeMappedElements()); for (size_t index : indices) { TF_ASSIGN_OR_RETURN(result[index], next_index_fn()); } } size_t num_inserted_mapped_elements = 0; for (const auto& mapped_element_indices : mapped_element_indices_by_partial_order_) { for (size_t mapped_element_index : mapped_element_indices) { TF_ASSIGN_OR_RETURN(result[mapped_element_index], next_index_fn()); ++num_inserted_mapped_elements; if (target_index_to_unmapped_element_index_.contains( num_inserted_mapped_elements - 1)) { const auto& unmapped_element_indices = target_index_to_unmapped_element_index_.at( num_inserted_mapped_elements - 1); for (size_t unmapped_element_index : unmapped_element_indices) { TF_ASSIGN_OR_RETURN(result[unmapped_element_index], next_index_fn()); } } } } if (target_index_to_unmapped_element_index_.contains( IndexAfterMappedElements())) { const auto& indices = target_index_to_unmapped_element_index_.at(IndexAfterMappedElements()); for (size_t index : indices) { TF_ASSIGN_OR_RETURN(result[index], next_index_fn()); } } absl::flat_hash_set<size_t> used_indices; for (size_t index : result) { if (used_indices.contains(index)) { return InternalStrCat( "2 elements in unordered_container are destined for the same " "index: ", index); } if (index >= unordered_container_size_) { return InvalidArgumentStrCat("invalid unordered_container index: ", index, " v size(", unordered_container_size_, ")"); } } return result; } template <typename PointedToTy> template <typename OrderedTy, typename UnorderedTy> absl::StatusOr<std::vector<size_t>> MappedPtrContainerSorter<PointedToTy>::ComputeNewIndices( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, const UnorderedTy& unordered_container) { using UnorderedPtrGetter = mapped_ptr_container_sorter_internal::PtrGetter< typename UnorderedTy::const_reference, const PointedToTy*>; using OrderedPtrGetter = mapped_ptr_container_sorter_internal::PtrGetter< typename OrderedTy::const_reference, const PointedToTy*>; if (unordered_container.size() >= IndexBeforeMappedElements()) { return InvalidArgumentStrCat("Unordered container is too large to sort."); } absl::flat_hash_set<const PointedToTy*> unordered_ptrs; for (const auto& unordered_element : unordered_container) { const PointedToTy* ptr = UnorderedPtrGetter::Get(unordered_element); unordered_ptrs.insert(ptr); } absl::flat_hash_map<const PointedToTy*, std::list<size_t>> mapped_ptr_to_partial_order; size_t next_partial_order_value = 0; for (const auto& ordered_element : ordered_container) { const PointedToTy* ordered_ptr = OrderedPtrGetter::Get(ordered_element); const PointedToTy* unordered_ptr = map_ptr(ordered_ptr); if (!unordered_ptr) { continue; } if (!unordered_ptrs.contains(unordered_ptr)) { continue; } mapped_ptr_to_partial_order[unordered_ptr].push_back( next_partial_order_value); ++next_partial_order_value; } SortedIndices result(next_partial_order_value, unordered_container.size()); for (size_t i = 0; i < unordered_container.size(); ++i) { const PointedToTy* ptr = UnorderedPtrGetter::Get(unordered_container[i]); if (!mapped_ptr_to_partial_order.contains(ptr)) { result.AddUnmappedElement(i, unmapped_index(ptr)); continue; } auto& index_list = mapped_ptr_to_partial_order[ptr]; TF_RETURN_IF_ERROR(result.AddMappedElement(i, index_list.front())); if (index_list.size() > 1) { index_list.pop_front(); } } VLOG(5) << "Pre flatten unordered_container result:\n" << result.ToString(); return result.Flatten(); } template <typename PointedToTy> template <typename UnorderedTy> void MappedPtrContainerSorter<PointedToTy>::Reorder( std::vector<size_t> new_indices, UnorderedTy& unordered_container) { size_t old_pos = 0; while (old_pos < new_indices.size()) { size_t new_pos = new_indices[old_pos]; if (old_pos == new_pos) { ++old_pos; continue; } std::swap(new_indices[old_pos], new_indices[new_pos]); std::swap(unordered_container[old_pos], unordered_container[new_pos]); } } template <typename PointedToTy> template <typename OrderedTy, typename UnorderedTy> absl::Status MappedPtrContainerSorter<PointedToTy>::Sort( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, UnorderedTy& unordered_container) { std::vector<size_t> indices; TF_ASSIGN_OR_RETURN( indices, ComputeNewIndices(map_ptr, unmapped_index, ordered_container, unordered_container)); Reorder(std::move(indices), unordered_container); return absl::OkStatus(); } } #endif
#include "xla/service/mapped_ptr_container_sorter.h" #include <cstddef> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/functional/bind_front.h" #include "absl/log/log.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::Pointee; std::vector<std::unique_ptr<std::string>> CreateUniquePtrContainer( const std::vector<std::string>& values) { std::vector<std::unique_ptr<std::string>> container; for (auto value : values) { container.push_back(std::make_unique<std::string>(value)); } return container; } class MappedPtrContainerSorterTest : public ::testing::Test { public: using Sorter = MappedPtrContainerSorter<std::string>; MappedPtrContainerSorterTest() : ordered_unique_ptrs_(CreateUniquePtrContainer( {"m0", "m1", "m2", "m3", "not_in_unordered"})), unordered_unique_ptrs_( CreateUniquePtrContainer({"m3", "m1", "m0", "m2"})) { for (auto& unique : ordered_unique_ptrs_) { ordered_raw_ptrs_.push_back(unique.get()); ordered_const_raw_ptrs_.push_back(unique.get()); } for (auto& unique : unordered_unique_ptrs_) { unordered_raw_ptrs_.push_back(unique.get()); unordered_const_raw_ptrs_.push_back(unique.get()); } } protected: const std::string* MapPtr(const std::string* ordered) const { for (size_t i = 0; i < unordered_unique_ptrs_.size(); ++i) { if (*ordered == *unordered_unique_ptrs_[i]) { return unordered_unique_ptrs_[i].get(); } } return nullptr; } auto MapPtrFn() const { return absl::bind_front(&MappedPtrContainerSorterTest::MapPtr, this); } void AddUnmappedElementsToUnorderedUniquePtrs() { unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin(), std::make_unique<std::string>("u0")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin() + 2, std::make_unique<std::string>("u1")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin() + 3, std::make_unique<std::string>("u2")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.end(), std::make_unique<std::string>("u3")); } std::vector<std::unique_ptr<std::string>> ordered_unique_ptrs_; std::vector<std::unique_ptr<std::string>> unordered_unique_ptrs_; std::vector<std::string*> ordered_raw_ptrs_; std::vector<std::string*> unordered_raw_ptrs_; std::vector<const std::string*> ordered_const_raw_ptrs_; std::vector<const std::string*> unordered_const_raw_ptrs_; }; TEST_F(MappedPtrContainerSorterTest, SortUniquePtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, RawPtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, ConstRawPtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_const_raw_ptrs_, unordered_const_raw_ptrs_)); EXPECT_THAT( unordered_const_raw_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, DifferentContainerTypes) { std::list<std::unique_ptr<std::string>> ordered_ptrs; for (auto& ptr : ordered_unique_ptrs_) { ordered_ptrs.push_back(std::move(ptr)); } TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_ptrs, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsAfterMappedPtrs) { AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexAfterMappedElementsFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")), Pointee(std::string("u0")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("u3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsBeforeMappedPtrs) { AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT(unordered_unique_ptrs_, ElementsAre( Pointee(std::string("u0")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("u3")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsInCustomLocations) { auto unmapped_ptr_index = [](const std::string* s) -> size_t { if (*s == "u0") { return Sorter::IndexAfterMappedElementsFn()(s); } if (*s == "u1") { return 2; } if (*s == "u2") { return 2; } if (*s == "u3") { return Sorter::IndexBeforeMappedElementsFn()(s); } LOG(FATAL) << "We should not be getting an unmapped ptr index for " << *s; }; AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), unmapped_ptr_index, ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre( Pointee(std::string("u3")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("m3")), Pointee(std::string("u0")) )); } TEST_F(MappedPtrContainerSorterTest, ManyOrderedElementsMapToFewUnorderedElements) { std::string* ordered_m1 = nullptr; for (auto ptr : ordered_raw_ptrs_) { if (*ptr == "m1") { ordered_m1 = ptr; break; } } ASSERT_NE(ordered_m1, nullptr); std::string* unordered_m1 = nullptr; for (auto ptr : unordered_raw_ptrs_) { if (*ptr == "m1") { unordered_m1 = ptr; break; } } ASSERT_NE(unordered_m1, nullptr); ordered_raw_ptrs_.insert(ordered_raw_ptrs_.begin(), ordered_m1); ordered_raw_ptrs_.push_back(ordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre( Pointee(std::string("m1")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, FewOrderedElementsMapToManyUnorderedElements) { std::string* ordered_m1 = nullptr; for (auto ptr : ordered_raw_ptrs_) { if (*ptr == "m1") { ordered_m1 = ptr; break; } } ASSERT_NE(ordered_m1, nullptr); std::string* unordered_m1 = nullptr; for (auto ptr : unordered_raw_ptrs_) { if (*ptr == "m1") { unordered_m1 = ptr; break; } } ASSERT_NE(unordered_m1, nullptr); ordered_raw_ptrs_.insert(ordered_raw_ptrs_.begin(), ordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre( Pointee(std::string("m1")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, InvalidUnmappedIndex) { unordered_unique_ptrs_.push_back(std::make_unique<std::string>("u0")); auto unmapped_index_fn = [](const std::string* unmapped) -> size_t { if (*unmapped == "u0") { return 4; } return Sorter::IndexBeforeMappedElementsFn()(unmapped); }; EXPECT_FALSE(Sorter::Sort(MapPtrFn(), unmapped_index_fn, ordered_unique_ptrs_, unordered_unique_ptrs_) .ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/mapped_ptr_container_sorter.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/mapped_ptr_container_sorter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e27221c5-0b3b-45d4-8e65-4e62b0ab5c84
cpp
tensorflow/tensorflow
fuzzy_matcher
third_party/xla/xla/service/fuzzy_matcher.h
third_party/xla/xla/service/fuzzy_matcher_test.cc
#ifndef XLA_SERVICE_FUZZY_MATCHER_H_ #define XLA_SERVICE_FUZZY_MATCHER_H_ #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" namespace xla { namespace fm { template <typename Pattern> auto OptConvert(Pattern pattern) { auto shared = match::SharedSubpattern(pattern); return match::AnyOf<HloInstruction>(match::Convert(shared), shared); } #define XLA_FUZZY_UNOP_PATTERN(NAME) \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return OptConvert(match::Op(matched_inst).WithOpcode(HloOpcode::k##NAME)); \ } \ \ template <typename Arg> \ inline auto NAME(Arg&& arg) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg))); \ } \ \ template <typename HloInstructionType, typename Arg> \ inline auto NAME(HloInstructionType** matched_inst, Arg&& arg) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg))); \ } XLA_FUZZY_UNOP_PATTERN(Tanh) XLA_FUZZY_UNOP_PATTERN(Exp) XLA_FUZZY_UNOP_PATTERN(Broadcast) #undef XLA_FUZZY_UNOP_PATTERN #define XLA_FUZZY_BINOP_PATTERN(NAME) \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs))); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs))); \ } XLA_FUZZY_BINOP_PATTERN(Dot) XLA_FUZZY_BINOP_PATTERN(Divide) XLA_FUZZY_BINOP_PATTERN(Subtract) XLA_FUZZY_BINOP_PATTERN(Multiply) XLA_FUZZY_BINOP_PATTERN(Reduce) #undef XLA_FUZZY_BINOP_PATTERN #define XLA_FUZZY_TERNOP_PATTERN(NAME) \ template <typename Arg0, typename Arg1, typename Arg2> \ inline auto NAME(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2))); \ } \ \ template <typename HloInstructionType, typename Arg0, typename Arg1, \ typename Arg2> \ inline auto NAME(HloInstructionType** matched_inst, Arg0&& arg0, \ Arg1&& arg1, Arg2&& arg2) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2))); \ } XLA_FUZZY_TERNOP_PATTERN(Select); #undef XLA_FUZZY_TERNOP_PATTERN } } #endif
#include "xla/service/fuzzy_matcher.h" #include <gtest/gtest.h> #include "xla/service/pattern_matcher.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using FuzzyMatcherTest = HloTestBase; TEST_F(FuzzyMatcherTest, IgnoreConvert) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { x = f16[8,3] parameter(0) y = f16[8,3] parameter(1) div = f16[8,3] divide(x, y) ROOT convert = f32[8,3] convert(div) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, fm::Divide(match::Parameter(0), match::Parameter(1)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fuzzy_matcher.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fuzzy_matcher_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e71d581e-3184-4873-831f-aba1c7d47594
cpp
tensorflow/tensorflow
hlo_rematerialization_test_utils
third_party/xla/xla/service/hlo_rematerialization_test_utils.h
third_party/xla/xla/service/hlo_rematerialization_test_utils_test.cc
#ifndef XLA_SERVICE_HLO_REMATERIALIZATION_TEST_UTILS_H_ #define XLA_SERVICE_HLO_REMATERIALIZATION_TEST_UTILS_H_ #include <cstdint> #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { class RematerializationTestBase : public HloTestBase { protected: std::unique_ptr<HloComputation> MakeRematerializableComputation( const std::string& suffix = "") { auto builder = HloComputation::Builder(TestName() + suffix); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); auto reshape = builder.AddInstruction( HloInstruction::CreateReshape(scalar_shape_, param)); auto bcast = builder.AddInstruction( HloInstruction::CreateBroadcast(vec1024_shape_, reshape, {})); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kNegate, bcast)); auto concat_1 = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(xla::F32, {2048}), {negate, negate}, 0)); auto slice_1 = builder.AddInstruction(HloInstruction::CreateSlice( vec1_shape_, concat_1, {0}, {1}, {1})); auto concat_2 = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(xla::F32, {1025}), {bcast, slice_1}, 0)); builder.AddInstruction(HloInstruction::CreateSlice(vec1_shape_, concat_2, {0}, {1}, {1})); return builder.Build(); } std::unique_ptr<HloComputation> MakeRematerializableWhileComputation( HloComputation* while_cond, HloComputation* while_body, const std::string& suffix = "") { auto builder = HloComputation::Builder(TestName() + suffix); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); auto reshape = builder.AddInstruction( HloInstruction::CreateReshape(scalar_shape_, param)); auto bcast = builder.AddInstruction( HloInstruction::CreateBroadcast(vec1024_shape_, reshape, {})); auto slice_1 = builder.AddInstruction( HloInstruction::CreateSlice(vec1_shape_, bcast, {0}, {1}, {1})); auto while_inst = builder.AddInstruction(HloInstruction::CreateWhile( vec1_shape_, while_cond, while_body, slice_1)); auto concat = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(xla::F32, {1025}), {bcast, while_inst}, 0)); builder.AddInstruction(HloInstruction::CreateSlice(vec1_shape_, concat, {0}, {1}, {1})); return builder.Build(); } std::unique_ptr<HloComputation> MakeConditionComputation() { auto builder = HloComputation::Builder(TestName() + ".cond"); builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); return builder.Build(); } static int64_t ByteSizeOf(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, sizeof(void*)); } protected: const Shape scalar_shape_ = ShapeUtil::MakeShape(xla::F32, {}); const Shape vec1_shape_ = ShapeUtil::MakeShape(xla::F32, {1}); const Shape vec1024_shape_ = ShapeUtil::MakeShape(xla::F32, {1024}); }; } #endif
#include "xla/service/hlo_rematerialization_test_utils.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { namespace { using ::testing::UnorderedElementsAre; class HloRematerializationTestUtilsTest : public RematerializationTestBase {}; TEST_F(HloRematerializationTestUtilsTest, MakeRematerializableComputation) { auto computation = MakeRematerializableComputation(); std::vector<HloInstruction*> instructions(computation->instructions().begin(), computation->instructions().end()); EXPECT_EQ(instructions[0]->name(), "param"); EXPECT_EQ(instructions[1]->name(), "reshape"); EXPECT_THAT(instructions[1]->operands(), UnorderedElementsAre(instructions[0])); EXPECT_EQ(instructions[2]->name(), "broadcast"); EXPECT_THAT(instructions[2]->operands(), UnorderedElementsAre(instructions[1])); EXPECT_EQ(instructions[3]->name(), "negate"); EXPECT_THAT(instructions[3]->operands(), UnorderedElementsAre(instructions[2])); EXPECT_EQ(instructions[4]->name(), "concatenate"); EXPECT_THAT(instructions[4]->operands(), UnorderedElementsAre(instructions[3], instructions[3])); EXPECT_EQ(instructions[5]->name(), "slice"); EXPECT_THAT(instructions[5]->operands(), UnorderedElementsAre(instructions[4])); EXPECT_EQ(instructions[6]->name(), "concatenate"); EXPECT_THAT(instructions[6]->operands(), UnorderedElementsAre(instructions[2], instructions[5])); EXPECT_EQ(instructions[7]->name(), "slice"); EXPECT_THAT(instructions[7]->operands(), UnorderedElementsAre(instructions[6])); } TEST_F(HloRematerializationTestUtilsTest, MakeRematerializableWhileComputation) { auto while_condition = MakeConditionComputation(); auto body_computation = MakeRematerializableComputation(); auto computation = MakeRematerializableWhileComputation( while_condition.get(), body_computation.get()); std::vector<HloInstruction*> instructions(computation->instructions().begin(), computation->instructions().end()); EXPECT_EQ(instructions[0]->name(), "param"); EXPECT_EQ(instructions[1]->name(), "reshape"); EXPECT_THAT(instructions[1]->operands(), UnorderedElementsAre(instructions[0])); EXPECT_EQ(instructions[2]->name(), "broadcast"); EXPECT_THAT(instructions[2]->operands(), UnorderedElementsAre(instructions[1])); EXPECT_EQ(instructions[3]->name(), "slice"); EXPECT_THAT(instructions[3]->operands(), UnorderedElementsAre(instructions[2])); EXPECT_EQ(instructions[4]->name(), "while"); EXPECT_THAT(instructions[4]->operands(), UnorderedElementsAre(instructions[3])); EXPECT_EQ(instructions[4]->while_condition()->name(), "MakeRematerializableWhileComputation.cond"); EXPECT_EQ(instructions[4]->while_body()->name(), "MakeRematerializableWhileComputation"); EXPECT_EQ(instructions[5]->name(), "concatenate"); EXPECT_THAT(instructions[5]->operands(), UnorderedElementsAre(instructions[2], instructions[4])); EXPECT_EQ(instructions[6]->name(), "slice"); EXPECT_THAT(instructions[6]->operands(), UnorderedElementsAre(instructions[5])); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_rematerialization_test_utils.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_rematerialization_test_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c2752c74-3af7-4654-8232-6b113fc0920d
cpp
tensorflow/tensorflow
pattern_matcher_gmock
third_party/xla/xla/service/pattern_matcher_gmock.h
third_party/xla/xla/service/pattern_matcher_gmock_test.cc
#ifndef XLA_SERVICE_PATTERN_MATCHER_GMOCK_H_ #define XLA_SERVICE_PATTERN_MATCHER_GMOCK_H_ #include <ostream> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/layout.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/test.h" #include "tsl/platform/test.h" namespace xla { namespace pattern_matcher_gmock_detail { template <typename Pattern> class GmockMatcher { public: explicit GmockMatcher(Pattern p) : pattern_(std::move(p)) {} bool MatchAndExplain(const Layout& l, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(&l, listener); } bool MatchAndExplain(const Layout* l, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(l, listener); } bool MatchAndExplain(Layout* l, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(l, listener); } bool MatchAndExplain(const Shape& s, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(&s, listener); } bool MatchAndExplain(const Shape* s, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(s, listener); } bool MatchAndExplain(Shape* s, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(s, listener); } bool MatchAndExplain(const HloInstruction& instr, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(&instr, listener); } bool MatchAndExplain(const HloInstruction* instr, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(instr, listener); } bool MatchAndExplain(HloInstruction* instr, ::testing::MatchResultListener* listener) const { return MatchAndExplainImpl(instr, listener); } void DescribeTo(std::ostream* os) const { pattern_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "is NOT: "; DescribeTo(os); } private: template <typename T> bool MatchAndExplainImpl(T* t, ::testing::MatchResultListener* listener) const { MatchOption options{true, false, listener->stream()}; return Match(t, pattern_, options); } Pattern pattern_; }; } template <typename Pattern> ::testing::PolymorphicMatcher< pattern_matcher_gmock_detail::GmockMatcher<Pattern>> GmockMatch(Pattern&& p) { return ::testing::MakePolymorphicMatcher( pattern_matcher_gmock_detail::GmockMatcher<Pattern>( std::forward<Pattern>(p))); } } #endif
#include "xla/service/pattern_matcher_gmock.h" #include <sstream> #include <string> #include <type_traits> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::Not; template <typename MatchedTy> std::string Describe(const ::testing::Matcher<MatchedTy>& m) { std::stringstream ss; m.DescribeTo(&ss); return ss.str(); } template <typename MatchedTy> std::string Explain( const MatchedTy& val, const ::testing::Matcher<typename std::remove_cv<MatchedTy>::type>& m) { ::testing::StringMatchResultListener listener; EXPECT_THAT(val, ::testing::Not(m)); EXPECT_FALSE(m.MatchAndExplain(val, &listener)); return listener.str(); } TEST(PatternMatcherGmock, MatchShape) { Shape s = ShapeUtil::MakeShape(F32, {10, 100}); EXPECT_THAT(s, GmockMatch(m::Shape())); EXPECT_THAT(&s, Not(GmockMatch(m::Shape().WithElementType(F16)))); EXPECT_THAT(Describe<Shape>(GmockMatch(m::Shape().IsArray())), "a shape that represents an array"); } TEST(PatternMatcherGmock, MatchLayout) { Layout l = LayoutUtil::MakeLayout({0, 1}); EXPECT_THAT(l, GmockMatch(m::Layout())); } TEST(PatternMatchGmock, MatchInstruction) { auto instr = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {42}), "p"); EXPECT_THAT(instr.get(), GmockMatch(m::Parameter())); EXPECT_THAT(*instr, GmockMatch(m::Parameter(0))); EXPECT_THAT(*instr, Not(GmockMatch(m::Parameter(1)))); EXPECT_THAT(Describe<HloInstruction*>(GmockMatch(m::Parameter())), "an HloInstruction with opcode parameter"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher_gmock.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher_gmock_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df40c77a-7062-4e92-a882-a8f6fe66ce8f
cpp
tensorflow/tensorflow
lockable
third_party/xla/xla/service/lockable.h
third_party/xla/xla/service/lockable_test.cc
#ifndef XLA_SERVICE_LOCKABLE_H_ #define XLA_SERVICE_LOCKABLE_H_ #include <string> #include "absl/base/thread_annotations.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/traceme.h" namespace xla { template <typename T> struct LockableName { static std::string ToString(const T& value) { return absl::StrFormat("lockable %p", &value); } }; template <typename T, typename LockableName = LockableName<T>> class Lockable { public: class Lock { public: Lock() = default; Lock(Lock&& other) { lockable_ = other.lockable_; other.lockable_ = nullptr; } Lock& operator=(Lock&& other) { lockable_ = other.lockable_; other.lockable_ = nullptr; return *this; } ~Lock() { if (lockable_) lockable_->Release(); } T& operator*() const { return lockable_->value_; } T* operator->() const { return &lockable_->value_; } operator bool() const { return lockable_ != nullptr; } std::string ToString() const { return lockable_ ? lockable_->ToString() : "<empty lock>"; } private: friend class Lockable; explicit Lock(Lockable* lockable) : lockable_(lockable) {} Lockable* lockable_ = nullptr; }; Lockable() = default; explicit Lockable(T value) : value_(std::move(value)) { VLOG(2) << "Constructed " << LockableName::ToString(value_); } template <typename... Args> explicit Lockable(Args&&... args) : value_(std::forward<Args>(args)...) { VLOG(2) << "Constructed " << LockableName::ToString(value_); } Lockable(const Lockable&) = delete; Lockable& operator=(const Lockable&) = delete; ~Lockable() { VLOG(2) << "Destroy " << LockableName::ToString(value_); absl::MutexLock lock(&mutex_); CHECK_EQ(is_unlocked_, true); } Lock Acquire() { tsl::profiler::TraceMe trace([&] { return tsl::profiler::TraceMeEncode("Lockable::Lock::Acquire", {{"lockable", ToString()}}); }); absl::MutexLock lock(&mutex_); mutex_.Await(absl::Condition(&is_unlocked_)); VLOG(2) << "Acquired " << LockableName::ToString(value_); is_unlocked_ = false; return Lock(this); } Lock TryAcquire() { absl::MutexLock lock(&mutex_); if (is_unlocked_ == false) { VLOG(2) << "Failed to acquire " << LockableName::ToString(value_); return Lock(); } VLOG(2) << "Acquired " << LockableName::ToString(value_); is_unlocked_ = false; return Lock(this); } std::string ToString() const { return LockableName::ToString(value_); } protected: const T& value() const { return value_; } private: friend class Lock; void Release() { absl::MutexLock lock(&mutex_); VLOG(2) << "Released " << LockableName::ToString(value_); CHECK(!is_unlocked_); is_unlocked_ = true; } T value_; absl::Mutex mutex_; bool is_unlocked_ ABSL_GUARDED_BY(mutex_) = true; }; } #endif
#include "xla/service/lockable.h" #include <cstddef> #include <cstdint> #include <string> #include <utility> #include "absl/synchronization/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { tsl::thread::ThreadPool CreateThreadPool(int32_t size) { return tsl::thread::ThreadPool(tsl::Env::Default(), "lockable_test", size); } template <> struct LockableName<std::string> { static std::string ToString(const std::string& str) { return "lockable string " + str; } }; class LockableString : public Lockable<std::string> { using Lockable::Lockable; }; TEST(LockableTest, LockProperties) { LockableString::Lock lock0; EXPECT_FALSE(lock0); LockableString str("foo"); LockableString::Lock lock1 = str.Acquire(); EXPECT_TRUE(lock1); LockableString::Lock lock2 = std::move(lock1); EXPECT_FALSE(lock1); EXPECT_TRUE(lock2); LockableString::Lock lock3 = str.TryAcquire(); EXPECT_FALSE(lock3); EXPECT_EQ(lock1.ToString(), "<empty lock>"); EXPECT_EQ(lock2.ToString(), "lockable string foo"); EXPECT_EQ(str.ToString(), "lockable string foo"); auto sink = [](LockableString::Lock) {}; sink(std::move(lock2)); LockableString::Lock lock4 = str.TryAcquire(); EXPECT_TRUE(lock4); } TEST(LockableTest, ExclusiveAccess) { absl::BlockingCounter counter(100); auto thread_pool = CreateThreadPool(10); LockableString str("foo"); for (size_t i = 0; i < 100; ++i) { thread_pool.Schedule([&] { { auto exclusive_str = str.Acquire(); ASSERT_EQ(*exclusive_str, "foo"); } counter.DecrementCount(); }); } counter.Wait(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/lockable.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/lockable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1636930c-ab5c-49b8-9201-f3ad61c62b54
cpp
tensorflow/tensorflow
ordered_set
third_party/xla/xla/service/graphcycles/ordered_set.h
third_party/xla/xla/service/graphcycles/ordered_set_test.cc
#ifndef XLA_SERVICE_GRAPHCYCLES_ORDERED_SET_H_ #define XLA_SERVICE_GRAPHCYCLES_ORDERED_SET_H_ #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace xla { template <typename T> class OrderedSet { public: bool Insert(T value) { bool new_insertion = value_to_index_.insert({value, value_sequence_.size()}).second; if (new_insertion) { value_sequence_.push_back(value); } return new_insertion; } void Erase(T value) { auto it = value_to_index_.find(value); DCHECK(it != value_to_index_.end()); value_to_index_[value_sequence_.back()] = it->second; std::swap(value_sequence_[it->second], value_sequence_.back()); value_sequence_.pop_back(); value_to_index_.erase(it); } void Reserve(size_t new_size) { value_to_index_.reserve(new_size); value_sequence_.reserve(new_size); } void Clear() { value_to_index_.clear(); value_sequence_.clear(); } bool Contains(T value) const { return value_to_index_.contains(value); } size_t Size() const { return value_sequence_.size(); } absl::Span<T const> GetSequence() const { return value_sequence_; } private: std::vector<T> value_sequence_; absl::flat_hash_map<T, int> value_to_index_; }; } #endif
#include "xla/service/graphcycles/ordered_set.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(OrderedSetTest, Insert) { OrderedSet<int> ordered_set; EXPECT_TRUE(ordered_set.Insert(90)); EXPECT_TRUE(ordered_set.Insert(100)); EXPECT_TRUE(ordered_set.Insert(80)); EXPECT_FALSE(ordered_set.Insert(100)); EXPECT_EQ(ordered_set.Size(), 3); EXPECT_TRUE(ordered_set.Contains(90)); EXPECT_TRUE(ordered_set.Contains(100)); EXPECT_TRUE(ordered_set.Contains(80)); EXPECT_FALSE(ordered_set.Contains(40)); std::array<int, 3> expected_sequence = {90, 100, 80}; EXPECT_EQ(ordered_set.GetSequence(), expected_sequence); } TEST(OrderedSetTest, Erase) { OrderedSet<int> ordered_set; EXPECT_TRUE(ordered_set.Insert(90)); EXPECT_TRUE(ordered_set.Insert(100)); EXPECT_TRUE(ordered_set.Insert(80)); ordered_set.Erase(100); EXPECT_EQ(ordered_set.Size(), 2); EXPECT_TRUE(ordered_set.Contains(90)); EXPECT_FALSE(ordered_set.Contains(100)); EXPECT_TRUE(ordered_set.Contains(80)); std::array<int, 2> expected_sequence_0 = {90, 80}; EXPECT_EQ(ordered_set.GetSequence(), expected_sequence_0); ordered_set.Erase(80); EXPECT_EQ(ordered_set.Size(), 1); EXPECT_TRUE(ordered_set.Contains(90)); EXPECT_FALSE(ordered_set.Contains(100)); EXPECT_FALSE(ordered_set.Contains(80)); std::array<int, 1> expected_sequence_1 = {90}; EXPECT_EQ(ordered_set.GetSequence(), expected_sequence_1); ordered_set.Erase(90); EXPECT_EQ(ordered_set.Size(), 0); EXPECT_FALSE(ordered_set.Contains(90)); EXPECT_FALSE(ordered_set.Contains(100)); EXPECT_FALSE(ordered_set.Contains(80)); std::array<int, 0> expected_sequence_2 = {}; EXPECT_EQ(ordered_set.GetSequence(), expected_sequence_2); } TEST(OrderedSetTest, Clear) { OrderedSet<int> ordered_set; EXPECT_TRUE(ordered_set.Insert(90)); EXPECT_TRUE(ordered_set.Insert(100)); EXPECT_TRUE(ordered_set.Insert(80)); ordered_set.Clear(); EXPECT_EQ(ordered_set.Size(), 0); EXPECT_FALSE(ordered_set.Contains(90)); EXPECT_FALSE(ordered_set.Contains(100)); EXPECT_FALSE(ordered_set.Contains(80)); std::array<int, 0> expected_sequence = {}; EXPECT_EQ(ordered_set.GetSequence(), expected_sequence); } TEST(OrderedSetTest, LargeInsertions) { const int kSize = 50 * 9000; OrderedSet<int> ordered_set; for (int i = 0; i < kSize; i++) { EXPECT_TRUE(ordered_set.Insert(i + 500)); } for (int i = 0; i < kSize; i++) { EXPECT_EQ(ordered_set.GetSequence()[i], i + 500); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/graphcycles/ordered_set.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/graphcycles/ordered_set_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37e3ea92-5e0b-42f0-a7ac-7eaa650395c4
cpp
tensorflow/tensorflow
scoped_module_handle
third_party/xla/xla/stream_executor/scoped_module_handle.h
third_party/xla/xla/stream_executor/scoped_module_handle_test.cc
#ifndef XLA_STREAM_EXECUTOR_SCOPED_MODULE_HANDLE_H_ #define XLA_STREAM_EXECUTOR_SCOPED_MODULE_HANDLE_H_ #include "absl/log/check.h" #include "xla/stream_executor/module_spec.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor { class ScopedModuleHandle { public: ScopedModuleHandle(StreamExecutor* executor, ModuleHandle module_handle) : executor_(executor), module_handle_(module_handle) {} ScopedModuleHandle(ScopedModuleHandle&& other) { executor_ = other.executor_; module_handle_ = other.module_handle_; other.executor_ = nullptr; other.module_handle_ = ModuleHandle(); } ScopedModuleHandle& operator=(ScopedModuleHandle&& other) { executor_ = other.executor_; module_handle_ = other.module_handle_; other.executor_ = nullptr; other.module_handle_ = ModuleHandle(); return *this; } ~ScopedModuleHandle() { if (static_cast<bool>(module_handle_)) { CHECK(executor_->UnloadModule(module_handle_)); } } private: StreamExecutor* executor_; ModuleHandle module_handle_; ScopedModuleHandle(const ScopedModuleHandle&) = delete; void operator=(const ScopedModuleHandle&) = delete; }; } #endif
#include "xla/stream_executor/scoped_module_handle.h" #include <utility> #include "xla/stream_executor/mock_stream_executor.h" #include "xla/stream_executor/module_spec.h" #include "tsl/platform/test.h" using testing::Return; namespace stream_executor { namespace { TEST(ScopedModuleHandleTest, NoUnloadForNullHandle) { ModuleHandle foo; MockStreamExecutor executor; EXPECT_CALL(executor, UnloadModule).Times(0); { ScopedModuleHandle first(&executor, foo); ScopedModuleHandle second = std::move(first); ScopedModuleHandle third(&executor, foo); third = std::move(second); } } TEST(ScopedModuleHandleTest, NonNullHandleUnloadsOnceAfterMoves) { ModuleHandle foo(reinterpret_cast<void*>(1)); MockStreamExecutor executor; EXPECT_CALL(executor, UnloadModule).WillOnce(Return(true)); { ScopedModuleHandle first(&executor, foo); ScopedModuleHandle second = std::move(first); ScopedModuleHandle third(&executor, ModuleHandle{}); third = std::move(second); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/scoped_module_handle.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/scoped_module_handle_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e94eef46-9cde-4093-b44d-8e89d991ead3
cpp
tensorflow/tensorflow
gpu_kernel
third_party/xla/xla/stream_executor/gpu/gpu_kernel.h
third_party/xla/xla/stream_executor/gpu/gpu_kernel_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_ #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" namespace stream_executor::gpu { class GpuKernel : public Kernel { public: virtual GpuFunctionHandle gpu_function() const = 0; }; inline const GpuKernel* AsGpuKernel(const Kernel* kernel) { return static_cast<const GpuKernel*>(kernel); } inline GpuKernel* AsGpuKernel(Kernel* kernel) { return static_cast<GpuKernel*>(kernel); } } #endif
#include <cstdint> #include <memory> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_test_kernels.h" #include "xla/stream_executor/gpu/gpu_test_kernels_fatbin.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { using AddI32Kernel = TypedKernelFactory<DeviceMemory<int32_t>, DeviceMemory<int32_t>, DeviceMemory<int32_t>>; class GpuKernelTest : public ::testing::Test { public: void SetUp() override { auto name = absl::AsciiStrToUpper( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); Platform* platform = PlatformManager::PlatformWithName(name).value(); executor_ = platform->ExecutorForDevice(0).value(); } void RunAddI32Kernel(const MultiKernelLoaderSpec& spec) { TF_ASSERT_OK_AND_ASSIGN(auto stream, executor_->CreateStream()); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor_, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor_->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor_->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor_->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); ASSERT_TRUE( stream->ThenLaunch(ThreadDim(), BlockDim(4), add, a, b, c).ok()); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); } StreamExecutor* executor_; }; TEST_F(GpuKernelTest, LoadAndRunKernelFromPtx) { if (executor_->GetPlatform()->id() == stream_executor::rocm::kROCmPlatformId) { GTEST_SKIP() << "There is no PTX or any equivalent abstraction for ROCm."; } MultiKernelLoaderSpec spec(3); spec.AddCudaPtxInMemory(internal::kAddI32KernelPtx, "AddI32"); RunAddI32Kernel(spec); } TEST_F(GpuKernelTest, LoadAndRunKernelFromCubin) { MultiKernelLoaderSpec spec(3); TF_ASSERT_OK_AND_ASSIGN(auto binary, GetGpuTestKernelsFatbin()); spec.AddCudaCubinInMemory(binary, "AddI32"); RunAddI32Kernel(spec); } TEST_F(GpuKernelTest, LoadAndRunKernelFromSymbol) { MultiKernelLoaderSpec spec(3); spec.AddInProcessSymbol(internal::GetAddI32Kernel(), "AddI32"); RunAddI32Kernel(spec); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_kernel.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4a03d074-abd5-4eff-b24a-ddc438954def
cpp
tensorflow/tensorflow
context_map
third_party/xla/xla/stream_executor/gpu/context_map.h
third_party/xla/xla/stream_executor/gpu/context_map_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_CONTEXT_MAP_H_ #define XLA_STREAM_EXECUTOR_GPU_CONTEXT_MAP_H_ #include <memory> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/synchronization/mutex.h" namespace stream_executor::gpu { template <class GpuContext, class ContextType> class ContextMap { public: explicit ContextMap(absl::AnyInvocable<int(void* ptr)> find_device_ordinal) : find_device_ordinal_(std::move(find_device_ordinal)) {} bool Has(GpuContext context) { absl::ReaderMutexLock lock(&mutex_); return gpu_context_to_context_type_map_.find(context) != gpu_context_to_context_type_map_.end(); } ContextType* Add(GpuContext context, int device_ordinal) { CHECK_NE(context, nullptr); absl::MutexLock lock(&mutex_); auto insert_result = gpu_context_to_context_type_map_.insert( std::make_pair(context, nullptr)); auto it = insert_result.first; if (insert_result.second) { it->second = std::make_unique<ContextType>(context, device_ordinal); ordinal_to_type_map_[device_ordinal].push_back(context); } return it->second.get(); } void Remove(GpuContext context) { absl::MutexLock lock(&mutex_); CHECK_NE(context, nullptr); auto it = gpu_context_to_context_type_map_.find(context); CHECK(it != gpu_context_to_context_type_map_.end()) << context; gpu_context_to_context_type_map_.erase(it); for (auto p : ordinal_to_type_map_) { auto it2 = std::find(p.second.begin(), p.second.end(), context); if (it2 != p.second.end()) { p.second.erase(it2); if (p.second.empty()) { ordinal_to_type_map_.erase(p.first); } break; } } } GpuContext GetAnyContext(void* ptr) { absl::ReaderMutexLock lock(&mutex_); int device_ordinal = find_device_ordinal_(ptr); CHECK_EQ(ordinal_to_type_map_.count(device_ordinal), 1); CHECK(!ordinal_to_type_map_.at(device_ordinal).empty()) << "Need at least one context."; return ordinal_to_type_map_.at(device_ordinal)[0]; } private: absl::Mutex mutex_; absl::flat_hash_map<GpuContext, std::unique_ptr<ContextType>> gpu_context_to_context_type_map_ ABSL_GUARDED_BY(mutex_); absl::flat_hash_map<int, std::vector<GpuContext>> ordinal_to_type_map_ ABSL_GUARDED_BY(mutex_); absl::AnyInvocable<int(void* ptr)> find_device_ordinal_; }; } #endif
#include "xla/stream_executor/gpu/context_map.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { class TestContext { public: TestContext(void *context, int device_ordinal) : context_(context), device_ordinal_(device_ordinal) {} void *context() const { return context_; } int device_ordinal() const { return device_ordinal_; } private: void *context_; int device_ordinal_; }; TEST(ContextMapTest, AddRemoveAndHasWorks) { int device_ordinal = 1; void *context = &device_ordinal; auto ordinal_finder = [device_ordinal](void *ptr) { return device_ordinal; }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context = map.Add(context, device_ordinal); EXPECT_EQ(test_context->context(), context); EXPECT_EQ(test_context->device_ordinal(), device_ordinal); EXPECT_TRUE(map.Has(context)); map.Remove(context); EXPECT_FALSE(map.Has(context)); } TEST(ContextMapTest, AddTwiceReturnsSameContext) { void *context = reinterpret_cast<void *>(2); constexpr int device_ordinal = 1; auto ordinal_finder = [](void *ptr) { return device_ordinal; }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context, device_ordinal); auto *test_context2 = map.Add(context, device_ordinal); EXPECT_EQ(test_context1, test_context2); } TEST(ContextMapTest, GetAnyContextReturnsCorrectContext) { void *context1 = reinterpret_cast<void *>(2); void *context2 = reinterpret_cast<void *>(3); constexpr int device_ordinal1 = 1; constexpr int device_ordinal2 = 2; auto ordinal_finder = [](void *ptr) { static int calls = 0; ++calls; if (calls <= 1) { return device_ordinal1; } else { return device_ordinal2; } }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context1, device_ordinal1); auto *test_context2 = map.Add(context2, device_ordinal2); EXPECT_NE(test_context1, test_context2); auto first_context = map.GetAnyContext(context1); EXPECT_EQ(first_context, context1); auto second_context = map.GetAnyContext(context2); EXPECT_EQ(second_context, context2); } TEST(ContextMapTest, GetAnyContextShouldDieWithBadInput) { void *context1 = reinterpret_cast<void *>(2); void *context2 = reinterpret_cast<void *>(3); constexpr int device_ordinal1 = 1; constexpr int device_ordinal2 = 2; auto ordinal_finder = [](void *ptr) { static int calls = 0; ++calls; if (calls <= 1) { return device_ordinal1; } else { return device_ordinal2; } }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context1, device_ordinal1); auto *test_context2 = map.Add(context2, device_ordinal2); EXPECT_NE(test_context1, test_context2); auto first_context = map.GetAnyContext(context1); EXPECT_EQ(first_context, context1); auto second_context = map.GetAnyContext(context2); EXPECT_EQ(second_context, context2); map.Remove(context2); EXPECT_DEATH(map.GetAnyContext(context2), "Check failed"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/context_map.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/context_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8971d4cb-bee3-478d-b5af-bb826df19571
cpp
tensorflow/tensorflow
gpu_executor
third_party/xla/xla/stream_executor/gpu/gpu_executor.h
third_party/xla/xla/stream_executor/gpu/gpu_executor_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_EXECUTOR_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_EXECUTOR_H_ #include <cstdint> #include <memory> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/event_based_timer.h" #include "xla/stream_executor/gpu/context.h" #include "xla/stream_executor/host_memory_allocation.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_common.h" namespace stream_executor { namespace gpu { class GpuStream; class GpuExecutor : public StreamExecutorCommon { public: GpuExecutor(Platform* platform, int device_ordinal) : StreamExecutorCommon(platform), context_(nullptr), device_ordinal_(device_ordinal) {} int device_ordinal() const override { return device_ordinal_; }; virtual void UnloadKernel(const Kernel* kernel) = 0; virtual absl::StatusOr<std::unique_ptr<EventBasedTimer>> CreateEventBasedTimer(GpuStream* stream, bool use_delay_kernel) = 0; virtual absl::Status TrimGraphMemory() = 0; Context* gpu_context() const { return context_; } absl::StatusOr<std::vector<ApiTrace>> ExtractApiTrace() override { absl::MutexLock lock(&logger_mu_); return std::move(argument_logs_); } absl::Status RecordApiTrace(ApiTrace call) override { absl::MutexLock lock(&logger_mu_); if (std::holds_alternative<GemmCallTrace>(call) && (argument_logging_mode_ & kLogGemm)) { argument_logs_.push_back(call); } return absl::OkStatus(); } bool SetArgumentLoggingMode(uint64_t mode) override { absl::MutexLock lock(&logger_mu_); argument_logging_mode_ = mode; return true; } uint64_t GetArgumentLoggingMode() const { return argument_logging_mode_; } protected: void set_context(Context* context) { context_ = context; } private: Context* context_; int device_ordinal_; absl::Mutex logger_mu_; mutable std::vector<ApiTrace> argument_logs_ ABSL_GUARDED_BY(logger_mu_); uint64_t argument_logging_mode_ = 0; GpuExecutor(const GpuExecutor&) = delete; void operator=(const GpuExecutor&) = delete; }; inline GpuExecutor* ExtractGpuExecutor(StreamExecutor* stream_exec) { return static_cast<GpuExecutor*>(stream_exec); } } } #endif
#include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor { class GpuExecutorTest : public testing::Test { public: Platform* GetPlatform() { auto name = absl::AsciiStrToLower( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); return PlatformManager::PlatformWithName(name).value(); } }; using GetPointerMemorySpaceTest = GpuExecutorTest; TEST_F(GetPointerMemorySpaceTest, Host) { StreamExecutor* executor = GetPlatform()->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto host_ptr, executor->HostMemoryAllocate(64)); TF_ASSERT_OK_AND_ASSIGN(auto memory_space, executor->GetPointerMemorySpace(host_ptr->opaque())) EXPECT_EQ(memory_space, MemoryType::kHost); } TEST_F(GetPointerMemorySpaceTest, Device) { StreamExecutor* executor = GetPlatform()->ExecutorForDevice(0).value(); auto mem = executor->Allocate(64); ASSERT_NE(mem, nullptr); TF_ASSERT_OK_AND_ASSIGN(auto memory_space, executor->GetPointerMemorySpace(mem.opaque())) EXPECT_EQ(memory_space, MemoryType::kDevice); executor->Deallocate(&mem); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_executor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e1e05b95-3168-49b8-bae6-0e35ebebf454
cpp
tensorflow/tensorflow
ptx_compiler
third_party/xla/xla/stream_executor/cuda/ptx_compiler.h
third_party/xla/xla/stream_executor/cuda/ptx_compiler_test.cc
#ifndef XLA_STREAM_EXECUTOR_CUDA_PTX_COMPILER_H_ #define XLA_STREAM_EXECUTOR_CUDA_PTX_COMPILER_H_ #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/semantic_version.h" namespace stream_executor { absl::StatusOr<std::vector<uint8_t>> CompileGpuAsmUsingLibNvPtxCompiler( int cc_major, int cc_minor, const char* ptx_contents, GpuAsmOpts options, bool cancel_if_reg_spill); absl::StatusOr<SemanticVersion> GetLibNvPtxCompilerVersion(); } #endif
#include "xla/stream_executor/cuda/ptx_compiler.h" #include <sys/types.h> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/stream_executor/cuda/ptx_compiler_support.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/semantic_version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace { constexpr const char kSpillingPtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .entry _Z6kernelPi( .param .u64 _Z6kernelPi_param_0 ) .maxnreg 16 { .reg .b32 %r<33>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; ld.global.u32 %r1, [%rd2+4]; ld.global.u32 %r2, [%rd2+8]; ld.global.u32 %r3, [%rd2+12]; ld.global.u32 %r4, [%rd2+16]; ld.global.u32 %r5, [%rd2+20]; ld.global.u32 %r6, [%rd2+24]; ld.global.u32 %r7, [%rd2+28]; ld.global.u32 %r8, [%rd2+32]; ld.global.u32 %r9, [%rd2+36]; ld.global.u32 %r10, [%rd2+40]; ld.global.u32 %r11, [%rd2+44]; ld.global.u32 %r12, [%rd2+48]; ld.global.u32 %r13, [%rd2+52]; ld.global.u32 %r14, [%rd2+56]; ld.global.u32 %r15, [%rd2+60]; add.s32 %r16, %r15, 15; st.global.u32 [%rd2+60], %r16; add.s32 %r17, %r14, 15; st.global.u32 [%rd2+56], %r17; add.s32 %r18, %r13, 15; st.global.u32 [%rd2+52], %r18; add.s32 %r19, %r12, 15; st.global.u32 [%rd2+48], %r19; add.s32 %r20, %r11, 15; st.global.u32 [%rd2+44], %r20; add.s32 %r21, %r10, 15; st.global.u32 [%rd2+40], %r21; add.s32 %r22, %r9, 15; st.global.u32 [%rd2+36], %r22; add.s32 %r23, %r8, 15; st.global.u32 [%rd2+32], %r23; add.s32 %r24, %r7, 15; st.global.u32 [%rd2+28], %r24; add.s32 %r25, %r6, 15; st.global.u32 [%rd2+24], %r25; add.s32 %r26, %r5, 15; st.global.u32 [%rd2+20], %r26; add.s32 %r27, %r4, 15; st.global.u32 [%rd2+16], %r27; add.s32 %r28, %r3, 15; st.global.u32 [%rd2+12], %r28; add.s32 %r29, %r2, 15; st.global.u32 [%rd2+8], %r29; add.s32 %r30, %r1, 15; st.global.u32 [%rd2+4], %r30; ld.global.u32 %r31, [%rd2]; add.s32 %r32, %r31, 15; st.global.u32 [%rd2], %r32; ret; } )"; constexpr const char kSimplePtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .entry _Z6kernelPi ( .param .u64 _Z6kernelPi_param_0 ) { .reg .b32 %r<16>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; mov.u32 %r1, 42; st.global.u32 [%rd2], %r15; ret; })"; constexpr stream_executor::CudaComputeCapability kDefaultComputeCapability{5, 2}; absl::StatusOr<std::vector<uint8_t>> CompileHelper( stream_executor::CudaComputeCapability cc, const char* const ptx_input, bool disable_gpuasm_optimizations = false, bool cancel_if_reg_spill = false, std::vector<std::string> extra_flags = {}) { stream_executor::GpuAsmOpts options(disable_gpuasm_optimizations, "", extra_flags); return stream_executor::CompileGpuAsmUsingLibNvPtxCompiler( cc.major, cc.minor, ptx_input, options, cancel_if_reg_spill); } class PtxCompilerTest : public ::testing::Test { void SetUp() override { if (!stream_executor::IsLibNvPtxCompilerSupported()) { GTEST_SKIP(); } } }; TEST_F(PtxCompilerTest, IdentifiesUnsupportedArchitecture) { EXPECT_THAT( CompileHelper(stream_executor::CudaComputeCapability{100, 0}, kSimplePtx), tsl::testing::StatusIs(absl::StatusCode::kUnimplemented)); } TEST_F(PtxCompilerTest, CanCompileSingleCompilationUnit) { EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSimplePtx), tsl::testing::IsOk()); } TEST_F(PtxCompilerTest, CancelsOnRegSpill) { EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSpillingPtx, true, true), tsl::testing::StatusIs(absl::StatusCode::kCancelled)); EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSpillingPtx, true, false), tsl::testing::IsOk()); } TEST_F(PtxCompilerTest, AcceptsExtraArguments) { auto reference_cubin = CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {}); auto cubin_with_line_info = CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {"--generate-line-info"}); EXPECT_THAT(reference_cubin, tsl::testing::IsOk()); EXPECT_THAT(cubin_with_line_info, tsl::testing::IsOk()); EXPECT_GT(cubin_with_line_info->size(), reference_cubin->size()); EXPECT_THAT( CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {"--flag-does-not-exist"}), tsl::testing::StatusIs(absl::StatusCode::kInternal)); } TEST_F(PtxCompilerTest, ReturnsReasonableVersion) { constexpr stream_executor::SemanticVersion kMinSupportedVersion = {12, 0, 0}; EXPECT_THAT(stream_executor::GetLibNvPtxCompilerVersion(), tsl::testing::IsOkAndHolds(testing::Ge(kMinSupportedVersion))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/ptx_compiler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/ptx_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
82253c7c-0a81-4089-ae97-3fa38916f40c
cpp
tensorflow/tensorflow
nvjitlink
third_party/xla/xla/stream_executor/cuda/nvjitlink.h
third_party/xla/xla/stream_executor/cuda/nvjitlink_test.cc
#ifndef XLA_STREAM_EXECUTOR_CUDA_NVJITLINK_H_ #define XLA_STREAM_EXECUTOR_CUDA_NVJITLINK_H_ #include <cstdint> #include <tuple> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" namespace stream_executor { using NvJitLinkVersion = std::tuple<unsigned, unsigned>; absl::StatusOr<NvJitLinkVersion> GetNvJitLinkVersion(); struct NvJitLinkInput { enum class Type { kPtx, kCubin }; Type type; absl::Span<const uint8_t> bytes; }; absl::StatusOr<std::vector<uint8_t>> CompileAndLinkUsingLibNvJitLink( int cc_major, int cc_minor, absl::Span<const NvJitLinkInput> inputs, GpuAsmOpts options, bool cancel_if_reg_spill); } #endif
#include "xla/stream_executor/cuda/nvjitlink.h" #include <sys/types.h> #include <cstdint> #include <cstring> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_replace.h" #include "absl/types/span.h" #include "xla/stream_executor/cuda/nvjitlink_support.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace { constexpr const char kDependeePtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .func (.param .b32 func_retval0) _Z5magicv() { .reg .b32 %r<2>; mov.u32 %r1, 42; st.param.b32 [func_retval0+0], %r1; ret; })"; constexpr const char kDependentPtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .extern .func (.param .b32 func_retval0) _Z5magicv () ; .visible .entry _Z6kernelPi( .param .u64 _Z6kernelPi_param_0 ) { .reg .b32 %r<2>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; { .reg .b32 temp_param_reg; .param .b32 retval0; call.uni (retval0), _Z5magicv, ( ); ld.param.b32 %r1, [retval0+0]; } st.global.u32 [%rd2], %r1; ret; })"; constexpr const char kStandalonePtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .entry _Z6kernelPi ( .param .u64 _Z6kernelPi_param_0 ) { .reg .b32 %r<16>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; mov.u32 %r1, 42; st.global.u32 [%rd2], %r15; ret; })"; constexpr stream_executor::CudaComputeCapability kDefaultComputeCapability{5, 2}; auto CompileAndLinkHelper(stream_executor::CudaComputeCapability cc, absl::Span<const char* const> ptx_inputs, bool disable_gpuasm_optimizations = false, bool cancel_if_reg_spill = false) { std::vector<stream_executor::NvJitLinkInput> inputs; inputs.reserve(ptx_inputs.size()); for (const char* ptx_input : ptx_inputs) { inputs.emplace_back(stream_executor::NvJitLinkInput{ stream_executor::NvJitLinkInput::Type::kPtx, absl::Span<const uint8_t>{reinterpret_cast<const uint8_t*>(ptx_input), std::strlen(ptx_input) + 1}}); } stream_executor::GpuAsmOpts options{}; options.disable_gpuasm_optimizations = disable_gpuasm_optimizations; return stream_executor::CompileAndLinkUsingLibNvJitLink( cc.major, cc.minor, inputs, options, cancel_if_reg_spill); } class NvJitLinkTest : public ::testing::Test { void SetUp() override { if (!stream_executor::IsLibNvJitLinkSupported()) { GTEST_SKIP(); } } }; TEST_F(NvJitLinkTest, GetVersion) { EXPECT_THAT(stream_executor::GetNvJitLinkVersion(), tsl::testing::IsOkAndHolds( testing::Ge(stream_executor::NvJitLinkVersion{12, 0}))); } TEST_F(NvJitLinkTest, IdentifiesUnsupportedArchitecture) { EXPECT_THAT( CompileAndLinkHelper(stream_executor::CudaComputeCapability{100, 0}, {kStandalonePtx}), tsl::testing::StatusIs(absl::StatusCode::kUnimplemented)); } TEST_F(NvJitLinkTest, LinkingTwoCompilationUnitsSucceeds) { EXPECT_THAT(CompileAndLinkHelper(kDefaultComputeCapability, {kDependentPtx, kDependeePtx}), tsl::testing::IsOk()); } TEST_F(NvJitLinkTest, LinkingFailsWhenDependeeIsMissing) { EXPECT_THAT(CompileAndLinkHelper(kDefaultComputeCapability, {kDependentPtx}), tsl::testing::StatusIs(absl::StatusCode::kUnknown)); } TEST_F(NvJitLinkTest, CanAlsoJustCompileSingleCompilationUnit) { EXPECT_THAT(CompileAndLinkHelper(kDefaultComputeCapability, {kStandalonePtx}), tsl::testing::IsOk()); } TEST_F(NvJitLinkTest, CancelsOnRegSpill) { std::string dependent_ptx = absl::StrReplaceAll( kDependentPtx, {{" EXPECT_THAT(CompileAndLinkHelper(kDefaultComputeCapability, {dependent_ptx.c_str(), kDependeePtx}, true, true), tsl::testing::StatusIs(absl::StatusCode::kCancelled)); EXPECT_THAT(CompileAndLinkHelper(kDefaultComputeCapability, {dependent_ptx.c_str(), kDependeePtx}, true, false), tsl::testing::IsOk()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/nvjitlink.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/nvjitlink_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
167d38bf-d218-48de-bf28-3f9bb553562d
cpp
tensorflow/tensorflow
stringpiece
tensorflow/core/lib/core/stringpiece.h
third_party/xla/third_party/tsl/tsl/platform/stringpiece_test.cc
#ifndef TENSORFLOW_CORE_LIB_CORE_STRINGPIECE_H_ #define TENSORFLOW_CORE_LIB_CORE_STRINGPIECE_H_ #include "tensorflow/core/platform/stringpiece.h" #endif
#include "tsl/platform/stringpiece.h" #include <unordered_map> #include "tsl/platform/test.h" namespace tsl { TEST(StringPiece, Ctor) { { const char* hello = "hello"; absl::string_view s20(hello); EXPECT_TRUE(s20.data() == hello); EXPECT_EQ(5, s20.size()); absl::string_view s21(hello, 4); EXPECT_TRUE(s21.data() == hello); EXPECT_EQ(4, s21.size()); absl::string_view s22(hello, 6); EXPECT_TRUE(s22.data() == hello); EXPECT_EQ(6, s22.size()); } { string hola = "hola"; absl::string_view s30(hola); EXPECT_TRUE(s30.data() == hola.data()); EXPECT_EQ(4, s30.size()); hola.push_back('\0'); hola.append("h2"); hola.push_back('\0'); absl::string_view s31(hola); EXPECT_TRUE(s31.data() == hola.data()); EXPECT_EQ(8, s31.size()); } } TEST(StringPiece, ConversionToString) { EXPECT_EQ("", string(absl::string_view(""))); EXPECT_EQ("foo", string(absl::string_view("foo"))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/stringpiece.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/stringpiece_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c004a04a-45b9-41d5-9ca1-80bf5198bb3d
cpp
tensorflow/tensorflow
intrusive_ptr
tensorflow/core/platform/intrusive_ptr.h
third_party/xla/third_party/tsl/tsl/platform/intrusive_ptr_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_INTRUSIVE_PTR_H_ #define TENSORFLOW_CORE_PLATFORM_INTRUSIVE_PTR_H_ #include <algorithm> #include "tsl/platform/intrusive_ptr.h" namespace tensorflow { namespace core { template <class T> using IntrusivePtr = tsl::core::IntrusivePtr<T>; } } #endif
#include "tsl/platform/intrusive_ptr.h" #include "tsl/platform/refcount.h" #include "tsl/platform/test.h" namespace tsl { namespace core { namespace { TEST(IntrusivePtr, ConstructorAddRefFalse) { auto ptr = IntrusivePtr<RefCounted>(new RefCounted(), false); ASSERT_TRUE(ptr->RefCountIsOne()); } TEST(IntrusivePtr, ConstructorAddRefTrue) { auto raw = new RefCounted(); auto ptr = IntrusivePtr<RefCounted>(raw, true); ASSERT_FALSE(raw->RefCountIsOne()); raw->Unref(); ASSERT_TRUE(raw->RefCountIsOne()); } TEST(IntrusivePtr, CopyConstructor) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto ptr2 = IntrusivePtr<RefCounted>(ptr1); ASSERT_FALSE(ptr2->RefCountIsOne()); } TEST(IntrusivePtr, CopyAssignment) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto raw = new RefCounted(); auto ptr2 = IntrusivePtr<RefCounted>(raw, true); ptr2 = ptr1; ASSERT_EQ(ptr1.get(), ptr2.get()); ASSERT_FALSE(ptr2->RefCountIsOne()); ASSERT_TRUE(raw->RefCountIsOne()); raw->Unref(); } TEST(IntrusivePtr, CopyAssignmentIntoEmpty) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto ptr2 = IntrusivePtr<RefCounted>(); ptr2 = ptr1; ASSERT_FALSE(ptr2->RefCountIsOne()); } TEST(IntrusivePtr, MoveConstructor) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto ptr2 = IntrusivePtr<RefCounted>(std::move(ptr1)); ASSERT_TRUE(ptr2->RefCountIsOne()); ASSERT_EQ(ptr1.get(), nullptr); } TEST(IntrusivePtr, MoveAssignment) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto ptr2 = IntrusivePtr<RefCounted>(new RefCounted(), false); ptr2 = std::move(ptr1); ASSERT_TRUE(ptr2->RefCountIsOne()); ASSERT_EQ(ptr1.get(), nullptr); } TEST(IntrusivePtr, MoveAssignmentIntoEmpty) { auto ptr1 = IntrusivePtr<RefCounted>(new RefCounted(), false); auto ptr2 = IntrusivePtr<RefCounted>(); ptr2 = std::move(ptr1); ASSERT_TRUE(ptr2->RefCountIsOne()); ASSERT_EQ(ptr1.get(), nullptr); } TEST(IntrusivePtr, MoveAssignmentAlias) { auto ptr = IntrusivePtr<RefCounted>(new RefCounted(), false); auto& ptr_alias = ptr; ptr = std::move(ptr_alias); ASSERT_TRUE(ptr->RefCountIsOne()); } TEST(IntrusivePtr, Reset) { auto ptr = IntrusivePtr<RefCounted>(new RefCounted(), false); ptr.reset(new RefCounted(), false); ASSERT_TRUE(ptr->RefCountIsOne()); } TEST(IntrusivePtr, ResetIntoEmpty) { auto ptr = IntrusivePtr<RefCounted>(); ptr.reset(new RefCounted(), false); ASSERT_TRUE(ptr->RefCountIsOne()); } TEST(IntrusivePtr, ResetAlias) { auto ptr = IntrusivePtr<RefCounted>(new RefCounted(), false); ASSERT_TRUE(ptr->RefCountIsOne()); ptr.reset(ptr.get(), false); ASSERT_TRUE(ptr->RefCountIsOne()); } TEST(IntrusivePtr, ResetRefBeforeUnref) { class Foo : public RefCounted { public: explicit Foo(char label, Foo* ptr = nullptr) : label_(label), ptr_(ptr, false) {} char label_; IntrusivePtr<Foo> ptr_; }; IntrusivePtr<Foo> x(new Foo{'a', new Foo{'b', new Foo{'c'}}}, false); x->ptr_ = x->ptr_->ptr_; } TEST(IntrusivePtr, ResetStealPtrBeforeUnref) { class Foo : public RefCounted { public: explicit Foo(char label, Foo* ptr = nullptr) : label_(label), ptr_(ptr, false) {} char label_; IntrusivePtr<Foo> ptr_; }; IntrusivePtr<Foo> x(new Foo{'a', new Foo{'b', new Foo{'c'}}}, false); x->ptr_ = std::move(x->ptr_->ptr_); } TEST(IntrusivePtr, Detach) { auto ptr = IntrusivePtr<RefCounted>(new RefCounted(), false); ASSERT_TRUE(ptr->RefCountIsOne()); auto raw = ptr.detach(); ASSERT_TRUE(raw->RefCountIsOne()); raw->Unref(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/intrusive_ptr.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/intrusive_ptr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
35fb4466-a507-4ae8-a10f-462ec10def06
cpp
tensorflow/tensorflow
notification
tensorflow/core/lib/core/notification.h
tensorflow/core/lib/core/notification_test.cc
#ifndef TENSORFLOW_CORE_LIB_CORE_NOTIFICATION_H_ #define TENSORFLOW_CORE_LIB_CORE_NOTIFICATION_H_ #include "tensorflow/core/platform/notification.h" #endif
#include "tensorflow/core/platform/test.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { TEST(NotificationTest, TestSingleNotification) { thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test", 1); int counter = 0; Notification start; Notification proceed; thread_pool->Schedule([&start, &proceed, &counter] { start.Notify(); proceed.WaitForNotification(); ++counter; }); start.WaitForNotification(); EXPECT_EQ(0, counter); proceed.Notify(); delete thread_pool; EXPECT_EQ(1, counter); } TEST(NotificationTest, TestMultipleThreadsWaitingOnNotification) { const int num_closures = 4; thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test", num_closures); mutex lock; int counter = 0; Notification n; for (int i = 0; i < num_closures; ++i) { thread_pool->Schedule([&n, &lock, &counter] { n.WaitForNotification(); mutex_lock l(lock); ++counter; }); } Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); EXPECT_EQ(0, counter); n.Notify(); delete thread_pool; EXPECT_EQ(4, counter); } TEST(NotificationTest, TestWaitWithTimeoutOnNotifiedNotification) { Notification n; n.Notify(); EXPECT_TRUE(WaitForNotificationWithTimeout(&n, 1000 * 1000)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/notification.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/notification_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8f2bbdb6-1130-4e57-b10d-d60bc7696f0b
cpp
tensorflow/tensorflow
tstring
tensorflow/core/platform/tstring.h
third_party/xla/third_party/tsl/tsl/platform/tstring_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_TSTRING_H_ #define TENSORFLOW_CORE_PLATFORM_TSTRING_H_ #include "tensorflow/core/platform/cord.h" #include "tensorflow/core/platform/ctstring.h" #include "tensorflow/core/platform/stringpiece.h" #include "tsl/platform/tstring.h" namespace tensorflow { using tstring = tsl::tstring; } #endif
#include "tsl/platform/tstring.h" #include <memory> #include <string> #include "tsl/platform/cord.h" #include "tsl/platform/platform.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/test.h" using ::tsl::tstring; static const char kLongString[] = "abcdefghij" "klmnopqrst" "uvwxyz0123" "456789ABCD" "EFGHIKLMNO"; const size_t kLongStringLen = sizeof(kLongString) / sizeof(char) - sizeof(char); TEST(TF_TStringTest, Construction) { tstring s10; tstring s11("a\0a", 3); tstring s12(kLongString); tstring s13(3, 'b'); tstring s14(absl::string_view("hi")); tstring s15(std::string("bye")); EXPECT_EQ("", s10); EXPECT_TRUE(s10.empty()); EXPECT_EQ(tstring::Type::SMALL, s10.type()); EXPECT_EQ(0, s10.size()); EXPECT_EQ(0, s10.length()); EXPECT_EQ(TF_TString_SmallCapacity, s10.capacity()); EXPECT_EQ(std::string("a\0a", 3), s11); EXPECT_FALSE(s11.empty()); EXPECT_EQ(3, s11.size()); EXPECT_EQ(3, s11.length()); EXPECT_EQ(kLongString, s12); EXPECT_EQ(kLongStringLen, s12.size()); EXPECT_EQ(tstring::Type::LARGE, s12.type()); EXPECT_LT(TF_TString_SmallCapacity, s12.capacity()); EXPECT_EQ("bbb", s13); EXPECT_EQ("hi", s14); EXPECT_EQ(tstring::Type::SMALL, s14.type()); EXPECT_EQ("bye", s15); } TEST(TF_TStringTest, CopyMove) { tstring s20(kLongString); tstring s21(s20); tstring s22; EXPECT_EQ(s20, s21); s22 = std::move(s21); EXPECT_EQ(s20, s22); EXPECT_EQ("", s21); EXPECT_EQ(tstring::Type::SMALL, s21.type()); } TEST(TF_TStringTest, Assignment) { tstring s30("123456789012345678901234567890"); tstring s31; tstring s32; s31 = s30; EXPECT_EQ(s30, s31); EXPECT_EQ(tstring::Type::LARGE, s31.type()); EXPECT_EQ(s30.size(), s31.size()); s32 = std::move(s30); EXPECT_EQ(s31, s32); EXPECT_EQ("", s30); EXPECT_EQ(tstring::Type::SMALL, s30.type()); EXPECT_EQ(tstring::Type::LARGE, s32.type()); s32 = tstring::view(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); EXPECT_EQ(0, s32.capacity()); tstring s33(std::move(s32)); EXPECT_EQ(kLongString, s33); EXPECT_EQ(tstring::Type::VIEW, s33.type()); EXPECT_EQ(kLongStringLen, s33.size()); s32 = std::string(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32 = "hello"; EXPECT_EQ("hello", s32); EXPECT_EQ(tstring::Type::SMALL, s32.type()); EXPECT_EQ(5, s32.size()); s33 = 'a'; EXPECT_EQ("a", s33); EXPECT_EQ(tstring::Type::SMALL, s33.type()); EXPECT_EQ(1, s33.size()); s32 = absl::string_view(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32.resize(TF_TString_SmallCapacity * 2); EXPECT_EQ(absl::string_view(kLongString, TF_TString_SmallCapacity * 2), s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(TF_TString_SmallCapacity * 2, s32.size()); s32 = tstring::view(kLongString, kLongStringLen); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32.assign("hello1"); EXPECT_EQ("hello1", s32); s32.assign("hello2", 5); EXPECT_EQ("hello", s32); s30.assign_as_view(kLongString); EXPECT_EQ(tstring::Type::VIEW, s30.type()); s31.assign_as_view(s30); EXPECT_EQ(tstring::Type::VIEW, s31.type()); EXPECT_EQ(kLongString, s30.c_str()); EXPECT_EQ(kLongString, s31.c_str()); std::string tmp(kLongString); s32.assign_as_view(tmp); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_STREQ(kLongString, s32.c_str()); s33.assign_as_view(kLongString, 2); EXPECT_EQ(2, s33.size()); s32.assign_as_view(absl::string_view(kLongString)); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongString, s32.c_str()); #ifdef PLATFORM_GOOGLE s33 = absl::Cord(kLongString); EXPECT_EQ(kLongString, s33); EXPECT_EQ(tstring::Type::LARGE, s33.type()); EXPECT_EQ(kLongStringLen, s33.size()); tstring s34((absl::Cord(kLongString))); EXPECT_EQ(kLongString, s34); EXPECT_EQ(tstring::Type::LARGE, s34.type()); EXPECT_EQ(kLongStringLen, s34.size()); #endif } TEST(TF_TStringTest, Comparison) { tstring empty(""); tstring a("a"); tstring aa("aa"); tstring a_("a"); tstring b("b"); const char c[] = "c"; tstring nulla("\0a", 2); tstring nullb("\0b", 2); tstring nullaa("\0aa", 3); EXPECT_TRUE(a < b); EXPECT_TRUE(a != b); EXPECT_FALSE(a > b); EXPECT_FALSE(a == b); EXPECT_TRUE(a < aa); EXPECT_TRUE(a != aa); EXPECT_FALSE(a > aa); EXPECT_FALSE(a == aa); EXPECT_TRUE(b > a); EXPECT_TRUE(b != a); EXPECT_FALSE(b < a); EXPECT_FALSE(b == a); EXPECT_FALSE(a == b); EXPECT_FALSE(b == c); EXPECT_TRUE(b != c); EXPECT_TRUE(empty < a); EXPECT_TRUE(empty != a); EXPECT_FALSE(empty > a); EXPECT_FALSE(empty == a); EXPECT_TRUE(a > empty); EXPECT_TRUE(a != empty); EXPECT_FALSE(a < empty); EXPECT_FALSE(a == empty); EXPECT_FALSE(a < a_); EXPECT_FALSE(a != a_); EXPECT_FALSE(a > a_); EXPECT_TRUE(a == a_); EXPECT_TRUE(nulla < nullaa); EXPECT_TRUE(nulla != nullaa); EXPECT_FALSE(nulla > nullaa); EXPECT_FALSE(nulla == nullaa); EXPECT_TRUE(nulla < nullb); EXPECT_TRUE(nullaa > nulla); EXPECT_TRUE(nullaa != nulla); EXPECT_FALSE(nullaa < nulla); EXPECT_FALSE(nullaa == nulla); } TEST(TF_TStringTest, Conversion) { tstring s50(kLongString); std::string s51(s50); absl::string_view s52(s50); EXPECT_EQ(kLongString, s51); EXPECT_EQ(kLongStringLen, s51.size()); EXPECT_EQ(kLongString, s52); EXPECT_EQ(kLongStringLen, s52.size()); #ifdef PLATFORM_GOOGLE absl::AlphaNum s53(s50); EXPECT_STREQ(kLongString, s53.data()); EXPECT_EQ(kLongStringLen, s53.size()); #endif } TEST(TF_TStringTest, Allocation) { tstring s60; s60.resize(2); EXPECT_EQ(std::string("\0\0", 2), s60); EXPECT_EQ(2, s60.size()); EXPECT_EQ(2, s60.length()); s60.resize(6, 'a'); EXPECT_EQ(std::string("\0\0aaaa", 6), s60); EXPECT_EQ(6, s60.size()); EXPECT_EQ(6, s60.length()); s60.resize(3, 'b'); EXPECT_EQ(std::string("\0\0a", 3), s60); EXPECT_EQ(3, s60.size()); EXPECT_EQ(3, s60.length()); s60.clear(); EXPECT_EQ("", s60); EXPECT_TRUE(s60.empty()); EXPECT_EQ(0, s60.size()); EXPECT_EQ(0, s60.length()); s60.reserve(100); EXPECT_EQ(111, s60.capacity()); s60.reserve(100); } TEST(TF_TStringTest, ElementAccess) { tstring s70(kLongString); EXPECT_STREQ(kLongString, s70.data()); EXPECT_EQ(s70.data(), s70.c_str()); for (size_t i = 0; i < s70.size(); i++) { EXPECT_EQ(kLongString[i], s70.data()[i]); } tstring::const_iterator i = s70.begin(); const char* j = kLongString; for (; *j != '\0'; i++, j++) { EXPECT_EQ(*j, *i); } EXPECT_EQ('\0', *s70.end()); EXPECT_EQ(*i, *s70.end()); EXPECT_EQ(*(i - 1), s70.back()); } TEST(TF_TStringTest, Modifiers) { tstring s80("ba"); tstring s81; tstring s82(kLongString); s81.append(s80); EXPECT_EQ("ba", s81); s81.append(s80); EXPECT_EQ("baba", s81); s81.append("\0c", 2); EXPECT_EQ(std::string("baba\0c", 6), s81); s81.append("dd"); EXPECT_EQ(std::string("baba\0cdd", 8), s81); s81.append(3, 'z'); EXPECT_EQ(tstring("baba\0cddzzz", 11), s81); s81.append(0, 'z'); s81.append("dd", 0); s81.append(""); s81.append(tstring()); EXPECT_EQ(std::string("baba\0cddzzz", 11), s81); s81.erase(0, 1); EXPECT_EQ(std::string("aba\0cddzzz", 10), s81); s81.erase(4, 6); EXPECT_EQ(std::string("aba\0", 4), s81); s81.insert(1, tstring("\0moo\0", 5), 1, 4); EXPECT_EQ(std::string("amoo\0ba\0", 8), s81); s81.insert(0, 2, '\0'); s81.insert(s81.size() - 1, 1, 'q'); EXPECT_EQ(std::string("\0\0amoo\0baq\0", 11), s81); s81.erase(0, s81.size()); EXPECT_EQ(tstring(), s81); s80.swap(s82); EXPECT_EQ(kLongString, s80); EXPECT_EQ("ba", s82); s82.push_back('\0'); s82.push_back('q'); EXPECT_EQ(std::string("ba\0q", 4), s82); } TEST(TF_TStringTest, Friends) { tstring s90("b"); tstring s91("\0a\0", 3); tstring s92; EXPECT_EQ("b", s90 + s92); EXPECT_EQ("b", s92 + s90); EXPECT_EQ(std::string("\0a\0", 3), s92 + s91); EXPECT_EQ(std::string("\0a\0", 3), s91 + s92); EXPECT_EQ(std::string("b\0a\0", 4), s90 + s91); EXPECT_EQ(std::string("\0a\0b", 4), s91 + s90); std::stringstream ss; ss << s91; EXPECT_EQ(std::string("\0a\0", 3), ss.str()); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/tstring.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/tstring_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
baaeddd6-ac64-4c73-9a7a-ec433d59b970
cpp
tensorflow/tensorflow
ctstring
tensorflow/core/platform/ctstring.h
third_party/xla/third_party/tsl/tsl/platform/ctstring_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_CTSTRING_H_ #define TENSORFLOW_CORE_PLATFORM_CTSTRING_H_ #include "tsl/platform/ctstring.h" #endif
#include "tsl/platform/ctstring.h" #include <memory> #include <string> #include "tsl/platform/ctstring_internal.h" #include "tsl/platform/test.h" static const char kLongString[] = "abcdefghij" "klmnopqrst" "uvwxyz0123" "456789ABCD" "EFGHIKLMNO"; const size_t kLongStringLen = sizeof(kLongString) / sizeof(char) - sizeof(char); TEST(TF_CTStringTest, InitAssignMoveDealloc) { EXPECT_GT(::strlen(kLongString), TF_TString_SmallCapacity); { TF_TString s10, s11, s12; TF_TString_Init(&s10); TF_TString_Init(&s11); TF_TString_Init(&s12); EXPECT_EQ(0, TF_TString_GetSize(&s10)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s10)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s10)); TF_TString_Assign(&s11, &s10); EXPECT_EQ(0, TF_TString_GetSize(&s11)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s11)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s11)); TF_TString_Move(&s12, &s11); EXPECT_EQ(0, TF_TString_GetSize(&s11)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s11)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s11)); EXPECT_EQ(0, TF_TString_GetSize(&s12)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s12)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s12)); TF_TString_Dealloc(&s10); TF_TString_Dealloc(&s11); TF_TString_Dealloc(&s12); } { TF_TString s20, s21, s22; TF_TString_Init(&s20); TF_TString_Init(&s21); TF_TString_Init(&s22); TF_TString_Copy(&s20, "a", 1); EXPECT_EQ(1, TF_TString_GetSize(&s20)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s20)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s20)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s20)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s20)); TF_TString_Assign(&s21, &s20); EXPECT_EQ(1, TF_TString_GetSize(&s21)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s21)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s21)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s21)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s21)); TF_TString_Move(&s22, &s21); EXPECT_EQ(1, TF_TString_GetSize(&s22)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s22)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s22)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s22)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s22)); TF_TString_Dealloc(&s20); TF_TString_Dealloc(&s21); TF_TString_Dealloc(&s22); } { TF_TString s30, s31; TF_TString_Init(&s30); TF_TString_Init(&s31); size_t s = TF_TString_SmallCapacity - 1; EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_Copy(&s30, kLongString, s); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_GT(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_AppendN(&s30, &kLongString[s++], 1); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_AppendN(&s30, &kLongString[s++], 1); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetMutableDataPointer(&s30)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s30)); EXPECT_EQ(s, TF_TString_GetSize(&s30)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_Move(&s31, &s30); EXPECT_STREQ("", TF_TString_GetDataPointer(&s30)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_EQ(0, TF_TString_GetSize(&s30)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s31)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetMutableDataPointer(&s31)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s31)); EXPECT_EQ(s, TF_TString_GetSize(&s31)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s31)); TF_TString_Dealloc(&s30); TF_TString_Dealloc(&s31); } { const char kStr[] = "abcdef"; const char kStrLen = sizeof(kStr) / sizeof(char) - sizeof(char); TF_TString s40, s41; TF_TString_Init(&s40); TF_TString_Init(&s41); TF_TString_Copy(&s40, kLongString, kLongStringLen); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s40)); TF_TString_Assign(&s41, &s40); EXPECT_STREQ(kLongString, TF_TString_GetDataPointer(&s40)); EXPECT_STREQ(kLongString, TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s41)); TF_TString_AppendN(&s40, kLongString, kLongStringLen); TF_TString_Append(&s40, &s41); std::string longerString(kLongString); longerString += kLongString; longerString += kLongString; EXPECT_STREQ(longerString.data(), TF_TString_GetDataPointer(&s40)); EXPECT_STREQ(longerString.data(), TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(longerString.size(), TF_TString_GetSize(&s40)); TF_TString_AssignView(&s40, kStr, kStrLen); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s40)); EXPECT_EQ(kStr, TF_TString_GetDataPointer(&s40)); EXPECT_EQ(6, TF_TString_GetSize(&s40)); EXPECT_EQ(0, TF_TString_GetCapacity(&s40)); EXPECT_NE(kStr, TF_TString_GetMutableDataPointer(&s40)); EXPECT_STREQ(kStr, TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s40)); EXPECT_EQ(6, TF_TString_GetSize(&s40)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s40)); TF_TString_Dealloc(&s40); TF_TString_Dealloc(&s41); } { TF_TString s50; TF_TString_Init(&s50); TF_TString_Copy(&s50, "a", 1); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s50)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(1, TF_TString_GetSize(&s50)); TF_TString_Copy(&s50, kLongString, kLongStringLen); EXPECT_STREQ(kLongString, TF_TString_GetDataPointer(&s50)); EXPECT_STREQ(kLongString, TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s50)); size_t cap1 = TF_TString_GetCapacity(&s50); TF_TString_Copy(&s50, kLongString, TF_TString_SmallCapacity + 1); size_t cap2 = TF_TString_GetCapacity(&s50); EXPECT_STREQ(std::string(kLongString, TF_TString_SmallCapacity + 1).data(), TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s50)); EXPECT_GT(cap1, cap2); TF_TString_Copy(&s50, "c", 1); EXPECT_STREQ("c", TF_TString_GetDataPointer(&s50)); EXPECT_STREQ("c", TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(1, TF_TString_GetSize(&s50)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s50)); TF_TString_Dealloc(&s50); } } TEST(TF_CTStringTest, ResizeReserve) { { TF_TString s60; TF_TString_Init(&s60); TF_TString_Resize(&s60, 2, 'a'); EXPECT_EQ(0, ::memcmp("aa", TF_TString_GetDataPointer(&s60), 2)); TF_TString_Resize(&s60, 4, '\0'); EXPECT_EQ(0, ::memcmp("aa\0\0", TF_TString_GetDataPointer(&s60), 4)); TF_TString_Resize(&s60, 6, 'b'); EXPECT_EQ(0, ::memcmp("aa\0\0bb", TF_TString_GetDataPointer(&s60), 6)); TF_TString_Resize(&s60, 2, 'c'); EXPECT_EQ(0, ::memcmp("aa", TF_TString_GetDataPointer(&s60), 2)); TF_TString_Dealloc(&s60); } { TF_TString s70; TF_TString_Init(&s70); TF_TString_Reserve(&s70, TF_TString_SmallCapacity - 1); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Reserve(&s70, TF_TString_SmallCapacity); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Copy(&s70, "hello", 5); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Reserve(&s70, 100); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); TF_TString_AssignView(&s70, kLongString, kLongStringLen); TF_TString_Reserve(&s70, 10); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s70)); EXPECT_EQ(0, TF_TString_GetCapacity(&s70)); TF_TString_Reserve(&s70, 100); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); TF_TString_Reserve(&s70, 200); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(207, TF_TString_GetCapacity(&s70)); TF_TString_Dealloc(&s70); } { TF_TString s70; TF_TString_Init(&s70); TF_TString_ReserveAmortized(&s70, TF_TString_SmallCapacity - 1); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_ReserveAmortized(&s70, TF_TString_SmallCapacity); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Copy(&s70, "hello", 5); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_ReserveAmortized(&s70, 100); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); TF_TString_AssignView(&s70, kLongString, kLongStringLen); TF_TString_ReserveAmortized(&s70, 10); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s70)); EXPECT_EQ(0, TF_TString_GetCapacity(&s70)); TF_TString_ReserveAmortized(&s70, 100); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); TF_TString_ReserveAmortized(&s70, 200); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(223, TF_TString_GetCapacity(&s70)); TF_TString_Dealloc(&s70); } } TEST(TF_CTStringTest, OffsetType) { { uint8_t str[] = "test"; constexpr size_t str_size = sizeof(str) / sizeof(str[0]); uint8_t buf[sizeof(TF_TString) + str_size]; memcpy(buf + sizeof(TF_TString), str, str_size); TF_TString *offsets = (TF_TString *)buf; TF_TString_Init(offsets); offsets[0].u.offset.size = TF_le32toh(str_size << 2 | TF_TSTR_OFFSET); offsets[0].u.offset.offset = TF_le32toh(sizeof(TF_TString)); offsets[0].u.offset.count = TF_le32toh(1); EXPECT_EQ(str_size, TF_TString_GetSize(offsets)); EXPECT_EQ(TF_TSTR_OFFSET, TF_TString_GetType(offsets)); EXPECT_EQ(0, ::memcmp(str, TF_TString_GetDataPointer(offsets), str_size)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/ctstring.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/ctstring_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
23ee1f36-b69d-4cd2-82cb-48f9dc42b1dc
cpp
tensorflow/tensorflow
numa
tensorflow/core/platform/numa.h
third_party/xla/third_party/tsl/tsl/platform/numa_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_NUMA_H_ #define TENSORFLOW_CORE_PLATFORM_NUMA_H_ #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/numa.h" namespace tensorflow { namespace port { using tsl::port::kNUMANoAffinity; using tsl::port::NUMAEnabled; using tsl::port::NUMAFree; using tsl::port::NUMAGetMemAffinity; using tsl::port::NUMAGetThreadNodeAffinity; using tsl::port::NUMAMalloc; using tsl::port::NUMANumNodes; using tsl::port::NUMASetThreadNodeAffinity; } } #endif
#include "tsl/platform/numa.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace tsl { namespace internal { TEST(Numa, NumNodes) { if (port::NUMAEnabled()) { EXPECT_GE(port::NUMANumNodes(), 1); } } TEST(Numa, Malloc) { if (port::NUMAEnabled()) { int num_nodes = port::NUMANumNodes(); for (int request_node = 0; request_node < num_nodes; ++request_node) { void* ptr = port::NUMAMalloc(request_node, 8, 0); EXPECT_NE(ptr, nullptr); *(reinterpret_cast<int*>(ptr)) = 0; int affinity_node = port::NUMAGetMemAffinity(ptr); EXPECT_EQ(affinity_node, request_node); port::NUMAFree(ptr, 8); } } } TEST(Numa, SetNodeAffinity) { EXPECT_EQ(-1, port::NUMAGetThreadNodeAffinity()); if (port::NUMAEnabled()) { int num_nodes = port::NUMANumNodes(); for (int request_node = 0; request_node < num_nodes; ++request_node) { port::NUMASetThreadNodeAffinity(request_node); int affinity_node = port::NUMAGetThreadNodeAffinity(); EXPECT_EQ(affinity_node, request_node); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/numa.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/numa_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b76f2da2-2c1b-4341-879a-45c8de64721a
cpp
tensorflow/tensorflow
snappy
tensorflow/core/platform/snappy.h
third_party/xla/xla/tsl/lib/io/snappy/snappy_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_SNAPPY_H_ #define TENSORFLOW_CORE_PLATFORM_SNAPPY_H_ #include "tensorflow/core/platform/types.h" #include "tsl/platform/snappy.h" #if !defined(PLATFORM_WINDOWS) #include <sys/uio.h> #else namespace tensorflow { using tsl::iovec; } #endif namespace tensorflow { namespace port { using tsl::port::Snappy_Compress; using tsl::port::Snappy_CompressFromIOVec; using tsl::port::Snappy_GetUncompressedLength; using tsl::port::Snappy_Uncompress; using tsl::port::Snappy_UncompressToIOVec; } } #endif
#include <memory> #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/inputbuffer.h" #include "xla/tsl/lib/io/random_inputstream.h" #include "xla/tsl/lib/io/snappy/snappy_inputbuffer.h" #include "xla/tsl/lib/io/snappy/snappy_inputstream.h" #include "xla/tsl/lib/io/snappy/snappy_outputbuffer.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { static void CheckPrefixSuffix(absl::string_view str, const string& prefix, const string& suffix) { CHECK_GE(str.size(), prefix.size()); CHECK_GE(str.size(), suffix.size()); CHECK_EQ(str.substr(0, prefix.length()), prefix); CHECK_EQ(str.substr(str.length() - suffix.length()), suffix); } static string GetRecord() { static const string lorem_ipsum = "Lorem ipsum dolor sit amet, consectetur adipiscing elit." " Fusce vehicula tincidunt libero sit amet ultrices. Vestibulum non " "felis augue. Duis vitae augue id lectus lacinia congue et ut purus. " "Donec auctor, nisl at dapibus volutpat, diam ante lacinia dolor, vel" "dignissim lacus nisi sed purus. Duis fringilla nunc ac lacus sagittis" " efficitur. Praesent tincidunt egestas eros, eu vehicula urna ultrices" " et. Aliquam erat volutpat. Maecenas vehicula risus consequat risus" " dictum, luctus tincidunt nibh imperdiet. Aenean bibendum ac erat" " cursus scelerisque. Cras lacinia in enim dapibus iaculis. Nunc porta" " felis lectus, ac tincidunt massa pharetra quis. Fusce feugiat dolor" " vel ligula rutrum egestas. Donec vulputate quam eros, et commodo" " purus lobortis sed."; return lorem_ipsum; } static string GenTestString(int copies = 1) { string result = ""; for (int i = 0; i < copies; i++) { result += GetRecord(); } return result; } absl::Status TestMultipleWritesWriteFile(size_t compress_input_buf_size, size_t compress_output_buf_size, int num_writes, bool with_flush, int num_copies, bool corrupt_compressed_file, string& fname, string& data, string& expected_result) { Env* env = Env::Default(); fname = testing::TmpDir() + "/snappy_buffers_test"; data = GenTestString(num_copies); std::unique_ptr<WritableFile> file_writer; TF_RETURN_IF_ERROR(env->NewWritableFile(fname, &file_writer)); io::SnappyOutputBuffer out(file_writer.get(), compress_input_buf_size, compress_output_buf_size); for (int i = 0; i < num_writes; i++) { TF_RETURN_IF_ERROR(out.Write(absl::string_view(data))); if (with_flush) { TF_RETURN_IF_ERROR(out.Flush()); } strings::StrAppend(&expected_result, data); } TF_RETURN_IF_ERROR(out.Flush()); TF_RETURN_IF_ERROR(file_writer->Flush()); TF_RETURN_IF_ERROR(file_writer->Close()); if (corrupt_compressed_file) { string corrupt_fname = testing::TmpDir() + "/snappy_buffers_test_corrupt"; std::unique_ptr<WritableFile> corrupt_file_writer; TF_RETURN_IF_ERROR( env->NewWritableFile(corrupt_fname, &corrupt_file_writer)); std::unique_ptr<RandomAccessFile> file_reader; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(fname, &file_reader)); absl::string_view data; size_t file_pos = 0; size_t bytes_to_read = 256; char* scratch = new char[bytes_to_read]; char* buffer = new char[bytes_to_read]; size_t buffer_size = 0; while ((file_reader->Read(file_pos, bytes_to_read, &data, scratch)).ok()) { file_pos += data.size(); TF_CHECK_OK( corrupt_file_writer->Append(absl::string_view(buffer, buffer_size))); memcpy(buffer, data.data(), data.size()); buffer_size = data.size(); } TF_CHECK_OK(corrupt_file_writer->Append( absl::string_view(buffer, buffer_size - 1))); TF_CHECK_OK(corrupt_file_writer->Flush()); TF_CHECK_OK(corrupt_file_writer->Close()); delete[] scratch; delete[] buffer; fname = corrupt_fname; } return absl::OkStatus(); } absl::Status TestMultipleWrites(size_t compress_input_buf_size, size_t compress_output_buf_size, size_t uncompress_input_buf_size, size_t uncompress_output_buf_size, int num_writes = 1, bool with_flush = false, int num_copies = 1, bool corrupt_compressed_file = false) { Env* env = Env::Default(); string expected_result; string fname; string data; TF_RETURN_IF_ERROR(TestMultipleWritesWriteFile( compress_input_buf_size, compress_output_buf_size, num_writes, with_flush, num_copies, corrupt_compressed_file, fname, data, expected_result)); std::unique_ptr<RandomAccessFile> file_reader; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(fname, &file_reader)); io::SnappyInputBuffer in(file_reader.get(), uncompress_input_buf_size, uncompress_output_buf_size); for (int attempt = 0; attempt < 2; ++attempt) { string actual_result; for (int i = 0; i < num_writes; i++) { tstring decompressed_output; TF_RETURN_IF_ERROR(in.ReadNBytes(data.size(), &decompressed_output)); strings::StrAppend(&actual_result, decompressed_output); } if (actual_result != expected_result) { return errors::DataLoss("Actual and expected results don't match."); } TF_RETURN_IF_ERROR(in.Reset()); } return absl::OkStatus(); } absl::Status TestMultipleWritesInputStream( size_t compress_input_buf_size, size_t compress_output_buf_size, size_t uncompress_input_buf_size, size_t uncompress_output_buf_size, int num_writes = 1, bool with_flush = false, int num_copies = 1, bool corrupt_compressed_file = false) { Env* env = Env::Default(); string expected_result; string fname; string data; TF_RETURN_IF_ERROR(TestMultipleWritesWriteFile( compress_input_buf_size, compress_output_buf_size, num_writes, with_flush, num_copies, corrupt_compressed_file, fname, data, expected_result)); std::unique_ptr<RandomAccessFile> file_reader; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(fname, &file_reader)); io::RandomAccessInputStream random_input_stream(file_reader.get(), false); io::SnappyInputStream snappy_input_stream(&random_input_stream, uncompress_output_buf_size); for (int attempt = 0; attempt < 2; ++attempt) { string actual_result; for (int i = 0; i < num_writes; ++i) { tstring decompressed_output; TF_RETURN_IF_ERROR( snappy_input_stream.ReadNBytes(data.size(), &decompressed_output)); strings::StrAppend(&actual_result, decompressed_output); } if (actual_result != expected_result) { return errors::DataLoss("Actual and expected results don't match."); } TF_RETURN_IF_ERROR(snappy_input_stream.Reset()); } return absl::OkStatus(); } void TestTellWriteFile(size_t compress_input_buf_size, size_t compress_output_buf_size, size_t uncompress_input_buf_size, size_t uncompress_output_buf_size, int num_copies, string& fname, string& data) { Env* env = Env::Default(); fname = testing::TmpDir() + "/snappy_buffers_test"; data = GenTestString(num_copies); std::unique_ptr<WritableFile> file_writer; TF_CHECK_OK(env->NewWritableFile(fname, &file_writer)); io::SnappyOutputBuffer out(file_writer.get(), compress_input_buf_size, compress_output_buf_size); TF_CHECK_OK(out.Write(absl::string_view(data))); TF_CHECK_OK(out.Flush()); TF_CHECK_OK(file_writer->Flush()); TF_CHECK_OK(file_writer->Close()); } void TestTell(size_t compress_input_buf_size, size_t compress_output_buf_size, size_t uncompress_input_buf_size, size_t uncompress_output_buf_size, int num_copies = 1) { Env* env = Env::Default(); string data; string fname; TestTellWriteFile(compress_input_buf_size, compress_output_buf_size, uncompress_input_buf_size, uncompress_output_buf_size, num_copies, fname, data); tstring first_half(string(data, 0, data.size() / 2)); tstring bytes_read; std::unique_ptr<RandomAccessFile> file_reader; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file_reader)); io::SnappyInputBuffer in(file_reader.get(), uncompress_input_buf_size, uncompress_output_buf_size); TF_CHECK_OK(in.ReadNBytes(first_half.size(), &bytes_read)); EXPECT_EQ(in.Tell(), first_half.size()); EXPECT_EQ(bytes_read, first_half); tstring second_half; TF_CHECK_OK(in.ReadNBytes(data.size() - first_half.size(), &second_half)); EXPECT_EQ(in.Tell(), data.size()); bytes_read.append(second_half); EXPECT_EQ(bytes_read, data); } void TestTellInputStream(size_t compress_input_buf_size, size_t compress_output_buf_size, size_t uncompress_input_buf_size, size_t uncompress_output_buf_size, int num_copies = 1) { Env* env = Env::Default(); string data; string fname; TestTellWriteFile(compress_input_buf_size, compress_output_buf_size, uncompress_input_buf_size, uncompress_output_buf_size, num_copies, fname, data); tstring first_half(string(data, 0, data.size() / 2)); tstring bytes_read; std::unique_ptr<RandomAccessFile> file_reader; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file_reader)); io::RandomAccessInputStream random_input_stream(file_reader.get(), false); io::SnappyInputStream in(&random_input_stream, uncompress_output_buf_size); TF_CHECK_OK(in.ReadNBytes(first_half.size(), &bytes_read)); EXPECT_EQ(in.Tell(), first_half.size()); EXPECT_EQ(bytes_read, first_half); tstring second_half; TF_CHECK_OK(in.ReadNBytes(data.size() - first_half.size(), &second_half)); EXPECT_EQ(in.Tell(), data.size()); bytes_read.append(second_half); EXPECT_EQ(bytes_read, data); } static bool SnappyCompressionSupported() { string out; absl::string_view in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::Snappy_Compress(in.data(), in.size(), &out); } TEST(SnappyBuffers, MultipleWritesWithoutFlush) { if (!SnappyCompressionSupported()) { fprintf(stderr, "Snappy disabled. Skipping test\n"); return; } TF_CHECK_OK(TestMultipleWrites(10000, 10000, 10000, 10000, 2)); TF_CHECK_OK(TestMultipleWritesInputStream(10000, 10000, 10000, 10000, 2)); } TEST(SnappyBuffers, MultipleWriteCallsWithFlush) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } TF_CHECK_OK(TestMultipleWrites(10000, 10000, 10000, 10000, 2, true)); TF_CHECK_OK( TestMultipleWritesInputStream(10000, 10000, 10000, 10000, 2, true)); } TEST(SnappyBuffers, SmallUncompressInputBuffer) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } absl::Status status = TestMultipleWrites(10000, 10000, 10, 10000, 2, true); CHECK_EQ(status.code(), error::Code::RESOURCE_EXHAUSTED); CheckPrefixSuffix( status.message(), "Input buffer(size: 10 bytes) too small. Should be larger than ", " bytes."); } TEST(SnappyBuffers, SmallUncompressInputStream) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } CHECK_EQ(TestMultipleWritesInputStream(10000, 10000, 10000, 10, 2, true), errors::ResourceExhausted( "Output buffer(size: 10 bytes) too small. ", "Should be larger than ", GetRecord().size(), " bytes.")); } TEST(SnappyBuffers, CorruptBlock) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } absl::Status status = TestMultipleWrites(10000, 10000, 700, 10000, 2, true, 1, true); CHECK_EQ(status.code(), error::Code::DATA_LOSS); CheckPrefixSuffix(status.message(), "Failed to read ", " bytes from file. Possible data corruption."); } TEST(SnappyBuffers, CorruptBlockInputStream) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } absl::Status status = TestMultipleWritesInputStream(10000, 10000, 700, 10000, 2, true, 1, true); CHECK_EQ(status.code(), error::Code::DATA_LOSS); CheckPrefixSuffix(status.message(), "Failed to read ", " bytes from file. Possible data corruption."); } TEST(SnappyBuffers, CorruptBlockLargeInputBuffer) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } CHECK_EQ(TestMultipleWrites(10000, 10000, 2000, 10000, 2, true, 1, true), errors::OutOfRange("EOF reached")); } TEST(SnappyBuffers, CorruptBlockLargeInputStream) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } absl::Status status = TestMultipleWritesInputStream(10000, 10000, 2000, 10000, 2, true, 1, true); CHECK_EQ(status.code(), error::Code::DATA_LOSS); CheckPrefixSuffix(status.message(), "Failed to read ", " bytes from file. Possible data corruption."); } TEST(SnappyBuffers, Tell) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } TestTell(10000, 10000, 2000, 10000, 2); } TEST(SnappyBuffers, TellInputStream) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } TestTellInputStream(10000, 10000, 2000, 10000, 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/snappy.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/snappy/snappy_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6cef358-abd6-4c20-b354-33736b80705d
cpp
tensorflow/tensorflow
retrying_file_system
tensorflow/core/platform/retrying_file_system.h
third_party/xla/third_party/tsl/tsl/platform/retrying_file_system_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_RETRYING_FILE_SYSTEM_H_ #define TENSORFLOW_CORE_PLATFORM_RETRYING_FILE_SYSTEM_H_ #include <functional> #include <string> #include <vector> #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/retrying_utils.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/retrying_file_system.h" namespace tensorflow { using tsl::RetryingFileSystem; } #endif
#include "tsl/platform/retrying_file_system.h" #include <fstream> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { typedef std::vector<std::tuple<string, absl::Status>> ExpectedCalls; ExpectedCalls CreateRetriableErrors(const string& method, int n) { ExpectedCalls expected_calls; expected_calls.reserve(n); for (int i = 0; i < n; i++) { expected_calls.emplace_back(std::make_tuple( method, errors::Unavailable(strings::StrCat("Retriable error #", i)))); } return expected_calls; } class MockCallSequence { public: explicit MockCallSequence(const ExpectedCalls& calls) : calls_(calls) {} ~MockCallSequence() { EXPECT_TRUE(calls_.empty()) << "Not all expected calls have been made, " << "the next expected call: " << std::get<0>(calls_.front()); } absl::Status ConsumeNextCall(const string& method) { EXPECT_FALSE(calls_.empty()) << "No more calls were expected."; auto call = calls_.front(); calls_.erase(calls_.begin()); EXPECT_EQ(std::get<0>(call), method) << "Unexpected method called."; return std::get<1>(call); } private: ExpectedCalls calls_; }; class MockRandomAccessFile : public RandomAccessFile { public: explicit MockRandomAccessFile(const ExpectedCalls& calls) : calls_(calls) {} absl::Status Name(absl::string_view* result) const override { return calls_.ConsumeNextCall("Name"); } absl::Status Read(uint64 offset, size_t n, absl::string_view* result, char* scratch) const override { return calls_.ConsumeNextCall("Read"); } private: mutable MockCallSequence calls_; }; class MockWritableFile : public WritableFile { public: explicit MockWritableFile(const ExpectedCalls& calls) : calls_(calls) {} absl::Status Append(absl::string_view data) override { return calls_.ConsumeNextCall("Append"); } absl::Status Close() override { return calls_.ConsumeNextCall("Close"); } absl::Status Flush() override { return calls_.ConsumeNextCall("Flush"); } absl::Status Name(absl::string_view* result) const override { return calls_.ConsumeNextCall("Name"); } absl::Status Sync() override { return calls_.ConsumeNextCall("Sync"); } absl::Status Tell(int64_t* position) override { return calls_.ConsumeNextCall("Tell"); } private: mutable MockCallSequence calls_; }; class MockFileSystem : public FileSystem { public: explicit MockFileSystem(const ExpectedCalls& calls, bool* flushed = nullptr) : calls_(calls), flushed_(flushed) {} TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT; absl::Status NewRandomAccessFile( const string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) override { *result = std::move(random_access_file_to_return); return calls_.ConsumeNextCall("NewRandomAccessFile"); } absl::Status NewWritableFile(const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override { *result = std::move(writable_file_to_return); return calls_.ConsumeNextCall("NewWritableFile"); } absl::Status NewAppendableFile( const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) override { *result = std::move(writable_file_to_return); return calls_.ConsumeNextCall("NewAppendableFile"); } absl::Status NewReadOnlyMemoryRegionFromFile( const string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) override { return calls_.ConsumeNextCall("NewReadOnlyMemoryRegionFromFile"); } absl::Status FileExists(const string& fname, TransactionToken* token) override { return calls_.ConsumeNextCall("FileExists"); } absl::Status GetChildren(const string& dir, TransactionToken* token, std::vector<string>* result) override { return calls_.ConsumeNextCall("GetChildren"); } absl::Status GetMatchingPaths(const string& dir, TransactionToken* token, std::vector<string>* result) override { return calls_.ConsumeNextCall("GetMatchingPaths"); } absl::Status Stat(const string& fname, TransactionToken* token, FileStatistics* stat) override { return calls_.ConsumeNextCall("Stat"); } absl::Status DeleteFile(const string& fname, TransactionToken* token) override { return calls_.ConsumeNextCall("DeleteFile"); } absl::Status CreateDir(const string& dirname, TransactionToken* token) override { return calls_.ConsumeNextCall("CreateDir"); } absl::Status DeleteDir(const string& dirname, TransactionToken* token) override { return calls_.ConsumeNextCall("DeleteDir"); } absl::Status GetFileSize(const string& fname, TransactionToken* token, uint64* file_size) override { return calls_.ConsumeNextCall("GetFileSize"); } absl::Status RenameFile(const string& src, const string& target, TransactionToken* token) override { return calls_.ConsumeNextCall("RenameFile"); } absl::Status IsDirectory(const string& dirname, TransactionToken* token) override { return calls_.ConsumeNextCall("IsDirectory"); } absl::Status DeleteRecursively(const string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) override { return calls_.ConsumeNextCall("DeleteRecursively"); } void FlushCaches(TransactionToken* token) override { if (flushed_) { *flushed_ = true; } } std::unique_ptr<WritableFile> writable_file_to_return; std::unique_ptr<RandomAccessFile> random_access_file_to_return; private: MockCallSequence calls_; bool* flushed_ = nullptr; }; TEST(RetryingFileSystemTest, NewRandomAccessFile_ImmediateSuccess) { ExpectedCalls expected_file_calls( {std::make_tuple("Name", absl::OkStatus()), std::make_tuple("Read", absl::OkStatus())}); std::unique_ptr<RandomAccessFile> base_file( new MockRandomAccessFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewRandomAccessFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->random_access_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<RandomAccessFile> random_access_file; TF_EXPECT_OK( fs.NewRandomAccessFile("filename.txt", nullptr, &random_access_file)); absl::string_view result; TF_EXPECT_OK(random_access_file->Name(&result)); EXPECT_EQ(result, ""); char scratch[10]; TF_EXPECT_OK(random_access_file->Read(0, 10, &result, scratch)); } TEST(RetryingFileSystemTest, NewRandomAccessFile_SuccessWith3rdTry) { ExpectedCalls expected_file_calls( {std::make_tuple("Read", errors::Unavailable("Something is wrong")), std::make_tuple("Read", errors::Unavailable("Wrong again")), std::make_tuple("Read", absl::OkStatus())}); std::unique_ptr<RandomAccessFile> base_file( new MockRandomAccessFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewRandomAccessFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->random_access_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<RandomAccessFile> random_access_file; TF_EXPECT_OK( fs.NewRandomAccessFile("filename.txt", nullptr, &random_access_file)); absl::string_view result; char scratch[10]; TF_EXPECT_OK(random_access_file->Read(0, 10, &result, scratch)); } TEST(RetryingFileSystemTest, NewRandomAccessFile_AllRetriesFailed) { ExpectedCalls expected_file_calls = CreateRetriableErrors("Read", 11); std::unique_ptr<RandomAccessFile> base_file( new MockRandomAccessFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewRandomAccessFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->random_access_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<RandomAccessFile> random_access_file; TF_EXPECT_OK( fs.NewRandomAccessFile("filename.txt", nullptr, &random_access_file)); absl::string_view result; char scratch[10]; const auto& status = random_access_file->Read(0, 10, &result, scratch); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, NewRandomAccessFile_NoRetriesForSomeErrors) { ExpectedCalls expected_file_calls({ std::make_tuple("Read", errors::FailedPrecondition("Failed precondition")), }); std::unique_ptr<RandomAccessFile> base_file( new MockRandomAccessFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewRandomAccessFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->random_access_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<RandomAccessFile> random_access_file; TF_EXPECT_OK( fs.NewRandomAccessFile("filename.txt", nullptr, &random_access_file)); absl::string_view result; char scratch[10]; EXPECT_EQ("Failed precondition", random_access_file->Read(0, 10, &result, scratch).message()); } TEST(RetryingFileSystemTest, NewWritableFile_ImmediateSuccess) { ExpectedCalls expected_file_calls( {std::make_tuple("Name", absl::OkStatus()), std::make_tuple("Sync", absl::OkStatus()), std::make_tuple("Close", absl::OkStatus())}); std::unique_ptr<WritableFile> base_file( new MockWritableFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewWritableFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->writable_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<WritableFile> writable_file; TF_EXPECT_OK(fs.NewWritableFile("filename.txt", nullptr, &writable_file)); absl::string_view result; TF_EXPECT_OK(writable_file->Name(&result)); EXPECT_EQ(result, ""); TF_EXPECT_OK(writable_file->Sync()); } TEST(RetryingFileSystemTest, NewWritableFile_SuccessWith3rdTry) { ExpectedCalls expected_file_calls( {std::make_tuple("Sync", errors::Unavailable("Something is wrong")), std::make_tuple("Sync", errors::Unavailable("Something is wrong again")), std::make_tuple("Sync", absl::OkStatus()), std::make_tuple("Close", absl::OkStatus())}); std::unique_ptr<WritableFile> base_file( new MockWritableFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewWritableFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->writable_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<WritableFile> writable_file; TF_EXPECT_OK(fs.NewWritableFile("filename.txt", nullptr, &writable_file)); TF_EXPECT_OK(writable_file->Sync()); } TEST(RetryingFileSystemTest, NewWritableFile_SuccessWith3rdTry_ViaDestructor) { ExpectedCalls expected_file_calls( {std::make_tuple("Close", errors::Unavailable("Something is wrong")), std::make_tuple("Close", errors::Unavailable("Something is wrong again")), std::make_tuple("Close", absl::OkStatus())}); std::unique_ptr<WritableFile> base_file( new MockWritableFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewWritableFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->writable_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<WritableFile> writable_file; TF_EXPECT_OK(fs.NewWritableFile("filename.txt", nullptr, &writable_file)); writable_file.reset(); } TEST(RetryingFileSystemTest, NewAppendableFile_SuccessWith3rdTry) { ExpectedCalls expected_file_calls( {std::make_tuple("Sync", errors::Unavailable("Something is wrong")), std::make_tuple("Sync", errors::Unavailable("Something is wrong again")), std::make_tuple("Sync", absl::OkStatus()), std::make_tuple("Close", absl::OkStatus())}); std::unique_ptr<WritableFile> base_file( new MockWritableFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewAppendableFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->writable_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<WritableFile> writable_file; TF_EXPECT_OK(fs.NewAppendableFile("filename.txt", nullptr, &writable_file)); TF_EXPECT_OK(writable_file->Sync()); } TEST(RetryingFileSystemTest, NewWritableFile_AllRetriesFailed) { ExpectedCalls expected_file_calls = CreateRetriableErrors("Sync", 11); expected_file_calls.emplace_back(std::make_tuple("Close", absl::OkStatus())); std::unique_ptr<WritableFile> base_file( new MockWritableFile(expected_file_calls)); ExpectedCalls expected_fs_calls( {std::make_tuple("NewWritableFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); base_fs->writable_file_to_return = std::move(base_file); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<WritableFile> writable_file; TF_EXPECT_OK(fs.NewWritableFile("filename.txt", nullptr, &writable_file)); const auto& status = writable_file->Sync(); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, NewReadOnlyMemoryRegionFromFile_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("NewReadOnlyMemoryRegionFromFile", errors::Unavailable("Something is wrong")), std::make_tuple("NewReadOnlyMemoryRegionFromFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<ReadOnlyMemoryRegion> result; TF_EXPECT_OK( fs.NewReadOnlyMemoryRegionFromFile("filename.txt", nullptr, &result)); } TEST(RetryingFileSystemTest, NewReadOnlyMemoryRegionFromFile_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("NewReadOnlyMemoryRegionFromFile", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::unique_ptr<ReadOnlyMemoryRegion> result; const auto& status = fs.NewReadOnlyMemoryRegionFromFile("filename.txt", nullptr, &result); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, GetChildren_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("GetChildren", errors::Unavailable("Something is wrong")), std::make_tuple("GetChildren", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::vector<string> result; TF_EXPECT_OK(fs.GetChildren("gs: } TEST(RetryingFileSystemTest, GetChildren_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("GetChildren", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::vector<string> result; const auto& status = fs.GetChildren("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, GetMatchingPaths_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("GetMatchingPaths", errors::Unavailable("Something is wrong")), std::make_tuple("GetMatchingPaths", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: } TEST(RetryingFileSystemTest, GetMatchingPaths_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("GetMatchingPaths", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); std::vector<string> result; const auto& status = fs.GetMatchingPaths("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, DeleteFile_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("DeleteFile", errors::Unavailable("Something is wrong")), std::make_tuple("DeleteFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.DeleteFile("gs: } TEST(RetryingFileSystemTest, DeleteFile_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("DeleteFile", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.DeleteFile("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, CreateDir_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("CreateDir", errors::Unavailable("Something is wrong")), std::make_tuple("CreateDir", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.CreateDir("gs: } TEST(RetryingFileSystemTest, CreateDir_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("CreateDir", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.CreateDir("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, DeleteDir_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("DeleteDir", errors::Unavailable("Something is wrong")), std::make_tuple("DeleteDir", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.DeleteDir("gs: } TEST(RetryingFileSystemTest, DeleteDir_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("DeleteDir", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.DeleteDir("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, GetFileSize_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("GetFileSize", errors::Unavailable("Something is wrong")), std::make_tuple("GetFileSize", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); uint64 size; TF_EXPECT_OK(fs.GetFileSize("gs: } TEST(RetryingFileSystemTest, GetFileSize_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("GetFileSize", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); uint64 size; const auto& status = fs.GetFileSize("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, RenameFile_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("RenameFile", errors::Unavailable("Something is wrong")), std::make_tuple("RenameFile", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.RenameFile("old_name", "new_name", nullptr)); } TEST(RetryingFileSystemTest, RenameFile_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("RenameFile", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.RenameFile("old_name", "new_name", nullptr); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, Stat_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("Stat", errors::Unavailable("Something is wrong")), std::make_tuple("Stat", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); FileStatistics stat; TF_EXPECT_OK(fs.Stat("file_name", nullptr, &stat)); } TEST(RetryingFileSystemTest, Stat_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("Stat", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); FileStatistics stat; const auto& status = fs.Stat("file_name", nullptr, &stat); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, FileExists_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("FileExists", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.FileExists("file_name", nullptr); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, FileExists_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("FileExists", errors::Unavailable("Something is wrong")), std::make_tuple("FileExists", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.FileExists("gs: } TEST(RetryingFileSystemTest, IsDirectory_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("IsDirectory", errors::Unavailable("Something is wrong")), std::make_tuple("IsDirectory", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); TF_EXPECT_OK(fs.IsDirectory("gs: } TEST(RetryingFileSystemTest, IsDirectory_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("IsDirectory", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); const auto& status = fs.IsDirectory("gs: EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, DeleteRecursively_SuccessWith2ndTry) { ExpectedCalls expected_fs_calls( {std::make_tuple("DeleteRecursively", errors::Unavailable("Something is wrong")), std::make_tuple("DeleteRecursively", absl::OkStatus())}); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); int64_t undeleted_files, undeleted_dirs; TF_EXPECT_OK(fs.DeleteRecursively("gs: &undeleted_dirs)); } TEST(RetryingFileSystemTest, DeleteRecursively_AllRetriesFailed) { ExpectedCalls expected_fs_calls = CreateRetriableErrors("DeleteRecursively", 11); std::unique_ptr<MockFileSystem> base_fs( new MockFileSystem(expected_fs_calls)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); int64_t undeleted_files, undeleted_dirs; const auto& status = fs.DeleteRecursively("gs: &undeleted_files, &undeleted_dirs); EXPECT_TRUE(absl::StrContains(status.message(), "Retriable error #10")) << status; } TEST(RetryingFileSystemTest, FlushCaches) { ExpectedCalls none; bool flushed = false; std::unique_ptr<MockFileSystem> base_fs(new MockFileSystem(none, &flushed)); RetryingFileSystem<MockFileSystem> fs( std::move(base_fs), RetryConfig(0 )); fs.FlushCaches(nullptr); EXPECT_TRUE(flushed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/retrying_file_system.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/retrying_file_system_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a8dc82e0-6cfb-4171-9acc-706391937f7d
cpp
tensorflow/tensorflow
refcount
tensorflow/core/lib/core/refcount.h
third_party/xla/third_party/tsl/tsl/platform/refcount_test.cc
#ifndef TENSORFLOW_CORE_LIB_CORE_REFCOUNT_H_ #define TENSORFLOW_CORE_LIB_CORE_REFCOUNT_H_ #include "tensorflow/core/platform/refcount.h" #endif
#include "tsl/platform/refcount.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace core { namespace { class RefTest : public ::testing::Test { public: RefTest() { constructed_ = 0; destroyed_ = 0; } static int constructed_; static int destroyed_; }; int RefTest::constructed_; int RefTest::destroyed_; class MyRef : public RefCounted { public: MyRef() { RefTest::constructed_++; } ~MyRef() override { RefTest::destroyed_++; } }; TEST_F(RefTest, New) { MyRef* ref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(1, constructed_); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, RefUnref) { MyRef* ref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); ref->Ref(); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, RefCountOne) { MyRef* ref = new MyRef; ASSERT_TRUE(ref->RefCountIsOne()); ref->Unref(); } TEST_F(RefTest, RefCountNotOne) { MyRef* ref = new MyRef; ref->Ref(); ASSERT_FALSE(ref->RefCountIsOne()); ref->Unref(); ref->Unref(); } TEST_F(RefTest, ConstRefUnref) { const MyRef* cref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); cref->Ref(); ASSERT_EQ(0, destroyed_); cref->Unref(); ASSERT_EQ(0, destroyed_); cref->Unref(); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, ReturnOfUnref) { MyRef* ref = new MyRef; ref->Ref(); EXPECT_FALSE(ref->Unref()); EXPECT_TRUE(ref->Unref()); } TEST_F(RefTest, ScopedUnref) { { ScopedUnref unref(new MyRef); } EXPECT_EQ(destroyed_, 1); } TEST_F(RefTest, ScopedUnref_Nullptr) { { ScopedUnref unref(nullptr); } EXPECT_EQ(destroyed_, 0); } TEST_F(RefTest, RefCountPtr) { const RefCountPtr<MyRef> cref = RefCountPtr<MyRef>(new MyRef); ASSERT_TRUE(cref.get() != nullptr); ASSERT_EQ(cref->RefCount(), 1); { const RefCountPtr<MyRef> cref2 = cref.GetNewRef(); ASSERT_EQ(cref->RefCount(), 2); } ASSERT_EQ(cref->RefCount(), 1); } class ObjType : public WeakRefCounted { public: ObjType() : ObjType(unused_dtor_called_) {} explicit ObjType(int& dtor_called) : dtor_called_(dtor_called) {} ~ObjType() override { dtor_called_++; } int& dtor_called_; static int unused_dtor_called_; }; int ObjType::unused_dtor_called_ = 0; TEST(WeakPtr, SingleThread) { auto obj = new ObjType(); WeakPtr<ObjType> weakptr(obj); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 1); EXPECT_NE(weakptr.GetNewRef(), nullptr); obj->Unref(); EXPECT_EQ(weakptr.GetNewRef(), nullptr); } TEST(WeakPtr, MultiThreadedWeakRef) { std::atomic<int> hit_destructed{0}; auto env = Env::Default(); for (int i = 0; i < 100; i++) { auto obj = new ObjType(); WeakPtr<ObjType> weakptr(obj); bool obj_destructed = false; EXPECT_EQ(obj->WeakRefCount(), 1); auto fn = [&]() { auto ref = weakptr.GetNewRef(); if (ref != nullptr) { EXPECT_EQ(ref.get(), obj); EXPECT_EQ(ref->WeakRefCount(), 1); EXPECT_GE(ref->RefCount(), 1); } else { hit_destructed++; EXPECT_TRUE(obj_destructed); } }; auto t1 = env->StartThread(ThreadOptions{}, "thread-1", fn); auto t2 = env->StartThread(ThreadOptions{}, "thread-2", fn); env->SleepForMicroseconds(10); obj_destructed = true; obj->Unref(); delete t1; delete t2; EXPECT_EQ(weakptr.GetNewRef(), nullptr); } if (hit_destructed == 0) { LOG(WARNING) << "The destructed weakref test branch is not exercised."; } if (hit_destructed == 200) { LOG(WARNING) << "The valid weakref test branch is not exercised."; } } TEST(WeakPtr, NotifyCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 2); EXPECT_NE(weakptr1.GetNewRef(), nullptr); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); obj->Unref(); EXPECT_EQ(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(num_calls2, 1); } TEST(WeakPtr, NotifyCalledBeforeDestructor) { int dtor_called = 0; auto obj = new ObjType(dtor_called); int num_calls1 = 0; auto notify_fn1 = [&num_calls1, &dtor_called]() { num_calls1++; EXPECT_EQ(dtor_called, 0); }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 1); EXPECT_NE(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); obj->Unref(); EXPECT_EQ(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(dtor_called, 1); } TEST(WeakPtr, CopyTargetCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); WeakPtr<ObjType> weakptr3(weakptr1); weakptr2 = weakptr1; ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 3); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_NE(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); obj->Unref(); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 3); EXPECT_EQ(num_calls2, 0); } TEST(WeakPtr, MoveTargetNotCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; int num_calls3 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; auto notify_fn3 = [&num_calls3]() { num_calls3++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); WeakPtr<ObjType> weakptr3(WeakPtr<ObjType>(obj, notify_fn3)); weakptr2 = std::move(weakptr1); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 2); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_NE(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); EXPECT_EQ(num_calls3, 0); obj->Unref(); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(num_calls2, 0); EXPECT_EQ(num_calls3, 1); } TEST(WeakPtr, DestroyedNotifyNotCalled) { auto obj = new ObjType(); int num_calls = 0; auto notify_fn = [&num_calls]() { num_calls++; }; { WeakPtr<ObjType> weakptr(obj, notify_fn); } ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 0); EXPECT_EQ(num_calls, 0); obj->Unref(); EXPECT_EQ(num_calls, 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/refcount.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/refcount_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d9291186-f644-4803-84a1-9f17601d1838
cpp
tensorflow/tensorflow
threadpool_async_executor
third_party/xla/third_party/tsl/tsl/platform/threadpool_async_executor.h
third_party/xla/third_party/tsl/tsl/platform/threadpool_async_executor_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_THREADPOOL_ASYNC_EXECUTOR_H_ #define TENSORFLOW_TSL_PLATFORM_THREADPOOL_ASYNC_EXECUTOR_H_ #include <utility> #include "xla/tsl/concurrency/async_value.h" #include "tsl/platform/threadpool.h" namespace tsl::thread { class ThreadPoolAsyncExecutor : public AsyncValue::Executor { public: explicit ThreadPoolAsyncExecutor(ThreadPool* thread_pool) : thread_pool_(thread_pool) {} void Execute(Task task) final { auto* task_ptr = new Task(std::move(task)); thread_pool_->Schedule([task_ptr] { (*task_ptr)(); delete task_ptr; }); } private: ThreadPool* thread_pool_; }; } #endif
#include "tsl/platform/threadpool_async_executor.h" #include "absl/synchronization/notification.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl::thread { namespace { TEST(ThreadPoolAsyncExecutorTest, ExecuteTasks) { ThreadPool thread_pool(Env::Default(), "test", 4); ThreadPoolAsyncExecutor executor(&thread_pool); absl::Notification notification; executor.Execute([&] { notification.Notify(); }); notification.WaitForNotification(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/threadpool_async_executor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/threadpool_async_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5253ef1e-f139-4a56-b343-b128d7405c88
cpp
tensorflow/tensorflow
fingerprint
tensorflow/core/platform/fingerprint.h
third_party/xla/third_party/tsl/tsl/platform/fingerprint_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_FINGERPRINT_H_ #define TENSORFLOW_CORE_PLATFORM_FINGERPRINT_H_ #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/fingerprint.h" namespace tensorflow { using Fprint128 = tsl::Fprint128; using Fprint128Hasher = tsl::Fprint128Hasher; using tsl::Fingerprint128; using tsl::Fingerprint32; using tsl::Fingerprint64; using tsl::FingerprintCat64; } #endif
#include "tsl/platform/fingerprint.h" #include <unordered_set> #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace { TEST(Fingerprint64, IsForeverFrozen) { EXPECT_EQ(15404698994557526151ULL, Fingerprint64("Hello")); EXPECT_EQ(18308117990299812472ULL, Fingerprint64("World")); } TEST(Fingerprint128, IsForeverFrozen) { { const Fprint128 fingerprint = Fingerprint128("Hello"); EXPECT_EQ(1163506517679092766ULL, fingerprint.low64); EXPECT_EQ(10829806600034513965ULL, fingerprint.high64); } { const Fprint128 fingerprint = Fingerprint128("World"); EXPECT_EQ(14404540403896557767ULL, fingerprint.low64); EXPECT_EQ(4859093245152058524ULL, fingerprint.high64); } } TEST(Fingerprint128, Fprint128Hasher) { const std::unordered_set<Fprint128, Fprint128Hasher> map = {{1, 2}, {3, 4}}; } TEST(FingerprintCat64, IsForeverFrozen) { EXPECT_EQ(16877292868973613377ULL, FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("World"))); EXPECT_EQ(7158413233176775252ULL, FingerprintCat64(Fingerprint64("World"), Fingerprint64("Hello"))); } TEST(FingerprintCat64, Idempotence) { const uint64_t orig = FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("World")); EXPECT_EQ(orig, FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("World"))); EXPECT_NE(FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("Hi")), FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("World"))); EXPECT_EQ(orig, FingerprintCat64(Fingerprint64("Hello"), Fingerprint64("World"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/fingerprint.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/fingerprint_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dd9b6d0b-cfde-4480-9c14-d8bc39df53b2
cpp
tensorflow/tensorflow
criticality
third_party/xla/third_party/tsl/tsl/platform/default/criticality.h
third_party/xla/third_party/tsl/tsl/platform/criticality_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ namespace tsl { namespace criticality { inline Criticality GetCriticality() { return Criticality::kCritical; } } } #endif
#include "tsl/platform/criticality.h" #include "tsl/platform/test.h" namespace tsl { namespace criticality { TEST(CriticalityTest, Basic) { EXPECT_EQ(GetCriticality(), Criticality::kCritical); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/default/criticality.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/criticality_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
68be2b50-dfd0-4196-b8b4-1bdb1ae68974
cpp
tensorflow/tensorflow
integral_types
third_party/xla/third_party/tsl/tsl/platform/default/integral_types.h
third_party/xla/third_party/tsl/tsl/platform/integral_types_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_INTEGRAL_TYPES_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_INTEGRAL_TYPES_H_ #include <cstdint> namespace tsl { typedef signed char int8; typedef short int16; typedef int int32; typedef ::std::int64_t int64; typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned int uint32; typedef std::uint64_t uint64; } #endif
#include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace { TEST(IntegralTypes, Basic) { EXPECT_EQ(1, sizeof(int8)); EXPECT_EQ(2, sizeof(int16)); EXPECT_EQ(4, sizeof(int32)); EXPECT_EQ(8, sizeof(int64_t)); EXPECT_EQ(1, sizeof(uint8)); EXPECT_EQ(2, sizeof(uint16)); EXPECT_EQ(4, sizeof(uint32)); EXPECT_EQ(8, sizeof(uint64)); } TEST(IntegralTypes, MinAndMaxConstants) { EXPECT_EQ(static_cast<uint8>(kint8min), static_cast<uint8>(kint8max) + 1); EXPECT_EQ(static_cast<uint16>(kint16min), static_cast<uint16>(kint16max) + 1); EXPECT_EQ(static_cast<uint32>(kint32min), static_cast<uint32>(kint32max) + 1); EXPECT_EQ(static_cast<uint64>(kint64min), static_cast<uint64>(kint64max) + 1); EXPECT_EQ(0, static_cast<uint8>(kuint8max + 1)); EXPECT_EQ(0, static_cast<uint16>(kuint16max + 1)); EXPECT_EQ(0, static_cast<uint32>(kuint32max + 1)); EXPECT_EQ(0, static_cast<uint64>(kuint64max + 1)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/default/integral_types.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/integral_types_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
67b5dcbe-b63d-4c16-852c-8b8844a3576f
cpp
tensorflow/tensorflow
expiring_lru_cache
tensorflow/c/experimental/filesystem/plugins/gcs/expiring_lru_cache.h
tensorflow/c/experimental/filesystem/plugins/gcs/expiring_lru_cache_test.cc
#ifndef TENSORFLOW_C_EXPERIMENTAL_FILESYSTEM_PLUGINS_GCS_EXPIRING_LRU_CACHE_H_ #define TENSORFLOW_C_EXPERIMENTAL_FILESYSTEM_PLUGINS_GCS_EXPIRING_LRU_CACHE_H_ #include <functional> #include <list> #include <map> #include <memory> #include <string> #include "absl/base/thread_annotations.h" #include "absl/synchronization/mutex.h" #include "tensorflow/c/env.h" #include "tensorflow/c/tf_status.h" namespace tf_gcs_filesystem { template <typename T> class ExpiringLRUCache { public: ExpiringLRUCache(uint64_t max_age, size_t max_entries, std::function<uint64_t()> timer_seconds = TF_NowSeconds) : max_age_(max_age), max_entries_(max_entries), timer_seconds_(timer_seconds) {} void Insert(const std::string& key, const T& value) { if (max_age_ == 0) { return; } absl::MutexLock lock(&mu_); InsertLocked(key, value); } bool Delete(const std::string& key) { absl::MutexLock lock(&mu_); return DeleteLocked(key); } bool Lookup(const std::string& key, T* value) { if (max_age_ == 0) { return false; } absl::MutexLock lock(&mu_); return LookupLocked(key, value); } typedef std::function<void(const std::string&, T*, TF_Status*)> ComputeFunc; void LookupOrCompute(const std::string& key, T* value, const ComputeFunc& compute_func, TF_Status* status) { if (max_age_ == 0) { return compute_func(key, value, status); } absl::MutexLock lock(&mu_); if (LookupLocked(key, value)) { return TF_SetStatus(status, TF_OK, ""); } compute_func(key, value, status); if (TF_GetCode(status) == TF_OK) { InsertLocked(key, *value); } } void Clear() { absl::MutexLock lock(&mu_); cache_.clear(); lru_list_.clear(); } uint64_t max_age() const { return max_age_; } size_t max_entries() const { return max_entries_; } private: struct Entry { uint64_t timestamp; T value; std::list<std::string>::iterator lru_iterator; }; bool LookupLocked(const std::string& key, T* value) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto it = cache_.find(key); if (it == cache_.end()) { return false; } lru_list_.erase(it->second.lru_iterator); if (timer_seconds_() - it->second.timestamp > max_age_) { cache_.erase(it); return false; } *value = it->second.value; lru_list_.push_front(it->first); it->second.lru_iterator = lru_list_.begin(); return true; } void InsertLocked(const std::string& key, const T& value) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { lru_list_.push_front(key); Entry entry{timer_seconds_(), value, lru_list_.begin()}; auto insert = cache_.insert(std::make_pair(key, entry)); if (!insert.second) { lru_list_.erase(insert.first->second.lru_iterator); insert.first->second = entry; } else if (max_entries_ > 0 && cache_.size() > max_entries_) { cache_.erase(lru_list_.back()); lru_list_.pop_back(); } } bool DeleteLocked(const std::string& key) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto it = cache_.find(key); if (it == cache_.end()) { return false; } lru_list_.erase(it->second.lru_iterator); cache_.erase(it); return true; } const uint64_t max_age_; const size_t max_entries_; std::function<uint64_t()> timer_seconds_; absl::Mutex mu_; std::map<std::string, Entry> cache_ ABSL_GUARDED_BY(mu_); std::list<std::string> lru_list_ ABSL_GUARDED_BY(mu_); }; } #endif
#include "tensorflow/c/experimental/filesystem/plugins/gcs/expiring_lru_cache.h" #include <memory> #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_internal.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/cloud/now_seconds_env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(ExpiringLRUCacheTest, MaxAge) { const string key = "a"; std::unique_ptr<NowSecondsEnv> env(new NowSecondsEnv); tf_gcs_filesystem::ExpiringLRUCache<int> cache( 1, 0, [&env]() { return env->NowSeconds(); }); env->SetNowSeconds(1); cache.Insert(key, 41); env->SetNowSeconds(2); cache.Insert(key, 42); env->SetNowSeconds(3); int value = 0; EXPECT_TRUE(cache.Lookup(key, &value)); EXPECT_EQ(value, 42); env->SetNowSeconds(4); EXPECT_FALSE(cache.Lookup(key, &value)); cache.Insert(key, 43); EXPECT_TRUE(cache.Lookup(key, &value)); EXPECT_EQ(value, 43); env->SetNowSeconds(5); value = 0; EXPECT_TRUE(cache.Lookup(key, &value)); EXPECT_EQ(value, 43); env->SetNowSeconds(6); EXPECT_FALSE(cache.Lookup(key, &value)); } TEST(ExpiringLRUCacheTest, MaxEntries) { tf_gcs_filesystem::ExpiringLRUCache<int> cache1(0, 4); cache1.Insert("a", 1); int value = 0; EXPECT_FALSE(cache1.Lookup("a", &value)); tf_gcs_filesystem::ExpiringLRUCache<int> cache2(1, 4); cache2.Insert("a", 1); cache2.Insert("b", 2); cache2.Insert("c", 3); cache2.Insert("d", 4); EXPECT_TRUE(cache2.Lookup("a", &value)); EXPECT_EQ(value, 1); EXPECT_TRUE(cache2.Lookup("b", &value)); EXPECT_EQ(value, 2); EXPECT_TRUE(cache2.Lookup("c", &value)); EXPECT_EQ(value, 3); EXPECT_TRUE(cache2.Lookup("d", &value)); EXPECT_EQ(value, 4); cache2.Insert("e", 5); EXPECT_FALSE(cache2.Lookup("a", &value)); EXPECT_TRUE(cache2.Lookup("b", &value)); EXPECT_EQ(value, 2); EXPECT_TRUE(cache2.Lookup("c", &value)); EXPECT_EQ(value, 3); EXPECT_TRUE(cache2.Lookup("d", &value)); EXPECT_EQ(value, 4); EXPECT_TRUE(cache2.Lookup("e", &value)); EXPECT_EQ(value, 5); } TEST(ExpiringLRUCacheTest, LookupOrCompute) { uint64 num_compute_calls = 0; tf_gcs_filesystem::ExpiringLRUCache<int>::ComputeFunc compute_func = [&num_compute_calls](const string& key, int* value, TF_Status* status) { *value = num_compute_calls; num_compute_calls++; return TF_SetStatus(status, TF_OK, ""); }; tf_gcs_filesystem::ExpiringLRUCache<int> cache1(0, 4); int value = -1; TF_Status status; cache1.LookupOrCompute("a", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 0); EXPECT_EQ(num_compute_calls, 1); cache1.LookupOrCompute("a", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 1); EXPECT_EQ(num_compute_calls, 2); tf_gcs_filesystem::ExpiringLRUCache<int> cache2(2, 4); num_compute_calls = 0; value = -1; cache2.LookupOrCompute("a", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 0); EXPECT_EQ(num_compute_calls, 1); cache2.LookupOrCompute("a", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 0); EXPECT_EQ(num_compute_calls, 1); cache2.LookupOrCompute("b", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 1); EXPECT_EQ(num_compute_calls, 2); cache2.LookupOrCompute("c", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 2); EXPECT_EQ(num_compute_calls, 3); cache2.LookupOrCompute("d", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 3); EXPECT_EQ(num_compute_calls, 4); cache2.LookupOrCompute("e", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 4); EXPECT_EQ(num_compute_calls, 5); cache2.LookupOrCompute("b", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 1); EXPECT_EQ(num_compute_calls, 5); cache2.LookupOrCompute("c", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 2); EXPECT_EQ(num_compute_calls, 5); cache2.LookupOrCompute("d", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 3); EXPECT_EQ(num_compute_calls, 5); cache2.LookupOrCompute("a", &value, compute_func, &status); TF_EXPECT_OK(status.status); EXPECT_EQ(value, 5); EXPECT_EQ(num_compute_calls, 6); } TEST(ExpiringLRUCacheTest, Clear) { tf_gcs_filesystem::ExpiringLRUCache<int> cache(1, 4); cache.Insert("a", 1); cache.Insert("b", 2); cache.Insert("c", 3); cache.Insert("d", 4); int value = 0; EXPECT_TRUE(cache.Lookup("a", &value)); EXPECT_EQ(value, 1); EXPECT_TRUE(cache.Lookup("b", &value)); EXPECT_EQ(value, 2); EXPECT_TRUE(cache.Lookup("c", &value)); EXPECT_EQ(value, 3); EXPECT_TRUE(cache.Lookup("d", &value)); EXPECT_EQ(value, 4); cache.Clear(); EXPECT_FALSE(cache.Lookup("a", &value)); EXPECT_FALSE(cache.Lookup("b", &value)); EXPECT_FALSE(cache.Lookup("c", &value)); EXPECT_FALSE(cache.Lookup("d", &value)); } TEST(ExpiringLRUCacheTest, Delete) { tf_gcs_filesystem::ExpiringLRUCache<int> cache(1, 4); cache.Insert("a", 1); int value = 0; EXPECT_TRUE(cache.Lookup("a", &value)); EXPECT_EQ(value, 1); EXPECT_TRUE(cache.Delete("a")); EXPECT_FALSE(cache.Lookup("a", &value)); EXPECT_FALSE(cache.Delete("a")); EXPECT_FALSE(cache.Lookup("a", &value)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/plugins/gcs/expiring_lru_cache.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/plugins/gcs/expiring_lru_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dc4dd8f4-6c45-415b-b3d5-1c28a442ce4a
cpp
tensorflow/tensorflow
scoped_annotation
tensorflow/core/profiler/lib/scoped_annotation.h
third_party/xla/third_party/tsl/tsl/profiler/lib/scoped_annotation_test.cc
#ifndef TENSORFLOW_CORE_PROFILER_LIB_SCOPED_ANNOTATION_H_ #define TENSORFLOW_CORE_PROFILER_LIB_SCOPED_ANNOTATION_H_ #include <stddef.h> #include <atomic> #include <string> #include <string_view> #include <utility> #include "absl/base/macros.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/types.h" #include "tsl/profiler/lib/scoped_annotation.h" #if !defined(IS_MOBILE_PLATFORM) #include "xla/tsl/profiler/backends/cpu/annotation_stack.h" #endif #ifndef ABSL_DEPRECATE_AND_INLINE #define ABSL_DEPRECATE_AND_INLINE() #endif namespace tensorflow { namespace profiler { using ScopedAnnotation ABSL_DEPRECATE_AND_INLINE() = tsl::profiler::ScopedAnnotation; } } #endif
#include "tsl/profiler/lib/scoped_annotation.h" #include <string> #include "absl/strings/str_cat.h" #include "xla/tsl/profiler/backends/cpu/annotation_stack.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace profiler { namespace { TEST(ScopedAnnotation, Simple) { { ScopedAnnotation trace("blah"); EXPECT_EQ(AnnotationStack::Get(), ""); } { AnnotationStack::Enable(true); ScopedAnnotation trace("blah"); EXPECT_EQ(AnnotationStack::Get(), "blah"); AnnotationStack::Enable(false); } { AnnotationStack::Enable(true); ScopedAnnotation outer("foo"); ScopedAnnotation inner("bar"); EXPECT_EQ(AnnotationStack::Get(), "foo::bar"); AnnotationStack::Enable(false); } { AnnotationStack::Enable(true); PushAnnotation("foo"); PushAnnotation("bar"); EXPECT_EQ(AnnotationStack::Get(), "foo::bar"); PopAnnotation(); PopAnnotation(); AnnotationStack::Enable(false); } EXPECT_EQ(AnnotationStack::Get(), ""); } std::string GenerateRandomString(int length) { return std::string(length, 'a'); } void BM_ScopedAnnotationDisabled(::testing::benchmark::State& state) { const int annotation_size = state.range(0); std::string annotation = GenerateRandomString(annotation_size); for (auto s : state) { ScopedAnnotation trace(annotation); } } BENCHMARK(BM_ScopedAnnotationDisabled)->Arg(8)->Arg(32)->Arg(128); void BM_ScopedAnnotationEnabled(::testing::benchmark::State& state) { const int annotation_size = state.range(0); std::string annotation = GenerateRandomString(annotation_size); AnnotationStack::Enable(true); for (auto s : state) { ScopedAnnotation trace(annotation); } AnnotationStack::Enable(false); } BENCHMARK(BM_ScopedAnnotationEnabled)->Arg(8)->Arg(32)->Arg(128); void BM_ScopedAnnotationEnabled_Nested(::testing::benchmark::State& state) { const int annotation_size = state.range(0); std::string annotation = GenerateRandomString(annotation_size); AnnotationStack::Enable(true); for (auto s : state) { ScopedAnnotation trace(annotation); { ScopedAnnotation trace(annotation); } } AnnotationStack::Enable(false); } BENCHMARK(BM_ScopedAnnotationEnabled_Nested)->Arg(8)->Arg(32)->Arg(128); void BM_ScopedAnnotationEnabled_Adhoc(::testing::benchmark::State& state) { AnnotationStack::Enable(true); int i = 0; for (auto s : state) { ScopedAnnotation trace(absl::StrCat(i, "-", i * i)); ++i; } AnnotationStack::Enable(false); } BENCHMARK(BM_ScopedAnnotationEnabled_Adhoc); void BM_ScopedAnnotationDisabled_Lambda(::testing::benchmark::State& state) { int i = 0; for (auto s : state) { ScopedAnnotation trace([&]() { return absl::StrCat(i, "-", i * i); }); ++i; } } BENCHMARK(BM_ScopedAnnotationDisabled_Lambda); void BM_ScopedAnnotationEnabled_Adhoc_Lambda( ::testing::benchmark::State& state) { AnnotationStack::Enable(true); int i = 0; for (auto s : state) { ScopedAnnotation trace([&]() { return absl::StrCat(i, "-", i * i); }); ++i; } AnnotationStack::Enable(false); } BENCHMARK(BM_ScopedAnnotationEnabled_Adhoc_Lambda); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/lib/scoped_annotation.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/profiler/lib/scoped_annotation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
51393e4d-12b3-4607-9e39-c7ef2d2956e3
cpp
tensorflow/tensorflow
traceme_encode
tensorflow/core/profiler/lib/traceme_encode.h
third_party/xla/third_party/tsl/tsl/profiler/lib/traceme_encode_test.cc
#ifndef TENSORFLOW_CORE_PROFILER_LIB_TRACEME_ENCODE_H_ #define TENSORFLOW_CORE_PROFILER_LIB_TRACEME_ENCODE_H_ #include <string.h> #include <initializer_list> #include <string> #include <utility> #include "absl/base/macros.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tsl/profiler/lib/traceme_encode.h" #ifndef ABSL_DEPRECATE_AND_INLINE #define ABSL_DEPRECATE_AND_INLINE() #endif namespace tensorflow { namespace profiler { using TraceMeArg ABSL_DEPRECATE_AND_INLINE() = tsl::profiler::TraceMeArg; ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeEncode( std::string name, std::initializer_list<tsl::profiler::TraceMeArg> args) { return tsl::profiler::TraceMeEncode(std::move(name), args); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeEncode( absl::string_view name, std::initializer_list<tsl::profiler::TraceMeArg> args) { return tsl::profiler::TraceMeEncode(name, args); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeEncode( const char* name, std::initializer_list<tsl::profiler::TraceMeArg> args) { return tsl::profiler::TraceMeEncode(name, args); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeEncode( std::initializer_list<tsl::profiler::TraceMeArg> args) { return tsl::profiler::TraceMeEncode(args); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeOp(absl::string_view op_name, absl::string_view op_type) { return tsl::profiler::TraceMeOp(op_name, op_type); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeOp(const char* op_name, const char* op_type) { return tsl::profiler::TraceMeOp(op_name, op_type); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeOp(std::string&& op_name, absl::string_view op_type) { return tsl::profiler::TraceMeOp(op_name, op_type); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeOpOverride(absl::string_view op_name, absl::string_view op_type) { return tsl::profiler::TraceMeOpOverride(op_name, op_type); } ABSL_DEPRECATE_AND_INLINE() inline std::string TraceMeOpOverride(const char* op_name, const char* op_type) { return tsl::profiler::TraceMeOpOverride(op_name, op_type); } } } #endif
#include "tsl/profiler/lib/traceme_encode.h" #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tsl/platform/platform.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace profiler { namespace { TEST(TraceMeEncodeTest, NoArgTest) { EXPECT_EQ(TraceMeEncode("Hello!", {}), "Hello!"); } TEST(TraceMeEncodeTest, OneArgTest) { EXPECT_EQ(TraceMeEncode("Hello", {{"context", "World"}}), "Hello#context=World#"); } TEST(TraceMeEncodeTest, TwoArgsTest) { EXPECT_EQ(TraceMeEncode("Hello", {{"context", "World"}, {"request_id", 42}}), "Hello#context=World,request_id=42#"); } TEST(TraceMeEncodeTest, ThreeArgsTest) { EXPECT_EQ(TraceMeEncode("Hello", {{"context", "World"}, {"request_id", 42}, {"addr", absl::Hex(0xdeadbeef)}}), "Hello#context=World,request_id=42,addr=deadbeef#"); } #if !defined(PLATFORM_WINDOWS) TEST(TraceMeEncodeTest, TemporaryStringTest) { EXPECT_EQ(TraceMeEncode("Hello", {{std::string("context"), absl::StrCat("World:", 2020)}}), "Hello#context=World:2020#"); } #endif #if defined(PLATFORM_GOOGLE) struct Point { template <typename Sink> friend void AbslStringify(Sink& sink, const Point& p) { absl::Format(&sink, "(%d, %d)", p.x, p.y); } int x; int y; }; TEST(TraceMeEncodeTest, AbslStringifyTest) { EXPECT_EQ(TraceMeEncode("Plot", {{"point", Point{10, 20}}}), "Plot#point=(10, 20)#"); } #endif TEST(TraceMeEncodeTest, NoNameTest) { EXPECT_EQ(TraceMeEncode({{"context", "World"}, {"request_id", 42}}), "#context=World,request_id=42#"); } } void BM_TraceMeEncode(::testing::benchmark::State& state) { for (auto s : state) { TraceMeEncode( "MyTestEvent", {{"Lorem ipsum dolor sit amet", 1}, {"consectetur adipiscing elit", 2}, {"sed do eiusmod tempor incididunt", 3.52}, {"ut labore et dolore magna aliqua", "Ut enim ad minim veniam"}, {"quis nostrud exercitation ullamco", "laboris nisi ut aliquip ex"}, {"ea commodo consequat.", 11111.1111}, {"Duis aute", 1234567890}, {"irure dolor in", " reprehenderit in voluptate"}, {"velit esse cillum dolore", "eu fugiat nulla pariatur."}, {"Excepteur sint", "occaecat cupidatat non proident, sunt in"}, {"culpa qui officia", "deserunt mollit anim id est laborum."}}); } } BENCHMARK(BM_TraceMeEncode); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/lib/traceme_encode.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/profiler/lib/traceme_encode_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8745af98-1afa-496d-808c-672e91d24dea
cpp
tensorflow/tensorflow
dtensor_operation
tensorflow/dtensor/cc/dtensor_operation.h
tensorflow/dtensor/tests/dtensor_operation_test.cc
#ifndef TENSORFLOW_DTENSOR_CC_DTENSOR_OPERATION_H_ #define TENSORFLOW_DTENSOR_CC_DTENSOR_OPERATION_H_ #include "tensorflow/c/eager/c_api.h" #include "tensorflow/dtensor/cc/tensor_layout.h" namespace tensorflow { namespace dtensor { struct DTensorOperation { const char* name; const FunctionDef* function_def; const Mesh default_mesh; const StackTracesMap& stack_traces; inline bool is_func() const { return function_def != nullptr; } inline bool is_pure() const { if (is_func()) { return false; } const OpDef* op_def = nullptr; Status status = OpRegistry::Global()->LookUpOpDef(name, &op_def); DCHECK(status.ok()); if (!status.ok()) { return false; } return !op_def->is_stateful(); } }; } } #endif
#include "tensorflow/dtensor/cc/dtensor_operation.h" #include <memory> #include <gtest/gtest.h> #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/op.h" namespace tensorflow { namespace dtensor { namespace { REGISTER_OP("OutputResource").Output("resource: resource"); REGISTER_OP("InputResource").Input("resource: resource"); REGISTER_OP("Stateful").SetIsStateful(); REGISTER_OP("Pure"); TEST(DTensorOperationTest, TestEagerIsNotPure) { DTensorOperation output{"OutputResource", nullptr, {}, {}}; DTensorOperation input{"InputResource", nullptr, {}, {}}; DTensorOperation stateful{"Stateful", nullptr, {}, {}}; DTensorOperation pure{"Pure", nullptr, {}, {}}; EXPECT_FALSE(output.is_pure()); EXPECT_FALSE(input.is_pure()); EXPECT_FALSE(stateful.is_pure()); EXPECT_TRUE(pure.is_pure()); } TEST(DTensorOperationTest, TestFunctionIsNotPure) { FunctionDef fdef; DTensorOperation op{"func", &fdef, {}, {}}; EXPECT_FALSE(op.is_pure()); } TEST(DTensorOperationTest, TestIsFunc) { FunctionDef fdef; DTensorOperation func_op{"func", &fdef, {}, {}}; DTensorOperation eager_op{"Pure", nullptr, {}, {}}; EXPECT_TRUE(func_op.is_func()); EXPECT_FALSE(eager_op.is_func()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/dtensor/cc/dtensor_operation.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/dtensor/tests/dtensor_operation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c9a4925f-1dc5-4ac0-9aa6-484ddcff8724
cpp
tensorflow/tensorflow
composable_splitter
tensorflow/tools/proto_splitter/cc/composable_splitter.h
tensorflow/tools/proto_splitter/cc/composable_splitter_test.cc
#ifndef TENSORFLOW_TOOLS_PROTO_SPLITTER_CC_COMPOSABLE_SPLITTER_H_ #define TENSORFLOW_TOOLS_PROTO_SPLITTER_CC_COMPOSABLE_SPLITTER_H_ #include <vector> #include "tensorflow/tools/proto_splitter/cc/composable_splitter_base.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace tools::proto_splitter { class ComposableSplitter : public ComposableSplitterBase { public: explicit ComposableSplitter(tsl::protobuf::Message* message) : ComposableSplitterBase(message), message_(message) {} explicit ComposableSplitter(tsl::protobuf::Message* message, ComposableSplitterBase* parent_splitter, std::vector<FieldType>* fields_in_parent) : ComposableSplitterBase(message, parent_splitter, fields_in_parent), message_(message) {} protected: tsl::protobuf::Message* message() { return message_; } private: tsl::protobuf::Message* message_; }; } } #endif
#include "tensorflow/tools/proto_splitter/cc/composable_splitter.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "riegeli/base/maker.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/records/record_reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/tools/proto_splitter/cc/test_util.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tensorflow/tools/proto_splitter/testdata/test_message.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #define IS_OSS true namespace tensorflow { namespace tools::proto_splitter { namespace { using ::tensorflow::proto_splitter::ChunkedMessage; using ::tensorflow::proto_splitter::ChunkMetadata; using ::tensorflow::proto_splitter_testdata::RepeatedRepeatedString; using ::tensorflow::proto_splitter_testdata::RepeatedString; using ::testing::HasSubstr; using ::testing::SizeIs; using tsl::testing::StatusIs; using namespace std::string_literals; class RepeatedStringSplitter : public ComposableSplitter { friend class ComposableSplitter; public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { RepeatedString* repeated_string = tsl::protobuf::DynamicCastToGenerated<RepeatedString>(message()); auto strings = repeated_string->strings(); if (strings.empty()) { TF_RETURN_IF_ERROR(SetMessageAsBaseChunk()); return absl::OkStatus(); } for (int i = 0; i < strings.size(); i++) { auto s = std::make_unique<MessageBytes>(strings[i]); std::vector<FieldType> fields = {"strings"s, i}; TF_RETURN_IF_ERROR(AddChunk(std::move(s), &fields)); } return absl::OkStatus(); } }; RepeatedString SetUpRepeatedString(std::vector<string> strings) { RepeatedString message; *message.mutable_strings() = {strings.begin(), strings.end()}; return message; } TEST(RepeatedStringSplitterTest, TestSplitChunks) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); for (int i = 0; i < chunks->size(); i++) { MessageBytes chunk = (*chunks)[i]; EXPECT_THAT(chunk, ::testing::VariantWith<std::string>(strings[i])); } EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunked_fields { field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 0 } } chunked_fields { field_tag { field: 1 } field_tag { index: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 2 } message { chunk_index: 2 } })pb")); TF_ASSERT_OK_AND_ASSIGN(auto ret2, splitter.Split()); std::vector<MessageBytes>* chunks2 = ret2.chunks; ChunkedMessage* chunked_message2 = ret2.chunked_message; EXPECT_EQ(chunks2, chunks); EXPECT_EQ(chunked_message2, chunked_message); } static void CheckChunks(riegeli::RecordReaderBase& reader, std::vector<string>& strings) { ChunkMetadata chunk_metadata; reader.Seek(reader.Size().value()); reader.SeekBack(); reader.ReadRecord(chunk_metadata); auto& chunk_info = chunk_metadata.chunks(); EXPECT_EQ(chunk_info.size(), strings.size()); for (int i = 0; i < chunk_info.size(); i++) { reader.Seek(chunk_info[i].offset()); absl::string_view chunk; reader.ReadRecord(chunk); EXPECT_EQ(strings[i], std::string(chunk)); } EXPECT_THAT(chunk_metadata.message(), EqualsProto(R"pb(chunked_fields { field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 0 } } chunked_fields { field_tag { field: 1 } field_tag { index: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 2 } message { chunk_index: 2 } })pb")); } TEST(RepeatedStringSplitterTest, TestWrite) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); std::string output_prefix = tensorflow::io::GetTempFilename(""); TF_ASSERT_OK(splitter.Write(output_prefix)); std::string expected_file = absl::StrCat(output_prefix, ".cpb"); TF_ASSERT_OK_AND_ASSIGN(auto exists, internal::FileExists(Env::Default(), expected_file)); EXPECT_TRUE(exists); riegeli::RecordReader file_reader( riegeli::Maker<riegeli::FdReader>(std::move(expected_file))); CheckChunks(file_reader, strings); } TEST(RepeatedStringSplitterTest, TestWriteToString) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); auto string_output_results = splitter.WriteToString(); TF_EXPECT_OK(string_output_results.status()); std::string string_output = std::get<0>(string_output_results.value()); bool is_chunked = std::get<1>(string_output_results.value()); EXPECT_TRUE(is_chunked); riegeli::RecordReader string_reader( riegeli::Maker<riegeli::StringReader>(string_output)); CheckChunks(string_reader, strings); } #if !IS_OSS TEST(RepeatedStringSplitterTest, TestWriteToCord) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); auto cord_output_results = splitter.WriteToCord(); TF_EXPECT_OK(cord_output_results.status()); absl::Cord cord_output = std::get<0>(cord_output_results.value()); bool is_chunked = std::get<1>(cord_output_results.value()); EXPECT_TRUE(is_chunked); riegeli::RecordReader cord_reader( riegeli::Maker<riegeli::CordReader>(&cord_output)); CheckChunks(cord_reader, strings); } #endif TEST(RepeatedStringSplitterTest, TestNoSplit) { RepeatedString message; RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); EXPECT_THAT(*chunks, SizeIs(1)); EXPECT_THAT(*std::get<tsl::protobuf::Message*>((*chunks)[0]), EqualsProto("")); EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunk_index: 0)pb")); } class RepeatedRepeatedStringSplitter : public ComposableSplitter { public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { TF_RETURN_IF_ERROR(SetMessageAsBaseChunk()); RepeatedRepeatedString* msg = tsl::protobuf::DynamicCastToGenerated<RepeatedRepeatedString>( message()); auto repeated_strings = msg->rs(); for (int i = 0; i < repeated_strings.size(); i++) { std::vector<FieldType> fields = {"rs"s, i}; auto splitter = RepeatedStringSplitter(&repeated_strings[i], this, &fields); TF_RETURN_IF_ERROR(splitter.BuildChunks()); } return absl::OkStatus(); } }; TEST(ComposableTest, RepeatedRepeatedStringTest) { std::vector<string> strings1 = {"piece-1", "piece-2", "piece-3"}; auto rs1 = SetUpRepeatedString(strings1); std::vector<string> strings2 = {"new-strings-1"}; auto rs2 = SetUpRepeatedString(strings2); std::vector<string> strings3 = {"foo-1", "foo-2"}; auto rs3 = SetUpRepeatedString(strings3); std::vector<RepeatedString> rs = {rs1, rs2, rs3}; RepeatedRepeatedString message; message.mutable_rs()->Add(rs.begin(), rs.end()); RepeatedRepeatedStringSplitter splitter = RepeatedRepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); std::vector<string> expected_chunks = {"piece-1", "piece-2", "piece-3", "new-strings-1", "foo-1", "foo-2"}; EXPECT_THAT(*chunks, SizeIs(7)); EXPECT_THAT(*std::get<tsl::protobuf::Message*>((*chunks)[0]), EqualsProto(message)); for (int i = 1; i < chunks->size(); i++) { MessageBytes chunk = (*chunks)[i]; EXPECT_THAT(chunk, ::testing::VariantWith<std::string>(expected_chunks[i - 1])); } EXPECT_THAT(chunked_message->chunked_fields()[4], EqualsProto(R"pb(field_tag { field: 2 } field_tag { index: 2 } field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 5 })pb")); } TEST(ComposableTest, ChildSplitterTest) { std::vector<string> strings1 = {"piece-1", "piece-2", "piece-3"}; auto message1 = SetUpRepeatedString(strings1); RepeatedStringSplitter splitter(&message1); std::vector<FieldType> fields = {}; std::vector<string> strings2 = {"s1", "s2"}; auto message2 = SetUpRepeatedString(strings2); RepeatedStringSplitter child(&message2, &splitter, &fields); TF_EXPECT_OK(child.BuildChunks()); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); EXPECT_THAT(*chunks, SizeIs(5)); } TEST(ComposableTest, ChildSplitterUnimplementedTest) { RepeatedString message; RepeatedStringSplitter splitter(&message); std::vector<FieldType> fields = {}; RepeatedStringSplitter child(&message, &splitter, &fields); EXPECT_THAT(child.Split(), StatusIs(absl::StatusCode::kUnimplemented, HasSubstr("`Split` function behavior"))); EXPECT_THAT(child.Write("str"), StatusIs(absl::StatusCode::kUnimplemented, HasSubstr("`Write` function behavior"))); } class NoOpSplitter : public ComposableSplitter { public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { return absl::OkStatus(); } }; TEST(NoOpSplitterTest, TestWrite) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); NoOpSplitter splitter(&message); std::string output_prefix = tensorflow::io::GetTempFilename(""); TF_ASSERT_OK(splitter.Write(output_prefix)); std::string expected_file = absl::StrCat(output_prefix, ".pb"); TF_ASSERT_OK_AND_ASSIGN(auto exists, internal::FileExists(Env::Default(), expected_file)); EXPECT_TRUE(exists); RepeatedString read_message; auto status = tensorflow::ReadBinaryProto(tensorflow::Env::Default(), expected_file, &read_message); EXPECT_THAT(read_message, EqualsProto(message)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/composable_splitter.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/composable_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ed3e975-ab7f-4ee0-99bc-cac0be8541df
cpp
tensorflow/tensorflow
eigen_backward_cuboid_convolutions
tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h
tensorflow/core/kernels/eigen_backward_cuboid_convolutions_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_ #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/kernels/eigen_cuboid_convolution.h" namespace Eigen { template <typename OutputBackward, typename Kernel> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<OutputBackward>::Layout == ColMajor, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 5>, const TensorReverseOp<const Eigen::array<bool, 5>, const Kernel>>>>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>>>>, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 5>, const TensorReverseOp<const Eigen::array<bool, 5>, const Kernel>>>>>>> CuboidConvolutionBackwardInput( const Kernel& kernel, const OutputBackward& output_backward, typename internal::traits<OutputBackward>::Index inputPlanes, typename internal::traits<OutputBackward>::Index inputRows, typename internal::traits<OutputBackward>::Index inputCols, const DenseIndex plane_stride = 1, const DenseIndex row_stride = 1, const DenseIndex col_stride = 1) { typedef typename internal::traits<OutputBackward>::Index TensorIndex; const TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex>> kern(kernel); const TensorRef< const Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<OutputBackward>::Layout == ColMajor); static const int NumDims = internal::traits<OutputBackward>::NumDimensions; const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[4]; const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[3]; const TensorIndex kernelPlanes = isColMajor ? kern.dimensions()[2] : kern.dimensions()[2]; const TensorIndex kernelRows = isColMajor ? kern.dimensions()[3] : kern.dimensions()[1]; const TensorIndex kernelCols = isColMajor ? kern.dimensions()[4] : kern.dimensions()[0]; const TensorIndex outputPlanes = isColMajor ? out.dimensions()[1] : out.dimensions()[NumDims - 2]; const TensorIndex outputRows = isColMajor ? out.dimensions()[2] : out.dimensions()[NumDims - 3]; const TensorIndex outputCols = isColMajor ? out.dimensions()[3] : out.dimensions()[NumDims - 4]; const TensorIndex kernelPlanesEff = kernelPlanes; const TensorIndex kernelRowsEff = kernelRows; const TensorIndex kernelColsEff = kernelCols; const TensorIndex forward_pad_top_z = numext::maxi<Index>( 0, ((outputPlanes - 1) * plane_stride + kernelPlanesEff - inputPlanes) / 2); const TensorIndex forward_pad_top = numext::maxi<Index>( 0, ((outputRows - 1) * row_stride + kernelRowsEff - inputRows) / 2); const TensorIndex forward_pad_left = numext::maxi<Index>( 0, ((outputCols - 1) * col_stride + kernelColsEff - inputCols) / 2); const TensorIndex padding_top_z = kernelPlanesEff - 1 - forward_pad_top_z; const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top; const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left; const TensorIndex padding_bottom_z = inputPlanes - (outputPlanes - 1) * plane_stride - 2 - padding_top_z + kernelPlanesEff; const TensorIndex padding_bottom = inputRows - (outputRows - 1) * row_stride - 2 - padding_top + kernelRowsEff; const TensorIndex padding_right = inputCols - (outputCols - 1) * col_stride - 2 - padding_left + kernelColsEff; eigen_assert(padding_top_z >= 0); eigen_assert(padding_top >= 0); eigen_assert(padding_left >= 0); eigen_assert(padding_bottom_z >= 0); eigen_assert(padding_bottom >= 0); eigen_assert(padding_right >= 0); Eigen::array<bool, 5> kernel_reverse; if (isColMajor) { kernel_reverse[0] = false; kernel_reverse[1] = false; kernel_reverse[2] = true; kernel_reverse[3] = true; kernel_reverse[4] = true; } else { kernel_reverse[0] = true; kernel_reverse[1] = true; kernel_reverse[2] = true; kernel_reverse[3] = false; kernel_reverse[4] = false; } array<TensorIndex, 5> kernel_shuffle; if (isColMajor) { kernel_shuffle[0] = 0; kernel_shuffle[1] = 2; kernel_shuffle[2] = 3; kernel_shuffle[3] = 4; kernel_shuffle[4] = 1; } else { kernel_shuffle[0] = 3; kernel_shuffle[1] = 0; kernel_shuffle[2] = 1; kernel_shuffle[3] = 2; kernel_shuffle[4] = 4; } DSizes<TensorIndex, 2> kernel_dims; if (isColMajor) { kernel_dims[0] = kernelFilters * kernelPlanes * kernelRows * kernelCols; kernel_dims[1] = kernelChannels; } else { kernel_dims[1] = kernelFilters * kernelPlanes * kernelRows * kernelCols; kernel_dims[0] = kernelChannels; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = kernelFilters * kernelPlanes * kernelRows * kernelCols; pre_contract_dims[1] = inputPlanes * inputRows * inputCols; for (int i = 4; i < NumDims; ++i) { pre_contract_dims[1] *= out.dimension(i); } } else { pre_contract_dims[1] = kernelFilters * kernelPlanes * kernelRows * kernelCols; pre_contract_dims[0] = inputPlanes * inputRows * inputCols; for (int i = 0; i < NumDims - 4; ++i) { pre_contract_dims[0] *= out.dimension(i); } } array<IndexPair<TensorIndex>, 1> contract_dims; if (isColMajor) { contract_dims[0] = IndexPair<TensorIndex>(0, 0); } else { contract_dims[0] = IndexPair<TensorIndex>(1, 1); } DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = inputPlanes; post_contract_dims[2] = inputRows; post_contract_dims[3] = inputCols; for (int i = 4; i < NumDims; ++i) { post_contract_dims[i] = out.dimension(i); } } else { post_contract_dims[NumDims - 1] = kernelChannels; post_contract_dims[NumDims - 2] = inputPlanes; post_contract_dims[NumDims - 3] = inputRows; post_contract_dims[NumDims - 4] = inputCols; for (int i = 0; i < NumDims - 4; ++i) { post_contract_dims[i] = out.dimension(i); } } return choose( Cond<internal::traits<OutputBackward>::Layout == ColMajor>(), kernel.reverse(kernel_reverse) .shuffle(kernel_shuffle) .reshape(kernel_dims) .eval() .contract(output_backward .extract_volume_patches( kernelPlanes, kernelRows, kernelCols, 1, 1, 1, plane_stride, row_stride, col_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right) .reshape(pre_contract_dims), contract_dims) .reshape(post_contract_dims), output_backward .extract_volume_patches(kernelPlanes, kernelRows, kernelCols, 1, 1, 1, plane_stride, row_stride, col_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right) .reshape(pre_contract_dims) .contract(kernel.reverse(kernel_reverse) .shuffle(kernel_shuffle) .reshape(kernel_dims) .eval(), contract_dims) .reshape(post_contract_dims)); } template <typename OutputBackward, typename Input> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<Input>::Layout == ColMajor, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorVolumePatchOp< Dynamic, Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>>>>>>, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorVolumePatchOp< Dynamic, Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>>>>>> CuboidConvolutionBackwardKernel( const Input& input, const OutputBackward& output_backward, typename internal::traits<Input>::Index kernelPlanes, typename internal::traits<Input>::Index kernelRows, typename internal::traits<Input>::Index kernelCols, const DenseIndex stridePlanes = 1, const DenseIndex strideRows = 1, const DenseIndex strideCols = 1) { typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex>> in(input); TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int NumDims = internal::traits<Input>::NumDimensions; EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == internal::traits<OutputBackward>::NumDimensions, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2); const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3); const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4); const TensorIndex outputPlanes = isColMajor ? out.dimension(1) : out.dimension(NumDims - 2); const TensorIndex outputRows = isColMajor ? out.dimension(2) : out.dimension(NumDims - 3); const TensorIndex outputCols = isColMajor ? out.dimension(3) : out.dimension(NumDims - 4); const TensorIndex kernelFilters = isColMajor ? out.dimension(0) : out.dimension(NumDims - 1); const TensorIndex kernelChannels = isColMajor ? in.dimension(0) : in.dimension(NumDims - 1); const TensorIndex batch = isColMajor ? in.dimension(4) : in.dimension(NumDims - 5); const TensorIndex kernelPlanesEff = kernelPlanes; const TensorIndex kernelRowsEff = kernelRows; const TensorIndex kernelColsEff = kernelCols; const TensorIndex padPlanes = numext::maxi<Index>( 0, (outputPlanes - 1) * stridePlanes + kernelPlanesEff - inputPlanes); const TensorIndex padRows = numext::maxi<Index>( 0, (outputRows - 1) * strideRows + kernelRowsEff - inputRows); const TensorIndex padCols = numext::maxi<Index>( 0, (outputCols - 1) * strideCols + kernelColsEff - inputCols); const TensorIndex padding_top_z = padPlanes / 2; const TensorIndex padding_top = padRows / 2; const TensorIndex padding_left = padCols / 2; const auto expanded_out_planes = (outputPlanes - 1) * stridePlanes + 1; const auto expanded_out_rows = (outputRows - 1) * strideRows + 1; const auto expanded_out_cols = (outputCols - 1) * strideCols + 1; const auto padded_out_planes = inputPlanes + kernelPlanes - 1; const auto padded_out_rows = inputRows + kernelRows - 1; const auto padded_out_cols = inputCols + kernelCols - 1; const auto top_pad_planes = kernelPlanes - 1 - padding_top_z; const auto top_pad_rows = kernelRows - 1 - padding_top; const auto left_pad_cols = kernelCols - 1 - padding_left; const auto bottom_pad_planes = padded_out_planes - expanded_out_planes - top_pad_planes; const auto bottom_pad_rows = padded_out_rows - expanded_out_rows - top_pad_rows; const auto right_pad_cols = padded_out_cols - expanded_out_cols - left_pad_cols; array<TensorIndex, 5> output_backward_shuffle; if (isColMajor) { output_backward_shuffle = {4, 1, 2, 3, 0}; } else { output_backward_shuffle = {4, 1, 2, 3, 0}; } array<TensorIndex, 5> input_shuffle; if (isColMajor) { input_shuffle = {0, 4, 1, 2, 3}; } else { input_shuffle = {1, 2, 3, 0, 4}; } DSizes<TensorIndex, 2> input_dims; if (isColMajor) { input_dims[0] = kernelChannels; input_dims[1] = batch * inputPlanes * inputRows * inputCols; } else { input_dims[1] = kernelChannels; input_dims[0] = inputCols * inputRows * inputPlanes * batch; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = batch * inputPlanes * inputRows * inputCols; pre_contract_dims[1] = kernelPlanes * kernelRows * kernelCols * kernelFilters; } else { pre_contract_dims[1] = inputCols * inputRows * inputPlanes * batch; pre_contract_dims[0] = kernelFilters * kernelCols * kernelRows * kernelPlanes; } array<IndexPair<TensorIndex>, 1> contract_dims; contract_dims[0] = IndexPair<TensorIndex>(1, 0); DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = kernelPlanes; post_contract_dims[2] = kernelRows; post_contract_dims[3] = kernelCols; post_contract_dims[4] = kernelFilters; } else { post_contract_dims[0] = kernelFilters; post_contract_dims[1] = kernelCols; post_contract_dims[2] = kernelRows; post_contract_dims[3] = kernelPlanes; post_contract_dims[4] = kernelChannels; } array<TensorIndex, 5> kernel_shuffle; if (isColMajor) { kernel_shuffle = {4, 0, 1, 2, 3}; } else { kernel_shuffle = {1, 2, 3, 4, 0}; } array<TensorIndex, 5> kernel_reverse; if (isColMajor) { kernel_reverse = {false, false, true, true, true}; } else { kernel_reverse = {true, true, true, false, false}; } const auto the_input = output_backward.shuffle(output_backward_shuffle).eval(); const auto the_kernel = input.shuffle(input_shuffle).reshape(input_dims).eval(); return choose(Cond<internal::traits<Input>::Layout == ColMajor>(), the_kernel.contract( the_input .extract_volume_patches( inputPlanes, inputRows, inputCols, 1, 1, 1, stridePlanes, strideRows, strideCols, top_pad_planes, bottom_pad_planes, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols) .reshape(pre_contract_dims), contract_dims), the_input .extract_volume_patches( inputPlanes, inputRows, inputCols, 1, 1, 1, stridePlanes, strideRows, strideCols, top_pad_planes, bottom_pad_planes, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols) .reshape(pre_contract_dims) .contract(the_kernel, contract_dims)) .reshape(post_contract_dims) .shuffle(kernel_shuffle) .reverse(kernel_reverse); } } #endif
#include "tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } static int ceil_div(int a, int b) { return (a + b - 1) / b; } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_valid) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 4> input_backward(input_depth, input_planes, input_rows, input_cols); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_planes, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_valid_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 4, RowMajor> input_backward(input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_planes); EXPECT_EQ(input_backward.dimension(3), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(k, j, i, id), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_same) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; const int output_depth = 5; Tensor<float, 4> input_backward(input_depth, input_planes, input_rows, input_cols); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_planes, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); const int dz = patch_planes - 1; const int dy = patch_rows - 1; const int dx = patch_cols - 1; const int forward_pad_x = dx / 2; const int forward_pad_y = dy / 2; const int forward_pad_z = dz / 2; for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p + forward_pad_z; int output_j = j - r + forward_pad_y; int output_k = k - c + forward_pad_x; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_same_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 3; const int patch_planes = 4; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; const int output_depth = 5; Tensor<float, 4, RowMajor> input_backward(input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_planes); EXPECT_EQ(input_backward.dimension(3), input_depth); const int dz = patch_planes - 1; const int dy = patch_rows - 1; const int dx = patch_cols - 1; const int forward_pad_x = dx / 2; const int forward_pad_y = dy / 2; const int forward_pad_z = dz / 2; for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p + forward_pad_z; int output_j = j - r + forward_pad_y; int output_k = k - c + forward_pad_x; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(k, j, i, id), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_input_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 5> input_backward(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(4), num_batches); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p; int output_j = j - r; int output_k = k - c; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k, b) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k, b), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_input_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 5, RowMajor> input_backward(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_planes); EXPECT_EQ(input_backward.dimension(4), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p; int output_j = j - r; int output_k = k - c; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(b, output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(b, k, j, i, id), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_kernel_valid) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, 1); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, 1); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = CuboidConvolutionBackwardKernel(input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel.dimension(0), output_depth); EXPECT_EQ(kernel.dimension(1), input_depth); EXPECT_EQ(kernel.dimension(2), patch_planes); EXPECT_EQ(kernel.dimension(3), patch_rows); EXPECT_EQ(kernel.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(id, i, j, k, 0) * output_backward(od, output_i, output_j, output_k, 0); } } } } EigenApprox(kernel(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_kernel_valid_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5, RowMajor> input( 1, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( 1, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = CuboidConvolutionBackwardKernel(input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel.dimension(4), output_depth); EXPECT_EQ(kernel.dimension(3), input_depth); EXPECT_EQ(kernel.dimension(2), patch_planes); EXPECT_EQ(kernel.dimension(1), patch_rows); EXPECT_EQ(kernel.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input( 0, k, j, i, id) * output_backward( 0, output_k, output_j, output_i, od); } } } } EigenApprox(kernel(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel_backward(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(3), patch_rows); EXPECT_EQ(kernel_backward.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(id, i, j, k, b) * output_backward(od, output_i, output_j, output_k, b); } } } } } EigenApprox(kernel_backward(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel_backward( patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel_backward.dimension(4), output_depth); EXPECT_EQ(kernel_backward.dimension(3), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(b, k, j, i, id) * output_backward(b, output_k, output_j, output_i, od); } } } } } EigenApprox(kernel_backward(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 8; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 2; const int stride_planes = 2; const int stride_cols = 3; const int stride_rows = 1; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel_backward(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(3), patch_rows); EXPECT_EQ(kernel_backward.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += input(id, i, j, k, b) * output_backward(od, output_i / stride_planes, output_j / stride_rows, output_k / stride_cols, b); } } } } } EigenApprox(kernel_backward(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 8; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 2; const int stride_planes = 2; const int stride_cols = 3; const int stride_rows = 1; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel_backward( patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(kernel_backward.dimension(4), output_depth); EXPECT_EQ(kernel_backward.dimension(3), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += input(b, k, j, i, id) * output_backward(b, output_k / stride_cols, output_j / stride_rows, output_i / stride_planes, od); } } } } } EigenApprox(kernel_backward(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_input_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 14; const int input_rows = 13; const int input_cols = 15; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int stride_rows = 3; const int stride_cols = 2; const int stride_planes = 3; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); const int output_depth = 5; Tensor<float, 5> input_backward(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(input_backward.dimension(4), num_batches); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += output_backward(od, output_i / stride_planes, output_j / stride_rows, output_k / stride_cols, b) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k, b), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_input_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 14; const int input_rows = 13; const int input_cols = 15; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int stride_rows = 3; const int stride_cols = 2; const int stride_planes = 3; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); const int output_depth = 5; Tensor<float, 5, RowMajor> input_backward(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_planes); EXPECT_EQ(input_backward.dimension(4), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += output_backward(b, output_k / stride_cols, output_j / stride_rows, output_i / stride_planes, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(b, k, j, i, id), expected); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_cuboid_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cdd2bdaf-cc0d-4ceb-ab30-fdf7e6b15650
cpp
tensorflow/tensorflow
eigen_backward_spatial_convolutions
tensorflow/core/kernels/eigen_backward_spatial_convolutions.h
tensorflow/core/kernels/eigen_backward_spatial_convolutions_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_SPATIAL_CONVOLUTIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_SPATIAL_CONVOLUTIONS_H_ #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" namespace Eigen { typedef IndexList<type2index<0>, type2index<0>, type2index<1>, type2index<1>> ReverseColMajor; typedef IndexList<type2index<1>, type2index<1>, type2index<0>, type2index<0>> ReverseRowMajor; template <typename OutputBackward, typename Kernel> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<OutputBackward>::Layout == ColMajor, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const Eigen::TensorForcedEvalOp<const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 4>, const Eigen::TensorForcedEvalOp<const TensorReverseOp< const ReverseColMajor, const Kernel>>>>>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward>>>>, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward>>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const Eigen::TensorForcedEvalOp<const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 4>, const Eigen::TensorForcedEvalOp<const TensorReverseOp< const ReverseRowMajor, const Kernel>>>>>>>> SpatialConvolutionBackwardInput( const Kernel& kernel, const OutputBackward& output_backward, typename internal::traits<OutputBackward>::Index inputRows, typename internal::traits<OutputBackward>::Index inputCols, const DenseIndex row_stride = 1, const DenseIndex col_stride = 1, const DenseIndex row_in_stride = 1, const DenseIndex col_in_stride = 1) { typedef typename internal::traits<OutputBackward>::Index TensorIndex; typedef typename internal::traits<OutputBackward>::Scalar OutScalar; TensorRef<Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex>> kern(kernel); TensorRef<Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<OutputBackward>::Layout == ColMajor); static const int NumDims = internal::traits<OutputBackward>::NumDimensions; const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[3]; const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[2]; const TensorIndex kernelRows = isColMajor ? kern.dimensions()[2] : kern.dimensions()[1]; const TensorIndex kernelCols = isColMajor ? kern.dimensions()[3] : kern.dimensions()[0]; const TensorIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (row_in_stride - 1); const TensorIndex kernelColsEff = kernelCols + (kernelCols - 1) * (col_in_stride - 1); const TensorIndex outputRows = isColMajor ? output_backward.dimension(1) : output_backward.dimension(NumDims - 2); const TensorIndex outputCols = isColMajor ? output_backward.dimension(2) : output_backward.dimension(NumDims - 3); const TensorIndex forward_pad_top = numext::maxi<Index>( 0, ((outputRows - 1) * row_stride + kernelRowsEff - inputRows) / 2); const TensorIndex forward_pad_left = numext::maxi<Index>( 0, ((outputCols - 1) * col_stride + kernelColsEff - inputCols) / 2); const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top; const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left; const TensorIndex padding_bottom = inputRows - (outputRows - 1) * row_stride - 2 - padding_top + kernelRowsEff; const TensorIndex padding_right = inputCols - (outputCols - 1) * col_stride - 2 - padding_left + kernelColsEff; eigen_assert(padding_top >= 0); eigen_assert(padding_left >= 0); eigen_assert(padding_bottom >= 0); eigen_assert(padding_right >= 0); typedef std::conditional_t<isColMajor, ReverseColMajor, ReverseRowMajor> Reverse; Reverse kernel_reverse; array<TensorIndex, 4> kernel_shuffle; if (isColMajor) { kernel_shuffle[0] = 0; kernel_shuffle[1] = 2; kernel_shuffle[2] = 3; kernel_shuffle[3] = 1; } else { kernel_shuffle[0] = 2; kernel_shuffle[1] = 0; kernel_shuffle[2] = 1; kernel_shuffle[3] = 3; } DSizes<TensorIndex, 2> kernel_dims; if (isColMajor) { kernel_dims[0] = kernelFilters * kernelRows * kernelCols; kernel_dims[1] = kernelChannels; } else { kernel_dims[1] = kernelFilters * kernelRows * kernelCols; kernel_dims[0] = kernelChannels; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = kernelFilters * kernelRows * kernelCols; pre_contract_dims[1] = inputRows * inputCols; for (int i = 3; i < NumDims; ++i) { pre_contract_dims[1] *= out.dimension(i); } } else { pre_contract_dims[1] = kernelFilters * kernelRows * kernelCols; pre_contract_dims[0] = inputRows * inputCols; for (int i = 0; i < NumDims - 3; ++i) { pre_contract_dims[0] *= out.dimension(i); } } array<IndexPair<TensorIndex>, 1> contract_dims; if (isColMajor) { contract_dims[0] = IndexPair<TensorIndex>(0, 0); } else { contract_dims[0] = IndexPair<TensorIndex>(1, 1); } DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = inputRows; post_contract_dims[2] = inputCols; for (int i = 3; i < NumDims; ++i) { post_contract_dims[i] = out.dimension(i); } } else { post_contract_dims[NumDims - 1] = kernelChannels; post_contract_dims[NumDims - 2] = inputRows; post_contract_dims[NumDims - 3] = inputCols; for (int i = 0; i < NumDims - 3; ++i) { post_contract_dims[i] = out.dimension(i); } } return choose( Cond<internal::traits<OutputBackward>::Layout == ColMajor>(), kernel.reverse(kernel_reverse) .eval() .shuffle(kernel_shuffle) .eval() .reshape(kernel_dims) .contract( output_backward .extract_image_patches( kernelRows, kernelCols, 1, 1, row_in_stride, col_in_stride, row_stride, col_stride, padding_top, padding_bottom, padding_left, padding_right, OutScalar(0)) .reshape(pre_contract_dims), contract_dims) .reshape(post_contract_dims), output_backward .extract_image_patches(kernelRows, kernelCols, 1, 1, row_in_stride, col_in_stride, row_stride, col_stride, padding_top, padding_bottom, padding_left, padding_right, OutScalar(0)) .reshape(pre_contract_dims) .contract(kernel.reverse(kernel_reverse) .eval() .shuffle(kernel_shuffle) .eval() .reshape(kernel_dims), contract_dims) .reshape(post_contract_dims)); } template <typename OutputBackward, typename Input> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<Input>::Layout == ColMajor, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorForcedEvalOp<const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorImagePatchOp< Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>>>>>>>, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorForcedEvalOp<const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorImagePatchOp< Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>>>>>>> SpatialConvolutionBackwardKernel( const Input& input, const OutputBackward& output_backward, typename internal::traits<Input>::Index kernelRows, typename internal::traits<Input>::Index kernelCols, const DenseIndex row_stride = 1, const DenseIndex col_stride = 1, const DenseIndex row_in_stride = 1, const DenseIndex col_in_stride = 1) { typedef typename internal::traits<Input>::Index TensorIndex; typedef typename internal::traits<OutputBackward>::Scalar OutScalar; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex>> in(input); TensorRef<Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(!(row_stride > 1 && row_in_stride > 1)); eigen_assert(!(col_stride > 1 && col_in_stride > 1)); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int NumDims = internal::traits<Input>::NumDimensions; EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == internal::traits<OutputBackward>::NumDimensions, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(NumDims == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); const TensorIndex inputRows = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2); const TensorIndex inputCols = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3); const TensorIndex outputRows = isColMajor ? output_backward.dimension(1) : output_backward.dimension(NumDims - 2); const TensorIndex outputCols = isColMajor ? output_backward.dimension(2) : output_backward.dimension(NumDims - 3); const TensorIndex kernelFilters = isColMajor ? out.dimensions()[0] : out.dimensions()[NumDims - 1]; const TensorIndex kernelChannels = isColMajor ? in.dimensions()[0] : in.dimensions()[NumDims - 1]; const TensorIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (row_in_stride - 1); const TensorIndex kernelColsEff = kernelCols + (kernelCols - 1) * (col_in_stride - 1); TensorIndex batch = 1; for (int d = 3; d < NumDims; ++d) { batch *= isColMajor ? in.dimension(d) : in.dimension(NumDims - d - 1); } const TensorIndex padRows = numext::maxi<Index>( 0, (outputRows - 1) * row_stride + kernelRowsEff - inputRows); const TensorIndex padCols = numext::maxi<Index>( 0, (outputCols - 1) * col_stride + kernelColsEff - inputCols); TensorIndex padding_top = padRows / 2; TensorIndex padding_left = padCols / 2; const TensorIndex expanded_out_rows = (outputRows - 1) * row_stride + 1; const TensorIndex expanded_out_cols = (outputCols - 1) * col_stride + 1; const TensorIndex padded_out_rows = inputRows + kernelRowsEff - 1; const TensorIndex padded_out_cols = inputCols + kernelColsEff - 1; const TensorIndex top_pad_rows = kernelRowsEff - 1 - padding_top; const TensorIndex left_pad_cols = kernelColsEff - 1 - padding_left; const TensorIndex bottom_pad_rows = padded_out_rows - expanded_out_rows - top_pad_rows; const TensorIndex right_pad_cols = padded_out_cols - expanded_out_cols - left_pad_cols; array<TensorIndex, 4> output_backward_shuffle; if (isColMajor) { output_backward_shuffle = {3, 1, 2, 0}; } else { output_backward_shuffle = {3, 1, 2, 0}; } array<TensorIndex, 4> input_shuffle; if (isColMajor) { input_shuffle = {0, 3, 1, 2}; } else { input_shuffle = {1, 2, 0, 3}; } DSizes<TensorIndex, 2> input_dims; if (isColMajor) { input_dims[0] = kernelChannels; input_dims[1] = batch * inputRows * inputCols; } else { input_dims[1] = kernelChannels; input_dims[0] = inputCols * inputRows * batch; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = batch * inputRows * inputCols; pre_contract_dims[1] = kernelRows * kernelCols * kernelFilters; } else { pre_contract_dims[1] = inputCols * inputRows * batch; pre_contract_dims[0] = kernelFilters * kernelCols * kernelRows; } array<IndexPair<TensorIndex>, 1> contract_dims; contract_dims[0] = IndexPair<TensorIndex>(1, 0); DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = kernelRows; post_contract_dims[2] = kernelCols; post_contract_dims[3] = kernelFilters; } else { post_contract_dims[0] = kernelFilters; post_contract_dims[1] = kernelCols; post_contract_dims[2] = kernelRows; post_contract_dims[3] = kernelChannels; } array<TensorIndex, 4> kernel_shuffle; if (isColMajor) { kernel_shuffle = {3, 0, 1, 2}; } else { kernel_shuffle = {1, 2, 3, 0}; } array<TensorIndex, 4> kernel_reverse; if (isColMajor) { kernel_reverse = {false, false, true, true}; } else { kernel_reverse = {true, true, false, false}; } const auto output_backward_shuffled = output_backward.shuffle(output_backward_shuffle).eval(); const auto input_shuffled = input.shuffle(input_shuffle).eval().reshape(input_dims); return choose( Cond<internal::traits<OutputBackward>::Layout == ColMajor>(), input_shuffled.contract( output_backward_shuffled .extract_image_patches(inputRows, inputCols, row_in_stride, col_in_stride, 1, 1, row_stride, col_stride, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols, OutScalar(0)) .reshape(pre_contract_dims), contract_dims), output_backward_shuffled .extract_image_patches( inputRows, inputCols, row_in_stride, col_in_stride, 1, 1, row_stride, col_stride, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols, OutScalar(0)) .reshape(pre_contract_dims) .contract(input_shuffled, contract_dims)) .reshape(post_contract_dims) .shuffle(kernel_shuffle) .eval() .reverse(kernel_reverse); } } #endif
#include "tensorflow/core/kernels/eigen_backward_spatial_convolutions.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } static int ceil_div(int a, int b) { return (a + b - 1) / b; } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_input_valid) { const int input_depth = 2; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 3> input_backward(input_depth, input_rows, input_cols); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 3> output_backward(output_depth, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(od, output_i, output_j) * kernel(od, id, r, c); } } } } EigenApprox(input_backward(id, i, j), expected); } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_input_valid_row_major) { const int input_depth = 2; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 3, RowMajor> input_backward(input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 3, RowMajor> output_backward(output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(output_j, output_i, od) * kernel(c, r, id, od); } } } } EigenApprox(input_backward(j, i, id), expected); } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_input_same) { const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3> input_backward(input_depth, input_rows, input_cols); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 3> output_backward(output_depth, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r + (patch_rows - 1) / 2; int output_j = j - c + (patch_cols - 1) / 2; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(od, output_i, output_j) * kernel(od, id, r, c); } } } } EigenApprox(input_backward(id, i, j), expected); } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_input_same_row_major) { const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3, RowMajor> input_backward(input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 3, RowMajor> output_backward(output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r + (patch_rows - 1) / 2; int output_j = j - c + (patch_cols - 1) / 2; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(output_j, output_i, od) * kernel(c, r, id, od); } } } } EigenApprox(input_backward(j, i, id), expected); } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_spatial_convolution_backward_input_valid) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4> input_backward(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); EXPECT_EQ(input_backward.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(od, output_i, output_j, b) * kernel(od, id, r, c); } } } } EigenApprox(input_backward(id, i, j, b), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_spatial_convolution_backward_input_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4, RowMajor> input_backward(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += output_backward(b, output_j, output_i, od) * kernel(c, r, id, od); } } } } EigenApprox(input_backward(b, j, i, id), expected); } } } } } static void test_batched_strided_spatial_convolution_backward_input_valid( const int num_batches, const int input_depth, const int input_rows, const int input_cols, const int output_depth) { const int patch_rows = 3; const int patch_cols = 3; const int stride = 3; const int output_rows = divup(input_rows - patch_rows + 1, stride); const int output_cols = divup(input_cols - patch_cols + 1, stride); Tensor<float, 4> input_backward(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput( kernel, output_backward, input_rows, input_cols, stride, stride); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); EXPECT_EQ(input_backward.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i / stride < output_rows && output_j >= 0 && output_j / stride < output_cols && output_i % stride == 0 && output_j % stride == 0) { expected += output_backward(od, output_i / stride, output_j / stride, b) * kernel(od, id, r, c); } } } } EigenApprox(input_backward(id, i, j, b), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_spatial_convolution_backward_input_valid) { int num_batches = 1; int input_depth = 1; int input_rows = 3; int input_cols = 5; int output_depth = 1; test_batched_strided_spatial_convolution_backward_input_valid( num_batches, input_depth, input_rows, input_cols, output_depth); num_batches = 11; input_depth = 2; input_rows = 9; input_cols = 13; output_depth = 5; test_batched_strided_spatial_convolution_backward_input_valid( num_batches, input_depth, input_rows, input_cols, output_depth); } static void test_batched_strided_spatial_convolution_backward_input_valid_row_major( const int num_batches, const int input_depth, const int input_rows, const int input_cols, const int output_depth) { const int patch_rows = 3; const int patch_cols = 3; const int stride = 3; const int output_rows = divup(input_rows - patch_rows + 1, stride); const int output_cols = divup(input_cols - patch_cols + 1, stride); Tensor<float, 4, RowMajor> input_backward(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = SpatialConvolutionBackwardInput( kernel, output_backward, input_rows, input_cols, stride, stride); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int od = 0; od < output_depth; ++od) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i / stride < output_rows && output_j >= 0 && output_j / stride < output_cols && output_i % stride == 0 && output_j % stride == 0) { expected += output_backward(b, output_j / stride, output_i / stride, od) * kernel(c, r, id, od); } } } } EigenApprox(input_backward(b, j, i, id), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_spatial_convolution_backward_input_valid_row_major) { int num_batches = 1; int input_depth = 1; int input_rows = 3; int input_cols = 5; int output_depth = 1; test_batched_strided_spatial_convolution_backward_input_valid_row_major( num_batches, input_depth, input_rows, input_cols, output_depth); num_batches = 11; input_depth = 2; input_rows = 9; input_cols = 13; output_depth = 5; test_batched_strided_spatial_convolution_backward_input_valid_row_major( num_batches, input_depth, input_rows, input_cols, output_depth); } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_kernel_valid) { const int num_batches = 5; const int input_depth = 2; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows, patch_cols, 1, 1); EXPECT_EQ(kernel.dimension(0), output_depth); EXPECT_EQ(kernel.dimension(1), input_depth); EXPECT_EQ(kernel.dimension(2), patch_rows); EXPECT_EQ(kernel.dimension(3), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += input(id, i, j, b) * output_backward(od, output_i, output_j, b); } } } } EigenApprox(kernel(od, id, r, c), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_spatial_convolution_backward_kernel_valid_row_major) { const int num_batches = 5; const int input_depth = 2; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows, patch_cols, 1, 1); EXPECT_EQ(kernel.dimension(0), patch_cols); EXPECT_EQ(kernel.dimension(1), patch_rows); EXPECT_EQ(kernel.dimension(2), input_depth); EXPECT_EQ(kernel.dimension(3), output_depth); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += input(b, j, i, id) * output_backward(b, output_j, output_i, od); } } } } EigenApprox(kernel(c, r, id, od), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_atrous_spatial_convolution_backward_input_valid) { const int num_batches = 11; const int patch_rows = 3; const int patch_cols = 3; const int input_depth = 2; const int input_rows = 9; const int input_cols = 13; const int in_stride = 3; const int patch_rows_eff = patch_rows + (patch_rows - 1) * (in_stride - 1); const int patch_cols_eff = patch_cols + (patch_cols - 1) * (in_stride - 1); const int output_depth = 5; const int output_rows = input_rows - patch_rows_eff + 1; const int output_cols = input_cols - patch_cols_eff + 1; Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward.setRandom(); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); kernel.setRandom(); const array<DenseIndex, 4> kernel_strides({1, 1, in_stride, in_stride}); const Tensor<float, 4> kernel_eff = kernel.inflate(kernel_strides); const Tensor<float, 4> input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1, 1, in_stride, in_stride); const Tensor<float, 4> expected_input_backward = SpatialConvolutionBackwardInput(kernel_eff, output_backward, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); EXPECT_EQ(input_backward.dimension(3), num_batches); eigen_assert(dimensions_match(input_backward.dimensions(), expected_input_backward.dimensions())); for (ptrdiff_t i = 0; i < input_backward.dimensions().TotalSize(); ++i) { EigenApprox(input_backward.data()[i], expected_input_backward.data()[i]); } } TEST( EigenBackwardSpatialConvolutionsTest, test_batched_atrous_spatial_convolution_backward_input_valid_unequal_strides) { const int num_batches = 11; const int patch_rows = 3; const int patch_cols = 3; const int input_depth = 2; const int input_rows = 9; const int input_cols = 13; const int row_in_stride = 3; const int col_in_stride = 1; const int patch_rows_eff = patch_rows + (patch_rows - 1) * (row_in_stride - 1); const int patch_cols_eff = patch_cols + (patch_cols - 1) * (col_in_stride - 1); const int output_depth = 5; const int output_rows = input_rows - patch_rows_eff + 1; const int output_cols = input_cols - patch_cols_eff + 1; Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward.setRandom(); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); kernel.setRandom(); const array<DenseIndex, 4> kernel_strides( {1, 1, row_in_stride, col_in_stride}); const Tensor<float, 4> kernel_eff = kernel.inflate(kernel_strides); const Tensor<float, 4> input_backward = SpatialConvolutionBackwardInput( kernel, output_backward, input_rows, input_cols, 1, 1, row_in_stride, col_in_stride); const Tensor<float, 4> expected_input_backward = SpatialConvolutionBackwardInput(kernel_eff, output_backward, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_depth); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_cols); EXPECT_EQ(input_backward.dimension(3), num_batches); eigen_assert(dimensions_match(input_backward.dimensions(), expected_input_backward.dimensions())); for (ptrdiff_t i = 0; i < input_backward.dimensions().TotalSize(); ++i) { EigenApprox(input_backward.data()[i], expected_input_backward.data()[i]); } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_atrous_spatial_convolution_backward_input_valid_row_major) { const int num_batches = 11; const int patch_rows = 3; const int patch_cols = 3; const int input_depth = 2; const int input_rows = 9; const int input_cols = 13; const int in_stride = 3; const int patch_rows_eff = patch_rows + (patch_rows - 1) * (in_stride - 1); const int patch_cols_eff = patch_cols + (patch_cols - 1) * (in_stride - 1); const int output_depth = 5; const int output_rows = input_rows - patch_rows_eff + 1; const int output_cols = input_cols - patch_cols_eff + 1; Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward.setRandom(); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); kernel.setRandom(); const array<DenseIndex, 4> kernel_strides({in_stride, in_stride, 1, 1}); const Tensor<float, 4, RowMajor> kernel_eff = kernel.inflate(kernel_strides); const Tensor<float, 4, RowMajor> input_backward = SpatialConvolutionBackwardInput(kernel, output_backward, input_rows, input_cols, 1, 1, in_stride, in_stride); const Tensor<float, 4, RowMajor> expected_input_backward = SpatialConvolutionBackwardInput(kernel_eff, output_backward, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_depth); eigen_assert(dimensions_match(input_backward.dimensions(), expected_input_backward.dimensions())); for (ptrdiff_t i = 0; i < input_backward.dimensions().TotalSize(); ++i) { EigenApprox(input_backward.data()[i], expected_input_backward.data()[i]); } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_atrous_spatial_convolution_backward_kernel_valid) { const int num_batches = 11; const int patch_rows = 3; const int patch_cols = 3; const int input_depth = 2; const int input_rows = 9; const int input_cols = 13; const int in_stride = 3; const int patch_rows_eff = patch_rows + (patch_rows - 1) * (in_stride - 1); const int patch_cols_eff = patch_cols + (patch_cols - 1) * (in_stride - 1); const int output_depth = 5; const int output_rows = input_rows - patch_rows_eff + 1; const int output_cols = input_cols - patch_cols_eff + 1; Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward.setRandom(); Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); input.setRandom(); const array<DenseIndex, 4> kernel_strides({1, 1, in_stride, in_stride}); const Tensor<float, 4> kernel_backward = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows, patch_cols, 1, 1, in_stride, in_stride); const Tensor<float, 4> expected_kernel_backward = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows_eff, patch_cols_eff) .stride(kernel_strides); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_rows); EXPECT_EQ(kernel_backward.dimension(3), patch_cols); eigen_assert(dimensions_match(kernel_backward.dimensions(), expected_kernel_backward.dimensions())); for (ptrdiff_t i = 0; i < kernel_backward.dimensions().TotalSize(); ++i) { EigenApprox(kernel_backward.data()[i], expected_kernel_backward.data()[i]); } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_atrous_spatial_convolution_backward_kernel_valid_row_major) { const int num_batches = 11; const int patch_rows = 3; const int patch_cols = 3; const int input_depth = 2; const int input_rows = 9; const int input_cols = 13; const int in_stride = 3; const int patch_rows_eff = patch_rows + (patch_rows - 1) * (in_stride - 1); const int patch_cols_eff = patch_cols + (patch_cols - 1) * (in_stride - 1); const int output_depth = 5; const int output_rows = input_rows - patch_rows_eff + 1; const int output_cols = input_cols - patch_cols_eff + 1; Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward.setRandom(); Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); input.setRandom(); const array<DenseIndex, 4> kernel_strides({in_stride, in_stride, 1, 1}); const Tensor<float, 4, RowMajor> expected_kernel_backward = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows_eff, patch_cols_eff) .stride(kernel_strides); const Tensor<float, 4, RowMajor> kernel_backward = SpatialConvolutionBackwardKernel(input, output_backward, patch_rows, patch_cols, 1, 1, in_stride, in_stride); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(2), input_depth); EXPECT_EQ(kernel_backward.dimension(3), output_depth); eigen_assert(dimensions_match(kernel_backward.dimensions(), expected_kernel_backward.dimensions())); for (ptrdiff_t i = 0; i < kernel_backward.dimensions().TotalSize(); ++i) { EigenApprox(kernel_backward.data()[i], expected_kernel_backward.data()[i]); } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_spatial_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel_backward(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = SpatialConvolutionBackwardKernel( input, output_backward, patch_rows, patch_cols, 1, 1); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_rows); EXPECT_EQ(kernel_backward.dimension(3), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += input(id, i, j, b) * output_backward(od, output_i, output_j, b); } } } } EigenApprox(kernel_backward(od, id, r, c), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_spatial_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel_backward(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = SpatialConvolutionBackwardKernel( input, output_backward, patch_rows, patch_cols, 1, 1); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(2), input_depth); EXPECT_EQ(kernel_backward.dimension(3), output_depth); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i < output_rows && output_j >= 0 && output_j < output_cols) { expected += input(b, j, i, id) * output_backward(b, output_j, output_i, od); } } } } EigenApprox(kernel_backward(c, r, id, od), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_spatial_convolution_backward_kernel_valid_row_major_unequal) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 4; const int patch_cols = 4; const int r_stride = 2; const int c_stride = 1; const int output_rows = (input_rows - patch_rows + 1 + r_stride - 1) / r_stride; const int output_cols = (input_cols - patch_cols + 1 + c_stride - 1) / c_stride; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel_backward(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = SpatialConvolutionBackwardKernel( input, output_backward, patch_rows, patch_cols, r_stride, c_stride); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(2), input_depth); EXPECT_EQ(kernel_backward.dimension(3), output_depth); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i / r_stride < output_rows && output_i % r_stride == 0 && output_j >= 0 && output_j / c_stride < output_cols && output_j % c_stride == 0) { expected += input(b, j, i, id) * output_backward(b, output_j / c_stride, output_i / r_stride, od); } } } } EigenApprox(kernel_backward(c, r, id, od), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_spatial_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int stride = 2; const int output_rows = (input_rows - patch_rows + 1 + stride - 1) / stride; const int output_cols = (input_cols - patch_cols + 1 + stride - 1) / stride; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel_backward(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = SpatialConvolutionBackwardKernel( input, output_backward, patch_rows, patch_cols, stride, stride); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_rows); EXPECT_EQ(kernel_backward.dimension(3), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i / stride < output_rows && output_j >= 0 && output_j / stride < output_cols && output_i % stride == 0 && output_j % stride == 0) { expected += input(id, i, j, b) * output_backward(od, output_i / stride, output_j / stride, b); } } } } EigenApprox(kernel_backward(od, id, r, c), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_spatial_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 4; const int patch_cols = 4; const int stride = 2; const int output_rows = (input_rows - patch_rows + 1 + stride - 1) / stride; const int output_cols = (input_cols - patch_cols + 1 + stride - 1) / stride; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel_backward(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, output_rows, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = SpatialConvolutionBackwardKernel( input, output_backward, patch_rows, patch_cols, stride, stride); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(2), input_depth); EXPECT_EQ(kernel_backward.dimension(3), output_depth); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_rows; ++i) { for (int j = 0; j < input_cols; ++j) { int output_i = i - r; int output_j = j - c; if (output_i >= 0 && output_i / stride < output_rows && output_j >= 0 && output_j / stride < output_cols && output_i % stride == 0 && output_j % stride == 0) { expected += input(b, j, i, id) * output_backward(b, output_j / stride, output_i / stride, od); } } } } EigenApprox(kernel_backward(c, r, id, od), expected); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_spatial_convolutions.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_spatial_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9daa5f58-6a74-4c1f-a089-e61cfed04987
cpp
tensorflow/tensorflow
eigen_attention
tensorflow/core/kernels/eigen_attention.h
tensorflow/core/kernels/eigen_attention_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { enum ExtractGlimpsesNoiseMode { UNIFORM = 0, GAUSSIAN = 1, ZERO = 2, }; namespace { template <typename Index> struct GlimpseExtractionOp { GlimpseExtractionOp(const Index width, const Index height, const std::vector<IndexPair<float> >& offsets, const bool normalized, const bool centered, const ExtractGlimpsesNoiseMode noise, const int version) : width_(width), height_(height), offsets_(offsets), normalized_(normalized), centered_(centered), noise_(noise), version_(version) {} template <typename Input> DSizes<Index, 4> dimensions(const Input& input) const { typedef typename internal::traits<Input>::Index IndexType; typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4, internal::traits<Input>::Layout, IndexType> > Ref; Ref in(input); DSizes<Index, 4> dims = in.dimensions(); dims[0] = in.dimension(0); dims[1] = width_; dims[2] = height_; dims[3] = in.dimension(3); return dims; } template <typename Input, typename Output, typename Device> EIGEN_DEVICE_FUNC void eval(const Input& input, Output& output, const Device& device) const { typedef typename internal::traits<Input>::Index IndexType; typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4, internal::traits<Input>::Layout, IndexType> > Ref; Ref in(input); const Index num_channels = in.dimension(0); const Index input_width = in.dimension(1); const Index input_height = in.dimension(2); const Index batch_size = in.dimension(3); eigen_assert(input_width > 0); eigen_assert(input_height > 0); internal::NormalRandomGenerator<float> gen; internal::UniformRandomGenerator<float> unigen; for (Index i = 0; i < batch_size; ++i) { float x = offsets_[i].first, y = offsets_[i].second; if (version_ == 1) { if (normalized_) { x *= input_width; y *= input_height; } if (centered_) { x /= 2.0f; y /= 2.0f; x += input_width / 2.0f; y += input_height / 2.0f; } x -= width_ / 2.0f; y -= height_ / 2.0f; } else { if (normalized_) { x *= input_width; y *= input_height; if (centered_) { x /= 2.0f; y /= 2.0f; x += input_width / 2.0f; y += input_height / 2.0f; x -= width_ / 2.0f; y -= height_ / 2.0f; } } else { if (centered_) { x += input_width / 2.0f; y += input_height / 2.0f; } } } const Index offset_x = (Index)x; const Index offset_y = (Index)y; Index glimpse_width = width_; Index glimpse_height = height_; bool partial_overlap = false; DSizes<Index, 3> slice_offset(0, offset_x, offset_y); DSizes<Index, 3> slice_extent(num_channels, width_, height_); DSizes<Index, 3> base_offset(0, 0, 0); if (offset_x < 0) { slice_offset[1] = 0; glimpse_width = (std::max<Index>)(0, width_ + offset_x); slice_extent[1] = glimpse_width; base_offset[1] = width_ - glimpse_width; partial_overlap = true; } else if (offset_x + width_ >= input_width) { glimpse_width = (std::max<Index>)(0, input_width - offset_x); slice_extent[1] = glimpse_width; partial_overlap = true; } if (offset_y < 0) { slice_offset[2] = 0; glimpse_height = (std::max<Index>)(0, height_ + offset_y); slice_extent[2] = glimpse_height; base_offset[2] = height_ - glimpse_height; partial_overlap = true; } else if (offset_y + height_ >= input_height) { glimpse_height = (std::max<Index>)(0, input_height - offset_y); slice_extent[2] = glimpse_height; partial_overlap = true; } slice_extent[1] = std::min<Index>(input_width, slice_extent[1]); slice_extent[2] = std::min<Index>(input_height, slice_extent[2]); if (partial_overlap) { switch (noise_) { case ZERO: { output.template chip<3>(i).device(device) = output.template chip<3>(i).constant(0); } break; case UNIFORM: { typedef std::remove_const_t< typename internal::traits<Input>::Scalar> Scalar; TensorFixedSize<Scalar, Sizes<> > mini; mini.device(device) = input.template chip<3>(i).minimum(); TensorFixedSize<float, Sizes<> > range; range.device(device) = (input.template chip<3>(i).maximum() - mini) .template cast<float>(); DSizes<Index, 3> glimpse_size(num_channels, width_, height_); TensorMap<Tensor<float, 3> > tmp(nullptr, glimpse_size); output.template chip<3>(i).device(device) = mini.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size) + (tmp.random(unigen) * range.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size)) .template cast<Scalar>(); } break; case GAUSSIAN: { DSizes<Index, 2> glimpse_size(width_, height_); DSizes<Index, 2> input_size(input_width, input_height); typedef std::remove_const_t< typename internal::traits<Input>::Scalar> Scalar; for (int j = 0; j < num_channels; ++j) { TensorFixedSize<Scalar, Sizes<> > mean; mean.device(device) = input.template chip<3>(i) .template chip<0>(j) .template cast<float>() .mean(); TensorFixedSize<float, Sizes<> > sigma; sigma.device(device) = (input.template chip<3>(i) .template chip<0>(j) .template cast<float>() - mean.reshape(Sizes<1, 1>()).broadcast(input_size)) .square() .mean() .sqrt(); TensorFixedSize<Scalar, Sizes<> > mini; mini.device(device) = input.template chip<3>(i).template chip<0>(j).minimum(); TensorFixedSize<float, Sizes<> > maxi; maxi.device(device) = input.template chip<3>(i).template chip<0>(j).maximum(); TensorMap<Tensor<float, 2> > tmp(nullptr, glimpse_size); output.template chip<3>(i).template chip<0>(j).device(device) = (mean.reshape(Sizes<1, 1>()).broadcast(glimpse_size) + (tmp.random(gen) * sigma.reshape(Sizes<1, 1>()).broadcast(glimpse_size)) .template cast<Scalar>()) .cwiseMin( maxi.reshape(Sizes<1, 1>()).broadcast(glimpse_size)) .cwiseMax( mini.reshape(Sizes<1, 1>()).broadcast(glimpse_size)); } } break; } if (glimpse_width == 0 || glimpse_height == 0) { continue; } output.template chip<3>(i) .slice(base_offset, slice_extent) .device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent); } else { output.template chip<3>(i).device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent); } } } private: const Index width_; const Index height_; const std::vector<IndexPair<float> > offsets_; const bool normalized_; const bool centered_; const ExtractGlimpsesNoiseMode noise_; const int version_; }; } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorCustomUnaryOp< const GlimpseExtractionOp<typename internal::traits<Input>::Index>, const Input> ExtractGlimpses( const Input& input, const typename internal::traits<Input>::Index width, const typename internal::traits<Input>::Index height, const std::vector<IndexPair<float> >& offsets, const bool normalized = true, const bool centered = true, const ExtractGlimpsesNoiseMode noise = ExtractGlimpsesNoiseMode::UNIFORM, const int version = 2) { EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == ColMajor, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index Index; const GlimpseExtractionOp<Index> op(width, height, offsets, normalized, centered, noise, version); return input.customOp(op); } } #endif
#include "tensorflow/core/kernels/eigen_attention.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenAttentionTest, Simple) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; const ptrdiff_t glimpse_rows = 8; const ptrdiff_t glimpse_cols = 6; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); std::vector<IndexPair<float>> offsets; offsets.resize(batch); for (int i = 0; i < batch; ++i) { offsets[i].first = (-5 + i) / 10.0f; offsets[i].second = (5 - i) / 10.0f; } Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch); result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets); for (int b = 0; b < batch; ++b) { for (int c = 0; c < glimpse_cols; ++c) { ptrdiff_t source_c = c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2; for (int r = 0; r < glimpse_rows; ++r) { ptrdiff_t source_r = r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2; for (int d = 0; d < depth; ++d) { EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b)); } } } } } TEST(EigenAttentionTest, OutOfBoundsGlimpse) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; const ptrdiff_t glimpse_rows = 8; const ptrdiff_t glimpse_cols = 6; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); std::vector<IndexPair<float>> offsets; offsets.resize(batch); for (int i = 0; i < batch; ++i) { offsets[i].first = (-5 + i) / 2.0f; offsets[i].second = (5 - i) / 2.0f; } Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch); result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets); for (int b = 0; b < batch; ++b) { for (int c = 0; c < glimpse_cols; ++c) { ptrdiff_t source_c = c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2; if (source_c < glimpse_cols / 2 || source_c >= cols - glimpse_cols / 2) { continue; } for (int r = 0; r < glimpse_rows; ++r) { ptrdiff_t source_r = r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2; if (source_r < glimpse_rows / 2 || source_r >= rows - glimpse_rows / 2) { continue; } for (int d = 0; d < depth; ++d) { EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_attention.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_attention_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65e114f5-b5fd-4148-9e57-cab65cb9be29
cpp
tensorflow/tensorflow
eigen_activations
tensorflow/core/kernels/eigen_activations.h
tensorflow/core/kernels/eigen_activations_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { template <typename T> struct scalar_sigmoid_fast_derivative_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const { const T one = T(1); return (one - y) * y; } template <typename Packet> inline Packet packetOp(const Packet& y) const { const Packet one = internal::pset1<Packet>(1); return internal::pmul(internal::psub(one, y), y); } }; namespace internal { template <typename T> struct functor_traits<scalar_sigmoid_fast_derivative_op<T> > { enum { Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost, PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul && packet_traits<T>::HasNegate }; }; } template <typename T> struct scalar_tanh_fast_derivative_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const { const T one = T(1); return one - (y * y); } template <typename Packet> inline Packet packetOp(const Packet& y) const { const Packet one = internal::pset1<Packet>(1); return internal::psub(one, internal::pmul(y, y)); } }; namespace internal { template <typename T> struct functor_traits<scalar_tanh_fast_derivative_op<T> > { enum { Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 1, PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul && packet_traits<T>::HasNegate }; }; } template <typename Scalar> struct scalar_clip_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a, const Scalar& b) const { return numext::mini(numext::maxi(a, -b), b); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmin(internal::pmax(a, internal::pnegate(b)), b); } }; namespace internal { template <typename Scalar> struct functor_traits<scalar_clip_op<Scalar> > { enum { Cost = NumTraits<Scalar>::AddCost * 3, PacketAccess = packet_traits<Scalar>::HasMax && packet_traits<Scalar>::HasMin && packet_traits<Scalar>::HasNegate }; }; } } #endif
#include "tensorflow/core/kernels/eigen_activations.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenBackwardSpatialConvolutionsTest, SigmoidFastDerivative) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.unaryExpr(scalar_sigmoid_fast_derivative_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), (1 - val) * val); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, TanhFastDerivative) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.unaryExpr(scalar_tanh_fast_derivative_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), 1 - (val * val)); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, Clip) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.binaryExpr(input.constant(0.01), scalar_clip_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), (std::min)((std::max)(val, -0.01f), 0.01f)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_activations.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_activations_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
550b570a-3d3c-4266-988c-aca50630b989
cpp
tensorflow/tensorflow
eigen_pooling
tensorflow/core/kernels/eigen_pooling.h
tensorflow/core/kernels/eigen_pooling_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::MaxReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>>, const TensorImagePatchOp<Dynamic, Dynamic, const Input>>> SpatialMaxPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type, DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1); const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int idxRows = isColMajor ? 1 : 2; static const int idxCols = isColMajor ? 2 : 1; Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRowsEff + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchColsEff + 1, strideCols); } else { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[3] = in.dimension(3); std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>> reduction_dims; return input .extract_image_patches( patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, Eigen::NumTraits<std::remove_const_t< typename internal::traits<Input>::Scalar>>::lowest()) .maximum(reduction_dims) .reshape(post_reduce_dims); } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::MaxReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, const Eigen::IndexList<Eigen::type2index<1>>, const TensorReshapingOp< const Eigen::DSizes<DenseIndex, 3>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input>>>> CuboidMaxPooling(const Input& input, DenseIndex patchPlanes, DenseIndex patchRows, DenseIndex patchCols, DenseIndex stridePlanes, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); static const int idxPlanes = isColMajor ? 1 : 3; static const int idxRows = 2; static const int idxCols = isColMajor ? 3 : 1; Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)) - patchPlanes + 1, stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRows + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchCols + 1, strideCols); } else { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)), stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[4] = in.dimension(4); Eigen::DSizes<DenseIndex, 3> pre_reduce_dims; pre_reduce_dims[1] = patchRows * patchCols * patchPlanes; if (isColMajor) { pre_reduce_dims[0] = post_reduce_dims[0]; pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4]; } else { pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3]; pre_reduce_dims[2] = post_reduce_dims[4]; } typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; Eigen::IndexList<Eigen::type2index<1> > reduction_dims; return input .extract_volume_patches(patchPlanes, patchRows, patchCols, stridePlanes, strideRows, strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reshape(pre_reduce_dims) .maximum(reduction_dims) .reshape(post_reduce_dims); } namespace internal { template <typename T> struct AvgPoolMeanReducer { #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) static constexpr bool PacketAccess = internal::is_same<T, float>::value; #else static const bool PacketAccess = false; #endif static constexpr bool IsStateful = true; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE AvgPoolMeanReducer() : scalarCount_(0) { typedef typename packet_traits<T>::type Packet; #if defined(__HIPCC__) packetCount_ = 0; #else packetCount_ = pset1<Packet>(T(0.0)); #endif } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) { if (t != -Eigen::NumTraits<T>::highest()) { (*accum) = (*accum) + t; scalarCount_++; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return static_cast<T>(0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { eigen_assert(scalarCount_ > 0); return accum / T(scalarCount_); } #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) #ifdef EIGEN_VECTORIZE_AVX512 #define pequal(a, b) \ _mm512_castsi512_ps( \ _mm512_maskz_set1_epi32(_mm512_cmp_ps_mask(a, b, _CMP_EQ_UQ), -1)) #define psel(a, b, false_mask) \ _mm512_castsi512_ps(_mm512_ternarylogic_epi32( \ _mm512_castps_si512(a), _mm512_castps_si512(b), \ _mm512_castps_si512(false_mask), 0xd8)) #elif defined EIGEN_VECTORIZE_AVX #define pequal(a, b) _mm256_cmp_ps(a, b, _CMP_EQ_UQ) #define psel(a, b, false_mask) _mm256_blendv_ps(a, b, false_mask) #else #define pequal(a, b) _mm_cmpeq_ps(a, b) #define psel(a, b, false_mask) \ _mm_or_ps(_mm_andnot_ps(false_mask, a), _mm_and_ps(false_mask, b)) #endif template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) { reducePacketWithType(static_cast<T>(0), p, accum); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacketWithType( T, const Packet& p, Packet* accum) { Packet skip_mask = pequal(p, pset1<Packet>(-Eigen::NumTraits<T>::highest())); (*accum) = padd<Packet>(*accum, psel(p, pset1<Packet>(0), skip_mask)); packetCount_ = padd<Packet>( packetCount_, psel(pset1<Packet>(1), pset1<Packet>(0), skip_mask)); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(0); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return pdiv(vaccum, packetCount_); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { return (saccum + predux(vaccum)) / (scalarCount_ + predux(packetCount_)); } #endif protected: typedef typename packet_traits<T>::type Packet; int scalarCount_; #if defined(__HIPCC__) int packetCount_; #else Packet packetCount_; #endif }; template <typename Device> struct reducer_traits<AvgPoolMeanReducer<float>, Device> { enum { Cost = 1, #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) PacketAccess = true, #else PacketAccess = false, #endif IsStateful = true, IsExactlyAssociative = false }; }; template <> struct reducer_traits<AvgPoolMeanReducer<float>, GpuDevice> { enum { Cost = 1, PacketAccess = false, IsStateful = true, IsExactlyAssociative = false }; }; } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::AvgPoolMeanReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>>, const TensorImagePatchOp<Dynamic, Dynamic, const Input>>> SpatialAvgPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type, DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1); const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int idxRows = isColMajor ? 1 : 2; static const int idxCols = isColMajor ? 2 : 1; Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRowsEff + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchColsEff + 1, strideCols); } else { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[3] = in.dimension(3); typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan; std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>> reduction_dims; return input .extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reduce(reduction_dims, mean_with_nan) .reshape(post_reduce_dims); } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::AvgPoolMeanReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, const Eigen::IndexList<Eigen::type2index<1>>, const TensorReshapingOp< const Eigen::DSizes<DenseIndex, 3>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input>>>> CuboidAvgPooling(const Input& input, DenseIndex patchPlanes, DenseIndex patchRows, DenseIndex patchCols, DenseIndex stridePlanes, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); static const int idxPlanes = isColMajor ? 1 : 3; static const int idxRows = 2; static const int idxCols = isColMajor ? 3 : 1; Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)) - patchPlanes + 1, stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRows + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchCols + 1, strideCols); } else { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)), stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[4] = in.dimension(4); Eigen::DSizes<DenseIndex, 3> pre_reduce_dims; pre_reduce_dims[1] = patchRows * patchCols * patchPlanes; if (isColMajor) { pre_reduce_dims[0] = post_reduce_dims[0]; pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4]; } else { pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3]; pre_reduce_dims[2] = post_reduce_dims[4]; } typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan; Eigen::IndexList<Eigen::type2index<1> > reduction_dims; return input .extract_volume_patches(patchPlanes, patchRows, patchCols, stridePlanes, strideRows, strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reshape(pre_reduce_dims) .reduce(reduction_dims, mean_with_nan) .reshape(post_reduce_dims); } } #endif
#include "tensorflow/core/kernels/eigen_pooling.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenPoolingTest, Simple) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.f); const int stride = 1; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, r + i, c + j, b)); } } if (result(d, i, j, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(d, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, b), expected); } } } } } TEST(EigenPoolingTest, SimpleRowMajor) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, depth); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.f); const int stride = 1; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(3), depth); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + j, r + i, d)); } } if (result(b, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, d), expected); } } } } } TEST(EigenPoolingTest, Cuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, p + i, r + j, c + k, b)); } } } if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, CuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + k, r + j, p + i, d)); } } } if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, ValidCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected_sum += input(d, p + i, r + j, c + k, b); expected_count++; } } } const float expected = expected_sum / expected_count; if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, ValidCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected_sum += input(b, c + k, r + j, p + i, d); expected_count++; } } } const float expected = expected_sum / expected_count; if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, SameCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_SAME); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); const int pad_p = output_planes - input_planes + patch_planes - 1; const int pad_r = output_rows - input_rows + patch_rows - 1; const int pad_c = output_cols - input_cols + patch_cols - 1; const int dp = pad_p / 2; const int dr = pad_r / 2; const int dc = pad_c / 2; for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { const int in_p = p + i - dp; const int in_r = r + j - dr; const int in_c = c + k - dc; if (in_p >= 0 && in_p < input_planes && in_r >= 0 && in_r < input_rows && in_c >= 0 && in_c < input_cols) { expected_sum += input(d, in_p, in_r, in_c, b); expected_count++; } } } } const float expected = expected_sum / expected_count; if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, SameCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_SAME); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); const int pad_p = output_planes - input_planes + patch_planes - 1; const int pad_r = output_rows - input_rows + patch_rows - 1; const int pad_c = output_cols - input_cols + patch_cols - 1; const int dp = pad_p / 2; const int dr = pad_r / 2; const int dc = pad_c / 2; for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { const int in_p = p + i - dp; const int in_r = r + j - dr; const int in_c = c + k - dc; if (in_p >= 0 && in_p < input_planes && in_r >= 0 && in_r < input_rows && in_c >= 0 && in_c < input_cols) { expected_sum += input(b, in_c, in_r, in_p, d); expected_count++; } } } } const float expected = expected_sum / expected_count; if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, Strided) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)( expected, input(d, r + stride * i, c + stride * j, b)); } } if (result(d, i, j, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(d, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, b), expected); } } } } } TEST(EigenPoolingTest, StridedRowMajor) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, depth); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(3), depth); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)( expected, input(b, c + stride * j, r + stride * i, d)); } } if (result(b, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, d), expected); } } } } } TEST(EigenPoolingTest, StridedCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 3; const int output_planes = 2; const int output_rows = 2; const int output_cols = 2; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, p + stride * i, r + stride * j, c + stride * k, b)); } } } if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, StridedCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 3; const int output_planes = 2; const int output_rows = 2; const int output_cols = 2; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + stride * k, r + stride * j, p + stride * i, d)); } } } if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_pooling.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_pooling_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
68d21ad5-0373-4de2-8fba-27046bfbf55d
cpp
tensorflow/tensorflow
conv_2d
tensorflow/core/kernels/conv_2d.h
tensorflow/lite/delegates/xnnpack/conv_2d_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_CONV_2D_H_ #define TENSORFLOW_CORE_KERNELS_CONV_2D_H_ #include "absl/strings/string_view.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/kernels/eigen_backward_spatial_convolutions.h" #include "tensorflow/core/util/tensor_format.h" static bool Conv2dUseFp16Accumulate() { static bool use_fp16_accumulate = []() { const char* env = std::getenv("TF_CONV2D_USE_FP16_ACCUMULATE"); return (env != nullptr) && (absl::string_view(env) == "1"); }(); return use_fp16_accumulate; } namespace tensorflow { namespace functor { template <typename Device, typename Input, typename Filter, typename Output, typename OutputKernel> void SpatialConvolutionFunc(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel, int padding_top = 0, int padding_bottom = 0, int padding_left = 0, int padding_right = 0) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } template <typename Device, typename T, typename OutputKernel = const Eigen::NoOpOutputKernel> struct SpatialConvolution { void operator()(const Device& d, typename TTypes<T, 4>::Tensor output, typename TTypes<T, 4>::ConstTensor input, typename TTypes<T, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc(d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, padding, output_kernel); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc(d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, padding, output_kernel); } void operator()(const Device& d, typename TTypes<T, 4>::Tensor output, typename TTypes<T, 4>::ConstTensor input, typename TTypes<T, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc( d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, Eigen::PaddingType::PADDING_VALID, output_kernel, padding_top, padding_bottom, padding_left, padding_right); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc( d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, Eigen::PaddingType::PADDING_VALID, output_kernel, padding_top, padding_bottom, padding_left, padding_right); } }; template <typename Device, typename OutputKernel> struct SpatialConvolution<Device, Eigen::half, OutputKernel> { void operator()(const Device& d, typename TTypes<Eigen::half, 4>::Tensor output, typename TTypes<Eigen::half, 4>::ConstTensor input, typename TTypes<Eigen::half, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel); } else { output.device(d) = Eigen::SpatialConvolution(input.cast<float>(), filter.cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::half>(); } } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel); } else { output.device(d) = Eigen::SpatialConvolution(input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::half>(); } } void operator()(const Device& d, typename TTypes<Eigen::half, 4>::Tensor output, typename TTypes<Eigen::half, 4>::ConstTensor input, typename TTypes<Eigen::half, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } else { output.device(d) = Eigen::SpatialConvolution( input.cast<float>(), filter.cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::half>(); } } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } else { output.device(d) = Eigen::SpatialConvolution( input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::half>(); } } }; template <typename Device, typename OutputKernel> struct SpatialConvolution<Device, Eigen::bfloat16, OutputKernel> { void operator()(const Device& d, typename TTypes<Eigen::bfloat16, 4>::Tensor output, typename TTypes<Eigen::bfloat16, 4>::ConstTensor input, typename TTypes<Eigen::bfloat16, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution(input.cast<float>(), filter.cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::bfloat16>(); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution(input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::bfloat16>(); } void operator()(const Device& d, typename TTypes<Eigen::bfloat16, 4>::Tensor output, typename TTypes<Eigen::bfloat16, 4>::ConstTensor input, typename TTypes<Eigen::bfloat16, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution( input.cast<float>(), filter.cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::bfloat16>(); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution( input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::bfloat16>(); } }; template <typename Device, typename T> struct SpatialConvolutionBackwardInputFunc { void operator()(const Device& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation) { input_backward.device(d) = Eigen::SpatialConvolutionBackwardInput( filter, output_backward, input_backward.dimension(2), input_backward.dimension(1), col_stride, row_stride, col_dilation, row_dilation); } }; template <typename T> struct SpatialConvolutionBackwardInputFunc<Eigen::GpuDevice, T> { void operator()(const Eigen::GpuDevice& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation) { To32Bit(input_backward).device(d) = Eigen::SpatialConvolutionBackwardInput( To32Bit(filter), To32Bit(output_backward), input_backward.dimension(2), input_backward.dimension(1), col_stride, row_stride, col_dilation, row_dilation); } }; template <typename Device, typename T> struct SpatialConvolutionBackwardInputWithExplicitPaddingFunc { void operator()(const Device& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex padded_cols, Eigen::DenseIndex padded_rows, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation, Eigen::DenseIndex pad_left, Eigen::DenseIndex pad_top) { input_backward.device(d) = Eigen::SpatialConvolutionBackwardInput( filter, output_backward, padded_cols, padded_rows, col_stride, row_stride, col_dilation, row_dilation) .eval() .slice(Eigen::DSizes<Eigen::DenseIndex, 4>{0, pad_left, pad_top, 0}, input_backward.dimensions()); } }; template <typename T> struct SpatialConvolutionBackwardInputWithExplicitPaddingFunc<Eigen::GpuDevice, T> { void operator()(const Eigen::GpuDevice& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex padded_cols, Eigen::DenseIndex padded_rows, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation, Eigen::DenseIndex pad_left, Eigen::DenseIndex pad_top) { To32Bit(input_backward).device(d) = Eigen::SpatialConvolutionBackwardInput( To32Bit(filter), To32Bit(output_backward), padded_cols, padded_rows, col_stride, row_stride, col_dilation, row_dilation) .eval() .slice(Eigen::DSizes<Eigen::DenseIndex, 4>{0, pad_left, pad_top, 0}, input_backward.dimensions()); } }; template <typename Device, typename T, typename OutputKernel = const Eigen::NoOpOutputKernel> struct MatMulConvFunctor { void operator()( const Device& d, typename TTypes<T, 2>::Tensor out, typename TTypes<T, 2>::ConstTensor in0, typename TTypes<T, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { out.device(d) = in0.contract(in1, dim_pair, output_kernel); } }; template <typename Device, typename OutputKernel> struct MatMulConvFunctor<Device, Eigen::half, OutputKernel> { void operator()( const Device& d, typename TTypes<Eigen::half, 2>::Tensor out, typename TTypes<Eigen::half, 2>::ConstTensor in0, typename TTypes<Eigen::half, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { out.device(d) = in0.contract(in1, dim_pair, output_kernel); } else { out.device(d) = in0.cast<float>() .contract(in1.template cast<float>(), dim_pair, output_kernel) .template cast<Eigen::half>(); } } }; template <typename Device, typename OutputKernel> struct MatMulConvFunctor<Device, Eigen::bfloat16, OutputKernel> { void operator()( const Device& d, typename TTypes<Eigen::bfloat16, 2>::Tensor out, typename TTypes<Eigen::bfloat16, 2>::ConstTensor in0, typename TTypes<Eigen::bfloat16, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { out.device(d) = in0.cast<float>() .contract(in1.cast<float>(), dim_pair, output_kernel) .template cast<Eigen::bfloat16>(); } }; template <typename Device, typename T, typename IndexType, int NDIMS> struct TransformFilter { void operator()(const Device& d, FilterTensorFormat dst_filter_format, typename TTypes<T, NDIMS, IndexType>::ConstTensor in, typename TTypes<T, NDIMS, IndexType>::Tensor out) { Eigen::DSizes<IndexType, NDIMS - 2> spatial_dims; for (int i = 0; i < spatial_dims.rank(); ++i) { spatial_dims[i] = in.dimension(i); } Eigen::DSizes<IndexType, 3> merged_dims; merged_dims[0] = spatial_dims.TotalSize(); merged_dims[1] = in.dimension(NDIMS - 2); merged_dims[2] = in.dimension(NDIMS - 1); Eigen::DSizes<IndexType, 3> shuffling_perm; Eigen::DSizes<IndexType, NDIMS> expanded_dims; if (dst_filter_format == FORMAT_OIHW) { shuffling_perm = Eigen::DSizes<IndexType, 3>(2, 1, 0); expanded_dims[0] = merged_dims[2]; expanded_dims[1] = merged_dims[1]; for (int i = 0; i < spatial_dims.rank(); ++i) { expanded_dims[2 + i] = spatial_dims[i]; } } else if (dst_filter_format == FORMAT_OHWI) { shuffling_perm = Eigen::DSizes<IndexType, 3>(2, 0, 1); expanded_dims[0] = merged_dims[2]; expanded_dims[NDIMS - 1] = merged_dims[1]; for (int i = 0; i < spatial_dims.rank(); ++i) { expanded_dims[1 + i] = spatial_dims[i]; } } else { DCHECK(false) << "Unsupported destination filter format: " << ToString(dst_filter_format); } out.device(d) = in.reshape(merged_dims).shuffle(shuffling_perm).reshape(expanded_dims); } }; template <typename Device, typename T, typename IndexType> struct TransformDepth { void operator()(const Device& d, typename TTypes<T, 4, IndexType>::ConstTensor in, const Eigen::DSizes<IndexType, 4>& shuffle, typename TTypes<T, 4, IndexType>::Tensor out) { Eigen::DSizes<IndexType, 3> merged_dims; Eigen::DSizes<IndexType, 4> expanded_dims; Eigen::DSizes<IndexType, 3> new_shuffle; if (shuffle[1] == 2 && shuffle[2] == 3) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1); merged_dims[2] = in.dimension(2) * in.dimension(3); new_shuffle[0] = shuffle[0]; new_shuffle[1] = 2; new_shuffle[2] = shuffle[3]; expanded_dims[0] = in.dimension(shuffle[0]); expanded_dims[1] = in.dimension(2); expanded_dims[2] = in.dimension(3); expanded_dims[3] = in.dimension(shuffle[3]); } else if (shuffle[0] == 2 && shuffle[1] == 3) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1); merged_dims[2] = in.dimension(2) * in.dimension(3); new_shuffle[0] = 2; new_shuffle[1] = shuffle[2]; new_shuffle[2] = shuffle[3]; expanded_dims[0] = in.dimension(2); expanded_dims[1] = in.dimension(3); expanded_dims[2] = in.dimension(shuffle[2]); expanded_dims[3] = in.dimension(shuffle[3]); } else if (shuffle[0] == 0 && shuffle[1] == 3 && shuffle[2] == 1 && shuffle[3] == 2) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1) * in.dimension(2); merged_dims[2] = in.dimension(3); new_shuffle[0] = 0; new_shuffle[1] = 2; new_shuffle[2] = 1; expanded_dims[0] = in.dimension(0); expanded_dims[1] = in.dimension(3); expanded_dims[2] = in.dimension(1); expanded_dims[3] = in.dimension(2); } else { assert(false && "unexpected shuffle"); } out.device(d) = in.reshape(merged_dims).shuffle(new_shuffle).reshape(expanded_dims); } }; template <typename Device, typename T, typename IndexType, int NDIMS> struct PadInput { void operator()(const Device& d, typename TTypes<T, NDIMS, IndexType>::ConstTensor in, const std::array<int, NDIMS - 2>& padding_left, const std::array<int, NDIMS - 2>& padding_right, typename TTypes<T, NDIMS, IndexType>::Tensor out, TensorFormat format, const T& padding_value) { Eigen::array<Eigen::IndexPair<IndexType>, NDIMS> padding; padding[GetTensorDimIndex<NDIMS - 2>(format, 'N')] = {0, 0}; for (int i = 0; i < NDIMS - 2; ++i) { padding[GetTensorDimIndex<NDIMS - 2>(format, '0' + i)] = { padding_left[i], padding_right[i]}; } padding[GetTensorDimIndex<NDIMS - 2>(format, 'C')] = {0, 0}; out.device(d) = in.pad(padding, padding_value); } }; template <typename Device, typename T, int NDIMS> struct NHWCToNCHW { void operator()(const Device& d, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; template <typename Device, typename T, int NDIMS> struct NCHWToNHWC { void operator()(const Device& d, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; template <typename Device, typename T, bool conjugate = false> struct SwapDimension1And2InTensor3 { void operator()(const Device& d, const T* in, const absl::Span<const int64_t>& input_dims, T* out); }; template <typename Device, typename T, bool conjugate = false> struct SwapDimension0And2InTensor3 { void operator()(const Device& d, const T* in, const absl::Span<const int64_t>& input_dims, T* out); }; template <typename Device, typename T, int NDIMS> struct ReverseTransformFilter { void operator()(const Device& d, FilterTensorFormat src_filter_format, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; } template <class T> class ConvAlgorithmMap; template <> class ConvAlgorithmMap<Eigen::ThreadPoolDevice> {}; } #endif
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/conv_2d_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Conv2D, 1x1) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(1) .KernelWidth(1) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, 3x3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, 3x3Stride2) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .StrideHeight(2) .StrideWidth(2) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, Grouped) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_per_group_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); auto groups_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 8), std::ref(rng)); auto groups = groups_rng(); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(groups * channel_per_group_rng()) .OutputChannels(groups * channel_per_group_rng()) .Groups(groups) .KernelHeight(3) .KernelWidth(3) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SmallKernelWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SmallKernelWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, StrideWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, StrideWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DilationWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto dilation_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .DilationHeight(dilation_rng()) .DilationWidth(dilation_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DilationWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto dilation_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .DilationHeight(dilation_rng()) .DilationWidth(dilation_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, TensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseFP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseTensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ReluActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ReluActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, Relu6Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Relu6Activation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ReluMinus1To1Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ReluMinus1To1Activation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DISABLED_TanhActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .TanhActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DISABLED_SignBitActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SignBitActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Test(xnnpack_delegate.get()); } TEST(Conv2D, WeightsCache) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); std::unique_ptr<TfLiteXNNPackDelegateWeightsCache, decltype(&TfLiteXNNPackDelegateWeightsCacheDelete)> weights_cache(TfLiteXNNPackDelegateWeightsCacheCreate(), TfLiteXNNPackDelegateWeightsCacheDelete); delegate_options.weights_cache = weights_cache.get(); std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .WeightsCache(weights_cache.get()) .Test(xnnpack_delegate.get()); } TEST(Conv2D, TransientIndirectionBuffer) { TfLiteXNNPackDelegateOptions xnnpack_options = TfLiteXNNPackDelegateOptionsDefault(); xnnpack_options.num_threads = 2; xnnpack_options.flags |= TFLITE_XNNPACK_DELEGATE_FLAG_TRANSIENT_INDIRECTION_BUFFER; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&xnnpack_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Test(xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/conv_2d.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/conv_2d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0e0bd9f-6772-4b67-a6fa-86f8287c9d5b
cpp
tensorflow/tensorflow
loss
tensorflow/core/kernels/loss.h
tensorflow/core/kernels/loss_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_LOSS_H_ #define TENSORFLOW_CORE_KERNELS_LOSS_H_ #include "tensorflow/core/lib/core/status.h" namespace tensorflow { class DualLossUpdater { public: virtual ~DualLossUpdater() {} virtual double ComputeUpdatedDual( const int num_loss_partitions, const double label, const double example_weight, const double current_dual, const double wx, const double weighted_example_norm) const = 0; virtual double ComputeDualLoss(const double current_dual, const double example_label, const double example_weight) const = 0; virtual double ComputePrimalLoss(const double wx, const double example_label, const double example_weight) const = 0; virtual double PrimalLossDerivative(const double wx, const double example_label, const double example_weight) const = 0; virtual double SmoothnessConstant() const = 0; virtual Status ConvertLabel(float* const example_label) const = 0; }; } #endif
#include <limits> #include "tensorflow/core/kernels/hinge-loss.h" #include "tensorflow/core/kernels/logistic-loss.h" #include "tensorflow/core/kernels/poisson-loss.h" #include "tensorflow/core/kernels/smooth-hinge-loss.h" #include "tensorflow/core/kernels/squared-loss.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { void TestComputeUpdatedDual(const DualLossUpdater &loss_updater, const int num_loss_partitions, const double label, const double example_weight, const double current_dual, const double wx, const double weighted_example_norm) { double new_dual = loss_updater.ComputeUpdatedDual( num_loss_partitions, label, example_weight, current_dual, wx, weighted_example_norm); double new_wx = wx + (new_dual - current_dual) * num_loss_partitions * weighted_example_norm * example_weight; EXPECT_NEAR(new_dual, -loss_updater.PrimalLossDerivative(new_wx, label, 1.0), 1e-5); } TEST(LogisticLoss, ComputePrimalLoss) { LogisticLossUpdater loss_updater; EXPECT_NEAR(0.693147, loss_updater.ComputePrimalLoss(0 , 1 , 1 ), 1e-3); EXPECT_NEAR(0.0, loss_updater.ComputePrimalLoss(70 , 1 , 1 ), 1e-3); EXPECT_NEAR(0.0, loss_updater.ComputePrimalLoss(-70 , -1 , 1 ), 1e-3); } TEST(LogisticLoss, ComputeDualLoss) { LogisticLossUpdater loss_updater; EXPECT_NEAR(0.0, loss_updater.ComputeDualLoss(0 , 1 , 1 ), 1e-3); EXPECT_NEAR(0.0, loss_updater.ComputeDualLoss(1 , 1 , 1 ), 1e-3); EXPECT_NEAR( -0.693147, loss_updater.ComputeDualLoss(0.5 , 1 , 1 ), 1e-3); } TEST(LogisticLoss, ComputeUpdatedDual) { LogisticLossUpdater loss_updater; TestComputeUpdatedDual(loss_updater, 1 , 1.0 , 1.0 , 0.5 , 0.3 , 10.0 ); TestComputeUpdatedDual(loss_updater, 2 , -1.0 , 1.0 , 0.1 , -0.8 , 10.0 ); } TEST(SquaredLoss, ComputePrimalLoss) { SquaredLossUpdater loss_updater; EXPECT_NEAR(0.5, loss_updater.ComputePrimalLoss(0.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(40.5, loss_updater.ComputePrimalLoss(10.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(0.125, loss_updater.ComputePrimalLoss(-0.5 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR(4.84, loss_updater.ComputePrimalLoss(1.2 , -1.0 , 2.0 ), 1e-3); } TEST(SquaredLoss, ComputeDualLoss) { SquaredLossUpdater loss_updater; EXPECT_NEAR( 0.0, loss_updater.ComputeDualLoss(0.0 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR( 0.66, loss_updater.ComputeDualLoss(0.2 , -1.0 , 3.0 ), 1e-3); EXPECT_NEAR( -0.375, loss_updater.ComputeDualLoss(1.5 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR( -1.125, loss_updater.ComputeDualLoss(0.5 , 1.0 , 3.0 ), 1e-3); } TEST(SquaredLoss, ComputeUpdatedDual) { SquaredLossUpdater loss_updater; TestComputeUpdatedDual(loss_updater, 1 , 1.0 , 1.0 , 0.3 , 0.3 , 10.0 ); TestComputeUpdatedDual(loss_updater, 5 , -1.0 , 1.0 , -0.4 , 0.8 , 10.0 ); } TEST(HingeLoss, ComputePrimalLoss) { HingeLossUpdater loss_updater; EXPECT_NEAR(1.0, loss_updater.ComputePrimalLoss(0.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(0.0, loss_updater.ComputePrimalLoss(10.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(0.5, loss_updater.ComputePrimalLoss(-0.5 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR(4.4, loss_updater.ComputePrimalLoss(1.2 , -1.0 , 2.0 ), 1e-3); } TEST(HingeLoss, ComputeDualLoss) { HingeLossUpdater loss_updater; EXPECT_NEAR( 0.0, loss_updater.ComputeDualLoss(0.0 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR( std::numeric_limits<double>::max(), loss_updater.ComputeDualLoss(0.2 , -1.0 , 3.0 ), 1e-3); EXPECT_NEAR( std::numeric_limits<double>::max(), loss_updater.ComputeDualLoss(1.5 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR( -1.5, loss_updater.ComputeDualLoss(0.5 , 1.0 , 3.0 ), 1e-3); } TEST(HingeLoss, ConvertLabel) { HingeLossUpdater loss_updater; float example_label = 1.0; Status status; TF_EXPECT_OK(loss_updater.ConvertLabel(&example_label)); EXPECT_EQ(1.0, example_label); example_label = 0.0; TF_EXPECT_OK(loss_updater.ConvertLabel(&example_label)); EXPECT_EQ(-1.0, example_label); example_label = 0.5; status = loss_updater.ConvertLabel(&example_label); EXPECT_FALSE(status.ok()); } TEST(HingeLoss, ComputeUpdatedDual) { HingeLossUpdater loss_updater; EXPECT_NEAR(0.507, loss_updater.ComputeUpdatedDual( 1 , 1.0 , 1.0 , 0.5 , 0.3 , 100.0 ), 1e-3); EXPECT_NEAR(-0.416, loss_updater.ComputeUpdatedDual( 10 , -1.0 , 1.0 , -0.4 , 0.6 , 10.0 ), 1e-3); TestComputeUpdatedDual(loss_updater, 1 , 1.0 , 1.0 , -0.5 , 0.3 , 10.0 ); TestComputeUpdatedDual(loss_updater, 1 , -1.0 , 2.0 , -1.0 , 0.3 , 10.0 ); } TEST(SmoothHingeLoss, ComputePrimalLoss) { SmoothHingeLossUpdater loss_updater; EXPECT_NEAR(0.5, loss_updater.ComputePrimalLoss(0.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(0.0, loss_updater.ComputePrimalLoss(10.0 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR(0.125, loss_updater.ComputePrimalLoss(-0.5 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR(3.4, loss_updater.ComputePrimalLoss(1.2 , -1.0 , 2.0 ), 1e-3); } TEST(SmoothHingeLoss, ComputeDualLoss) { SmoothHingeLossUpdater loss_updater; EXPECT_NEAR( 0.0, loss_updater.ComputeDualLoss(0.0 , -1.0 , 1.0 ), 1e-3); EXPECT_NEAR( std::numeric_limits<double>::max(), loss_updater.ComputeDualLoss(0.2 , -1.0 , 3.0 ), 1e-3); EXPECT_NEAR( std::numeric_limits<double>::max(), loss_updater.ComputeDualLoss(1.5 , 1.0 , 1.0 ), 1e-3); EXPECT_NEAR( -1.125, loss_updater.ComputeDualLoss(0.5 , 1.0 , 3.0 ), 1e-3); } TEST(SmoothHingeLoss, ComputeUpdatedDual) { SmoothHingeLossUpdater loss_updater; TestComputeUpdatedDual(loss_updater, 1 , 1.0 , 1.0 , 0.3 , 0.3 , 10.0 ); TestComputeUpdatedDual(loss_updater, 5 , -1.0 , 1.0 , -0.4 , 0.8 , 10.0 ); } TEST(PoissonLoss, ComputePrimalLoss) { PoissonLossUpdater loss_updater; EXPECT_NEAR(1.0, loss_updater.ComputePrimalLoss(0.0 , 3.0 , 1.0 ), 1e-3); EXPECT_NEAR(21996.0, loss_updater.ComputePrimalLoss(10.0 , 3.0 , 1.0 ), 1.0); EXPECT_NEAR(0.606, loss_updater.ComputePrimalLoss(-0.5 , 0.0 , 1.0 ), 1e-3); EXPECT_NEAR(6.64, loss_updater.ComputePrimalLoss(1.2 , 0.0 , 2.0 ), 1e-2); } TEST(PoissonLoss, ComputeDualLoss) { PoissonLossUpdater loss_updater; EXPECT_NEAR( std::numeric_limits<double>::max(), loss_updater.ComputeDualLoss(1.0 , 0.0 , 1.0 ), 1e-3); EXPECT_NEAR( 0.0, loss_updater.ComputeDualLoss(0.0 , 0.0 , 3.0 ), 1e-3); EXPECT_NEAR( -0.847, loss_updater.ComputeDualLoss(1.5 , 2.0 , 1.0 ), 1e-3); EXPECT_NEAR( -2.675, loss_updater.ComputeDualLoss(0.5 , 2.0 , 3.0 ), 1e-3); } TEST(PoissonLoss, ConvertLabel) { PoissonLossUpdater loss_updater; float example_label = -1.0; Status status = loss_updater.ConvertLabel(&example_label); EXPECT_FALSE(status.ok()); } TEST(PoissonLoss, ComputeUpdatedDual) { PoissonLossUpdater loss_updater; TestComputeUpdatedDual(loss_updater, 1 , 2.0 , 1.0 , 0.5 , 0.3 , 10.0 ); TestComputeUpdatedDual(loss_updater, 2 , 0.0 , 1.0 , 0.0 , -0.8 , 10.0 ); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/loss.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/loss_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7f13d784-1dd3-4570-9e98-e4867d47a9bd
cpp
tensorflow/tensorflow
shared_batch_scheduler
tensorflow/core/kernels/batching_util/shared_batch_scheduler.h
tensorflow/core/kernels/batching_util/shared_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SHARED_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SHARED_BATCH_SCHEDULER_H_ #include <stddef.h> #include <atomic> #include <cstddef> #include <cstdint> #include <deque> #include <functional> #include <list> #include <memory> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/time/clock.h" #include "tensorflow/core/kernels/batching_util/batch_input_task.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler_utils.h" #include "tensorflow/core/kernels/batching_util/batch_stats.h" #include "tensorflow/core/kernels/batching_util/periodic_function.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" #include "tensorflow/core/profiler/lib/context_types.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tsl/platform/criticality.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class Queue; } } } namespace tensorflow { namespace serving { template <typename TaskType> class SharedBatchScheduler : public std::enable_shared_from_this<SharedBatchScheduler<TaskType>> { public: using BatchTaskUniquePtr = std::unique_ptr<Batch<TaskType>>; using ProcessBatchCallback = std::variant<std::function<void(BatchTaskUniquePtr)>, std::function<void(BatchTaskUniquePtr, std::vector<std::unique_ptr<TaskType>>)>>; struct Options { string thread_pool_name = {"batch_threads"}; int num_batch_threads = port::MaxParallelism(); Env* env = Env::Default(); }; static Status Create( const Options& options, std::shared_ptr<SharedBatchScheduler<TaskType>>* scheduler); virtual ~SharedBatchScheduler(); struct QueueOptions { size_t input_batch_size_limit = 1000; int64_t batch_timeout_micros = 0; size_t max_enqueued_batches = 10; bool enable_large_batch_splitting = false; std::function<Status(std::unique_ptr<TaskType>* input_task, int first_output_task_size, int input_batch_size_limit, std::vector<std::unique_ptr<TaskType>>* output_tasks)> split_input_task_func; size_t max_execution_batch_size = 1000; std::vector<int32> allowed_batch_sizes; bool disable_padding = false; string batch_padding_policy = string(kPadUpPolicy); ModelBatchStats* model_batch_stats = nullptr; bool enable_priority_queue = false; struct PriorityQueueOptions { size_t max_execution_batch_size = 0; int64_t batch_timeout_micros = 0; size_t input_batch_size_limit = 0; size_t max_enqueued_batches = 0; std::vector<int32> allowed_batch_sizes; }; PriorityQueueOptions high_priority_queue_options; PriorityQueueOptions low_priority_queue_options; MixedPriorityBatchingPolicy mixed_priority_batching_policy = MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize; }; virtual Status AddQueue(const QueueOptions& options, ProcessBatchCallback process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); protected: explicit SharedBatchScheduler(const Options& options); private: void GetNextWorkItem_Locked(internal::Queue<TaskType>** queue_for_batch_out, BatchTaskUniquePtr* batch_to_process_out) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void ThreadLogic(); Status AddQueueAfterRewritingOptions( const QueueOptions& options, ProcessBatchCallback process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); static bool BatchExists(const BatchTaskUniquePtr& batch_to_process); const Options options_; mutex mu_; using QueueList = std::list<std::unique_ptr<internal::Queue<TaskType>>>; QueueList queues_ TF_GUARDED_BY(mu_); typename QueueList::iterator next_queue_to_schedule_ TF_GUARDED_BY(mu_); condition_variable schedulable_batch_cv_; std::vector<std::unique_ptr<PeriodicFunction>> batch_threads_; SharedBatchScheduler(const SharedBatchScheduler&) = delete; void operator=(const SharedBatchScheduler&) = delete; }; namespace internal { template <typename TaskType> class Queue { public: using ProcessBatchCallbackWithoutPaddingTasks = std::function<void(std::unique_ptr<Batch<TaskType>>)>; using ProcessBatchCallbackWithPaddingTasks = std::function<void(std::unique_ptr<Batch<TaskType>>, std::vector<std::unique_ptr<TaskType>>)>; using ProcessBatchCallback = std::variant<ProcessBatchCallbackWithoutPaddingTasks, ProcessBatchCallbackWithPaddingTasks>; using SchedulableBatchCallback = std::function<void()>; using SplitInputTaskIntoSubtasksCallback = std::function<Status( std::unique_ptr<TaskType>* input_task, int open_batch_remaining_slot, int max_execution_batch_size, std::vector<std::unique_ptr<TaskType>>* output_tasks)>; Queue(const typename SharedBatchScheduler<TaskType>::QueueOptions& options, Env* env, ProcessBatchCallback process_batch_callback, SchedulableBatchCallback schedulable_batch_callback); ~Queue(); Status Schedule(std::unique_ptr<TaskType>* task); size_t NumEnqueuedTasks() const; size_t SchedulingCapacity() const; size_t max_task_size() const { return options_.input_batch_size_limit; } size_t max_execution_batch_size() const { return max_execution_batch_size_; } typename SharedBatchScheduler<TaskType>::BatchTaskUniquePtr ScheduleBatch(); std::vector<std::unique_ptr<TaskType>> GetLowPriorityTasksForPadding( size_t batch_size); void ProcessBatch(std::unique_ptr<Batch<TaskType>> batch, std::vector<std::unique_ptr<TaskType>> padding_task); bool IsEmpty() const; void CloseAndWaitUntilEmpty(); bool closed() const TF_NO_THREAD_SAFETY_ANALYSIS { return closed_.load(); } private: static size_t GetMaxExecutionBatchSize( const typename SharedBatchScheduler<TaskType>::QueueOptions& options) { if (options.enable_large_batch_splitting) { return options.max_execution_batch_size; } else { return options.input_batch_size_limit; } } bool IsEmptyInternal() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); bool IsLowPriorityTask(std::unique_ptr<TaskType>* task); Status ScheduleWithoutOrEagerSplitImpl(std::unique_ptr<TaskType>* task) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void StartNewBatch() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status SplitInputBatchIntoSubtasks( std::unique_ptr<TaskType>* input_task, std::vector<std::unique_ptr<TaskType>>* output_tasks) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); bool IsOpenBatchSchedulable() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); std::unique_ptr<Batch<TaskType>> ScheduleLowPriorityBatch() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); size_t SchedulingCapacityInternal() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status ValidateBatchTaskQueueCapacity(TaskType* task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status ValidateLowPriorityTaskQueueCapacity(const TaskType& task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); size_t tail_batch_task_size() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); int64 num_enqueued_batches() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); std::deque<std::unique_ptr<Batch<TaskType>>>& GetBatches() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); const std::deque<std::unique_ptr<Batch<TaskType>>>& GetBatches() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); TaskQueue<TaskType>& GetLowPriorityTaskQueue() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); std::vector<std::unique_ptr<TaskType>> GetLowPriorityTasks(size_t size); const typename SharedBatchScheduler<TaskType>::QueueOptions options_; Env* env_; const size_t max_execution_batch_size_; ProcessBatchCallback process_batch_callback_; SchedulableBatchCallback schedulable_batch_callback_; mutable mutex mu_; std::atomic<bool> closed_ TF_GUARDED_BY(mu_){false}; TaskQueue<TaskType> low_priority_tasks_ TF_GUARDED_BY(mu_); std::deque<std::unique_ptr<Batch<TaskType>>> low_priority_batches_ TF_GUARDED_BY(mu_); std::deque<std::unique_ptr<Batch<TaskType>>> high_priority_batches_ TF_GUARDED_BY(mu_); uint64 traceme_context_id_counter_ TF_GUARDED_BY(mu_) = 0; uint64 open_batch_start_time_micros_ TF_GUARDED_BY(mu_); bool schedulable_batch_ TF_GUARDED_BY(mu_) = false; int num_batches_being_processed_ TF_GUARDED_BY(mu_) = 0; Notification* empty_notification_ TF_GUARDED_BY(mu_) = nullptr; Queue(const Queue&) = delete; void operator=(const Queue&) = delete; }; template <typename TaskType> class QueueHandle : public BatchScheduler<TaskType> { public: QueueHandle(std::shared_ptr<SharedBatchScheduler<TaskType>> scheduler, Queue<TaskType>* queue); ~QueueHandle() override; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; size_t max_task_size() const override { return queue_->max_task_size(); } private: std::shared_ptr<SharedBatchScheduler<TaskType>> scheduler_; Queue<TaskType>* queue_; QueueHandle(const QueueHandle&) = delete; void operator=(const QueueHandle&) = delete; }; } template <typename TaskType> Status SharedBatchScheduler<TaskType>::Create( const Options& options, std::shared_ptr<SharedBatchScheduler<TaskType>>* scheduler) { if (options.num_batch_threads < 1) { return errors::InvalidArgument("num_batch_threads must be positive; was ", options.num_batch_threads); } scheduler->reset(new SharedBatchScheduler<TaskType>(options)); return absl::OkStatus(); } template <typename TaskType> SharedBatchScheduler<TaskType>::~SharedBatchScheduler() { for (;;) { { mutex_lock l(mu_); if (queues_.empty()) { break; } } const int64_t kSleepTimeMicros = 100; options_.env->SleepForMicroseconds(kSleepTimeMicros); } batch_threads_.clear(); } template <typename TaskType> Status SharedBatchScheduler<TaskType>::AddQueue( const QueueOptions& options, ProcessBatchCallback process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { QueueOptions rewrite_options = options; if ((!rewrite_options.enable_large_batch_splitting) && rewrite_options.max_enqueued_batches == 0) { rewrite_options.max_enqueued_batches = 1; } return AddQueueAfterRewritingOptions(rewrite_options, process_batch_callback, queue); } template <typename TaskType> Status SharedBatchScheduler<TaskType>::AddQueueAfterRewritingOptions( const QueueOptions& options, ProcessBatchCallback process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { if (options.input_batch_size_limit == 0) { return errors::InvalidArgument( "input_batch_size_limit must be positive; was ", options.input_batch_size_limit); } if (options.batch_timeout_micros < 0) { return errors::InvalidArgument( "batch_timeout_micros must be non-negative; was ", options.batch_timeout_micros); } if (options.max_enqueued_batches == 0) { return errors::InvalidArgument( "max_enqueued_batches must be positive; was ", options.max_enqueued_batches); } if (options.enable_large_batch_splitting && options.split_input_task_func == nullptr) { return errors::InvalidArgument( "split_input_task_func must be specified when split_input_task is " "true: ", options.enable_large_batch_splitting); } if (options.enable_large_batch_splitting && (options.input_batch_size_limit < options.max_execution_batch_size)) { return errors::InvalidArgument( "When enable_large_batch_splitting is true, input_batch_size_limit " "must be " "greater than or equal to max_execution_batch_size.", options.enable_large_batch_splitting, options.input_batch_size_limit, options.max_execution_batch_size); } auto schedulable_batch_callback = [this] { mutex_lock l(mu_); schedulable_batch_cv_.notify_one(); }; auto internal_queue = std::unique_ptr<internal::Queue<TaskType>>(new internal::Queue<TaskType>( options, options_.env, process_batch_callback, schedulable_batch_callback)); auto handle = std::unique_ptr<BatchScheduler<TaskType>>( new internal::QueueHandle<TaskType>(this->shared_from_this(), internal_queue.get())); { mutex_lock l(mu_); queues_.push_back(std::move(internal_queue)); if (next_queue_to_schedule_ == queues_.end()) { next_queue_to_schedule_ = queues_.begin(); } } *queue = std::move(handle); return absl::OkStatus(); } template <typename TaskType> SharedBatchScheduler<TaskType>::SharedBatchScheduler(const Options& options) : options_(options), next_queue_to_schedule_(queues_.end()) { PeriodicFunction::Options periodic_fn_options; periodic_fn_options.thread_name_prefix = strings::StrCat(options.thread_pool_name, "_"); for (int i = 0; i < options.num_batch_threads; ++i) { std::unique_ptr<PeriodicFunction> thread(new PeriodicFunction( [this] { this->ThreadLogic(); }, 0 , periodic_fn_options)); batch_threads_.push_back(std::move(thread)); } } template <typename TaskType> bool SharedBatchScheduler<TaskType>::BatchExists( const BatchTaskUniquePtr& batch_to_process) { return batch_to_process != nullptr; } template <typename TaskType> void SharedBatchScheduler<TaskType>::GetNextWorkItem_Locked( internal::Queue<TaskType>** queue_for_batch_out, BatchTaskUniquePtr* batch_to_process_out) { BatchTaskUniquePtr batch_to_process; internal::Queue<TaskType>* queue_for_batch = nullptr; const int num_queues = queues_.size(); for (int num_queues_tried = 0; !BatchExists(batch_to_process) && num_queues_tried < num_queues; ++num_queues_tried) { DCHECK(next_queue_to_schedule_ != queues_.end()); const bool queue_closed = (*next_queue_to_schedule_)->closed(); batch_to_process = (*next_queue_to_schedule_)->ScheduleBatch(); if (BatchExists(batch_to_process)) { queue_for_batch = next_queue_to_schedule_->get(); } if (queue_closed && (*next_queue_to_schedule_)->IsEmpty() && !BatchExists(batch_to_process)) { DCHECK_NE(queue_for_batch, next_queue_to_schedule_->get()); next_queue_to_schedule_ = queues_.erase(next_queue_to_schedule_); } else { ++next_queue_to_schedule_; } if (next_queue_to_schedule_ == queues_.end() && !queues_.empty()) { next_queue_to_schedule_ = queues_.begin(); } } *queue_for_batch_out = queue_for_batch; *batch_to_process_out = std::move(batch_to_process); } template <typename TaskType> void SharedBatchScheduler<TaskType>::ThreadLogic() { BatchTaskUniquePtr batch_to_process; internal::Queue<TaskType>* queue_for_batch = nullptr; { mutex_lock l(mu_); while (true) { GetNextWorkItem_Locked(&queue_for_batch, &batch_to_process); if (BatchExists(batch_to_process)) break; const int64_t kTimeoutMillis = 1; WaitForMilliseconds(&l, &schedulable_batch_cv_, kTimeoutMillis); if (queues_.empty()) return; } } size_t batch_size_to_schedule = batch_to_process->size(); queue_for_batch->ProcessBatch( std::move(batch_to_process), queue_for_batch->GetLowPriorityTasksForPadding(batch_size_to_schedule)); } namespace internal { template <typename TaskType> Queue<TaskType>::Queue( const typename SharedBatchScheduler<TaskType>::QueueOptions& options, Env* env, ProcessBatchCallback process_batch_callback, SchedulableBatchCallback schedulable_batch_callback) : options_(options), env_(env), max_execution_batch_size_(GetMaxExecutionBatchSize(options_)), process_batch_callback_(process_batch_callback), schedulable_batch_callback_(schedulable_batch_callback) { traceme_context_id_counter_ = (absl::GetCurrentTimeNanos() & 0xFFFFFFFF) << 32; GetBatches().emplace_back(new Batch<TaskType>); } template <typename TaskType> Queue<TaskType>::~Queue() { mutex_lock l(mu_); DCHECK(IsEmptyInternal()); GetBatches().back()->Close(); } template <typename TaskType> bool Queue<TaskType>::IsLowPriorityTask(std::unique_ptr<TaskType>* task) { if (!options_.enable_priority_queue) { return false; } if constexpr (std::is_base_of_v<BatchTask, TaskType>) { return ((*task)->criticality() == tsl::criticality::Criticality::kSheddablePlus || (*task)->criticality() == tsl::criticality::Criticality::kSheddable); } return false; } template <typename TaskType> Status Queue<TaskType>::ScheduleWithoutOrEagerSplitImpl( std::unique_ptr<TaskType>* task) { TF_RETURN_IF_ERROR(ValidateBatchTaskQueueCapacity((*task).get())); std::deque<std::unique_ptr<Batch<TaskType>>>& batches = GetBatches(); const int64_t open_batch_remaining_slot = max_execution_batch_size() - batches.back()->size(); const int64_t input_task_size = (*task)->size(); std::vector<std::unique_ptr<TaskType>> output_tasks; if (input_task_size <= open_batch_remaining_slot || !options_.enable_large_batch_splitting) { output_tasks.push_back(std::move(*task)); } else { TF_RETURN_IF_ERROR(SplitInputBatchIntoSubtasks(task, &output_tasks)); } for (int i = 0; i < output_tasks.size(); ++i) { if (batches.back()->size() + output_tasks[i]->size() > max_execution_batch_size()) { StartNewBatch(); } if (batches.back()->empty()) { open_batch_start_time_micros_ = env_->NowMicros(); } tsl::profiler::TraceMeProducer trace_me( [&output_tasks, i] { return profiler::TraceMeEncode("ScheduleOutputTask", {{"size", output_tasks[i]->size()}}); }, tsl::profiler::ContextType::kSharedBatchScheduler, batches.back()->traceme_context_id()); batches.back()->AddTask(std::move(output_tasks[i])); } return absl::OkStatus(); } template <typename TaskType> Status Queue<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { const bool large_batch_splitting = options_.enable_large_batch_splitting; tsl::profiler::TraceMe trace_me([task, large_batch_splitting] { return profiler::TraceMeEncode( large_batch_splitting ? "ScheduleWithEagerSplit" : "ScheduleWithoutSplit", {{"batching_input_task_size", (*task)->size()}}); }); bool notify_of_schedulable_batch = false; { mutex_lock l(mu_); DCHECK(!closed_); if (IsLowPriorityTask(task)) { TF_RETURN_IF_ERROR(ValidateLowPriorityTaskQueueCapacity(**task)); low_priority_tasks_.AddTask(std::move(*task), env_->NowMicros()); } else { TF_RETURN_IF_ERROR(ScheduleWithoutOrEagerSplitImpl(task)); } if (!schedulable_batch_) { if (GetBatches().size() > 1 || IsOpenBatchSchedulable()) { schedulable_batch_ = true; notify_of_schedulable_batch = true; } } } if (notify_of_schedulable_batch) { schedulable_batch_callback_(); } return absl::OkStatus(); } template <typename TaskType> size_t Queue<TaskType>::NumEnqueuedTasks() const { size_t num_enqueued_tasks = 0; mutex_lock l(mu_); for (const auto& batch : GetBatches()) { num_enqueued_tasks += batch->num_tasks(); } return num_enqueued_tasks + low_priority_tasks_.num_tasks(); } template <typename TaskType> size_t Queue<TaskType>::SchedulingCapacity() const { mutex_lock l(mu_); return SchedulingCapacityInternal(); } template <typename TaskType> size_t Queue<TaskType>::SchedulingCapacityInternal() const { const int64 num_new_batches_schedulable = static_cast<int64_t>(options_.max_enqueued_batches) - this->num_enqueued_batches(); const int64 execution_batch_size_limit = max_execution_batch_size(); const int64 open_batch_capacity = execution_batch_size_limit - this->tail_batch_task_size(); return (num_new_batches_schedulable * execution_batch_size_limit) + open_batch_capacity; } template <typename TaskType> Status Queue<TaskType>::ValidateBatchTaskQueueCapacity(TaskType* task) const { if (task->size() > options_.input_batch_size_limit) { return absl::InvalidArgumentError(absl::StrFormat( "Task size %d is larger than maximum input batch size %d", task->size(), options_.input_batch_size_limit)); } if (options_.enable_large_batch_splitting) { if (task->size() > SchedulingCapacityInternal()) { return errors::Unavailable( "The batch scheduling queue to which this task was submitted is " "full; task size is ", task->size(), " but scheduling capacity is only ", SchedulingCapacityInternal(), " (num_enqueued_batches=", num_enqueued_batches(), ", max_enqueued_batches=", options_.max_enqueued_batches, ", open_batch_size=", tail_batch_task_size(), ", max_execution_batch_size=", max_execution_batch_size(), ")"); } return absl::OkStatus(); } const std::deque<std::unique_ptr<Batch<TaskType>>>& batches = GetBatches(); if (batches.back()->size() + task->size() > options_.input_batch_size_limit) { if (batches.size() >= options_.max_enqueued_batches) { return errors::Unavailable( "The batch scheduling queue to which this task was submitted is " "full; currently ", batches.size(), " batches enqueued and max_enqueued_batches is ", options_.max_enqueued_batches); } } return absl::OkStatus(); } template <typename TaskType> Status Queue<TaskType>::ValidateLowPriorityTaskQueueCapacity( const TaskType& task) const { if (task.size() > options_.low_priority_queue_options.max_execution_batch_size) { return absl::UnavailableError(absl::StrFormat( "The low priority task queue to which this task was submitted has " "max_execution_batch_size=%d and the task size is %d", options_.low_priority_queue_options.max_execution_batch_size, task.size())); } if (low_priority_tasks_.size() + task.size() > options_.low_priority_queue_options.max_enqueued_batches * options_.low_priority_queue_options.max_execution_batch_size) { return absl::UnavailableError(absl::StrFormat( "The low priority task queue to which this task was submitted does not " "have the capcity to handle this task; currently the low priority " "queue has %d tasks enqueued and the submitted task size is %d while " "max_enqueued_batches=%d and max_execution_batch_size=%d", low_priority_tasks_.size(), task.size(), options_.low_priority_queue_options.max_enqueued_batches, options_.low_priority_queue_options.max_execution_batch_size)); } return absl::OkStatus(); } template <typename TaskType> typename SharedBatchScheduler<TaskType>::BatchTaskUniquePtr Queue<TaskType>::ScheduleBatch() { std::unique_ptr<Batch<TaskType>> batch_to_schedule; { mutex_lock l(mu_); std::deque<std::unique_ptr<Batch<TaskType>>>& batches = GetBatches(); if (batches.size() == 1 && IsOpenBatchSchedulable()) { Batch<TaskType>& old_batch = *batches[0]; std::vector<std::unique_ptr<TaskType>> trimmed_tasks; MaybeBatchDown( old_batch, options_.allowed_batch_sizes, options_.disable_padding, options_.batch_padding_policy, options_.model_batch_stats, trimmed_tasks); StartNewBatch(); Batch<TaskType>& new_batch = *batches[1]; for (std::unique_ptr<TaskType>& task : trimmed_tasks) { new_batch.AddTask(std::move(task)); } if (!new_batch.empty()) { double position = static_cast<double>(old_batch.size()) / (old_batch.size() + new_batch.size()); open_batch_start_time_micros_ += (env_->NowMicros() - open_batch_start_time_micros_) * position; } } if (batches.size() >= 2) { batch_to_schedule = std::move(batches.front()); batches.pop_front(); } if (batch_to_schedule == nullptr) { batch_to_schedule = ScheduleLowPriorityBatch(); } if (batch_to_schedule == nullptr) { schedulable_batch_ = false; return batch_to_schedule; } ++num_batches_being_processed_; } return batch_to_schedule; } template <typename TaskType> std::vector<std::unique_ptr<TaskType>> Queue<TaskType>::GetLowPriorityTasks( size_t size) { std::vector<std::unique_ptr<TaskType>> low_priority_tasks_to_pad; if (!options_.enable_priority_queue || size == 0) return low_priority_tasks_to_pad; { mutex_lock l(mu_); low_priority_tasks_to_pad = GetLowPriorityTaskQueue().RemoveTask(size); } return low_priority_tasks_to_pad; } template <typename TaskType> std::vector<std::unique_ptr<TaskType>> Queue<TaskType>::GetLowPriorityTasksForPadding(size_t batch_size) { size_t target_batch_size; switch (options_.mixed_priority_batching_policy) { case MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize: target_batch_size = max_execution_batch_size(); break; case MixedPriorityBatchingPolicy:: kLowPriorityPaddingWithNextAllowedBatchSize: target_batch_size = GetNextAllowedBatchSize( batch_size, options_.allowed_batch_sizes, options_.disable_padding); break; default: target_batch_size = 0; break; } if (target_batch_size <= batch_size) { return {}; } return GetLowPriorityTasks(target_batch_size - batch_size); } template <typename TaskType> void Queue<TaskType>::ProcessBatch( std::unique_ptr<Batch<TaskType>> batch, std::vector<std::unique_ptr<TaskType>> padding_task) { tsl::profiler::TraceMeConsumer trace_me( [&] { return profiler::TraceMeEncode( "ProcessBatch", {{"batch_size_before_padding", batch->size()}, {"_r", 2} }); }, tsl::profiler::ContextType::kSharedBatchScheduler, batch->traceme_context_id()); if (std::holds_alternative<ProcessBatchCallbackWithoutPaddingTasks>( process_batch_callback_)) { std::get<ProcessBatchCallbackWithoutPaddingTasks>(process_batch_callback_)( std::move(batch)); } else { std::get<ProcessBatchCallbackWithPaddingTasks>(process_batch_callback_)( std::move(batch), std::move(padding_task)); } { mutex_lock l(mu_); --num_batches_being_processed_; if (empty_notification_ != nullptr && IsEmptyInternal()) { empty_notification_->Notify(); } } } template <typename TaskType> bool Queue<TaskType>::IsEmpty() const { mutex_lock l(mu_); return IsEmptyInternal(); } template <typename TaskType> void Queue<TaskType>::CloseAndWaitUntilEmpty() { Notification empty; { mutex_lock l(mu_); closed_ = true; if (IsEmptyInternal()) { empty.Notify(); } else { empty_notification_ = &empty; } } empty.WaitForNotification(); } template <typename TaskType> bool Queue<TaskType>::IsEmptyInternal() const { const std::deque<std::unique_ptr<Batch<TaskType>>>& batches = GetBatches(); return num_batches_being_processed_ == 0 && batches.size() == 1 && batches.back()->empty() && low_priority_tasks_.empty(); } template <typename TaskType> void Queue<TaskType>::StartNewBatch() { std::deque<std::unique_ptr<Batch<TaskType>>>& batches = GetBatches(); batches.back()->Close(); batches.emplace_back(new Batch<TaskType>(++traceme_context_id_counter_)); } template <typename TaskType> Status Queue<TaskType>::SplitInputBatchIntoSubtasks( std::unique_ptr<TaskType>* input_task, std::vector<std::unique_ptr<TaskType>>* output_tasks) { const int open_batch_remaining_slot = max_execution_batch_size() - this->tail_batch_task_size(); return options_.split_input_task_func( std::move(input_task), open_batch_remaining_slot, max_execution_batch_size(), std::move(output_tasks)); } template <typename TaskType> bool Queue<TaskType>::IsOpenBatchSchedulable() const { Batch<TaskType>* open_batch = GetBatches().back().get(); if (open_batch->empty()) { return false; } return closed_ || open_batch->size() >= max_execution_batch_size() || env_->NowMicros() >= open_batch_start_time_micros_ + options_.batch_timeout_micros; } template <typename TaskType> std::unique_ptr<Batch<TaskType>> Queue<TaskType>::ScheduleLowPriorityBatch() { std::unique_ptr<Batch<TaskType>> batch_to_schedule; if (!options_.enable_priority_queue || low_priority_tasks_.empty()) { return batch_to_schedule; } if (env_->NowMicros() < *low_priority_tasks_.EarliestTaskStartTime() + options_.low_priority_queue_options.batch_timeout_micros && low_priority_tasks_.size() < options_.low_priority_queue_options.max_execution_batch_size) { return batch_to_schedule; } if (!GetBatches().empty() && !GetBatches().front()->empty()) { return batch_to_schedule; } batch_to_schedule = std::make_unique<Batch<TaskType>>(); for (std::unique_ptr<TaskType>& task : low_priority_tasks_.RemoveTask( options_.low_priority_queue_options.max_execution_batch_size)) { batch_to_schedule->AddTask(std::move(task)); } batch_to_schedule->Close(); return batch_to_schedule; } template <typename TaskType> size_t Queue<TaskType>::tail_batch_task_size() const { return GetBatches().back()->size(); } template <typename TaskType> int64 Queue<TaskType>::num_enqueued_batches() const { return GetBatches().size(); } template <typename TaskType> std::deque<std::unique_ptr<Batch<TaskType>>>& Queue<TaskType>::GetBatches() { return high_priority_batches_; } template <typename TaskType> const std::deque<std::unique_ptr<Batch<TaskType>>>& Queue<TaskType>::GetBatches() const { return high_priority_batches_; } template <typename TaskType> TaskQueue<TaskType>& Queue<TaskType>::GetLowPriorityTaskQueue() { return low_priority_tasks_; } template <typename TaskType> QueueHandle<TaskType>::QueueHandle( std::shared_ptr<SharedBatchScheduler<TaskType>> scheduler, Queue<TaskType>* queue) : scheduler_(scheduler), queue_(queue) {} template <typename TaskType> QueueHandle<TaskType>::~QueueHandle() { queue_->CloseAndWaitUntilEmpty(); } template <typename TaskType> Status QueueHandle<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { return queue_->Schedule(task); } template <typename TaskType> size_t QueueHandle<TaskType>::NumEnqueuedTasks() const { return queue_->NumEnqueuedTasks(); } template <typename TaskType> size_t QueueHandle<TaskType>::SchedulingCapacity() const { return queue_->SchedulingCapacity(); } } } } #endif
#include "tensorflow/core/kernels/batching_util/shared_batch_scheduler.h" #include <cstddef> #include <memory> #include <string> #include <thread> #include <tuple> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/base/call_once.h" #include "absl/container/fixed_array.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler_utils.h" #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/criticality.h" namespace tensorflow { namespace serving { namespace { using ::testing::HasSubstr; class FakeTask : public BatchTask { public: explicit FakeTask(size_t size, tsl::criticality::Criticality criticality = tsl::criticality::Criticality::kCritical) : size_(size), criticality_(criticality) {} ~FakeTask() override = default; size_t size() const override { return size_; } tsl::criticality::Criticality criticality() const override { return criticality_; } private: const size_t size_; const tsl::criticality::Criticality criticality_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; class FakeTaskWithoutCriticality { public: explicit FakeTaskWithoutCriticality(size_t size) : size_(size) {} ~FakeTaskWithoutCriticality() = default; size_t size() const { return size_; } private: const size_t size_; FakeTaskWithoutCriticality(const FakeTaskWithoutCriticality&) = delete; void operator=(const FakeTaskWithoutCriticality&) = delete; }; using Queue = BatchScheduler<FakeTask>; using Scheduler = SharedBatchScheduler<FakeTask>; using QueueOptions = Scheduler::QueueOptions; using SplitFunc = std::function<Status(std::unique_ptr<FakeTask>* input_task, int first_output_task_size, int input_batch_size_limit, std::vector<std::unique_ptr<FakeTask>>* output_tasks)>; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler, tsl::criticality::Criticality criticality = tsl::criticality::Criticality::kCritical) { std::unique_ptr<FakeTask> task(new FakeTask(task_size, criticality)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } Status ScheduleTaskWithoutCriticality( size_t task_size, BatchScheduler<FakeTaskWithoutCriticality>* scheduler) { std::unique_ptr<FakeTaskWithoutCriticality> task( new FakeTaskWithoutCriticality(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } std::unique_ptr<Thread> CreateFakeClockAdvancerThread( test_util::FakeClockEnv* env, Notification* start, Notification* stop) { return std::unique_ptr<Thread>(Env::Default()->StartThread( {}, "FakeClockAdvancerThread", [env, start, stop] { start->WaitForNotification(); while (!stop->HasBeenNotified()) { env->AdvanceByMicroseconds(10); Env::Default()->SleepForMicroseconds(10); } })); } std::shared_ptr<Scheduler> CreateSharedBatchScheduler( int num_batch_threads, Env* env = Env::Default()) { Scheduler::Options options; options.num_batch_threads = num_batch_threads; options.env = env; std::shared_ptr<Scheduler> shared_batch_scheduler; TF_CHECK_OK(Scheduler::Create(options, &shared_batch_scheduler)); return shared_batch_scheduler; } std::unique_ptr<Queue> CreateQueue( std::shared_ptr<Scheduler> scheduler, Scheduler::QueueOptions queue_options, internal::Queue<FakeTask>::ProcessBatchCallback process_batch_callback) { std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_CHECK_OK( scheduler->AddQueue(queue_options, process_batch_callback, &queue)); return queue; } QueueOptions CreateQueueOptions(size_t max_execution_batch_size, size_t input_batch_size_limit, size_t batch_timeout_micros, size_t max_enqueued_batches, bool enable_large_batch_splitting, SplitFunc split_func, bool enable_priority_queue = false) { QueueOptions queue_options; queue_options.max_enqueued_batches = max_enqueued_batches; queue_options.max_execution_batch_size = max_execution_batch_size; queue_options.input_batch_size_limit = input_batch_size_limit; queue_options.batch_timeout_micros = batch_timeout_micros; queue_options.enable_large_batch_splitting = enable_large_batch_splitting; queue_options.enable_priority_queue = enable_priority_queue; if (enable_large_batch_splitting) { queue_options.split_input_task_func = split_func; } return queue_options; } class SharedBatchSchedulerTestBase { public: SharedBatchSchedulerTestBase() = default; virtual ~SharedBatchSchedulerTestBase() = default; protected: QueueOptions CreateQueueOptions(size_t max_execution_batch_size, size_t input_batch_size_limit, size_t batch_timeout_micros, size_t max_enqueued_batches, bool enable_priority_queue = false) { return tensorflow::serving::CreateQueueOptions( max_execution_batch_size, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches, enable_input_batch_split(), get_split_func(), enable_priority_queue); } virtual bool enable_input_batch_split() const = 0; SplitFunc get_split_func() const { if (enable_input_batch_split()) { return [](std::unique_ptr<FakeTask>* input_task, int open_batch_remaining_slot, int max_batch_size, std::vector<std::unique_ptr<FakeTask>>* output_tasks) -> Status { std::unique_ptr<FakeTask> owned_input_task = std::move(*input_task); const int input_task_size = owned_input_task->size(); const internal::InputSplitMetadata input_split_metadata( input_task_size, open_batch_remaining_slot, max_batch_size); const absl::FixedArray<int> task_sizes = input_split_metadata.task_sizes(); const int num_batches = task_sizes.size(); output_tasks->resize(num_batches); for (int i = 0; i < num_batches; i++) { (*output_tasks)[i] = std::make_unique<FakeTask>(task_sizes[i]); } return absl::OkStatus(); }; } return nullptr; } }; class SharedBatchSchedulerTest : public ::testing::TestWithParam<bool>, public SharedBatchSchedulerTestBase { protected: bool enable_input_batch_split() const override { return GetParam(); } }; TEST_P(SharedBatchSchedulerTest, Basic) { for (int num_batch_threads : {1, 2, 3}) { for (const bool delete_scheduler_early : {false, true}) { for (const bool delete_queue_1_early : {false, true}) { bool queue_0_callback_called = false; auto queue_0_callback = [&queue_0_callback_called](std::unique_ptr<Batch<FakeTask>> batch) { queue_0_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); }; bool queue_1_callback_called = false; auto queue_1_callback = [&queue_1_callback_called](std::unique_ptr<Batch<FakeTask>> batch) { queue_1_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(2, batch->task(0).size()); EXPECT_EQ(4, batch->task(1).size()); }; { auto scheduler = CreateSharedBatchScheduler(num_batch_threads); const size_t input_batch_size_limit = 10; const size_t batch_timeout_micros = 1 * 1000 * 1000; const size_t max_enqueued_batches = 2; const auto queue_options = CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches); auto queue_0 = CreateQueue(scheduler, queue_options, queue_0_callback); auto queue_1 = CreateQueue(scheduler, queue_options, queue_1_callback); if (delete_scheduler_early) { scheduler = nullptr; } TF_ASSERT_OK(ScheduleTask(1, queue_0.get())); TF_ASSERT_OK(ScheduleTask(2, queue_1.get())); TF_ASSERT_OK(ScheduleTask(3, queue_0.get())); TF_ASSERT_OK(ScheduleTask(4, queue_1.get())); if (delete_queue_1_early) { queue_1 = nullptr; } TF_ASSERT_OK(ScheduleTask(5, queue_0.get())); } EXPECT_TRUE(queue_0_callback_called); EXPECT_TRUE(queue_1_callback_called); } } } } TEST_P(SharedBatchSchedulerTest, CallbackWithTaskVectorOkWithPriorityQueueEnabled) { bool queue_0_callback_called = false; auto queue_0_callback = [&queue_0_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_0_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_EQ(0, tasks.size()); }; bool queue_1_callback_called = false; auto queue_1_callback = [&queue_1_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_1_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(2, batch->task(0).size()); EXPECT_EQ(4, batch->task(1).size()); EXPECT_EQ(0, tasks.size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); const QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); std::unique_ptr<Queue> queue_0 = CreateQueue(scheduler, queue_options, queue_0_callback); std::unique_ptr<Queue> queue_1 = CreateQueue(scheduler, queue_options, queue_1_callback); TF_ASSERT_OK(ScheduleTask(1, queue_0.get())); TF_ASSERT_OK(ScheduleTask(2, queue_1.get())); TF_ASSERT_OK(ScheduleTask(3, queue_0.get())); TF_ASSERT_OK(ScheduleTask(4, queue_1.get())); TF_ASSERT_OK(ScheduleTask(5, queue_0.get())); } EXPECT_TRUE(queue_0_callback_called); EXPECT_TRUE(queue_1_callback_called); } TEST_P(SharedBatchSchedulerTest, CallbackWithTaskVectorOkWithPriorityQueueDisabled) { bool queue_0_callback_called = false; auto queue_0_callback = [&queue_0_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_0_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_EQ(0, tasks.size()); }; bool queue_1_callback_called = false; auto queue_1_callback = [&queue_1_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_1_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(2, batch->task(0).size()); EXPECT_EQ(4, batch->task(1).size()); EXPECT_EQ(0, tasks.size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); const QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, false); std::unique_ptr<Queue> queue_0 = CreateQueue(scheduler, queue_options, queue_0_callback); std::unique_ptr<Queue> queue_1 = CreateQueue(scheduler, queue_options, queue_1_callback); TF_ASSERT_OK(ScheduleTask(1, queue_0.get())); TF_ASSERT_OK(ScheduleTask(2, queue_1.get())); TF_ASSERT_OK(ScheduleTask(3, queue_0.get())); TF_ASSERT_OK(ScheduleTask(4, queue_1.get())); TF_ASSERT_OK(ScheduleTask(5, queue_0.get())); } EXPECT_TRUE(queue_0_callback_called); EXPECT_TRUE(queue_1_callback_called); } TEST_P( SharedBatchSchedulerTest, CallbackWithTaskVectorOkWithPriorityQueueEnabledWithCriticalitylessTask) { bool queue_0_callback_called = false; auto queue_0_callback = [&queue_0_callback_called]( std::unique_ptr<Batch<FakeTaskWithoutCriticality>> batch, std::vector<std::unique_ptr<FakeTaskWithoutCriticality>> tasks) { queue_0_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_EQ(0, tasks.size()); }; bool queue_1_callback_called = false; auto queue_1_callback = [&queue_1_callback_called]( std::unique_ptr<Batch<FakeTaskWithoutCriticality>> batch, std::vector<std::unique_ptr<FakeTaskWithoutCriticality>> tasks) { queue_1_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(2, batch->task(0).size()); EXPECT_EQ(4, batch->task(1).size()); EXPECT_EQ(0, tasks.size()); }; { SharedBatchScheduler<FakeTaskWithoutCriticality>::Options options; options.num_batch_threads = 3; options.env = Env::Default(); std::shared_ptr<SharedBatchScheduler<FakeTaskWithoutCriticality>> shared_batch_scheduler; TF_CHECK_OK(SharedBatchScheduler<FakeTaskWithoutCriticality>::Create( options, &shared_batch_scheduler)); SharedBatchScheduler<FakeTaskWithoutCriticality>::QueueOptions queue_options; queue_options.input_batch_size_limit = 10; queue_options.batch_timeout_micros = 1000 * 1000; queue_options.max_enqueued_batches = 2; queue_options.enable_large_batch_splitting = enable_input_batch_split(); queue_options.split_input_task_func = [](std::unique_ptr<FakeTaskWithoutCriticality>* input_task, int open_batch_remaining_slot, int max_batch_size, std::vector<std::unique_ptr<FakeTaskWithoutCriticality>>* output_tasks) -> Status { std::unique_ptr<FakeTaskWithoutCriticality> owned_input_task = std::move(*input_task); const int input_task_size = owned_input_task->size(); const internal::InputSplitMetadata input_split_metadata( input_task_size, open_batch_remaining_slot, max_batch_size); const absl::FixedArray<int> task_sizes = input_split_metadata.task_sizes(); const int num_batches = task_sizes.size(); output_tasks->resize(num_batches); for (int i = 0; i < num_batches; i++) { (*output_tasks)[i] = std::make_unique<FakeTaskWithoutCriticality>(task_sizes[i]); } return absl::OkStatus(); }; queue_options.max_execution_batch_size = 10; queue_options.enable_priority_queue = true; std::unique_ptr<BatchScheduler<FakeTaskWithoutCriticality>> queue_0; TF_CHECK_OK(shared_batch_scheduler->AddQueue(queue_options, queue_0_callback, &queue_0)); std::unique_ptr<BatchScheduler<FakeTaskWithoutCriticality>> queue_1; TF_CHECK_OK(shared_batch_scheduler->AddQueue(queue_options, queue_1_callback, &queue_1)); TF_ASSERT_OK(ScheduleTaskWithoutCriticality(1, queue_0.get())); TF_ASSERT_OK(ScheduleTaskWithoutCriticality(2, queue_1.get())); TF_ASSERT_OK(ScheduleTaskWithoutCriticality(3, queue_0.get())); TF_ASSERT_OK(ScheduleTaskWithoutCriticality(4, queue_1.get())); TF_ASSERT_OK(ScheduleTaskWithoutCriticality(5, queue_0.get())); } EXPECT_TRUE(queue_0_callback_called); EXPECT_TRUE(queue_1_callback_called); } TEST_P(SharedBatchSchedulerTest, ObeyBatchSizeConstraint) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); mutex mu; std::vector<std::vector<size_t>> callback_data; Notification all_batches_processed; auto callback = [&mu, &callback_data, &all_batches_processed]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); std::vector<size_t> batch_data; batch_data.reserve(batch->num_tasks()); for (int i = 0; i < batch->num_tasks(); ++i) { batch_data.push_back(batch->mutable_task(i)->size()); } { mutex_lock l(mu); callback_data.push_back(batch_data); if (callback_data.size() == 2) { all_batches_processed.Notify(); } } }; { auto scheduler = CreateSharedBatchScheduler(2, &env); const size_t input_batch_size_limit = 10; const size_t batch_timeout_micros = 10 * 1000; const size_t max_enqueued_batches = 2; auto queue = CreateQueue( scheduler, CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches), callback); if (enable_input_batch_split()) { TF_ASSERT_OK(ScheduleTask(3, queue.get())); TF_ASSERT_OK(ScheduleTask(5, queue.get())); TF_ASSERT_OK(ScheduleTask(3 , queue.get())); TF_ASSERT_OK(ScheduleTask(1, queue.get())); TF_ASSERT_OK(ScheduleTask(6, queue.get())); TF_ASSERT_OK(ScheduleTask(1, queue.get())); } else { TF_ASSERT_OK(ScheduleTask(3, queue.get())); TF_ASSERT_OK(ScheduleTask(5, queue.get())); TF_ASSERT_OK(ScheduleTask(3 , queue.get())); TF_ASSERT_OK(ScheduleTask(1, queue.get())); TF_ASSERT_OK(ScheduleTask(6, queue.get())); } env.AdvanceByMicroseconds(20 * 1000); all_batches_processed.WaitForNotification(); if (enable_input_batch_split()) { EXPECT_THAT( callback_data, ::testing::UnorderedElementsAreArray(std::vector<std::vector<size_t>>{ std::vector<size_t>{3, 5, 2}, std::vector<size_t>{1, 1, 6, 1}})); } else { EXPECT_THAT(callback_data, ::testing::UnorderedElementsAreArray( std::vector<std::vector<size_t>>{{3, 5}, {3, 1, 6}})); } start_teardown.Notify(); } stop_teardown.Notify(); } TEST_P(SharedBatchSchedulerTest, ObeysTimeout) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { Notification first_batch_processed, second_batch_processed, third_batch_processed; bool notify_first_batch = false, notify_second_batch = false, notify_third_batch = false; auto callback = [&](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); if (notify_first_batch && (!first_batch_processed.HasBeenNotified())) { first_batch_processed.Notify(); return; } if (notify_second_batch && (!second_batch_processed.HasBeenNotified())) { second_batch_processed.Notify(); return; } if (notify_third_batch && (!third_batch_processed.HasBeenNotified())) { third_batch_processed.Notify(); return; } EXPECT_TRUE(false) << "Unexpected condition"; }; auto scheduler = CreateSharedBatchScheduler(1, &env); const size_t input_batch_size_limit = 4; const size_t batch_timeout_micros = 10; const size_t max_enqueued_batches = 2; QueueOptions options = CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches); auto queue = CreateQueue(scheduler, options, callback); TF_ASSERT_OK(ScheduleTask(1, queue.get())); env.AdvanceByMicroseconds(9); Env::Default()->SleepForMicroseconds(10 * 1000 ); EXPECT_FALSE(first_batch_processed.HasBeenNotified()); notify_first_batch = true; env.AdvanceByMicroseconds(1); first_batch_processed.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(2, queue.get())); Env::Default()->SleepForMicroseconds(10 * 1000 ); EXPECT_FALSE(second_batch_processed.HasBeenNotified()); notify_second_batch = true; TF_ASSERT_OK(ScheduleTask(3, queue.get())); second_batch_processed.WaitForNotification(); env.AdvanceByMicroseconds(9); Env::Default()->SleepForMicroseconds(10 * 1000 ); EXPECT_FALSE(third_batch_processed.HasBeenNotified()); notify_third_batch = true; env.AdvanceByMicroseconds(1); third_batch_processed.WaitForNotification(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST_P(SharedBatchSchedulerTest, ObeysTimeoutWithRealClock) { Notification first_batch_processed, second_batch_processed; auto callback = [&first_batch_processed, &second_batch_processed]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); if (batch->size() == 1) { first_batch_processed.Notify(); } else if (batch->size() == 2) { second_batch_processed.Notify(); } else { EXPECT_TRUE(false) << "Unexpected batch size"; } }; auto scheduler = CreateSharedBatchScheduler(2); const size_t input_batch_size_limit = 10; const size_t batch_timeout_micros = 100 * 1000; const size_t max_enqueued_batches = 2; auto queue = CreateQueue( scheduler, CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches), callback); TF_ASSERT_OK(ScheduleTask(1, queue.get())); first_batch_processed.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(2, queue.get())); second_batch_processed.WaitForNotification(); } TEST_P(SharedBatchSchedulerTest, WithZeroTimeoutBatchesScheduledAsSoonAsThreadIsAvailable) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { Notification first_batch_processed, second_batch_processed; auto callback = [&first_batch_processed, &second_batch_processed]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); if (batch->size() == 1) { first_batch_processed.Notify(); } else if (batch->size() == 2) { second_batch_processed.Notify(); } else { EXPECT_TRUE(false) << "Unexpected batch size"; } }; auto scheduler = CreateSharedBatchScheduler(2, &env); const size_t batch_size_limit = 100; const size_t batch_timeout_micros = 0; const size_t max_enqueued_batches = 2; auto queue = CreateQueue( scheduler, CreateQueueOptions(batch_size_limit, batch_size_limit, batch_timeout_micros, max_enqueued_batches), callback); TF_ASSERT_OK(ScheduleTask(1, queue.get())); first_batch_processed.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(2, queue.get())); second_batch_processed.WaitForNotification(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST_P(SharedBatchSchedulerTest, Fairness) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { Notification queue_0_first_batch_scheduled, queue_0_first_batch_proceed, queue_0_second_batch_scheduled; auto queue_0_callback = [&queue_0_first_batch_scheduled, &queue_0_first_batch_proceed, &queue_0_second_batch_scheduled]( std::unique_ptr<Batch<FakeTask>> batch) { if (!queue_0_first_batch_scheduled.HasBeenNotified()) { queue_0_first_batch_scheduled.Notify(); queue_0_first_batch_proceed.WaitForNotification(); } else if (!queue_0_second_batch_scheduled.HasBeenNotified()) { queue_0_second_batch_scheduled.Notify(); } }; Notification queue_1_first_batch_scheduled, queue_1_first_batch_proceed; auto queue_1_callback = [&queue_1_first_batch_scheduled, &queue_1_first_batch_proceed](std::unique_ptr<Batch<FakeTask>> batch) { queue_1_first_batch_scheduled.Notify(); queue_1_first_batch_proceed.WaitForNotification(); }; auto scheduler = CreateSharedBatchScheduler(1, &env); size_t input_batch_size_limit = 10; QueueOptions queue_options = CreateQueueOptions( input_batch_size_limit, input_batch_size_limit, 1 , 100 ); std::vector<std::unique_ptr<BatchScheduler<FakeTask>>> queues(2); TF_ASSERT_OK( scheduler->AddQueue(queue_options, queue_0_callback, &queues[0])); TF_ASSERT_OK( scheduler->AddQueue(queue_options, queue_1_callback, &queues[1])); TF_ASSERT_OK(ScheduleTask(10, queues[0].get())); env.AdvanceByMicroseconds(1); queue_0_first_batch_scheduled.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(10, queues[0].get())); TF_ASSERT_OK(ScheduleTask(10, queues[0].get())); TF_ASSERT_OK(ScheduleTask(1, queues[1].get())); env.AdvanceByMicroseconds(1); queue_0_first_batch_proceed.Notify(); queue_1_first_batch_scheduled.WaitForNotification(); Env::Default()->SleepForMicroseconds(10 * 1000 ); EXPECT_FALSE(queue_0_second_batch_scheduled.HasBeenNotified()); queue_1_first_batch_proceed.Notify(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST_P(SharedBatchSchedulerTest, ConstMethods) { for (const int max_enqueued_batches : {1, 2, 5}) { Notification processing, proceed; auto callback = [&processing, &proceed](std::unique_ptr<Batch<FakeTask>> batch) { if (!processing.HasBeenNotified()) { processing.Notify(); } proceed.WaitForNotification(); }; auto scheduler = CreateSharedBatchScheduler( 1); const size_t input_batch_size_limit = 2; const size_t batch_timeout_micros = 0; auto queue = CreateQueue( scheduler, CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches), callback); EXPECT_EQ(2, queue->max_task_size()); EXPECT_EQ(0, queue->NumEnqueuedTasks()); EXPECT_EQ(max_enqueued_batches * 2, queue->SchedulingCapacity()); TF_ASSERT_OK(ScheduleTask(2, queue.get())); processing.WaitForNotification(); EXPECT_EQ(0, queue->NumEnqueuedTasks()); for (int i = 0; i < max_enqueued_batches; ++i) { EXPECT_EQ(i * 2, queue->NumEnqueuedTasks()); EXPECT_EQ((max_enqueued_batches - i) * 2, queue->SchedulingCapacity()); TF_ASSERT_OK(ScheduleTask(1, queue.get())); EXPECT_EQ((i * 2) + 1, queue->NumEnqueuedTasks()); EXPECT_EQ((max_enqueued_batches - i) * 2 - 1, queue->SchedulingCapacity()); TF_ASSERT_OK(ScheduleTask(1, queue.get())); } EXPECT_EQ(max_enqueued_batches * 2, queue->NumEnqueuedTasks()); EXPECT_EQ(0, queue->SchedulingCapacity()); EXPECT_THAT( ScheduleTask(1, queue.get()), testing::StatusIs(error::UNAVAILABLE, HasSubstr("The batch scheduling queue to which this " "task was submitted is full"))); EXPECT_EQ(max_enqueued_batches * 2, queue->NumEnqueuedTasks()); EXPECT_EQ(0, queue->SchedulingCapacity()); proceed.Notify(); } } TEST_P(SharedBatchSchedulerTest, OneFullQueueDoesntBlockOtherQueues) { Notification queue_0_processing, queue_0_proceed; auto queue_0_callback = [&queue_0_processing, &queue_0_proceed]( std::unique_ptr<Batch<FakeTask>> batch) { if (!queue_0_processing.HasBeenNotified()) { queue_0_processing.Notify(); queue_0_proceed.WaitForNotification(); } }; Notification queue_1_first_batch_processed, queue_1_second_batch_processed, queue_1_third_batch_processed; auto queue_1_callback = [&queue_1_first_batch_processed, &queue_1_second_batch_processed, &queue_1_third_batch_processed](std::unique_ptr<Batch<FakeTask>> batch) { if (batch->size() == 1) { queue_1_first_batch_processed.Notify(); } else if (batch->size() == 2) { queue_1_second_batch_processed.Notify(); } else if (batch->size() == 3) { queue_1_third_batch_processed.Notify(); } else { EXPECT_TRUE(false) << "Unexpected batch size"; } }; auto scheduler = CreateSharedBatchScheduler( 2); const size_t input_batch_size_limit = 10; const size_t batch_timeout_micros = 0; const size_t max_enqueued_batches = 2; QueueOptions queue_options = CreateQueueOptions(input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches); std::unique_ptr<BatchScheduler<FakeTask>> queue_0; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_0_callback, &queue_0)); std::unique_ptr<BatchScheduler<FakeTask>> queue_1; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_1_callback, &queue_1)); TF_ASSERT_OK(ScheduleTask(1, queue_0.get())); queue_0_processing.WaitForNotification(); Status queue_0_status; do { queue_0_status = ScheduleTask(1, queue_0.get()); } while (queue_0_status.ok()); EXPECT_EQ(error::UNAVAILABLE, queue_0_status.code()); TF_ASSERT_OK(ScheduleTask(1, queue_1.get())); queue_1_first_batch_processed.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(2, queue_1.get())); queue_1_second_batch_processed.WaitForNotification(); TF_ASSERT_OK(ScheduleTask(3, queue_1.get())); queue_1_third_batch_processed.WaitForNotification(); queue_0_proceed.Notify(); } TEST_P(SharedBatchSchedulerTest, QueueDestructorBlocksUntilAllTasksProcessed) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { int current_batch = 0; Notification first_callback_started; const int kMaxEnqueuedBatches = 3; std::vector<Notification> callback_proceed(kMaxEnqueuedBatches); auto callback = [&current_batch, &first_callback_started, &callback_proceed](std::unique_ptr<Batch<FakeTask>> batch) { if (current_batch == 0) { first_callback_started.Notify(); } callback_proceed[current_batch].WaitForNotification(); ++current_batch; }; auto scheduler = CreateSharedBatchScheduler(1, &env); const size_t batch_size_limit = 10; const size_t batch_timeout_micros = 0; const size_t max_enqueued_batches = 2; QueueOptions queue_options = CreateQueueOptions(batch_size_limit, batch_size_limit, batch_timeout_micros, max_enqueued_batches); auto queue = CreateQueue(scheduler, queue_options, callback); int num_enqueued_batches = 0; TF_ASSERT_OK(ScheduleTask(10, queue.get())); ++num_enqueued_batches; env.AdvanceByMicroseconds(1); first_callback_started.WaitForNotification(); for (int i = 0; i < 2; ++i) { TF_ASSERT_OK(ScheduleTask(10, queue.get())); ++num_enqueued_batches; } EXPECT_EQ(kMaxEnqueuedBatches, num_enqueued_batches); EXPECT_EQ(error::UNAVAILABLE, ScheduleTask(10, queue.get()).code()); Notification destroy_queue_thread_started, queue_destroyed; std::unique_ptr<Thread> destroy_queue_thread(Env::Default()->StartThread( {}, "DestroyQueueThread", [&queue, &destroy_queue_thread_started, &queue_destroyed] { destroy_queue_thread_started.Notify(); queue = nullptr; queue_destroyed.Notify(); })); destroy_queue_thread_started.WaitForNotification(); for (int i = 0; i < num_enqueued_batches; ++i) { Env::Default()->SleepForMicroseconds(10 * 1000 ); EXPECT_FALSE(queue_destroyed.HasBeenNotified()); callback_proceed[i].Notify(); } start_teardown.Notify(); } stop_teardown.Notify(); } TEST_P(SharedBatchSchedulerTest, ZeroQueueRewrittenToOneQueue) { auto callback = [](std::unique_ptr<Batch<FakeTask>> batch) { }; auto scheduler = CreateSharedBatchScheduler(2); const size_t input_batch_size_limit = 10; const size_t batch_timeout_micros = 100 * 1000; const size_t max_enqueued_batches = 0; std::unique_ptr<Queue> queue; if (enable_input_batch_split()) { EXPECT_THAT( scheduler->AddQueue(tensorflow::serving::CreateQueueOptions( input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches, enable_input_batch_split(), get_split_func()), callback, &queue), testing::StatusIs(error::INVALID_ARGUMENT, "max_enqueued_batches must be positive; was 0")); } else { TF_ASSERT_OK( scheduler->AddQueue(tensorflow::serving::CreateQueueOptions( input_batch_size_limit, input_batch_size_limit, batch_timeout_micros, max_enqueued_batches, enable_input_batch_split(), get_split_func()), callback, &queue)); EXPECT_EQ(queue->SchedulingCapacity(), input_batch_size_limit); } } TEST_P(SharedBatchSchedulerTest, BatchPaddingPolicyBatchDown) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { Notification first_batch_processed; Notification second_batch_processed; auto callback = [&](std::unique_ptr<Batch<FakeTask>> batch) { if (!first_batch_processed.HasBeenNotified()) { EXPECT_EQ(batch->size(), 2); first_batch_processed.Notify(); return; } if (!second_batch_processed.HasBeenNotified()) { EXPECT_EQ(batch->size(), 1); second_batch_processed.Notify(); return; } ADD_FAILURE() << "Batch callback must not be invoked more than expected"; }; auto scheduler = CreateSharedBatchScheduler(1, &env); QueueOptions options = CreateQueueOptions( 10, 10, 10, 10); options.allowed_batch_sizes = {1, 2, 4, 8}; options.batch_padding_policy = kBatchDownPolicy; auto queue = CreateQueue(scheduler, options, callback); TF_ASSERT_OK(ScheduleTask(1, queue.get())); TF_ASSERT_OK(ScheduleTask(1, queue.get())); TF_ASSERT_OK(ScheduleTask(1, queue.get())); env.AdvanceByMicroseconds(options.batch_timeout_micros); first_batch_processed.WaitForNotification(); auto new_batch_timeout_micros = options.batch_timeout_micros * 2 / 3; env.AdvanceByMicroseconds(new_batch_timeout_micros - 1); EXPECT_FALSE(second_batch_processed.WaitForNotificationWithTimeout( absl::Milliseconds(10))); env.AdvanceByMicroseconds(1); second_batch_processed.WaitForNotification(); start_teardown.Notify(); } stop_teardown.Notify(); } INSTANTIATE_TEST_SUITE_P(Parameter, SharedBatchSchedulerTest, ::testing::Bool()); class SharedBatchSchedulerPriorityTest : public ::testing::TestWithParam< std::tuple<bool, MixedPriorityBatchingPolicy>>, public SharedBatchSchedulerTestBase { protected: bool enable_input_batch_split() const override { return std::get<0>(GetParam()); } MixedPriorityBatchingPolicy mixed_priority_batching_policy() const { return std::get<1>(GetParam()); } }; TEST_P(SharedBatchSchedulerPriorityTest, InvalidLowPriorityTaskWithPriorityQueueEnabled) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_callback_called = true; }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 100, 100, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 1; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 1; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = mixed_priority_batching_policy(); std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); EXPECT_THAT( ScheduleTask(10, queue.get(), tsl::criticality::Criticality::kSheddablePlus), testing::StatusIs( absl::StatusCode::kUnavailable, HasSubstr( "The low priority task queue to which this task was submitted " "has max_execution_batch_size=1 and the task size is 10"))); } EXPECT_FALSE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityTest, InvalidLowPriorityTaskWithQueueFullWithPriorityQueueEnabledNew) { Notification processing, proceed; auto queue_callback = [&processing, &proceed]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { if (!processing.HasBeenNotified()) { processing.Notify(); } proceed.WaitForNotification(); }; std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(1); QueueOptions queue_options = CreateQueueOptions( 100, 100, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = mixed_priority_batching_policy(); std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(5, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); processing.WaitForNotification(); ASSERT_EQ(0, queue->NumEnqueuedTasks()); TF_ASSERT_OK(ScheduleTask(10, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); ASSERT_EQ(1, queue->NumEnqueuedTasks()); TF_ASSERT_OK(ScheduleTask(10, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); ASSERT_EQ(2, queue->NumEnqueuedTasks()); EXPECT_THAT( ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kSheddablePlus), testing::StatusIs( absl::StatusCode::kUnavailable, HasSubstr("The low priority task queue to which this task was " "submitted does not have the capcity to handle this task; " "currently the low priority queue has 20 tasks enqueued " "and the submitted task size is 1 while " "max_enqueued_batches=2 and max_execution_batch_size=10"))); proceed.Notify(); } TEST_P(SharedBatchSchedulerPriorityTest, CallbackWithTaskVectorOkWithPriorityQueueDisabledWithPrioritySet) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_EQ(0, tasks.size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); const QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, false); std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(5, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityTest, LowPriorityTaskOnlyAtMaxBatchSizeWithPriorityQueueEnabled) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_TRUE(tasks.empty()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 100, 100, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 9; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = mixed_priority_batching_policy(); std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); TF_ASSERT_OK(ScheduleTask(5, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityTest, LowPriorityTaskOnlyAtTimeoutWithPriorityQueueEnabled) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(3, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(5, batch->task(2).size()); EXPECT_TRUE(tasks.empty()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 100, 100, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 20; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = mixed_priority_batching_policy(); std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddablePlus)); TF_ASSERT_OK(ScheduleTask(5, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } INSTANTIATE_TEST_SUITE_P( Parameter, SharedBatchSchedulerPriorityTest, ::testing::Values( std::make_tuple( true, MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize), std::make_tuple(true, MixedPriorityBatchingPolicy:: kLowPriorityPaddingWithNextAllowedBatchSize), std::make_tuple( false, MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize), std::make_tuple(false, MixedPriorityBatchingPolicy:: kLowPriorityPaddingWithNextAllowedBatchSize), std::make_tuple( false, MixedPriorityBatchingPolicy::kPriorityIsolation), std::make_tuple(false, MixedPriorityBatchingPolicy::kPriorityIsolation))); using SharedBatchSchedulerPriorityPolicyTest = SharedBatchSchedulerTest; TEST_P(SharedBatchSchedulerPriorityPolicyTest, HighPriorityBatchPaddedUptoMaxBatchSize) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { if (queue_callback_called) return; queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(2, tasks.size()); EXPECT_EQ(3, tasks[0]->size()); EXPECT_EQ(3, tasks[1]->size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize; std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityPolicyTest, HighPriorityBatchPaddedUptoMaxAvailableBatchSize) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(1, tasks.size()); EXPECT_EQ(3, tasks[0]->size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = MixedPriorityBatchingPolicy::kLowPriorityPaddingWithMaxBatchSize; std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityPolicyTest, HighPriorityBatchPaddedUptoNextAllowedBatchSize) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { if (queue_callback_called) return; queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(2, tasks.size()); EXPECT_EQ(2, tasks[0]->size()); EXPECT_EQ(2, tasks[1]->size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); queue_options.allowed_batch_sizes = {2, 8, 16}; queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = MixedPriorityBatchingPolicy:: kLowPriorityPaddingWithNextAllowedBatchSize; std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityPolicyTest, HighPriorityBatchNotPaddedWhenAllowedBatchSizeMissing) { bool queue_callback_called = false; auto queue_callback = [&queue_callback_called]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { if (queue_callback_called) return; queue_callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); EXPECT_EQ(0, tasks.size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = MixedPriorityBatchingPolicy:: kLowPriorityPaddingWithNextAllowedBatchSize; std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(2, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_TRUE(queue_callback_called); } TEST_P(SharedBatchSchedulerPriorityPolicyTest, HighPriorityBatchNotPaddedWithLowPriorityTasks) { int queue_callback_counter = 0; auto queue_callback = [&queue_callback_counter]( std::unique_ptr<Batch<FakeTask>> batch, std::vector<std::unique_ptr<FakeTask>> tasks) { if (queue_callback_counter++ == 0) { ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(1, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); return; } ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(3, batch->task(0).size()); EXPECT_EQ(3, batch->task(1).size()); }; { std::shared_ptr<Scheduler> scheduler = CreateSharedBatchScheduler(3); QueueOptions queue_options = CreateQueueOptions( 10, 10, 1 * 1000 * 1000, 2, true); queue_options.low_priority_queue_options.max_execution_batch_size = 10; queue_options.low_priority_queue_options.batch_timeout_micros = 1 * 1000 * 1000; queue_options.low_priority_queue_options.input_batch_size_limit = 10; queue_options.low_priority_queue_options.max_enqueued_batches = 2; queue_options.mixed_priority_batching_policy = MixedPriorityBatchingPolicy::kPriorityIsolation; std::unique_ptr<Queue> queue = CreateQueue(scheduler, queue_options, queue_callback); TF_ASSERT_OK(ScheduleTask(1, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kCriticalPlus)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); TF_ASSERT_OK(ScheduleTask(3, queue.get(), tsl::criticality::Criticality::kSheddable)); } EXPECT_EQ(queue_callback_counter, 2); } INSTANTIATE_TEST_SUITE_P(Parameter, SharedBatchSchedulerPriorityPolicyTest, ::testing::Bool()); #ifdef PLATFORM_GOOGLE static std::vector<std::unique_ptr<Queue>>* queues = new std::vector<std::unique_ptr<Queue>>(); static std::vector<std::string>* queue_labels = new std::vector<std::string>(); void CreateQueues() { auto split_func_for_size_one_task = [](std::unique_ptr<FakeTask>* input_task, int open_batch_remaining_slot, int max_batch_size, std::vector<std::unique_ptr<FakeTask>>* output_tasks) -> Status { output_tasks->push_back(std::move(*input_task)); Notification notify; std::thread busy_waiter([&] { while (!notify.HasBeenNotified()) { } }); std::thread notifier([&] { Env::Default()->SleepForMicroseconds(1); notify.Notify(); }); busy_waiter.join(); notifier.join(); return absl::OkStatus(); }; internal::Queue<FakeTask>::ProcessBatchCallback process_batch_callback = [](std::unique_ptr<Batch<FakeTask>> task) { }; const size_t max_execution_batch_size = 64; const size_t input_batch_size_limit = 128; const size_t batch_timeout_micros = 10; queues->push_back(CreateQueue( CreateSharedBatchScheduler(5), CreateQueueOptions(max_execution_batch_size, input_batch_size_limit, batch_timeout_micros, INT_MAX , true , split_func_for_size_one_task), process_batch_callback)); queue_labels->push_back(std::string("EagerSplit")); queues->push_back(CreateQueue( CreateSharedBatchScheduler(5), CreateQueueOptions(max_execution_batch_size, input_batch_size_limit, batch_timeout_micros, INT_MAX , false , nullptr ), process_batch_callback)); queue_labels->push_back(std::string("NoSplit")); } void BM_QueueSchedule(::testing::benchmark::State& state) { static absl::once_flag once; absl::call_once(once, []() { CreateQueues(); }); const int queue_index = state.range(1); Queue* queue = (*queues)[queue_index].get(); const string label = strings::StrCat(state.threads(), "-Threads", (*queue_labels)[queue_index]); state.SetLabel(label); for (auto s : state) { for (int i = 0; i < state.range(0); i++) { auto batch_task = std::make_unique<FakeTask>(1); auto status = queue->Schedule(&batch_task); tensorflow::testing::DoNotOptimize(status); } } } BENCHMARK(BM_QueueSchedule)->Apply([](benchmark::internal::Benchmark* b) { b->ThreadRange(1, port::NumSchedulableCPUs() * tensorflow::port::CPUIDNumSMT()); for (int queue_index : {0, 1, 2}) { b->ArgPair(10000, queue_index); } }); #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/shared_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/shared_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
93a4e78f-e7b6-439c-a9ab-8ad84529ba55
cpp
tensorflow/tensorflow
batch_stats
tensorflow/core/kernels/batching_util/batch_stats.h
tensorflow/core/kernels/batching_util/batch_stats_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_STATS_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_STATS_H_ #include <atomic> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include "absl/container/node_hash_map.h" #include "absl/time/time.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow::serving { constexpr int64_t kNumBatchThreadsUnknown = -1; constexpr int64_t kBatchTimeoutMicrosUnknown = -1; class CostTracker { public: void Register(absl::Duration cost) { DCHECK_GT(cost, absl::ZeroDuration()); mutex_lock l(mu_); sample_count_++; sample_sum_ += cost; }; std::optional<absl::Duration> mean() const { int64_t count; absl::Duration sum; { mutex_lock l(mu_); count = sample_count_; sum = sample_sum_; } if (count == 0) return std::nullopt; return sum / count; }; private: mutable mutex mu_; int64_t sample_count_ TF_GUARDED_BY(mu_) = 0; absl::Duration sample_sum_ TF_GUARDED_BY(mu_); }; class BatchSizeStats { public: CostTracker& tpu_cost() { return tpu_cost_; }; private: CostTracker tpu_cost_; }; class ModelBatchStats { public: BatchSizeStats& batch_size(int32 batch_size) { mutex_lock l(mu_); return batch_size_stats_by_batch_size_[batch_size]; } void RegisterProcessedSize(int64_t size) { cumulative_processed_size_.fetch_add(size, std::memory_order_relaxed); } int64_t cumulative_processed_size() const { return cumulative_processed_size_.load(std::memory_order_relaxed); } std::vector<int32> BatchSizes() const { std::vector<int32> result; mutex_lock l(mu_); result.reserve(batch_size_stats_by_batch_size_.size()); for (const auto& [key, value] : batch_size_stats_by_batch_size_) { result.push_back(key); } return result; } void SetNumBatchThreads(int64_t num_batch_threads) { num_batch_threads_.store(num_batch_threads, std::memory_order_relaxed); } int64_t num_batch_threads() const { return num_batch_threads_.load(std::memory_order_relaxed); } void SetBatchTimeoutMicros(int64_t batch_timeout_micros) { batch_timeout_micros_.store(batch_timeout_micros, std::memory_order_relaxed); } int64_t batch_timeout_micros() const { return batch_timeout_micros_.load(std::memory_order_relaxed); } private: mutable mutex mu_; absl::node_hash_map<int32, BatchSizeStats> batch_size_stats_by_batch_size_ TF_GUARDED_BY(mu_); std::atomic<int64_t> cumulative_processed_size_ = 0; std::atomic<int64_t> num_batch_threads_ = kNumBatchThreadsUnknown; std::atomic<int64_t> batch_timeout_micros_ = kBatchTimeoutMicrosUnknown; }; class BatchStatsRegistry { public: ModelBatchStats& model(const std::string& model_name, const std::string& op_name) { std::tuple key(model_name, op_name); mutex_lock l(mu_); return model_batch_stats_by_model_and_op_names_[key]; } std::vector<std::tuple<std::string, std::string>> ModelAndOpNames() const { std::vector<std::tuple<std::string, std::string>> result; mutex_lock l(mu_); result.reserve(model_batch_stats_by_model_and_op_names_.size()); for (const auto& [key, value] : model_batch_stats_by_model_and_op_names_) { result.push_back(key); } return result; } private: mutable mutex mu_; absl::node_hash_map<std::tuple<std::string, std::string>, ModelBatchStats> model_batch_stats_by_model_and_op_names_ TF_GUARDED_BY(mu_); }; inline BatchStatsRegistry& GlobalBatchStatsRegistry() { static BatchStatsRegistry* instance = new BatchStatsRegistry(); return *instance; } } #endif
#include "tensorflow/core/kernels/batching_util/batch_stats.h" #include <tuple> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorflow/core/platform/test.h" namespace tensorflow::serving { namespace { using ::testing::UnorderedElementsAre; TEST(BatchStatsTest, GlobalBatchStatsRegistryAlwaysReturnsTheSameInstance) { ASSERT_EQ(&GlobalBatchStatsRegistry(), &GlobalBatchStatsRegistry()); } TEST(BatchStatsTest, BasicOperation) { BatchStatsRegistry stats; stats.model( "m", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(5)); ASSERT_EQ(stats.model( "m", "o") .batch_size(1) .tpu_cost() .mean(), absl::Hours(5)); } TEST(BatchStatsTest, ModelBatchStatsAreUniqueForEachModel) { BatchStatsRegistry stats; ASSERT_NE(&stats.model( "m", "o"), &stats.model( "m", "o2")); } TEST(BatchStatsTest, BatchSizeStatsAreUniqueForEachBatchSize) { ModelBatchStats stats; ASSERT_NE(&stats.batch_size(1), &stats.batch_size(2)); } TEST(BatchStatsTest, CostTrackerStartsWithNoMean) { CostTracker tracker; ASSERT_FALSE(tracker.mean().has_value()); } TEST(BatchStatsTest, CostTrackerMeanIsCorrect) { CostTracker tracker; tracker.Register(absl::Hours(5)); tracker.Register(absl::Hours(7)); ASSERT_EQ(*tracker.mean(), absl::Hours(6)); } TEST(BatchStatsTest, ProcessedSizeIsCorrect) { ModelBatchStats stats; stats.RegisterProcessedSize(5); stats.RegisterProcessedSize(7); ASSERT_EQ(stats.cumulative_processed_size(), 12); } TEST(BatchStatsTest, ModelOpNamesAreCorrect) { BatchStatsRegistry stats; stats.model( "m", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(5)); stats.model( "m2", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(7)); stats.model( "m", "o") .batch_size(2) .tpu_cost() .Register(absl::Hours(4)); stats.model( "m", "o2") .batch_size(1) .tpu_cost() .Register(absl::Hours(1)); ASSERT_THAT(stats.ModelAndOpNames(), UnorderedElementsAre( std::tuple( "m", "o"), std::tuple( "m", "o2"), std::tuple( "m2", "o"))); } TEST(BatchStatsTest, BatchSizesAreCorrect) { ModelBatchStats stats; stats.batch_size(1).tpu_cost().Register(absl::Hours(5)); stats.batch_size(4).tpu_cost().Register(absl::Hours(7)); stats.batch_size(1).tpu_cost().Register(absl::Hours(4)); stats.batch_size(2).tpu_cost().Register(absl::Hours(1)); ASSERT_THAT(stats.BatchSizes(), UnorderedElementsAre(1, 2, 4)); } TEST(BatchStatsTest, BatchTimeoutIsCorrect) { ModelBatchStats stats; ASSERT_EQ(stats.batch_timeout_micros(), -1); stats.SetBatchTimeoutMicros(100); ASSERT_EQ(stats.batch_timeout_micros(), 100); } TEST(BatchStatsTest, NumBatchThreadsIsCorrect) { ModelBatchStats stats; ASSERT_EQ(stats.num_batch_threads(), -1); stats.SetNumBatchThreads(16); ASSERT_EQ(stats.num_batch_threads(), 16); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_stats.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1c01a02e-63c2-4cb8-9d8e-94ac3c67739d
cpp
tensorflow/tensorflow
batch_input_task
tensorflow/core/kernels/batching_util/batch_input_task.h
tensorflow/core/kernels/batching_util/batch_input_task_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_INPUT_TASK_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_INPUT_TASK_H_ #include <algorithm> #include <atomic> #include <functional> #include <memory> #include <utility> #include "absl/base/call_once.h" #include "absl/container/fixed_array.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/concat_split_util.h" #include "tensorflow/core/kernels/batching_util/input_split_metadata.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/util/incremental_barrier.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class BatchInputTaskHandleTestAccess; template <typename TaskType> class BatchInputTaskTestAccess; template <typename TaskType> class BatchInputTask; template <typename TaskType> class BatchInputTaskHandle : public BatchTask { public: BatchInputTaskHandle( std::shared_ptr<BatchInputTask<TaskType>> batch_input_task, int split_id, size_t task_size); std::unique_ptr<TaskType> GetSplitTask(); size_t size() const override { return task_size_; } private: template <typename T> friend class internal::BatchInputTaskHandleTestAccess; int split_id() const { return split_id_; } std::shared_ptr<BatchInputTask<TaskType>> batch_input_task_; const int split_id_; const size_t task_size_; std::atomic<bool> once_{false}; }; template <typename TaskType> class BatchInputTask : public std::enable_shared_from_this<BatchInputTask<TaskType>> { public: using SplitInputFunc = std::function<Status( std::unique_ptr<TaskType>* input_task, int first_output_task_size, int input_batch_size_limit, std::vector<std::unique_ptr<TaskType>>* output_tasks)>; BatchInputTask(std::unique_ptr<TaskType> input_task, int open_batch_remaining_slot, int batch_size_limit, SplitInputFunc split_input_func); void ToTaskHandles( std::vector<std::unique_ptr<BatchInputTaskHandle<TaskType>>>* output_task_handles); private: friend class BatchInputTaskHandle<TaskType>; template <typename T> friend class internal::BatchInputTaskTestAccess; std::unique_ptr<TaskType> GetSplitTask(int split_id); Status SplitBatches(std::vector<std::unique_ptr<TaskType>>* output_tasks); std::unique_ptr<TaskType> input_task_; const int input_task_size_ = 0; const int open_batch_remaining_slot_; const int batch_size_limit_; const SplitInputFunc split_func_; const InputSplitMetadata input_split_metadata_; mutable absl::once_flag once_; std::vector<std::unique_ptr<TaskType>> task_splits_; Status split_status_; }; template <typename TaskType> BatchInputTaskHandle<TaskType>::BatchInputTaskHandle( std::shared_ptr<BatchInputTask<TaskType>> batch_input_task, int split_id, size_t task_size) : batch_input_task_(batch_input_task), split_id_(split_id), task_size_(task_size) {} template <typename TaskType> std::unique_ptr<TaskType> BatchInputTaskHandle<TaskType>::GetSplitTask() { if (once_.load(std::memory_order_acquire)) { return nullptr; } once_.store(true, std::memory_order_release); return batch_input_task_->GetSplitTask(split_id_); } template <typename TaskType> BatchInputTask<TaskType>::BatchInputTask(std::unique_ptr<TaskType> input_task, int open_batch_remaining_slot, int batch_size_limit, SplitInputFunc split_input_func) : input_task_(std::move(input_task)), input_task_size_(input_task_->size()), open_batch_remaining_slot_(open_batch_remaining_slot), batch_size_limit_(batch_size_limit), split_func_(split_input_func), input_split_metadata_(input_task_size_, open_batch_remaining_slot, batch_size_limit) {} template <typename TaskType> void BatchInputTask<TaskType>::ToTaskHandles( std::vector<std::unique_ptr<BatchInputTaskHandle<TaskType>>>* task_handles) { const absl::FixedArray<int>& task_sizes = input_split_metadata_.task_sizes(); task_handles->resize(task_sizes.size()); for (int i = 0; i < task_handles->size(); i++) { (*task_handles)[i] = std::make_unique<BatchInputTaskHandle<TaskType>>( this->shared_from_this(), i, task_sizes[i]); } } template <typename TaskType> std::unique_ptr<TaskType> BatchInputTask<TaskType>::GetSplitTask(int split_id) { absl::call_once(once_, [this]() { split_status_ = SplitBatches(&task_splits_); }); if (!split_status_.ok()) { LOG_EVERY_N_SEC(WARNING, 60 ) << "Split task with error: " << split_status_ << " split metadata is " << input_split_metadata_.DebugString(); return nullptr; } if (split_id >= 0 && split_id < task_splits_.size()) { return std::move(task_splits_[split_id]); } return nullptr; } template <typename TaskType> Status BatchInputTask<TaskType>::SplitBatches( std::vector<std::unique_ptr<TaskType>>* output_tasks) { return split_func_(&input_task_, open_batch_remaining_slot_, batch_size_limit_, output_tasks); } } } } #endif
#include "tensorflow/core/kernels/batching_util/batch_input_task.h" #include <functional> #include <memory> #include <string> #include <tuple> #include <utility> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_properties.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/batching_util/batch_resource_base.h" #include "tensorflow/core/kernels/batching_util/input_split_metadata.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class BatchInputTaskHandleTestAccess { public: explicit BatchInputTaskHandleTestAccess( BatchInputTaskHandle<TaskType>* handle) : handle_(handle) {} int split_id() const { return handle_->split_id(); } private: BatchInputTaskHandle<TaskType>* const handle_; }; namespace { using TensorMatrix = std::vector<std::vector<Tensor>>; using SplitFunc = std::function<Status( std::unique_ptr<BatchResourceBase::BatchTask>* input_task, int first_output_task_size, int input_batch_size_limit, std::vector<std::unique_ptr<BatchResourceBase::BatchTask>>* output_tasks)>; template <typename T> static Tensor CreateTensor(const TensorShape& input_shape, gtl::ArraySlice<T> input_data) { Tensor tensor(DataTypeToEnum<T>::value, input_shape); test::FillValues<T>(&tensor, input_data); return tensor; } NodeDef CreateBatchKernelNodeDef() { NodeDef batch_kernel_node_def; NodeDefBuilder batch_function_builder("BatchTPUInput", "BatchFunction"); batch_function_builder.Attr("max_batch_size", 128); batch_function_builder.Attr("num_batch_threads", 8); batch_function_builder.Attr("allowed_batch_sizes", {2, 4, 8}); batch_function_builder.Attr("batch_timeout_micros", 1000); batch_function_builder.Attr("max_enqueued_batches", 100); batch_function_builder.Attr("enable_large_batch_splitting", true); std::vector<DataType> input_dtypes({DataType::DT_INT64, DataType::DT_INT64}); std::vector<NodeDefBuilder::NodeOut> inputs; inputs.resize(2); inputs[0] = NodeDefBuilder::NodeOut({"n1", 0, DataType::DT_INT64}); inputs[1] = NodeDefBuilder::NodeOut({"n2", 1, DataType::DT_INT64}); batch_function_builder.Attr("Tin", input_dtypes); batch_function_builder.Input(inputs); batch_function_builder.Attr("Tcaptured", std::vector<DataType>{DataType::DT_INT64}); batch_function_builder.Input(std::vector<NodeDefBuilder::NodeOut>{ NodeDefBuilder::NodeOut({"n3", 1, DataType::DT_INT64})}); batch_function_builder.Attr("Tout", std::vector<DataType>(4, DataType::DT_INT64)); NameAttrList f; f.set_name("func_to_batch"); batch_function_builder.Attr("f", f); TF_CHECK_OK(batch_function_builder.Finalize(&batch_kernel_node_def)); return batch_kernel_node_def; } class BatchInputTaskTest : public ::testing::Test { protected: BatchInputTaskTest() { device_ = DeviceFactory::NewDevice("CPU", SessionOptions{}, "/job:a/replica:0/task:0"); Status op_kernel_creation_status; batch_kernel_ = CreateOpKernel( DEVICE_CPU, device_.get(), device_->GetAllocator(AllocatorAttributes{}), CreateBatchKernelNodeDef(), TF_GRAPH_DEF_VERSION, &op_kernel_creation_status); TF_CHECK_OK(op_kernel_creation_status); EXPECT_NE(batch_kernel_, nullptr); op_kernel_context_params_.device = device_.get(); op_kernel_context_params_.op_kernel = batch_kernel_.get(); op_kernel_context_ = std::make_unique<OpKernelContext>( &op_kernel_context_params_, 4 ); } OpKernelContext* op_kernel_context() const { return op_kernel_context_.get(); } private: std::unique_ptr<Device> device_; std::unique_ptr<OpKernel> batch_kernel_; OpKernelContext::Params op_kernel_context_params_; std::unique_ptr<OpKernelContext> op_kernel_context_; }; TEST_F(BatchInputTaskTest, BatchInputToSplitTasks) { auto batch_task = std::make_unique<BatchResourceBase::BatchTask>(); batch_task->inputs.push_back(CreateTensor<int64_t>( TensorShape({5, 2, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10})); batch_task->inputs.push_back(CreateTensor<int64_t>( TensorShape({5, 1, 2}), {11, 12, 13, 14, 15, 16, 17, 18, 19, 20})); batch_task->captured_inputs.push_back( CreateTensor<int64_t>(TensorShape{1}, {0})); batch_task->context = op_kernel_context(); bool batch_task_done_callback_executed = false; batch_task->output = std::make_shared<TensorMatrix>(); batch_task->status = std::make_shared<ThreadSafeStatus>(); batch_task->done_callback = [&batch_task_done_callback_executed]() { batch_task_done_callback_executed = true; }; auto batch_input_task = std::make_shared<BatchInputTask<BatchResourceBase::BatchTask>>( std::move(batch_task), 1, 3, BatchResourceBase::SplitInputTask); std::vector< std::unique_ptr<BatchInputTaskHandle<BatchResourceBase::BatchTask>>> output_tasks; batch_input_task->ToTaskHandles(&output_tasks); ASSERT_FALSE(batch_task_done_callback_executed); const std::vector<int> expected_task_sizes{1, 3, 1}; for (int i = 0; i < output_tasks.size(); i++) { EXPECT_EQ( internal::BatchInputTaskHandleTestAccess<BatchResourceBase::BatchTask>( output_tasks[i].get()) .split_id(), i); auto batch_task = output_tasks[i]->GetSplitTask(); ASSERT_NE(batch_task, nullptr); EXPECT_EQ(batch_task->size(), expected_task_sizes[i]); batch_task->done_callback(); EXPECT_EQ(output_tasks[i]->GetSplitTask(), nullptr); } ASSERT_TRUE(batch_task_done_callback_executed); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_input_task.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_input_task_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
106e29d3-9c69-48ae-b424-79984c7aed25
cpp
tensorflow/tensorflow
basic_batch_scheduler
tensorflow/core/kernels/batching_util/basic_batch_scheduler.h
tensorflow/core/kernels/batching_util/basic_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BASIC_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BASIC_BATCH_SCHEDULER_H_ #include <stddef.h> #include <cstddef> #include <functional> #include <memory> #include <string> #include "tensorflow/core/kernels/batching_util/shared_batch_scheduler.h" namespace tensorflow { namespace serving { template <typename TaskType> class BasicBatchScheduler : public BatchScheduler<TaskType> { public: struct Options { string thread_pool_name = {"batch_threads"}; int num_batch_threads = port::MaxParallelism(); std::shared_ptr<SharedBatchScheduler<TaskType>> shared_batch_scheduler = nullptr; int max_batch_size = 1000; int64_t batch_timeout_micros = 0; int max_enqueued_batches = 10; bool enable_large_batch_splitting = false; std::function<Status(std::unique_ptr<TaskType>* input_task, int first_output_task_size, int input_batch_size_limit, std::vector<std::unique_ptr<TaskType>>* output_tasks)> split_input_task_func; int max_execution_batch_size = 10; Env* env = Env::Default(); }; static Status Create(const Options& options, std::function<void(std::unique_ptr<Batch<TaskType>>)> process_batch_callback, std::unique_ptr<BasicBatchScheduler>* scheduler); ~BasicBatchScheduler() override = default; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; size_t max_task_size() const override { return shared_scheduler_queue_->max_task_size(); } private: explicit BasicBatchScheduler( std::unique_ptr<BatchScheduler<TaskType>> shared_scheduler_queue); std::unique_ptr<BatchScheduler<TaskType>> shared_scheduler_queue_; BasicBatchScheduler(const BasicBatchScheduler&) = delete; void operator=(const BasicBatchScheduler&) = delete; }; template <typename TaskType> Status BasicBatchScheduler<TaskType>::Create( const Options& options, std::function<void(std::unique_ptr<Batch<TaskType>>)> process_batch_callback, std::unique_ptr<BasicBatchScheduler>* scheduler) { std::shared_ptr<SharedBatchScheduler<TaskType>> shared_scheduler; if (options.shared_batch_scheduler == nullptr) { typename SharedBatchScheduler<TaskType>::Options shared_scheduler_options; shared_scheduler_options.thread_pool_name = options.thread_pool_name; shared_scheduler_options.num_batch_threads = options.num_batch_threads; shared_scheduler_options.env = options.env; TF_RETURN_IF_ERROR(SharedBatchScheduler<TaskType>::Create( shared_scheduler_options, &shared_scheduler)); } else { shared_scheduler = options.shared_batch_scheduler; } typename SharedBatchScheduler<TaskType>::QueueOptions shared_scheduler_queue_options; shared_scheduler_queue_options.input_batch_size_limit = options.max_batch_size; shared_scheduler_queue_options.batch_timeout_micros = options.batch_timeout_micros; shared_scheduler_queue_options.max_enqueued_batches = options.max_enqueued_batches; shared_scheduler_queue_options.enable_large_batch_splitting = options.enable_large_batch_splitting; shared_scheduler_queue_options.split_input_task_func = options.split_input_task_func; shared_scheduler_queue_options.max_execution_batch_size = options.max_execution_batch_size; std::unique_ptr<BatchScheduler<TaskType>> shared_scheduler_queue; TF_RETURN_IF_ERROR(shared_scheduler->AddQueue(shared_scheduler_queue_options, process_batch_callback, &shared_scheduler_queue)); scheduler->reset( new BasicBatchScheduler<TaskType>(std::move(shared_scheduler_queue))); return absl::OkStatus(); } template <typename TaskType> Status BasicBatchScheduler<TaskType>::Schedule( std::unique_ptr<TaskType>* task) { return shared_scheduler_queue_->Schedule(task); } template <typename TaskType> size_t BasicBatchScheduler<TaskType>::NumEnqueuedTasks() const { return shared_scheduler_queue_->NumEnqueuedTasks(); } template <typename TaskType> size_t BasicBatchScheduler<TaskType>::SchedulingCapacity() const { return shared_scheduler_queue_->SchedulingCapacity(); } template <typename TaskType> BasicBatchScheduler<TaskType>::BasicBatchScheduler( std::unique_ptr<BatchScheduler<TaskType>> shared_scheduler_queue) : shared_scheduler_queue_(std::move(shared_scheduler_queue)) {} } } #endif
#include "tensorflow/core/kernels/batching_util/basic_batch_scheduler.h" #include <utility> #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace { class FakeTask : public BatchTask { public: explicit FakeTask(size_t size) : size_(size) {} ~FakeTask() override = default; size_t size() const override { return size_; } private: const size_t size_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler) { std::unique_ptr<FakeTask> task(new FakeTask(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } TEST(BasicBatchSchedulerTest, Basic) { bool callback_called = false; auto callback = [&callback_called](std::unique_ptr<Batch<FakeTask>> batch) { callback_called = true; ASSERT_TRUE(batch->IsClosed()); ASSERT_EQ(2, batch->num_tasks()); EXPECT_EQ(3, batch->task(0).size()); EXPECT_EQ(5, batch->task(1).size()); }; { BasicBatchScheduler<FakeTask>::Options options; options.max_batch_size = 10; options.batch_timeout_micros = 100 * 1000; options.num_batch_threads = 1; options.max_enqueued_batches = 3; std::unique_ptr<BasicBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( BasicBatchScheduler<FakeTask>::Create(options, callback, &scheduler)); EXPECT_EQ(10, scheduler->max_task_size()); EXPECT_EQ(0, scheduler->NumEnqueuedTasks()); EXPECT_EQ(3 * 10, scheduler->SchedulingCapacity()); TF_ASSERT_OK(ScheduleTask(3, scheduler.get())); EXPECT_EQ(1, scheduler->NumEnqueuedTasks()); EXPECT_EQ((3 * 10) - 3, scheduler->SchedulingCapacity()); TF_ASSERT_OK(ScheduleTask(5, scheduler.get())); EXPECT_EQ(2, scheduler->NumEnqueuedTasks()); EXPECT_EQ((3 * 10) - (3 + 5), scheduler->SchedulingCapacity()); } EXPECT_TRUE(callback_called); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/basic_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/basic_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8755924a-ced3-48b1-a66e-1a04454a738d
cpp
tensorflow/tensorflow
serial_device_batch_scheduler
tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h
tensorflow/core/kernels/batching_util/serial_device_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SERIAL_DEVICE_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SERIAL_DEVICE_BATCH_SCHEDULER_H_ #include <algorithm> #include <functional> #include <memory> #include <random> #include <unordered_map> #include <vector> #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class SDBSBatch; template <typename TaskType> class SDBSQueue; } template <typename TaskType> class SerialDeviceBatchScheduler : public std::enable_shared_from_this< SerialDeviceBatchScheduler<TaskType>> { public: ~SerialDeviceBatchScheduler(); struct Options { string thread_pool_name = {"batch_threads"}; int64_t num_batch_threads = port::NumSchedulableCPUs(); int64_t full_batch_scheduling_boost_micros = 0; Env* env = Env::Default(); int64_t initial_in_flight_batches_limit = 3; std::function<int64()> get_pending_on_serial_device; double target_pending = 2; int64_t batches_to_average_over = 1000; }; static Status Create( const Options& options, std::shared_ptr<SerialDeviceBatchScheduler<TaskType>>* scheduler); struct QueueOptions { int max_batch_size = 1000; int max_enqueued_batches = 10; }; using BatchProcessor = std::function<void(std::unique_ptr<Batch<TaskType>>)>; Status AddQueue(const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); double in_flight_batches_limit() { mutex_lock l(mu_); return in_flight_batches_limit_; } double recent_low_traffic_ratio() { mutex_lock l(mu_); return recent_low_traffic_ratio_; } private: friend class internal::SDBSQueue<TaskType>; explicit SerialDeviceBatchScheduler(const Options& options); void ProcessBatches(); void AddBatch(const internal::SDBSBatch<TaskType>* batch); void RemoveQueue(const internal::SDBSQueue<TaskType>* queue); Env* env() const { return options_.env; } const Options options_; std::vector<const internal::SDBSBatch<TaskType>*> batches_ TF_GUARDED_BY(mu_); std::unordered_map<const internal::SDBSQueue<TaskType>*, BatchProcessor> queues_and_callbacks_ TF_GUARDED_BY(mu_); std::unique_ptr<thread::ThreadPool> batch_thread_pool_; int64_t in_flight_batches_limit_ TF_GUARDED_BY(mu_); int64_t processing_threads_ TF_GUARDED_BY(mu_) = 0; int64_t batch_count_ TF_GUARDED_BY(mu_) = 0; int64_t no_batch_count_ TF_GUARDED_BY(mu_) = 0; int64_t pending_sum_ = 0; int64_t batch_latency_sum_ = 0; int64_t batch_period_micros_ = 0; double recent_low_traffic_ratio_ = 0; mutex mu_; SerialDeviceBatchScheduler(const SerialDeviceBatchScheduler&) = delete; void operator=(const SerialDeviceBatchScheduler&) = delete; }; namespace internal { template <typename TaskType> class SDBSQueue : public BatchScheduler<TaskType> { public: using QueueOptions = typename SerialDeviceBatchScheduler<TaskType>::QueueOptions; SDBSQueue(std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler, const QueueOptions& options); ~SDBSQueue() override; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; void ReleaseBatch(const SDBSBatch<TaskType>* batch); size_t max_task_size() const override { return options_.max_batch_size; } private: std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler_; const QueueOptions options_; SDBSBatch<TaskType>* current_batch_ TF_GUARDED_BY(mu_) = nullptr; int64_t num_enqueued_batches_ TF_GUARDED_BY(mu_) = 0; int64_t num_enqueued_tasks_ TF_GUARDED_BY(mu_) = 0; mutable mutex mu_; SDBSQueue(const SDBSQueue&) = delete; void operator=(const SDBSQueue&) = delete; }; template <typename TaskType> class SDBSBatch : public Batch<TaskType> { public: SDBSBatch(SDBSQueue<TaskType>* queue, int64_t creation_time_micros) : queue_(queue), creation_time_micros_(creation_time_micros) {} ~SDBSBatch() override {} SDBSQueue<TaskType>* queue() const { return queue_; } int64_t creation_time_micros() const { return creation_time_micros_; } private: SDBSQueue<TaskType>* queue_; const int64_t creation_time_micros_; SDBSBatch(const SDBSBatch&) = delete; void operator=(const SDBSBatch&) = delete; }; } template <typename TaskType> Status SerialDeviceBatchScheduler<TaskType>::Create( const Options& options, std::shared_ptr<SerialDeviceBatchScheduler<TaskType>>* scheduler) { if (options.num_batch_threads < 1) { return errors::InvalidArgument("num_batch_threads must be positive; was ", options.num_batch_threads); } if (options.initial_in_flight_batches_limit < 1) { return errors::InvalidArgument( "initial_in_flight_batches_limit must be positive; was ", options.initial_in_flight_batches_limit); } if (options.initial_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, ") should not be larger than num_batch_threads (", options.num_batch_threads, ")"); } if (options.full_batch_scheduling_boost_micros < 0) { return errors::InvalidArgument( "full_batch_scheduling_boost_micros can't be negative; was ", options.full_batch_scheduling_boost_micros); } if (options.batches_to_average_over < 1) { return errors::InvalidArgument( "batches_to_average_over should be " "greater than or equal to 1; was ", options.batches_to_average_over); } if (options.target_pending <= 0) { return errors::InvalidArgument( "target_pending should be larger than zero; was ", options.target_pending); } if (!options.get_pending_on_serial_device) { return errors::InvalidArgument( "get_pending_on_serial_device must be " "specified"); } scheduler->reset(new SerialDeviceBatchScheduler<TaskType>(options)); return absl::OkStatus(); } template <typename TaskType> SerialDeviceBatchScheduler<TaskType>::SerialDeviceBatchScheduler( const Options& options) : options_(options), in_flight_batches_limit_(options.initial_in_flight_batches_limit), processing_threads_(options.initial_in_flight_batches_limit) { batch_thread_pool_.reset(new thread::ThreadPool( env(), options.thread_pool_name, options.num_batch_threads)); for (int i = 0; i < processing_threads_; i++) { batch_thread_pool_->Schedule( std::bind(&SerialDeviceBatchScheduler<TaskType>::ProcessBatches, this)); } } template <typename TaskType> SerialDeviceBatchScheduler<TaskType>::~SerialDeviceBatchScheduler() { { mutex_lock l(mu_); processing_threads_ = 0; } batch_thread_pool_.reset(); } template <typename TaskType> Status SerialDeviceBatchScheduler<TaskType>::AddQueue( const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { if (options.max_batch_size <= 0) { return errors::InvalidArgument("max_batch_size must be positive; was ", options.max_batch_size); } if (options.max_enqueued_batches <= 0) { return errors::InvalidArgument( "max_enqueued_batches must be positive; was ", options.max_enqueued_batches); } internal::SDBSQueue<TaskType>* SDBS_queue_raw; queue->reset(SDBS_queue_raw = new internal::SDBSQueue<TaskType>( this->shared_from_this(), options)); mutex_lock l(mu_); queues_and_callbacks_[SDBS_queue_raw] = process_batch_callback; return absl::OkStatus(); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::AddBatch( const internal::SDBSBatch<TaskType>* batch) { mutex_lock l(mu_); batches_.push_back(batch); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::RemoveQueue( const internal::SDBSQueue<TaskType>* queue) { mutex_lock l(mu_); queues_and_callbacks_.erase(queue); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::ProcessBatches() { const int64_t kIdleThreadSleepTimeMicros = 1000; const double kMaxNoBatchRatio = .1; const double kLowTrafficMovingAverageFactor = .1; for (;;) { mu_.lock(); if (processing_threads_ < 1 || processing_threads_ > in_flight_batches_limit_) { processing_threads_--; mu_.unlock(); break; } if (batches_.empty()) { no_batch_count_++; int64_t sleep_time = batch_period_micros_ ? batch_period_micros_ : kIdleThreadSleepTimeMicros; mu_.unlock(); env()->SleepForMicroseconds(sleep_time); continue; } auto best_it = batches_.begin(); double best_score = (*best_it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*best_it)->size() / static_cast<double>((*best_it)->queue()->max_task_size()); for (auto it = batches_.begin() + 1; it != batches_.end(); it++) { const double score = (*it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*it)->size() / static_cast<double>((*it)->queue()->max_task_size()); if (score < best_score) { best_score = score; best_it = it; } } const internal::SDBSBatch<TaskType>* batch = *best_it; batches_.erase(best_it); batch->queue()->ReleaseBatch(batch); auto callback = queues_and_callbacks_[batch->queue()]; mu_.unlock(); int64_t start_time = env()->NowMicros(); callback(std::unique_ptr<Batch<TaskType>>( const_cast<internal::SDBSBatch<TaskType>*>(batch))); int64_t end_time = env()->NowMicros(); mu_.lock(); batch_count_++; batch_latency_sum_ += end_time - start_time; pending_sum_ += options_.get_pending_on_serial_device(); if (batch_count_ == options_.batches_to_average_over) { recent_low_traffic_ratio_ *= (1 - kLowTrafficMovingAverageFactor); if (no_batch_count_ < kMaxNoBatchRatio * batch_count_) { double avg_pending = pending_sum_ / static_cast<double>(batch_count_); batch_period_micros_ = batch_latency_sum_ / batch_count_ / in_flight_batches_limit_; in_flight_batches_limit_ += std::round(options_.target_pending - avg_pending); in_flight_batches_limit_ = std::max(in_flight_batches_limit_, int64_t{1}); in_flight_batches_limit_ = std::min(in_flight_batches_limit_, options_.num_batch_threads); if (processing_threads_ > 0 && processing_threads_ < in_flight_batches_limit_) { int extra_threads = in_flight_batches_limit_ - processing_threads_; for (int i = 0; i < extra_threads; i++) { batch_thread_pool_->Schedule(std::bind( &SerialDeviceBatchScheduler<TaskType>::ProcessBatches, this)); } processing_threads_ = in_flight_batches_limit_; } } else { recent_low_traffic_ratio_ += kLowTrafficMovingAverageFactor; } batch_count_ = 0; no_batch_count_ = 0; pending_sum_ = 0; batch_latency_sum_ = 0; } mu_.unlock(); } } namespace internal { template <typename TaskType> SDBSQueue<TaskType>::SDBSQueue( std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler, const QueueOptions& options) : scheduler_(scheduler), options_(options) {} template <typename TaskType> SDBSQueue<TaskType>::~SDBSQueue() { const int kSleepMicros = 1000; for (;;) { { mutex_lock l(mu_); if (num_enqueued_batches_ == 0) { break; } } scheduler_->env()->SleepForMicroseconds(kSleepMicros); } scheduler_->RemoveQueue(this); } template <typename TaskType> Status SDBSQueue<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { SDBSBatch<TaskType>* new_batch = nullptr; size_t size = (*task)->size(); if (size > options_.max_batch_size) { return errors::InvalidArgument("Task size ", size, " is larger than maximum batch size ", options_.max_batch_size); } { mutex_lock l(mu_); if (current_batch_ && current_batch_->size() + size > options_.max_batch_size) { if (num_enqueued_batches_ >= options_.max_enqueued_batches) { return errors::Unavailable("The batch scheduling queue is full"); } current_batch_->Close(); current_batch_ = nullptr; } if (!current_batch_) { num_enqueued_batches_++; current_batch_ = new_batch = new SDBSBatch<TaskType>(this, scheduler_->env()->NowMicros()); } current_batch_->AddTask(std::move(*task)); num_enqueued_tasks_++; } if (new_batch != nullptr) scheduler_->AddBatch(new_batch); return absl::OkStatus(); } template <typename TaskType> void SDBSQueue<TaskType>::ReleaseBatch(const SDBSBatch<TaskType>* batch) { mutex_lock l(mu_); num_enqueued_batches_--; num_enqueued_tasks_ -= batch->num_tasks(); if (batch == current_batch_) { current_batch_->Close(); current_batch_ = nullptr; } } template <typename TaskType> size_t SDBSQueue<TaskType>::NumEnqueuedTasks() const { mutex_lock l(mu_); return num_enqueued_tasks_; } template <typename TaskType> size_t SDBSQueue<TaskType>::SchedulingCapacity() const { mutex_lock l(mu_); const int current_batch_capacity = current_batch_ ? options_.max_batch_size - current_batch_->size() : 0; const int spare_batches = options_.max_enqueued_batches - num_enqueued_batches_; return spare_batches * options_.max_batch_size + current_batch_capacity; } } } } #endif
#include "tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace anonymous { class FakeTask : public BatchTask { public: explicit FakeTask(size_t size) : size_(size) {} ~FakeTask() override = default; size_t size() const override { return size_; } private: const size_t size_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler) { std::unique_ptr<FakeTask> task(new FakeTask(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } std::unique_ptr<Thread> CreateFakeClockAdvancerThread( test_util::FakeClockEnv* env, Notification* start, Notification* stop) { return std::unique_ptr<Thread>(Env::Default()->StartThread( {}, "FakeClockAdvancerThread", [env, start, stop] { start->WaitForNotification(); while (!stop->HasBeenNotified()) { env->AdvanceByMicroseconds(10); Env::Default()->SleepForMicroseconds(10); } })); } TEST(SerialDeviceBatchSchedulerTest, BadOptions) { using Scheduler = SerialDeviceBatchScheduler<FakeTask>; std::shared_ptr<Scheduler> scheduler; Scheduler::Options default_options; default_options.get_pending_on_serial_device = []() { return 0; }; Scheduler::Options options = default_options; options.num_batch_threads = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.initial_in_flight_batches_limit = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.num_batch_threads = 5; options.initial_in_flight_batches_limit = 8; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.batches_to_average_over = -5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.target_pending = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); } TEST(SerialDeviceBatchSchedulerTest, InFlightBatchesLimit) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.num_batch_threads = 3; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 2) { Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } if (batch_num == 3) { ASSERT_TRUE(finish_processing.HasBeenNotified()); } finish_processing.WaitForNotification(); }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; std::unique_ptr<BatchScheduler<FakeTask>> queue3; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue1)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue2)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue3)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); TF_ASSERT_OK(ScheduleTask(100, queue3.get())); } TEST(SerialDeviceBatchSchedulerTest, PendingOnSerialDevice) { mutex mu; int pending; SerialDeviceBatchScheduler<FakeTask>::Options options; options.num_batch_threads = 3; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1; options.target_pending = 3; options.get_pending_on_serial_device = [&mu, &pending]() { mutex_lock l(mu); return pending; }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); int processed_batches = 0; Notification start_processing; auto queue_callback = [&mu, &processed_batches, &start_processing, &pending, &scheduler](std::unique_ptr<Batch<FakeTask>> batch) { int batch_num; { mutex_lock l(mu); batch_num = ++processed_batches; } switch (batch_num) { case 1: start_processing.WaitForNotification(); { mutex_lock l(mu); pending = 3; } break; case 2: CHECK_EQ(scheduler->in_flight_batches_limit(), 1); { mutex_lock l(mu); pending = 1; } break; case 3: CHECK_EQ(scheduler->in_flight_batches_limit(), 3); { mutex_lock l(mu); pending = 3; } break; default: break; } }; std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 3; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } start_processing.Notify(); } TEST(SerialDeviceBatchSchedulerTest, FullBatchSchedulingBoostMicros) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { SerialDeviceBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 10; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(1000, batch->size()); break; case 2: EXPECT_EQ(100, batch->size()); break; case 3: EXPECT_EQ(80, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 3 batches"; } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); Env::Default()->SleepForMicroseconds(1000); SerialDeviceBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; std::unique_ptr<BatchScheduler<FakeTask>> queue3; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue3)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(3); TF_ASSERT_OK(ScheduleTask(1000, queue2.get())); env.AdvanceByMicroseconds(5); TF_ASSERT_OK(ScheduleTask(80, queue3.get())); env.AdvanceByMicroseconds(1000); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(SerialDeviceBatchSchedulerTest, DeleteQueue) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); finish_processing.WaitForNotification(); mu.lock(); processed_batches++; mu.unlock(); }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 2; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } std::unique_ptr<Thread> queue_deleter(Env::Default()->StartThread( {}, "QueueDeleterThread", [&queue, &mu, &processed_batches, scheduler]() mutable { queue.reset(); { mutex_lock l(mu); EXPECT_GT(processed_batches, 0); } scheduler.reset(); mutex_lock l(mu); EXPECT_EQ(processed_batches, 2); })); scheduler.reset(); Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } TEST(SerialDeviceBatchSchedulerTest, DeleteScheduler) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification start_processing; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &start_processing, &finish_processing](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); start_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; if (processed_batches == 2) { finish_processing.Notify(); } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 2; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } scheduler.reset(); start_processing.Notify(); finish_processing.WaitForNotification(); } TEST(SerialDeviceBatchSchedulerTest, QueueCapacityInfo) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 1) { finish_processing.WaitForNotification(); } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue1)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(800, queue1.get())); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 1); EXPECT_EQ(queue2->SchedulingCapacity(), 9 * 1000 + 900); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); TF_ASSERT_OK(ScheduleTask(200, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 3); EXPECT_EQ(queue2->SchedulingCapacity(), 9 * 1000 + 600); TF_ASSERT_OK(ScheduleTask(700, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 4); EXPECT_EQ(queue2->SchedulingCapacity(), 8 * 1000 + 300); finish_processing.Notify(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/serial_device_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c0ebcd67-aa31-4bde-8d1d-ac3a89a6019f
cpp
tensorflow/tensorflow
adaptive_shared_batch_scheduler
tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h
tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_ADAPTIVE_SHARED_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_ADAPTIVE_SHARED_BATCH_SCHEDULER_H_ #include <algorithm> #include <atomic> #include <functional> #include <memory> #include <random> #include <unordered_map> #include <vector> #include "absl/types/optional.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/periodic_function.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class ASBSBatch; template <typename TaskType> class ASBSQueue; } template <typename TaskType> class AdaptiveSharedBatchScheduler : public std::enable_shared_from_this< AdaptiveSharedBatchScheduler<TaskType>> { public: ~AdaptiveSharedBatchScheduler() { if (owned_batch_thread_pool_) { delete batch_thread_pool_; } } struct Options { string thread_pool_name = {"batch_threads"}; int64_t num_batch_threads = port::MaxParallelism(); thread::ThreadPool* thread_pool = nullptr; int64_t min_in_flight_batches_limit = 1; int64_t full_batch_scheduling_boost_micros = 0; Env* env = Env::Default(); double initial_in_flight_batches_limit = 3; int64_t batches_to_average_over = 1000; bool fifo_scheduling = false; }; static Status Create( const Options& options, std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>>* scheduler); struct QueueOptions { int max_batch_size = 1000; absl::optional<int> max_input_task_size = absl::nullopt; absl::optional<int> max_tasks_per_batch = absl::nullopt; int max_enqueued_batches = 10; int64_t batch_timeout_micros = 0; std::function<Status(std::unique_ptr<TaskType>* input_task, int first_size, int max_batch_size, std::vector<std::unique_ptr<TaskType>>* output_tasks)> split_input_task_func; bool disable_padding = false; }; using BatchProcessor = std::function<void(std::unique_ptr<Batch<TaskType>>)>; Status AddQueue(const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); double in_flight_batches_limit() { mutex_lock l(mu_); return in_flight_batches_limit_; } private: friend class internal::ASBSQueue<TaskType>; explicit AdaptiveSharedBatchScheduler(const Options& options); void CallbackWrapper(const internal::ASBSBatch<TaskType>* batch, BatchProcessor callback, bool is_express); void MaybeScheduleNextBatch() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleNextBatchFIFO() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleClosedBatches(); void MaybeScheduleClosedBatchesLocked() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleClosedBatchesLockedFIFO() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeAdjustInflightLimit() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void AddBatch(const internal::ASBSBatch<TaskType>* batch); void RemoveQueue(const internal::ASBSQueue<TaskType>* queue); Env* GetEnv() const { return options_.env; } const Options options_; std::vector<const internal::ASBSBatch<TaskType>*> batches_ TF_GUARDED_BY(mu_); std::deque<const internal::ASBSBatch<TaskType>*> fifo_batches_ TF_GUARDED_BY(mu_); std::unordered_map<const internal::ASBSQueue<TaskType>*, BatchProcessor> queues_and_callbacks_ TF_GUARDED_BY(mu_); mutex mu_; thread::ThreadPool* batch_thread_pool_; bool owned_batch_thread_pool_ = false; double in_flight_batches_limit_ TF_GUARDED_BY(mu_); int64_t in_flight_batches_ TF_GUARDED_BY(mu_) = 0; int64_t in_flight_express_batches_ TF_GUARDED_BY(mu_) = 0; std::default_random_engine rand_engine_; std::uniform_real_distribution<double> rand_double_; int64_t batch_count_ TF_GUARDED_BY(mu_) = 0; struct DelayStats { int64_t batch_latency_sum = 0; double last_avg_latency_ms = 0; bool last_latency_decreased = false; int step_direction = 1; }; DelayStats batch_delay_stats_ TF_GUARDED_BY(mu_); constexpr static double kMaxStepSizeMultiplier = 0.125; constexpr static double kMinStepSizeMultiplier = 0.0078125; double step_size_multiplier_ TF_GUARDED_BY(mu_) = kMaxStepSizeMultiplier; AdaptiveSharedBatchScheduler(const AdaptiveSharedBatchScheduler&) = delete; void operator=(const AdaptiveSharedBatchScheduler&) = delete; }; namespace internal { template <typename TaskType> class ASBSQueue : public BatchScheduler<TaskType> { public: using QueueOptions = typename AdaptiveSharedBatchScheduler<TaskType>::QueueOptions; ASBSQueue(std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler, const QueueOptions& options); ~ASBSQueue() override; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; void ReleaseBatch(const ASBSBatch<TaskType>* batch); size_t max_task_size() const override { return options_.max_batch_size; } private: size_t SchedulingCapacityLocked() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); static uint64 NewTraceMeContextIdForBatch(); std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler_; const QueueOptions options_; ASBSBatch<TaskType>* current_batch_ TF_GUARDED_BY(mu_) = nullptr; int64_t num_enqueued_batches_ TF_GUARDED_BY(mu_) = 0; int64_t num_enqueued_tasks_ TF_GUARDED_BY(mu_) = 0; mutable mutex mu_; ASBSQueue(const ASBSQueue&) = delete; void operator=(const ASBSQueue&) = delete; }; template <typename TaskType> class ASBSBatch : public Batch<TaskType> { public: ASBSBatch(ASBSQueue<TaskType>* queue, int64_t creation_time_micros, int64_t batch_timeout_micros, uint64 traceme_context_id) : queue_(queue), creation_time_micros_(creation_time_micros), schedulable_time_micros_(creation_time_micros + batch_timeout_micros), traceme_context_id_(traceme_context_id) {} ~ASBSBatch() override {} ASBSQueue<TaskType>* queue() const { return queue_; } int64_t creation_time_micros() const { return creation_time_micros_; } int64_t schedulable_time_micros() const { return schedulable_time_micros_; } uint64 traceme_context_id() const { return traceme_context_id_; } private: ASBSQueue<TaskType>* queue_; const int64_t creation_time_micros_; const int64_t schedulable_time_micros_; const uint64 traceme_context_id_; ASBSBatch(const ASBSBatch&) = delete; void operator=(const ASBSBatch&) = delete; }; } template <typename TaskType> constexpr double AdaptiveSharedBatchScheduler<TaskType>::kMaxStepSizeMultiplier; template <typename TaskType> constexpr double AdaptiveSharedBatchScheduler<TaskType>::kMinStepSizeMultiplier; template <typename TaskType> Status AdaptiveSharedBatchScheduler<TaskType>::Create( const Options& options, std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>>* scheduler) { if (options.num_batch_threads < 1) { return errors::InvalidArgument("num_batch_threads must be positive; was ", options.num_batch_threads); } if (options.min_in_flight_batches_limit < 1) { return errors::InvalidArgument( "min_in_flight_batches_limit must be >= 1; was ", options.min_in_flight_batches_limit); } if (options.min_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "min_in_flight_batches_limit (", options.min_in_flight_batches_limit, ") must be <= num_batch_threads (", options.num_batch_threads, ")"); } if (options.full_batch_scheduling_boost_micros < 0) { return errors::InvalidArgument( "full_batch_scheduling_boost_micros can't be negative; was ", options.full_batch_scheduling_boost_micros); } if (options.initial_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, ") should not be larger than num_batch_threads (", options.num_batch_threads, ")"); } if (options.initial_in_flight_batches_limit < options.min_in_flight_batches_limit) { return errors::InvalidArgument("initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, "must be >= min_in_flight_batches_limit (", options.min_in_flight_batches_limit, ")"); } if (options.batches_to_average_over < 1) { return errors::InvalidArgument( "batches_to_average_over should be " "greater than or equal to 1; was ", options.batches_to_average_over); } scheduler->reset(new AdaptiveSharedBatchScheduler<TaskType>(options)); return absl::OkStatus(); } template <typename TaskType> AdaptiveSharedBatchScheduler<TaskType>::AdaptiveSharedBatchScheduler( const Options& options) : options_(options), in_flight_batches_limit_(options.initial_in_flight_batches_limit), rand_double_(0.0, 1.0) { std::random_device device; rand_engine_.seed(device()); if (options.thread_pool == nullptr) { owned_batch_thread_pool_ = true; batch_thread_pool_ = new thread::ThreadPool( GetEnv(), options.thread_pool_name, options.num_batch_threads); } else { owned_batch_thread_pool_ = false; batch_thread_pool_ = options.thread_pool; } } template <typename TaskType> Status AdaptiveSharedBatchScheduler<TaskType>::AddQueue( const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { if (options.max_batch_size <= 0) { return errors::InvalidArgument("max_batch_size must be positive; was ", options.max_batch_size); } if (options.max_enqueued_batches <= 0) { return errors::InvalidArgument( "max_enqueued_batches must be positive; was ", options.max_enqueued_batches); } if (options.max_input_task_size.has_value()) { if (options.max_input_task_size.value() < options.max_batch_size) { return errors::InvalidArgument( "max_input_task_size must be larger than or equal to max_batch_size;" "got max_input_task_size as ", options.max_input_task_size.value(), " and max_batch_size as ", options.max_batch_size); } } internal::ASBSQueue<TaskType>* asbs_queue_raw; queue->reset(asbs_queue_raw = new internal::ASBSQueue<TaskType>( this->shared_from_this(), options)); mutex_lock l(mu_); queues_and_callbacks_[asbs_queue_raw] = process_batch_callback; return absl::OkStatus(); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::AddBatch( const internal::ASBSBatch<TaskType>* batch) { mutex_lock l(mu_); if (options_.fifo_scheduling) { fifo_batches_.push_back(batch); } else { batches_.push_back(batch); } int64_t delay_micros = batch->schedulable_time_micros() - GetEnv()->NowMicros(); if (delay_micros <= 0) { MaybeScheduleNextBatch(); return; } GetEnv()->SchedClosureAfter( delay_micros, [this, lifetime_preserver = this->shared_from_this()] { mutex_lock l(mu_); MaybeScheduleNextBatch(); }); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::RemoveQueue( const internal::ASBSQueue<TaskType>* queue) { mutex_lock l(mu_); queues_and_callbacks_.erase(queue); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleNextBatchFIFO() { const internal::ASBSBatch<TaskType>* batch = *fifo_batches_.begin(); if (batch->schedulable_time_micros() > GetEnv()->NowMicros()) { return; } fifo_batches_.pop_front(); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule(std::bind( &AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], false )); in_flight_batches_++; } template <typename TaskType> void AdaptiveSharedBatchScheduler< TaskType>::MaybeScheduleClosedBatchesLockedFIFO() { int available_threads = static_cast<int>(options_.num_batch_threads - in_flight_batches_ - in_flight_express_batches_); for (auto it = fifo_batches_.begin(); it != fifo_batches_.end() && available_threads > 0; it = fifo_batches_.begin()) { if ((*it)->IsClosed()) { const internal::ASBSBatch<TaskType>* batch = *it; fifo_batches_.pop_front(); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], true)); in_flight_express_batches_++; available_threads--; } else { break; } } } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleNextBatch() { bool batch_empty = options_.fifo_scheduling ? fifo_batches_.empty() : batches_.empty(); if (batch_empty || in_flight_batches_ >= in_flight_batches_limit_) return; if (in_flight_batches_limit_ - in_flight_batches_ < 1 && rand_double_(rand_engine_) > in_flight_batches_limit_ - in_flight_batches_) { return; } if (options_.fifo_scheduling) { MaybeScheduleNextBatchFIFO(); return; } auto best_it = batches_.end(); double best_score = (std::numeric_limits<double>::max)(); int64_t now_micros = GetEnv()->NowMicros(); for (auto it = batches_.begin(); it != batches_.end(); it++) { if ((*it)->schedulable_time_micros() > now_micros) continue; const double score = (*it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*it)->size() / static_cast<double>((*it)->queue()->max_task_size()); if (best_it == batches_.end() || score < best_score) { best_score = score; best_it = it; } } if (best_it == batches_.end()) return; const internal::ASBSBatch<TaskType>* batch = *best_it; batches_.erase(best_it); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], false)); in_flight_batches_++; } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleClosedBatches() { mutex_lock l(mu_); MaybeScheduleClosedBatchesLocked(); } template <typename TaskType> void AdaptiveSharedBatchScheduler< TaskType>::MaybeScheduleClosedBatchesLocked() { if (options_.fifo_scheduling) { MaybeScheduleClosedBatchesLockedFIFO(); return; } int available_threads = static_cast<int>(options_.num_batch_threads - in_flight_batches_ - in_flight_express_batches_); for (auto it = batches_.begin(); it != batches_.end() && available_threads > 0;) { if ((*it)->IsClosed()) { const internal::ASBSBatch<TaskType>* batch = *it; it = batches_.erase(it); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], true)); in_flight_express_batches_++; available_threads--; } else { ++it; } } } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper( const internal::ASBSBatch<TaskType>* batch, AdaptiveSharedBatchScheduler<TaskType>::BatchProcessor callback, bool is_express) { tsl::profiler::TraceMeConsumer trace_me( [&] { return profiler::TraceMeEncode( "ProcessBatch", {{"batch_size_before_padding", batch->size()}, {"_r", 2} }); }, tsl::profiler::ContextType::kAdaptiveSharedBatchScheduler, batch->traceme_context_id()); const int64_t start_time = batch->creation_time_micros(); callback(std::unique_ptr<Batch<TaskType>>( const_cast<internal::ASBSBatch<TaskType>*>(batch))); int64_t end_time = GetEnv()->NowMicros(); mutex_lock l(mu_); if (is_express) { in_flight_express_batches_--; MaybeScheduleClosedBatchesLocked(); return; } in_flight_batches_--; batch_count_++; batch_delay_stats_.batch_latency_sum += end_time - start_time; MaybeAdjustInflightLimit(); MaybeScheduleNextBatch(); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeAdjustInflightLimit() { if (batch_count_ == options_.batches_to_average_over) { double current_avg_latency_ms = (batch_delay_stats_.batch_latency_sum / 1000.) / batch_count_; bool current_latency_decreased = current_avg_latency_ms < batch_delay_stats_.last_avg_latency_ms; if (current_latency_decreased) { step_size_multiplier_ *= (batch_delay_stats_.last_latency_decreased ? 2 : 0.5); step_size_multiplier_ = std::min(step_size_multiplier_, kMaxStepSizeMultiplier); step_size_multiplier_ = std::max(step_size_multiplier_, kMinStepSizeMultiplier); } else { batch_delay_stats_.step_direction = -batch_delay_stats_.step_direction; } in_flight_batches_limit_ += batch_delay_stats_.step_direction * in_flight_batches_limit_ * step_size_multiplier_; in_flight_batches_limit_ = std::min(in_flight_batches_limit_, static_cast<double>(options_.num_batch_threads)); in_flight_batches_limit_ = std::max(in_flight_batches_limit_, static_cast<double>(options_.min_in_flight_batches_limit)); batch_delay_stats_.last_avg_latency_ms = current_avg_latency_ms; batch_delay_stats_.last_latency_decreased = current_latency_decreased; batch_count_ = 0; batch_delay_stats_.batch_latency_sum = 0; } } namespace internal { template <typename TaskType> ASBSQueue<TaskType>::ASBSQueue( std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler, const QueueOptions& options) : scheduler_(scheduler), options_(options) {} template <typename TaskType> ASBSQueue<TaskType>::~ASBSQueue() { const int kSleepMicros = 1000; for (;;) { { mutex_lock l(mu_); if (num_enqueued_batches_ == 0) { break; } } scheduler_->GetEnv()->SleepForMicroseconds(kSleepMicros); } scheduler_->RemoveQueue(this); } template <typename TaskType> Status ASBSQueue<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { size_t size = (*task)->size(); if (options_.split_input_task_func == nullptr && size > options_.max_batch_size) { return errors::InvalidArgument("Task size ", size, " is larger than maximum batch size ", options_.max_batch_size); } if (options_.max_input_task_size.has_value() && (size > options_.max_input_task_size.value())) { return errors::InvalidArgument("Task size ", size, " is larger than max input task size ", options_.max_input_task_size.value()); } std::vector<std::unique_ptr<TaskType>> tasks_to_schedule; std::vector<ASBSBatch<TaskType>*> new_batches; bool closed_batch = false; { mutex_lock l(mu_); if (size > SchedulingCapacityLocked()) { return errors::Unavailable("The batch scheduling queue is full"); } int remaining_batch_size = current_batch_ == nullptr ? options_.max_batch_size : options_.max_batch_size - current_batch_->size(); if (options_.split_input_task_func == nullptr || size <= remaining_batch_size) { tasks_to_schedule.push_back(std::move(*task)); } else { TF_RETURN_IF_ERROR(options_.split_input_task_func( task, remaining_batch_size, options_.max_batch_size, &tasks_to_schedule)); } for (auto& task : tasks_to_schedule) { if (current_batch_ && current_batch_->size() + task->size() > options_.max_batch_size) { current_batch_->Close(); closed_batch = true; current_batch_ = nullptr; } if (!current_batch_) { num_enqueued_batches_++; current_batch_ = new ASBSBatch<TaskType>( this, scheduler_->GetEnv()->NowMicros(), options_.batch_timeout_micros, NewTraceMeContextIdForBatch()); new_batches.push_back(current_batch_); } tsl::profiler::TraceMeProducer trace_me( [task_size = task->size()] { return profiler::TraceMeEncode( "ASBSQueue::Schedule", {{"batching_input_task_size", task_size}}); }, tsl::profiler::ContextType::kAdaptiveSharedBatchScheduler, this->current_batch_->traceme_context_id()); current_batch_->AddTask(std::move(task)); num_enqueued_tasks_++; bool reached_max_tasks = (options_.max_tasks_per_batch.has_value() && current_batch_->num_tasks() >= options_.max_tasks_per_batch.value()); if (current_batch_->size() == options_.max_batch_size || reached_max_tasks) { current_batch_->Close(); closed_batch = true; current_batch_ = nullptr; } } } for (auto* batch : new_batches) { scheduler_->AddBatch(batch); } if (closed_batch) { scheduler_->MaybeScheduleClosedBatches(); } return absl::OkStatus(); } template <typename TaskType> void ASBSQueue<TaskType>::ReleaseBatch(const ASBSBatch<TaskType>* batch) { mutex_lock l(mu_); num_enqueued_batches_--; num_enqueued_tasks_ -= batch->num_tasks(); if (batch == current_batch_) { current_batch_->Close(); current_batch_ = nullptr; } } template <typename TaskType> size_t ASBSQueue<TaskType>::NumEnqueuedTasks() const { mutex_lock l(mu_); return num_enqueued_tasks_; } template <typename TaskType> size_t ASBSQueue<TaskType>::SchedulingCapacity() const { mutex_lock l(mu_); return SchedulingCapacityLocked(); } template <typename TaskType> size_t ASBSQueue<TaskType>::SchedulingCapacityLocked() const { const int current_batch_capacity = current_batch_ ? options_.max_batch_size - current_batch_->size() : 0; const int spare_batches = options_.max_enqueued_batches - num_enqueued_batches_; return spare_batches * options_.max_batch_size + current_batch_capacity; } template <typename TaskType> uint64 ASBSQueue<TaskType>::NewTraceMeContextIdForBatch() { static std::atomic<uint64> traceme_context_id(0); return traceme_context_id.fetch_add(1, std::memory_order_relaxed); } } } } #endif
#include "tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace anonymous { class FakeTask : public BatchTask { public: explicit FakeTask(size_t size) : size_(size) {} ~FakeTask() override = default; size_t size() const override { return size_; } void set_size(size_t size) { size_ = size; } private: size_t size_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler) { std::unique_ptr<FakeTask> task(new FakeTask(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } std::unique_ptr<Thread> CreateFakeClockAdvancerThread( test_util::FakeClockEnv* env, Notification* start, Notification* stop) { return std::unique_ptr<Thread>(Env::Default()->StartThread( {}, "FakeClockAdvancerThread", [env, start, stop] { start->WaitForNotification(); while (!stop->HasBeenNotified()) { env->AdvanceByMicroseconds(10); Env::Default()->SleepForMicroseconds(10); } })); } TEST(AdaptiveSharedBatchSchedulerTest, BadOptions) { using Scheduler = AdaptiveSharedBatchScheduler<FakeTask>; std::shared_ptr<Scheduler> scheduler; Scheduler::Options options; options.num_batch_threads = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.initial_in_flight_batches_limit = 0.5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.num_batch_threads = 5; options.initial_in_flight_batches_limit = 8; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.batches_to_average_over = -5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.min_in_flight_batches_limit = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.min_in_flight_batches_limit = 5; options.num_batch_threads = 3; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.initial_in_flight_batches_limit = 1; options.min_in_flight_batches_limit = 2; options.num_batch_threads = 3; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); } TEST(AdaptiveSharedBatchSchedulerTest, InFlightBatchesLimit) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 2) { Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } if (batch_num == 3) { ASSERT_TRUE(finish_processing.HasBeenNotified()); } finish_processing.WaitForNotification(); }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); } TEST(AdaptiveSharedBatchSchedulerTest, InFlightBatchesLimitTuning) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1; auto queue_callback = [&env](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); switch (batch->size()) { case 0: env.AdvanceByMicroseconds(10); break; case 1: env.AdvanceByMicroseconds(15); break; case 2: env.AdvanceByMicroseconds(10); break; case 3: env.AdvanceByMicroseconds(11); break; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(0, queue.get())); double in_flight_batches_limit = 2; while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_LT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(1, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_GT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(2, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_GT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(3, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_LT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FullBatchSchedulingBoostMicros) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 100; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); finish_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(100, batch->size()); break; case 2: EXPECT_EQ(50, batch->size()); break; case 3: EXPECT_EQ(900, batch->size()); break; case 4: EXPECT_EQ(200, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 4 batches"; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); while (queue1->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(50, queue2.get())); env.AdvanceByMicroseconds(45); TF_ASSERT_OK(ScheduleTask(900, queue1.get())); finish_processing.Notify(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FIFO) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 0; options.fifo_scheduling = true; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); finish_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(100, batch->size()); break; case 2: EXPECT_EQ(200, batch->size()); break; case 3: EXPECT_EQ(50, batch->size()); break; case 4: EXPECT_EQ(900, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 4 batches"; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(30); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(50, queue2.get())); env.AdvanceByMicroseconds(45); TF_ASSERT_OK(ScheduleTask(900, queue1.get())); finish_processing.Notify(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, DeleteQueue) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); finish_processing.WaitForNotification(); mu.lock(); processed_batches++; mu.unlock(); }; auto processed_checker = gtl::MakeCleanup([&mu, &processed_batches] { mutex_lock l(mu); EXPECT_EQ(processed_batches, 2); }); std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); Env::Default()->SchedClosureAfter( 1000, [&finish_processing] { finish_processing.Notify(); }); } TEST(AdaptiveSharedBatchSchedulerTest, QueueCapacityInfo) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 1) { finish_processing.WaitForNotification(); } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 900); TF_ASSERT_OK(ScheduleTask(100, queue.get())); TF_ASSERT_OK(ScheduleTask(200, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 3); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 600); TF_ASSERT_OK(ScheduleTask(700, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 300); finish_processing.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FullBatches) { std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); auto queue_callback = [](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); }; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000000000; std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); } TEST(AdaptiveSharedBatchSchedulerTest, TruncateBatches) { mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); ++processed_batches; }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000; queue_options.split_input_task_func = [](std::unique_ptr<FakeTask>* input_task, int first_size, int max_size, std::vector<std::unique_ptr<FakeTask>>* output_tasks) { EXPECT_EQ(first_size, 70); output_tasks->push_back(std::move(*input_task)); int remaining_size = output_tasks->back()->size() - first_size; output_tasks->back()->set_size(first_size); while (remaining_size > 0) { int task_size = std::min(remaining_size, max_size); output_tasks->emplace_back(new FakeTask(task_size)); remaining_size -= task_size; } return absl::OkStatus(); }; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(30, queue.get())); TF_ASSERT_OK(ScheduleTask(350, queue.get())); while (true) { mutex_lock l(mu); if (processed_batches == 4) break; } } TEST(AdaptiveSharedBatchSchedulerTest, MaxTasksPerBatch) { mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); ++processed_batches; }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000; queue_options.max_tasks_per_batch = 2; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(10, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); TF_ASSERT_OK(ScheduleTask(10, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 0); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); while (true) { mutex_lock l(mu); if (processed_batches == 3) break; } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2896c2b7-5f4b-4da3-aa65-c05452830b3a
cpp
tensorflow/tensorflow
mkl_quantized_conv_ops
tensorflow/core/kernels/mkl/mkl_quantized_conv_ops.h
tensorflow/core/kernels/mkl/mkl_quantized_conv_ops_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_MKL_MKL_QUANTIZED_CONV_OPS_H_ #define TENSORFLOW_CORE_KERNELS_MKL_MKL_QUANTIZED_CONV_OPS_H_ #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/tensor.h" #ifdef INTEL_MKL namespace tensorflow { template <class T> float MklFloatForOneQuantizedLevel(float range_min, float range_max) { int64 highest = static_cast<int64_t>(Eigen::NumTraits<T>::highest()); int64 lowest = static_cast<int64_t>(Eigen::NumTraits<T>::lowest()); if (lowest < -highest) ++lowest; const float float_for_one_quantized_level = (range_max - range_min) / (highest - lowest); return float_for_one_quantized_level; } template <class T1, class T2, class T3> void MklQuantizationRangeForMultiplication(float min_a, float max_a, float min_b, float max_b, float* min_c, float* max_c) { const float a_float_for_one_quant_level = MklFloatForOneQuantizedLevel<T1>(min_a, max_a); const float b_float_for_one_quant_level = MklFloatForOneQuantizedLevel<T2>(min_b, max_b); const int64 c_highest = static_cast<int64_t>(Eigen::NumTraits<T3>::highest()); const int64 c_lowest = static_cast<int64_t>(Eigen::NumTraits<T3>::lowest()); const float c_float_for_one_quant_level = a_float_for_one_quant_level * b_float_for_one_quant_level; *min_c = c_float_for_one_quant_level * c_lowest; *max_c = c_float_for_one_quant_level * c_highest; } template <class T1, class T2, class T3> void MklQuantizationRangeForMultiplication(float min_a, float max_a, const Tensor& min_b_vector, const Tensor& max_b_vector, Tensor** min_c_vector, Tensor** max_c_vector) { DCHECK(min_b_vector.NumElements() == (*min_c_vector)->NumElements()); DCHECK(max_b_vector.NumElements() == (*max_c_vector)->NumElements()); size_t n_channel = min_b_vector.NumElements(); const int64 c_highest = static_cast<int64_t>(Eigen::NumTraits<T3>::highest()); const int64 c_lowest = static_cast<int64_t>(Eigen::NumTraits<T3>::lowest()); const float* min_b = min_b_vector.flat<float>().data(); const float* max_b = max_b_vector.flat<float>().data(); float* min_c = (*min_c_vector)->flat<float>().data(); float* max_c = (*max_c_vector)->flat<float>().data(); #ifdef ENABLE_ONEDNN_OPENMP #pragma omp parallel for #endif for (int64_t n = 0; n < n_channel; ++n) { float a_float_for_one_quant_level = MklFloatForOneQuantizedLevel<T1>(min_a, max_a); float b_float_for_one_quant_level = MklFloatForOneQuantizedLevel<T2>(min_b[n], max_b[n]); float c_float_for_one_quant_level = a_float_for_one_quant_level * b_float_for_one_quant_level; min_c[n] = c_float_for_one_quant_level * c_lowest; max_c[n] = c_float_for_one_quant_level * c_highest; } } } #endif #endif
#if defined(INTEL_MKL) && defined(ENABLE_MKL) #define EIGEN_USE_THREADS #include <functional> #include <memory> #include <vector> #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/mkl/mkl_kernel_util.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" namespace tensorflow { class QuantizedConv2DTest : public OpsTestBase { protected: template <typename Tinput> void ConfigureQuantizedConv2D(const bool old_api, const int& stride, const string& padding, const std::vector<int> padding_values = {}) { if (old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "_MklQuantizedConv2D") .Input(FakeInput(DataTypeToEnum<Tinput>::v())) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Tinput", DataTypeToEnum<Tinput>::v()) .Attr("Tfilter", DataTypeToEnum<qint8>::v()) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", padding) .Attr("padding_list", padding_values) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_EXPECT_OK( NodeDefBuilder("quantized_conv_op", "_FusedQuantizedConv2D") .Attr("Thost_inputs", {DataTypeToEnum<Tinput>::v(), DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", DataTypeToEnum<Tinput>::v()) .Attr("Tfilter", DT_QINT8) .Attr("Tsummand", DT_QINT32) .Attr("out_type", DT_QINT32) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", padding) .Attr("explicit_paddings", padding_values) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); } void RunQuantizedDepthwiseConv2DOp(const bool& bias_enabled) { const int depth = 2; const int image_width = 2; const int image_height = 3; const int image_batch_count = 1; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<qint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 7, 8, 13, 14, 3, 4, 9, 10, 15, 16, 5, 6, 11, 12, 17, 18}); if (bias_enabled) { AddInputFromArray<float>(TensorShape({depth}), {1.0f, 1.0f}); } AddInputFromArray<float>(TensorShape({}), {0.0f}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(DT_QINT32, TensorShape({image_batch_count, image_height, image_width, depth})); if (bias_enabled) { test::FillValues<qint32>(&expected, {229, 301, 133, 181, 483, 597, 267, 345, 373, 453, 181, 237}); } else { test::FillValues<qint32>(&expected, {228, 300, 132, 180, 482, 596, 266, 344, 372, 452, 180, 236}); } const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } void TestSmall(const bool old_api) { const int stride = 1; const string padding = "SAME"; ConfigureQuantizedConv2D<quint8>(old_api, stride, padding); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; const float image_min = 0.0f; const float image_max = 255.0f; Tensor image_float(DT_FLOAT, {image_batch_count, image_height, image_width, depth}); test::FillValues<float>(&image_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); Tensor image_quantized = FloatTensorToQuantized<quint8>(image_float, image_min, image_max); const int filter_size = 3; const int filter_count = 1; const float filter_min = -127.0f; const float filter_max = 127.0f; Tensor filter_float(DT_FLOAT, {filter_size, filter_size, depth, filter_count}); test::FillValues<float>(&filter_float, {1, 4, 7, 2, 5, 8, 3, 6, 9}); Tensor filter_quantized = FloatTensorToQuantized<qint8>(filter_float, filter_min, filter_max); AddInputFromArray<quint8>(image_quantized.shape(), image_quantized.flat<quint8>()); AddInputFromArray<qint8>(filter_quantized.shape(), filter_quantized.flat<qint8>()); AddInputFromArray<float>(TensorShape({}), {image_min}); AddInputFromArray<float>(TensorShape({}), {image_max}); AddInputFromArray<float>(TensorShape({}), {filter_min}); AddInputFromArray<float>(TensorShape({}), {filter_max}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width; const int expected_height = image_height; Tensor expected_float(DT_FLOAT, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<float>(&expected_float, {105, 150, 183, 95, 235, 312, 357, 178, 187, 234, 261, 121}); const Tensor& output = *GetOutput(0); const float output_min = GetOutput(1)->scalar<float>()(); const float output_max = GetOutput(2)->scalar<float>()(); Tensor output_float = QuantizedTensorToFloat<qint32>(output, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 1.0); } void TestSmallS8(const bool old_api) { const int stride = 1; const int depth = 1; const int image_width = 3; const int image_height = 3; const int image_batch_count = 1; const float image_min = -127.0f; const float image_max = 127.0f; const string padding = "VALID"; ConfigureQuantizedConv2D<qint8>(old_api, stride, padding); Tensor image_float(DT_FLOAT, {image_batch_count, image_height, image_width, depth}); test::FillValues<float>(&image_float, {2, 3, 4, 6, -4, -2, 3, 0, 4}); Tensor image_quantized = FloatTensorToQuantized<qint8>(image_float, image_min, image_max); const int filter_size = 3; const int filter_count = 1; const float filter_min = -127.0f; const float filter_max = 127.0f; Tensor filter_float(DT_FLOAT, {filter_size, filter_size, depth, filter_count}); test::FillValues<float>(&filter_float, {1, 4, 2, 0, 5, -1, 3, -1, -3}); Tensor filter_quantized = FloatTensorToQuantized<qint8>(filter_float, filter_min, filter_max); AddInputFromArray<qint8>(image_quantized.shape(), image_quantized.flat<qint8>()); AddInputFromArray<qint8>(filter_quantized.shape(), filter_quantized.flat<qint8>()); AddInputFromArray<float>(TensorShape({}), {image_min}); AddInputFromArray<float>(TensorShape({}), {image_max}); AddInputFromArray<float>(TensorShape({}), {filter_min}); AddInputFromArray<float>(TensorShape({}), {filter_max}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = 1; const int expected_height = 1; Tensor expected_float(DT_FLOAT, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<float>(&expected_float, {1}); const Tensor& output = *GetOutput(0); const float output_min = GetOutput(1)->scalar<float>()(); const float output_max = GetOutput(2)->scalar<float>()(); Tensor output_float = QuantizedTensorToFloat<qint32>(output, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 1.0); } void TestSmall32Bit(const bool old_api) { const int stride = 1; const string padding = "SAME"; ConfigureQuantizedConv2D<quint8>(old_api, stride, padding); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<qint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {10, 40, 70, 20, 50, 80, 30, 60, 90}); AddInputFromArray<float>(TensorShape({}), {0.0f}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width; const int expected_height = image_height; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>( &expected, {10500, 15000, 18300, 9500, 23500, 31200, 35700, 17800, 18700, 23400, 26100, 12100}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } void TestSmall32BitWithPadding(const bool old_api) { const int stride = 1; const string padding = "SAME"; ConfigureQuantizedConv2D<quint8>(old_api, stride, padding); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<qint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {10, 40, 70, 20, 50, 80, 30, 60, 90}); AddInputFromArray<float>(TensorShape({}), {0.0f}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width; const int expected_height = image_height; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>( &expected, {10500, 15000, 18300, 9500, 23500, 31200, 35700, 17800, 18700, 23400, 26100, 12100}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } void TestOddPadding(const bool old_api) { const int stride = 2; string padding = "SAME"; ConfigureQuantizedConv2D<quint8>(old_api, stride, padding); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 1; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<qint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<float>(TensorShape({}), {0.0f}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = image_height / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>(&expected, {348, 252, 274, 175}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } void TestOddPaddingBatch(const bool old_api) { const int stride = 2; const string padding = "SAME"; ConfigureQuantizedConv2D<quint8>(old_api, stride, padding); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 3; AddInputFromArray<quint8>( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray<qint8>( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<float>(TensorShape({}), {0.0f}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = image_height / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues<qint32>(&expected, {348, 252, 274, 175, 348, 252, 274, 175, 348, 252, 274, 175}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } void TestDepthwiseConv2D(const bool old_api) { const int stride = 1; if (old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_depthwise_conv_op", "_MklQuantizedDepthwiseConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Tinput", DataTypeToEnum<quint8>::v()) .Attr("Tfilter", DataTypeToEnum<qint8>::v()) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_EXPECT_OK(NodeDefBuilder("quantized_depthwise_conv_op", "_FusedQuantizedDepthwiseConv2D") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", DT_QUINT8) .Attr("Tfilter", DT_QINT8) .Attr("Tsummand", DT_QINT32) .Attr("out_type", DT_QINT32) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); RunQuantizedDepthwiseConv2DOp(false); } void TestDepthwiseConv2DWithBias(const bool old_api) { const int stride = 1; if (old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_depthwise_conv_op", "_MklQuantizedDepthwiseConv2DWithBias") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Tinput", DataTypeToEnum<quint8>::v()) .Attr("Tfilter", DataTypeToEnum<qint8>::v()) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_EXPECT_OK( NodeDefBuilder("quantized_depthwise_conv_op", "_FusedQuantizedDepthwiseConv2D") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", DT_QUINT8) .Attr("Tfilter", DT_QINT8) .Attr("Tbias", DT_FLOAT) .Attr("Tsummand", DT_QINT32) .Attr("out_type", DT_QINT32) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Attr("fused_ops", {"BiasAdd"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); RunQuantizedDepthwiseConv2DOp(true); } void TestDepthwiseConv2DWithBiasAndRelu(const bool old_api) { const int stride = 1; if (old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_depthwise_conv_op", "_MklQuantizedDepthwiseConv2DWithBiasAndRelu") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Tinput", DataTypeToEnum<quint8>::v()) .Attr("Tfilter", DataTypeToEnum<qint8>::v()) .Attr("out_type", DataTypeToEnum<qint32>::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_EXPECT_OK( NodeDefBuilder("quantized_depthwise_conv_op", "_FusedQuantizedDepthwiseConv2D") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", DT_QUINT8) .Attr("Tfilter", DT_QINT8) .Attr("Tbias", DT_FLOAT) .Attr("Tsummand", DT_QINT32) .Attr("out_type", DT_QINT32) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Attr("fused_ops", {"BiasAdd", "Relu"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); RunQuantizedDepthwiseConv2DOp(true); } }; TEST_F(QuantizedConv2DTest, SmallOldAPI) { TestSmall(true); } TEST_F(QuantizedConv2DTest, SmallNewAPI) { TestSmall(false); } TEST_F(QuantizedConv2DTest, SmallS8OldAPI) { TestSmallS8(true); } TEST_F(QuantizedConv2DTest, SmallS8NewAPI) { TestSmallS8(false); } TEST_F(QuantizedConv2DTest, Small32BitOldAPI) { TestSmall32Bit(true); } TEST_F(QuantizedConv2DTest, Small32BitNewAPI) { TestSmall32Bit(false); } TEST_F(QuantizedConv2DTest, Small32BitWithPaddingOldAPI) { TestSmall32BitWithPadding(true); } TEST_F(QuantizedConv2DTest, Small32BitWithPaddingNewAPI) { TestSmall32BitWithPadding(false); } TEST_F(QuantizedConv2DTest, OddPaddingOldAPI) { TestOddPadding(true); } TEST_F(QuantizedConv2DTest, OddPaddingNewAPI) { TestOddPadding(false); } TEST_F(QuantizedConv2DTest, OddPaddingBatchOldAPI) { TestOddPaddingBatch(true); } TEST_F(QuantizedConv2DTest, OddPaddingBatchNewAPI) { TestOddPaddingBatch(false); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DOldAPI) { TestDepthwiseConv2D(true); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DNewAPI) { TestDepthwiseConv2D(false); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DWithBiasOldAPI) { TestDepthwiseConv2DWithBias(true); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DWithBiasNewAPI) { TestDepthwiseConv2DWithBias(false); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DWithBiasAndReluOldAPI) { TestDepthwiseConv2DWithBiasAndRelu(true); } TEST_F(QuantizedConv2DTest, DepthwiseConv2DWithBiasAndReluNewAPI) { TestDepthwiseConv2DWithBiasAndRelu(false); } class QuantizedConvTest : public OpsTestBase { protected: template <typename Tinput, typename Tfilter, typename Toutput, typename Tbias = float, typename Tsummand = float> void RunQuantizedKernel(Tensor& image_float, Tensor& filter_float, Tensor& bias_float, Tensor& summand_float, Tensor& expected_out_float, const std::vector<string>& fused_ops, const float tol = 1.0) { bool fuse_bias = std::find(fused_ops.begin(), fused_ops.end(), "BiasAdd") != fused_ops.end(); bool fuse_sum = std::find(fused_ops.begin(), fused_ops.end(), "Sum") != fused_ops.end(); bool fuse_requantize = std::find(fused_ops.begin(), fused_ops.end(), "Requantize") != fused_ops.end(); float image_min, image_max; MklTestingUtil::ComputeMinMax<float>(image_float, &image_min, &image_max); const float image_max_abs = std::max(std::abs(image_min), std::abs(image_max)); Tensor image_quantized; MklTestingUtil::RunMklQuantizeOp(image_float, -image_max_abs, image_max_abs, DataTypeToEnum<Tinput>::v(), "SCALED", &image_quantized); float filter_min, filter_max; MklTestingUtil::ComputeMinMax<float>(filter_float, &filter_min, &filter_max); const float filter_max_abs = std::max(std::abs(filter_min), std::abs(filter_max)); Tensor filter_quantized; MklTestingUtil::RunMklQuantizeOp( filter_float, -filter_max_abs, filter_max_abs, DataTypeToEnum<Tfilter>::v(), "SCALED", &filter_quantized); AddInputFromArray<Tinput>(image_quantized.shape(), image_quantized.flat<Tinput>()); AddInputFromArray<Tfilter>(filter_quantized.shape(), filter_quantized.flat<Tfilter>()); if (fuse_bias) { if (std::is_same<Tbias, float>::value) { AddInputFromArray<Tbias>(bias_float.shape(), bias_float.flat<Tbias>()); } else { float bias_min, bias_max; MklTestingUtil::ComputeMinMax<float>(bias_float, &bias_min, &bias_max); const float bias_max_abs = std::max(std::abs(bias_min), std::abs(bias_max)); Tensor bias_quantized; MklTestingUtil::RunMklQuantizeOp( bias_float, -bias_max_abs, bias_max_abs, DataTypeToEnum<Tbias>::v(), "SCALED", &bias_quantized); AddInputFromArray<Tbias>(bias_quantized.shape(), bias_quantized.flat<Tbias>()); } } bool is_quantized_summand = false; float summand_max_abs = 0; if (fuse_sum) { if (std::is_same<Tsummand, float>::value) { AddInputFromArray<Tsummand>(summand_float.shape(), summand_float.flat<Tsummand>()); } else { is_quantized_summand = true; float summand_min, summand_max; MklTestingUtil::ComputeMinMax<float>(summand_float, &summand_min, &summand_max); summand_max_abs = std::max(std::abs(summand_min), std::abs(summand_max)); Tensor summand_quantized; MklTestingUtil::RunMklQuantizeOp( summand_float, -summand_max_abs, summand_max_abs, DataTypeToEnum<Tsummand>::v(), "SCALED", &summand_quantized); AddInputFromArray<Tsummand>(summand_quantized.shape(), summand_quantized.flat<Tsummand>()); } } AddInputFromArray<float>(TensorShape({}), {-image_max_abs}); AddInputFromArray<float>(TensorShape({}), {image_max_abs}); AddInputFromArray<float>(TensorShape({}), {-filter_max_abs}); AddInputFromArray<float>(TensorShape({}), {filter_max_abs}); if (is_quantized_summand) { AddInputFromArray<float>(TensorShape({}), {-summand_max_abs}); AddInputFromArray<float>(TensorShape({}), {summand_max_abs}); } if (fuse_requantize) { float expected_output_min, expected_output_max; MklTestingUtil::ComputeMinMax<float>( expected_out_float, &expected_output_min, &expected_output_max); const float output_max_abs = std::max(std::abs(expected_output_min), std::abs(expected_output_max)); AddInputFromArray<float>(TensorShape({}), {-output_max_abs}); AddInputFromArray<float>(TensorShape({}), {output_max_abs}); } TF_ASSERT_OK(RunOpKernel()); const Tensor& output = *GetOutput(0); const Tensor& output_min = *GetOutput(1); const Tensor& output_max = *GetOutput(2); const float output_max_value = output_max.scalar<float>()(); Tensor output_float; MklTestingUtil::RunDequantizeOp(output, output_min, output_max, "SCALED", &output_float); if (std::is_same<Tsummand, qint8>::value && std::is_same<Toutput, quint8>::value) { for (int i = 0; i < expected_out_float.NumElements(); i++) { float* expected_data = const_cast<float*>(expected_out_float.flat<float>().data()); expected_data[i] = std::min(expected_data[i], output_max_value * 127.0f / 255.0f); } } test::ExpectTensorNear<float>(expected_out_float, output_float, tol); } void RunFloatConv(const Tensor& input_data, const Tensor& filter_data, const Tensor& bias_data, const Tensor& summand_data, Tensor* output, const bool is_depthwise, const std::vector<string>& fused_ops, const string padding, const int stride) { auto root = tensorflow::Scope::NewRootScope(); auto input_data_op = ops::Const(root.WithOpName("input"), Input::Initializer(input_data)); Output out_op; if (is_depthwise) { out_op = ops::DepthwiseConv2dNative( root.WithOpName("conv"), input_data_op, ops::Const(root.WithOpName("filter"), Input::Initializer(filter_data)), {1, stride, stride, 1}, padding); } else { out_op = ops::Conv2D(root.WithOpName("conv"), input_data_op, ops::Const(root.WithOpName("filter"), Input::Initializer(filter_data)), {1, stride, stride, 1}, padding); } string last_op = ""; for (int i = 0; i < fused_ops.size(); ++i) { if (fused_ops[i] == "BiasAdd") { last_op = "with_bias"; out_op = ops::BiasAdd( root.WithOpName(last_op), out_op, ops::Const(root.WithOpName("bias"), Input::Initializer(bias_data))); } if (fused_ops[i] == "Sum") { last_op = "with_sum"; out_op = ops::AddV2(root.WithOpName(last_op), out_op, ops::Const(root.WithOpName("summand"), Input::Initializer(summand_data))); } if (fused_ops[i] == "Relu") { last_op = "with_relu"; out_op = ops::Relu(root.WithOpName(last_op), out_op); } } tensorflow::GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); MklTestingUtil::RunGraph(graph_def, last_op, output); } template <typename Tinput, typename Toutput> void TestBiasAddFusion(bool fuse_requantize, const bool is_depthwise, string activation = "", const float tol = 1.0) { const int stride = 1; const string padding = "VALID"; std::vector<string> fused_ops = {"BiasAdd"}; std::map<string, DataType> data_types = { {"Tinput", DataTypeToEnum<Tinput>::v()}, {"Tfilter", DT_QINT8}, {"Tbias", DT_FLOAT}, {"Tsummand", DataTypeToEnum<Toutput>::v()}, {"out_type", DataTypeToEnum<Toutput>::v()}}; std::vector<DataType> input_types = {data_types["Tinput"], data_types["Tfilter"], data_types["Tbias"], DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}; if (!activation.empty()) { fused_ops.push_back(activation); } if (fuse_requantize) { fused_ops.push_back("Requantize"); input_types.push_back(DT_FLOAT); input_types.push_back(DT_FLOAT); } TF_EXPECT_OK( NodeDefBuilder("quantized_conv_op", is_depthwise ? "_FusedQuantizedDepthwiseConv2D" : "_FusedQuantizedConv2D") .Attr("Thost_inputs", input_types) .Attr("Thost_outputs", {data_types["out_type"], DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", data_types["Tinput"]) .Attr("Tfilter", data_types["Tfilter"]) .Attr("Tbias", data_types["Tbias"]) .Attr("Tsummand", data_types["Tsummand"]) .Attr("out_type", data_types["out_type"]) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", padding) .Attr("fused_ops", fused_ops) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int image_batch = 1; const int image_height = 6; const int image_width = 6; const int channels = 2; const int filter_height = 2; const int filter_width = 2; const int filter_out_channels = 2; Tensor image_float(DT_FLOAT, {image_batch, image_height, image_width, channels}); test::FillValues<float>( &image_float, {4, 3, 1, 0, 4, 6, 3, 1, 2, 1, 0, 2, 6, 2, 1, 3, 1, 3, 6, 1, 2, 5, 3, 2, 3, 4, 1, 4, 0, 3, 3, 1, 2, 0, 1, 1, 3, 3, 1, 0, 2, 1, 4, 3, 3, 2, 1, 4, 1, 0, 2, 2, 5, 0, 3, 3, 3, 1, 0, 2, 2, 1, 3, 2, 6, 3, 4, 6, 0, 1, 3, 5}); Tensor filter_float( DT_FLOAT, {filter_height, filter_width, channels, filter_out_channels}); test::FillValues<float>( &filter_float, {-2, -3, 0, 3, 1, -1, 4, 2, -3, -2, -4, 0, 4, 3, 1, 2}); Tensor bias_float(DT_FLOAT, {is_depthwise ? channels * filter_out_channels : filter_out_channels}); if (is_depthwise) { test::FillValues<float>(&bias_float, {1, 2, 1, 2}); } else { test::FillValues<float>(&bias_float, {1, 2}); } Tensor expected_float, dummy_summand; RunFloatConv(image_float, filter_float, bias_float, dummy_summand, &expected_float, is_depthwise, fused_ops, padding, stride); RunQuantizedKernel<Tinput, qint8, Toutput, float>( image_float, filter_float, bias_float, dummy_summand, expected_float, fused_ops, tol); } template <typename Tsummand, typename Toutput> void TestBiasAddSumActivationFusion(string activation = "") { const int stride = 1; const string padding = "VALID"; std::vector<string> fused_ops = {"BiasAdd", "Sum"}; std::map<string, DataType> data_types = { {"Tinput", DT_QINT8}, {"Tfilter", DT_QINT8}, {"Tbias", DT_FLOAT}, {"Tsummand", DataTypeToEnum<Tsummand>::v()}, {"out_type", DataTypeToEnum<Toutput>::v()}}; std::vector<DataType> input_types = {data_types["Tinput"], data_types["Tfilter"], data_types["Tbias"], data_types["Tsummand"], DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}; if (std::is_same<Tsummand, quint8>::value || std::is_same<Tsummand, qint8>::value) { input_types.push_back(DT_FLOAT); input_types.push_back(DT_FLOAT); } if (!activation.empty()) { fused_ops.push_back(activation); } if (std::is_same<Toutput, qint8>::value || std::is_same<Toutput, quint8>::value) { fused_ops.push_back("Requantize"); input_types.push_back(DT_FLOAT); input_types.push_back(DT_FLOAT); } TF_EXPECT_OK( NodeDefBuilder("quantized_conv_op", "_FusedQuantizedConv2D") .Attr("Thost_inputs", input_types) .Attr("Thost_outputs", {data_types["out_type"], DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("Tinput", data_types["Tinput"]) .Attr("Tfilter", data_types["Tfilter"]) .Attr("Tbias", data_types["Tbias"]) .Attr("Tsummand", data_types["Tsummand"]) .Attr("out_type", data_types["out_type"]) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", padding) .Attr("fused_ops", fused_ops) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int image_batch = 1; const int image_height = 4; const int image_width = 4; const int channels = 2; const int filter_height = 2; const int filter_width = 2; const int filter_out_channels = 2; Tensor image_float(DT_FLOAT, {image_batch, image_height, image_width, channels}); test::FillValues<float>(&image_float, {2, 4, 5, 6, 1, 2, 3, 0, 1, 1, 6, 2, 6, 2, 4, 1, 3, 4, 3, 1, 1, 4, 0, 7, 3, 1, 5, 0, 2, 1, 3, 3}); Tensor filter_float( DT_FLOAT, {filter_height, filter_width, channels, filter_out_channels}); test::FillValues<float>( &filter_float, {1, -3, 0, 2, 3, -4, 0, 5, 2, 1, -1, -2, -5, 3, 4, 0}); Tensor bias_float(DT_FLOAT, {filter_out_channels}); test::FillValues<float>(&bias_float, {2, 4}); Tensor summand_float(DT_FLOAT, {1, 3, 3, 2}); test::FillValues<float>( &summand_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9}); Tensor expected_float; RunFloatConv(image_float, filter_float, bias_float, summand_float, &expected_float, false, fused_ops, padding, stride); RunQuantizedKernel<qint8, qint8, Toutput, float, Tsummand>( image_float, filter_float, bias_float, summand_float, expected_float, fused_ops); } }; TEST_F(QuantizedConvTest, BiasAddFusion) { TestBiasAddFusion<qint8, qint32>(false, false); } TEST_F(QuantizedConvTest, BiasAddRequantizeFusion) { TestBiasAddFusion<qint8, qint8>(true, false); } TEST_F(QuantizedConvTest, BiasAddReluRequantizeFusion) { TestBiasAddFusion<qint8, qint8>(true, false, "Relu"); } TEST_F(QuantizedConvTest, UnsignedInputBiasAddReluRequantizeFusion) { TestBiasAddFusion<quint8, quint8>(true, false, "Relu", 4.0); } TEST_F(QuantizedConvTest, DWBiasAddFusion) { TestBiasAddFusion<qint8, qint32>(false, true); } TEST_F(QuantizedConvTest, DWBiasAddRequantizeFusion) { TestBiasAddFusion<qint8, qint8>(true, true); } TEST_F(QuantizedConvTest, DWBiasAddReluRequantizeFusion) { TestBiasAddFusion<qint8, qint8>(true, true, "Relu"); } TEST_F(QuantizedConvTest, DWUnsignedInputBiasAddReluRequantizeFusion) { TestBiasAddFusion<quint8, quint8>(true, true, "Relu", 4.0); } TEST_F(QuantizedConvTest, BiasAddSumReluRequantizeFusion) { TestBiasAddSumActivationFusion<quint8, quint8>("Relu"); } TEST_F(QuantizedConvTest, BiasAddSumReluRequantizeFusionSignedSummand) { TestBiasAddSumActivationFusion<qint8, quint8>("Relu"); } TEST_F(QuantizedConvTest, BiasAddSumReluFusionFloatSummand) { TestBiasAddSumActivationFusion<float, qint32>("Relu"); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_quantized_conv_ops.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_quantized_conv_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
13a3f2e4-d5ef-4e08-b0cb-49f8f2fdec84
cpp
tensorflow/tensorflow
exec_on_stall
tensorflow/core/util/exec_on_stall.h
tensorflow/core/util/exec_on_stall_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EXEC_ON_STALL_H_ #define TENSORFLOW_CORE_UTIL_EXEC_ON_STALL_H_ #include <functional> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { class ExecuteOnStall { public: ExecuteOnStall(int delay_secs, std::function<void()> f, int32_t poll_microseconds = 100) : disabled_(false), joined_(false), env_(Env::Default()), f_(f), poll_microseconds_(poll_microseconds) { deadline_ = env_->NowMicros() + 1000000 * delay_secs; env_->SchedClosure([this]() { while (env_->NowMicros() < deadline_) { { mutex_lock l(mu_); if (disabled_) { break; } } env_->SleepForMicroseconds(poll_microseconds_); } { mutex_lock l(mu_); if (!disabled_) { f_(); } joined_ = true; cond_var_.notify_all(); } }); } ~ExecuteOnStall() { mutex_lock l(mu_); disabled_ = true; if (!joined_) { cond_var_.wait(l); } } private: mutex mu_; condition_variable cond_var_; bool disabled_ TF_GUARDED_BY(mu_); bool joined_ TF_GUARDED_BY(mu_); Env* env_; std::function<void()> f_; int64_t deadline_; int32 poll_microseconds_; }; } #endif
#include "tensorflow/core/util/exec_on_stall.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { struct Chunk { std::unique_ptr<ExecuteOnStall> stall_closure; }; Chunk* NewChunk(int stall_seconds, std::function<void()> f) { Chunk* c = new Chunk; c->stall_closure = std::make_unique<ExecuteOnStall>(stall_seconds, std::move(f)); return c; } TEST(ExecuteOnStallTest, BothWays) { mutex mu; bool a_triggered(false); bool b_triggered(false); Chunk* a = NewChunk(1, [&mu, &a_triggered]() { mutex_lock l(mu); a_triggered = true; }); Chunk* b = NewChunk(1, [&mu, &b_triggered]() { mutex_lock l(mu); b_triggered = true; }); delete a; Env::Default()->SleepForMicroseconds(2000000); { mutex_lock l(mu); EXPECT_FALSE(a_triggered); EXPECT_TRUE(b_triggered); } delete b; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/exec_on_stall.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/exec_on_stall_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
511f9d16-bf58-4913-a3e8-d40d6b2c0fe5
cpp
tensorflow/tensorflow
mkl_heuristics
tensorflow/core/util/mkl_heuristics.h
tensorflow/core/util/mkl_heuristics_test.cc
#ifndef TENSORFLOW_CORE_UTIL_MKL_HEURISTICS_H_ #define TENSORFLOW_CORE_UTIL_MKL_HEURISTICS_H_ #ifdef INTEL_MKL #include <vector> #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tsl/platform/cpu_info.h" namespace tensorflow { struct RewriteThreshold { std::string op; int cpu_family; int cpu_model_num; struct PerformanceParameters { double thread_sync_cost; double framework_cost; } params; }; static const RewriteThreshold rewrite_thresholds[] = { #ifdef DNNL_AARCH64_USE_ACL {"Conv2D", 0x41, 0xd40, {0.9349, 22.603}}, {"_FusedConv2D", 0x41, 0xd40, {0.9349, 22.603}}, {"FusedBatchNormV3", 0x41, 0xd40, {0.3223, -0.8822}}, {"Sigmoid", 0x41, 0xd40, {0.0, 0.064736}}, #endif {"", 0x0, 0x0, {0, 0}}}; static double FindRewriteThreshold(const string node_name, int threads) { int cpu_family_ = tsl::port::CPUFamily(); int cpu_model_num_ = tsl::port::CPUModelNum(); if (threads == 0) { return 0; } for (const RewriteThreshold* i = rewrite_thresholds; i->op != "" && threads > 0; i++) { if (node_name == i->op && cpu_family_ == i->cpu_family && cpu_model_num_ == i->cpu_model_num) { return i->params.thread_sync_cost * threads + i->params.framework_cost; } } return 0; } static double CalculateNodeMFlops(const AttrSlice& attrs, const string node_name) { std::vector<const TensorShapeProto*> shape_attrs; if (!TryGetNodeAttr(attrs, "_input_shapes", &shape_attrs)) { return -1; } if ((node_name == "Conv2D" || node_name == "_FusedConv2D") && shape_attrs.size() == 2) { TensorShape input_shape, filter_shape; if (TensorShape::BuildTensorShape(*shape_attrs[0], &input_shape) != tsl::OkStatus()) { return -1; } if (TensorShape::BuildTensorShape(*shape_attrs[1], &filter_shape) != tsl::OkStatus()) { return -1; } return input_shape.dim_size(0) * input_shape.dim_size(1) * input_shape.dim_size(2) * input_shape.dim_size(3) * filter_shape.dim_size(0) * filter_shape.dim_size(1) * filter_shape.dim_size(3) / (double)1e6; } else if ((node_name == "FusedBatchNormV3" || node_name == "Sigmoid") && shape_attrs.size() >= 1) { TensorShape input_shape; if (TensorShape::BuildTensorShape(*shape_attrs[0], &input_shape) != tsl::OkStatus()) { return -1; } return input_shape.dim_size(0) * input_shape.dim_size(1) * input_shape.dim_size(2) * input_shape.dim_size(3) / (double)1e6; } return -1; } static bool MatMulHeuristic(const Node* n) { if (!tsl::port::TestAarch64CPU(tsl::port::Aarch64CPU::ARM_NEOVERSE_V1)) { return true; } std::vector<const TensorShapeProto*> shape_attrs; if (!TryGetNodeAttr(n->attrs(), "_input_shapes", &shape_attrs)) { return true; } if ((n->type_string() == "MatMul" || n->type_string() == "_FusedMatMul")) { TensorShape lhs_shape, rhs_shape; if (TensorShape::BuildTensorShape(*shape_attrs[0], &lhs_shape) != tsl::OkStatus()) { return true; } if (TensorShape::BuildTensorShape(*shape_attrs[1], &rhs_shape) != tsl::OkStatus()) { return true; } auto M = lhs_shape.dim_size(0); auto K = lhs_shape.dim_size(1); auto N = rhs_shape.dim_size(1); auto ops = M * N * K; std::array<int, 3> n_threshold = {7560, 250, 1536}; std::array<int, 2> m_threshold = {378, 80}; std::array<int, 2> ops_threshold = {5242880, 1090519040}; if (N <= n_threshold.at(0)) { if (ops <= ops_threshold.at(0)) { if (M <= m_threshold.at(0)) { return false; } else { if (N <= n_threshold.at(1)) { return false; } else { return true; } } } else { if (M <= m_threshold.at(1)) { if (N <= n_threshold.at(2)) { return true; } else { return false; } } else { if (ops <= ops_threshold.at(1)) { return true; } else { return false; } } } } else { return false; } } return true; } } #endif #endif
#ifdef INTEL_MKL #define EIGEN_USE_THREADS #include "tensorflow/core/util/mkl_heuristics.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(MklHeuristicsTest, MklCalculateMFlops) { int batch = 8; int width = 32; int height = 32; int in_depth = 3; int filter_h = 3; int filter_w = 3; int out_depth = 64; AttrValue attr_input_shape; TensorShapeProto* proto = attr_input_shape.mutable_list()->add_shape(); proto->add_dim()->set_size(batch); proto->add_dim()->set_size(width); proto->add_dim()->set_size(height); proto->add_dim()->set_size(in_depth); proto = attr_input_shape.mutable_list()->add_shape(); proto->add_dim()->set_size(filter_h); proto->add_dim()->set_size(filter_w); proto->add_dim()->set_size(in_depth); proto->add_dim()->set_size(out_depth); NodeDef ndef; double calculated_empty_mflops = CalculateNodeMFlops(AttrSlice(ndef), "Conv2D"); EXPECT_EQ(calculated_empty_mflops, -1); (*ndef.mutable_attr())["_input_shapes"] = attr_input_shape; double conv_calculated_mflops = CalculateNodeMFlops(AttrSlice(ndef), "Conv2D"); double expected_conv_mflops = batch * width * height * in_depth * filter_h * filter_w * out_depth / static_cast<double>(1e6); EXPECT_EQ(conv_calculated_mflops, expected_conv_mflops); double fused_calculated_mflops = CalculateNodeMFlops(AttrSlice(ndef), "_FusedConv2D"); EXPECT_EQ(conv_calculated_mflops, expected_conv_mflops); double sigmoid_calculated_mflops = CalculateNodeMFlops(AttrSlice(ndef), "Sigmoid"); double expected_sigmoid_mflops = batch * width * height * in_depth / static_cast<double>(1e6); EXPECT_EQ(sigmoid_calculated_mflops, expected_sigmoid_mflops); } #ifdef DNNL_AARCH64_USE_ACL TEST(MklHeuristicsTest, MklThresholds) { int cpu_family = tsl::port::CPUFamily(); int cpu_model_num = tsl::port::CPUModelNum(); int neoverse_v1_family = 0x41; int neoverse_v1_model = 0xd40; string op_type = "Conv2D"; if (neoverse_v1_family == cpu_family && neoverse_v1_model == cpu_model_num) { double thread_sync_cost = -1; double framework_cost = -1; for (const RewriteThreshold* i = rewrite_thresholds; i->op != ""; i++) { if (i->op == op_type) { thread_sync_cost = i->params.thread_sync_cost; framework_cost = i->params.framework_cost; break; } } EXPECT_NE(thread_sync_cost, -1); EXPECT_NE(thread_sync_cost, -1); int no_threads = 0; double calculated_threshold_zero_threads = FindRewriteThreshold(op_type, no_threads); EXPECT_EQ(calculated_threshold_zero_threads, 0); int threads = 8; double calculated_threshold = FindRewriteThreshold(op_type, threads); double expected_threshold = threads * thread_sync_cost + framework_cost; EXPECT_EQ(expected_threshold, calculated_threshold); } } #endif } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_heuristics.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_heuristics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c1c9d13-d0f8-48d2-8b19-bb7cb1d46d0c
cpp
tensorflow/tensorflow
reffed_status_callback
tensorflow/core/util/reffed_status_callback.h
tensorflow/core/util/reffed_status_callback_test.cc
#ifndef TENSORFLOW_CORE_UTIL_REFFED_STATUS_CALLBACK_H_ #define TENSORFLOW_CORE_UTIL_REFFED_STATUS_CALLBACK_H_ #include <utility> #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { class ReffedStatusCallback : public core::RefCounted { public: explicit ReffedStatusCallback(StatusCallback done) : done_(std::move(done)) {} void UpdateStatus(const Status& s) { mutex_lock lock(mu_); status_group_.Update(s); } bool ok() { tf_shared_lock lock(mu_); return status_group_.ok(); } Status status() { tf_shared_lock lock(mu_); return status_group_.as_summary_status(); } ~ReffedStatusCallback() override { done_(status_group_.as_summary_status()); } private: StatusCallback done_; mutex mu_; StatusGroup status_group_ TF_GUARDED_BY(mu_); }; } #endif
#include "tensorflow/core/util/reffed_status_callback.h" #include <atomic> #include <utility> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace { TEST(TestReffedStatusCallback, CallsBackOK) { bool called = false; Status status = absl::InvalidArgumentError(""); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_TRUE(status.ok()); } TEST(TestReffedStatusCallback, CallsBackFail) { bool called = false; Status status = absl::OkStatus(); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); cb->UpdateStatus(absl::InternalError("1")); cb->UpdateStatus(absl::InvalidArgumentError("2")); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_THAT(status.code(), ::testing::AnyOf(error::INTERNAL, error::INVALID_ARGUMENT)); EXPECT_TRUE(absl::StrContains(status.message(), "1")); EXPECT_TRUE(absl::StrContains(status.message(), "2")); } TEST(TestReffedStatusCallback, RefMulti) { int called = false; Status status = absl::OkStatus(); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); cb->Ref(); cb->UpdateStatus(absl::InternalError("1")); cb->Ref(); cb->UpdateStatus(absl::InternalError("2")); cb->Unref(); cb->Unref(); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_TRUE(absl::StrContains(status.message(), "1")); EXPECT_TRUE(absl::StrContains(status.message(), "2")); } TEST(TestReffedStatusCallback, MultiThreaded) { std::atomic<int> num_called(0); Status status; Notification n; auto done = [&num_called, &status, &n](const Status& s) { ++num_called; status = s; n.Notify(); }; auto* cb = new ReffedStatusCallback(std::move(done)); thread::ThreadPool threads(Env::Default(), "test", 3); for (int i = 0; i < 5; ++i) { cb->Ref(); threads.Schedule([cb]() { cb->UpdateStatus(absl::InvalidArgumentError("err")); cb->Unref(); }); } cb->Unref(); n.WaitForNotification(); EXPECT_EQ(num_called.load(), 1); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(status.message(), "err")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/reffed_status_callback.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/reffed_status_callback_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb44438c-84cc-487a-a607-7f89b0335637
cpp
tensorflow/tensorflow
mkl_util
tensorflow/core/util/mkl_util.h
tensorflow/core/util/mkl_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_MKL_UTIL_H_ #define TENSORFLOW_CORE_UTIL_MKL_UTIL_H_ #ifdef INTEL_MKL #include <list> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "dnnl.hpp" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/mkl_graph_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/onednn_env_vars.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) #include "tensorflow/core/platform/mutex.h" #endif #include "xla/tsl/util/onednn_threadpool.h" using dnnl::engine; using dnnl::memory; using dnnl::primitive; using dnnl::reorder; using dnnl::stream; using CPUDevice = Eigen::ThreadPoolDevice; using MemoryArgsMap = std::unordered_map<int, memory>; using ReorderPd = dnnl::reorder::primitive_desc; #ifdef _WIN32 typedef unsigned int uint; #endif namespace tensorflow { typedef enum { Dim_N = 0, Dim_C = 1, Dim_H = 2, Dim_W = 3, Dim_O = 0, Dim_I = 1 } MklDnnDims; typedef enum { Dim3d_N = 0, Dim3d_C = 1, Dim3d_D = 2, Dim3d_H = 3, Dim3d_W = 4, Dim3d_O = 0, Dim3d_I = 1 } MklDnnDims3D; typedef enum { TF_2DFILTER_DIM_H = 0, TF_2DFILTER_DIM_W = 1, TF_2DFILTER_DIM_I = 2, TF_2DFILTER_DIM_O = 3 } TFFilterDims2d; typedef enum { TF_3DFILTER_DIM_P = 0, TF_3DFILTER_DIM_H = 1, TF_3DFILTER_DIM_W = 2, TF_3DFILTER_DIM_I = 3, TF_3DFILTER_DIM_O = 4 } TFFilterDims3d; typedef enum { MKL_GROUP_FILTER_DIM_G = 0, MKL_GROUP_FILTER_DIM_O = 1, MKL_GROUP_FILTER_DIM_I = 2, MKL_GROUP_FILTER_DIM_H = 3, MKL_GROUP_FILTER_DIM_W = 4 } MklDnnFilterGroupDims; enum class MklQuantization { QUANTIZED_VERSION, FP_VERSION, }; static const int kSmallBatchSize = 32; enum class OneDNNMathModeSetting { kNone = 0, kBF16, }; inline OneDNNMathModeSetting SetFPMathMode() { static OneDNNMathModeSetting math_mode = [] { OneDNNMathModeSetting mode = OneDNNMathModeSetting::kNone; if (FPMathModeSetting() == "BF16") { if (dnnl::set_default_fpmath_mode(dnnl::fpmath_mode::bf16) == dnnl::status::success) { mode = OneDNNMathModeSetting::kBF16; } } return mode; }(); return math_mode; } inline void execute_primitives( std::vector<dnnl::primitive>& primitives, std::shared_ptr<stream> stream, std::vector<std::unordered_map<int, memory>>& net_args) { DCHECK_EQ(primitives.size(), net_args.size()); for (size_t i = 0; i < primitives.size(); ++i) { primitives.at(i).execute(*stream, net_args.at(i)); } } #ifndef ENABLE_ONEDNN_V3 #define ARE_MEMORY_DESCS_EQUAL(md1, md2) dnnl_memory_desc_equal(&md1, &md2) #define CREATE_MEMORY_DESC_USING_STRIDES dnnl_memory_desc_init_by_strides #define GET_DATA_TYPE data_type #define GET_DIMS dims #define GET_INNER_BLKS format_desc.blocking.inner_blks #define GET_INNER_DIMS(dims, dims_1) dims_1 #define GET_INNER_IDXS format_desc.blocking.inner_idxs #define GET_INNER_NBLKS format_desc.blocking.inner_nblks #define GET_MEMORY_DESC get_desc().data #define GET_MEMORY_DESC_FLAGS extra.flags #define GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR GetMklLayout().data #define GET_NDIMS ndims #define GET_STRIDES format_desc.blocking.strides #define GET_STRIDES_DIMS(dims, dims_outer_blocks) dims_outer_blocks #define INIT_DIMS_FROM_DESC(in_dims, md) in_dims(md.dims, &md.dims[md.ndims]) #define MEMORY_DESC dnnl_memory_desc_t #else #define ARE_MEMORY_DESCS_EQUAL(md1, md2) md1 == md2 #define CREATE_MEMORY_DESC_USING_STRIDES dnnl_memory_desc_create_with_strides #define GET_DATA_TYPE get_data_type() #define GET_DIMS get_dims() #define GET_INNER_BLKS get_inner_blks() #define GET_INNER_DIMS(dims, dims_1) dims #define GET_INNER_IDXS get_inner_idxs() #define GET_INNER_NBLKS get_inner_nblks() #define GET_MEMORY_DESC get_desc() #define GET_MEMORY_DESC_FLAGS get_size() #define GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR GetMklLayout() #define GET_NDIMS get_ndims() #define GET_STRIDES get_strides() #define GET_STRIDES_DIMS(dims, dims_outer_blocks) dims #define INIT_DIMS_FROM_DESC(in_dims, md) in_dims = md.get_dims() #define MEMORY_DESC memory::desc #endif enum class MklTensorFormat { FORMAT_NHWC = 0, FORMAT_NCHW = 1, FORMAT_NDHWC = 2, FORMAT_NCDHW = 3, FORMAT_X = 4, FORMAT_NC = 5, FORMAT_TNC = 6, FORMAT_BLOCKED = 7, FORMAT_INVALID = 8, }; memory::format_tag MklTensorFormatToMklDnnDataFormat(MklTensorFormat format); TensorFormat MklDnn3DDataFormatToTFDataFormat(MklTensorFormat format); TensorFormat MklDnnDataFormatToTFDataFormat(MklTensorFormat format); memory::dims CalculateTFStrides(const memory::dims& dims_tf_order); Status CreateBlockedMemDescHelper(const memory::dims& dim, const memory::dims& strides, memory::data_type dtype, dnnl_memory_desc_t* blocked_md); inline std::ostream& operator<<(std::ostream& os, const memory::format_tag& tag) { if (tag == memory::format_tag::undef) { os << "undef"; } else if (tag == memory::format_tag::any) { os << "any"; } else { os << "invalid"; } return os; } inline void operator<<(std::ostream& os, const MklTensorFormat& format) { if (format == MklTensorFormat::FORMAT_NHWC) { os << "FORMAT_NHWC"; } else if (format == MklTensorFormat::FORMAT_NCHW) { os << "FORMAT_NCHW"; } else if (format == MklTensorFormat::FORMAT_NDHWC) { os << "FORMAT_NDHWC"; } else if (format == MklTensorFormat::FORMAT_NCDHW) { os << "FORMAT_NCDHW"; } else if (format == MklTensorFormat::FORMAT_X) { os << "FORMAT_X"; } else if (format == MklTensorFormat::FORMAT_NC) { os << "FORMAT_NC"; } else if (format == MklTensorFormat::FORMAT_TNC) { os << "FORMAT_TNC"; } else if (format == MklTensorFormat::FORMAT_BLOCKED) { os << "FORMAT_BLOCKED"; } else { os << "INVALID FORMAT"; } } template <typename T> inline bool array_cmp(const T* a1, const T* a2, size_t size) { for (size_t i = 0; i < size; ++i) if (a1[i] != a2[i]) return false; return true; } inline dnnl::stream* CreateStream(tsl::OneDnnThreadPool* eigen_tp, const engine& engine) { #ifndef ENABLE_ONEDNN_OPENMP if (eigen_tp != nullptr) { stream* tp_stream = new stream(dnnl::threadpool_interop::make_stream(engine, eigen_tp)); return tp_stream; } else { stream* tp_stream = new stream(engine); return tp_stream; } #else stream* tp_stream = new stream(engine); return tp_stream; #endif } class MklDnnShape { private: struct MklShapeData { bool is_mkl_tensor_ = false; size_t dimension_ = 0; dnnl_dims_t sizes_; MklTensorFormat tf_data_format_ = MklTensorFormat::FORMAT_BLOCKED; memory::data_type T_ = memory::data_type::undef; MEMORY_DESC mkl_md_; dnnl_dims_t map_; }; MklShapeData data_; typedef std::remove_extent<dnnl_dims_t>::type dnnl_dim_t; #define INVALID_DIM_SIZE -1 public: MklDnnShape() : data_{} { for (size_t i = 0; i < sizeof(data_.sizes_) / sizeof(data_.sizes_[0]); ++i) { data_.sizes_[i] = -1; } for (size_t i = 0; i < sizeof(data_.map_) / sizeof(data_.map_[0]); ++i) { data_.map_[i] = -1; } } ~MklDnnShape() {} MklDnnShape(const MklDnnShape&) = delete; void operator=(const MklDnnShape&) = delete; inline bool operator==(const MklDnnShape& input_shape) const { if (this->IsMklTensor() != input_shape.IsMklTensor()) { return false; } if (this->IsMklTensor()) { auto const& cur_md = this->GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR; auto const& input_shape_md = input_shape.GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR; return (this->GetTfShape() == input_shape.GetTfShape()) && ARE_MEMORY_DESCS_EQUAL(cur_md, input_shape_md); } return true; } inline bool operator==(const TensorShape& input_shape) const { if (!this->IsMklTensor()) { return false; } return this->GetTfShape() == input_shape; } inline const bool IsMklTensor() const { return data_.is_mkl_tensor_; } inline void SetMklTensor(bool is_mkl_tensor) { data_.is_mkl_tensor_ = is_mkl_tensor; } inline void SetDimensions(const size_t dimension) { data_.dimension_ = dimension; } inline size_t GetDimension(char dimension) const { int index = GetMklDnnTensorDimIndex(dimension); CHECK(index >= 0 && index < this->GetDimension()) << "Invalid index from the dimension: " << index << ", " << dimension; return this->DimSize(index); } inline size_t GetDimension3D(char dimension) const { int index = GetMklDnnTensor3DDimIndex(dimension); CHECK(index >= 0 && index < this->GetDimension()) << "Invalid index from the dimension: " << index << ", " << dimension; return this->DimSize(index); } inline int32 GetMklDnnTensorDimIndex(char dimension) const { switch (dimension) { case 'N': return MklDnnDims::Dim_N; case 'C': return MklDnnDims::Dim_C; case 'H': return MklDnnDims::Dim_H; case 'W': return MklDnnDims::Dim_W; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } inline int32 GetMklDnnTensor3DDimIndex(char dimension) const { switch (dimension) { case 'N': return MklDnnDims3D::Dim3d_N; case 'C': return MklDnnDims3D::Dim3d_C; case 'D': return MklDnnDims3D::Dim3d_D; case 'H': return MklDnnDims3D::Dim3d_H; case 'W': return MklDnnDims3D::Dim3d_W; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } inline size_t GetDimension() const { return data_.dimension_; } inline const int* GetSizes() const { return reinterpret_cast<const int*>(&data_.sizes_[0]); } inline memory::dims GetSizesAsMklDnnDims() const { memory::dims retVal; if (data_.is_mkl_tensor_) { size_t dimensions = sizeof(data_.sizes_) / sizeof(data_.sizes_[0]); for (size_t i = 0; i < dimensions; i++) { if (data_.sizes_[i] != INVALID_DIM_SIZE) retVal.push_back(data_.sizes_[i]); } } else { CHECK_EQ(data_.is_mkl_tensor_, true); } return retVal; } inline int64 DimSize(int index) const { CHECK_LT(index, sizeof(data_.sizes_) / sizeof(data_.sizes_[0])); return data_.sizes_[index]; } inline TensorShape GetTfShape() const { CHECK_EQ(data_.is_mkl_tensor_, true); std::vector<int32> shape(data_.dimension_, -1); if (data_.tf_data_format_ != MklTensorFormat::FORMAT_BLOCKED) { for (size_t idx = 0; idx < data_.dimension_; ++idx) { shape[idx] = data_.sizes_[TfDimIdx(idx)]; } } else { for (size_t idx = 0; idx < data_.dimension_; ++idx) { shape[idx] = data_.sizes_[idx]; } } TensorShape ts; bool ret = TensorShapeUtils::MakeShape(shape, &ts).ok(); CHECK_EQ(ret, true); return ts; } inline void SetElemType(memory::data_type dt) { data_.T_ = dt; } inline const memory::data_type GetElemType() { return data_.T_; } #ifndef ENABLE_ONEDNN_V3 inline void SetMklLayout(memory::desc* md) { CHECK_NOTNULL(md); data_.mkl_md_ = md->data; } #else inline void SetMklLayout(const memory::desc& md) { data_.mkl_md_ = md; } #endif inline const memory::desc GetMklLayout() const { return memory::desc(data_.mkl_md_); } inline MklTensorFormat GetTfDataFormat() const { return data_.tf_data_format_; } inline void SetTfLayout(size_t dims, const memory::dims& sizes, MklTensorFormat format) { DCHECK_EQ(dims, sizes.size()) << "SetTfLayout: Number of dimensions does not" "match with dimension array"; data_.dimension_ = dims; for (size_t ii = 0; ii < dims; ++ii) { data_.sizes_[ii] = sizes[ii]; } data_.tf_data_format_ = format; if (format != MklTensorFormat::FORMAT_BLOCKED) { if (dims == 2) { data_.map_[0] = MklDnnDims::Dim_N; data_.map_[1] = MklDnnDims::Dim_C; } else { SetTfDimOrder(dims, format); } } } inline const memory::desc GetTfLayout() const { memory::dims dims; for (size_t ii = 0; ii < data_.dimension_; ++ii) { dims.push_back(data_.sizes_[ii]); } if (data_.tf_data_format_ == MklTensorFormat::FORMAT_BLOCKED) { auto strides = CalculateTFStrides(dims); dnnl_memory_desc_t blocked_md; TF_CHECK_OK( CreateBlockedMemDescHelper(dims, strides, data_.T_, &blocked_md)); return memory::desc(blocked_md); } else { auto format_tag = MklTensorFormatToMklDnnDataFormat(data_.tf_data_format_); return memory::desc(dims, data_.T_, format_tag); } } inline const memory::desc GetCurLayout() const { return IsMklTensor() ? GetMklLayout() : GetTfLayout(); } inline void SetTfDimOrder(const size_t dimension, const dnnl_dims_t map) { CHECK(dimension == data_.dimension_); for (size_t ii = 0; ii < dimension; ii++) { data_.map_[ii] = map[ii]; } } inline void SetTfDimOrder(const size_t dimension, TensorFormat data_format) { if (dimension == 5) { CHECK(dimension == data_.dimension_); data_.map_[GetTensorDimIndex<3>(data_format, '0')] = MklDnnDims3D::Dim3d_D; data_.map_[GetTensorDimIndex<3>(data_format, '1')] = MklDnnDims3D::Dim3d_H; data_.map_[GetTensorDimIndex<3>(data_format, '2')] = MklDnnDims3D::Dim3d_W; data_.map_[GetTensorDimIndex<3>(data_format, 'C')] = MklDnnDims3D::Dim3d_C; data_.map_[GetTensorDimIndex<3>(data_format, 'N')] = MklDnnDims3D::Dim3d_N; } else { CHECK_EQ(dimension, 4); CHECK(dimension == data_.dimension_); data_.map_[GetTensorDimIndex<2>(data_format, 'W')] = MklDnnDims::Dim_W; data_.map_[GetTensorDimIndex<2>(data_format, 'H')] = MklDnnDims::Dim_H; data_.map_[GetTensorDimIndex<2>(data_format, 'C')] = MklDnnDims::Dim_C; data_.map_[GetTensorDimIndex<2>(data_format, 'N')] = MklDnnDims::Dim_N; } } inline void SetTfDimOrder(const size_t dimension, MklTensorFormat format) { TensorFormat data_format = MklDnnDataFormatToTFDataFormat(format); SetTfDimOrder(dimension, data_format); } inline const dnnl_dim_t* GetTfToMklDimMap() const { return &data_.map_[0]; } inline size_t TfDimIdx(int index) const { return data_.map_[index]; } inline int64 TfDimSize(int index) const { return data_.sizes_[TfDimIdx(index)]; } inline bool IsMklChannelDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_C; } inline bool IsMklBatchDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_N; } inline bool IsMklWidthDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_W; } inline bool IsMklHeightDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_H; } inline bool IsTensorInNCHWFormat() const { TensorFormat data_format = FORMAT_NCHW; return (IsMklBatchDim(GetTensorDimIndex<2>(data_format, 'N')) && IsMklChannelDim(GetTensorDimIndex<2>(data_format, 'C')) && IsMklHeightDim(GetTensorDimIndex<2>(data_format, 'H')) && IsMklWidthDim(GetTensorDimIndex<2>(data_format, 'W'))); } inline bool IsTensorInNHWCFormat() const { TensorFormat data_format = FORMAT_NHWC; return (IsMklBatchDim(GetTensorDimIndex<2>(data_format, 'N')) && IsMklChannelDim(GetTensorDimIndex<2>(data_format, 'C')) && IsMklHeightDim(GetTensorDimIndex<2>(data_format, 'H')) && IsMklWidthDim(GetTensorDimIndex<2>(data_format, 'W'))); } inline size_t GetSerializeBufferSize() const { return sizeof(MklShapeData); } void SerializeMklDnnShape(unsigned char* buf, size_t buf_size) const { CHECK(buf_size >= GetSerializeBufferSize()) << "Buffer size is too small to SerializeMklDnnShape"; *reinterpret_cast<MklShapeData*>(buf) = data_; } void DeSerializeMklDnnShape(const unsigned char* buf, size_t buf_size) { CHECK(buf_size >= sizeof(data_.is_mkl_tensor_)) << "Buffer size is too small in DeSerializeMklDnnShape"; const bool is_mkl_tensor = *reinterpret_cast<const bool*>(buf); if (is_mkl_tensor) { CHECK(buf_size >= GetSerializeBufferSize()) << "Buffer size is too small in DeSerializeMklDnnShape"; data_ = *reinterpret_cast<const MklShapeData*>(buf); } } }; inline Eigen::ThreadPoolInterface* EigenThreadPoolFromTfContext( OpKernelContext* context) { return context->device() ->tensorflow_cpu_worker_threads() ->workers->AsEigenThreadPool(); } typedef std::vector<MklDnnShape> MklDnnShapeList; template <typename T> class MklDnnData; inline void ExecutePrimitive(const std::vector<primitive>& net, const std::vector<MemoryArgsMap>* net_args, const engine& cpu_engine, OpKernelContext* context = nullptr) { DCHECK(net_args); DCHECK_EQ(net.size(), net_args->size()); std::unique_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, cpu_engine)); } else { cpu_stream.reset(CreateStream(nullptr, cpu_engine)); } for (size_t i = 0; i < net.size(); ++i) { net.at(i).execute(*cpu_stream, net_args->at(i)); } cpu_stream->wait(); } template <typename T> inline Status ConvertMklToTF(OpKernelContext* context, const Tensor& input_mkl_tensor, const MklDnnShape& input_mkl_shape, Tensor* output_tf_tensor) { try { if (!input_mkl_shape.IsMklTensor()) { *output_tf_tensor = input_mkl_tensor; return OkStatus(); } TensorShape output_tf_shape = input_mkl_shape.GetTfShape(); TF_CHECK_OK(context->allocate_temp(DataTypeToEnum<T>::v(), output_tf_shape, output_tf_tensor)); engine cpu_engine(engine::kind::cpu, 0); MklDnnData<T> input(&cpu_engine); auto input_mkl_md = input_mkl_shape.GetMklLayout(); auto output_tf_md = input_mkl_shape.GetTfLayout(); input.SetUsrMem(input_mkl_md, &input_mkl_tensor); if (input.IsReorderNeeded(output_tf_md)) { std::vector<primitive> net; std::vector<MemoryArgsMap> net_args; bool status = input.CheckReorderToOpMem(output_tf_md, output_tf_tensor, net, net_args, cpu_engine); if (!status) { return absl::InternalError( "ConvertMklToTF(): Failed to create reorder for input"); } ExecutePrimitive(net, &net_args, cpu_engine, context); } else { bool status = output_tf_tensor->CopyFrom(input_mkl_tensor, output_tf_shape); if (!status) { return absl::InternalError( "ConvertMklToTF(): Failed to forward input tensor to output"); } } return OkStatus(); } catch (dnnl::error& e) { string error_msg = "Status: " + std::to_string(e.status) + ", message: " + string(e.message) + ", in file " + string(__FILE__) + ":" + std::to_string(__LINE__); LOG(FATAL) << "Operation received an exception: " << error_msg; } } inline void GetMklShape(OpKernelContext* ctext, int n, MklDnnShape* mklshape, bool eager_mode) { if (!eager_mode) { mklshape->DeSerializeMklDnnShape( ctext->input(GetTensorMetaDataIndex(n, ctext->num_inputs())) .flat<uint8>() .data(), ctext->input(GetTensorMetaDataIndex(n, ctext->num_inputs())) .flat<uint8>() .size() * sizeof(uint8)); } else { mklshape->SetMklTensor(false); } } inline void GetMklShape(OpKernelContext* ctext, int n, MklDnnShape* mklshape) { GetMklShape(ctext, n, mklshape, false); } inline const Tensor& MklGetInput(OpKernelContext* ctext, int n) { return ctext->input(GetTensorDataIndex(n, ctext->num_inputs())); } inline void GetMklInputList(OpKernelContext* ctext, StringPiece name, OpInputList* input_tensors) { CHECK_NOTNULL(input_tensors); TF_CHECK_OK(ctext->input_list(name, input_tensors)); } inline void GetMklShapeList(OpKernelContext* ctext, StringPiece name, MklDnnShapeList* mkl_shapes, bool native_format = false) { if (!native_format) { OpInputList input_mkl_tensors; GetMklInputList(ctext, strings::StrCat("mkl_", name), &input_mkl_tensors); for (int i = 0; i < input_mkl_tensors.size(); i++) { (*mkl_shapes)[i].DeSerializeMklDnnShape( input_mkl_tensors[i].flat<uint8>().data(), input_mkl_tensors[i].flat<uint8>().size() * sizeof(uint8)); } } else { for (int i = 0; i < mkl_shapes->size(); ++i) { (*mkl_shapes)[i].SetMklTensor(false); } } } inline TensorShape GetTfShape(OpKernelContext* context, size_t input_idx, bool eager_mode = false) { CHECK_NOTNULL(context); CHECK_LT(input_idx, context->num_inputs()); MklDnnShape input_mkl_shape; GetMklShape(context, input_idx, &input_mkl_shape, eager_mode); if (input_mkl_shape.IsMklTensor() && !eager_mode) { return input_mkl_shape.GetTfShape(); } else { const Tensor& t = MklGetInput(context, input_idx); return t.shape(); } } inline void AllocateOutputSetMklShape(OpKernelContext* ctext, int n, const MklDnnShape& mkl_shape) { Tensor* second_tensor = nullptr; TensorShape second_shape; second_shape.AddDim(mkl_shape.GetSerializeBufferSize()); OP_REQUIRES_OK(ctext, ctext->allocate_output( GetTensorMetaDataIndex(n, ctext->num_outputs()), second_shape, &second_tensor)); mkl_shape.SerializeMklDnnShape( second_tensor->flat<uint8>().data(), second_tensor->flat<uint8>().size() * sizeof(uint8)); } inline void AllocateOutputSetMklShape(OpKernelContext* ctext, int n, Tensor** output, const TensorShape& tf_shape, const MklDnnShape& mkl_shape, bool eager_mode = false) { OP_REQUIRES_OK( ctext, ctext->allocate_output(GetTensorDataIndex(n, ctext->num_outputs()), tf_shape, output)); if (!eager_mode) { Tensor* second_tensor = nullptr; TensorShape second_shape; second_shape.AddDim(mkl_shape.GetSerializeBufferSize()); OP_REQUIRES_OK(ctext, ctext->allocate_output( GetTensorMetaDataIndex(n, ctext->num_outputs()), second_shape, &second_tensor)); mkl_shape.SerializeMklDnnShape( second_tensor->flat<uint8>().data(), second_tensor->flat<uint8>().size() * sizeof(uint8)); } } template <typename T> inline void AllocTmpBuffer(OpKernelContext* context, Tensor* tensor_out, const memory::desc& pd, void** buf_out) { TensorShape tf_shape; tf_shape.AddDim(pd.get_size() / sizeof(T) + 1); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), tf_shape, tensor_out)); *buf_out = static_cast<void*>(tensor_out->flat<T>().data()); } template <typename T> inline void AllocTmpBuffer(OpKernelContext* context, Tensor* tensor_out, TensorShape tf_shape) { OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), tf_shape, tensor_out)); } template <typename T> struct UserScratchPad { template <typename MklPrim> inline void AllocateSPTensor(MklPrim* mkl_prim, OpKernelContext* context) { allocated_ = false; auto spad_md = mkl_prim->GetScratchPadDesc(); size_t spad_size = spad_md.get_size(); if (spad_size == 0) return; size_t allocate_size = (spad_size + sizeof(T) - 1) / sizeof(T); TensorShape tf_shape; tf_shape.AddDim(allocate_size); AllocTmpBuffer<T>(context, &scratch_pad_, tf_shape); allocated_ = true; } inline void* Get() { if (allocated_) { return static_cast<void*>(scratch_pad_.flat<T>().data()); } else { return nullptr; } } private: Tensor scratch_pad_; bool allocated_ = false; }; inline void GetStridesFromSizes(MklTensorFormat data_format, size_t* strides, const size_t* sizes) { DCHECK_NE(data_format, MklTensorFormat::FORMAT_INVALID); if (data_format == MklTensorFormat::FORMAT_NHWC) { strides[0] = sizes[2]; strides[1] = sizes[0] * sizes[2]; strides[2] = 1; strides[3] = sizes[0] * sizes[1] * sizes[2]; } else { strides[0] = 1; strides[1] = sizes[0]; strides[2] = sizes[0] * sizes[1]; strides[3] = sizes[0] * sizes[1] * sizes[2]; } } inline void CopyMklTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_meta_in = GetTensorMetaDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); int idx_meta_out = GetTensorMetaDataIndex(idx_out, num_outputs); const Tensor& data = context->input(idx_data_in); const Tensor& meta = context->input(idx_meta_in); Tensor output(data.dtype()); Tensor meta_output(meta.dtype()); CHECK(output.CopyFrom(data, data.shape())); CHECK(meta_output.CopyFrom(meta, meta.shape())); context->set_output(idx_data_out, output); context->set_output(idx_meta_out, meta_output); } inline void CopyTfTensorInToOutWithShape(OpKernelContext* context, int idx_in, int idx_out, const TensorShape& shape) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); const Tensor& data = context->input(idx_data_in); MklDnnShape mkl_shape_output; mkl_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_out, mkl_shape_output); Tensor output(data.dtype()); CHECK(output.CopyFrom(data, shape)); context->set_output(idx_data_out, output); } inline void ForwardTfTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); MklDnnShape dnn_shape_output; dnn_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_out, dnn_shape_output); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); } else { context->set_output(idx_data_out, context->input(idx_data_in)); } } inline void ForwardMklTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_meta_in = GetTensorMetaDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); int idx_meta_out = GetTensorMetaDataIndex(idx_out, num_outputs); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); context->forward_ref_input_to_ref_output(idx_meta_in, idx_meta_out); } else { context->set_output(idx_data_out, context->input(idx_data_in)); context->set_output(idx_meta_out, context->input(idx_meta_in)); } } inline void SetDummyMklDnnShapeOutput(OpKernelContext* context, uint32 idx_data_out) { MklDnnShape mkl_shape_output; mkl_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_data_out, mkl_shape_output); } inline bool ForwardMklTensorInToOutWithMklShape(OpKernelContext* context, int idx_in, int idx_out, Tensor** output, const MklDnnShape& mkl_shape, bool always_forward = true) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); bool is_forwarded = false; const Tensor& input_tensor = context->input(idx_data_in); const auto output_shape = input_tensor.shape(); if (always_forward) { if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); } else { context->set_output(idx_data_out, input_tensor); } } else { is_forwarded = context->forward_input_to_output_with_shape( idx_data_in, idx_data_out, output_shape, output); } if (is_forwarded || always_forward) { AllocateOutputSetMklShape(context, idx_out, mkl_shape); return true; } return false; } inline void ForwardMklMetaDataInToOut(OpKernelContext* context, uint32 idx_data_in, uint32_t idx_data_out) { uint32 idx_meta_in = GetTensorMetaDataIndex(idx_data_in, context->num_inputs()); uint32 idx_meta_out = GetTensorMetaDataIndex(idx_data_out, context->num_outputs()); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_meta_in, idx_meta_out); } else { context->set_output(idx_meta_out, context->input(idx_meta_in)); } } inline Tensor GetMklMetaTensor() { MklDnnShape non_mkl_shape; non_mkl_shape.SetMklTensor(false); auto size = static_cast<int64_t>(non_mkl_shape.GetSerializeBufferSize()); Tensor tensor(DT_UINT8, {size}); non_mkl_shape.SerializeMklDnnShape(tensor.flat<uint8>().data(), size * sizeof(uint8)); return tensor; } template <typename T> static memory::data_type MklDnnType(); template <> memory::data_type MklDnnType<float>() { return memory::data_type::f32; } template <> memory::data_type MklDnnType<quint8>() { return memory::data_type::u8; } template <> memory::data_type MklDnnType<uint8>() { return memory::data_type::u8; } template <> memory::data_type MklDnnType<qint8>() { return memory::data_type::s8; } template <> memory::data_type MklDnnType<qint32>() { return memory::data_type::s32; } template <> memory::data_type MklDnnType<bfloat16>() { return memory::data_type::bf16; } template <> memory::data_type MklDnnType<Eigen::half>() { return memory::data_type::f16; } inline memory::format_tag MklTensorFormatToMklDnnDataFormat( MklTensorFormat format) { if (format == MklTensorFormat::FORMAT_NHWC) return memory::format_tag::nhwc; if (format == MklTensorFormat::FORMAT_NCHW) return memory::format_tag::nchw; if (format == MklTensorFormat::FORMAT_NDHWC) return memory::format_tag::ndhwc; if (format == MklTensorFormat::FORMAT_NCDHW) return memory::format_tag::ncdhw; if (format == MklTensorFormat::FORMAT_X) return memory::format_tag::x; if (format == MklTensorFormat::FORMAT_NC) return memory::format_tag::nc; if (format == MklTensorFormat::FORMAT_TNC) return memory::format_tag::tnc; return memory::format_tag::undef; } inline MklTensorFormat TFDataFormatToMklDnn3DDataFormat(TensorFormat format) { if (format == FORMAT_NHWC) return MklTensorFormat::FORMAT_NDHWC; if (format == FORMAT_NCHW) return MklTensorFormat::FORMAT_NCDHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return MklTensorFormat::FORMAT_INVALID; } inline MklTensorFormat TFDataFormatToMklDnnDataFormat(TensorFormat format) { if (format == FORMAT_NHWC) return MklTensorFormat::FORMAT_NHWC; if (format == FORMAT_NCHW) return MklTensorFormat::FORMAT_NCHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return MklTensorFormat::FORMAT_INVALID; } inline TensorFormat MklDnnDataFormatToTFDataFormat(MklTensorFormat format) { if (format == MklTensorFormat::FORMAT_NHWC || format == MklTensorFormat::FORMAT_NDHWC) return FORMAT_NHWC; if (format == MklTensorFormat::FORMAT_NCHW || format == MklTensorFormat::FORMAT_NCDHW) return FORMAT_NCHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return FORMAT_NHWC; } inline memory::dims TFShapeToMklDnnDims(const TensorShape& shape) { memory::dims dims(shape.dims()); for (int d = 0; d < shape.dims(); ++d) { dims[d] = shape.dim_size(d); } return dims; } inline memory::dims TFShapeToMklDnnDimsInNCHW(const TensorShape& shape, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = shape.dim_size(GetTensorDimIndex(format, 'N')); int c = shape.dim_size(GetTensorDimIndex(format, 'C')); int h = shape.dim_size(GetTensorDimIndex(format, 'H')); int w = shape.dim_size(GetTensorDimIndex(format, 'W')); return memory::dims({n, c, h, w}); } inline memory::dims TFShapeToMklDnnDimsInNCDHW(const TensorShape& shape, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnn3DDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = shape.dim_size(GetTensorDimIndex<3>(format, 'N')); int c = shape.dim_size(GetTensorDimIndex<3>(format, 'C')); int d = shape.dim_size(GetTensorDimIndex<3>(format, '0')); int h = shape.dim_size(GetTensorDimIndex<3>(format, '1')); int w = shape.dim_size(GetTensorDimIndex<3>(format, '2')); return memory::dims({n, c, d, h, w}); } inline memory::dims MklDnnDimsInNCHW(const memory::dims& in_dims, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = in_dims[GetTensorDimIndex(format, 'N')]; int c = in_dims[GetTensorDimIndex(format, 'C')]; int h = in_dims[GetTensorDimIndex(format, 'H')]; int w = in_dims[GetTensorDimIndex(format, 'W')]; return memory::dims({n, c, h, w}); } inline memory::dims MklDnnDimsInNCDHW(const memory::dims& in_dims, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = in_dims[GetTensorDimIndex<3>(format, 'N')]; int c = in_dims[GetTensorDimIndex<3>(format, 'C')]; int d = in_dims[GetTensorDimIndex<3>(format, '0')]; int h = in_dims[GetTensorDimIndex<3>(format, '1')]; int w = in_dims[GetTensorDimIndex<3>(format, '2')]; return memory::dims({n, c, d, h, w}); } inline TensorShape MklDnnDimsToTFShape(const memory::dims& dims) { std::vector<int32> shape(dims.size(), -1); for (int d = 0; d < dims.size(); d++) { shape[d] = dims[d]; } TensorShape ret; CHECK_EQ(TensorShapeUtils::MakeShape(shape, &ret).ok(), true); return ret; } inline memory::dims CalculateTFStrides(const memory::dims& dims_tf_order) { CHECK_GT(dims_tf_order.size(), 0); memory::dims strides(dims_tf_order.size()); int last_dim_idx = dims_tf_order.size() - 1; strides[last_dim_idx] = 1; for (int d = last_dim_idx - 1; d >= 0; d--) { strides[d] = strides[d + 1] * dims_tf_order[d + 1]; } return strides; } inline Status CreateBlockedMemDescHelper(const memory::dims& dim, const memory::dims& strides, memory::data_type dtype, dnnl_memory_desc_t* blocked_md) { DCHECK_EQ(dim.size(), strides.size()); const int kNumDims = dim.size(); dnnl_dim_t* input_dims = new dnnl_dim_t[kNumDims]; dnnl_dim_t* input_strides = new dnnl_dim_t[kNumDims]; for (int i = 0; i < kNumDims; ++i) { input_dims[i] = dim[i]; input_strides[i] = strides[i]; } try { CREATE_MEMORY_DESC_USING_STRIDES(blocked_md, kNumDims, input_dims, memory::convert_to_c(dtype), input_strides); delete[] input_dims; delete[] input_strides; } catch (dnnl::error& e) { delete[] input_dims; delete[] input_strides; return absl::InternalError( absl::StrCat("Failed to create blocked memory descriptor.", "Status: ", e.status, ", message: ", e.message)); } return OkStatus(); } inline void CreateAndExecuteReorder(const ReorderPd& reorder_desc, const memory& src_mem, const memory& dst_mem, const engine& engine, OpKernelContext* ctx = nullptr, memory* scale_mem = nullptr) { std::vector<primitive> net; net.push_back(dnnl::reorder(reorder_desc)); std::vector<MemoryArgsMap> net_args; #ifndef ENABLE_ONEDNN_V3 net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}}); #else if (scale_mem != nullptr) { net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}, {DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, *scale_mem}}); } else { net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}}); } #endif ExecutePrimitive(net, &net_args, engine, ctx); } class MklReorderPrimitive; template <typename T> inline MklReorderPrimitive* FindOrCreateReorder(const memory* from, const memory* to); template <typename T> class MklDnnData { private: memory* user_memory_; memory* reorder_memory_; memory::desc* op_md_; bool bIs3D; void* allocated_buffer_; const engine* cpu_engine_; public: explicit MklDnnData(const engine* e) : user_memory_(nullptr), reorder_memory_(nullptr), op_md_(nullptr), bIs3D(false), allocated_buffer_(nullptr), cpu_engine_(e) {} MklDnnData(const MklDnnData&) = default; MklDnnData& operator=(const MklDnnData&) = delete; ~MklDnnData() { if (allocated_buffer_ != nullptr) { cpu_allocator()->DeallocateRaw(allocated_buffer_); } cpu_engine_ = nullptr; delete (user_memory_); delete (reorder_memory_); delete (op_md_); } inline void* GetTensorBuffer(const Tensor* tensor) const { CHECK_NOTNULL(tensor); return const_cast<void*>( static_cast<const void*>(tensor->flat<T>().data())); } void SetIs3DData(bool bIs3D_) { bIs3D = bIs3D_; } bool GetIs3D() { return bIs3D; } inline void SetUsrMem(const memory::dims& dim, memory::format_tag fm, void* data_buffer = nullptr) { auto md = memory::desc(dim, MklDnnType<T>(), fm); SetUsrMem(md, data_buffer); } inline void SetUsrMem(const memory::dims& dim, memory::format_tag fm, const Tensor* tensor) { DCHECK(tensor); SetUsrMem(dim, fm, GetTensorBuffer(tensor)); } static inline memory::desc CreateBlockedMemDesc(const memory::dims& dim, const memory::dims& strides) { dnnl_memory_desc_t blocked_md; TF_CHECK_OK( CreateBlockedMemDescHelper(dim, strides, MklDnnType<T>(), &blocked_md)); return memory::desc(blocked_md); } inline void SetUsrMem(const memory::dims& dim, const memory::dims& strides, void* data_buffer = nullptr) { CHECK_EQ(dim.size(), strides.size()); auto blocked_md = MklDnnData<T>::CreateBlockedMemDesc(dim, strides); SetUsrMem(blocked_md, data_buffer); } inline void SetUsrMem(const memory::dims& dim, const memory::dims& strides, const Tensor* tensor) { CHECK_NOTNULL(tensor); SetUsrMem(dim, strides, GetTensorBuffer(tensor)); } inline void SetUsrMem(const memory::desc& md, const Tensor* tensor) { CHECK_NOTNULL(tensor); SetUsrMem(md, GetTensorBuffer(tensor)); } inline void SetUsrMem(const memory::desc& pd, void* data_buffer = nullptr) { DCHECK(cpu_engine_); if (user_memory_) delete user_memory_; if (data_buffer) { user_memory_ = new memory(pd, *cpu_engine_, data_buffer); } else { user_memory_ = new memory(pd, *cpu_engine_); } } inline const memory* GetUsrMem() const { return user_memory_; } inline memory::desc GetUsrMemDesc() const { DCHECK(user_memory_); return user_memory_->get_desc(); } inline void* GetUsrMemDataHandle() const { CHECK_NOTNULL(user_memory_); return user_memory_->get_data_handle(); } inline void SetUsrMemDataHandle(void* data_buffer, std::shared_ptr<stream> t_stream = nullptr) { CHECK_NOTNULL(user_memory_); CHECK_NOTNULL(data_buffer); #if !defined(ENABLE_ONEDNN_OPENMP) && !defined(ENABLE_ONEDNN_V3) user_memory_->set_data_handle(data_buffer, *t_stream); #else user_memory_->set_data_handle(data_buffer); #endif } inline void SetUsrMemDataHandle(const Tensor* tensor, std::shared_ptr<stream> t_stream = nullptr) { SetUsrMemDataHandle(GetTensorBuffer(tensor), t_stream); } inline void AllocateBuffer(size_t size) { const int64 kMemoryAlignment = 64; allocated_buffer_ = cpu_allocator()->AllocateRaw(kMemoryAlignment, size); } inline void* GetAllocatedBuffer() { return allocated_buffer_; } inline const memory& GetOpMem() const { return reorder_memory_ ? *reorder_memory_ : *user_memory_; } inline void SetOpMemDesc(const memory::dims& dim, memory::format_tag fm) { op_md_ = new memory::desc(dim, MklDnnType<T>(), fm); } inline const memory::desc& GetOpMemDesc() const { return *op_md_; } inline bool IsReorderNeeded(const memory::desc& op_pd) const { DCHECK(user_memory_); return op_pd != user_memory_->get_desc(); } inline primitive CreateReorder(const memory* from, const memory* to) const { CHECK_NOTNULL(from); CHECK_NOTNULL(to); return reorder(*from, *to); } inline bool CheckReorderToOpMem(const memory::desc& op_md, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(user_memory_); DCHECK_EQ(net.size(), net_args.size()); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine); net.push_back(CreateReorder(user_memory_, reorder_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, const engine& engine, OpKernelContext* context = nullptr) { DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine); auto* prim = FindOrCreateReorder<T>(user_memory_, reorder_memory_); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } std::vector<primitive> net; net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); execute_primitives(net, cpu_stream, net_args); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, void* reorder_data_handle, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(reorder_data_handle); DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine, reorder_data_handle); net.push_back(CreateReorder(user_memory_, reorder_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, void* reorder_data_handle, const engine& engine, OpKernelContext* context = nullptr) { DCHECK(reorder_data_handle); DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine, reorder_data_handle); auto* prim = FindOrCreateReorder<T>(user_memory_, reorder_memory_); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } std::vector<primitive> net; net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); execute_primitives(net, cpu_stream, net_args); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, Tensor* reorder_tensor, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(reorder_tensor); return CheckReorderToOpMem(op_md, GetTensorBuffer(reorder_tensor), net, net_args, engine); } inline bool CheckReorderToOpMem(const memory::desc& op_pd, Tensor* reorder_tensor, OpKernelContext* ctx = nullptr) { DCHECK(reorder_tensor); return CheckReorderToOpMem(op_pd, GetTensorBuffer(reorder_tensor), *cpu_engine_, ctx); } inline bool PrepareReorderToUserMemIfReq(const memory::desc& op_pd) { DCHECK(user_memory_); if (IsReorderNeeded(op_pd)) { reorder_memory_ = new memory(op_pd, *cpu_engine_); return true; } return false; } inline void InsertReorderToUserMem(std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args) { DCHECK(user_memory_); DCHECK(reorder_memory_); net.push_back(CreateReorder(reorder_memory_, user_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *reorder_memory_}, {DNNL_ARG_TO, *user_memory_}}); } inline void InsertReorderToUserMem(OpKernelContext* ctx = nullptr) { DCHECK(user_memory_); DCHECK(reorder_memory_); DCHECK(cpu_engine_); std::vector<primitive> net; auto* prim = FindOrCreateReorder<T>(reorder_memory_, user_memory_); net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *reorder_memory_}, {DNNL_ARG_TO, *user_memory_}}); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (ctx != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(ctx); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } execute_primitives(net, cpu_stream, net_args); } }; class MklPrimitive { public: virtual ~MklPrimitive() {} MklPrimitive() {} MklPrimitive(const engine& cpu_engine) { cpu_engine_ = cpu_engine; } unsigned char* DummyData = nullptr; engine cpu_engine_ = engine(engine::kind::cpu, 0); const engine& GetEngine() { return cpu_engine_; } }; const dnnl::memory::dims NONE_DIMS = {}; template <typename T> class LRUCache { public: explicit LRUCache(size_t capacity) { capacity_ = capacity; Clear(); } T* GetOp(const string& key) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(lru_mu_); #endif auto it = cache_.find(key); if (it == cache_.end()) { return nullptr; } lru_list_.erase(it->second.lru_iterator); lru_list_.push_front(it->first); it->second.lru_iterator = lru_list_.begin(); return it->second.op; } void SetOp(const string& key, T* op) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(lru_mu_); #endif if (lru_list_.size() >= capacity_) { Delete(); } lru_list_.push_front(key); Entry entry(op, lru_list_.begin()); cache_.emplace(std::make_pair(key, std::move(entry))); #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) FinishedAllocation(key); #endif } void Clear() { if (lru_list_.empty()) return; cache_.clear(); lru_list_.clear(); } #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) bool IsAllocating(const string& key) { mutex_lock lock(in_flight_mu_); return in_flight_.find(key) != in_flight_.end(); } void Allocate(const string& key) { mutex_lock lock(in_flight_mu_); in_flight_.insert(key); } void FinishedAllocation(const string& key) { mutex_lock lock(in_flight_mu_); in_flight_.erase(key); } #endif private: struct Entry { T* op; std::list<string>::iterator lru_iterator; Entry(T* op, std::list<string>::iterator it) { this->op = op; this->lru_iterator = it; } Entry(Entry&& source) noexcept : lru_iterator(std::move(source.lru_iterator)) { op = std::move(source.op); source.op = std::forward<T*>(nullptr); } ~Entry() { if (op != nullptr) delete op; } }; bool Delete() { if (lru_list_.empty()) return false; string key = lru_list_.back(); lru_list_.pop_back(); cache_.erase(key); return true; } size_t capacity_; std::unordered_map<string, Entry> cache_; std::list<string> lru_list_; #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex lru_mu_; std::set<string> in_flight_; TF_GUARDED_BY(in_flight_mu_) mutex in_flight_mu_; #endif }; template <typename T> class MklPrimitiveFactory { public: MklPrimitiveFactory() {} ~MklPrimitiveFactory() {} MklPrimitive* GetOp(const string& key) { #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); return lru_cache.GetOp(key); #else while (true) { mutex_lock lock(primitive_creation_mu_); auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); MklPrimitive* primitive = lru_cache.GetOp(key); if (primitive != nullptr) { return primitive; } if (!lru_cache.IsAllocating(key)) { lru_cache.Allocate(key); return nullptr; } primitive_creation_cv_.wait(lock); } #endif } void SetOp(const string& key, MklPrimitive* op) { #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); lru_cache.SetOp(key, op); #else { mutex_lock lock(primitive_creation_mu_); auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); lru_cache.SetOp(key, op); } primitive_creation_cv_.notify_all(); #endif } static inline bool IsLegacyPlatform() { #ifdef DNNL_AARCH64_USE_ACL return false; #else static const bool is_legacy_platform = (!port::TestCPUFeature(port::CPUFeature::AVX512F) && !port::TestCPUFeature(port::CPUFeature::AVX2)); return is_legacy_platform; #endif } static inline bool IsPrimitiveMemOptEnabled() { static const bool is_primitive_mem_opt_enabled = [] { bool value = true; TF_CHECK_OK( ReadBoolFromEnvVar("TF_MKL_OPTIMIZE_PRIMITIVE_MEMUSE", true, &value)); return value; }(); return is_primitive_mem_opt_enabled; } #ifdef DNNL_AARCH64_USE_ACL static int IncrementCounter() { static std::atomic_int counter{1}; return counter.fetch_add(1); } #endif private: static inline LRUCache<MklPrimitive>& GetLRUCache() { static const int kCapacity = 1024; #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) static thread_local LRUCache<MklPrimitive> lru_cache_(kCapacity); #else static LRUCache<MklPrimitive> lru_cache_(kCapacity); #endif return lru_cache_; } #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex primitive_creation_mu_; condition_variable primitive_creation_cv_; #endif }; class FactoryKeyCreator { public: FactoryKeyCreator() { key_.reserve(kMaxKeyLength); } ~FactoryKeyCreator() {} void AddAsKey(const string& str) { Append(str); } void AddAsKey(const dnnl::memory::dims& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AddAsKey<int>(dims[i]); } } template <typename T> void AddAsKey(const T data) { auto buffer = reinterpret_cast<const char*>(&data); Append(StringPiece(buffer, sizeof(T))); } void AddAsKey(const void* data) { auto buffer = reinterpret_cast<const char*>(&data); Append(StringPiece(buffer, sizeof(data))); } string GetKey() { return key_; } private: string key_; const char delimiter = 'x'; const int kMaxKeyLength = 256; void Append(StringPiece s) { key_.append(string(s)); key_.append(1, delimiter); } }; class MklReorderPrimitive : public MklPrimitive { public: explicit MklReorderPrimitive(const memory* from, const memory* to) : MklPrimitive(engine(engine::kind::cpu, 0)) { Setup(from, to); } ~MklReorderPrimitive() {} std::shared_ptr<primitive> GetPrimitive() { return context_.reorder_prim; } void SetMemory(const memory* from, const memory* to) { context_.src_mem->set_data_handle(from->get_data_handle()); context_.dst_mem->set_data_handle(to->get_data_handle()); } std::shared_ptr<dnnl::stream> GetStream() { return stream_; } private: struct ReorderContext { std::shared_ptr<dnnl::memory> src_mem; std::shared_ptr<dnnl::memory> dst_mem; std::shared_ptr<primitive> reorder_prim; ReorderContext() : src_mem(nullptr), dst_mem(nullptr), reorder_prim(nullptr) {} } context_; std::shared_ptr<dnnl::stream> stream_; void Setup(const memory* from, const memory* to) { context_.src_mem.reset( new memory(from->get_desc(), cpu_engine_, DummyData)); context_.dst_mem.reset(new memory(to->get_desc(), cpu_engine_, DummyData)); context_.reorder_prim = std::make_shared<dnnl::reorder>( reorder(*context_.src_mem, *context_.dst_mem)); stream_.reset(new stream(cpu_engine_)); } }; template <typename T> class MklReorderPrimitiveFactory : public MklPrimitiveFactory<T> { public: static MklReorderPrimitive* Get(const memory* from, const memory* to) { auto reorderPrim = static_cast<MklReorderPrimitive*>( MklReorderPrimitiveFactory<T>::GetInstance().GetReorder(from, to)); if (reorderPrim == nullptr) { reorderPrim = new MklReorderPrimitive(from, to); MklReorderPrimitiveFactory<T>::GetInstance().SetReorder(from, to, reorderPrim); } reorderPrim->SetMemory(from, to); return reorderPrim; } static MklReorderPrimitiveFactory& GetInstance() { static MklReorderPrimitiveFactory instance_; return instance_; } static string CreateKey(const memory* from, const memory* to) { string prefix = "reorder"; FactoryKeyCreator key_creator; auto const& from_desc = from->GET_MEMORY_DESC; auto const& to_desc = to->GET_MEMORY_DESC; memory::dims INIT_DIMS_FROM_DESC(from_dims, from_desc); memory::dims INIT_DIMS_FROM_DESC(to_dims, to_desc); auto from_strides = from_desc.GET_STRIDES; auto from_inner_nblks = from_desc.GET_INNER_NBLKS; auto from_inner_blks = from_desc.GET_INNER_BLKS; auto from_inner_idxs = from_desc.GET_INNER_IDXS; auto to_inner_nblks = to_desc.GET_INNER_NBLKS; auto to_inner_blks = to_desc.GET_INNER_BLKS; auto to_inner_idxs = to_desc.GET_INNER_IDXS; auto to_strides = to_desc.GET_STRIDES; #ifndef ENABLE_ONEDNN_V3 memory::dims from_inner_blks_1(from_inner_blks, &from_inner_blks[from_inner_nblks]); memory::dims from_inner_idxs_1(from_inner_idxs, &from_inner_idxs[from_inner_nblks]); memory::dims to_inner_blks_1(to_inner_blks, &to_inner_blks[to_inner_nblks]); memory::dims to_inner_idxs_1(to_inner_idxs, &to_inner_idxs[to_inner_nblks]); memory::dims from_strides_outer_blocks(from_strides, &from_strides[from_desc.ndims]); memory::dims to_strides_outer_blocks(to_strides, &to_strides[to_desc.ndims]); #endif key_creator.AddAsKey(prefix); #ifdef DNNL_AARCH64_USE_ACL key_creator.AddAsKey(std::this_thread::get_id()); #endif key_creator.AddAsKey(static_cast<int>(from_desc.GET_MEMORY_DESC_FLAGS)); key_creator.AddAsKey(static_cast<int>(from_inner_nblks)); key_creator.AddAsKey(GET_INNER_DIMS(from_inner_blks, from_inner_blks_1)); key_creator.AddAsKey(GET_INNER_DIMS(from_inner_idxs, from_inner_idxs_1)); key_creator.AddAsKey(static_cast<int>(from_desc.GET_DATA_TYPE)); key_creator.AddAsKey(from_dims); key_creator.AddAsKey( GET_STRIDES_DIMS(from_strides, from_strides_outer_blocks)); key_creator.AddAsKey(static_cast<int>(to_desc.GET_MEMORY_DESC_FLAGS)); key_creator.AddAsKey(static_cast<int>(to_inner_nblks)); key_creator.AddAsKey(GET_INNER_DIMS(to_inner_blks, to_inner_blks_1)); key_creator.AddAsKey(GET_INNER_DIMS(to_inner_idxs, to_inner_idxs_1)); key_creator.AddAsKey(static_cast<int>(to_desc.GET_DATA_TYPE)); key_creator.AddAsKey(to_dims); key_creator.AddAsKey(GET_STRIDES_DIMS(to_strides, to_strides_outer_blocks)); return key_creator.GetKey(); } private: MklReorderPrimitiveFactory() {} ~MklReorderPrimitiveFactory() {} MklPrimitive* GetReorder(const memory* from, const memory* to) { string key = CreateKey(from, to); return this->GetOp(key); } void SetReorder(const memory* from, const memory* to, MklPrimitive* op) { string key = CreateKey(from, to); this->SetOp(key, op); } }; template <typename T> inline MklReorderPrimitive* FindOrCreateReorder(const memory* from, const memory* to) { CHECK_NOTNULL(from); CHECK_NOTNULL(to); MklReorderPrimitive* reorder_prim = MklReorderPrimitiveFactory<T>::Get(from, to); return reorder_prim; } inline bool IsConv1x1StrideNot1(memory::dims filter_dims, memory::dims strides) { if (filter_dims.size() != 4 || strides.size() != 2) return false; return ((filter_dims[2] == 1) && (filter_dims[3] == 1) && ((strides[0] != 1) || (strides[1] != 1))); } #undef ARE_MEMORY_DESCS_EQUAL #undef CREATE_MEMORY_DESC_USING_STRIDES #undef GET_DATA_TYPE #undef GET_DIMS #undef GET_INNER_BLKS #undef GET_INNER_DIMS #undef GET_INNER_IDXS #undef GET_INNER_NBLKS #undef GET_MEMORY_DESC #undef GET_MEMORY_DESC_FLAGS #undef GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR #undef GET_NDIMS #undef GET_STRIDES #undef GET_STRIDES_DIMS #undef INIT_DIMS_FROM_DESC #undef MEMORY_DESC } #define REGISTER_TEST_FLOAT32(TEST) REGISTER_TEST(TEST, DT_FLOAT, Float32Input); #define REGISTER_TEST_BFLOAT16(TEST) \ REGISTER_TEST(TEST, DT_BFLOAT16, BFloat16Input); #define REGISTER_TEST_ALL_TYPES(TEST) \ REGISTER_TEST_FLOAT32(TEST); \ REGISTER_TEST_BFLOAT16(TEST); #else #define REGISTER_TEST_ALL_TYPES(TEST) REGISTER_TEST_FLOAT32(TEST); #endif #endif
#ifdef INTEL_MKL #include "tensorflow/core/util/mkl_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(MklUtilTest, MklDnnTfShape) { auto cpu_engine = engine(engine::kind::cpu, 0); MklDnnData<float> a(&cpu_engine); const int N = 1, C = 2, H = 3, W = 4; memory::dims a_dims = {N, C, H, W}; MklDnnShape a_mkldnn_shape; a_mkldnn_shape.SetMklTensor(true); a_mkldnn_shape.SetTfLayout(a_dims.size(), a_dims, MklTensorFormat::FORMAT_NCHW); TensorShape a_tf_shape_nchw({N, C, H, W}); TensorShape a_tf_shape_nhwc({N, H, W, C}); TensorShape a_mkldnn_tf_shape = a_mkldnn_shape.GetTfShape(); EXPECT_EQ(a_tf_shape_nchw, a_mkldnn_tf_shape); EXPECT_NE(a_tf_shape_nhwc, a_mkldnn_tf_shape); memory::dims b_dims = {N, C, H, W}; MklDnnShape b_mkldnn_shape; b_mkldnn_shape.SetMklTensor(true); b_mkldnn_shape.SetTfLayout(b_dims.size(), b_dims, MklTensorFormat::FORMAT_NHWC); TensorShape b_tf_shape_nhwc({N, H, W, C}); TensorShape b_tf_shape_nchw({N, C, H, W}); TensorShape b_mkldnn_tf_shape = b_mkldnn_shape.GetTfShape(); EXPECT_EQ(b_tf_shape_nhwc, b_mkldnn_tf_shape); EXPECT_NE(b_tf_shape_nchw, b_mkldnn_tf_shape); } TEST(MklUtilTest, LRUCacheTest) { size_t capacity = 100; size_t num_objects = capacity + 10; LRUCache<int> lru_cache(capacity); for (int k = 0; k < num_objects; k++) { lru_cache.SetOp(std::to_string(k), new int(k)); } for (int k = 0; k < num_objects - capacity; ++k) { EXPECT_EQ(nullptr, lru_cache.GetOp(std::to_string(k))); } for (int k = num_objects - capacity; k < num_objects; ++k) { int* int_ptr = lru_cache.GetOp(std::to_string(k)); EXPECT_NE(nullptr, int_ptr); EXPECT_EQ(*int_ptr, k); } lru_cache.Clear(); for (int k = 0; k < num_objects; ++k) { EXPECT_EQ(nullptr, lru_cache.GetOp(std::to_string(k))); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea