ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
85a652e9-c99d-43a7-9418-8569ec44a1db
cpp
tensorflow/tensorflow
rotate
tensorflow/lite/experimental/ml_adjacent/algo/rotate.cc
tensorflow/lite/experimental/ml_adjacent/algo/rotate_test.cc
#include <cmath> #include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rotate { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline float DegreesToRadians(int angle) { return angle * M_PI / 180; } void ComputeNewSize(dim_t src_width, dim_t src_height, int angle, dim_t& dst_width, dim_t& dst_height) { dst_width = src_width; dst_height = src_height; if (angle % 90 == 0) { if (angle == 90 || angle == 270) { dst_width = src_height; dst_height = src_width; } } else { const float angle_rad = DegreesToRadians(angle); const float cos_angle = std::cos(angle_rad); const float sin_angle = std::sin(angle_rad); const int edge_x = src_width / 2; const int edge_y = src_height / 2; for (int y : {-edge_y, edge_y}) { for (int x : {-edge_x, edge_x}) { const int x_transformed = static_cast<int>(std::floor(cos_angle * x + sin_angle * y)); const int y_transformed = static_cast<int>(std::floor(-sin_angle * x + cos_angle * y)); if (std::abs(x_transformed) > dst_width / 2) dst_width = 2 * std::abs(x_transformed); if (std::abs(y_transformed) > dst_height / 2) dst_height = 2 * std::abs(y_transformed); } } } } void Rotate90(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; for (int x = 0; x < input_width; ++x) { float* dst_ptr_row = dst_data_prt + x * dst_row_stride; const float* src_ptr_pixel = src_ptr_row + x * pixel_stride; float* dst_pixel_ptr = dst_ptr_row + (output_width - y - 1) * pixel_stride; for (int c = 0; c < depth; ++c) { *dst_pixel_ptr++ = *src_ptr_pixel++; } } } } } void Rotate180(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int dst_pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; float* dst_ptr_row = dst_data_prt + (output_height - y - 1) * dst_row_stride + (output_width - 1) * dst_pixel_stride; for (int x = 0; x < input_width; ++x) { for (int c = 0; c < depth; ++c) { dst_ptr_row[c] = src_ptr_row[c]; } dst_ptr_row -= depth; src_ptr_row += depth; } } } } void Rotate270(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; for (int x = 0; x < input_width; ++x) { float* dst_ptr_row = dst_data_prt + (output_height - x - 1) * dst_row_stride; const float* src_ptr_pixel = src_ptr_row + x * pixel_stride; float* dst_pixel_ptr = dst_ptr_row + y * pixel_stride; for (int c = 0; c < depth; ++c) { *dst_pixel_ptr++ = *src_ptr_pixel++; } } } } } void RotateGeneric(int batches, int input_height, int input_width, int depth, int output_height, int output_width, int angle, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; memset( output_data, 0, batches * output_width * output_height * depth * sizeof(output_data[0])); const float angle_rad = DegreesToRadians(angle); const float cos_angle = std::cos(angle_rad); const float sin_angle = std::sin(angle_rad); for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = -output_height / 2; y < output_height / 2; ++y) { for (int x = -output_width / 2; x < output_width / 2; ++x) { const float x_transformed = cos_angle * x + sin_angle * y; const float y_transformed = -sin_angle * x + cos_angle * y; const int x_transformed_integer = static_cast<int>(std::floor(x_transformed)); const int y_transformed_integer = static_cast<int>(std::floor(y_transformed)); const int x_src_integer = x_transformed_integer + input_width / 2; const int y_src_integer = y_transformed_integer + input_height / 2; const int x0 = x_src_integer; const int x1 = x_src_integer + 1; const int y0 = y_src_integer; const int y1 = y_src_integer + 1; if (x0 < 0 || x0 >= input_width) continue; if (x1 < 0 || x1 >= input_width) continue; if (y0 < 0 || y0 >= input_height) continue; if (y1 < 0 || y1 >= input_height) continue; const float x_dist = x_transformed - x_transformed_integer; const float y_dist = y_transformed - y_transformed_integer; const float one_minus_x_dist = 1 - x_dist; const float one_minus_y_dist = 1 - y_dist; const float* src_ptr_row0 = src_data_prt + y0 * src_row_stride; const float* src_ptr_row1 = src_data_prt + y1 * src_row_stride; float* dst_row_ptr = dst_data_prt + (y + output_height / 2) * dst_row_stride; const float* src_ptr_pixel00 = src_ptr_row0 + x0 * pixel_stride; const float* src_ptr_pixel10 = src_ptr_row0 + x1 * pixel_stride; const float* src_ptr_pixel01 = src_ptr_row1 + x0 * pixel_stride; const float* src_ptr_pixel11 = src_ptr_row1 + x1 * pixel_stride; float* dst_pixel_ptr = dst_row_ptr + (x + output_width / 2) * pixel_stride; for (int c = 0; c < depth; ++c) { const float v00 = *src_ptr_pixel00++; const float v01 = *src_ptr_pixel01++; const float v10 = *src_ptr_pixel10++; const float v11 = *src_ptr_pixel11++; *dst_pixel_ptr++ = (v10 * one_minus_y_dist + v11 * y_dist) * x_dist + (v00 * one_minus_y_dist + v01 * y_dist) * one_minus_x_dist; } } } } } void ComputeRotate(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 2); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t img_num_channels = img->Dims()[3]; const DataRef* angle = inputs[1]; const int angle_data = *reinterpret_cast<const int*>(angle->Data()); MutableDataRef* output = outputs[0]; dim_t new_width = 0; dim_t new_height = 0; ComputeNewSize(img_width, img_height, angle_data, new_width, new_height); output->Resize({img_num_batches, new_height, new_width, img_num_channels}); float* output_data = reinterpret_cast<float*>(output->Data()); if (angle_data == 90) { Rotate90(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } if (angle_data == 180) { Rotate180(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } if (angle_data == 270) { Rotate270(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } RotateGeneric(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, angle_data, img_data, output_data); } } const Algo* Impl_Rotate() { static const Algo rotate = {&ComputeRotate, nullptr}; return &rotate; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rotate.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rotate { namespace { struct RotateTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const int angle; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class RotateTest : public ::testing::TestWithParam<RotateTestParams> {}; TEST_P(RotateTest, FloatPixelType) { constexpr float kAbsError = 0.01f; const RotateTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef angle(etype_t::i32); angle.Resize({1}); ASSERT_EQ(angle.Bytes(), sizeof(int)); std::memcpy(angle.Data(), &params.angle, angle.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rotate = Impl_Rotate(); rotate->process({&img, &angle}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( RotateTests, RotateTest, testing::ValuesIn({ RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 90, {31, 21, 11, 32, 22, 12, 33, 23, 13}, {1, 3, 3, 1}}, RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 180, {33, 32, 31, 23, 22, 21, 13, 12, 11}, {1, 3, 3, 1}}, RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 270, {13, 23, 33, 12, 22, 32, 11, 21, 31}, {1, 3, 3, 1}}, RotateTestParams{{1, 8, 8, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, -45, { 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.59f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.78f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.23f, 0.97f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.59f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, }, {1, 12, 12, 1}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rotate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rotate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4152b9d6-a170-4c43-a583-3cc6b5fc12ef
cpp
tensorflow/tensorflow
flip_left_right
tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.cc
tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right_test.cc
#include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace flip_left_right { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; using ::ml_adj::data::TypeWidth; void FlipLeftRight(dim_t batches, dim_t input_height, dim_t input_width, const char* input_data, char* output_data, dim_t chunk_size) { const dim_t row_stride = input_width * chunk_size; const dim_t batch_stride = row_stride * input_height; for (int b = 0; b < batches; ++b) { const char* src_data_prt = input_data + b * batch_stride; char* dst_data_prt = output_data + b * batch_stride; for (int y = 0; y < input_height; ++y) { const char* src_ptr_row = src_data_prt + y * row_stride + (input_width - 1) * chunk_size; char* dst_ptr_row = dst_data_prt + y * row_stride; for (int x = 0; x < input_width; ++x) { std::memcpy(dst_ptr_row, src_ptr_row, chunk_size); src_ptr_row -= chunk_size; dst_ptr_row += chunk_size; } } } } void ComputeFlipLeftRight(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const char* img_data = reinterpret_cast<const char*>(img->Data()); const dim_t num_batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t num_channels = img->Dims()[3]; const dim_t chunk_size = TypeWidth(img->Type()) * num_channels; MutableDataRef* output = outputs[0]; output->Resize({num_batches, height, width, num_channels}); char* output_data = reinterpret_cast<char*>(output->Data()); FlipLeftRight(num_batches, height, width, img_data, output_data, chunk_size); } } const Algo* Impl_FlipLeftRight() { static const Algo flip_left_right = {&ComputeFlipLeftRight, nullptr}; return &flip_left_right; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace flip_left_right { namespace { struct FlipLeftRightTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class FlipLeftRightTest : public ::testing::TestWithParam<FlipLeftRightTestParams> {}; TEST_P(FlipLeftRightTest, FloatPixelType) { constexpr float kAbsError = 0.01f; const FlipLeftRightTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* flip_left_right = Impl_FlipLeftRight(); flip_left_right->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( FlipLeftRightTests, FlipLeftRightTest, testing::ValuesIn({ FlipLeftRightTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, {13, 12, 11, 23, 22, 21, 33, 32, 31}, {1, 3, 3, 1}}, FlipLeftRightTestParams{{1, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6}, {13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4}, {1, 3, 3, 2}}, FlipLeftRightTestParams{{2, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6, 13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4}, {13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4, 11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6}, {2, 3, 3, 2}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a1d59636-3fa4-41e2-a4c4-60dc32774304
cpp
tensorflow/tensorflow
resize
tensorflow/lite/delegates/gpu/gl/kernels/resize.cc
tensorflow/lite/delegates/hexagon/builders/tests/resize_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/resize.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class Resize : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const Resize2DAttributes&>(ctx.op_attr); if (ctx.input_shapes[0][2] > ctx.output_shapes[0][2] || ctx.input_shapes[0][1] > ctx.output_shapes[0][1]) { return absl::UnimplementedError( "Downsampling is currently not supported by the resize op on GPU."); } if (ctx.output_shapes[0][2] != attr.new_shape.w || ctx.output_shapes[0][1] != attr.new_shape.h) { return absl::InvalidArgumentError( "Output size does not match new_size in attributes."); } if (ctx.input_shapes[0][3] != ctx.output_shapes[0][3]) { return absl::InvalidArgumentError("Input/output channels mismatch."); } if (ctx.input_shapes[0][1] == 1 && ctx.input_shapes[0][2] == 1) { *generated_code = { {}, {}, {}, uint3(), uint3(), "value_0 = $input_data_0[0, 0, gid.z]$;", IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"scale_factor", float2(CalculateResizeScale(ctx.input_shapes[0][2], ctx.output_shapes[0][2], attr), CalculateResizeScale(ctx.input_shapes[0][1], ctx.output_shapes[0][1], attr))}, }; std::string source; if (attr.type == SamplingType::BILINEAR) { if (attr.half_pixel_centers) { source = "vec2 coord = (vec2(gid.xy) + 0.5) * $scale_factor$ - 0.5;"; } else { source = "vec2 coord = vec2(gid.xy) * $scale_factor$;"; } source += R"( vec2 coord_floor = floor(coord); ivec2 icoord_floor = ivec2(coord_floor); ivec2 borders = ivec2($input_data_0_w$, $input_data_0_h$) - ivec2(1, 1); ivec4 st; st.xy = max(icoord_floor, ivec2(0, 0)); st.zw = min(icoord_floor + ivec2(1, 1), borders); vec2 t = coord - coord_floor; vec4 tex11 = $input_data_0[st.x, st.y, gid.z]$; vec4 tex21 = $input_data_0[st.z, st.y, gid.z]$; vec4 tex12 = $input_data_0[st.x, st.w, gid.z]$; vec4 tex22 = $input_data_0[st.z, st.w, gid.z]$; value_0 = mix(mix(tex11, tex21, t.x), mix(tex12, tex22, t.x), t.y);)"; } else if (attr.type == SamplingType::NEAREST) { std::string fxc; std::string fyc; if (attr.half_pixel_centers) { fxc = "(float(gid.x) + 0.5) * $scale_factor.x$"; fyc = "(float(gid.y) + 0.5) * $scale_factor.y$"; } else { fxc = "float(gid.x) * $scale_factor.x$"; fyc = "float(gid.y) * $scale_factor.y$"; } if (attr.align_corners) { fxc += " + 0.5"; fyc += " + 0.5"; } source += " ivec2 coord;\n"; source += " coord.x = int(" + fxc + ");\n"; source += " coord.y = int(" + fyc + ");\n"; source += " coord.x = max(0, coord.x);\n"; source += " coord.y = max(0, coord.y);\n"; source += " coord.x = min(coord.x, $input_data_0_w$ - 1);\n"; source += " coord.y = min(coord.y, $input_data_0_h$ - 1);\n"; source += R"( value_0 = $input_data_0[coord.x, coord.y, gid.z]$; )"; } else { return absl::InvalidArgumentError("Unknown sampling type"); } *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewResizeNodeShader() { return std::make_unique<Resize>(); } } } }
#include <initializer_list> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; class ResizeOpModel : public SingleOpModelWithHexagon { public: explicit ResizeOpModel(BuiltinOperator op_type, const TensorData& input, std::initializer_list<int> size_data, const TensorData& output, bool align_corners = false, bool half_pixel_centers = false) { input_ = AddInput(input); size_ = AddConstInput(TensorType_INT32, size_data, {2}); output_ = AddOutput(output); if (op_type == BuiltinOperator_RESIZE_NEAREST_NEIGHBOR) { SetBuiltinOp(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, BuiltinOptions_ResizeNearestNeighborOptions, CreateResizeNearestNeighborOptions( builder_, align_corners, half_pixel_centers) .Union()); } else { SetBuiltinOp(op_type, BuiltinOptions_ResizeBilinearOptions, CreateResizeBilinearOptions( builder_, align_corners, half_pixel_centers) .Union()); } BuildInterpreter({GetShape(input_)}); } template <typename T> void SetInput(std::initializer_list<T> data) { PopulateTensor(input_, data); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } template <typename T> void SetQuantizedInput(std::initializer_list<float> data) { QuantizeAndPopulate<T>(input_, data); } template <typename T> std::vector<float> GetDequantizedOutput() { return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_), GetZeroPoint(output_)); } int input() { return input_; } private: int input_; int size_; int output_; }; TEST(ResizeOpModel, HorizontalResizeBiliear_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_UINT8, {1, 1, 2, 1}, -2.0, 10}, {1, 3}, {TensorType_UINT8, {}, -2.0, 10}); m.SetQuantizedInput<uint8_t>({3, 6}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({3, 5, 6}, 1))); } TEST(ResizeOpModel, HorizontalResizeNearestNeighbor_Int8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_INT8, {1, 1, 2, 1}, -2.0, 10}, {1, 3}, {TensorType_INT8, {}, -2.0, 10}); m.SetQuantizedInput<int8_t>({3, 6}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear({3.01176, 3.01176, 6.02353}, 1))); } TEST(ResizeOpModel, VerticalResizeBiliear_Int8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_INT8, {1, 2, 1, 1}, -2.0, 20}, {3, 1}, {TensorType_INT8, {}, -2.0, 20}); m.SetQuantizedInput<int8_t>({3, 9}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear({3, 7, 9}, 1))); } TEST(ResizeOpModel, VerticalResizeNearestNeighbor_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_UINT8, {1, 2, 1, 1}, -2.0, 20}, {3, 1}, {TensorType_UINT8, {}, -2.0, 20}); m.SetQuantizedInput<uint8_t>({3, 9}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({3.01961, 3.01961, 8.97255}, 1))); } TEST(ResizeOpModel, ThreeDimensionalResizeBiliear_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_UINT8, {1, 2, 2, 2}, -2, 30}, {3, 3}, {TensorType_UINT8, {}, -2.0, 30.0}); m.SetQuantizedInput<uint8_t>({ 3, 4, 6, 10, 10, 12, 14, 16, }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear( { 3, 4, 5, 8, 6, 10, 7, 9, 10, 12, 11, 14, 10, 12, 12, 14, 14, 16, }, 1))); } TEST(ResizeOpModel, ThreeDimensionalResizeNearestNeighbor_Int8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_INT8, {1, 2, 2, 2}, -2, 30}, {3, 3}, {TensorType_INT8, {}, -2.0, 30.0}); m.SetQuantizedInput<int8_t>({ 3, 4, 6, 10, 10, 12, 14, 16, }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear( { 3.01177, 4.01569, 3.01177, 4.01569, 6.02353, 10.0392, 3.01177, 4.01569, 3.01177, 4.01569, 6.02353, 10.0392, 10.0392, 12.0471, 10.0392, 12.0471, 14.0549, 16.0627, }, 1))); } TEST(ResizeOpModel, TwoDimensionalResizeBilinearWithTwoBatches_Int8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_INT8, {2, 2, 2, 1}, -2, 30}, {3, 3}, {TensorType_INT8, {}, -2.0, 30.0}); m.SetQuantizedInput<int8_t>({ 3, 6, 9, 12, 4, 10, 12, 16 }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear( { 3, 5, 6, 7, 9, 10, 9, 11, 12, 4, 8, 10, 9, 12, 14, 12, 14, 16, }, 1))); } TEST(ResizeOpModel, TwoDimensionalResizeNNWithTwoBatches_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_UINT8, {2, 2, 2, 1}, -2, 30}, {3, 3}, {TensorType_UINT8, {}, -2.0, 30.0}); m.SetQuantizedInput<uint8_t>({ 3, 6, 9, 12, 4, 10, 12, 16 }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear( { 3.01177, 3.01177, 6.02353, 3.01177, 3.01177, 6.02353, 9.03529, 9.03529, 12.0471, 4.01569, 4.01569, 10.0392, 4.01569, 4.01569, 10.0392, 12.0471, 12.0471, 16.0627, }, 1))); } TEST(ResizeOpModel, TwoDimResizeBilinearWithTwoBatches_HalfPixelCenters_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_UINT8, {2, 2, 2, 1}, -2.0, 20}, {3, 3}, {TensorType_UINT8, {}, -2.0, 20}, false, true); m.SetQuantizedInput<uint8_t>({ 3, 6, 9, 12, 4, 10, 12, 16 }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({2, 4, 6, 6, 7, 9, 9, 10, 12, 4, 7, 10, 8, 10, 13, 12, 14, 16}, 2))); } TEST(ResizeOpModel, TwoDimResizeBilinearWithTwoBatches_AlignCorners_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_BILINEAR, {TensorType_UINT8, {2, 2, 2, 1}, -2.0, 20}, {3, 3}, {TensorType_UINT8, {}, -2.0, 20}, true, false); m.SetQuantizedInput<uint8_t>({ 3, 6, 9, 12, 4, 10, 12, 16 }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({3, 5, 6, 7, 9, 10, 9, 11, 12, 4, 8, 10, 9, 12, 13, 12, 15, 16}, 2))); } TEST(ResizeOpModel, ThreeDimensionalResizeNN_AlignCorners_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_UINT8, {1, 2, 2, 2}, -2.0, 20}, {3, 3}, {TensorType_UINT8, {}, -2.0, 20}, true); m.SetQuantizedInput<uint8_t>({ 3, 4, 6, 10, 10, 12, 14, 16, }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({3, 4, 6, 10, 6, 10, 10, 12, 14, 16, 14, 16, 10, 12, 14, 16, 14, 16}, 1))); } TEST(ResizeOpModel, ThreeDimensionalResizeNN_HalfPixelCenters_UInt8) { ResizeOpModel m(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, {TensorType_UINT8, {1, 2, 2, 2}, -2.0, 20}, {3, 3}, {TensorType_UINT8, {}, -2.0, 20}, false, true); m.SetQuantizedInput<uint8_t>({ 3, 4, 6, 10, 10, 12, 14, 16, }); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({3, 4, 6, 10, 6, 10, 10, 12, 14, 16, 14, 16, 10, 12, 14, 16, 14, 16}, 1))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/resize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/hexagon/builders/tests/resize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c45de3c-81f9-4c01-82ae-09a5a486e55a
cpp
tensorflow/tensorflow
crop
tensorflow/lite/experimental/ml_adjacent/algo/crop.cc
tensorflow/lite/experimental/ml_adjacent/algo/crop_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/crop.h" #include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace crop { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; using ::ml_adj::data::TypeWidth; inline void CropToBoundingBox(dim_t offset_height, dim_t offset_width, dim_t out_height, dim_t out_width, const DataRef* input, MutableDataRef* output) { const dim_t in_height = input->Dims()[1]; const dim_t in_width = input->Dims()[2]; const dim_t num_channels = input->Dims()[3]; const dim_t chunk = TypeWidth(input->Type()) * num_channels; const dim_t in_img_size = in_height * in_width; const dim_t out_img_size = out_height * out_width; for (int b = 0; b < input->Dims()[0]; ++b) { for (int i = 0; i < out_height; ++i) { const dim_t read_byte_ofs = (in_img_size * b + (i + offset_height) * in_width + offset_width) * chunk; const void* read_start_addr = reinterpret_cast<const char*>(input->Data()) + read_byte_ofs; const dim_t write_byte_ofs = chunk * (out_img_size * b + i * out_width); void* write_addr = reinterpret_cast<char*>(output->Data()) + write_byte_ofs; std::memcpy(write_addr, read_start_addr, chunk * out_width); } } } void ComputeCenterCrop(const InputPack& inputs, const OutputPack& outputs) { #ifndef NDEBUG TFLITE_CHECK(inputs.size() == 2); TFLITE_CHECK(outputs.size() == 1); #endif const DataRef* img = inputs[0]; const DataRef* frac = inputs[1]; const double frac_data = *reinterpret_cast<const double*>(frac->Data()); const dim_t in_height = img->Dims()[1]; const dim_t out_height_offset = (in_height - in_height * frac_data) / 2; const dim_t out_height = in_height - (2 * out_height_offset); const dim_t in_width = img->Dims()[2]; const dim_t out_width_offset = (in_width - in_width * frac_data) / 2; const dim_t out_width = in_width - (2 * out_width_offset); MutableDataRef* output = outputs[0]; output->Resize({img->Dims()[0], out_height, out_width, img->Dims()[3]}); CropToBoundingBox(out_height_offset, out_width_offset, out_height, out_width, img, output); } void ComputeCropToBoundingBox(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 5); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const DataRef* offset_height = inputs[1]; const dim_t offset_height_data = *reinterpret_cast<const dim_t*>(offset_height->Data()); const DataRef* offset_width = inputs[2]; const dim_t offset_width_data = *reinterpret_cast<const dim_t*>(offset_width->Data()); const DataRef* target_height = inputs[3]; const dim_t target_height_data = *reinterpret_cast<const dim_t*>(target_height->Data()); const DataRef* target_width = inputs[4]; const dim_t target_width_data = *reinterpret_cast<const dim_t*>(target_width->Data()); MutableDataRef* output = outputs[0]; output->Resize( {img->Dims()[0], target_height_data, target_width_data, img->Dims()[3]}); CropToBoundingBox(offset_height_data, offset_width_data, target_height_data, target_width_data, img, output); } } const Algo* Impl_CenterCrop() { static const Algo center_crop = {&ComputeCenterCrop, nullptr}; return &center_crop; } const Algo* Impl_CropToBoundingBox() { static const Algo crop_to_bounding_box = {&ComputeCropToBoundingBox, nullptr}; return &crop_to_bounding_box; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/crop.h" #include <cstring> #include <numeric> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; using ::testing::ElementsAreArray; namespace ml_adj { namespace crop { namespace { std::vector<float> GetIotaVec(dim_t d1, dim_t d2, dim_t d3, dim_t d4) { std::vector<float> res; res.resize(d1 * d2 * d3 * d4); std::iota(res.begin(), res.end(), 0); return res; } struct CropCenterTestParams { std::vector<dim_t> img_dims; std::vector<float> img_data; double frac; std::vector<float> expected_data; std::vector<dim_t> expected_shape; }; class CropCenterTest : public testing::TestWithParam<CropCenterTestParams> {}; TEST_P(CropCenterTest, FloatPixelType) { const CropCenterTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef frac(etype_t::f64); frac.Resize({1}); ASSERT_EQ(frac.Bytes(), sizeof(double)); std::memcpy(frac.Data(), &params.frac, frac.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* center_crop = Impl_CenterCrop(); center_crop->process({&img, &frac}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); EXPECT_THAT(absl::MakeSpan(out_data, output.NumElements()), ElementsAreArray(params.expected_data)); } INSTANTIATE_TEST_SUITE_P( CropTests, CropCenterTest, testing::ValuesIn({ CropCenterTestParams{{1, 4, 4, 1}, GetIotaVec(1, 4, 4, 1), 0.5, {5, 6, 9, 10}, {1, 2, 2, 1}}, CropCenterTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.5, {6, 7, 8, 11, 12, 13, 16, 17, 18}, {1, 3, 3, 1}}, CropCenterTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 0.5, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3, 3, 1}}, CropCenterTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.9, GetIotaVec(1, 5, 5, 1), {1, 5, 5, 1}}, CropCenterTestParams{ {1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.2, {12}, {1, 1, 1, 1}}, CropCenterTestParams{{1, 2, 2, 2}, GetIotaVec(1, 2, 2, 2), .7, {0, 1, 2, 3, 4, 5, 6, 7}, {1, 2, 2, 2}}, CropCenterTestParams{ {1, 3, 3, 2}, GetIotaVec(1, 3, 3, 2), .1, {8, 9}, {1, 1, 1, 2}}, CropCenterTestParams{ {2, 3, 3, 1}, GetIotaVec(2, 3, 3, 1), .1, {4, 13}, {2, 1, 1, 1}}, CropCenterTestParams{{2, 3, 3, 2}, GetIotaVec(2, 3, 3, 2), .1, {8, 9, 26, 27}, {2, 1, 1, 2}}, })); struct CropToBoundingBoxTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; dim_t offset_height; dim_t offset_width; dim_t target_height; dim_t target_width; const std::vector<dim_t> expected_shape; const std::vector<float> expected_data; }; class CropToBoundingBoxTest : public testing::TestWithParam<CropToBoundingBoxTestParams> {}; TEST_P(CropToBoundingBoxTest, FloatPixelType) { const CropToBoundingBoxTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef offset_height(etype_t::i32); offset_height.Resize({1}); ASSERT_EQ(offset_height.Bytes(), sizeof(int)); std::memcpy(offset_height.Data(), &params.offset_height, offset_height.Bytes()); OwningVectorRef offset_width(etype_t::i32); offset_width.Resize({1}); ASSERT_EQ(offset_width.Bytes(), sizeof(int)); std::memcpy(offset_width.Data(), &params.offset_width, offset_width.Bytes()); OwningVectorRef target_height(etype_t::i32); target_height.Resize({1}); ASSERT_EQ(target_height.Bytes(), sizeof(int)); std::memcpy(target_height.Data(), &params.target_height, target_height.Bytes()); OwningVectorRef target_width(etype_t::i32); target_width.Resize({1}); ASSERT_EQ(target_width.Bytes(), sizeof(int)); std::memcpy(target_width.Data(), &params.target_width, target_width.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* crop_to_bounding_box = Impl_CropToBoundingBox(); crop_to_bounding_box->process( {&img, &offset_height, &offset_width, &target_height, &target_width}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); EXPECT_THAT(absl::MakeSpan(out_data, output.NumElements()), ElementsAreArray(params.expected_data)); } INSTANTIATE_TEST_SUITE_P( CropTests, CropToBoundingBoxTest, testing::ValuesIn({ CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0, 0, 2, 2, {1, 2, 2, 1}, {0, 1, 5, 6}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 3, 3, 2, 2, {1, 2, 2, 1}, {18, 19, 23, 24}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0, 3, 2, 2, {1, 2, 2, 1}, {3, 4, 8, 9}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 2, 1, 3, 3, {1, 3, 3, 1}, {11, 12, 13, 16, 17, 18, 21, 22, 23}}, CropToBoundingBoxTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 0, 0, 3, 3, {1, 3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8}}, CropToBoundingBoxTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 1, 1, 1, 1, {1, 1, 1, 1}, {4}}, CropToBoundingBoxTestParams{{1, 5, 5, 3}, GetIotaVec(1, 5, 5, 3), 2, 2, 2, 2, {1, 2, 2, 3}, {36, 37, 38, 39, 40, 41, 51, 52, 53, 54, 55, 56}}, CropToBoundingBoxTestParams{{2, 5, 5, 2}, GetIotaVec(2, 5, 5, 2), 2, 2, 2, 2, {2, 2, 2, 2}, {24, 25, 26, 27, 34, 35, 36, 37, 74, 75, 76, 77, 84, 85, 86, 87}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/crop.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/crop_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7bc6ad5c-bb5f-48df-87f8-8becd1d89c17
cpp
tensorflow/tensorflow
per_image_standardization
tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.cc
tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cmath> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace per_image_standardization { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline void PerImageStandardization(dim_t batches, dim_t height, dim_t width, dim_t num_channels, const float* input_data, float* output_data) { const dim_t num_pixels_per_image = height * width * num_channels; const float inv_num_pixels_per_image = 1.0f / num_pixels_per_image; for (ind_t b = 0; b < batches; ++b) { const dim_t offset = b * num_pixels_per_image; const float* input_ptr = input_data + offset; float* output_ptr = output_data + offset; float mean = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { mean += input_ptr[i]; } mean *= inv_num_pixels_per_image; float variance = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { const float diff = input_ptr[i] - mean; variance += diff * diff * inv_num_pixels_per_image; output_ptr[i] = diff; } const float inv_adjusted_stddev = fmin(num_pixels_per_image, 1.0f / sqrt(variance)); for (ind_t i = 0; i < num_pixels_per_image; ++i) { output_ptr[i] *= inv_adjusted_stddev; } } } void ComputePerImageStandardization(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t img_num_channels = img->Dims()[3]; MutableDataRef* output = outputs[0]; output->Resize({img_num_batches, img_height, img_width, img_num_channels}); float* output_data = reinterpret_cast<float*>(output->Data()); PerImageStandardization(img_num_batches, img_height, img_width, img_num_channels, img_data, output_data); } } const Algo* Impl_PerImageStandardization() { static const Algo per_image_standardization = { &ComputePerImageStandardization, nullptr}; return &per_image_standardization; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace per_image_standardization { namespace { struct PerImageStandardizationTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; }; class PerImageStandardizationTest : public testing::TestWithParam<PerImageStandardizationTestParams> {}; TEST_P(PerImageStandardizationTest, FloatPixelType) { const PerImageStandardizationTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* per_image_standardization = Impl_PerImageStandardization(); per_image_standardization->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), img.Dims()); constexpr float kAbsError = 0.01f; float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( PerImageStandardizationTests, PerImageStandardizationTest, testing::ValuesIn({ PerImageStandardizationTestParams{ {1, 2, 2, 1}, {1, 2, 3, 4}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407}}, PerImageStandardizationTestParams{ {2, 2, 2, 1}, {1, 2, 3, 4, 1, 2, 4, 8}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407, -1.0257553, -0.65275335, 0.09325048, 1.5852581}}, PerImageStandardizationTestParams{ {2, 2, 2, 2}, {1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 2, 2, 3, 2, 4, 2}, {-0.8451542, -0.16903085, -0.8451542, 0.50709254, -0.8451542, 1.1832159, -0.8451542, 1.8593392, -1.5075567, -0.30151135, -0.30151135, -0.30151135, 0.904534, -0.30151135, 2.1105793, -0.30151135}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
517e8f1b-746b-423f-b004-526620287e60
cpp
tensorflow/tensorflow
rgb_to_yuv
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.cc
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/image_utils.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rgb_to_yuv { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; constexpr float kRgb2YuvKernel[] = {0.299f, 0.587f, 0.114f, -0.14714119f, -0.28886916f, 0.43601035f, 0.61497538f, -0.51496512f, -0.10001026f}; constexpr int kRgb2YuvKernelSize = sizeof(kRgb2YuvKernel) / sizeof(kRgb2YuvKernel[0]); void ComputeRgbToYuv(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* input_data = reinterpret_cast<const float*>(img->Data()); const dim_t batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t channels = img->Dims()[3]; TFLITE_DCHECK(channels == 3); MutableDataRef* output = outputs[0]; output->Resize({batches, height, width, channels}); float* output_data = reinterpret_cast<float*>(output->Data()); ConvertColorSpace(batches, height, width, input_data, output_data, &kRgb2YuvKernel[0], kRgb2YuvKernelSize); } } const Algo* Impl_RgbToYuv() { static const Algo rgb_to_yuv = {&ComputeRgbToYuv, nullptr}; return &rgb_to_yuv; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rgb_to_yuv { namespace { struct Rgb2YuvTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class Rgb2YuvTest : public ::testing::TestWithParam<Rgb2YuvTestParams> {}; TEST_P(Rgb2YuvTest, FloatPixelType) { constexpr float kAbsError = 0.1f; const Rgb2YuvTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rgb_to_yuv = Impl_RgbToYuv(); rgb_to_yuv->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( Rgb2YuvTests, Rgb2YuvTest, testing::ValuesIn({ Rgb2YuvTestParams{{1, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, { 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, }, {1, 3, 2, 3}}, Rgb2YuvTestParams{{2, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232, 11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f}, {2, 3, 2, 3}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3b452d23-eecd-4019-aa11-415a1c1afaff
cpp
tensorflow/tensorflow
yuv_to_rgb
tensorflow/lite/experimental/ml_adjacent/algo/yuv_to_rgb.cc
tensorflow/lite/experimental/ml_adjacent/algo/yuv_to_rgb_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/image_utils.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace yuv_to_rgb { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; constexpr float kYuv2RgbKernel[] = {1.0f, 0.0f, 1.13988303f, 1.0f, -0.394642334f, -0.58062185f, 1.0f, 2.03206185f, 0.0f}; constexpr int kYuv2RgbKernelDim = sizeof(kYuv2RgbKernel) / sizeof(kYuv2RgbKernel[0]); void ComputeYuvToRgb(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* input_data = reinterpret_cast<const float*>(img->Data()); const dim_t batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t channels = img->Dims()[3]; MutableDataRef* output = outputs[0]; output->Resize({batches, height, width, channels}); float* output_data = reinterpret_cast<float*>(output->Data()); ConvertColorSpace(batches, height, width, input_data, output_data, &kYuv2RgbKernel[0], kYuv2RgbKernelDim); } } const Algo* Impl_YuvToRgb() { static const Algo yuv_to_rgb = {&ComputeYuvToRgb, nullptr}; return &yuv_to_rgb; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/yuv_to_rgb.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace yuv_to_rgb { namespace { struct YuvToRgbTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class YuvToRgbTest : public ::testing::TestWithParam<YuvToRgbTestParams> {}; TEST_P(YuvToRgbTest, FloatPixelType) { constexpr float kAbsError = 0.1f; const YuvToRgbTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* yuv_to_rgb = Impl_YuvToRgb(); yuv_to_rgb->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( YuvToRgbTests, YuvToRgbTest, testing::ValuesIn({ YuvToRgbTestParams{{1, 3, 2, 3}, { 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, }, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {1, 3, 2, 3}}, YuvToRgbTestParams{{2, 3, 2, 3}, {92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232, 11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {2, 3, 2, 3}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/yuv_to_rgb.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/yuv_to_rgb_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
84951f39-a11a-4836-802f-02491812829a
cpp
tensorflow/tensorflow
rgb_to_grayscale
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.cc
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rgb_to_grayscale { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline void ConvertRgbToGrayscale(dim_t batches, dim_t height, dim_t width, const float* input_data, float* output_data) { const dim_t output_num_pixels = batches * width * height; constexpr float kRgb2GrayscaleKernel[] = {0.2989f, 0.5870f, 0.1140f}; const float* src_ptr = input_data; float* dst_ptr = output_data; for (int i = 0; i < output_num_pixels; ++i) { *dst_ptr = kRgb2GrayscaleKernel[0] * src_ptr[0] + kRgb2GrayscaleKernel[1] * src_ptr[1] + kRgb2GrayscaleKernel[2] * src_ptr[2]; src_ptr += 3; dst_ptr++; } } void ComputeRgbToGrayscale(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t channels = img->Dims()[3]; TFLITE_DCHECK(channels == 3); MutableDataRef* output = outputs[0]; output->Resize({img_num_batches, img_height, img_width, 1}); float* output_data = reinterpret_cast<float*>(output->Data()); ConvertRgbToGrayscale(img_num_batches, img_height, img_width, img_data, output_data); } } const Algo* Impl_RgbToGrayscale() { static const Algo rgb_to_grayscale = {&ComputeRgbToGrayscale, nullptr}; return &rgb_to_grayscale; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rgb_to_grayscale { namespace { struct RgbToGrayscaleTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class RgbToGrayscaleTest : public ::testing::TestWithParam<RgbToGrayscaleTestParams> {}; TEST_P(RgbToGrayscaleTest, FloatPixelType) { const RgbToGrayscaleTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rgb_to_grayscale = Impl_RgbToGrayscale(); rgb_to_grayscale->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); constexpr float kAbsError = 0.1f; const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( RgbToGrayscaleTests, RgbToGrayscaleTest, testing::ValuesIn({ RgbToGrayscaleTestParams{{1, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {92.5f, 93.5f, 102.5f, 103.5f, 112.5f, 113.5f}, {1, 3, 2, 1}}, RgbToGrayscaleTestParams{{2, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232, 51, 311, 411, 52, 312, 412, 61, 321, 421, 62, 322, 422, 71, 331, 431, 72, 332, 432}, {92.5f, 93.5f, 102.5f, 103.5f, 112.5f, 113.5f, 244.7f, 245.7f, 254.7f, 255.7f, 264.7f, 265.7f}, {2, 3, 2, 1}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
20ab480d-f2a4-4968-9625-c3ddbf78e082
cpp
tensorflow/tensorflow
flip_up_down
tensorflow/lite/experimental/ml_adjacent/algo/flip_up_down.cc
tensorflow/lite/experimental/ml_adjacent/algo/flip_up_down_test.cc
#include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace flip_up_down { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; using ::ml_adj::data::TypeWidth; void FlipUpDown(dim_t batches, dim_t input_height, dim_t input_width, const char* input_data, char* output_data, dim_t chunk_size) { const dim_t row_stride = input_width * chunk_size; const dim_t batch_stride = row_stride * input_height; for (int b = 0; b < batches; ++b) { const char* src_data_prt = input_data + b * batch_stride; char* dst_data_prt = output_data + b * batch_stride; for (int y = 0; y < input_height; ++y) { const char* src_ptr_row = src_data_prt + (input_height - y - 1) * row_stride; char* dst_ptr_row = dst_data_prt + y * row_stride; std::memcpy(dst_ptr_row, src_ptr_row, row_stride); } } } void ComputeFlipUpDown(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const char* img_data = reinterpret_cast<const char*>(img->Data()); const dim_t num_batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t num_channels = img->Dims()[3]; const dim_t chunk_size = TypeWidth(img->Type()) * num_channels; MutableDataRef* output = outputs[0]; output->Resize({num_batches, height, width, num_channels}); char* output_data = reinterpret_cast<char*>(output->Data()); FlipUpDown(num_batches, height, width, img_data, output_data, chunk_size); } } const Algo* Impl_FlipUpDown() { static const Algo flip_up_down = {&ComputeFlipUpDown, nullptr}; return &flip_up_down; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/flip_up_down.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace flip_up_down { namespace { struct FlipUpDownTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class FlipUpDownTest : public ::testing::TestWithParam<FlipUpDownTestParams> {}; TEST_P(FlipUpDownTest, FloatPixelType) { constexpr float kAbsError = 0.01f; const FlipUpDownTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* flip_up_down = Impl_FlipUpDown(); flip_up_down->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( FlipUpDownTests, FlipUpDownTest, testing::ValuesIn({ FlipUpDownTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, {31, 32, 33, 21, 22, 23, 11, 12, 13}, {1, 3, 3, 1}}, FlipUpDownTestParams{{1, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6}, {31, 4, 32, 5, 33, 6, 21, 3, 22, 4, 23, 5, 11, 2, 12, 3, 13, 4}, {1, 3, 3, 2}}, FlipUpDownTestParams{{2, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6, 13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4}, {31, 4, 32, 5, 33, 6, 21, 3, 22, 4, 23, 5, 11, 2, 12, 3, 13, 4, 33, 6, 32, 5, 31, 4, 23, 5, 22, 4, 21, 3, 13, 4, 12, 3, 11, 2}, {2, 3, 3, 2}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_up_down.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_up_down_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8027a9a8-1fb7-4aea-ae54-cfe1d96f544a
cpp
tensorflow/tensorflow
owning_vector_ref
tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.cc
tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include <cstddef> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace data { void OwningVectorRef::Resize(dims_t&& dims) { dims_ = dims; num_elements_ = 0; for (dim_t d : dims_) { if (d <= 0) { break; } if (num_elements_ == 0) { num_elements_ = d; } else { num_elements_ *= d; } } raw_data_buffer_.resize(num_elements_ * TypeWidth(Type())); } const void* OwningVectorRef::Data() const { return raw_data_buffer_.data(); } void* OwningVectorRef::Data() { return raw_data_buffer_.data(); } ind_t OwningVectorRef::NumElements() const { return num_elements_; } size_t OwningVectorRef::Bytes() const { return NumElements() * TypeWidth(Type()); } } }
#include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include <algorithm> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::IsEmpty; TEST(OwningVectorRefTest, ConstructFloat32) { OwningVectorRef t(etype_t::f32); EXPECT_EQ(t.Type(), etype_t::f32); EXPECT_EQ(t.NumElements(), 0); EXPECT_EQ(t.Bytes(), 0); EXPECT_THAT(t.Dims(), IsEmpty()); } TEST(OwningVectorRefTest, ResizeFromEmptyFloat32) { OwningVectorRef t(etype_t::f32); t.Resize({2, 2}); EXPECT_THAT(t.Dims(), ElementsAreArray<dim_t>({2, 2})); EXPECT_EQ(t.NumElements(), 4); ASSERT_EQ(t.Bytes(), 4 * sizeof(float)); float* write_f_start = reinterpret_cast<float*>(t.Data()); float* write_f_end = write_f_start + t.NumElements(); std::fill(write_f_start, write_f_end, 0.5f); const float* read_f_start = reinterpret_cast<const float*>(t.Data()); for (int i = 0; i < t.NumElements(); ++i) { EXPECT_EQ(read_f_start[i], 0.5f); } } TEST(OwningVectorRefTest, ResizeDownFloat32) { OwningVectorRef t(etype_t::f32); t.Resize({2, 2}); float* write_f_start = reinterpret_cast<float*>(t.Data()); float* write_f_end = write_f_start + t.NumElements(); std::fill(write_f_start, write_f_end, 0.5f); t.Resize({3}); ASSERT_THAT(t.Dims(), ElementsAreArray<dim_t>({3})); EXPECT_EQ(t.NumElements(), 3); ASSERT_EQ(t.Bytes(), 3 * sizeof(float)); const float* read_f_start = reinterpret_cast<const float*>(t.Data()); for (int i = 0; i < t.NumElements(); ++i) { EXPECT_EQ(read_f_start[i], 0.5f); } } TEST(OwningVectorRefTest, IgnoresDimsForNumElementsAfterFirstNonPositive) { OwningVectorRef t(etype_t::f32); t.Resize({3, 0, 0, 2}); EXPECT_EQ(t.Type(), etype_t::f32); EXPECT_EQ(t.NumElements(), 3); EXPECT_EQ(t.Bytes(), 3 * sizeof(float)); EXPECT_THAT(t.Dims(), ElementsAreArray<dim_t>({3, 0, 0, 2})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d694b9e1-5657-4324-bf6e-f7b39fa399c0
cpp
tensorflow/tensorflow
quantized_tensor_element_type
tensorflow/lite/experimental/shlo/quantized_tensor_element_type.cc
tensorflow/lite/experimental/shlo/quantized_tensor_element_type_test.cc
#include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include <sstream> #include <string> #include <type_traits> #include <variant> #include "tensorflow/lite/experimental/shlo/data_type.h" namespace shlo_ref { std::string ToString(const QuantizedElementTypePerTensor& t) { std::stringstream sstr; sstr << "QuantizedPerTensor[" << ToString(t.StorageType()) << ", " << ToString(t.ExpressedType()) << "]"; return sstr.str(); } std::string ToString(const QuantizedElementTypePerAxis& t) { std::stringstream sstr; sstr << "QuantizedPerAxis[" << ToString(t.StorageType()) << ", " << ToString(t.ExpressedType()) << ", " << t.QuantizedDimension() << "]"; return sstr.str(); } QuantizedElementTypePerTensor BaselineType( const QuantizedElementTypePerTensor& type) { QuantizedElementTypePerTensor baseline = type; std::visit( [](auto& scale) -> void { scale = std::remove_reference_t<decltype(scale)>(1); }, baseline.Scale()); std::visit( [](auto& zero_point) -> void { zero_point = std::remove_reference_t<decltype(zero_point)>(0); }, baseline.ZeroPoint()); return baseline; } QuantizedElementTypePerAxis BaselineType( const QuantizedElementTypePerAxis& type) { QuantizedElementTypePerAxis baseline = type; std::visit( [](auto& scales) -> void { using T = std::remove_reference_t<decltype(scales[0])>; absl::c_fill(scales, static_cast<T>(1)); }, baseline.Scales()); std::visit( [](auto& zero_points) -> void { using T = std::remove_reference_t<decltype(zero_points[0])>; absl::c_fill(zero_points, static_cast<T>(0)); }, baseline.ZeroPoints()); return baseline; } }
#include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include <array> #include <cstdint> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" namespace shlo_ref { namespace { using testing::Each; using testing::ElementsAreArray; using testing::FloatEq; using testing::Pointwise; TEST(Quantization, IsValidQuantizationTypePairWorks) { EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI32)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kBF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI32)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kBF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kF32)); } struct QuantizationPair { DataType storage_type; DataType expressed_type; }; std::vector<QuantizationPair> ValidQuantizationTypePairs() { return {QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kBF16}, QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kF16}, QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kF32}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kBF16}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kF16}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kF32}, QuantizationPair{.storage_type = DataType::kSI16, .expressed_type = DataType::kF32}}; } struct PerTensorTest : testing::TestWithParam<QuantizationPair> { static constexpr auto ExtractValueAsInt = [](auto v) { return static_cast<int32_t>(v); }; static constexpr auto ExtractValueAsFloat = [](auto v) { return static_cast<float>(v); }; }; TEST_P(PerTensorTest, BuildPerTensorWorks) { const QuantizationPair& config = GetParam(); QuantizedElementTypePerTensor type(config.storage_type, 1, config.expressed_type, 2.5); EXPECT_EQ(type.StorageType(), config.storage_type); EXPECT_EQ(type.ExpressedType(), config.expressed_type); EXPECT_EQ(std::visit(ExtractValueAsInt, type.ZeroPoint()), 1); EXPECT_THAT(std::visit(ExtractValueAsFloat, type.Scale()), FloatEq(2.5)); } TEST_P(PerTensorTest, BaselineTypeWorks) { float scale = 0.5f; int32_t zero_point = 3; const QuantizationPair& config = GetParam(); QuantizedElementTypePerTensor element(config.storage_type, zero_point, config.expressed_type, scale); const auto baseline = BaselineType(element); EXPECT_EQ(baseline.StorageType(), element.StorageType()); EXPECT_EQ(baseline.ExpressedType(), element.ExpressedType()); EXPECT_EQ(std::visit(ExtractValueAsInt, baseline.ZeroPoint()), 0); EXPECT_THAT(std::visit(ExtractValueAsFloat, baseline.Scale()), FloatEq(1)); } INSTANTIATE_TEST_SUITE_P(PerTensor, PerTensorTest, testing::ValuesIn(ValidQuantizationTypePairs())); struct PerAxisTest : testing::TestWithParam<QuantizationPair> { static constexpr auto ExtractValueAsInt = [](auto v) { return std::vector<int32_t>(v.begin(), v.end()); }; static constexpr auto ExtractValueAsFloat = [](auto v) { return std::vector<float>(v.begin(), v.end()); }; }; TEST_P(PerAxisTest, BuildPerAxisWorks) { const QuantizationPair& config = GetParam(); const std::vector<int32_t> ref_zero_points{1, 2, 3}; const std::vector<float> ref_scales{1.5, 2.5, 3.5}; QuantizedElementTypePerAxis type(config.storage_type, ref_zero_points, config.expressed_type, ref_scales, 1); EXPECT_EQ(type.StorageType(), config.storage_type); EXPECT_EQ(type.ExpressedType(), config.expressed_type); EXPECT_THAT(std::visit(ExtractValueAsInt, type.ZeroPoints()), ElementsAreArray(ref_zero_points)); EXPECT_THAT(std::visit(ExtractValueAsFloat, type.Scales()), Pointwise(FloatEq(), ref_scales)); } TEST_P(PerAxisTest, BaselineTypeWorks) { const QuantizationPair& config = GetParam(); float scales[3] = {0.5f, 0.6f, 0.2f}; int32_t zero_points[3] = {3, 1, 2}; const QuantizedElementTypePerAxis element(config.storage_type, scales, config.expressed_type, zero_points, 3u); const auto baseline = BaselineType(element); const auto extracted_zero_points = std::visit(ExtractValueAsInt, baseline.ZeroPoints()); const auto extracted_scales = std::visit(ExtractValueAsFloat, baseline.Scales()); EXPECT_EQ(baseline.StorageType(), element.StorageType()); EXPECT_EQ(baseline.ExpressedType(), element.ExpressedType()); EXPECT_EQ(baseline.QuantizedDimension(), element.QuantizedDimension()); EXPECT_THAT(extracted_zero_points, Each(0)); EXPECT_THAT(extracted_zero_points.size(), std::size(zero_points)); EXPECT_THAT(extracted_scales, Each(FloatEq(1.0f))); EXPECT_THAT(extracted_scales.size(), std::size(scales)); } INSTANTIATE_TEST_SUITE_P(PerAxis, PerAxisTest, testing::ValuesIn(ValidQuantizationTypePairs())); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/quantized_tensor_element_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/quantized_tensor_element_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c512995-bf4a-4627-b748-73069394ca01
cpp
tensorflow/tensorflow
elementwise_unary
tensorflow/lite/experimental/shlo/legacy/src/elementwise_unary.cc
tensorflow/lite/experimental/shlo/legacy/test/elementwise_unary_test.cc
#include <bit> #include <cmath> #include <cstddef> #include <cstdint> #include <type_traits> #include <version> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/bf16.h" #include "tensorflow/lite/experimental/shlo/legacy/src/f16.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { template <typename Value> absl::Status CheckParameters(const Value& operand, Value& result) { if (operand.baseline_type() != result.baseline_type()) { return absl::InvalidArgumentError( "Constraint violation: baseline_type(operand) = baseline_type(result)"); } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (!(operand.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError("Expected per-tensor quantization"); } } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value, typename Op> absl::Status ElementwiseUnaryOp(const Value& operand, Value& result, Op&& op) { if (auto check = CheckParameters(operand, result); !check.ok()) { return check; } using S = Storage<storage_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); size_t n = operand.num_elements(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != operand.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } for (size_t i = 0; i < n; ++i) { auto x = S::Get(operand_buffer, i); auto y = op(x); S::Set(result_buffer, i, y); } } else { static_assert(std::is_same_v<Value, QuantizedTensor>); if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); using ET = typename Storage<expressed_type>::Type; ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); for (size_t i = 0; i < n; ++i) { auto operand_storage = S::Get(operand_buffer, i); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( operand_storage, operand_quant_param, result_scale_inv, result_quant_param.zero_point, op); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } #define DEFINE_ELEMENTWISE_UNARY_OP(name, element_type, expression) \ absl::Status name(const Tensor& operand, Tensor& result) { \ return ElementwiseUnaryOp<element_type, element_type>( \ operand, result, [](auto x) { return expression; }); \ } #define DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name, storage_type, \ expressed_type, expression) \ absl::Status name(const QuantizedTensor& operand, QuantizedTensor& result) { \ return ElementwiseUnaryOp<storage_type, expressed_type>( \ operand, result, [](auto x) { return expression; }); \ } #define DEFINE_ELEMENTWISE_UNARY_OP_BOOL(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_i1, ElementType::kI1, expression); #define DEFINE_ELEMENTWISE_UNARY_OP_INT(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si8, ElementType::kSI8, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si16, ElementType::kSI16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si32, ElementType::kSI32, expression); #define DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_bf16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_f16, ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_f32, ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_bf16, ElementType::kSI8, \ ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_f16, ElementType::kSI8, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_f32, ElementType::kSI8, \ ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP( \ name##_q_si16_bf16, ElementType::kSI16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si16_f16, ElementType::kSI16, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si16_f32, ElementType::kSI16, \ ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP( \ name##_q_si32_bf16, ElementType::kSI32, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si32_f16, ElementType::kSI32, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si32_f32, ElementType::kSI32, \ ElementType::kF32, expression); #define CALL_UNARY_OP_BOOL_HELPER(name, operand, result) \ case ElementType::kI1: \ return name##_i1(operand, result); #define CALL_UNARY_OP_INT_HELPER(name, operand, result) \ case ElementType::kSI8: \ return name##_si8(operand, result); \ case ElementType::kSI16: \ return name##_si16(operand, result); \ case ElementType::kSI32: \ return name##_si32(operand, result); #define CALL_UNARY_OP_FLOAT_HELPER(name, operand, result) \ case ElementType::kBF16: \ return name##_bf16(operand, result); \ case ElementType::kF16: \ return name##_f16(operand, result); \ case ElementType::kF32: \ return name##_f32(operand, result); #define CALL_UNARY_OP_BOOL_INT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_BOOL_HELPER(name, operand, result); \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_INT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_INT_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_BOOL_INT_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_BOOL_HELPER(name, operand, result); \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_QUANTIZED_OP(name, operand, result) \ { \ auto storage_type = operand.storage_type(); \ auto expressed_type = operand.expressed_type(); \ switch (storage_type) { \ case ElementType::kSI8: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si8_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si8_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si8_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI16: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si16_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si16_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si16_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI32: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si32_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si32_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si32_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ default: \ return absl::InvalidArgumentError("Unexpected storage type"); \ } \ } } namespace { DEFINE_ELEMENTWISE_UNARY_OP_INT(Abs, ((x > 0) ? x : -x)); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Abs, ((x > 0) ? x : -x)); } absl::Status Abs(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Abs, operand, result); } absl::Status Abs(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Abs, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Cbrt, std::cbrt(static_cast<float>(x))); } absl::Status Cbrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Cbrt, operand, result); } absl::Status Cbrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Cbrt, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Ceil, std::ceil(static_cast<float>(x))); } absl::Status Ceil(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Ceil, operand, result); } absl::Status Ceil(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Ceil, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Cosine, std::cos(static_cast<float>(x))); } absl::Status Cosine(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Cosine, operand, result); } absl::Status Cosine(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Cosine, operand, result); } namespace { template <typename Int> inline Int CountLeadingZeros(Int x) { using UInt = typename std::make_unsigned<Int>::type; #if __cpp_lib_bitops >= 201907L return std::countl_zero(static_cast<UInt>(x)); #else if (!x) { return 8 * sizeof(x); } Int result = 0; auto mask = UInt(1) << (8 * (sizeof(x) - 1) + 7); for (auto t = static_cast<UInt>(x); t > 0; t <<= 1) { if (t & mask) break; result++; } return result; #endif } DEFINE_ELEMENTWISE_UNARY_OP_INT(CountLeadingZeros, CountLeadingZeros(x)); } absl::Status CountLeadingZeros(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT(CountLeadingZeros, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Exponential, std::exp(static_cast<float>(x))); } absl::Status Exponential(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Exponential, operand, result); } absl::Status Exponential(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Exponential, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(ExponentialMinusOne, std::expm1(static_cast<float>(x))); } absl::Status ExponentialMinusOne(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(ExponentialMinusOne, operand, result); } absl::Status ExponentialMinusOne(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(ExponentialMinusOne, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Floor, std::floor(static_cast<float>(x))); } absl::Status Floor(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Floor, operand, result); } absl::Status Floor(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Floor, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Log, std::log(static_cast<float>(x))); } absl::Status Log(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Log, operand, result); } absl::Status Log(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Log, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(LogPlusOne, std::log1p(static_cast<float>(x))); } absl::Status LogPlusOne(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(LogPlusOne, operand, result); } absl::Status LogPlusOne(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(LogPlusOne, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Logistic, 1.0f / (1.0f + std::exp(static_cast<float>(-x)))); } absl::Status Logistic(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Logistic, operand, result); } absl::Status Logistic(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Logistic, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_INT(Negate, -x); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Negate, -x); } absl::Status Negate(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Negate, operand, result); } absl::Status Negate(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Negate, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_BOOL(Not, !x); DEFINE_ELEMENTWISE_UNARY_OP_INT(Not, ~x); } absl::Status Not(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_BOOL_INT(Not, operand, result); } namespace { template <typename Int> Int Popcount(Int x) { #if __cpp_lib_bitops >= 201907L return std::popcount(static_cast<uint32_t>(x)); #else using UInt = typename std::make_unsigned<Int>::type; Int result = 0; UInt mask = 0x1; for (auto t = static_cast<UInt>(x); t > 0; t >>= 1) { result += (t & mask); } return result; #endif } DEFINE_ELEMENTWISE_UNARY_OP_INT(Popcnt, Popcount(x)); } absl::Status Popcnt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT(Popcnt, operand, result); } namespace { template <typename Float> inline Float RoundNearestAfz(Float x) { return std::round(static_cast<float>(x)); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(RoundNearestAfz, RoundNearestAfz(x)); } absl::Status RoundNearestAfz(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(RoundNearestAfz, operand, result); } absl::Status RoundNearestAfz(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(RoundNearestAfz, operand, result); } namespace { template <typename Float> inline Float RoundNearestEven(Float x) { return x - static_cast<Float>(std::remainder(static_cast<float>(x), 1.0f)); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(RoundNearestEven, RoundNearestEven(x)); } absl::Status RoundNearestEven(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(RoundNearestEven, operand, result); } absl::Status RoundNearestEven(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(RoundNearestEven, operand, result); } namespace { template <typename Float> inline Float Rsqrt(Float x) { return Float{1} / static_cast<Float>(std::sqrt(static_cast<float>(x))); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Rsqrt, Rsqrt(x)); } absl::Status Rsqrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Rsqrt, operand, result); } absl::Status Rsqrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Rsqrt, operand, result); } namespace { template <typename Number> inline Number Sign(Number x) { if constexpr (std::is_integral<Number>::value) { return x < 0 ? -1 : (x > 0 ? 1 : 0); } else { static_assert(std::is_floating_point<Number>::value || std::is_same_v<Number, BF16> || std::is_same_v<Number, F16>); if (std::isnan(x)) { return NAN; } return (x < 0 ? -1 : (x > 0 ? 1 : 0)); } } DEFINE_ELEMENTWISE_UNARY_OP_INT(Sign, Sign(x)); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sign, Sign(x)); } absl::Status Sign(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Sign, operand, result); } absl::Status Sign(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sign, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sine, std::sin(static_cast<float>(x))); } absl::Status Sine(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Sine, operand, result); } absl::Status Sine(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sine, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sqrt, std::sqrt(static_cast<float>(x))); } absl::Status Sqrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Sqrt, operand, result); } absl::Status Sqrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sqrt, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Tanh, std::tanh(static_cast<float>(x))); } absl::Status Tanh(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Tanh, operand, result); } absl::Status Tanh(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Tanh, operand, result); } }
#include <cmath> #include <cstdint> #include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/matchers.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(absl::Status (*op)(const Tensor&, Tensor&), std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<element_type>::Type>&& input_values, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor input(TensorType(Shape(shape), element_type), std::data(input_values)); Tensor expected(TensorType(Shape(shape), element_type), std::data(expected_values)); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(op(input, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input: " << input; } template <ElementType storage_type, ElementType expressed_type> void test( absl::Status (*op)(const QuantizedTensor&, QuantizedTensor&), std::initializer_list<DimensionSize>&& shape, QuantizedParameter&& quantized_parameter, std::vector<typename Storage<expressed_type>::Type>&& input_values, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto input_quant_values = QuantizeVector<storage_type, expressed_type>( input_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor input( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), input_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(op(input, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input: " << input; } TEST(ElementwiseUnary, Abs) { test<ElementType::kSI8>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI32>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kBF16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kF16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kF32>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); } TEST(ElementwiseBinary, AbsQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Abs, {5}, {.scale = 1, .zero_point = 0}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF16>( Abs, {5}, {.scale = 1e-1, .zero_point = 1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF32>( Abs, {5}, {.scale = 1e-1, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI16, ElementType::kF32>( Abs, {5}, {.scale = 1e-3, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); } TEST(ElementwiseUnary, Cbrt) { test<ElementType::kBF16>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kF16>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kF32>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); } TEST(ElementwiseUnary, CbrtQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI8, ElementType::kF16>( Cbrt, {4}, {.scale = 1e-1, .zero_point = -2}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI8, ElementType::kF32>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI16, ElementType::kF32>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); } TEST(ElementwiseUnary, Ceil) { test<ElementType::kBF16>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kF16>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kF32>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); } TEST(ElementwiseUnary, CeilQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Ceil, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI8, ElementType::kF16>( Ceil, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI8, ElementType::kF32>( Ceil, {4}, {.scale = 1e-1, .zero_point = -4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI16, ElementType::kF32>( Ceil, {4}, {.scale = 1e-2, .zero_point = -4}, {0, 1.11, -2.77, 3.55}, {0, 2, -2, 4}); } TEST(ElementwiseUnary, Cosine) { test<ElementType::kBF16>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kF16>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kF32>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); } TEST(ElementwiseUnary, CosineQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI8, ElementType::kF16>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI8, ElementType::kF32>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI16, ElementType::kF32>( Cosine, {4}, {.scale = 1e-4, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); } TEST(ElementwiseUnary, CountLeadingZeros) { test<ElementType::kSI8>(CountLeadingZeros, {4}, {0, 1, 127, -1}, {8, 7, 1, 0}); test<ElementType::kSI16>(CountLeadingZeros, {4}, {0, 1, 32767, -1}, {16, 15, 1, 0}); test<ElementType::kSI32>(CountLeadingZeros, {4}, {0, 1, 2147483647, -1}, {32, 31, 1, 0}); } TEST(ElementwiseUnary, Exponential) { test<ElementType::kBF16>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kF16>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kF32>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF16>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF32>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI16, ElementType::kF32>( Exponential, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialMinusOne) { test<ElementType::kBF16>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kF16>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kF32>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialMinusOneQuantized) { test<ElementType::kSI8, ElementType::kBF16>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF16>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF32>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI16, ElementType::kF32>( ExponentialMinusOne, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); } TEST(ElementwiseUnary, Floor) { test<ElementType::kBF16>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kF16>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kF32>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); } TEST(ElementwiseUnary, FloorQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Floor, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI8, ElementType::kF16>( Floor, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI8, ElementType::kF32>( Floor, {4}, {.scale = 1e-1, .zero_point = -4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI16, ElementType::kF32>( Floor, {4}, {.scale = 1e-2, .zero_point = -4}, {0, 1.11, -2.77, 3.55}, {0, 1, -3, 3}); } TEST(ElementwiseUnary, Log) { test<ElementType::kBF16>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF16>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF32>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF16>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF32>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI16, ElementType::kF32>( Log, {4}, {.scale = 1e-3, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogPlusOne) { test<ElementType::kBF16>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF16>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF32>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogPlusOneQuantized) { test<ElementType::kSI8, ElementType::kBF16>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF16>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF32>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI16, ElementType::kF32>( LogPlusOne, {4}, {.scale = 1e-4, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, Logistic) { test<ElementType::kBF16>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kF16>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kF32>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); } TEST(ElementwiseUnary, LogisticQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI8, ElementType::kF16>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI8, ElementType::kF32>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI16, ElementType::kF32>( Logistic, {4}, {.scale = 1e-3, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); } TEST(ElementwiseUnary, Negate) { test<ElementType::kSI8>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI32>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kBF16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kF16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kF32>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); } TEST(ElementwiseBinary, NegateQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Negate, {5}, {.scale = 1, .zero_point = 0}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI8, ElementType::kF16>( Negate, {5}, {.scale = 1e-1, .zero_point = 1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI8, ElementType::kF32>( Negate, {5}, {.scale = 1e-1, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI16, ElementType::kF32>( Negate, {5}, {.scale = 1e-3, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); } TEST(ElementwiseUnary, Not) { test<ElementType::kI1>(Not, {2}, {0, 1}, {1, 0}); test<ElementType::kSI8>(Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int8_t(0xFF), int8_t(0xFE), int8_t(0xFD)}); test<ElementType::kSI16>( Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int16_t(0xFFFF), int16_t(0xFFFE), int16_t(0xFFFD)}); test<ElementType::kSI32>( Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int32_t(0xFFFFFFFFU), int32_t(0xFFFFFFFEU), int32_t(0xFFFFFFFDU)}); } TEST(ElementwiseUnary, Popcnt) { test<ElementType::kSI8>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); test<ElementType::kSI16>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); test<ElementType::kSI32>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); } TEST(ElementwiseUnary, RoundNearestAfz) { test<ElementType::kBF16>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kF16>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kF32>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); } TEST(ElementwiseBinary, RoundNearestAfzQuantized) { test<ElementType::kSI8, ElementType::kBF16>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI8, ElementType::kF16>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI8, ElementType::kF32>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI16, ElementType::kF32>( RoundNearestAfz, {5}, {.scale = 1e-2, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); } TEST(ElementwiseUnary, RoundNearestEven) { test<ElementType::kBF16>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kF16>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kF32>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); } TEST(ElementwiseBinary, RoundNearestEvenQuantized) { test<ElementType::kSI8, ElementType::kBF16>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI8, ElementType::kF16>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI8, ElementType::kF32>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI16, ElementType::kF32>( RoundNearestEven, {5}, {.scale = 1e-2, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); } TEST(ElementwiseUnary, Rsqrt) { test<ElementType::kBF16>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); test<ElementType::kF16>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); test<ElementType::kF32>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); } TEST(ElementwiseUnary, RsqrtQuantized) { test<ElementType::kSI16, ElementType::kF32>( Rsqrt, {4}, {.scale = 1e-3, .zero_point = 0}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); } TEST(ElementwiseUnary, Sign) { test<ElementType::kSI8>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kSI16>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kSI32>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kBF16>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); test<ElementType::kF16>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); test<ElementType::kF32>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); } TEST(ElementwiseUnary, SignQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI8, ElementType::kF16>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI8, ElementType::kF32>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI16, ElementType::kF32>( Sign, {4}, {.scale = 1e-2, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); } TEST(ElementwiseUnary, Sine) { test<ElementType::kBF16>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kF16>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kF32>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); } TEST(ElementwiseUnary, SineQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI8, ElementType::kF16>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI8, ElementType::kF32>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI16, ElementType::kF32>( Sine, {5}, {.scale = 1e-2, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); } TEST(ElementwiseUnary, Sqrt) { test<ElementType::kBF16>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kF16>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kF32>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); } TEST(ElementwiseUnary, SqrtQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI8, ElementType::kF16>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI8, ElementType::kF32>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI16, ElementType::kF32>( Sqrt, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); } TEST(ElementwiseUnary, Tanh) { test<ElementType::kBF16>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kF16>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kF32>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); } TEST(ElementwiseUnary, TanhQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI8, ElementType::kF16>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI8, ElementType::kF32>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI16, ElementType::kF32>( Tanh, {3}, {.scale = 1e-2, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/elementwise_unary.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/elementwise_unary_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04d01f92-5183-4ab5-b5f1-fbc14e745c81
cpp
tensorflow/tensorflow
compare
tensorflow/lite/experimental/shlo/ops/compare.cc
tensorflow/lite/experimental/shlo/ops/compare_test.cc
#include "tensorflow/lite/experimental/shlo/ops/compare.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { namespace { template <DataType storage_type, DataType expressed_type, typename F> void DequantizeCompare(F&& func, const Tensor& lhs, const Tensor& rhs, Tensor& output) { using StorageT = StorageType<storage_type>; using ExpressedT = StorageType<expressed_type>; const DimensionSize num_elements = lhs.NumElements(); const StorageT lhs_zero_point = lhs.quantized_per_tensor_element_type().ZeroPointAs<storage_type>(); const ExpressedT lhs_scale = lhs.quantized_per_tensor_element_type().ScaleAs<expressed_type>(); const StorageT rhs_zero_point = rhs.quantized_per_tensor_element_type().ZeroPointAs<storage_type>(); const ExpressedT rhs_scale = rhs.quantized_per_tensor_element_type().ScaleAs<expressed_type>(); const StorageT* lhs_data = lhs.GetDataAs<storage_type>(); const StorageT* rhs_data = rhs.GetDataAs<storage_type>(); bool* output_data = output.GetDataAs<DataType::kI1>(); for (DimensionSize i = 0; i < num_elements; ++i, ++lhs_data, ++rhs_data, ++output_data) { const ExpressedT dequantized_lhs = Dequantize(*lhs_data, lhs_zero_point, lhs_scale); const ExpressedT dequantized_rhs = Dequantize(*rhs_data, rhs_zero_point, rhs_scale); *output_data = func(dequantized_lhs, dequantized_rhs); } } } CompareOp Create(CompareOp::Attributes attributes) { return {.attributes = attributes}; } absl::Status Prepare(CompareOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("compare"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("compare"), output, IsBoolTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("compare"), lhs, rhs)); SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); return absl::OkStatus(); } absl::Status Evaluate(CompareOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { #define SHLO_REF_COMPARISON_DIRECTION_CASE(DIRECTION, COMPARISON_OP) \ case CompareOp::ComparisonDirection::DIRECTION: { \ if (IsBoolTensor(lhs) || IsIntTensor(lhs) || IsFloatTensor(lhs)) { \ DISPATCH_BOOL_INT_FLOAT(detail::EvaluateNoQuantization, \ lhs.tensor_element_type(), COMPARISON_OP, lhs, \ rhs, output); \ } else if (IsQuantizedPerTensorTensor(lhs)) { \ DISPATCH_QUANTIZED( \ DequantizeCompare, \ lhs.quantized_per_tensor_element_type().StorageType(), \ lhs.quantized_per_tensor_element_type().ExpressedType(), \ COMPARISON_OP, lhs, rhs, output) \ } \ break; \ } switch (op.attributes.comparison_direction) { SHLO_REF_COMPARISON_DIRECTION_CASE(kEq, std::equal_to<void>()); SHLO_REF_COMPARISON_DIRECTION_CASE(kNe, std::not_equal_to<void>()); SHLO_REF_COMPARISON_DIRECTION_CASE(kGe, std::greater_equal<void>()); SHLO_REF_COMPARISON_DIRECTION_CASE(kGt, std::greater<void>()); SHLO_REF_COMPARISON_DIRECTION_CASE(kLe, std::less_equal<void>()); SHLO_REF_COMPARISON_DIRECTION_CASE(kLt, std::less<void>()); } return absl::FailedPreconditionError( "stablehlo.compare: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/compare.h" #include <string> #include <tuple> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<CompareOp> { static std::string Get() { return "Compare"; } }; struct Compare { template <class T> constexpr bool operator()(const T a, const T b) const { switch (comparison_direction) { case CompareOp::ComparisonDirection::kEq: return a == b; case CompareOp::ComparisonDirection::kNe: return a != b; case CompareOp::ComparisonDirection::kGe: return a >= b; case CompareOp::ComparisonDirection::kGt: return a > b; case CompareOp::ComparisonDirection::kLe: return a <= b; case CompareOp::ComparisonDirection::kLt: return a < b; } return false; } CompareOp::ComparisonDirection comparison_direction; }; const char* ToString(CompareOp::ComparisonDirection comparison_direction) { switch (comparison_direction) { case CompareOp::ComparisonDirection::kEq: return "eq"; case CompareOp::ComparisonDirection::kNe: return "ne"; case CompareOp::ComparisonDirection::kGe: return "ge"; case CompareOp::ComparisonDirection::kGt: return "gt"; case CompareOp::ComparisonDirection::kLe: return "le"; case CompareOp::ComparisonDirection::kLt: return "lt"; } } template <> struct SupportedOpAttributes<CompareOp> { static CompareOp::Attributes Get() { return {.comparison_direction = CompareOp::ComparisonDirection::kEq}; } }; template <> struct SupportedOpOutputDataType<CompareOp> { static constexpr DataType kStorageType = DataType::kI1; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Compare, BinaryElementwiseOpShapePropagationTest, CompareOp, TestParamNames); GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST( BinaryElementwiseSameBaselineElementTypeConstraintTest); template <class Op, class SupportedTypes> using CompareBaselineConstraintTypesCrossProduct = MapTypes<OpTupleFactory<Op>::template WithOp, FilterTypes<NegatePred<SameTypes>::template Predicate, CrossProductTypes<SupportedTypes, SupportedTypes>>>; using CompareBaselineContraintTypes = CompareBaselineConstraintTypesCrossProduct< CompareOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; template <class T> class CompareSameBaselineElementTypeConstraintTest : public ::testing::Test {}; TYPED_TEST_SUITE(CompareSameBaselineElementTypeConstraintTest, CompareBaselineContraintTypes, TestParamNames); TYPED_TEST(CompareSameBaselineElementTypeConstraintTest, DifferentInputOutputStorageTypesRaiseAnError) { using Op = std::tuple_element_t<0, TypeParam>; using LhsTypeDesc = std::tuple_element_t<1, TypeParam>; using RhsTypeDesc = std::tuple_element_t<2, TypeParam>; const Shape shape({2, 3, 4}); Tensor lhs_tensor{.type = TensorTypeFor(LhsTypeDesc{}, shape), .data = nullptr}; Tensor rhs_tensor{.type = TensorTypeFor(RhsTypeDesc{}, shape), .data = nullptr}; Tensor output_tensor{.type = TensorTypeFor(TestParam<DataType::kI1>{}, shape), .data = nullptr}; auto op = Create(typename Op::Attributes{}); const absl::Status status = Prepare(op, lhs_tensor, rhs_tensor, output_tensor); EXPECT_THAT(status, shlo_ref::testing::StatusIs( absl::StatusCode::kFailedPrecondition)); EXPECT_THAT( status.message(), ::testing::ContainsRegex( "stablehlo.[_a-z]+: baseline type constraint is not satisfied")); } using UnsupportedTypes = WithOpTypes<CompareOp, ConcatTypes<PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Compare, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, ArithmeticTestTypes>; template <class T> struct CompareTest : ::testing::Test {}; TYPED_TEST_SUITE(CompareTest, SupportedTypes, TestParamNames); TYPED_TEST(CompareTest, SupportedTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; absl::BitGen bit_gen; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = DataType::kI1}, .data = output_data.data()}; const CompareOp::ComparisonDirection comparison_direction = static_cast<CompareOp::ComparisonDirection>(absl::Uniform(bit_gen, 0, 6)); Compare compare_ref{comparison_direction}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), compare_ref); auto op = Create( CompareOp::Attributes{.comparison_direction = comparison_direction}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedCompareTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedCompareTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedCompareTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; absl::BitGen bit_gen; const Shape shape({2, 2, 2}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(2); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, zero_point + 1, zero_point + 5); Vector<StorageType<DataType::kI1>> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = DataType::kI1}, .data = output_data.data()}; const CompareOp::ComparisonDirection comparison_direction = CompareOp::ComparisonDirection::kEq; Compare compare_ref{comparison_direction}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale, compare_ref](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); return compare_ref(dequantized_lhs, dequantized_rhs); }); auto op = Create( CompareOp::Attributes{.comparison_direction = comparison_direction}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)) << "lhs " << ::testing::PrintToString(lhs_data) << "\n" << "rhs " << ::testing::PrintToString(rhs_data) << "\n" << "dir " << ToString(comparison_direction) << "\n"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/compare.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/compare_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
03b95d9e-0506-4114-a488-66d1d3a06da7
cpp
tensorflow/tensorflow
iota
tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/iota.cc
tensorflow/lite/experimental/shlo/legacy/test/iota_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/iota.h" #include <cstdint> #include <tuple> #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/op_util_common.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir::odml { namespace { class LegalizeIota : public OpConversionPattern<mhlo::IotaOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::IotaOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final; }; bool IsIotaLegal(mhlo::IotaOp op) { auto e_type = llvm::cast<ShapedType>(op.getType()).getElementType(); return !(e_type.isF32() || e_type.isSignlessInteger(32) || e_type.isSignlessInteger(64)); } std::tuple<DenseElementsAttr, DenseElementsAttr, DenseElementsAttr> BuildRangeParams(Type e_type, int64_t iota_dim_size, OpBuilder& b) { if (e_type.isInteger(32)) { return std::tuple(BuildScalarDense<int>(e_type, 0), BuildScalarDense<int>(e_type, iota_dim_size), BuildScalarDense<int>(e_type, 1)); } else if (e_type.isInteger(64)) { return std::tuple(BuildScalarDense<int64_t>(e_type, 0), BuildScalarDense<int64_t>(e_type, iota_dim_size), BuildScalarDense<int64_t>(e_type, 1)); } return std::tuple(BuildScalarDense<float>(e_type, 0.0), BuildScalarDense<float>(e_type, iota_dim_size), BuildScalarDense<float>(e_type, 1.0)); } LogicalResult LegalizeIota::matchAndRewrite( mhlo::IotaOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { if (IsIotaLegal(op)) { return rewriter.notifyMatchFailure(op, "Must be i32, i64 or f32"); } auto type = llvm::cast<ShapedType>(op.getType()); auto e_type = type.getElementType(); const int64_t iota_dim_size = type.getDimSize(op.getIotaDimension()); auto [start, limit, delta] = BuildRangeParams(e_type, iota_dim_size, rewriter); auto start_op = rewriter.create<arith::ConstantOp>(op->getLoc(), start); auto limit_op = rewriter.create<arith::ConstantOp>(op->getLoc(), limit); auto delta_op = rewriter.create<arith::ConstantOp>(op->getLoc(), delta); auto range_type = RankedTensorType::get({iota_dim_size}, e_type); auto range_op = rewriter.create<TFL::RangeOp>(op->getLoc(), range_type, start_op, limit_op, delta_op); if (type.getRank() == 1) { rewriter.replaceOp(op, range_op); return success(); } llvm::SmallVector<int64_t> reshape_shape(type.getRank(), 1); reshape_shape[op.getIotaDimension()] = iota_dim_size; Value reshape_shape_cst = rewriter.create<arith::ConstantOp>( op->getLoc(), rewriter.getI64TensorAttr(reshape_shape)); reshape_shape_cst = rewriter.create<TFL::CastOp>( op->getLoc(), llvm::cast<ShapedType>(reshape_shape_cst.getType()) .clone(rewriter.getI32Type()), reshape_shape_cst); auto reshape_type = RankedTensorType::get(reshape_shape, e_type); auto reshape_op = rewriter.create<TFL::ReshapeOp>( op->getLoc(), reshape_type, range_op, reshape_shape_cst); auto broad_cast_shape_cst = rewriter.create<arith::ConstantOp>( op->getLoc(), rewriter.getI64TensorAttr(type.getShape())); rewriter.replaceOpWithNewOp<TFL::BroadcastToOp>(op, type, reshape_op, broad_cast_shape_cst); return success(); } class LegalizeDynamicIotaOp : public OpConversionPattern<mhlo::DynamicIotaOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::DynamicIotaOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final; }; bool IsDynamicIotaLegal(mhlo::DynamicIotaOp op) { auto type = llvm::cast<ShapedType>(op.getType()); auto element_type = type.getElementType(); return (!element_type.isF32() && !element_type.isSignlessInteger(32) && !element_type.isSignlessInteger(64)) || type.getRank() > 1 || op.getIotaDimension() != 0; } LogicalResult LegalizeDynamicIotaOp::matchAndRewrite( mhlo::DynamicIotaOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { if (IsDynamicIotaLegal(op)) { return failure(); } auto type = llvm::cast<ShapedType>(op.getType()); Type element_type = type.getElementType(); auto [start, unused_limit, delta] = BuildRangeParams(element_type, 0, rewriter); auto start_op = rewriter.create<arith::ConstantOp>(op.getLoc(), start); auto delta_op = rewriter.create<arith::ConstantOp>(op.getLoc(), delta); auto output_shape = op.getOperand(); if (mlir::isa<FloatType>(element_type)) { auto cast_type = mlir::cast<ShapedType>(output_shape.getType()).clone(element_type); output_shape = rewriter.create<TFL::CastOp>(op.getLoc(), cast_type, output_shape); } DenseIntElementsAttr scalar_attr = DenseIntElementsAttr::get( RankedTensorType::get({0}, rewriter.getI32Type()), llvm::ArrayRef<int32_t>({})); auto scalar_shape = rewriter.create<arith::ConstantOp>(op.getLoc(), scalar_attr); auto limit_scalar = rewriter.create<TFL::ReshapeOp>( op.getLoc(), RankedTensorType::get({}, element_type), output_shape, scalar_shape); const uint64_t dimension = op.getIotaDimension(); auto range_type = RankedTensorType::get({type.getShape()[dimension]}, element_type); rewriter.replaceOpWithNewOp<TFL::RangeOp>(op, range_type, start_op, limit_scalar, delta_op); return success(); } } void PopulateIotaPatterns(MLIRContext* ctx, RewritePatternSet& patterns, ConversionTarget& target) { patterns.add<LegalizeIota, LegalizeDynamicIotaOp>(ctx); target.addDynamicallyLegalOp<mhlo::IotaOp>(IsIotaLegal); target.addDynamicallyLegalOp<mhlo::DynamicIotaOp>(IsDynamicIotaLegal); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(std::initializer_list<DimensionSize>&& shape, DimensionSize iota_dimension, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor expected(TensorType(Shape(shape), element_type), expected_values.data()); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(Iota(iota_dimension, result)); EXPECT_EQ(result, expected) << "\niota_dimension: " << iota_dimension; } template <ElementType storage_type, ElementType expressed_type> void test( QuantizedParameter&& quantized_parameter, std::initializer_list<DimensionSize>&& shape, DimensionSize iota_dimension, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); decltype(expected_quant_values) result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(Iota(iota_dimension, result)); EXPECT_EQ(result, expected) << "\niota_dimension: " << iota_dimension; } TEST(Iota, Unquantized) { test<ElementType::kSI8>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI8>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI16>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI16>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI32>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI32>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kBF16>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kBF16>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kF16>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kF16>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kF32>( {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kF32>( {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); } TEST(Iota, Quantized) { test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI8, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI16, ElementType::kF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI16, ElementType::kF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 1e-3, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 1e-3, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI32, ElementType::kF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI32, ElementType::kF16>( {.scale = 1e-2, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 1e-3, .zero_point = 0}, {4, 5}, 0, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 1e-3, .zero_point = 0}, {4, 5}, 1, {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/iota.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/iota_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9fb23443-70bb-4a1a-b176-8ffde412eac7
cpp
tensorflow/tensorflow
clamp
tensorflow/lite/experimental/shlo/legacy/src/clamp.cc
tensorflow/lite/experimental/shlo/legacy/test/clamp_test.cc
#include <algorithm> #include <cstddef> #include <type_traits> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/dispatch.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { template <typename Value> absl::Status CheckParameters(const Value& min, const Value& operand, const Value& max, Value& result) { if (!(min.rank() == 0 or min.shape() == operand.shape())) { return absl::InvalidArgumentError( "Constraint violation: rank(min) = 0 or shape(min) = shape(operand)"); } else if (!(max.rank() == 0 or max.shape() == operand.shape())) { return absl::InvalidArgumentError( "Constraint violation: rank(max) = 0 or shape(max) = shape(operand)"); } else if (!(min.baseline_element_type() == operand.baseline_element_type() and min.baseline_element_type() == max.baseline_element_type())) { return absl::InvalidArgumentError( "Constraint violation: baseline_element_type(min) = " "baseline_element_type(operand) = baseline_element_type(max)"); } else if (!(operand.baseline_type() == result.baseline_type())) { return absl::InvalidArgumentError( "Constraint violation: baseline_type(operand) = baseline_type(result)"); } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (!(min.is_per_tensor_quantized() and max.is_per_tensor_quantized() and operand.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError("Expected per-tensor quantization"); } } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value> absl::Status Clamp(const Value& min, const Value& operand, const Value& max, Value& result) { if (auto check = CheckParameters(min, operand, max, result); !check.ok()) { return check; } using S = Storage<storage_type>; const bool min_is_tensor = (min.rank() > 0); const bool max_is_tensor = (max.rank() > 0); const size_t n = result.num_elements(); auto operand_buffer = operand.buffer(); auto min_buffer = min.buffer(); auto max_buffer = max.buffer(); auto result_buffer = result.buffer(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != result.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } typename S::Type min_value; typename S::Type max_value; for (size_t i = 0; i < n; ++i) { if (min_is_tensor || (i == 0)) { min_value = S::Get(min_buffer, i); } if (max_is_tensor || (i == 0)) { max_value = S::Get(max_buffer, i); } auto operand_value = S::Get(operand_buffer, i); auto result_value = std::min(max_value, std::max(min_value, operand_value)); S::Set(result_buffer, i, result_value); } } else { static_assert(std::is_same_v<Value, QuantizedTensor>); if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } using ET = typename Storage<expressed_type>::Type; const QuantizedParameter& min_quant_param = min.type().element_type().parameters(0); const QuantizedParameter& max_quant_param = max.type().element_type().parameters(0); const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); ET min_expressed; ET max_expressed; for (size_t i = 0; i < n; ++i) { if (min_is_tensor || (i == 0)) { auto min_storage = S::Get(min_buffer, i); min_expressed = Dequantize<storage_type, expressed_type>( min_storage, min_quant_param); } if (max_is_tensor || (i == 0)) { auto max_storage = S::Get(max_buffer, i); max_expressed = Dequantize<storage_type, expressed_type>( max_storage, max_quant_param); } auto operand_storage = S::Get(operand_buffer, i); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( operand_storage, operand_quant_param, result_scale_inv, result_quant_param.zero_point, [=](auto x) { return std::min(max_expressed, std::max(min_expressed, x)); }); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } } absl::Status Clamp(const Tensor& min, const Tensor& operand, const Tensor& max, Tensor& result) { DISPATCH_INT_FLOAT(Clamp, result.element_type(), min, operand, max, result); } absl::Status Clamp(const QuantizedTensor& min, const QuantizedTensor& operand, const QuantizedTensor& max, QuantizedTensor& result) { DISPATCH_QUANTIZED(Clamp, result.storage_type(), result.expressed_type(), min, operand, max, result); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<element_type>::Type>&& min_values, std::vector<typename Storage<element_type>::Type>&& operand_values, std::vector<typename Storage<element_type>::Type>&& max_values, std::vector<typename Storage<element_type>::Type>&& expected_values) { Shape min_shape = (min_values.size() > 1) ? Shape(shape) : Shape(); Tensor min(TensorType(std::move(min_shape), element_type), min_values.data()); Shape max_shape = (max_values.size() > 1) ? Shape(shape) : Shape(); Tensor max(TensorType(std::move(max_shape), element_type), max_values.data()); Tensor operand(TensorType(Shape(shape), element_type), operand_values.data()); Tensor expected(TensorType(Shape(shape), element_type), expected_values.data()); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(Clamp(min, operand, max, result)); EXPECT_EQ(result, expected) << "min: " << min << "\nmax: " << max << "\noperand: " << operand; } template <ElementType storage_type, ElementType expressed_type> void test( QuantizedParameter&& quantized_parameter, std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<expressed_type>::Type>&& min_values, std::vector<typename Storage<expressed_type>::Type>&& operand_values, std::vector<typename Storage<expressed_type>::Type>&& max_values, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto min_quant_values = QuantizeVector<storage_type, expressed_type>( min_values, quantized_parameter); auto operand_quant_values = QuantizeVector<storage_type, expressed_type>( operand_values, quantized_parameter); auto max_quant_values = QuantizeVector<storage_type, expressed_type>( max_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); Shape min_shape = (min_values.size() > 1) ? Shape(shape) : Shape(); QuantizedTensor min( QuantizedTensorType(std::move(min_shape), QuantizedTensorElementType(element_type)), min_quant_values.data()); Shape max_shape = (max_values.size() > 1) ? Shape(shape) : Shape(); QuantizedTensor max( QuantizedTensorType(std::move(max_shape), QuantizedTensorElementType(element_type)), max_quant_values.data()); QuantizedTensor operand( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), operand_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(Clamp(min, operand, max, result)); EXPECT_EQ(result, expected) << "min: " << min << "\nmax: " << max << "\noperand: " << operand; } TEST(Clamp, Unquantized) { test<ElementType::kSI8>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI16>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI32>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kBF16>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kF16>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kF32>({3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI8>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI16>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI32>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kBF16>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kF16>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kF32>({3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); } TEST(Clamp, Quantized) { test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI8, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI16, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI32, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {3}, {0}, {-2, 0, 2}, {1}, {0, 0, 1}); test<ElementType::kSI8, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI8, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI8, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI16, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI16, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI16, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI32, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI32, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); test<ElementType::kSI32, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {3}, {0, 1, 1}, {-3, 0, 3}, {1, 1, 2}, {0, 1, 2}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/clamp.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/clamp_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2f985559-39e3-4126-a682-992bb1d338c5
cpp
tensorflow/tensorflow
uniform_dequantize_quantize
tensorflow/lite/experimental/shlo/legacy/src/uniform_dequantize_quantize.cc
tensorflow/lite/experimental/shlo/legacy/test/uniform_dequantize_quantize_test.cc
#include <cstddef> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/dispatch.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { absl::Status CheckDequantizeParameters(const QuantizedTensor& operand, Tensor& result) { if (operand.shape() != result.shape()) { return absl::InvalidArgumentError("Inconsistent input/output shapes"); } else if (operand.expressed_type() != result.element_type()) { return absl::InvalidArgumentError("Inconsistent element types"); } else if (!operand.is_per_tensor_quantized()) { return absl::InvalidArgumentError("Unsupported input quantization"); } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type> absl::Status UniformDequantize(const QuantizedTensor& operand, Tensor& result) { if (auto check = CheckDequantizeParameters(operand, result); !check.ok()) { return check; } const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); size_t n = operand.num_elements(); using S = Storage<storage_type>; using E = Storage<expressed_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); for (size_t i = 0; i < n; ++i) { auto operand_storage = S::Get(operand_buffer, i); auto operand_expressed = Dequantize<storage_type, expressed_type>( operand_storage, operand_quant_param); auto result_expressed = operand_expressed; E::Set(result_buffer, i, result_expressed); } return absl::OkStatus(); } absl::Status CheckQuantizeParameters(const Tensor& operand, QuantizedTensor& result) { if (operand.shape() != result.shape()) { return absl::InvalidArgumentError("Inconsistent input/output shapes"); } else if (operand.element_type() != result.expressed_type()) { return absl::InvalidArgumentError("Inconsistent element types"); } else if (!result.is_per_tensor_quantized()) { return absl::InvalidArgumentError("Unsupported output quantization"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type> absl::Status UniformQuantize(const Tensor& operand, QuantizedTensor& result) { if (auto check = CheckQuantizeParameters(operand, result); !check.ok()) { return check; } const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); size_t n = operand.num_elements(); using S = Storage<storage_type>; using E = Storage<expressed_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); using ET = typename E::Type; ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); for (size_t i = 0; i < n; ++i) { auto operand_expressed = E::Get(operand_buffer, i); auto result_expressed = operand_expressed; auto result_storage = QuantizePartial<storage_type, expressed_type>( result_expressed, result_scale_inv, result_quant_param.zero_point); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } return absl::OkStatus(); } } absl::Status UniformDequantize(const QuantizedTensor& operand, Tensor& result) { DISPATCH_QUANTIZED(UniformDequantize, operand.storage_type(), operand.expressed_type(), operand, result); } absl::Status UniformQuantize(const Tensor& operand, QuantizedTensor& result) { DISPATCH_QUANTIZED(UniformQuantize, result.storage_type(), result.expressed_type(), operand, result); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/matchers.h" namespace stablehlo { namespace testing { template <ElementType storage_type, ElementType expressed_type> void test(std::initializer_list<DimensionSize>&& shape, QuantizedParameter&& quantized_parameter, std::vector<typename Storage<expressed_type>::Type>&& input_values) { Tensor input(TensorType(Shape(shape), expressed_type), input_values.data()); std::vector<typename Storage<storage_type>::Type> quant_values( input_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor quant( QuantizedTensorType(Shape(shape), std::move(element_type)), quant_values.data()); std::vector<typename Storage<expressed_type>::Type> result_values( input_values.size()); Tensor result(TensorType(Shape(shape), expressed_type), result_values.data()); ASSERT_OK(UniformQuantize(input, quant)); ASSERT_OK(UniformDequantize(quant, result)); EXPECT_THAT(result, IsAlmostSame(input)); } TEST(QuantizeDequantize, All) { test<ElementType::kSI8, ElementType::kBF16>( {4}, {.scale = 1, .zero_point = 0}, {-2, -1, 0, 1, 2}); test<ElementType::kSI8, ElementType::kBF16>( {4}, {.scale = 1, .zero_point = 0}, {-2, -1, 0, 1, 2}); test<ElementType::kSI8, ElementType::kBF16>( {4}, {.scale = 1e-1, .zero_point = -5}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI8, ElementType::kF16>({4}, {.scale = 1, .zero_point = 5}, {-2, -1, 0, 1, 2}); test<ElementType::kSI8, ElementType::kF16>( {4}, {.scale = 1e-1, .zero_point = -10}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI8, ElementType::kF32>({4}, {.scale = 1, .zero_point = 5}, {-2, -1, 0, 1, 2}); test<ElementType::kSI8, ElementType::kF32>( {4}, {.scale = 1e-1, .zero_point = +10}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI16, ElementType::kBF16>( {4}, {.scale = 1, .zero_point = 0}, {-2, -1, 0, 1, 2}); test<ElementType::kSI16, ElementType::kBF16>( {4}, {.scale = 1e-1, .zero_point = 5}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI16, ElementType::kBF16>( {4}, {.scale = 1e-2, .zero_point = -5}, {-2.22, -1.11, 0, 1.11, 2.22}); test<ElementType::kSI16, ElementType::kF16>( {4}, {.scale = 1, .zero_point = 0}, {-2, -1, 0, 1, 2}); test<ElementType::kSI16, ElementType::kF16>( {4}, {.scale = 1e-1, .zero_point = -10}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI16, ElementType::kF16>( {4}, {.scale = 1e-2, .zero_point = 10}, {-2.22, -1.11, 0, 1.11, 2.22}); test<ElementType::kSI32, ElementType::kBF16>( {4}, {.scale = 1, .zero_point = +7}, {-2, -1, 0, 1, 2}); test<ElementType::kSI32, ElementType::kBF16>( {4}, {.scale = 1e-1, .zero_point = -7}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI32, ElementType::kBF16>( {4}, {.scale = 1e-2, .zero_point = 0}, {-2.22, -1.11, 0, 1.11, 2.22}); test<ElementType::kSI32, ElementType::kBF16>( {4}, {.scale = 1e-3, .zero_point = 0}, {-2.222, -1.111, 0, 1.111, 2.222}); test<ElementType::kSI32, ElementType::kF16>( {4}, {.scale = 1, .zero_point = +7}, {-2, -1, 0, 1, 2}); test<ElementType::kSI32, ElementType::kF16>( {4}, {.scale = 1e-1, .zero_point = -7}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI32, ElementType::kF16>( {4}, {.scale = 1e-2, .zero_point = 10}, {-2.22, -1.11, 0, 1.11, 2.22}); test<ElementType::kSI32, ElementType::kF16>( {4}, {.scale = 1e-3, .zero_point = -0}, {-2.222, -1.111, 0, 1.111, 2.222}); test<ElementType::kSI32, ElementType::kF32>( {4}, {.scale = 1, .zero_point = +7}, {-2, -1, 0, 1, 2}); test<ElementType::kSI32, ElementType::kF32>( {4}, {.scale = 1e-1, .zero_point = -7}, {-2.2, -1.1, 0, 1.1, 2.2}); test<ElementType::kSI32, ElementType::kF32>( {4}, {.scale = 1e-2, .zero_point = 10}, {-2.22, -1.11, 0, 1.11, 2.22}); test<ElementType::kSI32, ElementType::kF32>( {4}, {.scale = 1e-3, .zero_point = -0}, {-2.222, -1.111, 0, 1.111, 2.222}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/uniform_dequantize_quantize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/uniform_dequantize_quantize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
18395d74-7e93-44e8-a767-d615878ef438
cpp
tensorflow/tensorflow
is_finite
tensorflow/lite/experimental/shlo/ops/is_finite.cc
tensorflow/lite/experimental/shlo/ops/is_finite_test.cc
#include "tensorflow/lite/experimental/shlo/ops/is_finite.h" #include <algorithm> #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { namespace { absl::Status CheckParameters(const Tensor& operand, const Tensor& result) { if (operand.shape() != result.shape()) { return absl::InvalidArgumentError( "operand and result must have the same shape"); } if (!operand.IsQuantized() && !IsFloat(operand.tensor_element_type())) { return absl::InvalidArgumentError( "operand must be floating-point type or per-tensor quantized"); } if (operand.IsPerAxisQuantized()) { return absl::InvalidArgumentError("operand cannot be per-axis quantized"); } if (result.IsQuantized()) { return absl::InvalidArgumentError("result cannot be quantized"); } if (!IsBool(result.tensor_element_type())) { return absl::InvalidArgumentError("result must be an I1 tensor"); } if (operand.NumElements() != result.NumElements()) { return absl::InvalidArgumentError( "operand and result must have the same size"); } return absl::OkStatus(); } template <DataType data_type> absl::Status EvaluateImpl(const Tensor& operand, bool* output) { const auto* in = operand.GetDataAs<data_type>(); const auto num_elements = operand.NumElements(); for (DimensionSize i = 0; i < num_elements; ++i) { output[i] = std::isfinite(static_cast<float>(in[i])); } return absl::OkStatus(); } absl::Status EvaluateImpl(const Tensor& operand, Tensor& result) { bool* output = result.GetDataAs<DataType::kI1>(); if (!operand.IsQuantized()) { DISPATCH_FLOAT(EvaluateImpl, operand.tensor_element_type(), operand, output); } else { const auto num_elements = result.NumElements(); std::fill(output, output + num_elements, true); } return absl::OkStatus(); } } IsFiniteOp Create(const IsFiniteOp::Attributes& attributes) { return IsFiniteOp(); } absl::Status Prepare(IsFiniteOp& op, const Tensor& operand, Tensor& result) { return CheckParameters(operand, result); } absl::Status Evaluate(IsFiniteOp& op, const Tensor& operand, Tensor& result) { if (!operand.data) { return absl::InvalidArgumentError("No operand.data"); } if (!result.data) { return absl::InvalidArgumentError("No result.data"); } return EvaluateImpl(operand, result); } }
#include "tensorflow/lite/experimental/shlo/ops/is_finite.h" #include <cmath> #include <cstddef> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" #include "tensorflow/lite/experimental/shlo/tensor_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor_with_data.h" namespace shlo_ref { namespace { using ::shlo_ref::testing::TensorEq; struct Params { TensorWithData operand; TensorWithData expected; }; class IsFiniteTest : public ::testing::TestWithParam<Params> {}; TEST_P(IsFiniteTest, IsFinite) { const auto& params = GetParam(); IsFiniteOp op = Create(IsFiniteOp::Attributes{}); Tensor result{.type = params.expected.tensor().type}; ASSERT_OK(Prepare(op, params.operand.tensor(), result)); std::vector<std::byte> result_data(result.SizeInBytes()); result.data = result_data.data(); EXPECT_OK(Evaluate(op, params.operand.tensor(), result)); EXPECT_THAT(result, TensorEq(params.expected.tensor())); } INSTANTIATE_TEST_SUITE_P( Unquantized, IsFiniteTest, ::testing::Values( Params{TensorWithData::Create<DataType::kBF16>( Shape{{7}}, {BF16{+NAN}, BF16{-NAN}, BF16{-INFINITY}, BF16{+INFINITY}, BF16{-1.0f}, BF16{0.0f}, BF16{1.0f}}), TensorWithData::Create<DataType::kI1>( Shape{{7}}, {false, false, false, false, true, true, true})}, Params{ TensorWithData::Create<DataType::kF16>( Shape{{7}}, {F16{+NAN}, F16{-NAN}, F16{-INFINITY}, F16{+INFINITY}, F16{-1.0f}, F16{0.0f}, F16{1.0f}}), TensorWithData::Create<DataType::kI1>( Shape{{7}}, {false, false, false, false, true, true, true})}, Params{ TensorWithData::Create<DataType::kF32>( Shape{{7}}, {+NAN, -NAN, -INFINITY, +INFINITY, -1.0f, 0.0f, 1.0f}), TensorWithData::Create<DataType::kI1>( Shape{{7}}, {false, false, false, false, true, true, true})})); INSTANTIATE_TEST_SUITE_P( Quantized, IsFiniteTest, ::testing::Values(Params{ .operand = TensorWithData::Create<DataType::kSI16, DataType::kF32>( Shape{{7}}, {0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f}, 0.1f, 0), .expected = TensorWithData::Create<DataType::kI1>( Shape{{7}}, {true, true, true, true, true, true, true})})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/is_finite.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/is_finite_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2d211a25-07e9-497a-8042-7901507b166f
cpp
tensorflow/tensorflow
elementwise_binary
tensorflow/lite/experimental/shlo/legacy/src/elementwise_binary.cc
tensorflow/lite/experimental/shlo/legacy/test/elementwise_binary_test.cc
#include <cmath> #include <cstddef> #include <type_traits> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { template <typename Value> absl::Status CheckParameters(const Value& lhs, const Value& rhs, Value& result) { if (!(lhs.baseline_type() == rhs.baseline_type() and lhs.baseline_type() == result.baseline_type())) { return absl::InvalidArgumentError( "Constraint violation: baseline_type(on_true) = " "baseline_type(on_false) = baseline_type(result)"); } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (!(lhs.is_per_tensor_quantized() and rhs.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError("Expected per=tensor quantization"); } } if (lhs.layout().has_strides() || rhs.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value, typename Op> absl::Status ElementwiseBinaryOp(const Value& lhs, const Value& rhs, Value& result, Op&& op) { if (auto check = CheckParameters(lhs, rhs, result); !check.ok()) { return check; } using S = Storage<storage_type>; auto lhs_buffer = lhs.buffer(); auto rhs_buffer = rhs.buffer(); auto result_buffer = result.buffer(); size_t n = lhs.num_elements(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != result.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } for (size_t i = 0; i < n; ++i) { auto x = S::Get(lhs_buffer, i); auto y = S::Get(rhs_buffer, i); auto z = op(x, y); S::Set(result_buffer, i, z); } } else { static_assert(std::is_same_v<Value, QuantizedTensor>); if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } const QuantizedParameter& lhs_quant_param = lhs.type().element_type().parameters(0); const QuantizedParameter& rhs_quant_param = rhs.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); using ET = typename Storage<expressed_type>::Type; ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); for (size_t i = 0; i < n; ++i) { auto lhs_storage = S::Get(lhs_buffer, i); auto rhs_storage = S::Get(rhs_buffer, i); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( lhs_storage, rhs_storage, lhs_quant_param, rhs_quant_param, result_scale_inv, result_quant_param.zero_point, op); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } #define DEFINE_ELEMENTWISE_BINARY_OP(name, element_type, expression) \ absl::Status name(const Tensor& lhs, const Tensor& rhs, Tensor& result) { \ return ElementwiseBinaryOp<element_type, element_type>( \ lhs, rhs, result, [](auto x, auto y) { return expression; }); \ } #define DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP(name, storage_type, \ expressed_type, expression) \ absl::Status name(const QuantizedTensor& lhs, const QuantizedTensor& rhs, \ QuantizedTensor& result) { \ return ElementwiseBinaryOp<storage_type, expressed_type>( \ lhs, rhs, result, [](auto x, auto y) { return expression; }); \ } #define DEFINE_ELEMENTWISE_BINARY_OP_BOOL(name, expression) \ DEFINE_ELEMENTWISE_BINARY_OP(name##_i1, ElementType::kI1, expression); #define DEFINE_ELEMENTWISE_BINARY_OP_INT(name, expression) \ DEFINE_ELEMENTWISE_BINARY_OP(name##_si8, ElementType::kSI8, expression); \ DEFINE_ELEMENTWISE_BINARY_OP(name##_si16, ElementType::kSI16, expression); \ DEFINE_ELEMENTWISE_BINARY_OP(name##_si32, ElementType::kSI32, expression); #define DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(name, expression) \ DEFINE_ELEMENTWISE_BINARY_OP(name##_bf16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_BINARY_OP(name##_f16, ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_BINARY_OP(name##_f32, ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP(name##_q_si8_bf16, ElementType::kSI8, \ ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP(name##_q_si8_f16, ElementType::kSI8, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP(name##_q_si8_f32, ElementType::kSI8, \ ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si16_bf16, ElementType::kSI16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si16_f16, ElementType::kSI16, ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si16_f32, ElementType::kSI16, ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si32_bf16, ElementType::kSI32, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si32_f16, ElementType::kSI32, ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_BINARY_QUANTIZED_OP( \ name##_q_si32_f32, ElementType::kSI32, ElementType::kF32, expression); #define CALL_BINARY_OP_BOOL_HELPER(name, lhs, rhs, result) \ case ElementType::kI1: \ return name##_i1(lhs, rhs, result); #define CALL_BINARY_OP_INT_HELPER(name, lhs, rhs, result) \ case ElementType::kSI8: \ return name##_si8(lhs, rhs, result); \ case ElementType::kSI16: \ return name##_si16(lhs, rhs, result); \ case ElementType::kSI32: \ return name##_si32(lhs, rhs, result); #define CALL_BINARY_OP_FLOAT_HELPER(name, lhs, rhs, result) \ case ElementType::kBF16: \ return name##_bf16(lhs, rhs, result); \ case ElementType::kF16: \ return name##_f16(lhs, rhs, result); \ case ElementType::kF32: \ return name##_f32(lhs, rhs, result); #define CALL_BINARY_OP_BOOL_INT(name, lhs, rhs, result) \ { \ auto element_type = lhs.element_type(); \ switch (element_type) { \ CALL_BINARY_OP_BOOL_HELPER(name, lhs, rhs, result); \ CALL_BINARY_OP_INT_HELPER(name, lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_BINARY_OP_INT(name, lhs, rhs, result) \ { \ auto element_type = lhs.element_type(); \ switch (element_type) { \ CALL_BINARY_OP_INT_HELPER(name, lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_BINARY_OP_INT_FLOAT(name, lhs, rhs, result) \ { \ auto element_type = lhs.element_type(); \ switch (element_type) { \ CALL_BINARY_OP_INT_HELPER(name, lhs, rhs, result); \ CALL_BINARY_OP_FLOAT_HELPER(name, lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_BINARY_OP_FLOAT(name, lhs, rhs, result) \ { \ auto element_type = lhs.element_type(); \ switch (element_type) { \ CALL_BINARY_OP_FLOAT_HELPER(name, lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_BINARY_OP_BOOL_INT_FLOAT(name, lhs, rhs, result) \ { \ auto element_type = lhs.element_type(); \ switch (element_type) { \ CALL_BINARY_OP_BOOL_HELPER(name, lhs, rhs, result); \ CALL_BINARY_OP_INT_HELPER(name, lhs, rhs, result); \ CALL_BINARY_OP_FLOAT_HELPER(name, lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_BINARY_QUANTIZED_OP(name, lhs, rhs, result) \ { \ auto storage_type = lhs.storage_type(); \ auto expressed_type = lhs.expressed_type(); \ switch (storage_type) { \ case ElementType::kSI8: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si8_bf16(lhs, rhs, result); \ case ElementType::kF16: \ return name##_q_si8_f16(lhs, rhs, result); \ case ElementType::kF32: \ return name##_q_si8_f32(lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI16: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si16_bf16(lhs, rhs, result); \ case ElementType::kF16: \ return name##_q_si16_f16(lhs, rhs, result); \ case ElementType::kF32: \ return name##_q_si16_f32(lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI32: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si32_bf16(lhs, rhs, result); \ case ElementType::kF16: \ return name##_q_si32_f16(lhs, rhs, result); \ case ElementType::kF32: \ return name##_q_si32_f32(lhs, rhs, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ default: \ return absl::InvalidArgumentError("Unexpected storage type"); \ } \ } } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Add, x or y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Add, x + y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Add, x + y); } absl::Status Add(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT_FLOAT(Add, lhs, rhs, result); } absl::Status Add(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Add, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(And, x&& y); DEFINE_ELEMENTWISE_BINARY_OP_INT(And, x& y); } absl::Status And(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT(And, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Atan2, std::atan2(static_cast<float>(x), static_cast<float>(y))); } absl::Status Atan2(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_FLOAT(Atan2, lhs, rhs, result); } absl::Status Atan2(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Atan2, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(Divide, x / y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Divide, x / y); } absl::Status Divide(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT_FLOAT(Divide, lhs, rhs, result); } absl::Status Divide(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Divide, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Maximum, x or y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Maximum, (x > y) ? x : y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Maximum, (x > y) ? x : y); } absl::Status Maximum(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT_FLOAT(Maximum, lhs, rhs, result); } absl::Status Maximum(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Maximum, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Minimum, x and y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Minimum, (x > y) ? y : x); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Minimum, (x > y) ? y : x); } absl::Status Minimum(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT_FLOAT(Minimum, lhs, rhs, result); } absl::Status Minimum(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Minimum, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Multiply, x and y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Multiply, x* y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Multiply, x* y); } absl::Status Multiply(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT_FLOAT(Multiply, lhs, rhs, result); } absl::Status Multiply(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Multiply, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Or, x or y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Or, x | y); } absl::Status Or(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT(Or, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(Power, std::pow(static_cast<float>(x), static_cast<int>(y))); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Power, std::powf(static_cast<float>(x), static_cast<float>(y))); } absl::Status Power(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT_FLOAT(Power, lhs, rhs, result); } absl::Status Power(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Power, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(Remainder, x % y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Remainder, std::fmod(static_cast<float>(x), static_cast<float>(y))); } absl::Status Remainder(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT_FLOAT(Remainder, lhs, rhs, result); } absl::Status Remainder(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Remainder, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(ShiftLeft, x << y); } absl::Status ShiftLeft(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT(ShiftLeft, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(ShiftRightArithmetic, x >> y); } absl::Status ShiftRightArithmetic(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT(ShiftRightArithmetic, lhs, rhs, result); } namespace { template <typename Int> inline Int ShiftRightLogical(Int x, Int y) { using UInt = typename std::make_unsigned<Int>::type; return static_cast<UInt>(x) >> y; } DEFINE_ELEMENTWISE_BINARY_OP_INT(ShiftRightLogical, ShiftRightLogical(x, y)); } absl::Status ShiftRightLogical(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT(ShiftRightLogical, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_INT(Subtract, x - y); DEFINE_ELEMENTWISE_BINARY_OP_FLOAT(Subtract, x - y); } absl::Status Subtract(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_INT_FLOAT(Subtract, lhs, rhs, result); } absl::Status Subtract(const QuantizedTensor& lhs, const QuantizedTensor& rhs, QuantizedTensor& result) { CALL_BINARY_QUANTIZED_OP(Subtract, lhs, rhs, result); } namespace { DEFINE_ELEMENTWISE_BINARY_OP_BOOL(Xor, x xor y); DEFINE_ELEMENTWISE_BINARY_OP_INT(Xor, x ^ y); } absl::Status Xor(const Tensor& lhs, const Tensor& rhs, Tensor& result) { CALL_BINARY_OP_BOOL_INT(Xor, lhs, rhs, result); } }
#include <cmath> #include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/matchers.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(absl::Status (*op)(const Tensor&, const Tensor&, Tensor&), std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<element_type>::Type>&& input1_values, std::vector<typename Storage<element_type>::Type>&& input2_values, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor input1(TensorType(Shape(shape), element_type), std::data(input1_values)); Tensor input2(TensorType(Shape(shape), element_type), std::data(input2_values)); Tensor expected(TensorType(Shape(shape), element_type), std::data(expected_values)); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(op(input1, input2, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input1: " << input1 << "\ninput2: " << input2; } template <ElementType storage_type, ElementType expressed_type> void test( absl::Status (*op)(const QuantizedTensor&, const QuantizedTensor&, QuantizedTensor&), std::initializer_list<DimensionSize>&& shape, QuantizedParameter&& quantized_parameter, std::vector<typename Storage<expressed_type>::Type>&& input1_values, std::vector<typename Storage<expressed_type>::Type>&& input2_values, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto input1_quant_values = QuantizeVector<storage_type, expressed_type>( input1_values, quantized_parameter); auto input2_quant_values = QuantizeVector<storage_type, expressed_type>( input2_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor input1( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), input1_quant_values.data()); QuantizedTensor input2( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), input2_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(op(input1, input2, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input1: " << input1 << "\ninput2: " << input2; } TEST(ElementwiseBinary, Add) { test<ElementType::kI1>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 1, 1}); test<ElementType::kSI8>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); test<ElementType::kSI16>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); test<ElementType::kSI32>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); test<ElementType::kBF16>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); test<ElementType::kF16>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); test<ElementType::kF32>(Add, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 2, 1}); } TEST(ElementwiseBinary, AddQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Add, {4}, {.scale = 1, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI16, ElementType::kBF16>( Add, {4}, {.scale = 2, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI32, ElementType::kBF16>( Add, {4}, {.scale = 0.5, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI8, ElementType::kF16>( Add, {4}, {.scale = 1, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI16, ElementType::kF16>( Add, {4}, {.scale = 2, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI32, ElementType::kF16>( Add, {4}, {.scale = 0.5, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI8, ElementType::kF32>( Add, {4}, {.scale = 1, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI16, ElementType::kF32>( Add, {4}, {.scale = 2, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); test<ElementType::kSI32, ElementType::kF32>( Add, {4}, {.scale = 0.5, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 30, -10}); } TEST(ElementwiseBinary, And) { test<ElementType::kI1>(And, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {0, 0, 1, 0}); test<ElementType::kSI8>(And, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {1, 0, 4, 0}); test<ElementType::kSI16>(And, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {1, 0, 4, 0}); test<ElementType::kSI32>(And, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {1, 0, 4, 0}); } TEST(ElementwiseBinary, Atan2) { test<ElementType::kBF16>(Atan2, {4}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kF16>(Atan2, {4}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kF32>(Atan2, {4}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); } TEST(ElementwiseBinary, Atan2Quantized) { test<ElementType::kSI8, ElementType::kBF16>( Atan2, {4}, {.scale = 1e-1, .zero_point = 0}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI8, ElementType::kF16>( Atan2, {4}, {.scale = 1e-1, .zero_point = 2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI8, ElementType::kF32>( Atan2, {4}, {.scale = 1e-1, .zero_point = -2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI16, ElementType::kBF16>( Atan2, {4}, {.scale = 1e-2, .zero_point = 0}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI16, ElementType::kF16>( Atan2, {4}, {.scale = 1e-2, .zero_point = 2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI16, ElementType::kF32>( Atan2, {4}, {.scale = 1e-3, .zero_point = -2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI32, ElementType::kBF16>( Atan2, {4}, {.scale = 1e-2, .zero_point = 0}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI32, ElementType::kF16>( Atan2, {4}, {.scale = 1e-2, .zero_point = 2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); test<ElementType::kSI32, ElementType::kF32>( Atan2, {4}, {.scale = 1e-3, .zero_point = -2}, {3, 0, 5, 3}, {1, 1, 4, 1}, {1.24904577239825442582f, 0, 0.89605538457134395617f, 1.24904577239825442582f}); } TEST(ElementwiseBinary, Divide) { test<ElementType::kSI8>(Divide, {4}, {2, 5, -3, -7}, {2, 2, 3, 3}, {1, 2, -1, -2}); test<ElementType::kSI16>(Divide, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {11, 18, -8, 15}); test<ElementType::kSI32>(Divide, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {11, 18, -8, 15}); test<ElementType::kBF16>(Divide, {4}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kF16>(Divide, {4}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kF32>(Divide, {4}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); } TEST(ElementwiseBinary, DivideQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Divide, {4}, {.scale = 1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI8, ElementType::kF16>( Divide, {4}, {.scale = 1, .zero_point = 5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI8, ElementType::kF32>( Divide, {4}, {.scale = 1, .zero_point = -5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI16, ElementType::kBF16>( Divide, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI16, ElementType::kF16>( Divide, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI16, ElementType::kF32>( Divide, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {111, 133.25, -83.25, 155.4}); test<ElementType::kSI32, ElementType::kBF16>( Divide, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI32, ElementType::kF16>( Divide, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {11, 13.25, -8.25, 15.4}); test<ElementType::kSI32, ElementType::kF32>( Divide, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {111, 133.25, -83.25, 155.4}); } TEST(ElementwiseBinary, Maximum) { test<ElementType::kI1>(Maximum, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 1, 1}); test<ElementType::kSI8>(Maximum, {4}, {2, 5, -3, -7}, {2, 2, 3, 3}, {2, 5, 3, 3}); test<ElementType::kSI16>(Maximum, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {22, 55, 4, -5}); test<ElementType::kSI32>(Maximum, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {22, 55, 4, -5}); test<ElementType::kBF16>(Maximum, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {2.2, 5.3, 4.4, -5.5}); test<ElementType::kF16>(Maximum, {4}, {22, 55, -33, -77}, {2.5, 3.5, 4.5, -5.5}, {22, 55, 4.5, -5.5}); test<ElementType::kF32>(Maximum, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {2.2, 5.3, 4.4, -5.5}); } TEST(ElementwiseBinary, MaximumQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Maximum, {4}, {.scale = 1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI8, ElementType::kF16>( Maximum, {4}, {.scale = 1, .zero_point = 5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI8, ElementType::kF32>( Maximum, {4}, {.scale = 1, .zero_point = -5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI16, ElementType::kBF16>( Maximum, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI16, ElementType::kF16>( Maximum, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI16, ElementType::kF32>( Maximum, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {222, 533, 4, -5}); test<ElementType::kSI32, ElementType::kBF16>( Maximum, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI32, ElementType::kF16>( Maximum, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {22, 53, 4, -5}); test<ElementType::kSI32, ElementType::kF32>( Maximum, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {222, 533, 4, -5}); } TEST(ElementwiseBinary, Minimum) { test<ElementType::kI1>(Minimum, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {0, 0, 1, 0}); test<ElementType::kSI8>(Minimum, {4}, {2, 5, -3, -7}, {2, 2, 3, 3}, {2, 2, -3, -7}); test<ElementType::kSI16>(Minimum, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {2, 3, -33, -77}); test<ElementType::kSI32>(Minimum, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {2, 3, -33, -77}); test<ElementType::kBF16>(Minimum, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {2.2, 4.4, -3.3, -7.7}); test<ElementType::kF16>(Minimum, {4}, {22, 55, -33, -77}, {2.5, 3.5, 4.5, -5.5}, {2.5, 3.5, -33, -77}); test<ElementType::kF32>(Minimum, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {2.2, 4.4, -3.3, -7.7}); } TEST(ElementwiseBinary, MinimumQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Minimum, {4}, {.scale = 1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI8, ElementType::kF16>( Minimum, {4}, {.scale = 1, .zero_point = 5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI8, ElementType::kF32>( Minimum, {4}, {.scale = 1, .zero_point = -5}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI16, ElementType::kBF16>( Minimum, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI16, ElementType::kF16>( Minimum, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI16, ElementType::kF32>( Minimum, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {2, 4, -333, -777}); test<ElementType::kSI32, ElementType::kBF16>( Minimum, {4}, {.scale = 5e-1, .zero_point = 0}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI32, ElementType::kF16>( Minimum, {4}, {.scale = 1e-1, .zero_point = 10}, {22, 53, -33, -77}, {2, 4, 4, -5}, {2, 4, -33, -77}); test<ElementType::kSI32, ElementType::kF32>( Minimum, {4}, {.scale = 5e-2, .zero_point = -10}, {222, 533, -333, -777}, {2, 4, 4, -5}, {2, 4, -333, -777}); } TEST(ElementwiseBinary, Multiply) { test<ElementType::kI1>(Multiply, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {0, 0, 1, 0}); test<ElementType::kSI8>(Multiply, {4}, {2, 5, -3, -7}, {2, 2, 3, 3}, {4, 10, -9, -21}); test<ElementType::kSI16>(Multiply, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {44, 165, -132, 385}); test<ElementType::kSI32>(Multiply, {4}, {22, 55, -33, -77}, {2, 3, 4, -5}, {44, 165, -132, 385}); test<ElementType::kBF16>(Multiply, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {4.84, 23.32, -14.52, 42.35}); test<ElementType::kF16>(Multiply, {4}, {22, 55, -33, -77}, {2.5, 3.5, 4.5, -5.5}, {55, 192.5, -148.5, 423.5}); test<ElementType::kF32>(Multiply, {4}, {2.2, 5.3, -3.3, -7.7}, {2.2, 4.4, 4.4, -5.5}, {4.84, 23.32, -14.52, 42.35}); } TEST(ElementwiseBinary, MultiplyQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI8, ElementType::kF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI8, ElementType::kF32>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI16, ElementType::kBF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI16, ElementType::kF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI16, ElementType::kF32>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI32, ElementType::kBF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI32, ElementType::kF16>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); test<ElementType::kSI32, ElementType::kF32>( Multiply, {4}, {.scale = 1e-1, .zero_point = 0}, {1.1, 2.2, -3.3, -4.4}, {0.1, 1, 0.5, 2.5}, {0.11, 2.2, -1.7, -11}); } TEST(ElementwiseBinary, Or) { test<ElementType::kI1>(Or, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 1, 1}); test<ElementType::kSI8>(Or, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {3, 0, 5, 1}); test<ElementType::kSI16>(Or, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {3, 0, 5, 1}); test<ElementType::kSI32>(Or, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {3, 0, 5, 1}); } TEST(ElementwiseBinary, Power) { test<ElementType::kSI8>(Power, {6}, {-2, 1, -3, 5, -3, 4}, {0, 1, 2, 3, 3, 2}, {1, 1, 9, 125, -27, 16}); test<ElementType::kSI16>(Power, {6}, {-2, 1, -36, 5, 3, 5}, {0, 1, 2, 3, 4, 5}, {1, 1, 1296, 125, 81, 3125}); test<ElementType::kSI32>(Power, {6}, {-2, 1, -36, 5, 3, 10}, {0, 1, 2, 3, 4, 5}, {1, 1, 1296, 125, 81, 100000}); test<ElementType::kBF16>(Power, {6}, {-2, -0, -36, 5, 3, 1000}, {2, 2, 1.1, 2, -1, 10}, {4, 0, -NAN, 25, 0.3333333333333333f, 1e+30}); test<ElementType::kF16>(Power, {6}, {-2, -0, -36, 5, 3, 10000}, {2, 2, 1.1, 2, -1, 10}, {4, 0, -NAN, 25, 0.3333333333333333f, INFINITY}); test<ElementType::kF32>(Power, {6}, {-2, -0, -36, 5, 3, 10000}, {2, 2, 1.1, 2, -1, 10}, {4, 0, -NAN, 25, 0.3333333333333333f, INFINITY}); } TEST(ElementwiseBinary, Remainder) { test<ElementType::kSI8>(Remainder, {4}, {17, 18, 19, 20}, {3, 4, 5, 7}, {2, 2, 4, 6}); test<ElementType::kSI16>(Remainder, {4}, {17, 18, 19, 20}, {3, 4, 5, 7}, {2, 2, 4, 6}); test<ElementType::kSI32>(Remainder, {4}, {17, -17, 17, -17}, {3, 3, -3, -3}, {2, -2, 2, -2}); test<ElementType::kBF16>(Remainder, {4}, {17, 18, 19, 20}, {3, 4, 5, 7}, {2, 2, 4, 6}); test<ElementType::kF16>(Remainder, {4}, {17, -17, 17, -17}, {3, 3, -3, -3}, {2, -2, 2, -2}); test<ElementType::kF32>(Remainder, {4}, {17.1, -17.1, 17.1, -17.1}, {3, 3, -3, -3}, {2.1, -2.1, 2.1, -2.1}); } TEST(ElementwiseBinary, RemainderQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 0}, {7.1, -7.1, 7.1, -7.1}, {3, 3, -3, -3}, {1.1, -1.1, 1.1, -1.1}); test<ElementType::kSI8, ElementType::kF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 0}, {7.1, -7.1, 7.1, -7.1}, {3, 3, -3, -3}, {1.1, -1.1, 1.1, -1.1}); test<ElementType::kSI8, ElementType::kF32>( Remainder, {4}, {.scale = 1e-1, .zero_point = 0}, {7.1, -7.1, 7.1, -7.1}, {3, 3, -3, -3}, {1.1, -1.1, 1.1, -1.1}); test<ElementType::kSI16, ElementType::kBF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 4}, {17, 18, 19, 20}, {3, 4, 5, 7}, {2, 2, 4, 6}); test<ElementType::kSI16, ElementType::kF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 0}, {17, -17, 17, -17}, {3, 3, -3, -3}, {2, -2, 2, -2}); test<ElementType::kSI16, ElementType::kF32>( Remainder, {4}, {.scale = 1e-2, .zero_point = -10}, {17.1, -17.1, 17.1, -17.1}, {3, 3, -3, -3}, {2.1, -2.1, 2.1, -2.1}); test<ElementType::kSI32, ElementType::kBF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 4}, {17, 18, 19, 20}, {3, 4, 5, 7}, {2, 2, 4, 6}); test<ElementType::kSI32, ElementType::kF16>( Remainder, {4}, {.scale = 1e-1, .zero_point = 0}, {17, -17, 17, -17}, {3, 3, -3, -3}, {2, -2, 2, -2}); test<ElementType::kSI32, ElementType::kF32>( Remainder, {4}, {.scale = 1e-2, .zero_point = -10}, {17.1, -17.1, 17.1, -17.1}, {3, 3, -3, -3}, {2.1, -2.1, 2.1, -2.1}); } TEST(ElementwiseBinary, ShiftLeft) { test<ElementType::kSI8>(ShiftLeft, {3}, {-1, 0, 1}, {1, 2, 3}, {-2, 0, 8}); test<ElementType::kSI16>(ShiftLeft, {3}, {-1, 0, 1}, {1, 2, 3}, {-2, 0, 8}); test<ElementType::kSI32>(ShiftLeft, {3}, {-1, 0, 1}, {1, 2, 3}, {-2, 0, 8}); } TEST(ElementwiseBinary, ShiftRightArithmetic) { test<ElementType::kSI8>(ShiftRightArithmetic, {3}, {-1, 0, 8}, {1, 2, 3}, {-1, 0, 1}); test<ElementType::kSI16>(ShiftRightArithmetic, {3}, {-1, 0, 8}, {1, 2, 3}, {-1, 0, 1}); test<ElementType::kSI32>(ShiftRightArithmetic, {3}, {-1, 0, 8}, {1, 2, 3}, {-1, 0, 1}); } TEST(ElementwiseBinary, ShiftRightLogical) { test<ElementType::kSI8>(ShiftRightLogical, {3}, {-1, 0, 8}, {1, 2, 3}, {0x7F, 0, 1}); test<ElementType::kSI16>(ShiftRightLogical, {3}, {-1, 0, 8}, {1, 2, 3}, {0x7FFF, 0, 1}); test<ElementType::kSI32>(ShiftRightLogical, {3}, {-1, 0, 8}, {1, 2, 3}, {0x7FFFFFFF, 0, 1}); } TEST(ElementwiseBinary, Subtract) { test<ElementType::kSI8>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); test<ElementType::kSI16>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); test<ElementType::kSI32>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); test<ElementType::kBF16>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); test<ElementType::kF16>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); test<ElementType::kF32>(Subtract, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, -1}); } TEST(ElementwiseBinary, SubtractQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Subtract, {4}, {.scale = 1, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI8, ElementType::kF16>( Subtract, {4}, {.scale = 1, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI8, ElementType::kF32>( Subtract, {4}, {.scale = 1, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI16, ElementType::kBF16>( Subtract, {4}, {.scale = 1e-1, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI16, ElementType::kF16>( Subtract, {4}, {.scale = 1e-1, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI16, ElementType::kF32>( Subtract, {4}, {.scale = 1e-1, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI32, ElementType::kBF16>( Subtract, {4}, {.scale = 1e-3, .zero_point = 0}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI32, ElementType::kF16>( Subtract, {4}, {.scale = 1e-3, .zero_point = 2}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); test<ElementType::kSI32, ElementType::kF32>( Subtract, {4}, {.scale = 1e-3, .zero_point = -10}, {10, 0, 20, 0}, {0, 0, 10, -10}, {10, 0, 10, 10}); } TEST(ElementwiseBinary, Xor) { test<ElementType::kI1>(Xor, {4}, {1, 0, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, 1}); test<ElementType::kSI8>(Xor, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {2, 0, 1, 1}); test<ElementType::kSI16>(Xor, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {2, 0, 1, 1}); test<ElementType::kSI32>(Xor, {4}, {3, 0, 5, 0}, {1, 0, 4, 1}, {2, 0, 1, 1}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/elementwise_binary.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/elementwise_binary_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
282aa471-5c12-4468-8a0c-38230ff0f653
cpp
tensorflow/tensorflow
broadcast_in_dim
tensorflow/lite/experimental/shlo/legacy/src/broadcast_in_dim.cc
tensorflow/lite/experimental/shlo/legacy/test/broadcast_in_dim_test.cc
#include <algorithm> #include <iterator> #include <type_traits> #include <vector> #include "absl/status/status.h" #include "absl/types/span.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/dispatch.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { bool IsUnique(absl::Span<const DimensionSize> span) { std::vector<DimensionSize> temp(span.begin(), span.end()); auto i = std::unique(temp.begin(), temp.end()); return std::distance(temp.begin(), i) == span.size(); } template <typename Value> absl::Status CheckParameters( const Value& operand, absl::Span<const DimensionSize> broadcast_dimensions, Value& result) { if (!operand.is_per_axis_quantized()) { if (!(result.element_type() == operand.element_type())) { return absl::InvalidArgumentError( "Constraint violation: element_type(result) = element_type(operand) " "if !is_per_axis_quantized(operand)"); } } if (!(broadcast_dimensions.size() == operand.rank())) { return absl::InvalidArgumentError( "Constraint violation: size(broadcast_dimensions) = rank(operand)"); } else if (!(*std::min_element(broadcast_dimensions.begin(), broadcast_dimensions.end()) >= 0 and *std::max_element(broadcast_dimensions.begin(), broadcast_dimensions.end()) < result.rank())) { return absl::InvalidArgumentError( "Constraint violation: 0 <= broadcast_dimensions < rank(result)"); } else if (!(IsUnique(broadcast_dimensions))) { return absl::InvalidArgumentError( "Constraint violation: is_unique(broadcast_dimensions)"); } else { for (auto d : operand.axes()) { if (!(operand.dim(d) == 1 or operand.dim(d) == result.dim(broadcast_dimensions[d]))) { return absl::InvalidArgumentError( "Constraint violation: dim(operand, d) = 1 or dim(operand, d) = " "dim(result, broadcast_dimensions[d])"); } } } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (operand.is_per_axis_quantized()) { if (!(operand.is_per_axis_quantized() and result.storage_type() == operand.storage_type() and result.expressed_type() == operand.expressed_type() and result.storage_min() == operand.storage_min() and result.storage_max() == operand.storage_max())) { return absl::InvalidArgumentError( "Constraint violation: element_type(result) = " "element_type(operand) with exceptions if " "is_per_axis_quantized(operand)"); } } if (result.is_per_axis_quantized()) { if (!(*result.quantized_dimension() == broadcast_dimensions[*operand.quantized_dimension()])) { return absl::InvalidArgumentError( "quantization_dimension(result) = " "broadcast_dimensions[quantization_dimension(operand)]"); } if (operand.dim(*operand.quantized_dimension()) == 1) { auto n = result.dim(*result.quantized_dimension()); for (auto i = 0; i < n; ++i) { if (!(result.scales(i) == operand.scales(0) and result.zero_points(i) == operand.zero_points(0))) { return absl::InvalidArgumentError( "If dim(operand, quantization_dimension(operand)) = 1, then " "scales(result)[i] = scales(operand)[0] and " "zero_points(result)[i] = zero_points(operand)[0] for i in " "range(dim(result, quantization_dimension(result)))"); } } } } } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value> absl::Status BroadcastInDim( const Value& operand, absl::Span<const DimensionSize> broadcast_dimensions, Value& result) { if (auto check = CheckParameters(operand, broadcast_dimensions, result); !check.ok()) { return check; } using S = Storage<storage_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != operand.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } TensorIndex operand_index(operand.shape()); for (TensorIndexIterator result_index_iter{result.shape()}; result_index_iter.has_next(); ++result_index_iter) { for (auto d = 0; d < operand.rank(); ++d) { if (operand.dim(d) == 1) { operand_index.set(d, 0); } else { auto b = broadcast_dimensions[d]; operand_index.set(d, (*result_index_iter)[b]); } } auto linearized_operand_index = operand_index.linearize(); auto linearized_result_index = result_index_iter->linearize(); auto value = S::Get(operand_buffer, linearized_operand_index); S::Set(result_buffer, linearized_result_index, value); } } else if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } if (!(operand.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError( "Only per-tensor quantization is currently supported"); } using ET = typename Storage<expressed_type>::Type; const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); TensorIndex operand_index(operand.shape()); for (TensorIndexIterator result_index_iter{result.shape()}; result_index_iter.has_next(); ++result_index_iter) { for (auto d = 0; d < operand.rank(); ++d) { if (operand.dim(d) == 1) { operand_index.set(d, 0); } else { auto b = broadcast_dimensions[d]; operand_index.set(d, (*result_index_iter)[b]); } } auto linearized_operand_index = operand_index.linearize(); auto linearized_result_index = result_index_iter->linearize(); auto operand_storage = S::Get(operand_buffer, linearized_operand_index); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( operand_storage, operand_quant_param, result_scale_inv, result_quant_param.zero_point, [](auto x) { return x; }); S::Set(result_buffer, linearized_result_index, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } } absl::Status BroadcastInDim( const Tensor& operand, absl::Span<const DimensionSize> broadcast_dimensions, Tensor& result) { DISPATCH_BOOL_INT_FLOAT(BroadcastInDim, result.element_type(), operand, broadcast_dimensions, result); } absl::Status BroadcastInDim( const QuantizedTensor& operand, absl::Span<const DimensionSize> broadcast_dimensions, QuantizedTensor& result) { DISPATCH_QUANTIZED(BroadcastInDim, result.storage_type(), result.expressed_type(), operand, broadcast_dimensions, result); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(std::initializer_list<DimensionSize>&& operand_shape, std::vector<typename Storage<element_type>::Type>&& operand_values, std::initializer_list<DimensionSize>&& broadcast_dimensions_values, std::initializer_list<DimensionSize>&& result_shape, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor operand(TensorType(Shape(operand_shape), element_type), operand_values.data()); Tensor expected(TensorType(Shape(result_shape), element_type), expected_values.data()); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(result_shape), element_type), result_values.data()); absl::Span<const DimensionSize> broadcast_dimensions( broadcast_dimensions_values); ASSERT_OK(BroadcastInDim(operand, broadcast_dimensions, result)); EXPECT_EQ(result, expected) << "operand: " << operand << "\nbroadcast_dimensions: " << ToString(broadcast_dimensions); } template <ElementType storage_type, ElementType expressed_type> void test( QuantizedParameter&& quantized_parameter, std::initializer_list<DimensionSize>&& operand_shape, std::vector<typename Storage<expressed_type>::Type>&& operand_values, std::initializer_list<DimensionSize>&& broadcast_dimensions_values, std::initializer_list<DimensionSize>&& result_shape, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto operand_quant_values = QuantizeVector<storage_type, expressed_type>( operand_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor operand( QuantizedTensorType(Shape(operand_shape), QuantizedTensorElementType(element_type)), operand_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(result_shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(result_shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); absl::Span<const DimensionSize> broadcast_dimensions( broadcast_dimensions_values); auto res = BroadcastInDim(operand, broadcast_dimensions, result); ASSERT_OK(BroadcastInDim(operand, broadcast_dimensions, result)); EXPECT_EQ(result, expected) << "operand: " << operand << "\nbroadcast_dimensions: " << ToString(broadcast_dimensions); } TEST(BroadcastInDim, Unquantized) { test<ElementType::kI1>({1, 3}, {true, false, true}, {2, 1}, {2, 3, 2}, {true, true, false, false, true, true, true, true, false, false, true, true}); test<ElementType::kSI8>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kBF16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kF16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kF32>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); } TEST(BroadcastInDim, Quantized) { test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI8, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/broadcast_in_dim.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/broadcast_in_dim_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c22eae69-295e-43e4-812d-9bd98c6b6375
cpp
tensorflow/tensorflow
and
tensorflow/lite/experimental/shlo/ops/and.cc
tensorflow/lite/experimental/shlo/ops/and_test.cc
#include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; AndOp Create(AndOp::Attributes) { return {}; } absl::Status Prepare(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("and"), lhs, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), lhs, output)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsIntTensor(lhs)) { And<DataType::kSI32> and_func; DISPATCH_INT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), and_func, lhs, rhs, output); } else if (IsBoolTensor(lhs)) { And<DataType::kI1> and_func; detail::EvaluateNoQuantization<DataType::kI1>(and_func, lhs, rhs, output); return absl::OkStatus(); } return absl::FailedPreconditionError( "stablehlo.and: Unsupported tensor type in Evaluate."); } }
#include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<AndOp> { static std::string Get() { return "And"; } }; template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; template <> struct SupportedOpDataType<AndOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseOpShapePropagationTest, AndOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< AndOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( And, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<AndOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; template <class T> struct AndTest : ::testing::Test {}; TYPED_TEST_SUITE(AndTest, SupportedTypes, TestParamNames); TYPED_TEST(AndTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), And<TypeParam::kStorage>()); auto op = Create(AndOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/and.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/and_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0e775194-4101-4d2f-930c-95c3dddc8a6b
cpp
tensorflow/tensorflow
cbrt
tensorflow/lite/experimental/shlo/ops/cbrt.cc
tensorflow/lite/experimental/shlo/ops/cbrt_test.cc
#include "tensorflow/lite/experimental/shlo/ops/cbrt.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Cbrt { template <class T> T operator()(T v) const { return std::cbrt(v); } }; template <> F16 Cbrt::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cbrt::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } CbrtOp Create(CbrtOp::Attributes) { return {}; } absl::Status Prepare(CbrtOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("cbrt"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("cbrt"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(CbrtOp& op, const Tensor& input, Tensor& output) { Cbrt cbrt; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), cbrt, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), cbrt, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/cbrt.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<CbrtOp> { static std::string Get() { return "Cbrt"; } }; namespace { struct Cbrt { template <class T> T operator()(T v) const { return std::cbrt(v); } } cbrt_ref; template <> F16 Cbrt::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cbrt::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Cbrt, UnaryElementwiseOpShapePropagationTest, CbrtOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Cbrt, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<CbrtOp>, TestParamNames); using UnsupportedTypes = WithOpTypes< CbrtOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Cbrt, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct CbrtTest : ::testing::Test {}; TYPED_TEST_SUITE(CbrtTest, FloatTestTypes, TestParamNames); TYPED_TEST(CbrtTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), cbrt_ref); auto op = Create(CbrtOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedCbrtTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedCbrtTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedCbrtTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = cbrt_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(CbrtOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/cbrt.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/cbrt_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85734204-9025-4511-b9a2-be5a6946b858
cpp
tensorflow/tensorflow
minimum
tensorflow/lite/experimental/shlo/ops/minimum.cc
tensorflow/lite/delegates/xnnpack/minimum_test.cc
#include "tensorflow/lite/experimental/shlo/ops/minimum.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Minimum { template <class T> constexpr auto operator()(const T a, const T b) { return a < b ? a : b; } }; MinimumOp Create(MinimumOp::Attributes) { return {}; } absl::Status Prepare(MinimumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("minimum"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("minimum"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("minimum"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MinimumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Minimum minimum; if (IsBoolTensor(lhs) || IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_BOOL_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), minimum, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), minimum, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.minimum: Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Minimum, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/minimum.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/minimum_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ceb21061-0cca-4cc6-964c-1a8e710c929c
cpp
tensorflow/tensorflow
maximum
tensorflow/lite/experimental/shlo/ops/maximum.cc
tensorflow/lite/delegates/xnnpack/maximum_test.cc
#include "tensorflow/lite/experimental/shlo/ops/maximum.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Maximum { template <class T> constexpr auto operator()(const T a, const T b) { return a > b ? a : b; } }; MaximumOp Create(MaximumOp::Attributes) { return {}; } absl::Status Prepare(MaximumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("maximum"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("maximum"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("maximum"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MaximumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Maximum maximum; if (IsBoolTensor(lhs) || IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_BOOL_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), maximum, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), maximum, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.maximum: Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Maximum, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/maximum.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/maximum_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
71b6dde1-1ef4-4e06-aefe-a9e1ff3a3bc2
cpp
tensorflow/tensorflow
not
tensorflow/lite/experimental/shlo/ops/not.cc
tensorflow/lite/experimental/shlo/ops/not_test.cc
#include "tensorflow/lite/experimental/shlo/ops/not.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Not { template <class T> T operator()(T v) const { return static_cast<T>(~v); } }; template <> bool Not::operator()(bool v) const { return !v; } NotOp Create(NotOp::Attributes) { return {}; } absl::Status Prepare(NotOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("not"), input, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("not"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(NotOp& op, const Tensor& input, Tensor& output) { Not not_func; if (IsIntTensor(input) || IsBoolTensor(input)) { DISPATCH_BOOL_INT(detail::EvaluateNoQuantization, input.tensor_element_type(), not_func, input, output); } return absl::FailedPreconditionError( "stablehlo.not: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/not.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<NotOp> { static std::string Get() { return "Not"; } }; template <> struct SupportedOpDataType<NotOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { struct Not { template <class T> T operator()(T v) const { return ~v; } } not_ref; template <> bool Not::operator()(bool v) const { return !v; } INSTANTIATE_TYPED_TEST_SUITE_P(Not, UnaryElementwiseOpShapePropagationTest, NotOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Not, UnaryElementwiseSameBaselineElementTypeConstraintTest, BaselineMismatchSignedIntegerTypes<NotOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<NotOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Not, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct BoolAndIntNotTest : ::testing::Test {}; using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; TYPED_TEST_SUITE(BoolAndIntNotTest, SupportedTypes, TestParamNames); TYPED_TEST(BoolAndIntNotTest, BoolAndIntTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), not_ref); auto op = Create(NotOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/not.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/not_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
170e0abe-49ca-444d-bb86-8a79cf0f6208
cpp
tensorflow/tensorflow
xor
tensorflow/lite/experimental/shlo/ops/xor.cc
tensorflow/lite/experimental/shlo/ops/xor_test.cc
#include "tensorflow/lite/experimental/shlo/ops/xor.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType> struct Xor : std::bit_xor<void> {}; template <> struct Xor<DataType::kI1> { template <class T> bool operator()(T lhs, T rhs) const { return static_cast<bool>(lhs) != static_cast<bool>(rhs); } }; XorOp Create(XorOp::Attributes) { return {}; } absl::Status Prepare(XorOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("xor"), lhs, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("xor"), lhs, output)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("xor"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(XorOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsIntTensor(lhs)) { Xor<DataType::kSI32> xor_func; DISPATCH_INT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), xor_func, lhs, rhs, output); } else if (IsBoolTensor(lhs)) { Xor<DataType::kI1> xor_func; detail::EvaluateNoQuantization<DataType::kI1>(xor_func, lhs, rhs, output); return absl::OkStatus(); } return absl::FailedPreconditionError( "stablehlo.xor: Unsupported tensor type in Evaluate."); } }
#include "tensorflow/lite/experimental/shlo/ops/xor.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<XorOp> { static std::string Get() { return "Xor"; } }; template <DataType> struct Xor : std::bit_xor<void> {}; template <> struct Xor<DataType::kI1> { template <class T> bool operator()(T lhs, T rhs) const { return static_cast<bool>(lhs) != static_cast<bool>(rhs); } }; template <> struct SupportedOpDataType<XorOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Xor, BinaryElementwiseOpShapePropagationTest, XorOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< XorOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Xor, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<XorOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Xor, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; template <class T> struct XorTest : ::testing::Test {}; TYPED_TEST_SUITE(XorTest, SupportedTypes, TestParamNames); TYPED_TEST(XorTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Xor<TypeParam::kStorage>()); auto op = Create(XorOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/xor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/xor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9f47e9a6-3306-4f59-a171-c8655f57841a
cpp
tensorflow/tensorflow
exponential_minus_one
tensorflow/lite/experimental/shlo/ops/exponential_minus_one.cc
tensorflow/lite/experimental/shlo/ops/exponential_minus_one_test.cc
#include "tensorflow/lite/experimental/shlo/ops/exponential_minus_one.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct ExponentialMinusOne { template <class T> T operator()(T v) const { return std::expm1(v); } }; template <> F16 ExponentialMinusOne::operator()(F16 v) const { return F16(operator()(static_cast<float>(v))); } template <> BF16 ExponentialMinusOne::operator()(BF16 v) const { return BF16(operator()(static_cast<float>(v))); } ExponentialMinusOneOp Create(ExponentialMinusOneOp::Attributes) { return {}; } absl::Status Prepare(ExponentialMinusOneOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("exponential_minus_one"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("exponential_minus_one"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(ExponentialMinusOneOp& op, const Tensor& input, Tensor& output) { ExponentialMinusOne exponential_minus_one; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), exponential_minus_one, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), exponential_minus_one, input, output); } return absl::FailedPreconditionError( "stablehlo.exponential_minus_one: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/exponential_minus_one.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<ExponentialMinusOneOp> { static std::string Get() { return "ExponentialMinusOne"; } }; namespace { struct ExponentialMinusOne { template <class T> T operator()(T v) const { return std::expm1(v); } } exponential_minus_one_ref; template <> F16 ExponentialMinusOne::operator()(F16 v) const { return F16(operator()(static_cast<float>(v))); } template <> BF16 ExponentialMinusOne::operator()(BF16 v) const { return BF16(operator()(static_cast<float>(v))); } INSTANTIATE_TYPED_TEST_SUITE_P(ExponentialMinusOne, UnaryElementwiseOpShapePropagationTest, ExponentialMinusOneOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( ExponentialMinusOne, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<ExponentialMinusOneOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<ExponentialMinusOneOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(ExponentialMinusOneOp, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct ExponentialMinusOneTest : ::testing::Test {}; TYPED_TEST_SUITE(ExponentialMinusOneTest, FloatTestTypes, TestParamNames); TYPED_TEST(ExponentialMinusOneTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), exponential_minus_one_ref); auto op = Create(ExponentialMinusOneOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedExponentialMinusOneTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedExponentialMinusOneTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedExponentialMinusOneTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = exponential_minus_one_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(ExponentialMinusOneOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential_minus_one.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential_minus_one_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef36b79c-43e5-4468-b0d3-2d13d55df0fe
cpp
tensorflow/tensorflow
negate
tensorflow/lite/experimental/shlo/ops/negate.cc
tensorflow/lite/experimental/shlo/ops/negate_test.cc
#include "tensorflow/lite/experimental/shlo/ops/negate.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Negate : std::negate<void> {}; NegateOp Create(NegateOp::Attributes) { return {}; } absl::Status Prepare(NegateOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("negate"), input, IsSignedIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("negate"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(NegateOp& op, const Tensor& input, Tensor& output) { Negate negate; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), negate, input, output) } else if (IsSignedIntTensor(input) || IsFloatTensor(input)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), negate, input, output); } return absl::FailedPreconditionError( "stablehlo.negate: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/negate.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<NegateOp> { static std::string Get() { return "Negate"; } }; namespace { struct Negate : std::negate<void> { } negate_ref; INSTANTIATE_TYPED_TEST_SUITE_P(Negate, UnaryElementwiseOpShapePropagationTest, NegateOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Negate, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<NegateOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<NegateOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Negate, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct NegateTest : ::testing::Test {}; TYPED_TEST_SUITE(NegateTest, ArithmeticTestTypes, TestParamNames); TYPED_TEST(NegateTest, ArithmeticTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), negate_ref); auto op = Create(NegateOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedNegateTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedNegateTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedNegateTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = negate_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(NegateOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/negate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/negate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bc5f6db5-7e35-4909-8459-f3482866bc8a
cpp
tensorflow/tensorflow
or
tensorflow/lite/experimental/shlo/ops/or.cc
tensorflow/lite/experimental/shlo/ops/or_test.cc
#include "tensorflow/lite/experimental/shlo/ops/or.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType> struct Or : std::bit_or<void> {}; template <> struct Or<DataType::kI1> : std::logical_or<void> {}; OrOp Create(OrOp::Attributes) { return {}; } absl::Status Prepare(OrOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("or"), lhs, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("or"), lhs, output)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("or"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(OrOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsIntTensor(lhs)) { Or<DataType::kSI32> or_func; DISPATCH_INT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), or_func, lhs, rhs, output); } else if (IsBoolTensor(lhs)) { Or<DataType::kI1> or_func; detail::EvaluateNoQuantization<DataType::kI1>(or_func, lhs, rhs, output); return absl::OkStatus(); } return absl::FailedPreconditionError( "stablehlo.or: Unsupported tensor type in Evaluate."); } }
#include "tensorflow/lite/experimental/shlo/ops/or.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<OrOp> { static std::string Get() { return "Or"; } }; template <DataType> struct Or : std::bit_or<void> {}; template <> struct Or<DataType::kI1> : std::logical_or<void> {}; template <> struct SupportedOpDataType<OrOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Or, BinaryElementwiseOpShapePropagationTest, OrOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< OrOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Or, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<OrOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Or, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; template <class T> struct OrTest : ::testing::Test {}; TYPED_TEST_SUITE(OrTest, SupportedTypes, TestParamNames); TYPED_TEST(OrTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Or<TypeParam::kStorage>()); auto op = Create(OrOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/or.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/or_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0e99cd6-1bb8-4bd4-a429-26688c4f695e
cpp
tensorflow/tensorflow
logistic
tensorflow/lite/experimental/shlo/ops/logistic.cc
tensorflow/lite/delegates/xnnpack/logistic_test.cc
#include "tensorflow/lite/experimental/shlo/ops/logistic.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Logistic { template <class T> T operator()(T v) const { constexpr T one = static_cast<T>(1); return one / (one + std::exp(-v)); } }; template <> F16 Logistic::operator()(F16 v) const { return F16(operator()(static_cast<float>(v))); } template <> BF16 Logistic::operator()(BF16 v) const { return BF16(operator()(static_cast<float>(v))); } LogisticOp Create(LogisticOp::Attributes) { return {}; } absl::Status Prepare(LogisticOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("logistic"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("logistic"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(LogisticOp& op, const Tensor& input, Tensor& output) { Logistic logistic; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), logistic, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), logistic, input, output); } return absl::FailedPreconditionError( "stablehlo.logistic: Unsupported tensor type."); } };
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Logistic, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get()); } TEST(Logistic, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get()); } TEST(Logistic, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get()); } TEST(Logistic, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).RelativeTolerance(1.0e+4f).Test( BuiltinOperator_LOGISTIC, xnnpack_delegate.get()); } TEST(Logistic, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_LOGISTIC, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/logistic.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/logistic_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
efb6078c-2e87-4404-afaf-515287b1e7eb
cpp
tensorflow/tensorflow
multiply
tensorflow/lite/experimental/shlo/ops/multiply.cc
tensorflow/lite/experimental/shlo/ops/multiply_test.cc
#include "tensorflow/lite/experimental/shlo/ops/multiply.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType expressed_type> struct Multiply : std::multiplies<void> {}; template <> struct Multiply<DataType::kI1> { template <class T> T operator()(const T& lhs, const T& rhs) const { return static_cast<T>(lhs && rhs); } }; MultiplyOp Create(MultiplyOp::Attributes) { return {}; } absl::Status Prepare(MultiplyOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("multiply"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("multiply"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("multiply"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MultiplyOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsBoolTensor(lhs)) { detail::EvaluateNoQuantization<DataType::kI1>(Multiply<DataType::kI1>(), lhs, rhs, output); return absl::OkStatus(); } else if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { Multiply<DataType::kF32> multiply; DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), multiply, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { Multiply<DataType::kF32> multiply; DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), multiply, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.multiply: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/multiply.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<MultiplyOp> { static std::string Get() { return "Multiply"; } }; template <DataType expressed_type> struct Multiply : std::multiplies<void> {}; template <> struct Multiply<DataType::kI1> { template <class T> T operator()(const T& lhs, const T& rhs) const { return static_cast<T>(lhs && rhs); } }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Multiply, BinaryElementwiseOpShapePropagationTest, MultiplyOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< MultiplyOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Multiply, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<MultiplyOp, PerAxisQuantizedTestTypes>; INSTANTIATE_TYPED_TEST_SUITE_P(Multiply, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<BoolTestType, ArithmeticTestTypes>; template <class T> struct MultiplyTest : ::testing::Test {}; TYPED_TEST_SUITE(MultiplyTest, ArithmeticTypes, TestParamNames); TYPED_TEST(MultiplyTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Multiply<TypeParam::kStorage>()); auto op = Create(MultiplyOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedMultiplyTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedMultiplyTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedMultiplyTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Multiply<TypeParam::kExpressed>()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(MultiplyOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/multiply.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/multiply_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a581d489-5070-4705-82dd-ec7c21b84a0a
cpp
tensorflow/tensorflow
exponential
tensorflow/lite/experimental/shlo/ops/exponential.cc
tensorflow/lite/experimental/shlo/ops/exponential_test.cc
#include "tensorflow/lite/experimental/shlo/ops/exponential.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Exponential { template <class T> T operator()(T v) const { return std::exp(v); } }; template <> F16 Exponential::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Exponential::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } ExponentialOp Create(ExponentialOp::Attributes) { return {}; } absl::Status Prepare(ExponentialOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("cosine"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("cosine"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(ExponentialOp& op, const Tensor& input, Tensor& output) { Exponential exponential; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), exponential, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), exponential, input, output); } return absl::FailedPreconditionError( "stablehlo.tanh: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/exponential.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<ExponentialOp> { static std::string Get() { return "Exponential"; } }; namespace { struct Exponential { template <class T> T operator()(T v) const { return std::exp(v); } } exponential_ref; template <> F16 Exponential::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Exponential::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Exponential, UnaryElementwiseOpShapePropagationTest, ExponentialOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Exponential, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<ExponentialOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<ExponentialOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Exponential, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct ExponentialTest : ::testing::Test {}; TYPED_TEST_SUITE(ExponentialTest, FloatTestTypes, TestParamNames); TYPED_TEST(ExponentialTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), exponential_ref); auto op = Create(ExponentialOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedExponentialTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedExponentialTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedExponentialTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = exponential_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(ExponentialOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
59c1e898-a0e6-46ad-9852-de3d355afe0a
cpp
tensorflow/tensorflow
count_leading_zeros
tensorflow/lite/experimental/shlo/ops/count_leading_zeros.cc
tensorflow/lite/experimental/shlo/ops/count_leading_zeros_test.cc
#include "tensorflow/lite/experimental/shlo/ops/count_leading_zeros.h" #include <cstdint> #include <type_traits> #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/i4.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct CountLeadingZeros { template <class T> T operator()(T v) const { if constexpr (std::is_same_v<I4, T>) { return I4(absl::countl_zero(static_cast<uint8_t>(v << 4 | 0xf))); } else { return absl::countl_zero(static_cast<std::make_unsigned_t<T>>(v)); } } }; CountLeadingZerosOp Create(CountLeadingZerosOp::Attributes) { return {}; } absl::Status Prepare(CountLeadingZerosOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("count_leading_zeros"), input, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("count_leading_zeros"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(CountLeadingZerosOp& op, const Tensor& input, Tensor& output) { CountLeadingZeros count_leading_zeros; if (IsIntTensor(input)) { DISPATCH_INT(detail::EvaluateNoQuantization, input.tensor_element_type(), count_leading_zeros, input, output); } return absl::FailedPreconditionError( "stablehlo.count_leading_zeros: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/count_leading_zeros.h" #include <cstdint> #include <limits> #include <string> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/numeric/bits.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/i4.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<CountLeadingZerosOp> { static std::string Get() { return "CountLeadingZeros"; } }; template <> struct SupportedOpDataType<CountLeadingZerosOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { struct CountLeadingZeros { template <class T> T operator()(T v) const { if constexpr (std::is_same_v<I4, T>) { return I4(absl::countl_zero(static_cast<uint8_t>(v << 4 | 0xf))); } else { return absl::countl_zero(static_cast<std::make_unsigned_t<T>>(v)); } } } count_leading_zeros_ref; template <class T> struct CountLeadingZerosFunctorTest : ::testing::Test {}; using CountLeadingZerosTypes = ::testing::Types<int32_t, int16_t, int8_t, I4>; TYPED_TEST_SUITE(CountLeadingZerosFunctorTest, CountLeadingZerosTypes); TYPED_TEST(CountLeadingZerosFunctorTest, GivesCorrectResults) { int64_t bit_count = 8 * sizeof(TypeParam); if constexpr (std::is_same_v<I4, TypeParam>) { bit_count = 4; } EXPECT_EQ(count_leading_zeros_ref(std::numeric_limits<TypeParam>::lowest()), 0); EXPECT_EQ(count_leading_zeros_ref(static_cast<TypeParam>(-1)), 0); EXPECT_EQ(count_leading_zeros_ref(static_cast<TypeParam>(0)), bit_count); EXPECT_EQ(count_leading_zeros_ref(static_cast<TypeParam>(1)), bit_count - 1); EXPECT_EQ(count_leading_zeros_ref(static_cast<TypeParam>(2)), bit_count - 2); EXPECT_EQ(count_leading_zeros_ref(std::numeric_limits<TypeParam>::max()), 1); } INSTANTIATE_TYPED_TEST_SUITE_P(CountLeadingZeros, UnaryElementwiseOpShapePropagationTest, CountLeadingZerosOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( CountLeadingZeros, UnaryElementwiseSameBaselineElementTypeConstraintTest, BaselineMismatchSignedIntegerTypes<CountLeadingZerosOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<CountLeadingZerosOp, ConcatTypes<BoolTestType, FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(CountLeadingZeros, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct CountLeadingZerosTest : ::testing::Test {}; TYPED_TEST_SUITE(CountLeadingZerosTest, IntTestTypes, TestParamNames); TYPED_TEST(CountLeadingZerosTest, IntTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = IotaBuffer<TypeParam::kStorage>(shape, -12); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), count_leading_zeros_ref); auto op = Create(CountLeadingZerosOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/count_leading_zeros.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/count_leading_zeros_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5e3dedee-df81-4a6a-9c4f-321c9ec535fd
cpp
tensorflow/tensorflow
abs
tensorflow/lite/experimental/shlo/ops/abs.cc
tensorflow/lite/delegates/xnnpack/abs_test.cc
#include "tensorflow/lite/experimental/shlo/ops/abs.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Abs { template <class T> T operator()(const T& val) { return val < static_cast<T>(0) ? static_cast<T>(-val) : val; } }; AbsOp Create(typename AbsOp::Attributes) { return AbsOp{}; } absl::Status Prepare(AbsOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("abs"), input, IsSignedIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("abs"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(AbsOp& op, const Tensor& input, Tensor& output) { Abs abs; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), abs, input, output) } else if (IsSignedIntTensor(input) || IsFloatTensor(input)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), abs, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Abs, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/abs.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/abs_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
29b4b301-ba9b-4125-8cfa-0bae65f07385
cpp
tensorflow/tensorflow
log_plus_one
tensorflow/lite/experimental/shlo/ops/log_plus_one.cc
tensorflow/lite/experimental/shlo/ops/log_plus_one_test.cc
#include "tensorflow/lite/experimental/shlo/ops/log_plus_one.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct LogPlusOne { template <class T> T operator()(T v) const { return std::log1p(v); } }; template <> F16 LogPlusOne::operator()(F16 v) const { return F16(operator()(static_cast<float>(v))); } template <> BF16 LogPlusOne::operator()(BF16 v) const { return BF16(operator()(static_cast<float>(v))); } LogPlusOneOp Create(LogPlusOneOp::Attributes) { return {}; } absl::Status Prepare(LogPlusOneOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("log_plus_one"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("log_plus_one"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(LogPlusOneOp& op, const Tensor& input, Tensor& output) { LogPlusOne log_plus_one; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), log_plus_one, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), log_plus_one, input, output); } return absl::FailedPreconditionError( "stablehlo.log_plus_one: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/log_plus_one.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<LogPlusOneOp> { static std::string Get() { return "LogPlusOne"; } }; namespace { struct LogPlusOne { template <class T> T operator()(T v) const { return std::log1p(v); } } log_plus_one_ref; template <> F16 LogPlusOne::operator()(F16 v) const { return F16(operator()(static_cast<float>(v))); } template <> BF16 LogPlusOne::operator()(BF16 v) const { return BF16(operator()(static_cast<float>(v))); } INSTANTIATE_TYPED_TEST_SUITE_P(LogPlusOne, UnaryElementwiseOpShapePropagationTest, LogPlusOneOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( LogPlusOne, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<LogPlusOneOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<LogPlusOneOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(LogPlusOne, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct LogPlusOneTest : ::testing::Test {}; TYPED_TEST_SUITE(LogPlusOneTest, FloatTestTypes, TestParamNames); TYPED_TEST(LogPlusOneTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>( shape, static_cast<StorageT>(-0.99)); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), log_plus_one_ref); auto op = Create(LogPlusOneOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedLogPlusOneTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedLogPlusOneTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedLogPlusOneTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape, zero_point); Vector<StorageT> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = log_plus_one_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(LogPlusOneOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/log_plus_one.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/log_plus_one_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
20faff15-9cb2-45e3-8fb6-71e81ba3c0a8
cpp
tensorflow/tensorflow
sine
tensorflow/lite/experimental/shlo/ops/sine.cc
tensorflow/lite/experimental/shlo/ops/sine_test.cc
#include "tensorflow/lite/experimental/shlo/ops/sine.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Sine { template <class T> T operator()(T v) const { return std::sin(v); } }; template <> F16 Sine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Sine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } SineOp Create(SineOp::Attributes) { return {}; } absl::Status Prepare(SineOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("sine"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("sine"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(SineOp& op, const Tensor& input, Tensor& output) { Sine sine; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), sine, input, output) } else if (!input.IsQuantized() && IsFloat(input.StorageType())) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), sine, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/sine.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<SineOp> { static std::string Get() { return "Sine"; } }; namespace { struct Sine { template <class T> T operator()(T v) const { return std::sin(v); } } sine_ref; template <> F16 Sine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Sine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Sine, UnaryElementwiseOpShapePropagationTest, SineOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Sine, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<SineOp>, TestParamNames); using UnsupportedTypes = WithOpTypes< SineOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Sine, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct FloatSineTest : ::testing::Test {}; TYPED_TEST_SUITE(FloatSineTest, FloatTestTypes, TestParamNames); TYPED_TEST(FloatSineTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const TensorType tensor_type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}; Tensor input_tensor{.type = tensor_type, .data = input_data.data()}; Tensor output_tensor{.type = tensor_type, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), sine_ref); auto op = Create(SineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedSineTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedSineTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedSineTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const QuantizedPerTensorTensorType tensor_type = { .shape = shape, .element_type = QuantizedElementTypePerTensor( TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale)}; Tensor input_tensor{.type = tensor_type, .data = input_data.data()}; Tensor output_tensor{.type = tensor_type, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = sine_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(SineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sine.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sine_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b34f93e-e91e-4025-b82e-0a8ba602f71d
cpp
tensorflow/tensorflow
divide
tensorflow/lite/experimental/shlo/ops/divide.cc
tensorflow/lite/experimental/shlo/ops/divide_test.cc
#include "tensorflow/lite/experimental/shlo/ops/divide.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Divide : std::divides<void> {}; DivideOp Create(DivideOp::Attributes) { return {}; } absl::Status Prepare(DivideOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("divide"), lhs, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("divide"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("divide"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(DivideOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Divide divide; if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), divide, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), divide, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.divide: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/divide.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<DivideOp> { static std::string Get() { return "Divide"; } }; struct Divide : std::divides<void> {}; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Divide, BinaryElementwiseOpShapePropagationTest, DivideOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< DivideOp, ConcatTypes<BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Divide, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<DivideOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Divide, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<ArithmeticTestTypes>; template <class T> struct DivideTest : ::testing::Test {}; TYPED_TEST_SUITE(DivideTest, ArithmeticTypes, TestParamNames); TYPED_TEST(DivideTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Divide()); auto op = Create(DivideOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedDivideTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedDivideTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedDivideTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(2); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>( shape, zero_point + 1, zero_point + 5); Vector<StorageT> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Divide()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(DivideOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/divide.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/divide_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8c9e068c-a6d4-43d8-b79a-da70f3a1b567
cpp
tensorflow/tensorflow
cosine
tensorflow/lite/experimental/shlo/ops/cosine.cc
tensorflow/lite/experimental/shlo/ops/cosine_test.cc
#include "tensorflow/lite/experimental/shlo/ops/cosine.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Cosine { template <class T> T operator()(T v) const { return std::cos(v); } }; template <> F16 Cosine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cosine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } CosineOp Create(CosineOp::Attributes) { return {}; } absl::Status Prepare(CosineOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("cosine"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("cosine"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(CosineOp& op, const Tensor& input, Tensor& output) { Cosine cosine; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), cosine, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), cosine, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/cosine.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<CosineOp> { static std::string Get() { return "Cosine"; } }; namespace { struct Cosine { template <class T> T operator()(T v) const { return std::cos(v); } } cosine_ref; template <> F16 Cosine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cosine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Cosine, UnaryElementwiseOpShapePropagationTest, CosineOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Cosine, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<CosineOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<CosineOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Cosine, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct CosineTest : ::testing::Test {}; TYPED_TEST_SUITE(CosineTest, FloatTestTypes, TestParamNames); TYPED_TEST(CosineTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), cosine_ref); auto op = Create(CosineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedCosineTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedCosineTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedCosineTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = cosine_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(CosineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/cosine.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/cosine_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ea45c4e-ae1e-40a8-ad15-5bdd8477954e
cpp
tensorflow/tensorflow
popcnt
tensorflow/lite/experimental/shlo/ops/popcnt.cc
tensorflow/lite/experimental/shlo/ops/popcnt_test.cc
#include "tensorflow/lite/experimental/shlo/ops/popcnt.h" #include <cstdint> #include <type_traits> #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/i4.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Popcnt { template <class T> T operator()(T v) const { if constexpr (std::is_same_v<I4, T>) { return I4(absl::popcount(static_cast<uint8_t>(v & 0xf))); } else { return absl::popcount(static_cast<std::make_unsigned_t<T>>(v)); } } }; PopcntOp Create(PopcntOp::Attributes) { return {}; } absl::Status Prepare(PopcntOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("popcnt"), input, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("popcnt"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(PopcntOp& op, const Tensor& input, Tensor& output) { Popcnt popcnt; if (IsIntTensor(input)) { DISPATCH_INT(detail::EvaluateNoQuantization, input.tensor_element_type(), popcnt, input, output); } return absl::FailedPreconditionError( "stablehlo.popcnt: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/popcnt.h" #include <cstdint> #include <limits> #include <string> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/numeric/bits.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/i4.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<PopcntOp> { static std::string Get() { return "Popcnt"; } }; template <> struct SupportedOpDataType<PopcntOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { struct Popcnt { template <class T> T operator()(T v) const { if constexpr (std::is_same_v<I4, T>) { return I4(absl::popcount(static_cast<uint8_t>(v & 0xf))); } else { return absl::popcount(static_cast<std::make_unsigned_t<T>>(v)); } } } popcnt_ref; using PopcntTypes = ::testing::Types<int32_t, int16_t, int8_t, I4>; template <class T> struct PopcntFunctorTest : ::testing::Test {}; TYPED_TEST_SUITE(PopcntFunctorTest, PopcntTypes); TYPED_TEST(PopcntFunctorTest, GivesCorrectResults) { int64_t bit_count = 8 * sizeof(TypeParam); if constexpr (std::is_same_v<I4, TypeParam>) { bit_count = 4; } EXPECT_EQ(popcnt_ref(std::numeric_limits<TypeParam>::lowest()), 1); EXPECT_EQ(popcnt_ref(static_cast<TypeParam>(-1)), bit_count); EXPECT_EQ(popcnt_ref(static_cast<TypeParam>(0)), 0); EXPECT_EQ(popcnt_ref(static_cast<TypeParam>(1)), 1); EXPECT_EQ(popcnt_ref(static_cast<TypeParam>(2)), 1); EXPECT_EQ(popcnt_ref(static_cast<TypeParam>(3)), 2); EXPECT_EQ(popcnt_ref(std::numeric_limits<TypeParam>::max()), bit_count - 1); } INSTANTIATE_TYPED_TEST_SUITE_P(Popcnt, UnaryElementwiseOpShapePropagationTest, PopcntOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Popcnt, UnaryElementwiseSameBaselineElementTypeConstraintTest, BaselineMismatchSignedIntegerTypes<PopcntOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<PopcntOp, ConcatTypes<BoolTestType, FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Popcnt, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct PopcntTest : ::testing::Test {}; TYPED_TEST_SUITE(PopcntTest, IntTestTypes, TestParamNames); TYPED_TEST(PopcntTest, IntTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = IotaBuffer<TypeParam::kStorage>(shape, -12); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), popcnt_ref); auto op = Create(PopcntOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/popcnt.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/popcnt_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6abba2e5-bea3-4193-8a00-66c00e7ee71b
cpp
tensorflow/tensorflow
subtract
tensorflow/lite/experimental/shlo/ops/subtract.cc
tensorflow/lite/experimental/shlo/ops/subtract_test.cc
#include "tensorflow/lite/experimental/shlo/ops/subtract.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Subtract : std::minus<void> {}; SubtractOp Create(SubtractOp::Attributes) { return {}; } absl::Status Prepare(SubtractOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("subtract"), lhs, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("subtract"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("subtract"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(SubtractOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Subtract subtract; if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), subtract, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), subtract, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.subtract: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/subtract.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<SubtractOp> { static std::string Get() { return "Subtract"; } }; struct Subtract : std::minus<void> {}; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Subtract, BinaryElementwiseOpShapePropagationTest, SubtractOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< SubtractOp, ConcatTypes<BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Subtract, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<SubtractOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Subtract, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<ArithmeticTestTypes>; template <class T> struct SubtractTest : ::testing::Test {}; TYPED_TEST_SUITE(SubtractTest, ArithmeticTypes, TestParamNames); TYPED_TEST(SubtractTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Subtract()); auto op = Create(SubtractOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedSubtractTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedSubtractTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedSubtractTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(2); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Subtract()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(SubtractOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/subtract.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/subtract_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02993a93-84f7-455b-baaa-72db6f6534c1
cpp
tensorflow/tensorflow
sqrt
tensorflow/lite/experimental/shlo/ops/sqrt.cc
tensorflow/lite/delegates/xnnpack/sqrt_test.cc
#include "tensorflow/lite/experimental/shlo/ops/sqrt.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Sqrt { template <class T> T operator()(T v) const { return std::sqrt(v); } }; template <> F16 Sqrt::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Sqrt::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } SqrtOp Create(SqrtOp::Attributes) { return {}; } absl::Status Prepare(SqrtOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("sqrt"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("sqrt"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(SqrtOp& op, const Tensor& input, Tensor& output) { Sqrt sqrt; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), sqrt, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), sqrt, input, output); } return absl::FailedPreconditionError( "stablehlo.sqrt: Unsupported tensor type."); } };
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Sqrt, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQRT, xnnpack_delegate.get()); } TEST(Sqrt, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_SQRT, xnnpack_delegate.get()); } TEST(Sqrt, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_SQRT, xnnpack_delegate.get()); } TEST(Sqrt, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_SQRT, xnnpack_delegate.get()); } TEST(Sqrt, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQRT, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sqrt.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/sqrt_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
522e63ea-e056-4406-bce0-6eb4dfe25fe6
cpp
tensorflow/tensorflow
tanh
tensorflow/lite/experimental/shlo/ops/tanh.cc
tensorflow/lite/delegates/xnnpack/tanh_test.cc
#include "tensorflow/lite/experimental/shlo/ops/tanh.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Tanh { template <class T> T operator()(T v) const { return std::tanh(v); } }; template <> F16 Tanh::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Tanh::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } TanhOp Create(TanhOp::Attributes) { return {}; } absl::Status Prepare(TanhOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("tanh"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("tanh"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(TanhOp& op, const Tensor& input, Tensor& output) { Tanh tanh; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), tanh, input, output) } else if (!input.IsQuantized() && IsFloat(input.StorageType())) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), tanh, input, output); } return absl::FailedPreconditionError( "stablehlo.tanh: Unsupported tensor type."); } };
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Tanh, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_TANH, xnnpack_delegate.get()); } TEST(Tanh, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_TANH, xnnpack_delegate.get()); } TEST(Tanh, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_TANH, xnnpack_delegate.get()); } TEST(Tanh, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).RelativeTolerance(1.0e+4f).Test( BuiltinOperator_TANH, xnnpack_delegate.get()); } TEST(Tanh, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .RelativeTolerance(1.0e+4f) .Test(BuiltinOperator_TANH, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/tanh.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/tanh_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0e36476b-428c-4721-92c0-7e256182bea3
cpp
tensorflow/tensorflow
kvcache
tensorflow/lite/experimental/genai/kvcache.cc
tensorflow/lite/experimental/genai/kvcache_test.cc
#include <algorithm> #include <cstddef> #include <cstdint> #include <cstring> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/experimental/resource/cache_buffer.h" #include "tensorflow/lite/experimental/resource/resource_base.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace llm { static const int kPositionTensor = 0; static const int kKeyTensor = 1; static const int kValueTensor = 2; static const int kFullKeyTensor = 0; static const int kFullValueTensor = 1; static const int kRequiredNumDimensions = 4; static const int kDefaultMaxNumCacheEntries = 2048; static const int kDefaultNumTransformerLayers = 32; static const int kDefaultTransformerLayerId = 0; static const int KVCACHE_KEY_RESOURCE = 42; static const int KVCACHE_VALUE_RESOURCE = 43; struct OpData { int num_layers; int layer_index; int max_num_entries; int first_slot_index; resource::CacheBuffer* key_cache_buffer; resource::CacheBuffer* value_cache_buffer; bool is_initialized; uint8_t* key_cache_ptr; uint8_t* value_cache_ptr; }; void* KVCacheInit(TfLiteContext* context, const char* buffer, size_t length) { OpData* op_data = new OpData(); op_data->max_num_entries = -1; op_data->num_layers = -1; op_data->layer_index = -1; op_data->first_slot_index = -1; op_data->key_cache_buffer = nullptr; op_data->value_cache_buffer = nullptr; op_data->is_initialized = false; op_data->key_cache_ptr = nullptr; op_data->value_cache_ptr = nullptr; return op_data; } TfLiteStatus KVCachePrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); if (!op_data->is_initialized) { const uint8_t* buffer = reinterpret_cast<const uint8_t*>(node->custom_initial_data); const size_t length = node->custom_initial_data_size; auto flexbuffer_map = flexbuffers::GetRoot(buffer, length).AsMap(); int32_t max_num_entries = flexbuffer_map["kv_cache_max"].AsInt32(); int32_t num_layers = flexbuffer_map["num_layers"].AsInt32(); int32_t layer_index = flexbuffer_map["layer_index"].AsInt32(); op_data->max_num_entries = max_num_entries > 0 ? max_num_entries : kDefaultMaxNumCacheEntries; op_data->num_layers = num_layers > 0 ? num_layers : kDefaultNumTransformerLayers; op_data->layer_index = layer_index > 0 ? layer_index : kDefaultTransformerLayerId; op_data->first_slot_index = 0; op_data->is_initialized = true; } const TfLiteTensor* position; const TfLiteTensor* key; const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kPositionTensor, &position)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeyTensor, &key)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &value)); TF_LITE_ENSURE_EQ(context, position->type, kTfLiteInt64); TF_LITE_ENSURE_EQ(context, key->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, value->type, kTfLiteFloat32); TF_LITE_ENSURE(context, NumDimensions(position) == 1); TF_LITE_ENSURE( context, GetTensorShape(position).Dims(0) == GetTensorShape(key).Dims(1)); TF_LITE_ENSURE(context, NumDimensions(key) == kRequiredNumDimensions); TF_LITE_ENSURE(context, GetTensorShape(key).Dims(0) == 1); TF_LITE_ENSURE(context, HaveSameShapes(key, value)); TfLiteTensor* kfull; TfLiteTensor* vfull; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFullKeyTensor, &kfull)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFullValueTensor, &vfull)); kfull->allocation_type = kTfLiteCustom; vfull->allocation_type = kTfLiteCustom; kfull->type = kTfLiteFloat32; vfull->type = kTfLiteFloat32; TfLiteIntArray* input_dims = key->dims; TfLiteIntArray* kcache_dims = TfLiteIntArrayCopy(input_dims); TfLiteIntArray* vcache_dims = TfLiteIntArrayCopy(input_dims); kcache_dims->data[1] = op_data->max_num_entries; vcache_dims->data[1] = op_data->max_num_entries; TfLiteIntArray* kcache_buffer_dims = TfLiteIntArrayCreate(5); kcache_buffer_dims->data[0] = input_dims->data[0]; kcache_buffer_dims->data[1] = op_data->num_layers; kcache_buffer_dims->data[2] = op_data->max_num_entries; kcache_buffer_dims->data[3] = input_dims->data[2]; kcache_buffer_dims->data[4] = input_dims->data[3]; TfLiteIntArray* vcache_buffer_dims = TfLiteIntArrayCopy(kcache_buffer_dims); Subgraph* subgraph = reinterpret_cast<Subgraph*>(context->impl_); auto& resources = subgraph->resources(); if (resources.count(KVCACHE_KEY_RESOURCE) == 0) { auto* cbuffer = new resource::CacheBuffer(); cbuffer->Initialize(*kcache_buffer_dims); resources.emplace(KVCACHE_KEY_RESOURCE, cbuffer); op_data->key_cache_buffer = cbuffer; } else { resource::ResourceBase* resourcePtr = resources.at(KVCACHE_KEY_RESOURCE).get(); resource::CacheBuffer* cbuffer = (resource::CacheBuffer*)(resourcePtr); op_data->key_cache_buffer = cbuffer; } if (resources.count(KVCACHE_VALUE_RESOURCE) == 0) { auto* cbuffer = new resource::CacheBuffer(); cbuffer->Initialize(*vcache_buffer_dims); resources.emplace(KVCACHE_VALUE_RESOURCE, cbuffer); op_data->value_cache_buffer = cbuffer; } else { resource::ResourceBase* resourcePtr = resources.at(KVCACHE_VALUE_RESOURCE).get(); resource::CacheBuffer* cbuffer = (resource::CacheBuffer*)(resourcePtr); op_data->value_cache_buffer = cbuffer; } RuntimeShape shape(GetTensorShape(key)); const int elements_in_one_entry = shape.Dims(2) * shape.Dims(3); const int elements_in_one_block = op_data->max_num_entries * elements_in_one_entry; uint8_t* k_ptr = reinterpret_cast<uint8_t*>(op_data->key_cache_buffer->GetBuffer()); uint8_t* v_ptr = reinterpret_cast<uint8_t*>(op_data->value_cache_buffer->GetBuffer()); k_ptr = k_ptr + sizeof(float) * op_data->layer_index * elements_in_one_block; v_ptr = v_ptr + sizeof(float) * op_data->layer_index * elements_in_one_block; size_t kcache_dims_flatsize = kcache_dims->data[0] * kcache_dims->data[1] * kcache_dims->data[2] * kcache_dims->data[3]; size_t vcache_dims_flatsize = vcache_dims->data[0] * vcache_dims->data[1] * vcache_dims->data[2] * vcache_dims->data[3]; RuntimeShape kfull_shape(GetTensorShape(kfull)); RuntimeShape vfull_shape(GetTensorShape(vfull)); if (kfull_shape.FlatSize() > 1 && vfull_shape.FlatSize() > 1) { TF_LITE_ENSURE_EQ(context, kfull_shape.FlatSize(), kcache_dims_flatsize); TF_LITE_ENSURE_EQ(context, vfull_shape.FlatSize(), vcache_dims_flatsize); } TF_LITE_ENSURE_EQ(context, elements_in_one_block, kcache_dims_flatsize); TF_LITE_ENSURE_EQ(context, elements_in_one_block, vcache_dims_flatsize); kfull->data.data = k_ptr; vfull->data.data = v_ptr; op_data->key_cache_ptr = k_ptr; op_data->value_cache_ptr = v_ptr; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, kfull, kcache_dims)); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, vfull, vcache_dims)); TfLiteIntArrayFree(kcache_buffer_dims); TfLiteIntArrayFree(vcache_buffer_dims); return kTfLiteOk; } void KVCacheFree(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } TfLiteStatus KVCacheEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* position; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kPositionTensor, &position)); const TfLiteTensor* key; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeyTensor, &key)); const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &value)); TfLiteTensor* kfull; TfLiteTensor* vfull; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFullKeyTensor, &kfull)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFullValueTensor, &vfull)); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); float* key_cache_ptr = op_data->key_cache_buffer->GetBuffer(); float* value_cache_ptr = op_data->value_cache_buffer->GetBuffer(); const int layer_index = op_data->layer_index; const int64_t max_num_entries = op_data->max_num_entries; int current_num_entries = op_data->key_cache_buffer->GetNumEntries(layer_index); RuntimeShape shape(GetTensorShape(key)); const int64_t num_slots_needed = shape.Dims(1); const int elements_in_one_entry = shape.Dims(2) * shape.Dims(3); const int elements_in_one_block = op_data->max_num_entries * elements_in_one_entry; const int64_t num_bytes_per_tensor = sizeof(float) * elements_in_one_entry; uint8_t* k_ptr = reinterpret_cast<uint8_t*>(key_cache_ptr); uint8_t* v_ptr = reinterpret_cast<uint8_t*>(value_cache_ptr); k_ptr = k_ptr + sizeof(float) * op_data->layer_index * elements_in_one_block; v_ptr = v_ptr + sizeof(float) * op_data->layer_index * elements_in_one_block; TF_LITE_ENSURE_EQ(context, k_ptr, op_data->key_cache_ptr); TF_LITE_ENSURE_EQ(context, v_ptr, op_data->value_cache_ptr); TF_LITE_ENSURE_EQ(context, k_ptr, kfull->data.data); TF_LITE_ENSURE_EQ(context, v_ptr, vfull->data.data); const int64_t input_first_idx = position->data.i64[0]; const int64_t input_last_idx = input_first_idx + num_slots_needed - 1; const int64_t cache_first_slot_idx = op_data->first_slot_index; const int64_t cache_last_slot_idx = cache_first_slot_idx + op_data->max_num_entries - 1; const int slots_to_shift = std::min( std::max(static_cast<int64_t>(0), input_last_idx - cache_last_slot_idx), max_num_entries); int64_t first_slot = input_first_idx - op_data->first_slot_index; if (first_slot < 0) { TF_LITE_KERNEL_LOG( context, "Can not specify a position before this cache's first slot index of %d", op_data->first_slot_index); return kTfLiteError; } int64_t byte_offset_for_output = first_slot * num_bytes_per_tensor; int64_t num_slots_for_output = num_slots_needed; if (slots_to_shift > 0 && slots_to_shift < max_num_entries) { byte_offset_for_output = 0; num_slots_for_output = max_num_entries; const int bytes_offset = sizeof(float) * elements_in_one_entry * slots_to_shift; const int size_bytes_to_shift = sizeof(float) * elements_in_one_entry * (max_num_entries - slots_to_shift); memmove(k_ptr, k_ptr + bytes_offset, size_bytes_to_shift); memmove(v_ptr, v_ptr + bytes_offset, size_bytes_to_shift); } op_data->first_slot_index = op_data->first_slot_index + slots_to_shift; first_slot = input_first_idx - op_data->first_slot_index; const int64_t bytes_offset_for_cache = first_slot * num_bytes_per_tensor; memcpy(k_ptr + bytes_offset_for_cache, key->data.data, key->bytes); memcpy(v_ptr + bytes_offset_for_cache, value->data.data, value->bytes); current_num_entries = std::min(first_slot + num_slots_needed, max_num_entries); op_data->key_cache_buffer->SetNumEntries(layer_index, current_num_entries); op_data->value_cache_buffer->SetNumEntries(layer_index, current_num_entries); return kTfLiteOk; } } TfLiteRegistration* Register_KV_CACHE() { static TfLiteRegistration r = {llm::KVCacheInit, llm::KVCacheFree, llm::KVCachePrepare, llm::KVCacheEval}; return &r; } } } }
#include <cstdint> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/experimental/genai/genai_ops.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { static const int kDefaultMaxNumCacheEntries = 2048; class SimpleCacheOpModel : public SingleOpModel { public: SimpleCacheOpModel(const TensorData& pos_tensor, const TensorData& k_tensor, const TensorData& v_tensor) { pos_ = AddInput(pos_tensor); k_ = AddInput(k_tensor); v_ = AddInput(v_tensor); kfull_ = AddOutput(k_tensor.type); vfull_ = AddOutput(v_tensor.type); SetCustomOp("KV_Cache", {}, ops::custom::Register_KV_CACHE); BuildInterpreter({GetShape(pos_), GetShape(k_), GetShape(v_)}); } void SetPosition(const std::vector<int64_t>& data) { PopulateTensor(pos_, data); } void SetKey(const std::vector<float>& data) { PopulateTensor(k_, data); } void SetValue(const std::vector<float>& data) { PopulateTensor(v_, data); } void ResizePosition(const std::vector<int>& dims) { interpreter_->ResizeInputTensor(pos_, dims); } void ResizeKey(const std::vector<int>& dims) { interpreter_->ResizeInputTensor(k_, dims); } void ResizeValue(const std::vector<int>& dims) { interpreter_->ResizeInputTensor(v_, dims); } std::vector<float> GetFullK() { const auto output = ExtractVector<float>(kfull_); return output; } std::vector<float> GetFullV() { const auto output = ExtractVector<float>(vfull_); return output; } TfLiteStatus ReAllocate() { return interpreter_->AllocateTensors(); } protected: int pos_; int k_; int v_; int kfull_; int vfull_; }; TEST(SimpleCacheOp1Test, BasicTest) { SimpleCacheOpModel m({TensorType_INT64, {2}}, {TensorType_FLOAT32, {1, 2, 2, 3}}, {TensorType_FLOAT32, {1, 2, 2, 3}}); m.SetPosition({0, 1}); m.SetKey({{1, 0, -6, 2, 4, 3, 1, 0, -6, 2, 4, 3}}); m.SetValue({{4, 2, -4, 2, 4, 2, 4, 2, -4, 2, 4, 2}}); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<float> fullk = m.GetFullK(); std::vector<float> fullv = m.GetFullV(); ASSERT_EQ(fullk.size(), 2 * 3 * kDefaultMaxNumCacheEntries); ASSERT_EQ(fullv.size(), 2 * 3 * kDefaultMaxNumCacheEntries); } TEST(SimpleCacheOp2Test, AddToCache) { SimpleCacheOpModel m({TensorType_INT64, {2}}, {TensorType_FLOAT32, {1, 2, 2, 3}}, {TensorType_FLOAT32, {1, 2, 2, 3}}); m.SetPosition({0, 1}); std::vector<float> key = {1, 5, -6, 2, 4, 3, 8, 9, -8, 7, 2, 11}; m.SetKey(key); std::vector<float> value = {2, 3, -4, 5, 6, 7, 1, 8, -12, 11, 14, 21}; m.SetValue(value); const int key_size = 2 * 3; ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<float> fullk = m.GetFullK(); std::vector<float> fullv = m.GetFullV(); for (int i = 0; i < key.size(); ++i) { ASSERT_EQ(fullk[i], key[i]); ASSERT_EQ(fullv[i], value[i]); } for (int i = key.size(); i < fullk.size(); ++i) { ASSERT_EQ(fullk[i], 0.); ASSERT_EQ(fullv[i], 0.); } ASSERT_EQ(fullk.size(), 2 * 3 * kDefaultMaxNumCacheEntries); ASSERT_EQ(fullv.size(), 2 * 3 * kDefaultMaxNumCacheEntries); for (int i = 0; i < 510; i++) { int offset = 2 * i + 2; m.SetPosition({offset, offset + 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); } fullk = m.GetFullK(); fullv = m.GetFullV(); for (int i = 0; i < 1022 * key_size; ++i) { ASSERT_NE(fullv[i], 0); } for (int i = 1022 * key_size; i < fullk.size(); ++i) { ASSERT_EQ(fullv[i], 0); } } TEST(SimpleCacheOp2Test, ShiftSlotsInCache) { SimpleCacheOpModel m({TensorType_INT64, {2}}, {TensorType_FLOAT32, {1, 2, 2, 3}}, {TensorType_FLOAT32, {1, 2, 2, 3}}); m.SetPosition({0, 1}); std::vector<float> key = {1, 5, -6, 2, 4, 3, 2, 6, -7, 3, 5, 4}; m.SetKey(key); std::vector<float> value = {4, 2, -4, 2, 4, 2, 9, 8, -9, 8, 9, 1}; m.SetValue(value); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<float> fullk = m.GetFullK(); std::vector<float> fullv = m.GetFullV(); for (int i = 0; i < key.size(); ++i) { ASSERT_EQ(fullk[i], key[i]); ASSERT_EQ(fullv[i], value[i]); } for (int i = key.size(); i < fullk.size(); ++i) { ASSERT_EQ(fullk[i], 0.); ASSERT_EQ(fullv[i], 0.); } ASSERT_EQ(fullk.size(), 2 * 3 * kDefaultMaxNumCacheEntries); ASSERT_EQ(fullv.size(), 2 * 3 * kDefaultMaxNumCacheEntries); for (int i = 0; i < 1023; i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); int offset = 2 * i + 2; m.SetPosition({offset, offset + 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); } fullk = m.GetFullK(); fullv = m.GetFullV(); for (int i = 0; i < fullk.size(); ++i) { ASSERT_NE(fullk[i], 0); ASSERT_NE(fullv[i], 0); } for (int j = 0; j < 6; ++j) { int idxfull = fullk.size() - 6 + j; int idx = 6 + j; ASSERT_EQ(fullk[idxfull], key[idx]); ASSERT_EQ(fullv[idxfull], value[idx]); } std::vector<float> key2 = {1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7}; m.SetKey(key2); std::vector<float> value2 = {8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9}; m.SetValue(value2); m.SetPosition({2048, 2049}); ASSERT_EQ(m.Invoke(), kTfLiteOk); fullk = m.GetFullK(); fullv = m.GetFullV(); for (int j = 0; j < 12; ++j) { int idxfull = fullk.size() - 12 + j; ASSERT_EQ(fullk[idxfull], key2[j]); ASSERT_EQ(fullv[idxfull], value2[j]); } m.ResizeKey({1, 1, 2, 3}); m.ResizeValue({1, 1, 2, 3}); m.ResizePosition({1}); m.ReAllocate(); std::vector<float> key3 = {4, 4, 4, 4, 4, 4}; m.SetKey(key3); std::vector<float> value3 = {2, 2, 2, 2, 2, 2}; m.SetValue(value3); m.SetPosition({2050}); ASSERT_EQ(m.Invoke(), kTfLiteOk); fullk = m.GetFullK(); fullv = m.GetFullV(); for (int j = 0; j < 6; ++j) { int idxfull = fullk.size() - 6 + j; ASSERT_EQ(fullk[idxfull], key3[j]); ASSERT_EQ(fullv[idxfull], value3[j]); } for (int j = 0; j < 6; ++j) { int idxfull = fullk.size() - 12 + j; ASSERT_EQ(fullk[idxfull], key2[6 + j]); ASSERT_EQ(fullv[idxfull], value2[6 + j]); } std::vector<float> key4 = {5, 5, 5, 5, 5, 5}; m.SetKey(key3); std::vector<float> value4 = {3, 3, 3, 3, 3, 3}; m.SetValue(value3); m.SetPosition({0}); ASSERT_EQ(m.Invoke(), kTfLiteError); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/genai/kvcache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/genai/kvcache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bffdc450-ccf8-4fbf-aa70-09c947ea0531
cpp
tensorflow/tensorflow
external_kvcache
tensorflow/lite/experimental/genai/external_kvcache.cc
tensorflow/lite/experimental/genai/external_kvcache_test.cc
#include <cstdint> #include <cstring> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace llm { static const int kKeyTensor = 0; static const int kValueTensor = 1; static const int kPositionTensor = 2; static const int kKeySliceTensor = 3; static const int kValueSliceTensor = 4; static const int kRequiredNumDimensions = 4; TfLiteStatus ExternalKVCachePrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 5); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); const TfLiteTensor* k_cache; const TfLiteTensor* v_cache; const TfLiteTensor* position; const TfLiteTensor* k_slice; const TfLiteTensor* v_slice; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeyTensor, &k_cache)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &v_cache)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kPositionTensor, &position)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeySliceTensor, &k_slice)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueSliceTensor, &v_slice)); TfLiteTensor* updated_k_cache; TfLiteTensor* updated_v_cache; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kKeyTensor, &updated_k_cache)); TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kValueTensor, &updated_v_cache)); TF_LITE_ENSURE_EQ(context, k_cache->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, v_cache->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, position->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, k_slice->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, v_slice->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, updated_k_cache->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, updated_v_cache->type, kTfLiteFloat32); TF_LITE_ENSURE(context, HaveSameShapes(k_cache, v_cache)); TF_LITE_ENSURE(context, HaveSameShapes(k_slice, v_slice)); TF_LITE_ENSURE(context, HaveSameShapes(updated_k_cache, updated_v_cache)); TF_LITE_ENSURE(context, HaveSameShapes(k_cache, updated_k_cache)); TF_LITE_ENSURE(context, NumDimensions(k_slice) == kRequiredNumDimensions); TF_LITE_ENSURE(context, NumDimensions(k_cache) == kRequiredNumDimensions); TF_LITE_ENSURE(context, NumDimensions(position) == 1); TF_LITE_ENSURE(context, GetTensorShape(position).Dims(0) == GetTensorShape(k_slice).Dims(1)); TF_LITE_ENSURE(context, GetTensorShape(k_slice).Dims(0) == 1); return kTfLiteOk; } TfLiteStatus ExternalKVCacheEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* k_cache; const TfLiteTensor* v_cache; const TfLiteTensor* position; const TfLiteTensor* k_slice; const TfLiteTensor* v_slice; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeyTensor, &k_cache)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &v_cache)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kPositionTensor, &position)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kKeySliceTensor, &k_slice)); TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueSliceTensor, &v_slice)); TfLiteTensor* updated_k_cache; TfLiteTensor* updated_v_cache; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kKeyTensor, &updated_k_cache)); TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kValueTensor, &updated_v_cache)); if (k_cache->data.raw != updated_k_cache->data.raw) { memcpy(updated_k_cache->data.data, k_cache->data.data, k_cache->bytes); } if (v_cache->data.raw != updated_v_cache->data.raw) { memcpy(updated_v_cache->data.data, v_cache->data.data, v_cache->bytes); } const int32_t elements_in_one_entry = GetTensorShape(k_cache).Dims(2) * GetTensorShape(k_cache).Dims(3); const int32_t cache_size = GetTensorShape(k_cache).Dims(1); int32_t last_update_position = -1; for (int i = 0; i < position->bytes / sizeof(int32_t); ++i) { const int32_t update_position = position->data.i32[i]; if (update_position < last_update_position) { break; } last_update_position = update_position; TF_LITE_ENSURE(context, update_position < cache_size); const int32_t cache_offset = update_position * elements_in_one_entry; const int32_t update_offset = i * elements_in_one_entry; TF_LITE_ENSURE(context, (cache_offset + elements_in_one_entry) * sizeof(float) <= k_cache->bytes); memcpy(updated_k_cache->data.f + cache_offset, k_slice->data.f + update_offset, elements_in_one_entry * sizeof(float)); memcpy(updated_v_cache->data.f + cache_offset, v_slice->data.f + update_offset, elements_in_one_entry * sizeof(float)); } return kTfLiteOk; } } TfLiteRegistration* Register_EXTERNAL_KV_CACHE() { static TfLiteRegistration r = {nullptr, nullptr, llm::ExternalKVCachePrepare, llm::ExternalKVCacheEval}; return &r; } } } }
#include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/experimental/genai/genai_ops.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; using ::testing::TestWithParam; enum class TestType { kSharedKV = 0, kPingPongKV = 1, }; class ExternalKVSingleOpModel : public SingleOpModel { public: ExternalKVSingleOpModel(const TensorData& k_cache, const TensorData& v_cache, const TensorData& pos_tensor, const TensorData& k_slice, const TensorData& v_slice, TestType test_type) : test_type_(test_type) { k_cache_in_ = AddInput(k_cache); v_cache_in_ = AddInput(v_cache); position_ = AddInput(pos_tensor); k_slice_ = AddInput(k_slice); v_slice_ = AddInput(v_slice); k_cache_out_ = AddOutput(k_cache); v_cache_out_ = AddOutput(v_cache); auto get_padded_cache_size = [&](const TensorData& cache) { size_t size = static_cast<size_t>(std::accumulate( cache.shape.begin(), cache.shape.end(), 1.0, std::multiplies<>())); return size + kDefaultTensorAlignment; }; SetCustomOp("EKV_Cache", {}, ops::custom::Register_EXTERNAL_KV_CACHE); BuildInterpreter({GetShape(k_cache_in_), GetShape(v_cache_in_), GetShape(position_), GetShape(k_slice_), GetShape(v_slice_)}); k_cache_1_.resize(get_padded_cache_size(k_cache), 0.0); v_cache_1_.resize(get_padded_cache_size(v_cache), 0.0); k_cache_2_.resize(get_padded_cache_size(k_cache), 0.0); v_cache_2_.resize(get_padded_cache_size(v_cache), 0.0); } TfLiteStatus Run(absl::Span<const int32_t> position, absl::Span<const float> k_slice, absl::Span<const float> v_slice) { if (test_type_ == TestType::kSharedKV) { TF_LITE_ENSURE_STATUS(SharedBufferPrepare()); } else { TF_LITE_ENSURE_STATUS(PingPongBufferPrepare()); } PopulateTensor(position_, position); PopulateTensor(k_slice_, k_slice); PopulateTensor(v_slice_, v_slice); return SingleOpModel::Invoke(); }; std::vector<float> GetKCache() { return ExtractVector<float>(k_cache_out_); } std::vector<float> GetVCache() { return ExtractVector<float>(v_cache_out_); } protected: TfLiteStatus SharedBufferPrepare() { TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(k_cache_1_, k_cache_in_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(v_cache_1_, v_cache_in_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(k_cache_1_, k_cache_out_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(v_cache_1_, v_cache_out_)); return interpreter_->AllocateTensors(); } TfLiteStatus PingPongBufferPrepare() { std::vector<float>* input_k_caches; std::vector<float>* input_v_caches; std::vector<float>* output_k_caches; std::vector<float>* output_v_caches; if (kv_flop_) { input_k_caches = &k_cache_1_; input_v_caches = &v_cache_1_; output_k_caches = &k_cache_2_; output_v_caches = &v_cache_2_; } else { input_k_caches = &k_cache_2_; input_v_caches = &v_cache_2_; output_k_caches = &k_cache_1_; output_v_caches = &v_cache_1_; } kv_flop_ = !kv_flop_; TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(*input_k_caches, k_cache_in_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(*input_v_caches, v_cache_in_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(*output_k_caches, k_cache_out_)); TF_LITE_ENSURE_STATUS( SetCustomAllocationFromCache(*output_v_caches, v_cache_out_)); return interpreter_->AllocateTensors(); } TfLiteStatus SetCustomAllocationFromCache(std::vector<float>& cache, int tensor_index) { size_t total_bytes = cache.size() * sizeof(float); size_t required_number_of_bytes = total_bytes - kDefaultTensorAlignment; void* original_buffer = static_cast<void*>(cache.data()); void* aligned_buffer = std::align(kDefaultTensorAlignment, required_number_of_bytes, original_buffer, total_bytes); if (aligned_buffer == nullptr || reinterpret_cast<intptr_t>(aligned_buffer) % kDefaultTensorAlignment != 0) { return kTfLiteError; } TfLiteCustomAllocation allocation = {.data = aligned_buffer, .bytes = required_number_of_bytes}; return interpreter_->SetCustomAllocationForTensor(tensor_index, allocation); }; int position_; int k_cache_in_; int v_cache_in_; int k_slice_; int v_slice_; int k_cache_out_; int v_cache_out_; TestType test_type_; std::vector<float> k_cache_1_; std::vector<float> v_cache_1_; std::vector<float> k_cache_2_; std::vector<float> v_cache_2_; bool kv_flop_ = true; }; class EKVCacheTest : public TestWithParam<TestType> {}; TEST_P(EKVCacheTest, SingleSliceUpdateTest) { ExternalKVSingleOpModel m( {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_INT32, {1}}, {TensorType_FLOAT32, {1, 1, 2, 2}}, {TensorType_FLOAT32, {1, 1, 2, 2}}, GetParam()); { ASSERT_EQ(m.Run({0}, {10, 11, 12, 13}, {20, 21, 22, 23}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT(k, ElementsAreArray({10, 11, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0})); std::vector<float> v = m.GetVCache(); ASSERT_THAT(v, ElementsAreArray({20, 21, 22, 23, 0, 0, 0, 0, 0, 0, 0, 0})); } { ASSERT_EQ(m.Run({2}, {50, 51, 52, 53}, {60, 61, 62, 63}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT(k, ElementsAreArray({10, 11, 12, 13, 0, 0, 0, 0, 50, 51, 52, 53})); std::vector<float> v = m.GetVCache(); ASSERT_THAT(v, ElementsAreArray({20, 21, 22, 23, 0, 0, 0, 0, 60, 61, 62, 63})); } { ASSERT_EQ(m.Run({1}, {70, 71, 72, 73}, {80, 81, 82, 83}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT( k, ElementsAreArray({10, 11, 12, 13, 70, 71, 72, 73, 50, 51, 52, 53})); std::vector<float> v = m.GetVCache(); ASSERT_THAT( v, ElementsAreArray({20, 21, 22, 23, 80, 81, 82, 83, 60, 61, 62, 63})); } { ASSERT_EQ(m.Run({1}, {1, 2, 3, 4}, {1, 2, 3, 4}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT(k, ElementsAreArray({10, 11, 12, 13, 1, 2, 3, 4, 50, 51, 52, 53})); std::vector<float> v = m.GetVCache(); ASSERT_THAT(v, ElementsAreArray({20, 21, 22, 23, 1, 2, 3, 4, 60, 61, 62, 63})); } } TEST_P(EKVCacheTest, MultipleSliceUpdateTest) { ExternalKVSingleOpModel m( {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_INT32, {2}}, {TensorType_FLOAT32, {1, 2, 2, 2}}, {TensorType_FLOAT32, {1, 2, 2, 2}}, GetParam()); { ASSERT_EQ(m.Run({0, 1}, {1, 1, 1, 1, 2, 2, 2, 2}, {5, 5, 5, 5, 6, 6, 6, 6}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT(k, ElementsAreArray({1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0})); std::vector<float> v = m.GetVCache(); ASSERT_THAT(v, ElementsAreArray({5, 5, 5, 5, 6, 6, 6, 6, 0, 0, 0, 0})); } { ASSERT_EQ( m.Run({1, 2}, {10, 10, 10, 10, 11, 11, 11, 11}, {20, 20, 20, 20, 21, 21, 21, 21}), kTfLiteOk); std::vector<float> k = m.GetKCache(); ASSERT_THAT(k, ElementsAreArray({1, 1, 1, 1, 10, 10, 10, 10, 11, 11, 11, 11})); std::vector<float> v = m.GetVCache(); ASSERT_THAT(v, ElementsAreArray({5, 5, 5, 5, 20, 20, 20, 20, 21, 21, 21, 21})); } } TEST_P(EKVCacheTest, FailsOnOutOfBoundPosition) { ExternalKVSingleOpModel m( {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_FLOAT32, {1, 3, 2, 2}}, {TensorType_INT32, {1}}, {TensorType_FLOAT32, {1, 1, 2, 2}}, {TensorType_FLOAT32, {1, 1, 2, 2}}, GetParam()); ASSERT_EQ(m.Run({3}, {1, 2, 3, 4}, {1, 2, 3, 4}), kTfLiteError); } INSTANTIATE_TEST_SUITE_P(EKVCacheTest, EKVCacheTest, testing::Values(TestType::kSharedKV, TestType::kPingPongKV)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/genai/external_kvcache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/genai/external_kvcache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02af6d36-38bc-425f-b15d-5894c9ee2f50
cpp
tensorflow/tensorflow
resource_variable
tensorflow/lite/experimental/resource/resource_variable.cc
tensorflow/lite/experimental/resource/resource_variable_test.cc
#include "tensorflow/lite/experimental/resource/resource_variable.h" #include <cstdlib> #include <cstring> #include <map> #include <memory> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/experimental/resource/resource_base.h" namespace tflite { namespace resource { ResourceVariable::ResourceVariable() { memset(&tensor_, 0, sizeof(TfLiteTensor)); } ResourceVariable::ResourceVariable(ResourceVariable&& other) { tensor_ = other.tensor_; is_initialized_ = other.is_initialized_; memset(&other.tensor_, 0, sizeof(TfLiteTensor)); other.is_initialized_ = false; } ResourceVariable::~ResourceVariable() { if (is_initialized_) { free(tensor_.data.raw); if (tensor_.dims) { TfLiteIntArrayFree(tensor_.dims); } } } TfLiteStatus ResourceVariable::AssignFrom(const TfLiteTensor* tensor) { char* old_raw = tensor_.data.raw; size_t old_bytes = tensor_.bytes; TfLiteIntArray* old_dims = tensor_.dims; memset(&tensor_, 0, sizeof(tensor_)); tensor_.name = "ResourceVariable"; tensor_.allocation_type = kTfLiteDynamic; tensor_.type = tensor->type; tensor_.params = tensor->params; tensor_.quantization = tensor->quantization; if (TfLiteIntArrayEqual(old_dims, tensor->dims)) { tensor_.dims = old_dims; } else { TfLiteIntArrayFree(old_dims); tensor_.dims = TfLiteIntArrayCopy(tensor->dims); } tensor_.data.raw = old_raw; if (old_bytes != tensor->bytes) { TfLiteTensorRealloc(tensor->bytes, &tensor_); } else { tensor_.bytes = old_bytes; } memcpy(tensor_.data.raw, tensor->data.raw, tensor_.bytes); is_initialized_ = true; return kTfLiteOk; } void CreateResourceVariableIfNotAvailable(ResourceMap* resources, int resource_id) { if (resources->count(resource_id) != 0) { return; } resources->emplace(resource_id, std::make_unique<ResourceVariable>()); } ResourceVariable* GetResourceVariable(ResourceMap* resources, int resource_id) { auto it = resources->find(resource_id); if (it != resources->end()) { return static_cast<ResourceVariable*>(it->second.get()); } return nullptr; } bool IsBuiltinResource(const TfLiteTensor* tensor) { return tensor && tensor->type == kTfLiteResource && tensor->delegate == nullptr; } } }
#include "tensorflow/lite/experimental/resource/resource_variable.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace resource { void InitTensor(const std::vector<int>& shape, TfLiteAllocationType alloc_type, float default_value, TfLiteTensor* tensor) { memset(tensor, 0, sizeof(TfLiteTensor)); int num_elements = 1; for (auto dim : shape) num_elements *= dim; if (shape.empty()) num_elements = 0; float* buf = static_cast<float*>(malloc(sizeof(float) * num_elements)); for (int i = 0; i < num_elements; ++i) buf[i] = default_value; const int bytes = num_elements * sizeof(buf[0]); auto* dims = ConvertArrayToTfLiteIntArray(shape.size(), shape.data()); TfLiteTensorReset(TfLiteType::kTfLiteFloat32, nullptr, dims, {}, reinterpret_cast<char*>(buf), bytes, alloc_type, nullptr, false, tensor); } TEST(ResourceTest, NonDynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); free(tensor.data.raw); TfLiteTensorFree(&tensor); } TEST(ResourceTest, DynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteDynamic, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); TfLiteTensorFree(&tensor); } TEST(ResourceTest, AssignSameSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {1}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(ResourceTest, AssignDifferentSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {2}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); EXPECT_EQ(1, value->dims->size); EXPECT_EQ(1, value->dims->data[0]); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float) * 2, value->bytes); ASSERT_THAT(value, DimsAre({2})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(IsBuiltinResource, IsBuiltinResourceTest) { TfLiteTensor tensor; tensor.type = kTfLiteResource; tensor.delegate = nullptr; EXPECT_TRUE(IsBuiltinResource(&tensor)); EXPECT_FALSE(IsBuiltinResource(nullptr)); tensor.type = kTfLiteFloat32; EXPECT_FALSE(IsBuiltinResource(&tensor)); tensor.type = kTfLiteResource; TfLiteDelegate delegate; tensor.delegate = &delegate; EXPECT_FALSE(IsBuiltinResource(&tensor)); } TEST(ResourceTest, GetMemoryUsage) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {100}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(100 * sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({100})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(100 * sizeof(float), var.GetMemoryUsage()); free(tensor.data.raw); TfLiteTensorFree(&tensor); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/resource_variable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/resource_variable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
98537c84-48af-439f-af8a-69b3af0a998f
cpp
tensorflow/tensorflow
cache_buffer
tensorflow/lite/experimental/resource/cache_buffer.cc
tensorflow/lite/experimental/resource/cache_buffer_test.cc
#include "tensorflow/lite/experimental/resource/cache_buffer.h" #include <cstdlib> #include <cstring> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace resource { TfLiteStatus CacheBuffer::Initialize(const TfLiteIntArray& shape) { dims_ = TfLiteIntArrayCopy(&shape); const size_t buf_size = NumElements(&shape); buffer_.reset(new float[buf_size]); memset(buffer_.get(), 0, sizeof(float) * buf_size); num_entries_.reset(new size_t[shape.data[1]]); memset(num_entries_.get(), 0, sizeof(size_t) * shape.data[1]); is_initialized_ = true; return kTfLiteOk; } size_t CacheBuffer::GetSize() { return sizeof(float) * NumElements(dims_); } size_t CacheBuffer::GetNumEntries(int idx) const { return num_entries_[idx]; } CacheBuffer::~CacheBuffer() { TfLiteIntArrayFree(dims_); } float* CacheBuffer::GetBuffer() { return buffer_.get(); } void CacheBuffer::SetNumEntries(int idx, size_t count) { TFLITE_DCHECK(count <= dims_->data[2]); num_entries_[idx] = count; } } }
#include "tensorflow/lite/experimental/resource/cache_buffer.h" #include <gtest/gtest.h> #include "tensorflow/lite/c/common.h" namespace tflite { namespace resource { TEST(CacheBufferTest, Initialize) { TfLiteIntArray* shape = TfLiteIntArrayCreate(4); shape->data[0] = 1; shape->data[1] = 3; shape->data[2] = 5; shape->data[3] = 7; CacheBuffer cache_buffer; cache_buffer.Initialize(*shape); EXPECT_EQ(cache_buffer.GetSize(), 420); ASSERT_NE(cache_buffer.GetBuffer(), nullptr); EXPECT_EQ(cache_buffer.GetNumEntries(0), 0); EXPECT_EQ(cache_buffer.GetNumEntries(1), 0); EXPECT_EQ(cache_buffer.GetNumEntries(2), 0); cache_buffer.SetNumEntries(0, 3); EXPECT_EQ(cache_buffer.GetNumEntries(0), 3); TfLiteIntArrayFree(shape); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/cache_buffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/cache_buffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
626a0766-a0f3-40f1-ae8f-10783946c2f8
cpp
tensorflow/tensorflow
audio_microfrontend
tensorflow/lite/experimental/microfrontend/audio_microfrontend.cc
tensorflow/lite/experimental/microfrontend/audio_microfrontend_test.cc
#include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/experimental/microfrontend/lib/frontend.h" #include "tensorflow/lite/experimental/microfrontend/lib/frontend_util.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace audio_microfrontend { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; typedef struct { int sample_rate; FrontendState* state; int left_context; int right_context; int frame_stride; bool zero_padding; int out_scale; bool out_float; } TfLiteAudioMicrofrontendParams; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new TfLiteAudioMicrofrontendParams; const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); data->sample_rate = m["sample_rate"].AsInt32(); struct FrontendConfig config; config.window.size_ms = m["window_size"].AsInt32(); config.window.step_size_ms = m["window_step"].AsInt32(); config.filterbank.num_channels = m["num_channels"].AsInt32(); config.filterbank.upper_band_limit = m["upper_band_limit"].AsFloat(); config.filterbank.lower_band_limit = m["lower_band_limit"].AsFloat(); config.noise_reduction.smoothing_bits = m["smoothing_bits"].AsInt32(); config.noise_reduction.even_smoothing = m["even_smoothing"].AsFloat(); config.noise_reduction.odd_smoothing = m["odd_smoothing"].AsFloat(); config.noise_reduction.min_signal_remaining = m["min_signal_remaining"].AsFloat(); config.pcan_gain_control.enable_pcan = m["enable_pcan"].AsBool(); config.pcan_gain_control.strength = m["pcan_strength"].AsFloat(); config.pcan_gain_control.offset = m["pcan_offset"].AsFloat(); config.pcan_gain_control.gain_bits = m["gain_bits"].AsInt32(); config.log_scale.enable_log = m["enable_log"].AsBool(); config.log_scale.scale_shift = m["scale_shift"].AsInt32(); data->state = new FrontendState; FrontendPopulateState(&config, data->state, data->sample_rate); data->left_context = m["left_context"].AsInt32(); data->right_context = m["right_context"].AsInt32(); data->frame_stride = m["frame_stride"].AsInt32(); data->zero_padding = m["zero_padding"].AsBool(); data->out_scale = m["out_scale"].AsInt32(); data->out_float = m["out_float"].AsBool(); return data; } void Free(TfLiteContext* context, void* buffer) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(buffer); FrontendFreeStateContents(data->state); delete data->state; delete data; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1); TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt16); output->type = kTfLiteInt32; if (data->out_float) { output->type = kTfLiteFloat32; } TfLiteIntArray* output_size = TfLiteIntArrayCreate(2); int num_frames = 0; if (input->dims->data[0] >= data->state->window.size) { num_frames = (input->dims->data[0] - data->state->window.size) / data->state->window.step / data->frame_stride + 1; } output_size->data[0] = num_frames; output_size->data[1] = data->state->filterbank.num_channels * (1 + data->left_context + data->right_context); return context->ResizeTensor(context, output, output_size); } template <typename T> void GenerateFeatures(TfLiteAudioMicrofrontendParams* data, const TfLiteTensor* input, TfLiteTensor* output) { const int16_t* audio_data = GetTensorData<int16_t>(input); int64_t audio_size = input->dims->data[0]; T* filterbanks_flat = GetTensorData<T>(output); int num_frames = 0; if (audio_size >= data->state->window.size) { num_frames = (input->dims->data[0] - data->state->window.size) / data->state->window.step + 1; } std::vector<std::vector<T>> frame_buffer(num_frames); int frame_index = 0; while (audio_size > 0) { size_t num_samples_read; struct FrontendOutput output = FrontendProcessSamples( data->state, audio_data, audio_size, &num_samples_read); audio_data += num_samples_read; audio_size -= num_samples_read; if (output.values != nullptr) { frame_buffer[frame_index].reserve(output.size); int i; for (i = 0; i < output.size; ++i) { frame_buffer[frame_index].push_back(static_cast<T>(output.values[i]) / data->out_scale); } ++frame_index; } } int index = 0; std::vector<T> pad(data->state->filterbank.num_channels, 0); int anchor; for (anchor = 0; anchor < frame_buffer.size(); anchor += data->frame_stride) { int frame; for (frame = anchor - data->left_context; frame <= anchor + data->right_context; ++frame) { std::vector<T>* feature; if (data->zero_padding && (frame < 0 || frame >= frame_buffer.size())) { feature = &pad; } else if (frame < 0) { feature = &frame_buffer[0]; } else if (frame >= frame_buffer.size()) { feature = &frame_buffer[frame_buffer.size() - 1]; } else { feature = &frame_buffer[frame]; } for (auto f : *feature) { filterbanks_flat[index++] = f; } } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(node->user_data); FrontendReset(data->state); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (data->out_float) { GenerateFeatures<float>(data, input, output); } else { GenerateFeatures<int32>(data, input, output); } return kTfLiteOk; } } TfLiteRegistration* Register_AUDIO_MICROFRONTEND() { static TfLiteRegistration r = { audio_microfrontend::Init, audio_microfrontend::Free, audio_microfrontend::Prepare, audio_microfrontend::Eval}; return &r; } } } }
#include "tensorflow/lite/experimental/microfrontend/audio_microfrontend.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { namespace { using ::testing::ElementsAreArray; class MicroFrontendOpModel : public SingleOpModel { public: MicroFrontendOpModel(int n_input, int n_frame, int n_frequency_per_frame, int n_left_context, int n_right_context, int n_frame_stride, const std::vector<std::vector<int>>& input_shapes) : n_input_(n_input), n_frame_(n_frame), n_frequency_per_frame_(n_frequency_per_frame), n_left_context_(n_left_context), n_right_context_(n_right_context), n_frame_stride_(n_frame_stride) { input_ = AddInput(TensorType_INT16); output_ = AddOutput(TensorType_INT32); flexbuffers::Builder fbb; fbb.Map([&]() { fbb.Int("sample_rate", 1000); fbb.Int("window_size", 25); fbb.Int("window_step", 10); fbb.Int("num_channels", 2); fbb.Float("upper_band_limit", 450.0); fbb.Float("lower_band_limit", 8.0); fbb.Int("smoothing_bits", 10); fbb.Float("even_smoothing", 0.025); fbb.Float("odd_smoothing", 0.06); fbb.Float("min_signal_remaining", 0.05); fbb.Bool("enable_pcan", true); fbb.Float("pcan_strength", 0.95); fbb.Float("pcan_offset", 80.0); fbb.Int("gain_bits", 21); fbb.Bool("enable_log", true); fbb.Int("scale_shift", 6); fbb.Int("left_context", n_left_context); fbb.Int("right_context", n_right_context); fbb.Int("frame_stride", n_frame_stride); fbb.Bool("zero_padding", true); fbb.Int("out_scale", 1); fbb.Bool("out_float", false); }); fbb.Finish(); SetCustomOp("MICRO_FRONTEND", fbb.GetBuffer(), Register_AUDIO_MICROFRONTEND); BuildInterpreter(input_shapes); } void SetInput(const std::vector<int16_t>& data) { PopulateTensor(input_, data); } std::vector<int> GetOutput() { return ExtractVector<int>(output_); } int num_inputs() { return n_input_; } int num_frmes() { return n_frame_; } int num_frequency_per_frame() { return n_frequency_per_frame_; } int num_left_context() { return n_left_context_; } int num_right_context() { return n_right_context_; } int num_frame_stride() { return n_frame_stride_; } protected: int input_; int output_; int n_input_; int n_frame_; int n_frequency_per_frame_; int n_left_context_; int n_right_context_; int n_frame_stride_; }; class BaseMicroFrontendTest : public ::testing::Test { protected: std::vector<int16_t> micro_frontend_input_; void VerifyGoldens(const std::vector<int16_t>& input, const std::vector<std::vector<int>>& output, MicroFrontendOpModel* micro_frontend, float tolerance = 1e-5) { const int num_inputs = micro_frontend->num_inputs(); EXPECT_GT(num_inputs, 0); const int num_frames = micro_frontend->num_frmes(); EXPECT_GT(num_frames, 0); EXPECT_EQ(num_frames, output.size()); const int num_frequency_per_frame = micro_frontend->num_frequency_per_frame(); EXPECT_GT(num_frequency_per_frame, 0); EXPECT_EQ(num_frequency_per_frame, output[0].size()); micro_frontend->SetInput(input); ASSERT_EQ(micro_frontend->Invoke(), kTfLiteOk); std::vector<int> output_flattened; int anchor; for (anchor = 0; anchor < output.size(); anchor += micro_frontend->num_frame_stride()) { int frame; for (frame = anchor - micro_frontend->num_left_context(); frame <= anchor + micro_frontend->num_right_context(); ++frame) { if (frame < 0 || frame >= output.size()) { int j; for (j = 0; j < num_frequency_per_frame; ++j) { output_flattened.push_back(0.0); } } else { for (auto data_point : output[frame]) { output_flattened.push_back(data_point); } } } } EXPECT_THAT(micro_frontend->GetOutput(), ElementsAreArray(output_flattened)); } }; class TwoConsecutive36InputsMicroFrontendTest : public BaseMicroFrontendTest { void SetUp() override { micro_frontend_input_ = { 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768}; } }; TEST_F(TwoConsecutive36InputsMicroFrontendTest, MicroFrontendBlackBoxTest) { const int n_input = 36; const int n_frame = 2; const int n_frequency_per_frame = 2; MicroFrontendOpModel micro_frontend(n_input, n_frame, n_frequency_per_frame, 1, 1, 1, { {n_input}, }); const std::vector<std::vector<int>> micro_frontend_golden_output = { {479, 425}, {436, 378}}; VerifyGoldens(micro_frontend_input_, micro_frontend_golden_output, &micro_frontend); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/audio_microfrontend.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/audio_microfrontend_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a6e70aec-991c-4fe3-b7a0-d7fcca4b9887
cpp
tensorflow/tensorflow
model_loader
tensorflow/lite/tools/model_loader.cc
tensorflow/lite/tools/model_loader_test.cc
#include "tensorflow/lite/tools/model_loader.h" #include <cstdlib> #include <iostream> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace tools { bool ModelLoader::Init() { if (model_ && model_->initialized()) { return true; } if (!InitInternal()) { return false; } if (!model_ || !model_->initialized()) { return false; } return true; } bool PathModelLoader::InitInternal() { if (model_path_.empty()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "model_path is empty."); return false; } model_ = FlatBufferModel::VerifyAndBuildFromFile(model_path_.c_str()); return true; } bool BufferModelLoader::InitInternal() { if (!caller_owned_buffer_ || model_size_ <= 0) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to create BufferModelLoader: caller_owned_buffer " "is %s; model_size: %zu", caller_owned_buffer_ ? "not null" : "null", model_size_); return false; } model_ = FlatBufferModel::VerifyAndBuildFromBuffer(caller_owned_buffer_, model_size_); return true; } #ifndef _WIN32 bool MmapModelLoader::InitInternal() { if (model_fd_ < 0 || model_offset_ < 0 || model_size_ < 0) { TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Invalid model file descriptor. file descriptor: %d model_offset: " "%zu model_size: %zu", model_fd_, model_offset_, model_size_); return false; } if (!MMAPAllocation::IsSupported()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "MMAPAllocation is not supported."); return false; } auto allocation = std::make_unique<MMAPAllocation>( model_fd_, model_offset_, model_size_, tflite::DefaultErrorReporter()); if (!allocation->valid()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "MMAPAllocation is not valid."); return false; } model_ = FlatBufferModel::VerifyAndBuildFromAllocation(std::move(allocation)); #if FLATBUFFERS_LITTLEENDIAN == 0 model_ = FlatBufferModel::ByteConvertModel(std::move(model_)); #endif return true; } bool PipeModelLoader::InitInternal() { if (pipe_fd_ < 0) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Invalid pipe file descriptor %d", pipe_fd_); return false; } std::free(model_buffer_); model_buffer_ = reinterpret_cast<uint8_t*>(std::malloc(model_size_)); int read_bytes = 0; int remaining_bytes = model_size_; uint8_t* buffer = model_buffer_; while (remaining_bytes > 0 && (read_bytes = read(pipe_fd_, buffer, remaining_bytes)) > 0) { remaining_bytes -= read_bytes; buffer += read_bytes; } close(pipe_fd_); if (read_bytes < 0 || remaining_bytes != 0) { TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Read Model from pipe failed: %s. Expect to read %zu bytes, " "%d bytes missing.", std::strerror(errno), model_size_, remaining_bytes); return false; } model_ = FlatBufferModel::VerifyAndBuildFromBuffer( reinterpret_cast<const char*>(model_buffer_), model_size_); return true; } #endif std::unique_ptr<ModelLoader> CreateModelLoaderFromPath( const std::string& path) { std::vector<absl::string_view> parts = absl::StrSplit(path, ':'); if (parts.empty()) { return nullptr; } #ifndef _WIN32 if (parts[0] == "fd") { int model_fd; size_t model_offset, model_size; if (parts.size() != 4 || !absl::SimpleAtoi(parts[1], &model_fd) || !absl::SimpleAtoi(parts[2], &model_offset) || !absl::SimpleAtoi(parts[3], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } return std::make_unique<MmapModelLoader>(model_fd, model_offset, model_size); } if (parts[0] == "pipe") { int read_fd, write_fd; size_t model_size; if (parts.size() != 4 || !absl::SimpleAtoi(parts[1], &read_fd) || !absl::SimpleAtoi(parts[2], &write_fd) || !absl::SimpleAtoi(parts[3], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } if (write_fd >= 0) { close(write_fd); } return std::make_unique<PipeModelLoader>(read_fd, model_size); } #endif if (parts[0] == "buffer") { int64_t buffer_handle; size_t model_size; if (parts.size() != 3 || !absl::SimpleAtoi(parts[1], &buffer_handle) || !absl::SimpleAtoi(parts[2], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } return std::make_unique<BufferModelLoader>( reinterpret_cast<const char*>(buffer_handle), model_size); } return std::make_unique<PathModelLoader>(path); } } }
#include "tensorflow/lite/tools/model_loader.h" #include <fcntl.h> #include <sys/stat.h> #include <unistd.h> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace tools { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; using ::testing::IsNull; using ::testing::Not; using ::testing::WhenDynamicCastTo; class ModelLoaderTest : public ::testing::Test {}; TEST_F(ModelLoaderTest, CreateFromModelPath) { auto model_loader = std::make_unique<PathModelLoader>(kModelPath); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateFromFdPath) { int fd = open(kModelPath, O_RDONLY); ASSERT_GE(fd, 0); struct stat stat_buf = {0}; ASSERT_EQ(fstat(fd, &stat_buf), 0); auto model_loader = std::make_unique<MmapModelLoader>(fd, 0, stat_buf.st_size); close(fd); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateFromPipePath) { auto model = FlatBufferModel::BuildFromFile(kModelPath); flatbuffers::FlatBufferBuilder fbb; ModelT model_obj; model->GetModel()->UnPackTo(&model_obj); std::string model_description = model_obj.description; FinishModelBuffer(fbb, CreateModel(fbb, &model_obj)); int pipe_fds[2]; ASSERT_EQ(pipe(pipe_fds), 0); pid_t r = fork(); if (r == 0) { close(pipe_fds[0]); int written_bytes = 0; int remaining_bytes = fbb.GetSize(); uint8_t* buffer = fbb.GetBufferPointer(); while (remaining_bytes > 0 && (written_bytes = write(pipe_fds[1], buffer, remaining_bytes)) > 0) { remaining_bytes -= written_bytes; buffer += written_bytes; } close(pipe_fds[1]); ASSERT_TRUE(written_bytes > 0 && remaining_bytes == 0); _exit(0); } close(pipe_fds[1]); auto model_loader = std::make_unique<PipeModelLoader>(pipe_fds[0], fbb.GetSize()); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); EXPECT_EQ(model_loader->GetModel()->GetModel()->description()->string_view(), model_description); } TEST_F(ModelLoaderTest, CreateBufferModelLoader) { auto model = FlatBufferModel::BuildFromFile(kModelPath); flatbuffers::FlatBufferBuilder fbb; ModelT model_obj; model->GetModel()->UnPackTo(&model_obj); std::string model_description = model_obj.description; FinishModelBuffer(fbb, CreateModel(fbb, &model_obj)); ASSERT_NE(model->allocation(), nullptr); auto model_loader = std::make_unique<BufferModelLoader>( reinterpret_cast<const char*>(fbb.GetBufferPointer()), fbb.GetSize()); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); EXPECT_EQ(model_loader->GetModel()->GetModel()->description()->string_view(), model_description); } TEST_F(ModelLoaderTest, InvalidModelPath) { auto model_loader = std::make_unique<PathModelLoader>("invalid/path"); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, InvalidFd) { auto model_loader = std::make_unique<MmapModelLoader>(0, 5, 10); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, InvalidPipe) { auto model_loader = std::make_unique<PipeModelLoader>(-1, 10); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateModelLoaderFromValidPath) { EXPECT_THAT(CreateModelLoaderFromPath("a/b/c").get(), WhenDynamicCastTo<PathModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("fd:1:2:3").get(), WhenDynamicCastTo<MmapModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("pipe:1:2:3").get(), WhenDynamicCastTo<PipeModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("buffer:1:2").get(), WhenDynamicCastTo<BufferModelLoader*>(Not(IsNull()))); } TEST_F(ModelLoaderTest, CreateModelLoaderFromInvalidPath) { EXPECT_EQ(CreateModelLoaderFromPath("fd:1"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("fd:1:2:3:4"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("pipe:1"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("pipe:1:2:3:4"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("buffer:1:2:3"), nullptr); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/model_loader.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/model_loader_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4207ac5e-ac3c-4889-a0b0-7b2ecbf83816
cpp
tensorflow/tensorflow
tool_params
tensorflow/lite/tools/tool_params.cc
tensorflow/lite/tools/tool_params_test.cc
#include "tensorflow/lite/tools/tool_params.h" #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace tools { void ToolParam::AssertHasSameType(ToolParam::ParamType a, ToolParam::ParamType b) { TFLITE_TOOLS_CHECK(a == b) << "Type mismatch while accessing parameter."; } template <> ToolParam::ParamType ToolParam::GetValueType<int32_t>() { return ToolParam::ParamType::TYPE_INT32; } template <> ToolParam::ParamType ToolParam::GetValueType<bool>() { return ToolParam::ParamType::TYPE_BOOL; } template <> ToolParam::ParamType ToolParam::GetValueType<float>() { return ToolParam::ParamType::TYPE_FLOAT; } template <> ToolParam::ParamType ToolParam::GetValueType<std::string>() { return ToolParam::ParamType::TYPE_STRING; } void ToolParams::AssertParamExists(const std::string& name) const { TFLITE_TOOLS_CHECK(HasParam(name)) << name << " was not found."; } void ToolParams::Set(const ToolParams& other) { for (const auto& param : params_) { const ToolParam* other_param = other.GetParam(param.first); if (other_param == nullptr) continue; param.second->Set(*other_param); } } void ToolParams::Merge(const ToolParams& other, bool overwrite) { for (const auto& one : other.params_) { auto it = params_.find(one.first); if (it == params_.end()) { AddParam(one.first, one.second->Clone()); } else if (overwrite) { it->second->Set(*one.second); } } } } }
#include "tensorflow/lite/tools/tool_params.h" #include <gtest/gtest.h> namespace tflite { namespace tools { namespace { TEST(ToolParams, SetTest) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true, 1)); params.Set(others); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_TRUE(params.HasValueSet<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_EQ(0, params.GetPosition<int>("some-int2")); EXPECT_FALSE(params.HasValueSet<int>("some-int2")); EXPECT_FALSE(params.HasParam("some-bool")); } TEST(ToolParams, MergeTestOverwriteTrue) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others, true ); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } TEST(ToolParams, MergeTestOverwriteFalse) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others); EXPECT_EQ(13, params.Get<int>("some-int1")); EXPECT_EQ(0, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/tool_params.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/tool_params_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c05f1a72-d7c8-40ca-9a21-d6f1b89f5fcc
cpp
tensorflow/tensorflow
gen_op_registration
tensorflow/lite/tools/gen_op_registration.cc
tensorflow/lite/tools/gen_op_registration_test.cc
#include "tensorflow/lite/tools/gen_op_registration.h" #include <algorithm> #include <string> #include <vector> #include "re2/re2.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { string NormalizeCustomOpName(const string& op) { string method(op); RE2::GlobalReplace(&method, "([a-z])([A-Z])", "\\1_\\2"); std::transform(method.begin(), method.end(), method.begin(), ::toupper); return method; } void ReadOpsFromModel(const ::tflite::Model* model, tflite::RegisteredOpMap* builtin_ops, tflite::RegisteredOpMap* custom_ops) { if (!model) return; auto opcodes = model->operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { const int version = opcode->version(); auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { auto iter_and_bool = builtin_ops->insert( std::make_pair(tflite::EnumNameBuiltinOperator(builtin_code), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } else { auto iter_and_bool = custom_ops->insert(std::make_pair( opcode->custom_code()->c_str(), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } } } }
#include "tensorflow/lite/tools/gen_op_registration.h" #include <gmock/gmock.h> #include <gtest/gtest.h> using ::testing::ElementsAreArray; namespace tflite { class GenOpRegistrationTest : public ::testing::Test { protected: GenOpRegistrationTest() {} void ReadOps(const string& model_path) { auto model = FlatBufferModel::BuildFromFile(model_path.data()); if (model) { ReadOpsFromModel(model->GetModel(), &builtin_ops_, &custom_ops_); } } std::map<string, std::pair<int, int>> builtin_ops_; std::map<string, std::pair<int, int>> custom_ops_; }; TEST_F(GenOpRegistrationTest, TestNonExistentFiles) { ReadOps("/tmp/tflite_model_1234"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 1}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 1}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestVersionedModels) { ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {3, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {2, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestBothModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestEmptyModels) { ReadOps("tensorflow/lite/testdata/empty_model.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestBrokenMmap) { ReadOps("tensorflow/lite/testdata/test_model_broken.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestNormalizeCustomOpName) { std::vector<std::pair<string, string>> testcase = { {"CustomOp", "CUSTOM_OP"}, {"a", "A"}, {"custom_op", "CUSTOM_OP"}, {"customop", "CUSTOMOP"}, }; for (const auto& test : testcase) { EXPECT_EQ(NormalizeCustomOpName(test.first), test.second); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/gen_op_registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/gen_op_registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
096bf5ca-4d46-4bb3-b4a0-0aa0eeb250b7
cpp
tensorflow/tensorflow
list_flex_ops
tensorflow/lite/tools/list_flex_ops.cc
tensorflow/lite/tools/list_flex_ops_test.cc
#include "tensorflow/lite/tools/list_flex_ops.h" #include <fstream> #include <sstream> #include <string> #include <vector> #include "flatbuffers/flexbuffers.h" #include "json/json.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { std::string OpListToJSONString(const OpKernelSet& flex_ops) { Json::Value result(Json::arrayValue); for (const OpKernel& op : flex_ops) { Json::Value op_kernel(Json::arrayValue); op_kernel.append(Json::Value(op.op_name)); op_kernel.append(Json::Value(op.kernel_name)); result.append(op_kernel); } return Json::FastWriter().write(result); } string FindTensorflowKernelClass(tensorflow::NodeDef* node_def) { if (!node_def || node_def->op().empty()) { LOG(FATAL) << "Invalid NodeDef"; } const tensorflow::OpRegistrationData* op_reg_data; auto status = tensorflow::OpRegistry::Global()->LookUp(node_def->op(), &op_reg_data); if (!status.ok()) { LOG(FATAL) << "Op " << node_def->op() << " not found: " << status; } AddDefaultsToNodeDef(op_reg_data->op_def, node_def); tensorflow::DeviceNameUtils::ParsedName parsed_name; if (!tensorflow::DeviceNameUtils::ParseFullName(node_def->device(), &parsed_name)) { LOG(FATAL) << "Failed to parse device from node_def: " << node_def->ShortDebugString(); } string class_name; if (!tensorflow::FindKernelDef( tensorflow::DeviceType(parsed_name.type.c_str()), *node_def, nullptr , &class_name) .ok()) { LOG(FATAL) << "Failed to find kernel class for op: " << node_def->op(); } return class_name; } void AddFlexOpsFromModel(const tflite::Model* model, OpKernelSet* flex_ops) { auto* subgraphs = model->subgraphs(); if (!subgraphs) return; for (int subgraph_index = 0; subgraph_index < subgraphs->size(); ++subgraph_index) { const tflite::SubGraph* subgraph = subgraphs->Get(subgraph_index); auto* operators = subgraph->operators(); auto* opcodes = model->operator_codes(); if (!operators || !opcodes) continue; for (int i = 0; i < operators->size(); ++i) { const tflite::Operator* op = operators->Get(i); const tflite::OperatorCode* opcode = opcodes->Get(op->opcode_index()); if (tflite::GetBuiltinCode(opcode) != tflite::BuiltinOperator_CUSTOM || !tflite::IsFlexOp(opcode->custom_code()->c_str())) { continue; } std::string flex_op_name(opcode->custom_code()->c_str()); std::string tf_op_name = flex_op_name.substr(strlen(tflite::kFlexCustomCodePrefix)); if (op->custom_options_format() != tflite::CustomOptionsFormat_FLEXBUFFERS) { LOG(FATAL) << "Invalid CustomOptionsFormat"; } const flatbuffers::Vector<uint8_t>* custom_opt_bytes = op->custom_options(); if (custom_opt_bytes && custom_opt_bytes->size()) { const flexbuffers::Vector& v = flexbuffers::GetRoot(custom_opt_bytes->data(), custom_opt_bytes->size()) .AsVector(); std::string nodedef_str = v[1].AsString().str(); tensorflow::NodeDef nodedef; if (nodedef_str.empty() || !nodedef.ParseFromString(nodedef_str)) { LOG(FATAL) << "Failed to parse data into a valid NodeDef"; } *nodedef.mutable_device() = "/CPU:0"; std::string kernel_class = FindTensorflowKernelClass(&nodedef); flex_ops->insert({tf_op_name, kernel_class}); } } } } } }
#include "tensorflow/lite/tools/list_flex_ops.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace flex { class FlexOpsListTest : public ::testing::Test { protected: FlexOpsListTest() {} void ReadOps(const string& path) { std::string full_path = tensorflow::GetDataDependencyFilepath(path); auto model = FlatBufferModel::BuildFromFile(full_path.data()); AddFlexOpsFromModel(model->GetModel(), &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } void ReadOps(const tflite::Model* model) { AddFlexOpsFromModel(model, &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } std::string output_text_; OpKernelSet flex_ops_; }; TfLiteRegistration* Register_TEST() { static TfLiteRegistration r = {nullptr, nullptr, nullptr, nullptr}; return &r; } std::vector<uint8_t> CreateFlexCustomOptions(std::string nodedef_raw_string) { tensorflow::NodeDef node_def; tensorflow::protobuf::TextFormat::ParseFromString(nodedef_raw_string, &node_def); std::string node_def_str = node_def.SerializeAsString(); auto flex_builder = std::make_unique<flexbuffers::Builder>(); flex_builder->Vector([&]() { flex_builder->String(node_def.op()); flex_builder->String(node_def_str); }); flex_builder->Finish(); return flex_builder->GetBuffer(); } class FlexOpModel : public SingleOpModel { public: FlexOpModel(const std::string& op_name, const TensorData& input1, const TensorData& input2, const TensorType& output, const std::vector<uint8_t>& custom_options) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetCustomOp(op_name, custom_options, Register_TEST); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; TEST_F(FlexOpsListTest, TestModelsNoFlex) { ReadOps("tensorflow/lite/testdata/test_model.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestBrokenModel) { EXPECT_DEATH_IF_SUPPORTED( ReadOps("tensorflow/lite/testdata/test_model_broken.bin"), ""); } TEST_F(FlexOpsListTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestFlexAdd) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestTwoModel) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/softplus_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, " "functor::add<float>>\"],[\"Softplus\",\"SoftplusOp<CPUDevice, " "float>\"]]\n"); } TEST_F(FlexOpsListTest, TestDuplicatedOp) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestInvalidCustomOptions) { std::vector<uint8_t> random_custom_options(20); FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, random_custom_options); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to parse data into a valid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNameEmpty) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; std::string random_fieldname = "random string"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Invalid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"FlexInvalidOp\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Op FlexInvalidOp not found"); } TEST_F(FlexOpsListTest, TestKernelNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_BOOL } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to find kernel class for op: Add"); } TEST_F(FlexOpsListTest, TestFlexAddWithSingleOpModel) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); ReadOps(tflite::GetModel(max_model.GetModelBuffer())); EXPECT_EQ(output_text_, "[[\"Add\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/list_flex_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/list_flex_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
307db5e8-a1cf-4674-a56e-967b9a33e171
cpp
tensorflow/tensorflow
benchmark_utils
tensorflow/lite/tools/benchmark/benchmark_utils.cc
tensorflow/lite/tools/benchmark/benchmark_utils_test.cc
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace util { void SleepForSeconds(double sleep_seconds) { if (sleep_seconds <= 0.0) { return; } tflite::profiling::time::SleepForMicros( static_cast<uint64_t>(sleep_seconds * 1e6)); } } } }
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace { TEST(BenchmarkHelpersTest, SleepForNegativeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(-5.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_LT(end_ts - start_ts, 1000000); } TEST(BenchmarkHelpersTest, SleepForSomeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(2.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_GT(end_ts - start_ts, 1900000); } TEST(BenchmarkHelpersTest, SplitAndParseFailed) { std::vector<int> results; const bool splitted = util::SplitAndParse("hello;world", ';', &results); EXPECT_FALSE(splitted); } TEST(BenchmarkHelpersTest, SplitAndParseString) { std::vector<std::string> results; const bool splitted = util::SplitAndParse("hello,world", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ("hello", results[0]); EXPECT_EQ("world", results[1]); } TEST(BenchmarkHelpersTest, SplitAndParseInts) { std::vector<int> results; const bool splitted = util::SplitAndParse("1,2", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ(1, results[0]); EXPECT_EQ(2, results[1]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c628d76-0061-41ef-ac7a-3ab387fdc529
cpp
tensorflow/tensorflow
benchmark_tflite_model
tensorflow/lite/tools/benchmark/benchmark_tflite_model.cc
tensorflow/lite/tools/benchmark/benchmark_tflite_model_test.cc
#include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include <algorithm> #include <cstdarg> #include <cstdint> #include <cstdlib> #include <cstring> #include <fstream> #include <functional> #include <iostream> #include <memory> #include <random> #include <sstream> #include <string> #include <string_view> #include <unordered_set> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/strings/numbers.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "ruy/profiler/profiler.h" #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/core/signature_runner.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/optional_debug_tools.h" #include "tensorflow/lite/profiling/model_runtime_info.h" #include "tensorflow/lite/profiling/profile_summary_formatter.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/tools/benchmark/benchmark_params.h" #include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include "tensorflow/lite/tools/benchmark/profiling_listener.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/model_loader.h" #include "tensorflow/lite/tools/utils.h" void RegisterSelectedOps(::tflite::MutableOpResolver* resolver); void ABSL_ATTRIBUTE_WEAK RegisterSelectedOps(::tflite::MutableOpResolver* resolver) {} namespace tflite { namespace benchmark { namespace { using utils::InputTensorData; using utils::VoidUniquePtr; #if defined(TFLITE_PROFILING_ENABLED) constexpr bool kOpProfilingEnabledDefault = true; #else constexpr bool kOpProfilingEnabledDefault = false; #endif constexpr char kOpProfilingOutputModeStdout[] = "stdout"; constexpr char kOpProfilingOutputModeCsv[] = "csv"; constexpr char kOpProfilingOutputModeProto[] = "proto"; const char* kOpProfilingOutputModes[] = {kOpProfilingOutputModeStdout, kOpProfilingOutputModeCsv, kOpProfilingOutputModeProto}; TfLiteStatus MaybeSetFeatureValuesFromTensor(const TfLiteTensor& tensor, tensorflow::Example& example) { if (tensor.dims == nullptr) { return kTfLiteError; } int total_elements = 1; for (int i = 0; i < tensor.dims->size; i++) { total_elements *= tensor.dims->data[i]; } tensorflow::Feature& feature = (*example.mutable_features()->mutable_feature())[tensor.name]; switch (tensor.type) { case kTfLiteFloat32: case kTfLiteFloat64: feature.mutable_float_list()->mutable_value()->Resize(total_elements, 0); return utils::TfLiteTensorToFloat32Array( tensor, absl::MakeSpan( feature.mutable_float_list()->mutable_value()->mutable_data(), feature.float_list().value_size())); case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteUInt16: case kTfLiteInt16: case kTfLiteInt32: case kTfLiteUInt32: case kTfLiteUInt64: case kTfLiteInt64: feature.mutable_int64_list()->mutable_value()->Resize(total_elements, 0); return utils::TfLiteTensorToInt64Array( tensor, absl::MakeSpan( feature.mutable_int64_list()->mutable_value()->mutable_data(), feature.int64_list().value_size())); default: return kTfLiteError; } } class RuyProfileListener : public BenchmarkListener { public: void OnBenchmarkStart(const BenchmarkParams& params) override; void OnBenchmarkEnd(const BenchmarkResults& results) override; private: std::unique_ptr<ruy::profiler::ScopeProfile> ruy_profile_; }; void RuyProfileListener::OnBenchmarkStart(const BenchmarkParams& params) { ruy_profile_ = std::make_unique<ruy::profiler::ScopeProfile>(); } void RuyProfileListener::OnBenchmarkEnd(const BenchmarkResults& results) { ruy_profile_ = nullptr; } class InterpreterStatePrinter : public BenchmarkListener { public: explicit InterpreterStatePrinter(Interpreter* interpreter) : interpreter_(interpreter) {} void OnBenchmarkStart(const BenchmarkParams& params) override { params_ = &params; if (params_->Get<bool>("print_preinvoke_state")) { TFLITE_LOG(INFO) << "\n====Printing out TfLite interpreter pre-invoke " "state begins===="; tflite::PrintInterpreterState( interpreter_, params_->Get<int32_t>("tensor_name_display_length"), params_->Get<int32_t>("tensor_type_display_length"), params_->Get<int32_t>("alloc_type_display_length")); TFLITE_LOG(INFO) << "====Printing out TfLite interpreter pre-invoke " "state ends====\n"; } } void OnBenchmarkEnd(const BenchmarkResults& results) override { if (params_->Get<bool>("print_postinvoke_state")) { TFLITE_LOG(INFO) << "\n====Printing out TfLite interpreter post-invoke " "state begins===="; tflite::PrintInterpreterState( interpreter_, params_->Get<int32_t>("tensor_name_display_length"), params_->Get<int32_t>("tensor_type_display_length"), params_->Get<int32_t>("alloc_type_display_length")); TFLITE_LOG(INFO) << "====Printing out TfLite interpreter post-invoke " "state ends====\n"; } } private: Interpreter* const interpreter_ = nullptr; const BenchmarkParams* params_ = nullptr; }; class OutputSaver : public BenchmarkListener { public: explicit OutputSaver(BenchmarkInterpreterRunner* runner) : interpreter_runner_(runner) {} void OnBenchmarkStart(const BenchmarkParams& params) override { params_ = &params; } void OnBenchmarkEnd(const BenchmarkResults& results) override { const std::string path = params_->Get<std::string>("output_filepath"); if (!path.empty()) { std::ofstream ofs(path, std::ofstream::out); if (ofs.good()) { for (int i = 0; i < interpreter_runner_->outputs().size(); i++) { int tensor_index = interpreter_runner_->outputs()[i]; ofs.write(interpreter_runner_->tensor(tensor_index)->data.raw, interpreter_runner_->tensor(tensor_index)->bytes); } ofs.close(); } } const std::string output_proto_path = params_->Get<std::string>("output_proto_filepath"); if (!output_proto_path.empty()) { tensorflow::Example example; for (int i = 0; i < interpreter_runner_->outputs().size(); i++) { const int tensor_index = interpreter_runner_->outputs()[i]; const TfLiteTensor& tensor = *(interpreter_runner_->tensor(tensor_index)); MaybeSetFeatureValuesFromTensor(tensor, example); } std::ofstream ofs(output_proto_path, std::ios::out | std::ios::binary); if (ofs.good()) { example.SerializeToOstream(&ofs); ofs.close(); } } } private: BenchmarkInterpreterRunner* const interpreter_runner_; const BenchmarkParams* params_ = nullptr; }; class ModelRuntimeInfoListener : public BenchmarkListener { public: explicit ModelRuntimeInfoListener(Interpreter* interpreter) : interpreter_(interpreter) {} void OnBenchmarkStart(const BenchmarkParams& params) override { const std::string output_file_path = params.Get<std::string>("model_runtime_info_output_file"); const auto status = profiling::GenerateModelRuntimeInfo(*interpreter_, output_file_path); if (status != kTfLiteOk) { TFLITE_LOG(ERROR) << "Failed to generate model runtime info: " << status; } } private: Interpreter* const interpreter_ = nullptr; }; std::vector<std::string> Split(const std::string& str, const char delim) { if (str.empty()) { return {}; } return absl::StrSplit(str, delim); } int GetNumElements(const TfLiteIntArray* dim_array) { int num_elements = 1; for (size_t i = 0; i < dim_array->size; i++) { num_elements *= dim_array->data[i]; } return num_elements; } void FillRandomString(tflite::DynamicBuffer* buffer, const TfLiteIntArray* dim_array, const std::function<std::string()>& random_func) { int num_elements = GetNumElements(dim_array); for (int i = 0; i < num_elements; ++i) { auto str = random_func(); buffer->AddString(str.data(), str.length()); } } int FindLayerInfoIndex(std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info, const std::string& input_name, const string& names_string) { for (int i = 0; i < info->size(); ++i) { if (info->at(i).name == input_name) { return i; } } TFLITE_LOG(FATAL) << "Cannot find the corresponding input_layer name(" << input_name << ") in --input_layer as " << names_string; return -1; } TfLiteStatus PopulateInputValueRanges( const std::string& names_string, const std::string& value_ranges_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { std::vector<std::string> value_ranges = Split(value_ranges_string, ':'); for (const auto& val : value_ranges) { std::vector<std::string> name_range = Split(val, ','); if (name_range.size() != 3) { TFLITE_LOG(ERROR) << "Wrong input value range item specified: " << val; return kTfLiteError; } int layer_info_idx = FindLayerInfoIndex(info, name_range[0], names_string); int low, high; bool has_low = absl::SimpleAtoi(name_range[1], &low); bool has_high = absl::SimpleAtoi(name_range[2], &high); if (!has_low || !has_high || low > high) { TFLITE_LOG(ERROR) << "Wrong low and high value of the input value range specified: " << val; return kTfLiteError; } info->at(layer_info_idx).has_value_range = true; info->at(layer_info_idx).low = low; info->at(layer_info_idx).high = high; } return kTfLiteOk; } TfLiteStatus PopulateInputValueFiles( const std::string& names_string, const std::string& value_files_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { std::vector<std::string> value_files = Split(value_files_string, ','); for (const auto& val : value_files) { std::pair<std::string, std::string> name_file_pair; TfLiteStatus status = SplitInputLayerNameAndValueFile(val, name_file_pair); if (status != kTfLiteOk) { TFLITE_LOG(ERROR) << "Wrong input value file item specified: " << val; TFLITE_LOG(ERROR) << status; return status; } int layer_info_idx = FindLayerInfoIndex(info, name_file_pair.first, names_string); if (info->at(layer_info_idx).has_value_range) { TFLITE_LOG(WARN) << "The input_name:" << info->at(layer_info_idx).name << " appears both in input_layer_value_files and " "input_layer_value_range. The input_layer_value_range of the " "input_name will be ignored."; } info->at(layer_info_idx).input_file_path = name_file_pair.second; } return kTfLiteOk; } TfLiteStatus PopulateInputLayerInfo( const std::string& names_string, const std::string& shapes_string, const std::string& value_ranges_string, const std::string& value_files_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { info->clear(); std::vector<std::string> names = Split(names_string, ','); std::vector<std::string> shapes = Split(shapes_string, ':'); if (names.size() != shapes.size()) { TFLITE_LOG(ERROR) << "The number of items in --input_layer_shape (" << shapes_string << ", with " << shapes.size() << " items) must match the number of items in --input_layer (" << names_string << ", with " << names.size() << " items). For example --input_layer=input1,input2 " "--input_layer_shape=1,224,224,4:1,20"; return kTfLiteError; } for (int i = 0; i < names.size(); ++i) { info->push_back(BenchmarkTfLiteModel::InputLayerInfo()); BenchmarkTfLiteModel::InputLayerInfo& input = info->back(); input.name = names[i]; TFLITE_TOOLS_CHECK(util::SplitAndParse(shapes[i], ',', &input.shape)) << "Incorrect size string specified: " << shapes[i]; for (int dim : input.shape) { if (dim == -1) { TFLITE_LOG(ERROR) << "Any unknown sizes in the shapes (-1's) must be replaced" << " with the size you want to benchmark with."; return kTfLiteError; } } } TF_LITE_ENSURE_STATUS( PopulateInputValueRanges(names_string, value_ranges_string, info)); TF_LITE_ENSURE_STATUS( PopulateInputValueFiles(names_string, value_files_string, info)); return kTfLiteOk; } std::shared_ptr<profiling::ProfileSummaryFormatter> CreateProfileSummaryFormatter(const std::string& output_mode) { if (output_mode == kOpProfilingOutputModeCsv) { return std::make_shared<profiling::ProfileSummaryCSVFormatter>(); } else if (output_mode == kOpProfilingOutputModeProto) { return std::make_shared<profiling::ProfileSummaryProtoFormatter>(); } else { return std::make_shared<profiling::ProfileSummaryDefaultFormatter>(); } } } TfLiteStatus SplitInputLayerNameAndValueFile( const std::string& name_and_value_file, std::pair<std::string, std::string>& name_file_pair) { int delim_index = -1; for (int i = 0; i < name_and_value_file.length() - 1; ++i) { if (name_and_value_file[i] == ':') { if (name_and_value_file[i + 1] == ':') { ++i; } else { if (delim_index == -1) { delim_index = i; } else { TFLITE_LOG(ERROR) << name_and_value_file << " contains more than one delimiter."; return kTfLiteError; } } } } if (delim_index == -1) { TFLITE_LOG(ERROR) << name_and_value_file << " doesn't contain any delimiter."; return kTfLiteError; } name_file_pair.first = absl::StrReplaceAll( name_and_value_file.substr(0, delim_index), {{"::", ":"}}); name_file_pair.second = absl::StrReplaceAll( name_and_value_file.substr(delim_index + 1), {{"::", ":"}}); return kTfLiteOk; } std::pair<TfLiteStatus, std::unique_ptr<BenchmarkInterpreterRunner>> BenchmarkInterpreterRunner::Create(tflite::Interpreter* const interpreter, std::string signature_key) { if (!signature_key.empty()) { const std::vector<const std::string*>& keys = interpreter->signature_keys(); bool found = std::any_of( keys.begin(), keys.end(), [&signature_key](const auto& k) { return *k == signature_key; }); if (keys.size() > 1 && (signature_key.empty() || !found)) { TFLITE_LOG(ERROR) << "Signature not specified or incorrect for graph with multiple " "signatures. Pass one of the following to the flag " "\"--signature_to_run_for\""; for (const std::string* k : keys) { TFLITE_LOG(ERROR) << " #> Signature key: " << *k; } return {kTfLiteError, nullptr}; } else if (keys.size() == 1 && signature_key.empty()) { signature_key = *keys[0]; } if (!signature_key.empty() && !keys.empty()) { TFLITE_LOG(INFO) << "Using signature: " << signature_key; auto signature_runner = interpreter->GetSignatureRunner(signature_key.c_str()); if (signature_runner == nullptr) { return {kTfLiteError, nullptr}; } else { int subgraph_index = interpreter->GetSubgraphIndexFromSignature(signature_key.c_str()); return {kTfLiteOk, std::make_unique<BenchmarkInterpreterRunner>( interpreter, signature_runner, interpreter->subgraph(subgraph_index))}; } } } return {kTfLiteOk, std::make_unique<BenchmarkInterpreterRunner>( interpreter, nullptr, nullptr)}; } TfLiteStatus BenchmarkInterpreterRunner::AllocateTensors() { if (signature_runner_ != nullptr) { return signature_runner_->AllocateTensors(); } else { return interpreter_->AllocateTensors(); } } TfLiteStatus BenchmarkInterpreterRunner::Invoke() { if (signature_runner_ != nullptr) { return signature_runner_->Invoke(); } else { return interpreter_->Invoke(); } } const std::vector<int>& BenchmarkInterpreterRunner::execution_plan() const { if (signature_runner_ != nullptr) { return subgraph_->execution_plan(); } else { return interpreter_->execution_plan(); } } const std::vector<int>& BenchmarkInterpreterRunner::inputs() const { if (signature_runner_ != nullptr) { return subgraph_->inputs(); } else { return interpreter_->inputs(); } } const std::vector<int>& BenchmarkInterpreterRunner::outputs() const { if (signature_runner_ != nullptr) { return subgraph_->outputs(); } else { return interpreter_->outputs(); } } TfLiteTensor* BenchmarkInterpreterRunner::tensor(int tensor_index) { if (signature_runner_ != nullptr) { return subgraph_->tensor(tensor_index); } else { return interpreter_->tensor(tensor_index); } } const std::pair<TfLiteNode, TfLiteRegistration>* BenchmarkInterpreterRunner::node_and_registration(int node_index) const { if (signature_runner_ != nullptr) { return subgraph_->node_and_registration(node_index); } else { return interpreter_->node_and_registration(node_index); } } TfLiteStatus BenchmarkInterpreterRunner::ResizeInputTensor( int tensor_index, const std::vector<int>& new_size) { if (signature_runner_ != nullptr) { return subgraph_->ResizeInputTensor(tensor_index, new_size); } else { return interpreter_->ResizeInputTensor(tensor_index, new_size); } } BenchmarkParams BenchmarkTfLiteModel::DefaultParams() { BenchmarkParams default_params = BenchmarkModel::DefaultParams(); default_params.AddParam("graph", BenchmarkParam::Create<std::string>("")); default_params.AddParam("signature_to_run_for", BenchmarkParam::Create<std::string>("")); default_params.AddParam("list_signatures", BenchmarkParam::Create<bool>(false)); default_params.AddParam("input_layer", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_shape", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_value_range", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_value_files", BenchmarkParam::Create<std::string>("")); default_params.AddParam("allow_fp16", BenchmarkParam::Create<bool>(false)); default_params.AddParam("require_full_delegation", BenchmarkParam::Create<bool>(false)); default_params.AddParam( "enable_op_profiling", BenchmarkParam::Create<bool>(kOpProfilingEnabledDefault)); default_params.AddParam( "op_profiling_output_mode", BenchmarkParam::Create<std::string>(kOpProfilingOutputModeStdout)); default_params.AddParam("op_profiling_output_file", BenchmarkParam::Create<std::string>("")); default_params.AddParam("max_profiling_buffer_entries", BenchmarkParam::Create<int32_t>(1024)); default_params.AddParam("allow_dynamic_profiling_buffer_increase", BenchmarkParam::Create<bool>(false)); default_params.AddParam("profiling_output_csv_file", BenchmarkParam::Create<std::string>("")); default_params.AddParam("export_model_runtime_info", BenchmarkParam::Create<bool>(false)); default_params.AddParam("model_runtime_info_output_file", BenchmarkParam::Create<std::string>("")); default_params.AddParam("print_preinvoke_state", BenchmarkParam::Create<bool>(false)); default_params.AddParam("print_postinvoke_state", BenchmarkParam::Create<bool>(false)); default_params.AddParam("release_dynamic_tensors", BenchmarkParam::Create<bool>(false)); default_params.AddParam("optimize_memory_for_large_tensors", BenchmarkParam::Create<int32_t>(0)); default_params.AddParam("disable_delegate_clustering", BenchmarkParam::Create<bool>(false)); default_params.AddParam("enable_builtin_cast_constant_cache", BenchmarkParam::Create<bool>(false)); default_params.AddParam("output_filepath", BenchmarkParam::Create<std::string>("")); default_params.AddParam("output_proto_filepath", BenchmarkParam::Create<std::string>("")); default_params.AddParam("tensor_name_display_length", BenchmarkParam::Create<int32_t>(25)); default_params.AddParam("tensor_type_display_length", BenchmarkParam::Create<int32_t>(15)); default_params.AddParam("alloc_type_display_length", BenchmarkParam::Create<int32_t>(18)); tools::ProvidedDelegateList delegate_providers(&default_params); delegate_providers.AddAllDelegateParams(); return default_params; } BenchmarkTfLiteModel::BenchmarkTfLiteModel(BenchmarkParams params) : BenchmarkModel(std::move(params)), random_engine_(std::random_device()()) { AddListener(&log_output_); } void BenchmarkTfLiteModel::CleanUp() { inputs_data_.clear(); } BenchmarkTfLiteModel::~BenchmarkTfLiteModel() { CleanUp(); interpreter_runner_.reset(); interpreter_.reset(); } std::vector<Flag> BenchmarkTfLiteModel::GetFlags() { std::vector<Flag> flags = BenchmarkModel::GetFlags(); std::vector<Flag> specific_flags = { CreateFlag<std::string>("graph", &params_, "graph file name"), CreateFlag<std::string>("input_layer", &params_, "input layer names"), CreateFlag<std::string>("input_layer_shape", &params_, "input layer shape"), CreateFlag<std::string>( "input_layer_value_range", &params_, "A map-like string representing value range for *integer* input " "layers. Each item is separated by ':', and the item value consists " "of input layer name and integer-only range values (both low and " "high are inclusive) separated by ',', e.g. input1,1,2:input2,0,254"), CreateFlag<std::string>( "input_layer_value_files", &params_, "A map-like string representing value file. Each item is separated " "by ',', and the item value consists " "of input layer name and value file path separated by ':', e.g. " "input1:file_path1,input2:file_path2. In case the input layer name " "contains ':' e.g. \"input:0\", escape it with \"\\:\". If the " "input_name appears both in input_layer_value_range and " "input_layer_value_files, input_layer_value_range of the input_name " "will be ignored. The file format is binary and it should be array " "format or null separated strings format."), CreateFlag<bool>("allow_fp16", &params_, "allow fp16"), CreateFlag<bool>("require_full_delegation", &params_, "require delegate to run the entire graph"), CreateFlag<bool>("enable_op_profiling", &params_, "enable op profiling"), CreateFlag<std::string>( "op_profiling_output_mode", &params_, "Output mode for op profiling results. Supported values are: " "'stdout', 'csv' and 'proto'."), CreateFlag<std::string>("op_profiling_output_file", &params_, "Output file for op profiling results."), CreateFlag<int32_t>("max_profiling_buffer_entries", &params_, "max initial profiling buffer entries"), CreateFlag<bool>("allow_dynamic_profiling_buffer_increase", &params_, "allow dynamic increase on profiling buffer entries"), CreateFlag<std::string>("profiling_output_csv_file", &params_, "[DEPRECATED: Use op_profiling_output_file and " "op_profiling_output_mode instead] File path to " "export profile data as CSV, if not set " "prints to stdout."), CreateFlag<bool>("export_model_runtime_info", &params_, "Enable Model Runtime Info Export"), CreateFlag<std::string>("model_runtime_info_output_file", &params_, "Proto File to export model runtime info to"), CreateFlag<bool>( "print_preinvoke_state", &params_, "print out the interpreter internals just before calling Invoke. The " "internals will include allocated memory size of each tensor etc."), CreateFlag<bool>( "print_postinvoke_state", &params_, "print out the interpreter internals just before benchmark completes " "(i.e. after all repeated Invoke calls complete). The internals will " "include allocated memory size of each tensor etc."), CreateFlag<bool>("release_dynamic_tensors", &params_, "Ensure dynamic tensor's memory is released when they " "are not used."), CreateFlag<int32_t>( "optimize_memory_for_large_tensors", &params_, "Optimize memory usage for large tensors with sacrificing latency."), CreateFlag<bool>("disable_delegate_clustering", &params_, "Disable delegate clustering."), CreateFlag<bool>( "enable_builtin_cast_constant_cache", &params_, "Cache the output of the builtin cast operation when its input " "is a constant tensor."), CreateFlag<std::string>( "output_filepath", &params_, "File path to export outputs layer as binary data."), CreateFlag<std::string>( "output_proto_filepath", &params_, "File path to export outputs layer as tf example proto."), CreateFlag<int32_t>( "tensor_name_display_length", &params_, "The number of characters to show for the tensor's name when " "printing the interpeter's state, defaults to 25."), CreateFlag<int32_t>( "tensor_type_display_length", &params_, "The number of characters to show for the tensor's type when " "printing the interpeter's state, defaults to 15."), CreateFlag<int32_t>( "alloc_type_display_length", &params_, "The number of characters to show for the tensor's allocation type " "when printing the interpeter's state, defaults to 18."), CreateFlag<std::string>( "signature_to_run_for", &params_, "If the model contains multiple signatures, use this flag to specify " "the signature to benchmark. If multiple signatures are present and " "this flag is not specified, the benchmark will throw an error. If " "only one signature is present and this flag is not specified, the " "default signature will be used."), CreateFlag<bool>("list_signatures", &params_, "Displays all signatures present in the model and then " "terminates the program.")}; flags.insert(flags.end(), specific_flags.begin(), specific_flags.end()); tools::ProvidedDelegateList delegate_providers(&params_); delegate_providers.AppendCmdlineFlags(flags); return flags; } void BenchmarkTfLiteModel::LogParams() { BenchmarkModel::LogParams(); const bool verbose = params_.Get<bool>("verbose"); LOG_BENCHMARK_PARAM(std::string, "graph", "Graph", true); LOG_BENCHMARK_PARAM(std::string, "signature_to_run_for", "Signature to run", true); LOG_BENCHMARK_PARAM(bool, "list_signatures", "List signatures from the provided model", false); LOG_BENCHMARK_PARAM(std::string, "input_layer", "Input layers", verbose); LOG_BENCHMARK_PARAM(std::string, "input_layer_shape", "Input shapes", verbose); LOG_BENCHMARK_PARAM(std::string, "input_layer_value_range", "Input value ranges", verbose); LOG_BENCHMARK_PARAM(std::string, "input_layer_value_files", "Input value files", verbose); LOG_BENCHMARK_PARAM(bool, "allow_fp16", "Allow fp16", verbose); LOG_BENCHMARK_PARAM(bool, "require_full_delegation", "Require full delegation", verbose); LOG_BENCHMARK_PARAM(bool, "enable_op_profiling", "Enable op profiling", verbose); LOG_BENCHMARK_PARAM(std::string, "op_profiling_output_mode", "Op profiling output mode.", verbose); LOG_BENCHMARK_PARAM(std::string, "op_profiling_output_file", "Op profiling output file.", verbose); LOG_BENCHMARK_PARAM(int32_t, "max_profiling_buffer_entries", "Max initial profiling buffer entries", verbose); LOG_BENCHMARK_PARAM(bool, "allow_dynamic_profiling_buffer_increase", "Allow dynamic increase on profiling buffer entries", verbose); LOG_BENCHMARK_PARAM(std::string, "profiling_output_csv_file", "CSV File to export profiling data to", verbose); LOG_BENCHMARK_PARAM(bool, "export_model_runtime_info", "Enable Model Runtime Info Export", verbose); LOG_BENCHMARK_PARAM(std::string, "model_runtime_info_output_file", "Proto File to export model runtime info to", verbose); LOG_BENCHMARK_PARAM(bool, "print_preinvoke_state", "Print pre-invoke interpreter state", verbose); LOG_BENCHMARK_PARAM(bool, "print_postinvoke_state", "Print post-invoke interpreter state", verbose); LOG_BENCHMARK_PARAM(bool, "release_dynamic_tensors", "Release dynamic tensor memory", verbose); LOG_BENCHMARK_PARAM(int32_t, "optimize_memory_for_large_tensors", "Optimize memory usage for large tensors", verbose); LOG_BENCHMARK_PARAM(bool, "disable_delegate_clustering", "Disable delegate clustering", verbose); LOG_BENCHMARK_PARAM(bool, "enable_builtin_cast_constant_cache", "Constant CAST output cache", verbose); LOG_BENCHMARK_PARAM(std::string, "output_filepath", "File path to export outputs layer to", verbose); LOG_BENCHMARK_PARAM(std::string, "output_proto_filepath", "File path to export outputs layer as tf example to", verbose); LOG_BENCHMARK_PARAM(int32_t, "tensor_name_display_length", "Tensor name display length", verbose); LOG_BENCHMARK_PARAM(int32_t, "tensor_type_display_length", "Tensor type display length", verbose); LOG_BENCHMARK_PARAM(int32_t, "alloc_type_display_length", "Tensor allocation type display length", verbose); for (const auto& delegate_provider : tools::GetRegisteredDelegateProviders()) { delegate_provider->LogParams(params_, verbose); } } TfLiteStatus BenchmarkTfLiteModel::ValidateParams() { TF_LITE_ENSURE_STATUS(BenchmarkModel::ValidateParams()); if (params_.Get<std::string>("graph").empty()) { TFLITE_LOG(ERROR) << "Please specify the name of your TF Lite input file with --graph"; return kTfLiteError; } if (params_.Get<bool>("enable_op_profiling")) { bool found = std::find(std::begin(kOpProfilingOutputModes), std::end(kOpProfilingOutputModes), params_.Get<std::string>("op_profiling_output_mode")) != std::end(kOpProfilingOutputModes); if (!found) { TFLITE_LOG(ERROR) << "Output mode" << params_.Get<std::string>("op_profiling_output_mode") << " is not supported. Supported values are: 'stdout', " "'csv' and 'proto'."; return kTfLiteError; } if (!params_.Get<std::string>("profiling_output_csv_file").empty()) { params_.Set<std::string>("op_profiling_output_mode", kOpProfilingOutputModeCsv); params_.Set<std::string>( "op_profiling_output_file", params_.Get<std::string>("profiling_output_csv_file")); } } return PopulateInputLayerInfo( params_.Get<std::string>("input_layer"), params_.Get<std::string>("input_layer_shape"), params_.Get<std::string>("input_layer_value_range"), params_.Get<std::string>("input_layer_value_files"), &inputs_); } uint64_t BenchmarkTfLiteModel::ComputeInputBytes() { TFLITE_TOOLS_CHECK(interpreter_runner_); uint64_t total_input_bytes = 0; for (int input : interpreter_runner_->inputs()) { auto* t = interpreter_runner_->tensor(input); total_input_bytes += t->bytes; } return total_input_bytes; } int64_t BenchmarkTfLiteModel::MayGetModelFileSize() { std::string fd_or_graph_path = params_.Get<std::string>("graph"); std::vector<absl::string_view> parts = absl::StrSplit(fd_or_graph_path, ':'); if (!parts.empty() && parts[0] == "fd") { int64_t model_size = -1; if (parts.size() != 4 || !absl::SimpleAtoi(parts[3], &model_size)) { TFLITE_LOG(ERROR) << "Failed to parse model file size: " << fd_or_graph_path; } return model_size; } std::ifstream in_file(fd_or_graph_path, std::ios::binary | std::ios::ate); return in_file.tellg(); } InputTensorData BenchmarkTfLiteModel::LoadInputTensorData( const TfLiteTensor& t, const std::string& input_file_path) { std::ifstream value_file(input_file_path, std::ios::binary); if (!value_file.good()) { TFLITE_LOG(FATAL) << "Failed to read the input_layer_value_file:" << input_file_path; } InputTensorData t_data; if (t.type == kTfLiteString) { t_data.data = VoidUniquePtr( static_cast<void*>(new tflite::DynamicBuffer()), [](void* ptr) { delete static_cast<DynamicBuffer*>(ptr); }); if (input_file_path.size() > 3 && input_file_path.substr(input_file_path.size() - 3) == ".pb") { std::stringstream buffer; buffer << value_file.rdbuf(); static_cast<DynamicBuffer*>(t_data.data.get()) ->AddString(buffer.str().data(), buffer.str().length()); TFLITE_LOG(INFO) << "Read " << buffer.str().length() << " bytes data from " << input_file_path << "."; } else { std::string line; size_t num_line = 0; while (std::getline(value_file, line, '\0')) { num_line++; static_cast<DynamicBuffer*>(t_data.data.get()) ->AddString(line.data(), line.length()); } int num_elements = GetNumElements(t.dims); if (num_line != num_elements) { TFLITE_LOG(FATAL) << "The number of string in the input_layer_value_file(" << input_file_path << ") is " << num_line << ". It should be " << num_elements << "."; } } } else { value_file.seekg(0, std::ios_base::end); if (value_file.tellg() != t.bytes) { TFLITE_LOG(FATAL) << "The size of " << input_file_path << " is " << value_file.tellg() << " bytes. It should be " << t.bytes << " bytes."; } t_data.bytes = t.bytes; t_data.data = VoidUniquePtr(static_cast<void*>(new char[t.bytes]), [](void* ptr) { delete[] static_cast<char*>(ptr); }); value_file.clear(); value_file.seekg(0, std::ios_base::beg); value_file.read(static_cast<char*>(t_data.data.get()), t.bytes); } return t_data; } InputTensorData BenchmarkTfLiteModel::CreateRandomTensorData( const TfLiteTensor& t, const InputLayerInfo* layer_info) { float low_range = 0; float high_range = 0; if (layer_info && layer_info->has_value_range) { low_range = layer_info->low; high_range = layer_info->high; } else { utils::GetDataRangesForType(t.type, &low_range, &high_range); } return utils::CreateRandomTensorData(t, low_range, high_range); } TfLiteStatus BenchmarkTfLiteModel::PrepareInputData() { CleanUp(); const std::vector<int>& runner_inputs = interpreter_runner_->inputs(); for (int i = 0; i < runner_inputs.size(); ++i) { int tensor_index = runner_inputs[i]; const TfLiteTensor& t = *(interpreter_runner_->tensor(tensor_index)); const InputLayerInfo* input_layer_info = nullptr; if (!inputs_.empty()) input_layer_info = &inputs_[i]; InputTensorData t_data; if (input_layer_info && !input_layer_info->input_file_path.empty()) { t_data = LoadInputTensorData(t, input_layer_info->input_file_path); } else { t_data = CreateRandomTensorData(t, input_layer_info); } inputs_data_.push_back(std::move(t_data)); } return kTfLiteOk; } TfLiteStatus BenchmarkTfLiteModel::ResetInputsAndOutputs() { const std::vector<int>& runner_inputs = interpreter_runner_->inputs(); for (int j = 0; j < runner_inputs.size(); ++j) { int i = runner_inputs[j]; TfLiteTensor* t = interpreter_runner_->tensor(i); if (t->type == kTfLiteString) { if (inputs_data_[j].data) { static_cast<DynamicBuffer*>(inputs_data_[j].data.get()) ->WriteToTensor(t, nullptr); } else { tflite::DynamicBuffer buffer; FillRandomString(&buffer, t->dims, []() { return "we're have some friends over saturday to hang out in " "the " "yard"; }); buffer.WriteToTensor(t, nullptr); } } else { std::memcpy(t->data.raw, inputs_data_[j].data.get(), inputs_data_[j].bytes); } } return kTfLiteOk; } TfLiteStatus BenchmarkTfLiteModel::InitInterpreter() { auto resolver = GetOpResolver(); const int32_t num_threads = params_.Get<int32_t>("num_threads"); const bool use_caching = params_.Get<bool>("use_caching"); InterpreterOptions options; options.SetEnsureDynamicTensorsAreReleased( params_.Get<bool>("release_dynamic_tensors")); options.OptimizeMemoryForLargeTensors( params_.Get<int32_t>("optimize_memory_for_large_tensors")); options.SetDisableDelegateClustering( params_.Get<bool>("disable_delegate_clustering")); options.SetCacheConstantCastOp( params_.Get<bool>("enable_builtin_cast_constant_cache")); tflite::InterpreterBuilder builder(*model_, *resolver, &options); if (builder.SetNumThreads(num_threads) != kTfLiteOk) { TFLITE_LOG(ERROR) << "Failed to set thread number"; return kTfLiteError; } builder(&interpreter_); if (!interpreter_) { TFLITE_LOG(ERROR) << "Failed to initialize the interpreter"; return kTfLiteError; } if (use_caching) { external_context_ = std::make_unique<tflite::ExternalCpuBackendContext>(); std::unique_ptr<tflite::CpuBackendContext> cpu_backend_context( new tflite::CpuBackendContext()); cpu_backend_context->SetUseCaching(true); cpu_backend_context->SetMaxNumThreads(num_threads); external_context_->set_internal_backend_context( std::move(cpu_backend_context)); interpreter_->SetExternalContext(kTfLiteCpuBackendContext, external_context_.get()); } return kTfLiteOk; } TfLiteStatus BenchmarkTfLiteModel::Init() { TF_LITE_ENSURE_STATUS(LoadModel()); TF_LITE_ENSURE_STATUS(InitInterpreter()); if (params_.Get<bool>("list_signatures")) { const std::vector<const std::string*>& keys = interpreter_->signature_keys(); TFLITE_LOG(INFO) << "The Model contains " << keys.size() << " signature key(s)."; if (!keys.empty()) { TFLITE_LOG(INFO) << "They are listed below: "; } for (const std::string* key : keys) { TFLITE_LOG(INFO) << "-> Signature Key: " << *key; } return kTfLiteError; } int total_nodes = 0; for (int i = 0; i < interpreter_->subgraphs_size(); ++i) { total_nodes += static_cast<int>(interpreter_->subgraph(i)->nodes_size()); } if (total_nodes > params_.Get<int32_t>("max_profiling_buffer_entries")) { constexpr int kProfilingBufferHeadrooms = 512; params_.Set<int32_t>("max_profiling_buffer_entries", total_nodes + kProfilingBufferHeadrooms); } AddOwnedListener(MayCreateProfilingListener()); AddOwnedListener(std::unique_ptr<BenchmarkListener>( new InterpreterStatePrinter(interpreter_.get()))); if (params_.Get<bool>("export_model_runtime_info")) { AddOwnedListener(std::unique_ptr<BenchmarkListener>( new ModelRuntimeInfoListener(interpreter_.get()))); } interpreter_->SetAllowFp16PrecisionForFp32(params_.Get<bool>("allow_fp16")); std::pair<TfLiteStatus, std::unique_ptr<BenchmarkInterpreterRunner>> status_and_runner = BenchmarkInterpreterRunner::Create( interpreter_.get(), params_.Get<std::string>("signature_to_run_for")); TF_LITE_ENSURE_STATUS(status_and_runner.first); interpreter_runner_ = std::move(status_and_runner.second); const std::vector<int>& runner_inputs = interpreter_runner_->inputs(); if (!inputs_.empty()) { TFLITE_TOOLS_CHECK_EQ(inputs_.size(), runner_inputs.size()) << "Inputs mismatch: Model inputs #:" << inputs_.size() << " expected: " << runner_inputs.size(); } for (int j = 0; j < inputs_.size(); ++j) { const InputLayerInfo& input = inputs_[j]; int i = runner_inputs[j]; TfLiteTensor* t = interpreter_runner_->tensor(i); if (input.name != t->name) { TFLITE_LOG(WARN) << "Tensor # " << i << " is named " << t->name << " but flags call it " << input.name; } if (t->type != kTfLiteString && input.shape.size() != t->dims->size) { TFLITE_LOG(ERROR) << "Input tensor #" << i << " should have " << t->dims->size << " dimensions!"; return kTfLiteError; } } for (int j = 0; j < inputs_.size(); ++j) { const InputLayerInfo& input = inputs_[j]; int i = runner_inputs[j]; TfLiteTensor* t = interpreter_runner_->tensor(i); if (t->type != kTfLiteString) { interpreter_runner_->ResizeInputTensor(i, input.shape); } } owned_delegates_.clear(); std::unordered_set<int> checked_node_ids; tools::ProvidedDelegateList delegate_providers(&params_); auto created_delegates = delegate_providers.CreateAllRankedDelegates(); TFLITE_MAY_LOG(INFO, (created_delegates.size() >= 2)) << "Going to apply " << created_delegates.size() << " delegates one after another."; if (created_delegates.empty() && params_.Get<bool>("require_full_delegation")) { TFLITE_LOG(ERROR) << "Disallowed CPU fallback detected."; return kTfLiteError; } for (auto& created_delegate : created_delegates) { const auto* delegate_provider = created_delegate.provider; TfLiteDelegate* delegate = created_delegate.delegate.get(); TFLITE_TOOLS_CHECK(delegate != nullptr) << "The created delegate by the delegate provider should not be " "nullptr!"; owned_delegates_.emplace_back(std::move(created_delegate.delegate)); if (interpreter_->ModifyGraphWithDelegate(delegate) != kTfLiteOk) { TFLITE_LOG(ERROR) << "Failed to apply " << delegate_provider->GetName() << " delegate."; return kTfLiteError; } else { int num_delegated_kernels = 0; for (int i = 0; i < interpreter_runner_->execution_plan().size(); ++i) { int node_id = interpreter_runner_->execution_plan()[i]; if (checked_node_ids.find(node_id) != checked_node_ids.end()) { continue; } const TfLiteNode& node = interpreter_runner_->node_and_registration(node_id)->first; if (node.delegate != nullptr) { num_delegated_kernels++; checked_node_ids.insert(node_id); } } bool fully_delegated = (num_delegated_kernels == 1 && interpreter_runner_->execution_plan().size() == 1); if (params_.Get<bool>("require_full_delegation") && !fully_delegated) { TFLITE_LOG(ERROR) << "Disallowed CPU fallback detected."; return kTfLiteError; } if (fully_delegated) { TFLITE_LOG(INFO) << "Explicitly applied " << delegate_provider->GetName() << " delegate, and the model graph will be completely" << " executed by the delegate."; } else if (num_delegated_kernels > 0) { TFLITE_LOG(INFO) << "Explicitly applied " << delegate_provider->GetName() << " delegate, and the model graph will be partially" << " executed by the delegate w/ " << num_delegated_kernels << " delegate kernels."; } else { TFLITE_LOG(INFO) << "Though " << delegate_provider->GetName() << " delegate is explicitly applied, the model " "graph will not be" << " executed by the delegate."; } } } if (interpreter_runner_->AllocateTensors() != kTfLiteOk) { TFLITE_LOG(ERROR) << "Failed to allocate tensors!"; return kTfLiteError; } AddOwnedListener( std::unique_ptr<BenchmarkListener>(new RuyProfileListener())); AddOwnedListener(std::unique_ptr<BenchmarkListener>( new OutputSaver(interpreter_runner_.get()))); return kTfLiteOk; } TfLiteStatus BenchmarkTfLiteModel::LoadModel() { std::string fd_or_graph_path = params_.Get<std::string>("graph"); model_loader_ = tools::CreateModelLoaderFromPath(fd_or_graph_path); if (!model_loader_) { TFLITE_LOG(ERROR) << "Failed to initialize model loader with path " << fd_or_graph_path; return kTfLiteError; } if (!model_loader_->Init()) { TFLITE_LOG(ERROR) << "Failed to load model " << fd_or_graph_path; return kTfLiteError; } model_ = tflite::FlatBufferModel::BuildFromBuffer( reinterpret_cast<const char*>( model_loader_->GetModel()->allocation()->base()), model_loader_->GetModel()->allocation()->bytes()); TFLITE_LOG(INFO) << "Loaded model " << fd_or_graph_path; return kTfLiteOk; } std::unique_ptr<tflite::OpResolver> BenchmarkTfLiteModel::GetOpResolver() const { tflite::ops::builtin::BuiltinOpResolver* resolver = nullptr; if (params_.HasParam("use_xnnpack") && params_.HasValueSet<bool>("use_xnnpack") && !params_.Get<bool>("use_xnnpack")) { resolver = new tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates(); } else { resolver = new tflite::ops::builtin::BuiltinOpResolver(); } RegisterSelectedOps(resolver); return std::unique_ptr<tflite::OpResolver>(resolver); } std::unique_ptr<BenchmarkListener> BenchmarkTfLiteModel::MayCreateProfilingListener() const { if (!params_.Get<bool>("enable_op_profiling")) return nullptr; return std::unique_ptr<BenchmarkListener>(new ProfilingListener( interpreter_.get(), params_.Get<int32_t>("max_profiling_buffer_entries"), params_.Get<bool>("allow_dynamic_profiling_buffer_increase"), params_.Get<std::string>("op_profiling_output_file"), CreateProfileSummaryFormatter( params_.Get<std::string>("op_profiling_output_mode")))); } TfLiteStatus BenchmarkTfLiteModel::RunImpl() { return interpreter_runner_->Invoke(); } } }
#include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include <fcntl.h> #include <sys/stat.h> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/tools/benchmark/benchmark_model.h" #include "tensorflow/lite/tools/benchmark/benchmark_params.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace benchmark { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; class TestBenchmarkListener : public BenchmarkListener { public: void OnBenchmarkEnd(const BenchmarkResults& results) override { results_ = results; } BenchmarkResults results_; }; TEST(BenchmarkTfLiteModelTest, GetModelSizeFromPathSucceeded) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); params.Set<std::string>("graph", kModelPath); params.Set<int>("num_runs", 1); params.Set<int>("warmup_runs", 0); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); TestBenchmarkListener listener; benchmark.AddListener(&listener); benchmark.Run(); EXPECT_GE(listener.results_.model_size_mb(), 0); } TEST(BenchmarkTfLiteModelTest, GetModelSizeFromFileDescriptorSucceeded) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); int fd = open(kModelPath, O_RDONLY); ASSERT_GE(fd, 0); int model_offset = 0; struct stat stat_buf = {0}; ASSERT_EQ(fstat(fd, &stat_buf), 0); params.Set<std::string>("graph", absl::StrCat("fd:", fd, ":", model_offset, ":", stat_buf.st_size)); params.Set<int>("num_runs", 1); params.Set<int>("warmup_runs", 0); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); TestBenchmarkListener listener; benchmark.AddListener(&listener); benchmark.Run(); EXPECT_EQ(listener.results_.model_size_mb(), stat_buf.st_size / 1e6); } TEST(BenchmarkTfLiteModelTest, ResizeInputWithDelegate) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); params.Set<std::string>("graph", kModelPath); params.Set<bool>("use_xnnpack", true); params.Set<std::string>("input_layer", "input_87"); params.Set<std::string>("input_layer_shape", "2,224,224,3"); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); EXPECT_EQ(benchmark.Run(), kTfLiteOk); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_tflite_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_tflite_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
440ad401-881b-4038-950a-c4db8e384c34
cpp
tensorflow/tensorflow
latency_benchmark
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.cc
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/latency_benchmark_test.cc
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <errno.h> #include <sys/stat.h> #include <fstream> #include <iterator> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/memory_info.h" #include "tensorflow/lite/tools/benchmark/benchmark_model.h" #include "tensorflow/lite/tools/benchmark/benchmark_params.h" #include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kBenchmarkToolName[] = "(BenchmarkModelAndroid)"; class DelegatePerformanceReportingListener : public BenchmarkListener { public: void OnBenchmarkStart(const BenchmarkParams& unused) override { results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_START); } void OnBenchmarkEnd(const BenchmarkResults& results) override { ReportResult(results); } void ReportFailure(TfLiteStatus status) { std::string status_msg = status == kTfLiteError ? "TFLite error" : (status == kTfLiteDelegateError ? "TFLite delegate error" : "unexpected TFLite status"); TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Benchmark failed due to %s with status code %d.", status_msg.c_str(), status); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_ERROR); results_proto_.mutable_error()->mutable_error_code()->set_tflite_error( status); results_proto_.mutable_error()->set_error_message(status_msg); } const proto::benchmark::LatencyResults& GetResults() { return results_proto_; } private: void ReportResult(const BenchmarkResults& results) { tensorflow::Stat<int64_t> warmup_us = results.warmup_time_us(); tensorflow::Stat<int64_t> inference_us = results.inference_time_us(); profiling::memory::MemoryUsage init_mem_usage = results.init_mem_usage(); profiling::memory::MemoryUsage overall_mem_usage = results.overall_mem_usage(); if (results.model_size_mb() > 0) { AddMetric("model_size_megabyte", results.model_size_mb()); } AddMetric("initialization_latency_us", results.startup_latency_us()); AddMetric("warmup_latency_average_us", warmup_us.avg()); AddMetric("warmup_latency_min_us", warmup_us.min()); AddMetric("warmup_latency_max_us", warmup_us.max()); AddMetric("warmup_latency_standard_deviation_us", warmup_us.std_deviation()); AddMetric("inference_latency_average_us", inference_us.avg()); AddMetric("inference_latency_min_us", inference_us.min()); AddMetric("inference_latency_max_us", inference_us.max()); AddMetric("inference_latency_standard_deviation_us", inference_us.std_deviation()); AddMetric("initialization_memory_max_rss_mebibyte", init_mem_usage.mem_footprint_kb / 1024.0); AddMetric("initialization_memory_total_non_mmapped_heap_mebibyte", init_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "initialization_memory_in_use_heap_mebibyte", init_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); AddMetric("overall_memory_max_rss_mebibyte", overall_mem_usage.mem_footprint_kb / 1024.0); AddMetric( "overall_memory_total_non_mmapped_heap_mebibyte", overall_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "overall_memory_in_use_heap_mebibyte", overall_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_END); TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Benchmark finished."); } void AddMetric(std::string name, float value) { proto::benchmark::BenchmarkMetric* metric = results_proto_.add_metrics(); metric->set_name(name); metric->set_value(value); } proto::benchmark::LatencyResults results_proto_; }; std::vector<std::string> ParseArgumentsFromTfLiteSettings( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path) { std::vector<std::string> args; if (tflite_settings_path.empty()) { return args; } if (tflite_settings.stable_delegate_loader_settings()) { args.push_back(absl::StrFormat("--stable_delegate_settings_file=%s", tflite_settings_path)); return args; } switch (tflite_settings.delegate()) { case Delegate_XNNPACK: { args.push_back("--use_xnnpack=true"); if (tflite_settings.xnnpack_settings()) { if (tflite_settings.xnnpack_settings()->num_threads()) { args.push_back(absl::StrFormat( "--num_threads=%d", tflite_settings.xnnpack_settings()->num_threads())); } if (tflite_settings.xnnpack_settings()->flags() == XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_FORCE_FP16) { args.push_back("--xnnpack_force_fp16=true"); } } return args; } case Delegate_GPU: { args.push_back("--use_gpu=true"); const tflite::GPUSettings* gpu_settings = tflite_settings.gpu_settings(); if (gpu_settings) { if (gpu_settings->is_precision_loss_allowed()) { args.push_back("--gpu_precision_loss_allowed=true"); } if (gpu_settings->enable_quantized_inference()) { args.push_back("--gpu_experimental_enable_quant=true"); } if (gpu_settings->inference_preference() == GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED) { args.push_back("--gpu_inference_for_sustained_speed=true"); } if (gpu_settings->force_backend() == GPUBackend_OPENCL) { args.push_back("--gpu_backend=cl"); } else if (gpu_settings->force_backend() == GPUBackend_OPENGL) { args.push_back("--gpu_backend=gl"); } if (gpu_settings->cache_directory()) { args.push_back( absl::StrFormat("--delegate_serialize_dir=%s", gpu_settings->cache_directory()->c_str())); } if (gpu_settings->model_token()) { args.push_back(absl::StrFormat("--delegate_serialize_token=%s", gpu_settings->model_token()->c_str())); } } break; } case Delegate_EDGETPU: { args.push_back("--use_edgetpu=true"); break; } default: TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Delegate type %s is not enabled by the latency module.", EnumNameDelegate(tflite_settings.delegate())); break; } if (tflite_settings.disable_default_delegates()) { args.push_back("--use_xnnpack=false"); } return args; } } proto::benchmark::LatencyResults Benchmark( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path, int model_fd, size_t model_offset, size_t model_size, const std::vector<std::string>& args) { std::vector<char*> argv; argv.push_back(const_cast<char*>(kBenchmarkToolName)); std::string arg_graph = absl::StrCat("--graph=fd:", model_fd, ":", model_offset, ":", model_size); argv.push_back(const_cast<char*>(arg_graph.data())); std::vector<std::string> args_from_tflite_settings = ParseArgumentsFromTfLiteSettings(tflite_settings, tflite_settings_path); for (const std::string& arg : args_from_tflite_settings) { argv.push_back(const_cast<char*>(arg.data())); } for (const std::string& arg : args) { argv.push_back(const_cast<char*>(arg.data())); } BenchmarkTfLiteModel benchmark; DelegatePerformanceReportingListener delegatePerformanceReporting; benchmark.AddListener(&delegatePerformanceReporting); TfLiteStatus status = benchmark.Run(argv.size(), argv.data()); if (status != kTfLiteOk) { delegatePerformanceReporting.ReportFailure(status); } return delegatePerformanceReporting.GetResults(); } } } }
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <fcntl.h> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; static constexpr char kSettingsFilePath[] = "tensorflow/lite/tools/delegates/experimental/stable_delegate/" "test_sample_stable_delegate_settings.json"; class LatencyBenchmarkTest : public ::testing::Test { protected: void SetUp() override { model_fp_ = fopen(kModelPath, "rb"); ASSERT_TRUE(model_fp_ != nullptr); ASSERT_EQ(fseek(model_fp_, 0, SEEK_END), 0); model_size_ = ftell(model_fp_); ASSERT_NE(model_size_, -1); ASSERT_EQ(fseek(model_fp_, 0, SEEK_SET), 0); settings_ = parser_.Parse(kSettingsFilePath); } delegates::utils::TfLiteSettingsJsonParser parser_; const TFLiteSettings* settings_; size_t model_size_; FILE* model_fp_; std::vector<std::string> args_; }; TEST_F(LatencyBenchmarkTest, FailedWithNullFileDescriptor) { EXPECT_TRUE(Benchmark(*settings_, kSettingsFilePath, 0, 0, 0, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, FailedWithInvalidNumThreadsSettings) { flatbuffers::FlatBufferBuilder fbb; flatbuffers::Offset<tflite::XNNPackSettings> xnnpack_settings = CreateXNNPackSettings(fbb, -3); TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_XNNPACK); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_TRUE(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, SucceedWithEmptyTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithCpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_disable_default_delegates(true); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #ifdef __ANDROID__ TEST_F(LatencyBenchmarkTest, SucceedWithGpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_GPU); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #endif TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegate) { EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegateAndBenchmarkToolArguments) { std::vector<std::string> args = {"--warmup_runs=10"}; EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/latency_benchmark_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3a9b2913-0787-4486-8b90-3e84df9f9f90
cpp
tensorflow/tensorflow
accuracy_benchmark
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.cc
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/accuracy_benchmark_test.cc
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.h" #include <errno.h> #include <stdio.h> #include <sys/stat.h> #include <cstddef> #include <string> #include <vector> #include "flatbuffers/base.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/flatbuffers.h" #include "flatbuffers/vector.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/c/c_api.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/status_codes.h" namespace tflite { namespace benchmark { namespace accuracy { namespace { std::vector<const tflite::BenchmarkEvent*> ToBenchmarkEvents(uint8_t* data, size_t size) { std::vector<const tflite::BenchmarkEvent*> results; uint8_t* current_root = data; while (current_root < data + size) { flatbuffers::uoffset_t current_size = flatbuffers::GetPrefixedSize(current_root); results.push_back( flatbuffers::GetSizePrefixedRoot<tflite::BenchmarkEvent>(current_root)); current_root += current_size + sizeof(flatbuffers::uoffset_t); } TFLITE_CHECK_EQ(current_root, data + size); return results; } } flatbuffers::Offset<BenchmarkEvent> Benchmark( flatbuffers::FlatBufferBuilder& fbb, const TFLiteSettings& tflite_settings, int model_fd, size_t model_offset, size_t model_size, const char* result_path_chars) { std::string result_path(result_path_chars); std::string storage_path = result_path + "/storage_path.fb"; int return_code = std::remove(storage_path.c_str()); if (return_code) { TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Failed to remove storage file (%s): %s.", storage_path.c_str(), strerror(errno)); } flatbuffers::FlatBufferBuilder mini_benchmark_fbb; TFLiteSettingsT tflite_settings_t; tflite_settings.UnPackTo(&tflite_settings_t); flatbuffers::Offset<TFLiteSettings> tflite_settings_offset = CreateTFLiteSettings(mini_benchmark_fbb, &tflite_settings_t); flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TFLiteSettings>>> tflite_settings_vector_offset = mini_benchmark_fbb.CreateVector({tflite_settings_offset}); ModelFileBuilder model_file_builder(mini_benchmark_fbb); model_file_builder.add_fd(model_fd); model_file_builder.add_offset(model_offset); model_file_builder.add_length(model_size); flatbuffers::Offset<ModelFile> model_file_offset = model_file_builder.Finish(); flatbuffers::Offset<BenchmarkStoragePaths> storage_paths_offset = CreateBenchmarkStoragePaths(mini_benchmark_fbb, mini_benchmark_fbb.CreateString(storage_path), mini_benchmark_fbb.CreateString(result_path)); flatbuffers::Offset<ValidationSettings> validation_settings_offset = CreateValidationSettings(mini_benchmark_fbb, 5000); mini_benchmark_fbb.Finish(CreateMinibenchmarkSettings( mini_benchmark_fbb, tflite_settings_vector_offset, model_file_offset, storage_paths_offset, validation_settings_offset)); TfLiteMiniBenchmarkSettings* settings = TfLiteMiniBenchmarkSettingsCreate(); TfLiteMiniBenchmarkSettingsSetFlatBufferData( settings, mini_benchmark_fbb.GetBufferPointer(), mini_benchmark_fbb.GetSize()); TfLiteMiniBenchmarkResult* result = TfLiteBlockingValidatorRunnerTriggerValidation(settings); std::vector<const BenchmarkEvent*> events = ToBenchmarkEvents(TfLiteMiniBenchmarkResultFlatBufferData(result), TfLiteMiniBenchmarkResultFlatBufferDataSize(result)); TfLiteMiniBenchmarkSettingsFree(settings); if (events.size() != 1) { TfLiteMiniBenchmarkResultFree(result); TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Number of result events (%zu) doesn't match the expectation (%zu).", events.size(), 1); flatbuffers::Offset<BenchmarkError> error = CreateBenchmarkError(fbb, BenchmarkStage_INFERENCE, kBenchmarkResultCountMismatch); BenchmarkEventBuilder builder(fbb); builder.add_event_type(BenchmarkEventType_ERROR); builder.add_error(error); return builder.Finish(); } BenchmarkEventT benchmark_event; events[0]->UnPackTo(&benchmark_event); TfLiteMiniBenchmarkResultFree(result); return CreateBenchmarkEvent(fbb, &benchmark_event); } } } }
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.h" #include <fcntl.h> #include <stdio.h> #include <iostream> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_mobilenet_validation_model.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/mini_benchmark_test_helper.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/status_codes.h" namespace tflite { namespace benchmark { namespace accuracy { namespace { class AccuracyBenchmarkTest : public ::testing::Test { protected: void SetUp() override { acceleration::MiniBenchmarkTestHelper helper; should_perform_test_ = helper.should_perform_test(); if (!should_perform_test_) { return; } std::string embedded_model_path = helper.DumpToTempFile( "mobilenet_quant_with_validation.tflite", g_tflite_acceleration_embedded_mobilenet_validation_model, g_tflite_acceleration_embedded_mobilenet_validation_model_len); ASSERT_FALSE(embedded_model_path.empty()); model_fp_ = fopen(embedded_model_path.c_str(), "rb"); ASSERT_NE(model_fp_, nullptr); ASSERT_EQ(fseek(model_fp_, 0, SEEK_END), 0); model_size_ = ftell(model_fp_); ASSERT_NE(model_size_, -1); ASSERT_EQ(fseek(model_fp_, 0, SEEK_SET), 0); result_path_ = ::testing::TempDir(); } void TearDown() override { fclose(model_fp_); } std::string result_path_; size_t model_size_; FILE* model_fp_; bool should_perform_test_ = true; }; TEST_F(AccuracyBenchmarkTest, FailedWithInvalidModelFileDescriptor) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; std::vector<std::string> args; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_sample_stable_delegate_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark(builder, *tflite_settings, 0, 0, 0, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_ERROR); ASSERT_NE(event->error(), nullptr); EXPECT_EQ(event->error()->stage(), BenchmarkStage_INFERENCE); EXPECT_EQ(event->error()->exit_code(), DelegatePerformanceBenchmarkStatus::kBenchmarkResultCountMismatch); } TEST_F(AccuracyBenchmarkTest, SucceedWithSampleStableDelegate) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_sample_stable_delegate_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark( builder, *tflite_settings, fileno(model_fp_), 0, model_size_, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_END); EXPECT_EQ(event->error(), nullptr); } TEST_F(AccuracyBenchmarkTest, SucceedWithEmbeddedValidationAndXNNPack) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark( builder, *tflite_settings, fileno(model_fp_), 0, model_size_, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_END); EXPECT_EQ(event->error(), nullptr); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/accuracy_benchmark_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c899a3c4-6fd5-4e1e-a310-16b62a1d4c34
cpp
tensorflow/tensorflow
quantization_wrapper_utils
tensorflow/lite/tools/optimize/quantization_wrapper_utils.cc
tensorflow/lite/tools/optimize/quantization_wrapper_utils_test.cc
#include "tensorflow/lite/tools/optimize/quantization_wrapper_utils.h" #include <fstream> #include <memory> #include <string> #include <utility> #include "tensorflow/compiler/mlir/lite/tools/optimize/operator_property.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace impl { class FlatBufferModel; } namespace optimize { namespace { #ifdef TFLITE_CUSTOM_LSTM constexpr bool kUseCustomLSTM = true; #else constexpr bool kUseCustomLSTM = false; #endif void MakeTensor(const string& name, std::unique_ptr<TensorT>* tensor) { TensorT* tensor_raw = new TensorT; tensor_raw->name = name; tensor_raw->shape = {0}; tensor_raw->type = TensorType_FLOAT32; tensor->reset(tensor_raw); } string CreateTensorName(int op_index, int tensor_index) { return "intermediate_" + std::to_string(op_index) + "_" + std::to_string(tensor_index); } bool IntermediateTensorExists(ModelT* model) { for (int subgraph_idx = 0; subgraph_idx < model->subgraphs.size(); ++subgraph_idx) { SubGraphT* subgraph = model->subgraphs.at(subgraph_idx).get(); for (size_t op_idx = 0; op_idx < subgraph->operators.size(); op_idx++) { OperatorT* op = subgraph->operators[op_idx].get(); if (!op->intermediates.empty()) { return true; } } } return false; } } TfLiteStatus LoadModel(const string& path, ModelT* model) { auto input_model = impl::FlatBufferModel::BuildFromFile(path.c_str()); if (!input_model) { return kTfLiteError; } auto readonly_model = input_model->GetModel(); if (!readonly_model) { return kTfLiteError; } readonly_model->UnPackTo(model); return kTfLiteOk; } TfLiteStatus AddIntermediateTensorsToFusedOp( flatbuffers::FlatBufferBuilder* builder, ModelT* model) { if (model->subgraphs.size() == 1 && model->subgraphs[0]->operators.empty()) { return kTfLiteOk; } if (IntermediateTensorExists(model)) { return kTfLiteOk; } for (int subgraph_idx = 0; subgraph_idx < model->subgraphs.size(); ++subgraph_idx) { SubGraphT* subgraph = model->subgraphs.at(subgraph_idx).get(); for (size_t op_idx = 0; op_idx < subgraph->operators.size(); op_idx++) { OperatorT* op = subgraph->operators[op_idx].get(); operator_property::OperatorProperty property = operator_property::GetOperatorProperty(model, subgraph_idx, op_idx); if (property.intermediates.empty()) { continue; } const int next_tensor_index = subgraph->tensors.size(); int num_intermediates = property.intermediates.size(); if (kUseCustomLSTM) { num_intermediates = 12; } for (int i = 0; i < num_intermediates; ++i) { std::unique_ptr<TensorT> intermediate_tensor; auto name = CreateTensorName(op_idx, i); MakeTensor(name, &intermediate_tensor); subgraph->tensors.push_back(std::move(intermediate_tensor)); op->intermediates.push_back(next_tensor_index + i); } } } flatbuffers::Offset<Model> output_model_location = Model::Pack(*builder, model); FinishModelBuffer(*builder, output_model_location); return kTfLiteOk; } bool WriteFile(const std::string& out_file, const uint8_t* bytes, size_t num_bytes) { std::fstream stream(out_file, std::ios::binary | std::ios::out); for (size_t i = 0; i < num_bytes; i++) { stream << bytes[i]; } return (!stream.bad() && !stream.fail()); } } }
#include "tensorflow/lite/tools/optimize/quantization_wrapper_utils.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace optimize { namespace { using ::testing::ElementsAreArray; TEST(LstmPreprocess, Add2Tensors) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto lstm_op_code = std::make_unique<OperatorCodeT>(); auto lstm_op = std::make_unique<OperatorT>(); lstm_op_code->builtin_code = BuiltinOperator_LSTM; lstm_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_LSTM); lstm_op_code->version = 2; lstm_op->opcode_index = 0; lstm_op->inputs = {0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}; lstm_op->outputs = {24}; model->subgraphs.push_back(std::move(subgraph)); for (int i = 0; i < lstm_op->inputs.size(); ++i) { const int index = lstm_op->inputs[i]; if (index == -1) { continue; } auto tensor = std::make_unique<TensorT>(); tensor->name = "lstm_tensor" + std::to_string(index); tensor->shape = {2, 3, 4}; tensor->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor)); } model->subgraphs[0]->operators.push_back(std::move(lstm_op)); model->operator_codes.push_back(std::move(lstm_op_code)); model->buffers.push_back(std::move(buffer)); flatbuffers::FlatBufferBuilder builder; tflite::optimize::AddIntermediateTensorsToFusedOp(&builder, model.get()); EXPECT_EQ(model->operator_codes.size(), 1); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 26); EXPECT_EQ(model->buffers.size(), 1); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_LSTM); EXPECT_EQ(model->subgraphs[0]->tensors[0]->name, "lstm_tensor0"); EXPECT_EQ(model->subgraphs[0]->tensors[21]->name, "intermediate_0_0"); EXPECT_EQ(model->subgraphs[0]->tensors[22]->name, "intermediate_0_1"); EXPECT_EQ(model->subgraphs[0]->tensors[23]->name, "intermediate_0_2"); EXPECT_EQ(model->subgraphs[0]->tensors[24]->name, "intermediate_0_3"); EXPECT_EQ(model->subgraphs[0]->tensors[25]->name, "intermediate_0_4"); EXPECT_THAT( model->subgraphs[0]->operators[0]->inputs, ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20})); EXPECT_THAT(model->subgraphs[0]->operators[0]->outputs, ElementsAreArray({24})); EXPECT_THAT(model->subgraphs[0]->operators[0]->intermediates, ElementsAreArray({21, 22, 23, 24, 25})); tflite::optimize::AddIntermediateTensorsToFusedOp(&builder, model.get()); EXPECT_EQ(model->operator_codes.size(), 1); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 26); EXPECT_EQ(model->buffers.size(), 1); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_LSTM); EXPECT_EQ(model->subgraphs[0]->tensors[0]->name, "lstm_tensor0"); EXPECT_EQ(model->subgraphs[0]->tensors[21]->name, "intermediate_0_0"); EXPECT_EQ(model->subgraphs[0]->tensors[22]->name, "intermediate_0_1"); EXPECT_EQ(model->subgraphs[0]->tensors[23]->name, "intermediate_0_2"); EXPECT_EQ(model->subgraphs[0]->tensors[24]->name, "intermediate_0_3"); EXPECT_EQ(model->subgraphs[0]->tensors[25]->name, "intermediate_0_4"); EXPECT_THAT( model->subgraphs[0]->operators[0]->inputs, ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20})); EXPECT_THAT(model->subgraphs[0]->operators[0]->outputs, ElementsAreArray({24})); EXPECT_THAT(model->subgraphs[0]->operators[0]->intermediates, ElementsAreArray({21, 22, 23, 24, 25})); } } } } int main(int argc, char** argv) { return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/quantization_wrapper_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/quantization_wrapper_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
21a73865-3364-4558-ae4b-b86f47c55303
cpp
tensorflow/tensorflow
modify_model_interface
tensorflow/lite/tools/optimize/python/modify_model_interface.cc
tensorflow/lite/tools/optimize/modify_model_interface_test.cc
#include "tensorflow/lite/tools/optimize/modify_model_interface.h" #include <string> #include "pybind11/pybind11.h" #include "tensorflow/lite/schema/schema_generated.h" namespace pybind11 { PYBIND11_MODULE(_pywrap_modify_model_interface, m) { m.def("modify_model_interface", [](const std::string& input_file, const std::string& output_file, const int input_type, const int output_type) -> int { return tflite::optimize::ModifyModelInterface( input_file, output_file, static_cast<tflite::TensorType>(input_type), static_cast<tflite::TensorType>(output_type)); }); } }
#include "tensorflow/lite/tools/optimize/modify_model_interface.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace optimize { namespace { std::unique_ptr<ModelT> CreateQuantizedModelSingleInputOutput( const TensorType& quantization_type) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto quant_op_code = std::make_unique<OperatorCodeT>(); auto quant_op = std::make_unique<OperatorT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); auto dequant_op_code = std::make_unique<OperatorCodeT>(); auto dequant_op = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); quant_op_code->builtin_code = BuiltinOperator_QUANTIZE; quant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_QUANTIZE); quant_op_code->version = 2; fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; dequant_op_code->builtin_code = BuiltinOperator_DEQUANTIZE; dequant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_DEQUANTIZE); dequant_op_code->version = 2; quant_op->opcode_index = 0; quant_op->inputs = {0}; quant_op->outputs = {1}; fc_op->opcode_index = 1; fc_op->inputs = {1}; fc_op->outputs = {2}; dequant_op->opcode_index = 2; dequant_op->inputs = {2}; dequant_op->outputs = {3}; model->subgraphs[0]->operators.push_back(std::move(quant_op)); model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->subgraphs[0]->operators.push_back(std::move(dequant_op)); model->operator_codes.push_back(std::move(quant_op_code)); model->operator_codes.push_back(std::move(fc_op_code)); model->operator_codes.push_back(std::move(dequant_op_code)); model->subgraphs[0]->inputs = {0}; model->subgraphs[0]->outputs = {3}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->quantization = std::make_unique<QuantizationParametersT>(); tensor_1->quantization->scale.push_back(0.35); tensor_1->quantization->zero_point.push_back(28); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = quantization_type; auto tensor_2 = std::make_unique<TensorT>(); tensor_2->quantization = std::make_unique<QuantizationParametersT>(); tensor_2->quantization->scale.push_back(0.12); tensor_2->quantization->zero_point.push_back(50); tensor_2->name = "tensor_2"; tensor_2->shape = {}; tensor_2->type = quantization_type; auto tensor_3 = std::make_unique<TensorT>(); tensor_3->name = "tensor_3"; tensor_3->shape = {}; tensor_3->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->subgraphs[0]->tensors.push_back(std::move(tensor_2)); model->subgraphs[0]->tensors.push_back(std::move(tensor_3)); model->buffers.push_back(std::move(buffer)); return model; } std::unique_ptr<ModelT> CreateQuantizedModelMultipleInputOutput( const TensorType& quantization_type) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto quant_op_code = std::make_unique<OperatorCodeT>(); auto quant_op_1 = std::make_unique<OperatorT>(); auto quant_op_2 = std::make_unique<OperatorT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); auto dequant_op_code = std::make_unique<OperatorCodeT>(); auto dequant_op_1 = std::make_unique<OperatorT>(); auto dequant_op_2 = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); quant_op_code->builtin_code = BuiltinOperator_QUANTIZE; quant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_QUANTIZE); quant_op_code->version = 2; fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; dequant_op_code->builtin_code = BuiltinOperator_DEQUANTIZE; dequant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_DEQUANTIZE); dequant_op_code->version = 2; quant_op_1->opcode_index = 0; quant_op_1->inputs = {0}; quant_op_1->outputs = {2}; quant_op_2->opcode_index = 0; quant_op_2->inputs = {1}; quant_op_2->outputs = {3}; fc_op->opcode_index = 1; fc_op->inputs = {2, 3}; fc_op->outputs = {4, 5}; dequant_op_1->opcode_index = 2; dequant_op_1->inputs = {4}; dequant_op_1->outputs = {6}; dequant_op_2->opcode_index = 2; dequant_op_2->inputs = {5}; dequant_op_2->outputs = {7}; model->subgraphs[0]->operators.push_back(std::move(quant_op_1)); model->subgraphs[0]->operators.push_back(std::move(quant_op_2)); model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->subgraphs[0]->operators.push_back(std::move(dequant_op_1)); model->subgraphs[0]->operators.push_back(std::move(dequant_op_2)); model->operator_codes.push_back(std::move(quant_op_code)); model->operator_codes.push_back(std::move(fc_op_code)); model->operator_codes.push_back(std::move(dequant_op_code)); model->subgraphs[0]->inputs = {0, 1}; model->subgraphs[0]->outputs = {6, 7}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = TensorType_FLOAT32; auto tensor_2 = std::make_unique<TensorT>(); tensor_2->quantization = std::make_unique<QuantizationParametersT>(); tensor_2->quantization->scale.push_back(0.35); tensor_2->quantization->zero_point.push_back(28); tensor_2->name = "tensor_2"; tensor_2->shape = {}; tensor_2->type = quantization_type; auto tensor_3 = std::make_unique<TensorT>(); tensor_3->quantization = std::make_unique<QuantizationParametersT>(); tensor_3->quantization->scale.push_back(0.12); tensor_3->quantization->zero_point.push_back(50); tensor_3->name = "tensor_3"; tensor_3->shape = {}; tensor_3->type = quantization_type; auto tensor_4 = std::make_unique<TensorT>(); tensor_4->quantization = std::make_unique<QuantizationParametersT>(); tensor_4->quantization->scale.push_back(0.45); tensor_4->quantization->zero_point.push_back(28); tensor_4->name = "tensor_4"; tensor_4->shape = {}; tensor_4->type = quantization_type; auto tensor_5 = std::make_unique<TensorT>(); tensor_5->quantization = std::make_unique<QuantizationParametersT>(); tensor_5->quantization->scale.push_back(0.22); tensor_5->quantization->zero_point.push_back(50); tensor_5->name = "tensor_5"; tensor_5->shape = {}; tensor_5->type = quantization_type; auto tensor_6 = std::make_unique<TensorT>(); tensor_6->name = "tensor_6"; tensor_6->shape = {}; tensor_6->type = TensorType_FLOAT32; auto tensor_7 = std::make_unique<TensorT>(); tensor_7->name = "tensor_7"; tensor_7->shape = {}; tensor_7->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->subgraphs[0]->tensors.push_back(std::move(tensor_2)); model->subgraphs[0]->tensors.push_back(std::move(tensor_3)); model->subgraphs[0]->tensors.push_back(std::move(tensor_4)); model->subgraphs[0]->tensors.push_back(std::move(tensor_5)); model->subgraphs[0]->tensors.push_back(std::move(tensor_6)); model->subgraphs[0]->tensors.push_back(std::move(tensor_7)); model->buffers.push_back(std::move(buffer)); return model; } std::unique_ptr<ModelT> CreateFloatModel() { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; fc_op->opcode_index = 0; fc_op->inputs = {0}; fc_op->outputs = {1}; model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->operator_codes.push_back(std::move(fc_op_code)); model->subgraphs[0]->inputs = {0}; model->subgraphs[0]->outputs = {1}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->buffers.push_back(std::move(buffer)); return model; } struct ModelInterface : ::testing::TestWithParam<tflite::TensorType> {}; TEST_P(ModelInterface, SingleInputOutput) { TensorType quantization_type = GetParam(); auto model = CreateQuantizedModelSingleInputOutput(quantization_type); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), quantization_type, quantization_type), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 3); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 1); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 2); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_1"); EXPECT_EQ(input->type, quantization_type); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 28); auto output = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_2"); EXPECT_EQ(output->type, quantization_type); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 50); } TEST_P(ModelInterface, MutipleInputOutput) { TensorType quantization_type = GetParam(); auto model = CreateQuantizedModelMultipleInputOutput(quantization_type); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), quantization_type, quantization_type), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 6); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 2); EXPECT_EQ(model->subgraphs[0]->inputs[1], 3); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 4); EXPECT_EQ(model->subgraphs[0]->outputs[1], 5); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_2"); EXPECT_EQ(input_1->type, quantization_type); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 28); auto input_2 = model->subgraphs[0]->tensors[fc_op->inputs[1]].get(); EXPECT_EQ(input_2->name, "tensor_3"); EXPECT_EQ(input_2->type, quantization_type); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 50); auto output_1 = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_4"); EXPECT_EQ(output_1->type, quantization_type); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 28); auto output_2 = model->subgraphs[0]->tensors[fc_op->outputs[1]].get(); EXPECT_EQ(output_2->name, "tensor_5"); EXPECT_EQ(output_2->type, quantization_type); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 50); } INSTANTIATE_TEST_SUITE_P(MultipleInputOutputTests, ModelInterface, ::testing::Values(TensorType_INT8, TensorType_INT16)); TEST(ModelInterface, MixedTypeSingleInputOutput) { auto model = CreateQuantizedModelSingleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_INT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 3); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 2); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 2); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 1); auto quant_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[quant_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 156); auto fc_op = model->subgraphs[0]->operators[1].get(); auto output = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_2"); EXPECT_EQ(output->type, TensorType_INT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 50); } TEST(ModelInterface, Uint8SingleInputOutput) { auto model = CreateQuantizedModelSingleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_UINT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 4); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 3); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 1); EXPECT_EQ(model->subgraphs[0]->operators[2]->opcode_index, 0); auto input_quant_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[input_quant_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 156); auto output_quant_op = model->subgraphs[0]->operators[2].get(); auto output = model->subgraphs[0]->tensors[output_quant_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_3"); EXPECT_EQ(output->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 178); } TEST(ModelInterface, Uint8MutipleInputOutput) { auto model = CreateQuantizedModelMultipleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_UINT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 8); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->inputs[1], 1); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 6); EXPECT_EQ(model->subgraphs[0]->outputs[1], 7); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 5); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[2]->opcode_index, 1); EXPECT_EQ(model->subgraphs[0]->operators[3]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[4]->opcode_index, 0); auto input_quant_1 = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[input_quant_1->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_0"); EXPECT_EQ(input_1->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 156); auto input_quant_2 = model->subgraphs[0]->operators[1].get(); auto input_2 = model->subgraphs[0]->tensors[input_quant_2->inputs[0]].get(); EXPECT_EQ(input_2->name, "tensor_1"); EXPECT_EQ(input_2->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 178); auto output_quant_1 = model->subgraphs[0]->operators[3].get(); auto output_1 = model->subgraphs[0]->tensors[output_quant_1->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_6"); EXPECT_EQ(output_1->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 156); auto output_quant_2 = model->subgraphs[0]->operators[4].get(); auto output_2 = model->subgraphs[0]->tensors[output_quant_2->outputs[0]].get(); EXPECT_EQ(output_2->name, "tensor_7"); EXPECT_EQ(output_2->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 178); } TEST(ModelInterface, Int8MutipleInputOutput) { auto model = CreateQuantizedModelMultipleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_INT8, TensorType_INT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 6); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 2); EXPECT_EQ(model->subgraphs[0]->inputs[1], 3); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 4); EXPECT_EQ(model->subgraphs[0]->outputs[1], 5); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_2"); EXPECT_EQ(input_1->type, TensorType_INT8); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 28); auto input_2 = model->subgraphs[0]->tensors[fc_op->inputs[1]].get(); EXPECT_EQ(input_2->name, "tensor_3"); EXPECT_EQ(input_2->type, TensorType_INT8); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 50); auto output_1 = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_4"); EXPECT_EQ(output_1->type, TensorType_INT8); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 28); auto output_2 = model->subgraphs[0]->tensors[fc_op->outputs[1]].get(); EXPECT_EQ(output_2->name, "tensor_5"); EXPECT_EQ(output_2->type, TensorType_INT8); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 50); } TEST(ModelInterface, Float) { std::unique_ptr<ModelT> input_model_t = CreateFloatModel(); flatbuffers::FlatBufferBuilder builder_temp; flatbuffers::Offset<Model> output_model_location = Model::Pack(builder_temp, input_model_t.get()); FinishModelBuffer(builder_temp, output_model_location); const uint8_t* buffer_temp = builder_temp.GetBufferPointer(); const Model* input_model = GetModel(buffer_temp); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(Uint8QuantizeModelInputsOutputs(&builder, input_model, {{"tensor_0", {0.4, 2}}}, {{"tensor_1", {0.5, -5}}}), kTfLiteOk); const uint8_t* buffer = builder.GetBufferPointer(); const Model* output_model = GetModel(buffer); std::unique_ptr<ModelT> model; model.reset(output_model->UnPack()); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 4); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 1); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_FULLY_CONNECTED); EXPECT_EQ(GetBuiltinCode(model->operator_codes[1].get()), BuiltinOperator_DEQUANTIZE); EXPECT_EQ(GetBuiltinCode(model->operator_codes[2].get()), BuiltinOperator_QUANTIZE); EXPECT_EQ(model->subgraphs[0]->operators.size(), 3); auto dequantize_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[dequantize_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0_uint8"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.4); EXPECT_EQ(input->quantization->zero_point[0], 2); auto quantize_op = model->subgraphs[0]->operators[2].get(); auto output = model->subgraphs[0]->tensors[quantize_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_1_uint8"); EXPECT_EQ(output->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.5); EXPECT_EQ(output->quantization->zero_point[0], -5); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/python/modify_model_interface.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/modify_model_interface_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
80f9ff27-8ea6-4612-a1fe-cbb58bc0ed83
cpp
tensorflow/tensorflow
quantize_model
tensorflow/compiler/mlir/quantization/tensorflow/python/quantize_model.cc
tensorflow/compiler/mlir/lite/quantization/lite/quantize_model_test.cc
#include "tensorflow/compiler/mlir/quantization/tensorflow/python/quantize_model.h" #include <memory> #include <optional> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/component.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/statistics.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/config.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/context.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/debugger.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/io.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/post_calibration.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/pre_calibration.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_import.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/weight_only_ptq.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/run_passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/exported_model.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/python/py_function_lib.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantize_passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantize_preprocess.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_import_options.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace quantization { namespace { using ::mlir::quant::stablehlo::ConvertMlirModuleToExportedModel; using ::mlir::quant::stablehlo::CreateMlirContextForQuantization; using ::mlir::quant::stablehlo::ExportOptions; using ::mlir::quant::stablehlo::FunctionAlias; using ::mlir::quant::stablehlo::FunctionName; using ::mlir::quant::stablehlo::GetFunctionAliases; using ::mlir::quant::stablehlo::kExportStepSuffix; using ::mlir::quant::stablehlo::PostCalibrationComponent; using ::mlir::quant::stablehlo::PreCalibrationComponent; using ::mlir::quant::stablehlo::RunCalibrationPasses; using ::mlir::quant::stablehlo::UpdateFunctionAliases; using ::mlir::quant::stablehlo::WeightOnlyPtqComponent; using ::stablehlo::quantization::AddCalibrationStatistics; using ::stablehlo::quantization::ChangeToQuantizedFilename; using ::stablehlo::quantization::DebuggerConfig; using ::stablehlo::quantization::ExpandPresets; using ::stablehlo::quantization::IsCalibrationRequired; using ::stablehlo::quantization::PopulateDefaults; using ::stablehlo::quantization::QuantizationConfig; using ::stablehlo::quantization::io::CreateTmpDir; using ::stablehlo::quantization::io::GetLocalTmpFileName; using ::tensorflow::quantization::PyFunctionLibrary; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ImportAndPreprocessSavedModel( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, mlir::MLIRContext *context, const bool is_inliner_run, const bool run_tf_to_stablehlo, const bool deserialize_xla_call_module, absl::flat_hash_map<std::string, std::string> &function_aliases) { MLIRImportOptions import_options; import_options.upgrade_legacy = true; import_options.lift_variables = false; import_options.include_variables_in_initializers = true; auto bundle = std::make_unique<SavedModelBundle>(); std::vector<std::string> exported_names = signature_keys; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = SavedModelSignatureDefsToMlirImport(saved_model_path, tags, absl::MakeSpan(exported_names), context, import_options, &bundle); if (!module.status().ok()) { return absl::InternalError(absl::StrCat("Failed to import SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); UpdateFunctionAliases(function_aliases, *module_ref); absl::flat_hash_set<std::string> aliased_function_names; absl::c_for_each(function_aliases, [&](const auto &aliases) { return aliased_function_names.insert(aliases.first); }); TF_RETURN_IF_ERROR(PreprocessAndFreezeGraph( kDefaultTfQuantMlirDumpFilePrefix, is_inliner_run, aliased_function_names, module_ref.get(), context, bundle ? bundle->GetSession() : nullptr, run_tf_to_stablehlo, deserialize_xla_call_module)); return module_ref; } absl::StatusOr<ExportedModel> ModuleOpToExportedModel( mlir::ModuleOp module_op, mlir::MLIRContext *ctx, absl::string_view step_name, const bool unfreeze_constants, const absl::flat_hash_map<std::string, std::string> &function_aliases) { TF_ASSIGN_OR_RETURN(const std::string checkpoint_dir, GetLocalTmpFileName()); const auto export_opts = ExportOptions{true, unfreeze_constants, checkpoint_dir, absl::StrCat(step_name, kExportStepSuffix)}; TF_ASSIGN_OR_RETURN(const llvm::SmallVector<AssetFileDef> asset_file_defs, RunExportPasses(export_opts, *ctx, module_op)); return ConvertMlirModuleToExportedModel( module_op, checkpoint_dir, function_aliases, {asset_file_defs.begin(), asset_file_defs.end()}); } absl::StatusOr<ExportedModel> ExportCalibrationModel( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases, absl::string_view calibration_data_dir) { mlir::OwningOpRef<mlir::ModuleOp> cloned_module_ref(module_op.clone()); TF_RETURN_IF_ERROR( RunCalibrationPasses(*cloned_module_ref, *context, calibration_data_dir, quantization_options.calibration_options() .force_regenerate_calibration_data())); if (!IsCalibrationRequired(*cloned_module_ref)) return ExportedModel(); absl::StatusOr<ExportedModel> exported_model = ModuleOpToExportedModel( *cloned_module_ref, context, kTfQuantPtqPreCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); if (!exported_model.status().ok()) { return absl::InternalError( absl::StrCat("Failed to export calibration model: ", exported_model.status().message())); } return *exported_model; } absl::StatusOr<ExportedModel> ExportDebuggingModel( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases) { mlir::OwningOpRef<mlir::ModuleOp> cloned_module_ref(module_op.clone()); absl::StatusOr<ExportedModel> exported_model = ModuleOpToExportedModel( *cloned_module_ref, context, kTfQuantPtqPreCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); if (!exported_model.status().ok()) { return absl::InternalError( absl::StrCat("Failed to export debugging model: ", exported_model.status().message())); } return *exported_model; } QuantizationConfig GetQuantizationConfigForStaticRangePtq( const QuantizationOptions &quantization_options) { QuantizationConfig quantization_config{}; quantization_config.mutable_static_range_ptq_preset() ->set_enable_per_channel_quantized_weight( quantization_options.enable_per_channel_quantization()); quantization_config.mutable_pipeline_config()->set_unpack_quantized_types( true); *quantization_config.mutable_debugger_config() = quantization_options.debugger_config(); quantization_config.mutable_static_range_ptq_preset(); *quantization_config.mutable_calibration_options() = quantization_options.calibration_options(); return ExpandPresets(PopulateDefaults(quantization_config)); } QuantizationConfig GetQuantizationConfigForWeightOnlyPtq( const QuantizationOptions &quantization_options) { QuantizationConfig quantization_config{}; quantization_config.mutable_weight_only_ptq_preset(); quantization_config.mutable_pipeline_config()->set_unpack_quantized_types( true); *quantization_config.mutable_debugger_config() = quantization_options.debugger_config(); return ExpandPresets(PopulateDefaults(quantization_config)); } absl::StatusOr<ExportedModel> QuantizePtqModelPreCalibrationImpl( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases, absl::string_view calibration_data_dir) { const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForStaticRangePtq(quantization_options); PreCalibrationComponent pre_calibration_component(context); TF_ASSIGN_OR_RETURN(module_op, pre_calibration_component.Run( module_op, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqPreCalibrationStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqPreCalibrationPasses(pm, quantization_options); }, *context, module_op)); } return ExportCalibrationModel(module_op, context, quantization_options, function_aliases, calibration_data_dir); } absl::StatusOr<ExportedModel> QuantizePtqModelPostCalibrationImpl( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases) { const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForStaticRangePtq(quantization_options); PostCalibrationComponent post_calibration_component(context); TF_ASSIGN_OR_RETURN(module_op, post_calibration_component.Run( module_op, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqPostCalibrationStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqPostCalibrationPasses( pm, quantization_options, kTfQuantPtqPostCalibrationStepName); }, *context, module_op)); } return ModuleOpToExportedModel( module_op, context, kTfQuantPtqPostCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); } } absl::StatusOr<ExportedModel> QuantizeQatModel( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, false, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); TF_RETURN_IF_ERROR(RunPasses( kTfQuantQatStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizeQatPasses(pm, quantization_options, kTfQuantQatStepName); }, *context, *module_ref)); return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantQatStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeDynamicRangePtq( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, false, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqDynamicRangeStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqDynamicRangePasses(pm, quantization_options, kTfQuantPtqDynamicRangeStepName); }, *context, *module_ref)); return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantPtqDynamicRangeStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeWeightOnly( absl::string_view saved_model_path, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases( saved_model_path, {quantization_options.tags().begin(), quantization_options.tags().end()}); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, {quantization_options.signature_keys().begin(), quantization_options.signature_keys().end()}, {quantization_options.tags().begin(), quantization_options.tags().end()}, context.get(), true, is_stablehlo, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForWeightOnlyPtq(quantization_options); WeightOnlyPtqComponent weight_only_ptq_component(context.get()); TF_ASSIGN_OR_RETURN(*module_ref, weight_only_ptq_component.Run( *module_ref, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantWeightOnlyStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizeWeightOnlyPasses(pm, quantization_options, kTfQuantWeightOnlyStepName); }, *context, *module_ref)); } return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantWeightOnlyStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeStaticRangePtq( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, SignatureDef> &signature_def_map, const PyFunctionLibrary &py_function_library, const absl::flat_hash_map<std::string, RepresentativeDatasetFile> &representative_dataset_file_map_serialized) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, is_stablehlo, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); std::string calibration_data_dir = quantization_options.calibration_options().calibration_data_dir(); if (calibration_data_dir.empty()) { TF_ASSIGN_OR_RETURN(calibration_data_dir, CreateTmpDir()); } TF_ASSIGN_OR_RETURN(ExportedModel calibration_exported_model, QuantizePtqModelPreCalibrationImpl( *module_ref, context.get(), quantization_options, *function_aliases, calibration_data_dir)); if (calibration_exported_model.has_graph_def()) { TF_ASSIGN_OR_RETURN(std::string calibration_saved_model_dir, CreateTmpDir()); py_function_library.SaveExportedModel( calibration_saved_model_dir, calibration_exported_model, saved_model_path, tags, signature_def_map); py_function_library.RunCalibration( calibration_saved_model_dir, signature_keys, tags, quantization_options.force_graph_mode_calibration(), representative_dataset_file_map_serialized); } if (absl::Status status = AddCalibrationStatistics( *module_ref, calibration_data_dir, quantization_options.calibration_options(), py_function_library); !status.ok()) { LOG(WARNING) << "Some CustomAggregator ops do not have min or max " "values. Parts of the graph are not quantized. " << status; } if (quantization_options.has_debugger_config() && quantization_options.debugger_config().debugger_type() == DebuggerConfig::DEBUGGER_TYPE_WHOLE_MODEL) { TF_ASSIGN_OR_RETURN( ExportedModel debugging_exported_model, ExportDebuggingModel(*module_ref, context.get(), quantization_options, *function_aliases)); ChangeToQuantizedFilename(*module_ref); absl::string_view unquantized_dump_model_path = quantization_options.debugger_config().unquantized_dump_model_path(); py_function_library.SaveExportedModel( unquantized_dump_model_path, debugging_exported_model, saved_model_path, tags, signature_def_map); } return QuantizePtqModelPostCalibrationImpl( *module_ref, context.get(), quantization_options, *function_aliases); } } }
#include "tensorflow/compiler/mlir/lite/quantization/lite/quantize_model.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <iostream> #include <memory> #include <string> #include <unordered_set> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/core/absl_error_model_builder.h" #include "tensorflow/compiler/mlir/lite/quantization/lite/test_util.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/command_line_flags.h" namespace { tensorflow::string* g_test_model_dir = nullptr; } namespace tflite { namespace optimize { namespace { using mlir::TFL::FlatBufferModelAbslError; using testing::Eq; using testing::FloatEq; using testing::FloatNear; using testing::IsEmpty; using testing::NotNull; using testing::SizeIs; ModelT UnPackFlatBufferModel(const Model& flatbuffer_model) { ModelT model; flatbuffer_model.UnPackTo(&model); return model; } absl::Status QuantizeModel( ModelT* model, const TensorType& input_type, const TensorType& output_type, const bool allow_float, const std::unordered_set<std::string>& operator_names, const TensorType& activations_type, std::string& output_buffer, const bool disable_per_channel = false, const absl::flat_hash_set<std::string>& blocked_ops = {}, const absl::flat_hash_set<std::string>& blocked_nodes = {}, const bool disable_per_channel_for_dense_layers = false) { TensorType inference_tensor_type = activations_type; const bool fully_quantize = !allow_float; flatbuffers::FlatBufferBuilder input_builder; tflite::FinishModelBuffer(input_builder, tflite::Model::Pack(input_builder, model)); const std::string input_buffer( reinterpret_cast<const char*>(input_builder.GetBufferPointer()), input_builder.GetSize()); auto status = mlir::lite::QuantizeModel( input_buffer, input_type, output_type, inference_tensor_type, {}, disable_per_channel, fully_quantize, output_buffer, false, false, true, blocked_ops, blocked_nodes, false, disable_per_channel_for_dense_layers); if (!status.ok()) { return status; } auto flatbuffer_model = FlatBufferModelAbslError::BuildFromBuffer( output_buffer.data(), output_buffer.size()); *model = UnPackFlatBufferModel(*flatbuffer_model->GetModel()); return absl::OkStatus(); } absl::Status QuantizeModel(ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, TensorType_INT8, output_buffer); } absl::Status QuantizeModel(ModelT* model, const TensorType& input_type, const TensorType& output_type, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, false, output_buffer); } absl::Status QuantizeModel(ModelT* model, std::string& output_buffer) { return QuantizeModel(model, TensorType_FLOAT32, TensorType_FLOAT32, true, output_buffer); } absl::Status QuantizeModelAllOperators( ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, bool disable_per_channel, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer, disable_per_channel); } absl::Status QuantizeModelAllOperators(ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer); } absl::Status QuantizeModelAllOperators( ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, std::string& output_buffer, bool disable_per_channel_for_dense_layers) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer, false, {}, {}, disable_per_channel_for_dense_layers); } std::unique_ptr<FlatBufferModelAbslError> ReadModel( const std::string& model_name) { auto model_path = tensorflow::io::JoinPath(*g_test_model_dir, model_name); return FlatBufferModelAbslError::BuildFromFile(model_path.c_str()); } template <typename T> std::vector<T> GetAsVector(const flatbuffers::Vector<T>* vec) { return std::vector<T>(vec->begin(), vec->end()); } void VerifyQuantizationScale( const QuantizationParameters& float_quant_params, const QuantizationParametersT& quantized_quant_params, const int bit_num, const bool symmetric) { const float eps = 1e-7; ASSERT_THAT(*float_quant_params.min(), SizeIs(1)); ASSERT_THAT(*float_quant_params.max(), SizeIs(1)); float float_min = std::min(0.f, float_quant_params.min()->Get(0)); float float_max = std::max(0.f, float_quant_params.max()->Get(0)); if (symmetric) { float_max = std::max(std::abs(float_min), std::abs(float_max)); float_min = -float_max; } ASSERT_THAT(quantized_quant_params.scale, SizeIs(1)); ASSERT_THAT(quantized_quant_params.zero_point, SizeIs(1)); float scale = (float_max - float_min) / ((1 << bit_num) - 1); EXPECT_THAT(scale, FloatNear(quantized_quant_params.scale[0], eps)); } class QuantizeModelTest : public testing::Test { protected: QuantizeModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } std::unique_ptr<FlatBufferModelAbslError> input_model_; const Model* readonly_model_; tflite::ModelT model_; std::string output_buffer_; }; void ExpectEqualTensor(TensorT* tensor, TensorT* expected_tensor) { const float eps = 1e-7; EXPECT_THAT(expected_tensor, NotNull()); EXPECT_THAT(tensor->is_variable, Eq(expected_tensor->is_variable)); EXPECT_THAT(tensor->shape, Eq(expected_tensor->shape)); EXPECT_THAT(tensor->type, Eq(expected_tensor->type)); const auto quantization_params = tensor->quantization.get(); const auto expected_quantization_params = expected_tensor->quantization.get(); if (quantization_params != nullptr && expected_quantization_params != nullptr) { for (int i = 0; i < quantization_params->scale.size(); ++i) { if (quantization_params->scale[i] > 3e-5) { EXPECT_THAT(quantization_params->scale[i], FloatNear(expected_quantization_params->scale[i], eps)); } } EXPECT_THAT(quantization_params->zero_point, Eq(expected_quantization_params->zero_point)); } } TensorT* FindMatchingExpectedTensor(const SubGraphT& expected_graph, const ModelT& expected_model, const ModelT& quant_model, const OperatorT& quant_op, int idx) { const auto& builtin_code = GetBuiltinCode(quant_model.operator_codes[quant_op.opcode_index].get()); for (const auto& expected_op : expected_graph.operators) { const auto& op_code = expected_model.operator_codes[expected_op->opcode_index].get(); const auto& expected_code = GetBuiltinCode(op_code); if (expected_code == builtin_code) { return expected_graph.tensors[expected_op->inputs[idx]].get(); } } return nullptr; } void ExpectSameModels(const ModelT& model, const ModelT& expected_model) { ASSERT_THAT(model.subgraphs, SizeIs(expected_model.subgraphs.size())); for (size_t subgraph_idx = 0; subgraph_idx < model.subgraphs.size(); subgraph_idx++) { const auto graph = model.subgraphs[subgraph_idx].get(); const auto expected_graph = expected_model.subgraphs[subgraph_idx].get(); for (auto& op : graph->operators) { for (int idx = 0; idx < op->inputs.size(); idx++) { if (op->inputs[idx] < 0) { continue; } const auto& tensor = graph->tensors[op->inputs[idx]]; auto* expected_tensor = FindMatchingExpectedTensor( *expected_graph, expected_model, model, *op, idx); if (!expected_tensor) { continue; } ExpectEqualTensor(tensor.get(), expected_tensor); if (expected_tensor->buffer > 0) { const int buffer_idx = tensor->buffer; const int expected_buffer_idx = expected_tensor->buffer; const auto buffer = model.buffers[buffer_idx].get()->data; const auto expected_buffer = expected_model.buffers[expected_buffer_idx].get()->data; EXPECT_THAT(buffer, Eq(expected_buffer)); } } } } } class QuantizeConvModelTest : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeConvModelTest() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); auto& subgraph = model_.subgraphs[0]; auto* input = subgraph->tensors[subgraph->inputs[0]].get(); auto* output = subgraph->tensors[subgraph->outputs[0]].get(); input->quantization = std::make_unique<QuantizationParametersT>(); output->quantization = std::make_unique<QuantizationParametersT>(); input->quantization->min.push_back(0.0); output->quantization->min.push_back(0.0); input->quantization->max.push_back(6.0); output->quantization->max.push_back(6.0); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeConvModelTestInst, QuantizeConvModelTest, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeConvModelTest, QuantizationSucceeds) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const Model* output_model = GetModel(output_buffer_.data()); ASSERT_TRUE(output_model); } TEST_P(QuantizeConvModelTest, SkipUnspecifiedLayer) { TF_EXPECT_OK(QuantizeModel(&model_, TensorType_FLOAT32, TensorType_FLOAT32, true, {}, TensorType_FLOAT32, output_buffer_, false, {"CONV_2D"})); ModelT expected_model; readonly_model_->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } TEST_P(QuantizeConvModelTest, SkipUnspecifiedLayerByName) { TF_EXPECT_OK(QuantizeModel(&model_, TensorType_FLOAT32, TensorType_FLOAT32, true, {}, TensorType_FLOAT32, output_buffer_, false, {}, {"output"})); ModelT expected_model; readonly_model_->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } TEST_P(QuantizeConvModelTest, GraphIsFullyQuantized) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); for (const auto& subgraph : model_.subgraphs) { for (const auto& tensor : subgraph->tensors) { EXPECT_TRUE(tensor->type == TensorType_INT32 || tensor->type == TensorType_INT8); } } } class QuantizeConvNoBiasModelTest : public QuantizeModelTest { protected: QuantizeConvNoBiasModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kConvModelWithNoBias); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; class QuantizeSplitModelTest : public QuantizeModelTest { protected: QuantizeSplitModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelSplit); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeSplitModelTest, QuantizeSplit) { TF_EXPECT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const int32_t subgraph_idx = 0; const auto& subgraph = model_.subgraphs[subgraph_idx]; const auto& readonly_subgraph = readonly_model_->subgraphs()->Get(subgraph_idx); EXPECT_THAT(*readonly_subgraph->operators(), SizeIs(2)); EXPECT_THAT(subgraph->operators, SizeIs(2)); const auto& split = subgraph->operators[0]; const auto& add = subgraph->operators[1]; EXPECT_THAT(GetBuiltinCode(model_.operator_codes[split->opcode_index].get()), Eq(BuiltinOperator_SPLIT)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[add->opcode_index].get()), Eq(BuiltinOperator_ADD)); EXPECT_THAT(subgraph->tensors, SizeIs(5)); const int input_idx = 0; EXPECT_THAT(subgraph->tensors[input_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[input_idx]->name, Eq("input")); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->zero_point[0], Eq(-128)); const int output_idx = 4; EXPECT_THAT(subgraph->tensors[output_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[output_idx]->name, Eq("output")); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->zero_point[0], Eq(-128)); const int split0_idx = 2; EXPECT_THAT(subgraph->tensors[split0_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[split0_idx]->name, Eq("split;split:1")); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->zero_point[0], Eq(-128)); const int split1_idx = 3; EXPECT_THAT(subgraph->tensors[split1_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[split1_idx]->name, Eq("split;split:11")); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->zero_point[0], Eq(-128)); EXPECT_THAT(model_.operator_codes, SizeIs(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SPLIT)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeConvModel2Test : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeConvModel2Test() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); auto& subgraph = model_.subgraphs[0]; auto* input = subgraph->tensors[subgraph->inputs[0]].get(); auto* output = subgraph->tensors[subgraph->outputs[0]].get(); input->quantization = std::make_unique<QuantizationParametersT>(); output->quantization = std::make_unique<QuantizationParametersT>(); input->quantization->min.push_back(0.0); output->quantization->min.push_back(0.0); input->quantization->max.push_back(6.0); output->quantization->max.push_back(6.0); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeConvModel2TestInst, QuantizeConvModel2Test, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeConvModel2Test, VerifyConvQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto conv_op = subgraph->operators[0].get(); const int input_tensor_idx = 0; const int weights_tensor_idx = 1; const int bias_tensor_index = 2; const int output_tensor_idx = 0; const auto bias_tensor = subgraph->tensors[conv_op->inputs[bias_tensor_index]].get(); const auto input_tensor = subgraph->tensors[conv_op->inputs[input_tensor_idx]].get(); const auto weights_tensor = subgraph->tensors[conv_op->inputs[weights_tensor_idx]].get(); const auto output_tensor = subgraph->tensors[conv_op->outputs[output_tensor_idx]].get(); EXPECT_THAT(bias_tensor->type, Eq(tensor_type_ == TensorType_INT8 ? TensorType_INT32 : TensorType_INT64)); EXPECT_THAT(input_tensor->type, Eq(tensor_type_)); EXPECT_THAT(weights_tensor->type, Eq(TensorType_INT8)); ASSERT_TRUE(weights_tensor->quantization); ASSERT_TRUE(bias_tensor->quantization); ASSERT_TRUE(weights_tensor->quantization); const std::vector<float>& bias_scales = bias_tensor->quantization->scale; const std::vector<float>& weights_scales = weights_tensor->quantization->scale; const std::vector<int64_t>& weights_zero_points = weights_tensor->quantization->zero_point; const int out_channel_size = weights_tensor->shape[0]; ASSERT_THAT(bias_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_zero_points, SizeIs(out_channel_size)); ASSERT_THAT(input_tensor->quantization->scale, SizeIs(1)); ASSERT_THAT(output_tensor->quantization->scale, SizeIs(1)); const float eps = 1e-7; for (size_t i = 0; i < out_channel_size; i++) { EXPECT_THAT(bias_scales[i], FloatNear(input_tensor->quantization->scale[0] * weights_scales[i], eps)); } const auto bias_buffer = model_.buffers[bias_tensor->buffer].get(); auto control_size = tensor_type_ == TensorType_INT8 ? sizeof(int32_t) * bias_tensor->shape[0] : sizeof(int64_t) * bias_tensor->shape[0]; const auto float_op = readonly_model_->subgraphs()->Get(0)->operators()->Get(0); const auto original_bias_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(2)); ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto original_bias_buffer = readonly_model_->buffers()->Get(original_bias_tensor->buffer()); const float* bias_float_buffer = reinterpret_cast<const float*>(original_bias_buffer->data()->data()); if (tensor_type_ == TensorType_INT8) { int32_t* bias_values = reinterpret_cast<int32_t*>(bias_buffer->data.data()); for (size_t i = 0; i < out_channel_size; i++) { auto dequantized_value = bias_values[i] * bias_scales[i]; EXPECT_THAT(dequantized_value, FloatNear(bias_float_buffer[i], bias_scales[i] / 2)); } } const auto weights_buffer = model_.buffers[weights_tensor->buffer].get(); const auto original_weights_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(1)); const auto original_weights_buffer = readonly_model_->buffers()->Get(original_weights_tensor->buffer()); const int8_t* weight_values = reinterpret_cast<int8_t*>(weights_buffer->data.data()); const float* weights_float_buffer = reinterpret_cast<const float*>(original_weights_buffer->data()->data()); ASSERT_THAT(sizeof(float) * weights_buffer->data.size(), Eq(original_weights_buffer->data()->size())); int num_values_in_channel = weights_buffer->data.size() / out_channel_size; for (size_t channel_idx = 0; channel_idx < out_channel_size; channel_idx++) { for (size_t j = 0; j < num_values_in_channel; j++) { size_t element_idx = channel_idx * out_channel_size + j; auto scale = weights_scales[channel_idx]; auto zero_point = weights_zero_points[channel_idx]; auto dequantized_value = weight_values[element_idx] * scale; EXPECT_THAT(dequantized_value, FloatNear(weights_float_buffer[element_idx], scale / 2)); EXPECT_THAT(zero_point, Eq(0)); } } EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_CONV_2D)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(3)); } TEST_P(QuantizeConvModel2Test, VerifyConvDisablePerChannelQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, true, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto conv_op = subgraph->operators[0].get(); const int input_tensor_idx = 0; const int weights_tensor_idx = 1; const int bias_tensor_index = 2; const int output_tensor_idx = 0; const auto bias_tensor = subgraph->tensors[conv_op->inputs[bias_tensor_index]].get(); const auto input_tensor = subgraph->tensors[conv_op->inputs[input_tensor_idx]].get(); const auto weights_tensor = subgraph->tensors[conv_op->inputs[weights_tensor_idx]].get(); const auto output_tensor = subgraph->tensors[conv_op->outputs[output_tensor_idx]].get(); EXPECT_THAT(bias_tensor->type, Eq(tensor_type_ == TensorType_INT8 ? TensorType_INT32 : TensorType_INT64)); EXPECT_THAT(input_tensor->type, Eq(tensor_type_)); EXPECT_THAT(weights_tensor->type, Eq(TensorType_INT8)); ASSERT_TRUE(weights_tensor->quantization); ASSERT_TRUE(bias_tensor->quantization); ASSERT_TRUE(weights_tensor->quantization); const std::vector<float>& bias_scales = bias_tensor->quantization->scale; const std::vector<float>& weights_scales = weights_tensor->quantization->scale; const std::vector<int64_t>& weights_zero_points = weights_tensor->quantization->zero_point; const int out_channel_size = 1; ASSERT_THAT(bias_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_zero_points, SizeIs(out_channel_size)); ASSERT_THAT(input_tensor->quantization->scale, SizeIs(1)); ASSERT_THAT(output_tensor->quantization->scale, SizeIs(1)); const float eps = 1e-7; for (size_t i = 0; i < out_channel_size; i++) { EXPECT_THAT(bias_scales[i], FloatNear(input_tensor->quantization->scale[0] * weights_scales[i], eps)); } const auto bias_buffer = model_.buffers[bias_tensor->buffer].get(); auto control_size = tensor_type_ == TensorType_INT8 ? sizeof(int32_t) * bias_tensor->shape[0] : sizeof(int64_t) * bias_tensor->shape[0]; ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto float_op = readonly_model_->subgraphs()->Get(0)->operators()->Get(0); const auto original_bias_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(2)); ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto original_bias_buffer = readonly_model_->buffers()->Get(original_bias_tensor->buffer()); const float* bias_float_buffer = reinterpret_cast<const float*>(original_bias_buffer->data()->data()); if (tensor_type_ == TensorType_INT8) { int32_t* bias_values = reinterpret_cast<int32_t*>(bias_buffer->data.data()); for (size_t i = 0; i < out_channel_size; i++) { auto dequantized_value = bias_values[i] * bias_scales[i]; EXPECT_THAT(dequantized_value, FloatNear(bias_float_buffer[i], bias_scales[i] / 2)); } } const auto weights_buffer = model_.buffers[weights_tensor->buffer].get(); const auto original_weights_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(1)); const auto original_weights_buffer = readonly_model_->buffers()->Get(original_weights_tensor->buffer()); const int8_t* weight_values = reinterpret_cast<int8_t*>(weights_buffer->data.data()); const float* weights_float_buffer = reinterpret_cast<const float*>(original_weights_buffer->data()->data()); ASSERT_THAT(sizeof(float) * weights_buffer->data.size(), Eq(original_weights_buffer->data()->size())); int num_values_in_channel = weights_buffer->data.size() / out_channel_size; for (size_t channel_idx = 0; channel_idx < out_channel_size; channel_idx++) { for (size_t j = 0; j < num_values_in_channel; j++) { size_t element_idx = channel_idx * out_channel_size + j; auto scale = weights_scales[channel_idx]; auto zero_point = weights_zero_points[channel_idx]; auto dequantized_value = weight_values[element_idx] * scale; EXPECT_THAT(dequantized_value, FloatNear(weights_float_buffer[element_idx], scale / 2)); EXPECT_THAT(zero_point, Eq(0)); } } EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_CONV_2D)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(3)); } class QuantizeSoftmaxTest : public QuantizeModelTest { protected: QuantizeSoftmaxTest() { input_model_ = ReadModel(::mlir::lite::internal::kSingleSoftmaxModelMinMinus5MaxPlus5); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeSoftmaxTest, VerifySoftmaxQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(op->opcode_index, Eq(0)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SOFTMAX)); ASSERT_THAT(op->inputs, SizeIs(1)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(op->inputs[0])->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(op->outputs[0])->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); auto float_input_quant_params = float_graph->tensors()->Get(op->inputs[0])->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[0]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); auto float_output_quant_params = float_graph->tensors()->Get(op->outputs[0])->quantization(); auto output_quant_params = subgraph->tensors[op->outputs[0]]->quantization.get(); ASSERT_THAT(*float_output_quant_params->min(), SizeIs(1)); ASSERT_THAT(*float_output_quant_params->max(), SizeIs(1)); ASSERT_THAT(output_quant_params->scale, SizeIs(1)); ASSERT_THAT(output_quant_params->zero_point, SizeIs(1)); ASSERT_THAT(1.0f / 256.0f, Eq(output_quant_params->scale[0])); ASSERT_THAT(-128, Eq(output_quant_params->zero_point[0])); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SOFTMAX)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeAvgPoolTest : public QuantizeModelTest { protected: QuantizeAvgPoolTest() { input_model_ = ReadModel(::mlir::lite::internal::kSingleAvgPoolModelMinMinus5MaxPlus5); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeAvgPoolTest, VerifyAvgPoolQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(op->opcode_index, Eq(0)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_AVERAGE_POOL_2D)); ASSERT_THAT(op->inputs, SizeIs(1)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(op->inputs[0])->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(op->outputs[0])->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); auto float_input_quant_params = float_graph->tensors()->Get(op->inputs[0])->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[0]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); auto float_output_quant_params = float_graph->tensors()->Get(op->outputs[0])->quantization(); auto output_quant_params = subgraph->tensors[op->outputs[0]]->quantization.get(); ASSERT_THAT(*float_output_quant_params->min(), SizeIs(1)); ASSERT_THAT(*float_output_quant_params->max(), SizeIs(1)); ASSERT_THAT(output_quant_params->scale, SizeIs(1)); EXPECT_THAT(input_quant_params->scale[0], Eq(output_quant_params->scale[0])); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_AVERAGE_POOL_2D)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeMultiInputAddWithReshapeTest : public QuantizeModelTest { protected: QuantizeMultiInputAddWithReshapeTest() { input_model_ = ReadModel(::mlir::lite::internal::kMultiInputAddWithReshape); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeMultiInputAddWithReshapeTest, VerifyReshapeQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[1].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_RESHAPE)); ASSERT_THAT(op->inputs, SizeIs(2)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); auto float_op = float_graph->operators()->Get(1); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(float_op->outputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); auto float_input_quant_params = float_graph->tensors()->Get(op->inputs[0])->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[0]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); auto float_output_quant_params = float_graph->tensors()->Get(float_op->outputs()->Get(0))->quantization(); auto output_quant_params = subgraph->tensors[op->outputs[0]]->quantization.get(); ASSERT_THAT(*float_output_quant_params->min(), SizeIs(1)); ASSERT_THAT(*float_output_quant_params->max(), SizeIs(1)); ASSERT_THAT(output_quant_params->scale, SizeIs(1)); EXPECT_THAT(model_.operator_codes, SizeIs(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_ADD)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[1].get()), Eq(BuiltinOperator_RESHAPE)); ASSERT_THAT(model_.operator_codes[1]->version, Eq(1)); } TEST_F(QuantizeMultiInputAddWithReshapeTest, VerifyAddQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_ADD)); ASSERT_THAT(op->inputs, SizeIs(2)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); auto float_op = float_graph->operators()->Get(0); const int float_input0_idx = float_op->inputs()->Get(0); const int float_input1_idx = float_op->inputs()->Get(1); const int float_output_idx = float_op->outputs()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(float_input0_idx)->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(float_input1_idx)->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(float_output_idx)->type(), Eq(TensorType_FLOAT32)); for (size_t input_idx = 0; input_idx < 2; ++input_idx) { EXPECT_THAT(subgraph->tensors[op->inputs[input_idx]].get()->type, Eq(TensorType_INT8)); auto float_input_quant_params = float_graph->tensors() ->Get(float_op->inputs()->Get(input_idx)) ->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[input_idx]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); } EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); auto float_output_quant_params = float_graph->tensors()->Get(op->outputs[0])->quantization(); auto output_quant_params = subgraph->tensors[op->outputs[0]]->quantization.get(); ASSERT_THAT(*float_output_quant_params->min(), SizeIs(1)); ASSERT_THAT(*float_output_quant_params->max(), SizeIs(1)); ASSERT_THAT(output_quant_params->scale, SizeIs(1)); EXPECT_THAT(model_.operator_codes, SizeIs(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_ADD)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[1].get()), Eq(BuiltinOperator_RESHAPE)); ASSERT_THAT(model_.operator_codes[1]->version, Eq(1)); } class QuantizeConstInputTest : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeConstInputTest() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kConstInputAddModel); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeConstInputTestInst, QuantizeConstInputTest, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeConstInputTest, VerifyConstOpInput) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_ADD)); ASSERT_THAT(op->inputs, SizeIs(2)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(op->inputs[0])->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(op->outputs[0])->type(), Eq(TensorType_FLOAT32)); for (size_t input_idx = 0; input_idx < 2; ++input_idx) { EXPECT_THAT(subgraph->tensors[op->inputs[input_idx]].get()->type, Eq(tensor_type_)); } EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(tensor_type_)); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_ADD)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeArgMaxTest : public QuantizeModelTest { protected: QuantizeArgMaxTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelWithArgMaxOp); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeArgMaxTest, VerifyArgMax) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_ARG_MAX)); ASSERT_THAT(op->inputs, SizeIs(2)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); auto float_op = float_graph->operators()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(1))->type(), Eq(subgraph->tensors[op->inputs[1]].get()->type)); ASSERT_THAT(float_graph->tensors()->Get(float_op->outputs()->Get(0))->type(), Eq(subgraph->tensors[op->outputs[0]].get()->type)); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_ARG_MAX)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeLSTMTest : public QuantizeModelTest { protected: QuantizeLSTMTest() { input_model_ = ReadModel(::mlir::lite::internal::kLstmCalibrated); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeLSTMTest, VerifyLSTM) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_FLOAT32, TensorType_FLOAT32, true, TensorType_INT8, output_buffer_)); auto expected_fb_model = ReadModel(::mlir::lite::internal::kLstmQuantized); auto expected_read_only_model = expected_fb_model->GetModel(); ModelT expected_model; expected_read_only_model->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } class QuantizeLSTM2Test : public QuantizeModelTest { protected: QuantizeLSTM2Test() { input_model_ = ReadModel(::mlir::lite::internal::kLstmCalibrated2); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeLSTM2Test, VerifyLSTM) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_FLOAT32, TensorType_FLOAT32, false, TensorType_INT8, output_buffer_)); auto expected_fb_model = ReadModel(::mlir::lite::internal::kLstmQuantized2); auto expected_read_only_model = expected_fb_model->GetModel(); ModelT expected_model; expected_read_only_model->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } class QuantizeUnidirectionalSequenceLSTMTest : public QuantizeModelTest { protected: QuantizeUnidirectionalSequenceLSTMTest() { input_model_ = ReadModel( ::mlir::lite::internal::kUnidirectionalSequenceLstmCalibrated); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeUnidirectionalSequenceLSTMTest, VerifyUnidirectionalSequenceLSTM) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_FLOAT32, TensorType_FLOAT32, false, TensorType_INT8, output_buffer_)); auto expected_fb_model = ReadModel(::mlir::lite::internal::kUnidirectionalSequenceLstmQuantized); auto expected_read_only_model = expected_fb_model->GetModel(); ModelT expected_model; expected_read_only_model->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } class QuantizeSVDFTest : public QuantizeModelTest { protected: QuantizeSVDFTest() { input_model_ = ReadModel(::mlir::lite::internal::kSvdfCalibrated); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeSVDFTest, VerifySVDF) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); auto expected_fb_model = ReadModel(::mlir::lite::internal::kSvdfQuantized); auto expected_read_only_model = expected_fb_model->GetModel(); ModelT expected_model; expected_read_only_model->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } class QuantizeFCTest : public QuantizeModelTest, public testing::WithParamInterface<bool> { protected: QuantizeFCTest() { disable_per_channel_quantization_for_dense_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kModelWithFCOp); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } bool disable_per_channel_quantization_for_dense_; }; TEST_P(QuantizeFCTest, VerifyFC8x8) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_FULLY_CONNECTED)); ASSERT_THAT(op->inputs, SizeIs(3)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); auto float_op = float_graph->operators()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(1))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[1]].get()->type, Eq(TensorType_INT8)); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(2))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[2]].get()->type, Eq(TensorType_INT32)); ASSERT_THAT(float_graph->tensors()->Get(float_op->outputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_FULLY_CONNECTED)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(5)); auto float_input_quant_params = float_graph->tensors()->Get(op->inputs[0])->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[0]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); } TEST_P(QuantizeFCTest, VerifyFCFor16x8) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT16, output_buffer_)); const std::unique_ptr<tflite::SubGraphT>& subgraph = model_.subgraphs[0]; const tflite::OperatorT* op = subgraph->operators[0].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_FULLY_CONNECTED)); ASSERT_THAT(op->inputs, SizeIs(3)); ASSERT_THAT(op->outputs, SizeIs(1)); const SubGraph* float_graph = readonly_model_->subgraphs()->Get(0); const Operator* float_op = float_graph->operators()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT16)); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(1))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[1]].get()->type, Eq(TensorType_INT8)); ASSERT_THAT(float_graph->tensors()->Get(float_op->inputs()->Get(2))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[2]].get()->type, Eq(TensorType_INT32)); ASSERT_THAT(float_graph->tensors()->Get(float_op->outputs()->Get(0))->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT16)); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_FULLY_CONNECTED)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(11)); const int32_t target_input_index = op->inputs[0]; const QuantizationParameters* float_input_quant_params = float_graph->tensors()->Get(target_input_index)->quantization(); const QuantizationParametersT* input_quant_params = subgraph->tensors[target_input_index]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 16, true); } TEST_P(QuantizeFCTest, VerifyDisablePerChannelQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_, disable_per_channel_quantization_for_dense_)); const auto& subgraph = model_.subgraphs[0]; auto fc_op = subgraph->operators[0].get(); ASSERT_THAT(fc_op->inputs, SizeIs(3)); ASSERT_THAT(fc_op->outputs, SizeIs(1)); const int input_tensor_idx = 0; const int weights_tensor_idx = 1; const int bias_tensor_index = 2; const int output_tensor_idx = 0; const auto bias_tensor = subgraph->tensors[fc_op->inputs[bias_tensor_index]].get(); const auto input_tensor = subgraph->tensors[fc_op->inputs[input_tensor_idx]].get(); const auto weights_tensor = subgraph->tensors[fc_op->inputs[weights_tensor_idx]].get(); const auto output_tensor = subgraph->tensors[fc_op->outputs[output_tensor_idx]].get(); EXPECT_THAT(bias_tensor->type, Eq(TensorType_INT32)); EXPECT_THAT(input_tensor->type, Eq(TensorType_INT8)); EXPECT_THAT(weights_tensor->type, Eq(TensorType_INT8)); EXPECT_THAT(output_tensor->type, Eq(TensorType_INT8)); ASSERT_TRUE(weights_tensor->quantization); ASSERT_TRUE(bias_tensor->quantization); ASSERT_TRUE(weights_tensor->quantization); const std::vector<float>& bias_scales = bias_tensor->quantization->scale; const std::vector<float>& weights_scales = weights_tensor->quantization->scale; const std::vector<int64_t>& weights_zero_points = weights_tensor->quantization->zero_point; const int out_channel_size = 2; ASSERT_THAT(bias_scales, SizeIs(disable_per_channel_quantization_for_dense_ ? 1 : out_channel_size)); ASSERT_THAT(weights_scales, SizeIs(disable_per_channel_quantization_for_dense_ ? 1 : out_channel_size)); ASSERT_THAT( weights_zero_points, SizeIs(disable_per_channel_quantization_for_dense_ ? 1 : out_channel_size)); ASSERT_THAT(input_tensor->quantization->scale, SizeIs(1)); ASSERT_THAT(output_tensor->quantization->scale, SizeIs(1)); const float eps = 1e-7; for (size_t i = 0; i < out_channel_size; i++) { EXPECT_THAT((disable_per_channel_quantization_for_dense_ ? bias_scales[0] : bias_scales[i]), FloatNear(input_tensor->quantization->scale[0] * (disable_per_channel_quantization_for_dense_ ? weights_scales[0] : weights_scales[i]), eps)); } const auto bias_buffer = model_.buffers[bias_tensor->buffer].get(); auto control_size = sizeof(int32_t) * bias_tensor->shape[0]; ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto float_op = readonly_model_->subgraphs()->Get(0)->operators()->Get(0); const auto original_bias_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(2)); ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto original_bias_buffer = readonly_model_->buffers()->Get(original_bias_tensor->buffer()); const float* bias_float_buffer = reinterpret_cast<const float*>(original_bias_buffer->data()->data()); int32_t* bias_values = reinterpret_cast<int32_t*>(bias_buffer->data.data()); for (size_t i = 0; i < out_channel_size; i++) { const float bias_scale = disable_per_channel_quantization_for_dense_ ? bias_scales[0] : bias_scales[i]; auto dequantized_value = bias_values[i] * bias_scale; EXPECT_THAT(dequantized_value, FloatNear(bias_float_buffer[i], bias_scale / 2)); } const auto weights_buffer = model_.buffers[weights_tensor->buffer].get(); const auto original_weights_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(1)); const auto original_weights_buffer = readonly_model_->buffers()->Get(original_weights_tensor->buffer()); const int8_t* weight_values = reinterpret_cast<int8_t*>(weights_buffer->data.data()); const float* weights_float_buffer = reinterpret_cast<const float*>(original_weights_buffer->data()->data()); ASSERT_THAT(sizeof(float) * weights_buffer->data.size(), Eq(original_weights_buffer->data()->size())); int num_values_in_channel = weights_buffer->data.size() / out_channel_size; for (size_t channel_idx = 0; channel_idx < out_channel_size; channel_idx++) { for (size_t j = 0; j < num_values_in_channel; j++) { size_t element_idx = channel_idx * num_values_in_channel + j; auto scale = disable_per_channel_quantization_for_dense_ ? weights_scales[0] : weights_scales[channel_idx]; auto zero_point = disable_per_channel_quantization_for_dense_ ? weights_zero_points[0] : weights_zero_points[channel_idx]; auto dequantized_value = weight_values[element_idx] * scale; EXPECT_THAT(dequantized_value, FloatNear(weights_float_buffer[element_idx], scale / 2)); EXPECT_THAT(zero_point, Eq(0)); } } EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_FULLY_CONNECTED)); ASSERT_THAT(model_.operator_codes[0]->version, 5); } INSTANTIATE_TEST_SUITE_P(QuantizeFCTestInst, QuantizeFCTest, testing::Bool()); class QuantizeCustomOpTest : public QuantizeModelTest, public ::testing::WithParamInterface<tflite::TensorType> { protected: QuantizeCustomOpTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelMixed); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_P(QuantizeCustomOpTest, VerifyMixedQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, GetParam(), GetParam(), true, GetParam(), output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(*float_graph->operators(), SizeIs(4)); ASSERT_THAT(subgraph->operators, SizeIs(6)); const std::vector<BuiltinOperator> op_codes = { BuiltinOperator_RESHAPE, BuiltinOperator_DEQUANTIZE, BuiltinOperator_CUSTOM, BuiltinOperator_CUSTOM, BuiltinOperator_QUANTIZE, BuiltinOperator_SQUEEZE}; const std::vector<TensorType> op_input_types = { GetParam(), GetParam(), TensorType_FLOAT32, TensorType_FLOAT32, TensorType_FLOAT32, GetParam()}; for (int i = 0; i < subgraph->operators.size(); ++i) { OperatorT* op = subgraph->operators[i].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(op_codes[i])); ASSERT_THAT(subgraph->tensors[op->inputs[0]]->type, Eq(op_input_types[i])); } } INSTANTIATE_TEST_SUITE_P(QuantizeCustomOpTest, QuantizeCustomOpTest, ::testing::Values(TensorType_INT8)); class QuantizePackTest : public QuantizeModelTest { protected: QuantizePackTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelPack); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizePackTest, VerifyPack) { TF_ASSERT_OK(QuantizeModel(&model_, output_buffer_)); const auto subgraph = model_.subgraphs[0].get(); EXPECT_THAT(subgraph->inputs, SizeIs(3)); EXPECT_THAT(subgraph->outputs, SizeIs(1)); const auto& op1 = subgraph->operators[1].get(); const auto& op2 = subgraph->operators[2].get(); const auto& op3 = subgraph->operators[3].get(); const auto& op4 = subgraph->operators[4].get(); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op1->opcode_index].get()), Eq(BuiltinOperator_QUANTIZE)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op2->opcode_index].get()), Eq(BuiltinOperator_QUANTIZE)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op3->opcode_index].get()), Eq(BuiltinOperator_PACK)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op4->opcode_index].get()), Eq(BuiltinOperator_DEQUANTIZE)); const auto& pack_input0 = subgraph->tensors[op3->inputs[0]].get(); const auto& pack_input1 = subgraph->tensors[op3->inputs[1]].get(); const auto& pack_input2 = subgraph->tensors[op3->inputs[2]].get(); const auto& pack_output = subgraph->tensors[op3->outputs[0]].get(); EXPECT_THAT(pack_input0->quantization->scale[0], FloatEq(pack_input1->quantization->scale[0])); EXPECT_THAT(pack_input1->quantization->scale[0], FloatEq(pack_input2->quantization->scale[0])); EXPECT_THAT(pack_input0->quantization->zero_point[0], Eq(pack_input1->quantization->zero_point[0])); EXPECT_THAT(pack_input1->quantization->zero_point[0], Eq(pack_input2->quantization->zero_point[0])); EXPECT_THAT(pack_input1->quantization->scale[0], FloatEq(pack_output->quantization->scale[0])); EXPECT_THAT(pack_input1->quantization->zero_point[0], Eq(pack_output->quantization->zero_point[0])); EXPECT_THAT(pack_output->type, Eq(TensorType_INT8)); EXPECT_THAT(pack_input0->type, Eq(TensorType_INT8)); EXPECT_THAT(pack_input1->type, Eq(TensorType_INT8)); EXPECT_THAT(pack_input2->type, Eq(TensorType_INT8)); } class QuantizeMinimumMaximumTest : public QuantizeModelTest, public testing::WithParamInterface<const char*> { protected: QuantizeMinimumMaximumTest() { input_model_ = ReadModel(GetParam()); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_P(QuantizeMinimumMaximumTest, VerifyMinimumMaximum) { TF_ASSERT_OK(QuantizeModel(&model_, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; const auto& quant_op = subgraph->operators[0]; const auto& dequant_op = subgraph->operators[subgraph->operators.size() - 1]; const int32_t quant_idx = quant_op->opcode_index; const int32_t dequant_idx = dequant_op->opcode_index; EXPECT_THAT(GetBuiltinCode(model_.operator_codes[quant_idx].get()), Eq(BuiltinOperator_QUANTIZE)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[dequant_idx].get()), Eq(BuiltinOperator_DEQUANTIZE)); const auto& op = subgraph->operators[1].get(); auto op_builtin_code = GetBuiltinCode(model_.operator_codes[op->opcode_index].get()); ASSERT_TRUE(op_builtin_code == tflite::BuiltinOperator_MINIMUM || op_builtin_code == tflite::BuiltinOperator_MAXIMUM); ASSERT_THAT(op->inputs, SizeIs(2)); ASSERT_THAT(op->outputs, SizeIs(1)); auto output = subgraph->tensors[op->outputs[0]].get(); auto input1 = subgraph->tensors[op->inputs[0]].get(); auto input2 = subgraph->tensors[op->inputs[1]].get(); EXPECT_THAT(output->type, Eq(TensorType_INT8)); EXPECT_THAT(input1->type, Eq(TensorType_INT8)); EXPECT_THAT(input2->type, Eq(TensorType_INT8)); EXPECT_THAT(input1->quantization->scale, Eq(input2->quantization->scale)); EXPECT_THAT(input1->quantization->zero_point, Eq(input2->quantization->zero_point)); EXPECT_THAT(output->quantization->scale, Eq(input1->quantization->scale)); EXPECT_THAT(output->quantization->zero_point, Eq(input1->quantization->zero_point)); EXPECT_THAT(output->quantization->scale, Eq(input2->quantization->scale)); EXPECT_THAT(output->quantization->zero_point, Eq(input2->quantization->zero_point)); } INSTANTIATE_TEST_SUITE_P( MinimumMaximumTestInst, QuantizeMinimumMaximumTest, testing::ValuesIn({::mlir::lite::internal::kModelWithMinimumOp, ::mlir::lite::internal::kModelWithMaximumOp})); class QuantizeUnpackTest : public QuantizeModelTest { protected: QuantizeUnpackTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelWithUnpack); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeUnpackTest, VerifyUnpack) { TF_ASSERT_OK(QuantizeModel(&model_, output_buffer_)); const auto subgraph = model_.subgraphs[0].get(); auto op = subgraph->operators[1].get(); auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[op->opcode_index].get()), Eq(BuiltinOperator_UNPACK)); auto unpack_input = subgraph->tensors[op->inputs[0]].get(); auto unpack_output_0 = subgraph->tensors[op->outputs[0]].get(); auto unpack_output_1 = subgraph->tensors[op->outputs[1]].get(); ASSERT_THAT(float_graph->tensors()->Get(op->inputs[0])->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(unpack_input->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->inputs, SizeIs(1)); EXPECT_THAT(subgraph->outputs, SizeIs(2)); EXPECT_THAT(unpack_input->quantization->scale[0], FloatEq(unpack_output_0->quantization->scale[0])); EXPECT_THAT(unpack_input->quantization->scale[0], FloatEq(unpack_output_1->quantization->scale[0])); EXPECT_THAT(unpack_input->quantization->zero_point[0], Eq(unpack_output_0->quantization->zero_point[0])); EXPECT_THAT(unpack_input->quantization->zero_point[0], Eq(unpack_output_1->quantization->zero_point[0])); } class QuantizeBroadcastToModelTest : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeBroadcastToModelTest() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kModelWithBroadcastToOp); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeBroadcastToModelTestInst, QuantizeBroadcastToModelTest, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeBroadcastToModelTest, VerifyBroadcastToQuantization) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const int32_t subgraph_idx = 0; const auto& subgraph = model_.subgraphs[subgraph_idx]; const auto& readonly_subgraph = readonly_model_->subgraphs()->Get(subgraph_idx); EXPECT_THAT(*readonly_subgraph->operators(), SizeIs(1)); EXPECT_THAT(subgraph->operators, SizeIs(1)); const auto& broadcast_to = subgraph->operators[0]; EXPECT_THAT(model_.operator_codes[broadcast_to->opcode_index]->builtin_code, Eq(BuiltinOperator_BROADCAST_TO)); EXPECT_THAT(subgraph->tensors, SizeIs(3)); EXPECT_THAT(subgraph->tensors[0]->type, Eq(tensor_type_)); EXPECT_THAT(subgraph->tensors[0]->name, Eq("input_1")); EXPECT_THAT(subgraph->tensors[0]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[0]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[2]->type, Eq(tensor_type_)); EXPECT_THAT(subgraph->tensors[2]->name, Eq("Identity")); EXPECT_THAT(subgraph->tensors[2]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[2]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[1]->type, Eq(TensorType_INT32)); EXPECT_THAT(subgraph->tensors[1]->quantization->scale, IsEmpty()); EXPECT_THAT(subgraph->tensors[1]->quantization->zero_point, IsEmpty()); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(model_.operator_codes[0]->builtin_code, Eq(BuiltinOperator_BROADCAST_TO)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(3)); } class QuantizeGatherNDModelTest : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeGatherNDModelTest() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kModelWithGatherNDOp); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeGatherNDModelTestInst, QuantizeGatherNDModelTest, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeGatherNDModelTest, QuantizeGatherND) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const int32_t subgraph_idx = 0; const auto& subgraph = model_.subgraphs[subgraph_idx]; const auto& readonly_subgraph = readonly_model_->subgraphs()->Get(subgraph_idx); EXPECT_THAT(*readonly_subgraph->operators(), SizeIs(1)); EXPECT_THAT(subgraph->operators, SizeIs(1)); const auto& gather_nd = subgraph->operators[0]; EXPECT_THAT(model_.operator_codes[gather_nd->opcode_index]->builtin_code, Eq(BuiltinOperator_GATHER_ND)); EXPECT_THAT(subgraph->tensors, SizeIs(3)); EXPECT_THAT(subgraph->tensors[0]->type, Eq(tensor_type_)); EXPECT_THAT(subgraph->tensors[0]->name, Eq("input")); EXPECT_THAT(subgraph->tensors[0]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[0]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[2]->type, Eq(tensor_type_)); EXPECT_THAT(subgraph->tensors[2]->name, Eq("output")); EXPECT_THAT(subgraph->tensors[2]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[2]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[1]->type, Eq(TensorType_INT32)); EXPECT_THAT(subgraph->tensors[1]->quantization->scale, IsEmpty()); EXPECT_THAT(subgraph->tensors[1]->quantization->zero_point, IsEmpty()); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(model_.operator_codes[0]->builtin_code, Eq(BuiltinOperator_GATHER_ND)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(1)); } class QuantizeWhereModelTest : public QuantizeModelTest { protected: QuantizeWhereModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelWithWhereOp); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeWhereModelTest, QuantizeWhere) { TF_EXPECT_OK(QuantizeModel(&model_, TensorType_BOOL, TensorType_INT64, output_buffer_)); const int32_t subgraph_idx = 0; const auto& subgraph = model_.subgraphs[subgraph_idx]; const auto& readonly_subgraph = readonly_model_->subgraphs()->Get(subgraph_idx); EXPECT_THAT(*readonly_subgraph->operators(), SizeIs(1)); EXPECT_THAT(subgraph->operators, SizeIs(1)); const auto& where = subgraph->operators[0]; EXPECT_THAT(model_.operator_codes[where->opcode_index]->builtin_code, Eq(BuiltinOperator_WHERE)); EXPECT_THAT(subgraph->tensors, SizeIs(2)); EXPECT_THAT(subgraph->tensors[0]->type, Eq(TensorType_BOOL)); EXPECT_THAT(subgraph->tensors[0]->name, Eq("input")); EXPECT_THAT(subgraph->tensors[0]->quantization->scale, IsEmpty()); EXPECT_THAT(subgraph->tensors[0]->quantization->zero_point, IsEmpty()); EXPECT_THAT(subgraph->tensors[1]->type, Eq(TensorType_INT64)); EXPECT_THAT(subgraph->tensors[1]->name, Eq("indices")); EXPECT_THAT(subgraph->tensors[1]->quantization->scale, IsEmpty()); EXPECT_THAT(subgraph->tensors[1]->quantization->zero_point, IsEmpty()); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(model_.operator_codes[0]->builtin_code, Eq(BuiltinOperator_WHERE)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(1)); } } } } int main(int argc, char** argv) { tensorflow::string model_file; const std::vector<tensorflow::Flag> flag_list = { tensorflow::Flag("test_model_file", &model_file, "Path to test tflite model file."), }; const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list); if (!parse_result) { std::cerr << "Required test_model_file\n"; std::abort(); } g_test_model_dir = new tensorflow::string(tensorflow::io::Dirname(model_file)); ::tensorflow::port::InitMain(argv[0], &argc, &argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/python/quantize_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/quantization/lite/quantize_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d52c20ab-b940-4de5-843a-acbaa8160622
cpp
tensorflow/tensorflow
model_utils
tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils.cc
tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils_test.cc
#include "tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" namespace mlir { namespace lite { namespace toco_legacy { using std::string; using tflite::BuiltinOperator; using tflite::BuiltinOperator_DEQUANTIZE; using tflite::ModelT; using tflite::OperatorCodeT; using tflite::OperatorT; using tflite::TensorT; using tflite::TensorType; int32_t GetOrInsertOpCodeIndex(ModelT* model, const BuiltinOperator& op_code, int32_t version) { for (size_t i = 0; i < model->operator_codes.size(); ++i) { if (tflite::GetBuiltinCode(model->operator_codes[i].get()) == op_code) { return i; } } model->operator_codes.push_back(std::make_unique<OperatorCodeT>()); int op_code_idx = model->operator_codes.size() - 1; model->operator_codes[op_code_idx]->builtin_code = op_code; model->operator_codes[op_code_idx]->deprecated_builtin_code = tflite::ConvertBuiltinCodeToDeprecatedBuiltinCode(op_code); model->operator_codes[op_code_idx]->version = version; return op_code_idx; } void MakeDequantizeOperator(ModelT* model, std::unique_ptr<OperatorT>* op, int32_t input, int32_t output) { OperatorT* op_raw = new OperatorT; op_raw->opcode_index = GetOrInsertOpCodeIndex(model, BuiltinOperator_DEQUANTIZE, 2); op_raw->inputs = {input}; op_raw->outputs = {output}; op->reset(op_raw); } void MakeTensor(const string& name, const std::vector<int32_t>& shape, const std::vector<int32_t>& shape_signature, const TensorType& type, std::unique_ptr<TensorT>* tensor) { TensorT* tensor_raw = new TensorT; tensor_raw->name = name; tensor_raw->shape = shape; if (!shape_signature.empty()) { tensor_raw->shape_signature = shape_signature; } tensor_raw->type = type; tensor->reset(tensor_raw); } bool HasMinMax(const TensorT* tensor) { return tensor->quantization && !tensor->quantization->min.empty() && !tensor->quantization->max.empty(); } } } }
#include "tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" namespace mlir { namespace lite { namespace toco_legacy { namespace { using std::string; TEST(ModelUtilsTest, HasMinMax) { tflite::TensorT tensor; tensor.quantization = std::make_unique<tflite::QuantizationParametersT>(); tensor.quantization->min.push_back(0.5); EXPECT_FALSE(mlir::lite::toco_legacy::HasMinMax(&tensor)); tensor.quantization->max.push_back(1.5); EXPECT_TRUE(mlir::lite::toco_legacy::HasMinMax(&tensor)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/quantization/lite/toco_legacy/model_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8aa133e2-df08-430d-ba92-71ab1f3fd17e
cpp
tensorflow/tensorflow
logging_op_resolver
tensorflow/lite/tools/optimize/calibration/logging_op_resolver.cc
tensorflow/lite/tools/optimize/calibration/logging_op_resolver_test.cc
#include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" #include <memory> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" #include "tensorflow/lite/util.h" namespace tflite { namespace optimize { namespace calibration { LoggingOpResolver::LoggingOpResolver( const BuiltinOpsSet& builtin_ops_to_replace, const CustomOpsSet& custom_ops_to_replace, const OpResolver& base_resolver, KernelEvalFuncPtr logging_eval_fn, ErrorReporter* error_reporter) { std::vector<std::string> unresolved_builtin_ops; std::vector<std::string> unresolved_custom_ops; for (const auto& op_and_version : builtin_ops_to_replace) { const TfLiteRegistration* base_registration = base_resolver.FindOp(op_and_version.first, op_and_version.second); if (!base_registration) { unresolved_builtin_ops.push_back( EnumNameBuiltinOperator(op_and_version.first)); continue; } BuiltinOperatorKey key = op_and_version; builtin_op_evalfn_map_[key] = base_registration->invoke; auto logging_registration = std::make_unique<TfLiteRegistration>(*base_registration); logging_registration->invoke = logging_eval_fn; builtin_op_registration_map_[key] = std::move(logging_registration); } for (const auto& op_and_version : custom_ops_to_replace) { const TfLiteRegistration* base_registration = base_resolver.FindOp( op_and_version.first.c_str(), op_and_version.second); if (!base_registration) { if (!IsFlexOp(op_and_version.first.c_str())) unresolved_custom_ops.push_back(op_and_version.first.c_str()); continue; } CustomOperatorKey key = op_and_version; custom_op_evalfn_map_[key] = base_registration->invoke; auto logging_registration = std::make_unique<TfLiteRegistration>(*base_registration); logging_registration->invoke = logging_eval_fn; custom_op_registration_map_[key] = std::move(logging_registration); } if (!unresolved_builtin_ops.empty() || !unresolved_custom_ops.empty()) { if (!error_reporter) return; std::string error_message = "Failed to initialize op resolver for calibration:"; if (!unresolved_builtin_ops.empty()) absl::StrAppend(&error_message, "\nThere are unresolved builtin ops: [", absl::StrJoin(unresolved_builtin_ops, ", "), "]"); if (!unresolved_custom_ops.empty()) { absl::StrAppend(&error_message, "\nThere are unresolved custom ops: [", absl::StrJoin(unresolved_custom_ops, ", "), "]"); } TF_LITE_REPORT_ERROR(error_reporter, error_message.c_str()); } } const TfLiteRegistration* LoggingOpResolver::FindOp(BuiltinOperator op, int version) const { BuiltinOperatorKey key = {op, version}; if (builtin_op_registration_map_.find(key) != builtin_op_registration_map_.end()) { return builtin_op_registration_map_.at(key).get(); } return nullptr; } KernelEvalFuncPtr LoggingOpResolver::GetWrappedKernelInvoke(BuiltinOperator op, int version) const { return builtin_op_evalfn_map_.at({op, version}); } const TfLiteRegistration* LoggingOpResolver::FindOp(const char* op, int version) const { CustomOperatorKey key = {op, version}; if (custom_op_registration_map_.find(key) != custom_op_registration_map_.end()) { return custom_op_registration_map_.at(key).get(); } return nullptr; } KernelEvalFuncPtr LoggingOpResolver::GetWrappedKernelInvoke(const char* op, int version) const { return custom_op_evalfn_map_.at({op, version}); } } } }
#include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" namespace tflite { namespace optimize { namespace calibration { namespace { TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus ConvEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus AddPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus CustomPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus CustomEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus WrappingInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TEST(LoggingOpResolverTest, KernelInvokesAreReplaced) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(BuiltinOperator_CONV_2D, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CONV_2D); EXPECT_TRUE(reg->prepare == ConvPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); reg = resolver.FindOp(BuiltinOperator_ADD, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_ADD); EXPECT_TRUE(reg->prepare == AddPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); } TEST(LoggingOpResolverTest, OriginalKernelInvokesAreRetained) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto kernel_invoke = resolver.GetWrappedKernelInvoke(BuiltinOperator_CONV_2D, 1); EXPECT_TRUE(kernel_invoke == ConvEval); kernel_invoke = resolver.GetWrappedKernelInvoke(BuiltinOperator_ADD, 1); EXPECT_TRUE(kernel_invoke == AddEval); } TEST(LoggingOpResolverTest, OnlyOpsInReplacementSetAreReplaces) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(BuiltinOperator_CONV_2D, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CONV_2D); EXPECT_TRUE(reg->prepare == ConvPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); reg = resolver.FindOp(BuiltinOperator_ADD, 1); EXPECT_EQ(nullptr, reg); } TEST(LoggingOpResolverTest, CustomOps) { MutableOpResolver base_resolver; TfLiteRegistration custom_registration = {}; custom_registration.prepare = CustomPrepare; custom_registration.invoke = CustomEval; std::string custom_op_name = "custom"; base_resolver.AddCustom(custom_op_name.c_str(), &custom_registration); CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver resolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(custom_op_name.c_str(), 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CUSTOM); EXPECT_EQ(reg->custom_name, custom_op_name.c_str()); EXPECT_TRUE(reg->prepare == CustomPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); } TEST(LoggingOpResolverTest, UnresolvedCustomOps) { MutableOpResolver base_resolver; std::string custom_op_name = "unresolved_custom_op"; CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); } TEST(LoggingOpResolverTest, UnresolvedBuiltinOps) { MutableOpResolver base_resolver; BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); } TEST(LoggingOpResolverTest, FlexOps) { MutableOpResolver base_resolver; std::string custom_op_name = "FlexAdd"; CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver resolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(custom_op_name.c_str(), 1); EXPECT_TRUE(!reg); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/calibration/logging_op_resolver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/calibration/logging_op_resolver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5049f30e-5fab-4599-b26d-ef55273675f2
cpp
tensorflow/tensorflow
calibrator
tensorflow/lite/tools/optimize/calibration/calibrator.cc
tensorflow/lite/tools/optimize/calibration/calibrator_test.cc
#include "tensorflow/lite/tools/optimize/calibration/calibrator.h" #include <fstream> #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "flatbuffers/buffer.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/allocation.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/optimize/calibration/builtin_logging_ops/lstm.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_logger.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h" #include "tensorflow/lite/tools/optimize/calibration/custom_logging_ops/lstm.h" #include "tensorflow/lite/tools/optimize/calibration/logging_op.h" #include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" namespace tflite { namespace optimize { namespace calibration { namespace { class Calibrator { public: Calibrator(const std::unordered_map<const TfLiteNode*, OperatorInfo>& node_ptr_opinfo_map, std::unique_ptr<LoggingOpResolver> logging_op_resolver, ErrorReporter* error_reporter) : node_ptr_opinfo_map_(node_ptr_opinfo_map), logging_op_resolver_(std::move(logging_op_resolver)), error_reporter_(error_reporter) { logger_ = std::make_unique<Logger>(); } KernelEvalFuncPtr GetKernelInvoke(const TfLiteNode* node) const; Logger* GetLogger() const { return logger_.get(); } ErrorReporter* GetErrorReporter() const { return error_reporter_; } const OperatorInfo& GetOpInfo(const TfLiteNode* node) const { return node_ptr_opinfo_map_.at(node); } std::vector<const TfLiteNode*> GetNodesUnderCalibration() { std::vector<const TfLiteNode*> nodes; nodes.reserve(node_ptr_opinfo_map_.size()); for (const auto& entry : node_ptr_opinfo_map_) { nodes.push_back(entry.first); } return nodes; } private: std::unordered_map<const TfLiteNode*, OperatorInfo> node_ptr_opinfo_map_; std::unique_ptr<LoggingOpResolver> logging_op_resolver_; const std::unordered_map<int, OperatorInfo> index_opinfo_; std::unique_ptr<Logger> logger_; ErrorReporter* error_reporter_; }; KernelEvalFuncPtr Calibrator::GetKernelInvoke(const TfLiteNode* node) const { auto op_info = node_ptr_opinfo_map_.at(node); if (op_info.is_custom_op) { return logging_op_resolver_->GetWrappedKernelInvoke(op_info.name.c_str(), op_info.version); } return logging_op_resolver_->GetWrappedKernelInvoke(op_info.builtin_op_code, op_info.version); } class GlobalCalibratorRegistry { public: Calibrator* GetCalibrator(const TfLiteNode* node) const { if (node_to_calibrator_.find(node) == node_to_calibrator_.cend()) { return nullptr; } return node_to_calibrator_.at(node); } void RemoveCalibrator(const TfLiteContext* context) { Calibrator* calibrator = calibrator_registry_.at(context).get(); auto nodes = calibrator->GetNodesUnderCalibration(); for (auto node : nodes) { node_to_calibrator_.erase(node); } calibrator_registry_.erase(context); } TfLiteStatus CreateCalibrator( const TfLiteContext* context, const std::unordered_map<const TfLiteNode*, OperatorInfo>& node_to_opinfo, std::unique_ptr<LoggingOpResolver> logging_op_resolver, Calibrator** calibrator_ptr, ErrorReporter* reporter) { if (calibrator_registry_.find(context) != calibrator_registry_.cend()) { reporter->Report( "Failed to create calibrator, context already registered."); return kTfLiteError; } auto calibrator = std::make_unique<Calibrator>( node_to_opinfo, std::move(logging_op_resolver), reporter); calibrator_registry_[context] = std::move(calibrator); *calibrator_ptr = calibrator_registry_.at(context).get(); for (const auto& entry : node_to_opinfo) { node_to_calibrator_[entry.first] = *calibrator_ptr; } return kTfLiteOk; } private: absl::flat_hash_map<const TfLiteContext*, std::unique_ptr<Calibrator>> calibrator_registry_; absl::flat_hash_map<const TfLiteNode*, Calibrator*> node_to_calibrator_; }; GlobalCalibratorRegistry* GetCalibratorRegistry() { static GlobalCalibratorRegistry* registry = new GlobalCalibratorRegistry(); return registry; } logging_kernel_func_ptr GetLoggingEvalFunc(TfLiteContext* context, TfLiteNode* node, int builtin_op_code) { switch (builtin_op_code) { case BuiltinOperator_LSTM: { if (node->intermediates->size == 12) { return tflite::optimize::calibration::custom::lstm_logging_kernel; } return tflite::optimize::calibration::builtin::lstm_logging_kernel; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: return tflite::optimize::calibration::builtin:: unidirectional_sequence_lstm_logging_kernel; default: return nullptr; } } TfLiteStatus LoggingEval(TfLiteContext* context, TfLiteNode* node) { Calibrator* calibrator = GetCalibratorRegistry()->GetCalibrator(node); if (!calibrator) { TF_LITE_KERNEL_LOG(context, "No calibrator found for context."); return kTfLiteError; } auto kernel_invoke = calibrator->GetKernelInvoke(node); auto logger = calibrator->GetLogger(); auto op_info = calibrator->GetOpInfo(node); auto error_reporter = calibrator->GetErrorReporter(); for (int i : op_info.loggable_inputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } auto builtin_op_code = calibrator->GetOpInfo(node).builtin_op_code; auto kernel_invoke_intermediate = GetLoggingEvalFunc(context, node, builtin_op_code); if (kernel_invoke_intermediate == nullptr) { TF_LITE_ENSURE_STATUS(kernel_invoke(context, node)); } else { TF_LITE_ENSURE_STATUS( kernel_invoke_intermediate(context, op_info.subgraph_index, node, calibrator->GetLogger(), error_reporter)); } for (int i : op_info.loggable_inputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } for (int i : op_info.loggable_outputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } return kTfLiteOk; } std::vector<int> GetLoggableTensorIndices( const std::vector<int>& tensor_indices, const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors, const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* tensor_buffers) { std::vector<int> loggable; for (auto tensor_index : tensor_indices) { if (tensor_index == kTfLiteOptionalTensor) { continue; } auto tensor = tensors->Get(tensor_index); auto buffer_index = tensor->buffer(); const bool has_no_buffer = (tensor_buffers->Get(buffer_index) == nullptr) || (tensor_buffers->Get(buffer_index)->data() == nullptr) || (tensor_buffers->Get(buffer_index)->data()->size() == 0); if (has_no_buffer && tensor->type() == tflite::TensorType_FLOAT32) { loggable.push_back(tensor_index); } } return loggable; } TfLiteStatus GetNodeOpInfoMapAndContext( const absl::flat_hash_map<std::tuple<int, int>, OperatorInfo>& node_to_opinfo, tflite::Interpreter* const interpreter, std::unordered_map<const TfLiteNode*, OperatorInfo>* node_ptr_opinfo_map, TfLiteContext** context) { *context = interpreter->primary_subgraph().context(); TF_LITE_ENSURE(*context, interpreter->execution_plan().size() <= node_to_opinfo.size()); for (const auto& entry : node_to_opinfo) { auto op_info = entry.second; int subgraph_index, op_index; std::tie(subgraph_index, op_index) = entry.first; const auto* node_and_reg = interpreter->node_and_registration(subgraph_index, op_index); op_info.registration = &node_and_reg->second; node_ptr_opinfo_map->insert({&node_and_reg->first, op_info}); } return kTfLiteOk; } string GetOpName(const tflite::OperatorCode& opcode) { if (opcode.custom_code() != nullptr) { return opcode.custom_code()->str(); } return tflite::EnumNamesBuiltinOperator()[GetBuiltinCode(&opcode)]; } class Reader : public CalibrationReader { public: Reader(const TfLiteContext* context, const Logger* logger) : CalibrationReader(logger), context_(context) {} ~Reader() override { GetCalibratorRegistry()->RemoveCalibrator(context_); } private: const TfLiteContext* context_; }; bool HasInputs(BuiltinOperator code) { switch (code) { case BuiltinOperator_CALL_ONCE: case BuiltinOperator_VAR_HANDLE: case BuiltinOperator_CUSTOM: return false; default: return true; } } bool HasOutputs(BuiltinOperator code) { switch (code) { case BuiltinOperator_ASSIGN_VARIABLE: case BuiltinOperator_CALL_ONCE: case BuiltinOperator_CUSTOM: return false; default: return true; } } } TfLiteStatus BuildLoggingInterpreter( const FlatBufferModel& model, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader) { return BuildLoggingInterpreter(model.GetModel(), model.error_reporter(), op_resolver, interpreter, calibration_reader, model.allocation()); } TfLiteStatus BuildLoggingInterpreter( const tflite::Model* tflite_model, ErrorReporter* error_reporter, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader, const Allocation* allocation) { if (error_reporter == nullptr) { error_reporter = DefaultErrorReporter(); } auto subgraphs = tflite_model->subgraphs(); auto tensor_buffers = tflite_model->buffers(); absl::flat_hash_map<std::tuple<int, int>, OperatorInfo> node_to_opinfo; BuiltinOpsSet builtin_op_and_versions; CustomOpsSet custom_op_and_versions; for (size_t subgraph_index = 0; subgraph_index < subgraphs->size(); subgraph_index++) { auto subgraph = subgraphs->Get(subgraph_index); auto operator_codes = tflite_model->operator_codes(); auto operators = subgraph->operators(); auto tensors = subgraph->tensors(); if (!operators) { continue; } for (size_t i = 0; i < operators->size(); i++) { OperatorInfo op_info; op_info.subgraph_index = subgraph_index; op_info.node_index = i; auto op = operators->Get(i); auto operator_code = operator_codes->Get(op->opcode_index()); op_info.builtin_op_code = GetBuiltinCode(operator_code); op_info.name = GetOpName(*operator_code); op_info.is_custom_op = operator_code->custom_code() != nullptr; op_info.version = operator_code->version(); auto op_inputs = op->inputs(); auto op_outputs = op->outputs(); if (op_inputs) { op_info.inputs = std::vector<int>(op_inputs->begin(), op_inputs->end()); } else if (HasInputs(op_info.builtin_op_code)) { TFLITE_LOG(TFLITE_LOG_WARNING, "Op %s missing inputs", op_info.name.c_str()); } if (op_outputs) { op_info.outputs = std::vector<int>(op_outputs->begin(), op_outputs->end()); } else if (HasOutputs(op_info.builtin_op_code)) { TFLITE_LOG(TFLITE_LOG_WARNING, "Op %s missing outputs", op_info.name.c_str()); } op_info.loggable_inputs = GetLoggableTensorIndices(op_info.inputs, tensors, tensor_buffers); op_info.loggable_outputs = GetLoggableTensorIndices(op_info.outputs, tensors, tensor_buffers); if (op_info.is_custom_op) { op_info.registration = op_resolver.FindOp(op_info.name.c_str(), operator_code->version()); custom_op_and_versions.insert( {op_info.name.c_str(), operator_code->version()}); } else { op_info.registration = op_resolver.FindOp(GetBuiltinCode(operator_code), operator_code->version()); builtin_op_and_versions.insert( {op_info.builtin_op_code, operator_code->version()}); } std::tuple<int, int> key{subgraph_index, i}; node_to_opinfo[key] = op_info; } } auto logging_op_resolver = std::make_unique<LoggingOpResolver>( builtin_op_and_versions, custom_op_and_versions, op_resolver, LoggingEval, error_reporter); tflite::InterpreterBuilder(tflite_model, *logging_op_resolver, error_reporter, nullptr, allocation)(interpreter); if (!(*interpreter)) { error_reporter->Report("Failed to construct interpreter"); return kTfLiteError; } std::unordered_map<const TfLiteNode*, OperatorInfo> node_ptr_opinfo_map; TfLiteContext* context = nullptr; TF_LITE_ENSURE_STATUS(GetNodeOpInfoMapAndContext( node_to_opinfo, interpreter->get(), &node_ptr_opinfo_map, &context)); Calibrator* calibrator = nullptr; TF_LITE_ENSURE_STATUS(GetCalibratorRegistry()->CreateCalibrator( context, node_ptr_opinfo_map, std::move(logging_op_resolver), &calibrator, error_reporter)); *calibration_reader = std::unique_ptr<CalibrationReader>( new Reader(context, calibrator->GetLogger())); return kTfLiteOk; } } } }
#include "tensorflow/lite/tools/optimize/calibration/calibrator.h" #include <cstring> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h" namespace { tensorflow::string* g_test_model_dir = nullptr; } namespace tflite { namespace optimize { namespace calibration { namespace { std::unique_ptr<FlatBufferModel> ReadModel(const string& model_name) { auto model_path = tensorflow::io::JoinPath(*g_test_model_dir, model_name); return FlatBufferModel::BuildFromFile(model_path.c_str()); } TEST(CalibratorTest, CalibrationStatsAreCollected) { auto model = ReadModel("multi_add.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; std::vector<float> ones(tensor_size, 1.0f); for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; TfLiteTensor* tensor = interpreter->tensor(interpreter->outputs()[0]); for (size_t i = 0; i < tensor_size; i++) { EXPECT_NEAR(tensor->data.f[i], 6.0f, eps); } tensor = interpreter->tensor(interpreter->outputs()[1]); for (size_t i = 0; i < tensor_size; i++) { EXPECT_NEAR(tensor->data.f[i], 9.0f, eps); } status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); for (int tensor_idx = 0; tensor_idx < 4; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, tensor_idx + 1, eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, tensor_idx + 1, eps); } EXPECT_NEAR(stats.find({0, 4})->second.min, 5, eps); EXPECT_NEAR(stats.find({0, 4})->second.max, 5, eps); EXPECT_NEAR(stats.find({0, 5})->second.min, 6, eps); EXPECT_NEAR(stats.find({0, 5})->second.max, 6, eps); EXPECT_NEAR(stats.find({0, 6})->second.min, 9, eps); EXPECT_NEAR(stats.find({0, 6})->second.max, 9, eps); } TEST(CalibratorTest, MultipleInvokes) { auto model = ReadModel("multi_add.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); const float expected_values[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, expected_values[tensor_idx], eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, expected_values[tensor_idx], eps); } TfLiteTensor* input0 = interpreter->tensor(0); input0->data.f[0] = 1.5f; input0->data.f[1] = 0.5f; status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); EXPECT_NEAR(stats.find({0, 0})->second.min, 0.5f, eps); EXPECT_NEAR(stats.find({0, 0})->second.max, 1.5f, eps); for (int tensor_idx = 1; tensor_idx < 5; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, expected_values[tensor_idx], eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, expected_values[tensor_idx], eps); } EXPECT_NEAR(stats.find({0, 5})->second.min, 5.5f, eps); EXPECT_NEAR(stats.find({0, 5})->second.max, 6.5f, eps); EXPECT_NEAR(stats.find({0, 6})->second.min, 9.0f, eps); EXPECT_NEAR(stats.find({0, 6})->second.max, 9.0f, eps); } TEST(CalibratorTest, UpdateMinMax) { auto flatbuffer_model = ReadModel("multi_add.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } auto input_0_quant_params = std::make_unique<tflite::QuantizationParametersT>(); input_0_quant_params->min.push_back(0.5); input_0_quant_params->max.push_back(1.5); model.subgraphs[0]->tensors[0]->quantization = std::move(input_0_quant_params); status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; const float expected_min[7] = { 0.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; const float expected_max[7] = { 1.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, true); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_min[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_max[tensor_idx], eps); } const float expected_value[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, false); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_value[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_value[tensor_idx], eps); } } TEST(CalibratorTest, HandleNanValues) { auto flatbuffer_model = ReadModel("multi_add.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { if (j % 2 == 0) { tensor->data.f[j] = NAN; } else { tensor->data.f[j] = i + 1; } } } auto input_0_quant_params = std::make_unique<tflite::QuantizationParametersT>(); input_0_quant_params->min.push_back(0.5); input_0_quant_params->max.push_back(1.5); model.subgraphs[0]->tensors[0]->quantization = std::move(input_0_quant_params); status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; const float expected_min[7] = { 0.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; const float expected_max[7] = { 1.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, true); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_min[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_max[tensor_idx], eps); } const float expected_value[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, false); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_value[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_value[tensor_idx], eps); } } TEST(CalibratorTest, LSTM) { auto flatbuffer_model = ReadModel("lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(status, kTfLiteOk); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const std::vector<float> lstm_input = {0.3, 0.2}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.300000}}, {{0, 18}, {0.000000, 0.468415}}, {{0, 19}, {0.000000, 0.424350}}, {{0, 24}, {0.265968, 0.468415}}, {{0, 25}, {0.080045, 0.170588}}, {{0, 26}, {0.080045, 0.170588}}, {{0, 27}, {0.080045, 0.170588}}, {{0, 28}, {0.080045, 0.170588}}, {{0, 29}, {0.000000, 0.270944}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, UnidirectionalSequenceLSTM) { auto flatbuffer_model = ReadModel("unidirectional_sequence_lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); EXPECT_EQ(interpreter->AllocateTensors(), kTfLiteOk); const std::vector<float> lstm_input = {0.3, 0.2, 0.9, 0.8}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.900000}}, {{0, 18}, {0.000000, 0.520999}}, {{0, 19}, {0.000000, 0.711364}}, {{0, 24}, {0.247992, 0.520999}}, {{0, 25}, {0.080045, 0.824241}}, {{0, 26}, {0.080045, 0.824241}}, {{0, 27}, {0.080045, 0.824241}}, {{0, 28}, {0.080045, 0.824241}}, {{0, 29}, {0.000000, 0.413618}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CustomLSTM) { auto flatbuffer_model = ReadModel("custom_lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); EXPECT_EQ(interpreter->AllocateTensors(), kTfLiteOk); const std::vector<float> lstm_input = {0.3, 0.2, 0.9, 0.8}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.300000}}, {{0, 18}, {0.000000, 0.468415}}, {{0, 19}, {0.000000, 0.424349}}, {{0, 24}, {0.265968, 0.468415}}, {{0, 25}, {0.080045, 0.170588}}, {{0, 26}, {0.080045, 0.170588}}, {{0, 27}, {0.000000, 0.000000}}, {{0, 28}, {0.080045, 0.170588}}, {{0, 29}, {0.080045, 0.170588}}, {{0, 30}, {0.000000, 0.000000}}, {{0, 31}, {0.080045, 0.170588}}, {{0, 32}, {0.080045, 0.170588}}, {{0, 33}, {0.000000, 0.000000}}, {{0, 34}, {0.080045, 0.170588}}, {{0, 35}, {0.080045, 0.170588}}, {{0, 36}, {0.000000, 0.000000}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CalibrationWithMultipleSubgraphs) { auto model = ReadModel("multi_subgraphs_while.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(int)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(4, stats.size()); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {1.0, 1.0}}, {{0, 4}, {4.0, 4.0}}, {{2, 2}, {1.0, 2.0}}, {{2, 6}, {2.0, 4.0}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CalibrationWithCallOnce) { auto model = ReadModel("call_once_mul.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(int)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(3, stats.size()); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {1.0, 1.0}}, {{0, 2}, {2.0, 2.0}}, {{0, 3}, {2.0, 2.0}}}; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } } } } } int main(int argc, char** argv) { tensorflow::string model_file; const std::vector<tensorflow::Flag> flag_list = { tensorflow::Flag("test_model_file", &model_file, "Path to test tflite model file."), }; const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list); if (!parse_result) { std::cerr << "Required test_model_file\n"; std::abort(); } g_test_model_dir = new tensorflow::string(tensorflow::io::Dirname(model_file)); ::tensorflow::port::InitMain(argv[0], &argc, &argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/calibration/calibrator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/optimize/calibration/calibrator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c45fb7a3-0e45-4799-97f2-897cff4b579a
cpp
tensorflow/tensorflow
signature_def_util
tensorflow/lite/tools/signature/signature_def_util.cc
tensorflow/lite/tools/signature/signature_def_util_test.cc
#include "tensorflow/lite/tools/signature/signature_def_util.h" #include <map> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/flexbuffers.h" #include "flatbuffers/vector.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tsl/platform/status.h" namespace tflite { namespace { using tensorflow::Status; using SerializedSignatureDefMap = std::map<std::string, std::string>; using SignatureDefMap = std::map<std::string, tensorflow::SignatureDef>; const Metadata* GetSignatureDefMetadata(const Model* model) { if (!model || !model->metadata()) { return nullptr; } for (int i = 0; i < model->metadata()->size(); ++i) { const Metadata* metadata = model->metadata()->Get(i); if (metadata->name()->str() == kSignatureDefsMetadataName) { return metadata; } } return nullptr; } Status ReadSignatureDefMap(const Model* model, const Metadata* metadata, SerializedSignatureDefMap* map) { if (!model || !metadata || !map) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } const flatbuffers::Vector<uint8_t>* flatbuffer_data = model->buffers()->Get(metadata->buffer())->data(); const auto signature_defs = flexbuffers::GetRoot(flatbuffer_data->data(), flatbuffer_data->size()) .AsMap(); for (int i = 0; i < signature_defs.Keys().size(); ++i) { const std::string key = signature_defs.Keys()[i].AsString().c_str(); (*map)[key] = signature_defs[key].AsString().c_str(); } return absl::OkStatus(); } } Status SetSignatureDefMap(const Model* model, const SignatureDefMap& signature_def_map, std::string* model_data_with_signature_def) { if (!model || !model_data_with_signature_def) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } if (signature_def_map.empty()) { return tensorflow::errors::InvalidArgument( "signature_def_map should not be empty"); } flexbuffers::Builder fbb; const size_t start_map = fbb.StartMap(); auto mutable_model = std::make_unique<ModelT>(); model->UnPackTo(mutable_model.get(), nullptr); int buffer_id = mutable_model->buffers.size(); const Metadata* metadata = GetSignatureDefMetadata(model); if (metadata) { buffer_id = metadata->buffer(); } else { auto buffer = std::make_unique<BufferT>(); mutable_model->buffers.emplace_back(std::move(buffer)); auto sigdef_metadata = std::make_unique<MetadataT>(); sigdef_metadata->buffer = buffer_id; sigdef_metadata->name = kSignatureDefsMetadataName; mutable_model->metadata.emplace_back(std::move(sigdef_metadata)); } for (const auto& entry : signature_def_map) { fbb.String(entry.first.c_str(), entry.second.SerializeAsString()); } fbb.EndMap(start_map); fbb.Finish(); mutable_model->buffers[buffer_id]->data = fbb.GetBuffer(); flatbuffers::FlatBufferBuilder builder; auto packed_model = Model::Pack(builder, mutable_model.get()); FinishModelBuffer(builder, packed_model); *model_data_with_signature_def = std::string(reinterpret_cast<const char*>(builder.GetBufferPointer()), builder.GetSize()); return absl::OkStatus(); } bool HasSignatureDef(const Model* model, const std::string& signature_key) { if (!model) { return false; } const Metadata* metadata = GetSignatureDefMetadata(model); if (!metadata) { return false; } SerializedSignatureDefMap signature_defs; if (ReadSignatureDefMap(model, metadata, &signature_defs) != absl::OkStatus()) { return false; } return (signature_defs.find(signature_key) != signature_defs.end()); } Status GetSignatureDefMap(const Model* model, SignatureDefMap* signature_def_map) { if (!model || !signature_def_map) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } SignatureDefMap retrieved_signature_def_map; const Metadata* metadata = GetSignatureDefMetadata(model); if (metadata) { SerializedSignatureDefMap signature_defs; auto status = ReadSignatureDefMap(model, metadata, &signature_defs); if (status != absl::OkStatus()) { return tensorflow::errors::Internal("Error reading signature def map: ", status.message()); } for (const auto& entry : signature_defs) { tensorflow::SignatureDef signature_def; if (!signature_def.ParseFromString(entry.second)) { return tensorflow::errors::Internal( "Cannot parse signature def found in flatbuffer."); } retrieved_signature_def_map[entry.first] = signature_def; } *signature_def_map = retrieved_signature_def_map; } return absl::OkStatus(); } Status ClearSignatureDefMap(const Model* model, std::string* model_data) { if (!model || !model_data) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } auto mutable_model = std::make_unique<ModelT>(); model->UnPackTo(mutable_model.get(), nullptr); for (int id = 0; id < model->metadata()->size(); ++id) { const Metadata* metadata = model->metadata()->Get(id); if (metadata->name()->str() == kSignatureDefsMetadataName) { auto* buffers = &(mutable_model->buffers); buffers->erase(buffers->begin() + metadata->buffer()); mutable_model->metadata.erase(mutable_model->metadata.begin() + id); break; } } flatbuffers::FlatBufferBuilder builder; auto packed_model = Model::Pack(builder, mutable_model.get()); FinishModelBuffer(builder, packed_model); *model_data = std::string(reinterpret_cast<const char*>(builder.GetBufferPointer()), builder.GetSize()); return absl::OkStatus(); } }
#include "tensorflow/lite/tools/signature/signature_def_util.h" #include <string> #include <gtest/gtest.h> #include "absl/status/status.h" #include "flatbuffers/buffer.h" #include "tensorflow/cc/saved_model/signature_constants.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tsl/platform/status.h" namespace tflite { namespace { using tensorflow::kClassifyMethodName; using tensorflow::kDefaultServingSignatureDefKey; using tensorflow::kPredictMethodName; using tensorflow::SignatureDef; using tensorflow::Status; constexpr char kSignatureInput[] = "input"; constexpr char kSignatureOutput[] = "output"; constexpr char kTestFilePath[] = "tensorflow/lite/testdata/add.bin"; class SimpleSignatureDefUtilTest : public testing::Test { protected: void SetUp() override { flatbuffer_model_ = FlatBufferModel::BuildFromFile(kTestFilePath); ASSERT_NE(flatbuffer_model_, nullptr); model_ = flatbuffer_model_->GetModel(); ASSERT_NE(model_, nullptr); } SignatureDef GetTestSignatureDef() { auto signature_def = SignatureDef(); tensorflow::TensorInfo input_tensor; tensorflow::TensorInfo output_tensor; *input_tensor.mutable_name() = kSignatureInput; *output_tensor.mutable_name() = kSignatureOutput; *signature_def.mutable_method_name() = kClassifyMethodName; (*signature_def.mutable_inputs())[kSignatureInput] = input_tensor; (*signature_def.mutable_outputs())[kSignatureOutput] = output_tensor; return signature_def; } std::unique_ptr<FlatBufferModel> flatbuffer_model_; const Model* model_; }; TEST_F(SimpleSignatureDefUtilTest, SetSignatureDefTest) { SignatureDef expected_signature_def = GetTestSignatureDef(); std::string model_output; const std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); SignatureDef test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); } TEST_F(SimpleSignatureDefUtilTest, OverwriteSignatureDefTest) { auto expected_signature_def = GetTestSignatureDef(); std::string model_output; std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); SignatureDef test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); *expected_signature_def.mutable_method_name() = kPredictMethodName; expected_signature_def_map.erase( expected_signature_def_map.find(kDefaultServingSignatureDefKey)); constexpr char kTestSignatureDefKey[] = "ServingTest"; expected_signature_def_map[kTestSignatureDefKey] = expected_signature_def; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(add_model, expected_signature_def_map, &model_output)); const Model* final_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_FALSE(HasSignatureDef(final_model, kDefaultServingSignatureDefKey)); EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(final_model, &test_signature_def_map)); EXPECT_NE(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); EXPECT_TRUE(HasSignatureDef(final_model, kTestSignatureDefKey)); EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(final_model, &test_signature_def_map)); test_signature_def = test_signature_def_map[kTestSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); } TEST_F(SimpleSignatureDefUtilTest, GetSignatureDefTest) { std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(model_, &test_signature_def_map)); EXPECT_FALSE(HasSignatureDef(model_, kDefaultServingSignatureDefKey)); } TEST_F(SimpleSignatureDefUtilTest, ClearSignatureDefTest) { const int expected_num_buffers = model_->buffers()->size(); auto expected_signature_def = GetTestSignatureDef(); std::string model_output; std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); SignatureDef test_signature_def; std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); EXPECT_EQ(absl::OkStatus(), ClearSignatureDefMap(add_model, &model_output)); const Model* clear_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_FALSE(HasSignatureDef(clear_model, kDefaultServingSignatureDefKey)); EXPECT_EQ(expected_num_buffers, clear_model->buffers()->size()); } TEST_F(SimpleSignatureDefUtilTest, SetSignatureDefErrorsTest) { std::map<string, SignatureDef> test_signature_def_map; std::string model_output; EXPECT_TRUE(tensorflow::errors::IsInvalidArgument( SetSignatureDefMap(model_, test_signature_def_map, &model_output))); SignatureDef test_signature_def; test_signature_def_map[kDefaultServingSignatureDefKey] = test_signature_def; EXPECT_TRUE(tensorflow::errors::IsInvalidArgument( SetSignatureDefMap(model_, test_signature_def_map, nullptr))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/signature/signature_def_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/signature/signature_def_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0d5029fc-e5a7-4df6-8d8f-b8c571a6e12a
cpp
tensorflow/tensorflow
writer
tensorflow/lite/tools/serialization/writer.cc
tensorflow/lite/tools/serialization/writer_test.cc
#include <iostream> #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/serialization/writer_lib.h" int main(int argc, char* argv[]) { if (argc != 3) { fprintf(stderr, "Usage: %s input_file output_file\n", argv[0]); return 1; } std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(argv[1]); std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates builtin_op_resolver; tflite::InterpreterBuilder(*model, builtin_op_resolver)(&interpreter); tflite::ModelWriter writer(interpreter.get()); writer.Write(argv[2]); return 0; }
#include <iostream> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/serialization/writer_lib.h" int main(int argc, char* argv[]) { if (argc != 2) { fprintf(stderr, "Usage: %s input_file\n", argv[0]); return 1; } std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(argv[1]); std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates builtin_op_resolver; tflite::InterpreterBuilder(*model, builtin_op_resolver)(&interpreter); tflite::ModelWriter writer(interpreter.get()); std::unique_ptr<uint8_t[]> output_buffer; size_t output_buffer_size; writer.GetBuffer(&output_buffer, &output_buffer_size); std::unique_ptr<tflite::Interpreter> new_interpreter; model = tflite::FlatBufferModel::BuildFromBuffer( reinterpret_cast<char*>(output_buffer.get()), output_buffer_size); tflite::InterpreterBuilder(*model, builtin_op_resolver)(&new_interpreter); if (new_interpreter->AllocateTensors() != kTfLiteOk) { fprintf(stderr, "AllocateTensors failed on the round-tripped model.\n"); return 1; } return 0; }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d8d55ae-5c41-44a2-905e-07d95bfb1b0c
cpp
tensorflow/tensorflow
writer_lib
tensorflow/lite/tools/serialization/writer_lib.cc
tensorflow/lite/tools/serialization/writer_lib_test.cc
#include "tensorflow/lite/tools/serialization/writer_lib.h" #include <cstdlib> #include <cstring> #include <memory> #include <set> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "flatbuffers/base.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/string.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/interpreter.h" #if FLATBUFFERS_LITTLEENDIAN == 0 #include "tensorflow/lite/core/model_builder.h" #endif #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/tools/serialization/enum_mapping.h" #include "tensorflow/lite/tools/versioning/op_version.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> CreateOpCodeTableImpl(flatbuffers::FlatBufferBuilder* fbb, std::vector<OpCode>* opcodes) { std::vector<flatbuffers::Offset<OperatorCode>> codes; for (const auto& it : *opcodes) { const char* custom_name = it.custom.empty() ? nullptr : it.custom.c_str(); int32_t op_version = it.builtin != tflite::BuiltinOperator_CUSTOM ? 0 : 1; codes.push_back( CreateOperatorCodeDirect(*fbb, static_cast<BuiltinOperator>(it.builtin), custom_name, op_version)); } return fbb->template CreateVector<flatbuffers::Offset<OperatorCode>>(codes); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> ExportBuffersImpl(flatbuffers::FlatBufferBuilder* fbb, std::vector<std::pair<const uint8_t*, size_t>>* buffers) { std::vector<flatbuffers::Offset<Buffer>> buffer_vector; for (auto buffer : *buffers) { auto data_offset = fbb->CreateVector(buffer.first, buffer.second); buffer_vector.push_back(CreateBuffer(*fbb, data_offset)); } return fbb->template CreateVector<flatbuffers::Offset<Buffer>>(buffer_vector); } TfLiteStatus WriteImpl(const std::string& filename, void* data, size_t size) { FILE* fp = fopen(filename.c_str(), "wb"); if (!fp) return kTfLiteError; #if FLATBUFFERS_LITTLEENDIAN == 0 const tflite::Model* input_model = tflite::GetModel(data); tflite::FlatBufferModel::ByteSwapTFLiteModel(input_model); #endif const int result_size = fwrite(data, 1, size, fp); fclose(fp); if (result_size != size) return kTfLiteError; return kTfLiteOk; } std::pair<BuiltinOptions, flatbuffers::Offset<void>> CreateBuiltinUnion( flatbuffers::FlatBufferBuilder* fbb, enum BuiltinOperator op, void* builtin_op_data, int node_inputs_size) { switch (op) { #include "tensorflow/lite/tools/serialization/option_writer_generated.h" } return std::make_pair(BuiltinOptions_NONE, flatbuffers::Offset<void>()); } } template <class T_OUTPUT, class T_INPUT> flatbuffers::Offset<flatbuffers::Vector<T_OUTPUT>> SubgraphWriter::ExportVector( flatbuffers::FlatBufferBuilder* fbb, const T_INPUT& v) { std::vector<T_OUTPUT> inputs(v.begin(), v.end()); return fbb->template CreateVector<T_OUTPUT>(inputs); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Operator>>> SubgraphWriter::ExportOperators(flatbuffers::FlatBufferBuilder* fbb) { std::vector<flatbuffers::Offset<Operator>> operators; std::vector<int> operator_to_opcode; operator_to_opcode.resize(subgraph_->nodes_size(), -1); for (int op_index : execution_plan_) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteRegistration* registration = &node_and_registration->second; if (!registration->custom_name) { operator_to_opcode[op_index] = GetOpCodeForBuiltin(registration->builtin_code); } else { operator_to_opcode[op_index] = GetOpCodeForCustom(registration->custom_name); } } for (int op_index : execution_plan_) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteNode& node = node_and_registration->first; const TfLiteRegistration& registration = node_and_registration->second; flatbuffers::Offset<void> builtin_options; BuiltinOptions builtin_options_type = BuiltinOptions_NONE; auto custom_options_format = CustomOptionsFormat_FLEXBUFFERS; flatbuffers::Offset<flatbuffers::Vector<uint8_t>> custom_options = 0; if (!registration.custom_name) { auto builtin_options_and_type = CreateBuiltinUnion( fbb, static_cast<enum BuiltinOperator>(registration.builtin_code), node.builtin_data, node.inputs->size); builtin_options = builtin_options_and_type.second; builtin_options_type = builtin_options_and_type.first; } else { auto custom_writer = custom_op_to_writer_.find(registration.custom_name); if (custom_writer != custom_op_to_writer_.end() && custom_writer->second) { custom_writer->second(fbb, subgraph_, op_index, &custom_options, &custom_options_format); } else { custom_options = fbb->CreateVector( reinterpret_cast<const uint8_t*>(node.custom_initial_data), node.custom_initial_data_size); } } int opcode_index = operator_to_opcode[op_index]; std::vector<int> written_inputs = RemapTensorIndicesToWritten(TfLiteIntArrayView(node.inputs)); std::vector<int> written_outputs = RemapTensorIndicesToWritten(TfLiteIntArrayView(node.outputs)); auto inputs = ExportVector<int32_t>(fbb, written_inputs); auto outputs = ExportVector<int32_t>(fbb, written_outputs); operators.push_back(CreateOperator(*fbb, opcode_index, inputs, outputs, builtin_options_type, builtin_options, custom_options, custom_options_format)); } return fbb->template CreateVector<flatbuffers::Offset<Operator>>(operators); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Tensor>>> SubgraphWriter::ExportTensors(flatbuffers::FlatBufferBuilder* fbb) { tensor_to_written_tensor_.resize(subgraph_->tensors_size(), -1); std::vector<flatbuffers::Offset<Tensor>> tensors; std::vector<bool> tensor_is_temporary(subgraph_->tensors_size(), false); for (int op_index = 0; op_index < subgraph_->nodes_size(); ++op_index) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); for (auto tensor_index : TfLiteIntArrayView(node_and_registration->first.temporaries)) tensor_is_temporary[tensor_index] = true; } int curr_output_index = 0; for (int tensor_index = 0; tensor_index < subgraph_->tensors_size(); tensor_index++) { if (!tensor_is_temporary[tensor_index] && unused_tensors_.find(tensor_index) == unused_tensors_.end()) { tensor_to_written_tensor_[tensor_index] = curr_output_index++; } } for (int tensor_index = 0; tensor_index < subgraph_->tensors_size(); ++tensor_index) { if (tensor_to_written_tensor_[tensor_index] == -1) continue; if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { int buffer_index = 0; if (tensor->allocation_type == kTfLiteMmapRo) { buffer_index = buffers_->size(); buffers_->push_back(std::make_pair( reinterpret_cast<const uint8_t*>(tensor->data.raw), tensor->bytes)); } TensorType type = TfLiteTypeToSchemaType(tensor->type); flatbuffers::Offset<QuantizationParameters> quantization_params; const flatbuffers::Offset<flatbuffers::Vector<float>> null_array; flatbuffers::Offset<flatbuffers::Vector<float>> scale_array; flatbuffers::Offset<flatbuffers::Vector<int64_t>> zero_point_array; if (tensor->quantization.type == kTfLiteAffineQuantization) { if (tensor->params.scale != 0.f) { scale_array = fbb->CreateVector<float>({tensor->params.scale}); zero_point_array = fbb->CreateVector<int64_t>({tensor->params.zero_point}); quantization_params = CreateQuantizationParameters( *fbb, null_array, null_array, scale_array, zero_point_array); } else { const TfLiteAffineQuantization* params = reinterpret_cast<TfLiteAffineQuantization*>( tensor->quantization.params); const size_t num_scales = params->scale->size; std::vector<float> scale_vector(params->scale->data, params->scale->data + num_scales); std::vector<int64_t> zero_point_vector( params->zero_point->data, params->zero_point->data + num_scales); scale_array = fbb->CreateVector<float>(scale_vector); zero_point_array = fbb->CreateVector<int64_t>(zero_point_vector); quantization_params = CreateQuantizationParameters( *fbb, null_array, null_array, scale_array, zero_point_array, QuantizationDetails_NONE, 0, params->quantized_dimension); } } if (tensor->dims) { TfLiteIntArrayView shape_view(tensor->dims); std::vector<int> shape = std::vector<int>(shape_view.begin(), shape_view.end()); Offset<flatbuffers::String> tensor_name_offset = 0; if (tensor->name != nullptr) { tensor_name_offset = fbb->CreateString(tensor->name); } flatbuffers::Offset<flatbuffers::Vector<int32_t>> shape_signature_offset = 0; if (serialize_dims_signature_ && tensor->dims_signature != nullptr) { TfLiteIntArrayView shape_signature_view(tensor->dims_signature); std::vector<int32_t> shape_signature(shape_signature_view.begin(), shape_signature_view.end()); shape_signature_offset = ExportVector<int32_t>(fbb, shape_signature); } bool has_rank = true; tensors.push_back(CreateTensor( *fbb, ExportVector<int32_t>(fbb, shape), type, buffer_index, tensor_name_offset, quantization_params, tensor->is_variable, 0, shape_signature_offset, has_rank)); } } } return fbb->template CreateVector<flatbuffers::Offset<Tensor>>(tensors); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> SubgraphWriter::ExportBuffers(flatbuffers::FlatBufferBuilder* fbb) { return ExportBuffersImpl(fbb, buffers_); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> SubgraphWriter::CreateOpCodeTable(flatbuffers::FlatBufferBuilder* fbb) { return CreateOpCodeTableImpl(fbb, opcodes_); } template <class T> std::vector<int> SubgraphWriter::RemapTensorIndicesToWritten(const T& input) { std::vector<int> output; output.reserve(input.size()); for (int x : input) { if (x == -1) { output.push_back(x); continue; } if (tensor_to_written_tensor_[x] != -1) { output.push_back(tensor_to_written_tensor_[x]); } } return output; } TfLiteStatus SubgraphWriter::GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size) { if (!out || !size) return kTfLiteError; flatbuffers::FlatBufferBuilder builder(10240); std::vector<flatbuffers::Offset<SubGraph>> subgraphs_as_vector; subgraphs_as_vector.push_back( PopulateAndGetOffset(&builder, subgraph_->GetName())); flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> buffers = ExportBuffers(&builder); auto description = builder.CreateString("Exported from Subgraph."); auto op_codes = CreateOpCodeTable(&builder); auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, op_codes, builder.CreateVector(subgraphs_as_vector), description, buffers); ::tflite::FinishModelBuffer(builder, model); ::tflite::UpdateOpVersion(builder.GetBufferPointer()); const uint8_t* buffer = builder.GetBufferPointer(); *size = builder.GetSize(); (*out).reset(new uint8_t[*size]); memcpy(out->get(), buffer, *size); return kTfLiteOk; } flatbuffers::Offset<SubGraph> SubgraphWriter::PopulateAndGetOffset( flatbuffers::FlatBufferBuilder* builder, const std::string& subgraph_name) { auto tensors = ExportTensors(builder); std::vector<int> written_inputs = RemapTensorIndicesToWritten(inputs_); std::vector<int> written_outputs = RemapTensorIndicesToWritten(outputs_); auto inputs = ExportVector<int32_t>(builder, written_inputs); auto outputs = ExportVector<int32_t>(builder, written_outputs); auto ops = ExportOperators(builder); auto name = builder->CreateString(subgraph_name); return CreateSubGraph(*builder, tensors, inputs, outputs, ops, name); } TfLiteStatus SubgraphWriter::Write(const std::string& filename) { std::unique_ptr<uint8_t[]> buffer; size_t size; TF_LITE_ENSURE_STATUS(GetBuffer(&buffer, &size)); return WriteImpl(filename, buffer.get(), size); } TfLiteStatus SubgraphWriter::RegisterCustomWriter( const std::string& custom_name, CustomWriter custom_writer) { if (custom_op_to_writer_.find(custom_name) != custom_op_to_writer_.end()) { return kTfLiteError; } custom_op_to_writer_.insert(std::make_pair(custom_name, custom_writer)); return kTfLiteOk; } TfLiteStatus SubgraphWriter::CheckInputOutput( const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan) { absl::flat_hash_set<int> known_tensors(inputs.begin(), inputs.end()); known_tensors.insert(subgraph_->variables().begin(), subgraph_->variables().end()); for (int op_index : execution_plan) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteNode& node = node_and_registration->first; for (int tensor_index : TfLiteIntArrayView(node.inputs)) { if (tensor_index < 0) { if (tensor_index == kTfLiteOptionalTensor) { continue; } else { return kTfLiteError; } } if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { if (tensor->allocation_type == kTfLiteMmapRo) { continue; } } if (known_tensors.find(tensor_index) == known_tensors.end()) { subgraph_->context()->ReportError( subgraph_->context(), "Node (%d) uses an input (%d) that is not provided.", op_index, tensor_index); return kTfLiteError; } } TfLiteIntArrayView outputs(node.outputs); known_tensors.insert(outputs.begin(), outputs.end()); } for (int tensor_index : outputs) { if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { if (tensor->allocation_type == kTfLiteMmapRo) { continue; } } if (known_tensors.find(tensor_index) == known_tensors.end()) { subgraph_->context()->ReportError( subgraph_->context(), "Output (%d) is not produced by the execution plan.", tensor_index); return kTfLiteError; } } return kTfLiteOk; } TfLiteStatus SubgraphWriter::SetCustomInputOutput( const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan) { TF_LITE_ENSURE_STATUS(CheckInputOutput(inputs, outputs, execution_plan)); inputs_ = inputs; outputs_ = outputs; execution_plan_ = execution_plan; return kTfLiteOk; } ModelWriter::ModelWriter(Interpreter* interpreter, bool serialize_dims_signature) { std::vector<Subgraph*> subgraphs; subgraphs.reserve(interpreter->subgraphs_size()); for (int i = 0; i < interpreter->subgraphs_size(); ++i) { subgraphs.push_back(interpreter->subgraph(i)); } Init(subgraphs, serialize_dims_signature); } ModelWriter::ModelWriter(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature) { Init(subgraphs, serialize_dims_signature); } void ModelWriter::Init(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature) { buffers_.push_back(std::make_pair(nullptr, 0)); subgraph_writers_.reserve(subgraphs.size()); for (auto* subgraph : subgraphs) { SubgraphWriter writer(subgraph, &buffers_, &opcodes_, &builtin_op_to_opcode_, serialize_dims_signature); subgraph_writers_.push_back(writer); } if (!subgraphs.empty()) { absl::flat_hash_map<Subgraph*, int> subgraph_to_new_subgraph_index; for (int i = 0; i < subgraphs.size(); ++i) { subgraph_to_new_subgraph_index[subgraphs[i]] = i; } auto* all_subgraphs = subgraphs[0]->GetSubgraphs(); for (int i = 0; i < all_subgraphs->size(); ++i) { auto it = subgraph_to_new_subgraph_index.find(all_subgraphs->at(i)); if (it != subgraph_to_new_subgraph_index.end()) { subgraph_index_mapper_[i] = it->second; } } } } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> ModelWriter::ExportBuffers(flatbuffers::FlatBufferBuilder* fbb) { return ExportBuffersImpl(fbb, &buffers_); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> ModelWriter::CreateOpCodeTable(flatbuffers::FlatBufferBuilder* fbb) { return CreateOpCodeTableImpl(fbb, &opcodes_); } TfLiteStatus ModelWriter::GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size) { if (!out || !size) return kTfLiteError; flatbuffers::FlatBufferBuilder builder(10240); std::vector<flatbuffers::Offset<SubGraph>> subgraphs_as_vector; subgraphs_as_vector.reserve(subgraph_writers_.size()); for (auto& subgraph_writer : subgraph_writers_) { subgraphs_as_vector.push_back(subgraph_writer.PopulateAndGetOffset( &builder, subgraph_writer.subgraph_->GetName())); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> buffers = ExportBuffers(&builder); auto description = builder.CreateString("Exported from Subgraph."); auto op_codes = CreateOpCodeTable(&builder); auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, op_codes, builder.CreateVector(subgraphs_as_vector), description, buffers); ::tflite::FinishModelBuffer(builder, model); ::tflite::UpdateOpVersion(builder.GetBufferPointer()); UpdateSubgraphReferences(&builder); const uint8_t* buffer = builder.GetBufferPointer(); *size = builder.GetSize(); (*out).reset(new uint8_t[*size]); memcpy(out->get(), buffer, *size); return kTfLiteOk; } TfLiteStatus ModelWriter::Write(const std::string& filename) { std::unique_ptr<uint8_t[]> buffer; size_t size; TF_LITE_ENSURE_STATUS(GetBuffer(&buffer, &size)); return WriteImpl(filename, buffer.get(), size); } void ModelWriter::SetUnusedTensors(int subgraph_index, const std::set<int>& unused_tensors) { subgraph_writers_[subgraph_index].SetUnusedTensors(unused_tensors); } TfLiteStatus ModelWriter::SetCustomInputOutput( int subgraph_index, const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan) { return subgraph_writers_[subgraph_index].SetCustomInputOutput(inputs, outputs, execution_plan); } TfLiteStatus ModelWriter::RegisterCustomWriter(const std::string& custom_name, CustomWriter custom_writer) { for (auto& subgraph_writer : subgraph_writers_) { subgraph_writer.RegisterCustomWriter(custom_name, custom_writer); } return kTfLiteOk; } TfLiteStatus ModelWriter::UpdateSubgraphReferences( flatbuffers::FlatBufferBuilder* fbb) { auto model = tflite::GetMutableModel(fbb->GetBufferPointer()); for (SubGraph* subgraph : *model->mutable_subgraphs()) { for (Operator* op : *subgraph->mutable_operators()) { if (op->builtin_options_type() == BuiltinOptions_WhileOptions) { auto while_options = static_cast<tflite::WhileOptions*>(op->mutable_builtin_options()); auto new_cond_index = subgraph_index_mapper_.find(while_options->cond_subgraph_index()); auto new_body_index = subgraph_index_mapper_.find(while_options->body_subgraph_index()); if (new_cond_index == subgraph_index_mapper_.end() || new_body_index == subgraph_index_mapper_.end()) { return kTfLiteError; } while_options->mutate_cond_subgraph_index(new_cond_index->second); while_options->mutate_body_subgraph_index(new_body_index->second); } else if (op->builtin_options_type() == BuiltinOptions_IfOptions) { auto if_options = static_cast<tflite::IfOptions*>(op->mutable_builtin_options()); auto new_then_index = subgraph_index_mapper_.find(if_options->then_subgraph_index()); auto new_else_index = subgraph_index_mapper_.find(if_options->else_subgraph_index()); if (new_then_index == subgraph_index_mapper_.end() || new_else_index == subgraph_index_mapper_.end()) { return kTfLiteError; } if_options->mutate_then_subgraph_index(new_then_index->second); if_options->mutate_else_subgraph_index(new_else_index->second); } } } return kTfLiteOk; } }
#include "tensorflow/lite/tools/serialization/writer_lib.h" #include <cstdlib> #include <fstream> #include <memory> #include <numeric> #include <sstream> #include <string> #include <tuple> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/util.h" #include "tsl/platform/logging.h" namespace tflite { using subgraph_test_util::CheckIntTensor; using subgraph_test_util::FillIntTensor; std::string CreateFilePath(const std::string& file_name) { const char* tmp_dir = getenv("TEST_TMPDIR"); return std::string(tmp_dir ? tmp_dir : "./") + file_name; } class SingleSubgraphTest : public ::testing::TestWithParam<bool> { protected: void WriteToFile(Interpreter* interpreter, const std::string& filename, bool use_subgraph_writer) { if (use_subgraph_writer) { SubgraphWriter writer(&interpreter->primary_subgraph()); CHECK_EQ(writer.Write(filename), kTfLiteOk); } else { ModelWriter writer(interpreter); CHECK_EQ(writer.Write(filename), kTfLiteOk); } } }; TEST_P(SingleSubgraphTest, InvalidDestinations) { Interpreter interpreter; interpreter.AddTensors(3); float foo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(foo), sizeof(foo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); if (GetParam()) { SubgraphWriter writer(&interpreter.primary_subgraph()); CHECK_EQ(writer.Write(""), kTfLiteError); } else { ModelWriter writer(&interpreter); CHECK_EQ(writer.Write(""), kTfLiteError); } size_t size; if (GetParam()) { SubgraphWriter writer(&interpreter.primary_subgraph()); CHECK_EQ(writer.GetBuffer(nullptr, &size), kTfLiteError); } else { ModelWriter writer(&interpreter); CHECK_EQ(writer.GetBuffer(nullptr, &size), kTfLiteError); } } TEST_P(SingleSubgraphTest, FloatModelTest) { Interpreter interpreter; interpreter.AddTensors(3); float foo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(foo), sizeof(foo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_float.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputTest) { Interpreter interpreter; interpreter.AddTensors(4); constexpr float kFoo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<const char*>(kFoo), sizeof(kFoo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "d", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({3}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const TfLiteRegistration* reg2 = resolver.FindOp(BuiltinOperator_RELU, 1); interpreter.AddNodeWithParameters({2}, {3}, nullptr, 0, nullptr, reg2); const std::string test_file = CreateFilePath("test_custom.tflite"); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({2}, {3}, {1}), kTfLiteOk); writer.SetUnusedTensors({0, 1}); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputErrorCasesTest) { Interpreter interpreter; interpreter.AddTensors(5); constexpr float kFoo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<const char*>(kFoo), sizeof(kFoo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "d", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(4, kTfLiteFloat32, "e", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({4}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const TfLiteRegistration* reg2 = resolver.FindOp(BuiltinOperator_RELU, 1); interpreter.AddNodeWithParameters({2}, {3}, nullptr, 0, nullptr, reg2); const TfLiteRegistration* reg3 = resolver.FindOp(BuiltinOperator_RELU6, 1); interpreter.AddNodeWithParameters({3}, {4}, nullptr, 0, nullptr, reg3); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({2}, {3}, {0, 1}), kTfLiteError); EXPECT_EQ(writer.SetCustomInputOutput({0, 1}, {4}, {0, 1}), kTfLiteError); EXPECT_EQ(writer.SetCustomInputOutput({0, 1}, {3}, {0, 1}), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputVariableTensorTest) { Interpreter interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), true); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0}); interpreter.SetOutputs({2}); interpreter.SetVariables({1}); TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; interpreter.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, reinterpret_cast<void*>(builtin_data), resolver.FindOp(BuiltinOperator_ADD, 1)); const std::string test_file = CreateFilePath("test_variables.tflite"); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({0}, {2}, {0}), kTfLiteOk); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, PerTensorQuantizedModelTest) { Interpreter interpreter; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite( 0, kTfLiteUInt8, "a", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetTensorParametersReadWrite( 1, kTfLiteUInt8, "b", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetTensorParametersReadWrite( 2, kTfLiteUInt8, "c", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_uint8.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, OpVersioningTest) { Interpreter interpreter; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {1, 4}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(1, kTfLiteInt32, "b", {2}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {4, 4}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_BROADCAST_TO, 2); interpreter.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, nullptr, reg); const std::string test_file = CreateFilePath("test_float.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); ASSERT_EQ(new_interpreter->nodes_size(), 1); TfLiteRegistration output_reg = new_interpreter->node_and_registration(0)->second; ASSERT_EQ(output_reg.builtin_code, BuiltinOperator_BROADCAST_TO); CHECK_EQ(output_reg.version, 2); } TEST_P(SingleSubgraphTest, DynamicShapeTest) { Interpreter interpreter; interpreter.AddTensors(3); std::vector<int> dims = {1, 3}; std::vector<int> dims_signature = {-1, 3}; interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "a", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetTensorParametersReadWrite( 1, kTfLiteFloat32, "b", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetTensorParametersReadWrite( 2, kTfLiteFloat32, "c", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_dynamic_shape.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); TfLiteTensor* tensor0 = new_interpreter->tensor(0); CHECK_NOTNULL(tensor0->dims_signature); TfLiteIntArrayView shape_view(tensor0->dims_signature); CHECK_EQ(shape_view.size(), 2); CHECK_EQ(shape_view[0], -1); } INSTANTIATE_TEST_SUITE_P(Writer, SingleSubgraphTest, ::testing::Bool()); struct ReshapeTestPattern { int num_inputs; bool is_param_valid; bool has_buggy_non_flatten_shape; }; class ReshapeLayerTest : public ::testing::TestWithParam<ReshapeTestPattern> {}; TEST_P(ReshapeLayerTest, ReshapeLayerTest) { const auto param = GetParam(); Interpreter interpreter; const int total_tensors = param.num_inputs + 1; interpreter.AddTensors(total_tensors); int output_shape[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {6}, TfLiteQuantization()); ASSERT_LE(param.num_inputs, 2); if (param.num_inputs == 2) { if (param.has_buggy_non_flatten_shape) { interpreter.SetTensorParametersReadOnly( 1, kTfLiteInt32, "b", {3, 1}, TfLiteQuantization(), reinterpret_cast<char*>(output_shape), sizeof(output_shape)); } else { interpreter.SetTensorParametersReadOnly( 1, kTfLiteInt32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(output_shape), sizeof(output_shape)); } } interpreter.SetTensorParametersReadWrite(total_tensors - 1, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); std::vector<int> input_tensors(param.num_inputs); std::iota(input_tensors.begin(), input_tensors.end(), 0); interpreter.SetInputs(input_tensors); interpreter.SetOutputs({total_tensors - 1}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteReshapeParams* builtin_data = reinterpret_cast<TfLiteReshapeParams*>( malloc(sizeof(TfLiteReshapeParams))); memset(builtin_data, 0, sizeof(TfLiteReshapeParams)); if (param.is_param_valid) { builtin_data->num_dimensions = 3; for (int dim = 0; dim < builtin_data->num_dimensions; ++dim) { builtin_data->shape[dim] = output_shape[dim]; } } const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_RESHAPE, 1); interpreter.AddNodeWithParameters(input_tensors, {total_tensors - 1}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); SubgraphWriter writer(&interpreter.primary_subgraph()); std::stringstream ss; ss << CreateFilePath("test_reshape_") << param.num_inputs << param.is_param_valid << ".tflite"; std::string filename = ss.str(); writer.Write(filename); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(filename.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } INSTANTIATE_TEST_SUITE_P( Writer, ReshapeLayerTest, ::testing::Values(ReshapeTestPattern{2, true, false}, ReshapeTestPattern{2, false, false}, ReshapeTestPattern{1, true, false}, ReshapeTestPattern{2, true, true}), [](const ::testing::TestParamInfo<ReshapeLayerTest::ParamType>& info) { std::stringstream ss; ss << "num_inputs_" << info.param.num_inputs << "_valid_param_" << info.param.is_param_valid << "_buggy_shape_" << info.param.has_buggy_non_flatten_shape; std::string name = ss.str(); return name; }); class WhileTest : public subgraph_test_util::ControlFlowOpTest { protected: TfLiteCustomAllocation NewCustomAlloc(size_t num_bytes, int required_alignment) { char* new_alloc = new char[num_bytes + required_alignment]; char* new_underlying_buffer_aligned_ptr = reinterpret_cast<char*>( AlignTo(required_alignment, reinterpret_cast<intptr_t>(new_alloc))); custom_alloc_buffers_.emplace_back(new_alloc); return TfLiteCustomAllocation( {new_underlying_buffer_aligned_ptr, num_bytes}); } intptr_t AlignTo(size_t alignment, intptr_t offset) { return offset % alignment == 0 ? offset : offset + (alignment - offset % alignment); } std::vector<std::unique_ptr<char[]>> custom_alloc_buffers_; }; TEST_F(WhileTest, TestTriangularNumberSequence) { const int kSeqNumber = 4; const int kExpectedValue = 15; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(2); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildWhileSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); ModelWriter writer(interpreter_.get()); const std::string test_file = CreateFilePath("test_while.tflite"); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[0], {1}); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[1], {1}); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[0]), {1}); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[1]), {1}); ASSERT_EQ(new_interpreter->Invoke(), kTfLiteOk); output1 = new_interpreter->tensor(new_interpreter->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); output2 = new_interpreter->tensor(new_interpreter->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); } TEST_F(WhileTest, TestModelWriterFromSubgraphs) { const int kSeqNumber = 4; const int kExpectedValue = 15; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(2); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildWhileSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); ModelWriter writer_1(interpreter_.get()); const std::string test_file_1 = CreateFilePath("test_while_1.tflite"); writer_1.Write(test_file_1); std::vector<Subgraph*> subgraphs; for (int i = 0; i < interpreter_->subgraphs_size(); ++i) { subgraphs.push_back(interpreter_->subgraph(i)); } ModelWriter writer_2(subgraphs); const std::string test_file_2 = CreateFilePath("test_while_2.tflite"); writer_2.Write(test_file_2); std::ifstream file_ifs_1(test_file_1, std::ios::in); std::ostringstream model_content_1; model_content_1 << file_ifs_1.rdbuf(); std::ifstream file_ifs_2(test_file_2, std::ios::in); std::ostringstream model_content_2; model_content_2 << file_ifs_2.rdbuf(); EXPECT_FALSE(model_content_1.str().empty()); EXPECT_EQ(model_content_1.str(), model_content_2.str()); } TEST_F(WhileTest, TestUpdateSubgraphIndices) { const int kSeqNumber1 = 4; const int kSeqNumber2 = 5; const int kExpectedValue1 = 15; const int kExpectedValue2 = 21; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(4); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber1); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(3), kSeqNumber2); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(4)); Subgraph* primary_subgraph = &interpreter_->primary_subgraph(); const int kInput1 = 0; const int kInput2 = 1; const int kUnused1 = 2; const int kUnused2 = 3; const int kOutput1 = 4; const int kOutput2 = 5; const int kTensorCount = 6; int first_new_tensor_index; ASSERT_EQ(primary_subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(primary_subgraph->SetInputs({kInput1, kInput2}), kTfLiteOk); ASSERT_EQ(primary_subgraph->SetOutputs({kOutput1, kOutput2}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { ASSERT_EQ(primary_subgraph->SetTensorParametersReadWrite( i, kTfLiteInt32, "", 0, nullptr, {}, false), kTfLiteOk); } auto* while_reg = ops::builtin::Register_WHILE(); while_reg->builtin_code = kTfLiteBuiltinWhile; TfLiteWhileParams* params1 = reinterpret_cast<TfLiteWhileParams*>(malloc(sizeof(TfLiteWhileParams))); params1->cond_subgraph_index = 1; params1->body_subgraph_index = 2; TfLiteWhileParams* params2 = reinterpret_cast<TfLiteWhileParams*>(malloc(sizeof(TfLiteWhileParams))); params2->cond_subgraph_index = 3; params2->body_subgraph_index = 4; int while1_index, while2_index; primary_subgraph->AddNodeWithParameters({kInput1, kInput2}, {kUnused1, kOutput1}, {}, nullptr, 0, params1, while_reg, &while1_index); primary_subgraph->AddNodeWithParameters({kInput1, kInput2}, {kUnused2, kOutput2}, {}, nullptr, 0, params2, while_reg, &while2_index); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kExpectedValue1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue2}); ModelWriter writer({interpreter_->subgraph(0), interpreter_->subgraph(3), interpreter_->subgraph(4)}); writer.SetCustomInputOutput(0, {kInput1, kInput2}, {kOutput2}, {while2_index}); const std::string test_file = CreateFilePath("test_while.tflite"); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[0], {1}); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[1], {1}); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[0]), {1}); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[1]), {1}); ASSERT_EQ(new_interpreter->Invoke(), kTfLiteOk); ASSERT_EQ(new_interpreter->outputs().size(), 1); TfLiteTensor* output = new_interpreter->tensor(new_interpreter->outputs()[0]); CheckIntTensor(output, {1}, {kExpectedValue2}); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer_lib.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer_lib_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
79d42034-7362-4f03-af6b-9524fcede270
cpp
tensorflow/tensorflow
evaluation_delegate_provider
tensorflow/lite/tools/evaluation/evaluation_delegate_provider.cc
tensorflow/lite/tools/evaluation/evaluation_delegate_provider_test.cc
#include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <string> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { constexpr char kNnapiDelegate[] = "nnapi"; constexpr char kGpuDelegate[] = "gpu"; constexpr char kHexagonDelegate[] = "hexagon"; constexpr char kXnnpackDelegate[] = "xnnpack"; constexpr char kCoremlDelegate[] = "coreml"; } TfliteInferenceParams::Delegate ParseStringToDelegateType( const std::string& val) { if (val == kNnapiDelegate) return TfliteInferenceParams::NNAPI; if (val == kGpuDelegate) return TfliteInferenceParams::GPU; if (val == kHexagonDelegate) return TfliteInferenceParams::HEXAGON; if (val == kXnnpackDelegate) return TfliteInferenceParams::XNNPACK; if (val == kCoremlDelegate) return TfliteInferenceParams::COREML; return TfliteInferenceParams::NONE; } TfLiteDelegatePtr CreateTfLiteDelegate(const TfliteInferenceParams& params, std::string* error_msg) { const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: { auto p = CreateNNAPIDelegate(); if (!p && error_msg) *error_msg = "NNAPI not supported"; return p; } case TfliteInferenceParams::GPU: { auto p = CreateGPUDelegate(); if (!p && error_msg) *error_msg = "GPU delegate not supported."; return p; } case TfliteInferenceParams::HEXAGON: { auto p = CreateHexagonDelegate("", false); if (!p && error_msg) { *error_msg = "Hexagon delegate is not supported on the platform or required " "libraries are missing."; } return p; } case TfliteInferenceParams::XNNPACK: { auto p = CreateXNNPACKDelegate(params.num_threads(), false); if (!p && error_msg) *error_msg = "XNNPACK delegate not supported."; return p; } case TfliteInferenceParams::COREML: { auto p = CreateCoreMlDelegate(); if (!p && error_msg) *error_msg = "CoreML delegate not supported."; return p; } case TfliteInferenceParams::NONE: return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); default: if (error_msg) { *error_msg = "Creation of delegate type: " + TfliteInferenceParams::Delegate_Name(type) + " not supported yet."; } return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } } DelegateProviders::DelegateProviders() : delegate_list_util_(&params_), delegates_map_([=]() -> std::unordered_map<std::string, int> { std::unordered_map<std::string, int> delegates_map; const auto& providers = delegate_list_util_.providers(); for (int i = 0; i < providers.size(); ++i) { delegates_map[providers[i]->GetName()] = i; } return delegates_map; }()) { delegate_list_util_.AddAllDelegateParams(); } std::vector<Flag> DelegateProviders::GetFlags() { std::vector<Flag> flags; delegate_list_util_.AppendCmdlineFlags(flags); return flags; } bool DelegateProviders::InitFromCmdlineArgs(int* argc, const char** argv) { std::vector<Flag> flags = GetFlags(); bool parse_result = Flags::Parse(argc, argv, flags); if (!parse_result || params_.Get<bool>("help")) { std::string usage = Flags::Usage(argv[0], flags); TFLITE_LOG(ERROR) << usage; parse_result = false; } return parse_result; } TfLiteDelegatePtr DelegateProviders::CreateDelegate( const std::string& name) const { const auto it = delegates_map_.find(name); if (it == delegates_map_.end()) { return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } const auto& providers = delegate_list_util_.providers(); return providers[it->second]->CreateTfLiteDelegate(params_); } tools::ToolParams DelegateProviders::GetAllParams( const TfliteInferenceParams& params) const { tools::ToolParams tool_params; tool_params.Merge(params_, false); if (params.has_num_threads()) { tool_params.Set<int32_t>("num_threads", params.num_threads()); } const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: if (tool_params.HasParam("use_nnapi")) { tool_params.Set<bool>("use_nnapi", true); } break; case TfliteInferenceParams::GPU: if (tool_params.HasParam("use_gpu")) { tool_params.Set<bool>("use_gpu", true); } break; case TfliteInferenceParams::HEXAGON: if (tool_params.HasParam("use_hexagon")) { tool_params.Set<bool>("use_hexagon", true); } break; case TfliteInferenceParams::XNNPACK: if (tool_params.HasParam("use_xnnpack")) { tool_params.Set<bool>("use_xnnpack", true); } if (tool_params.HasParam("xnnpack_force_fp16")) { tool_params.Set<bool>("xnnpack_force_fp16", true); } break; case TfliteInferenceParams::COREML: if (tool_params.HasParam("use_coreml")) { tool_params.Set<bool>("use_coreml", true); } break; default: break; } return tool_params; } } }
#include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { TEST(EvaluationDelegateProviderTest, ParseStringToDelegateType) { EXPECT_EQ(TfliteInferenceParams::NNAPI, ParseStringToDelegateType("nnapi")); EXPECT_EQ(TfliteInferenceParams::GPU, ParseStringToDelegateType("gpu")); EXPECT_EQ(TfliteInferenceParams::HEXAGON, ParseStringToDelegateType("hexagon")); EXPECT_EQ(TfliteInferenceParams::XNNPACK, ParseStringToDelegateType("xnnpack")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Gpu")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Testing")); } TEST(EvaluationDelegateProviderTest, CreateTfLiteDelegate) { TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); EXPECT_TRUE(!CreateTfLiteDelegate(params)); } TEST(EvaluationDelegateProviderTest, DelegateProvidersParams) { DelegateProviders providers; const auto& params = providers.GetAllParams(); EXPECT_TRUE(params.HasParam("use_nnapi")); EXPECT_TRUE(params.HasParam("use_gpu")); int argc = 3; const char* argv[] = {"program_name", "--use_gpu=true", "--other_undefined_flag=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); EXPECT_TRUE(params.Get<bool>("use_gpu")); EXPECT_EQ(2, argc); EXPECT_EQ("--other_undefined_flag=1", argv[1]); } TEST(EvaluationDelegateProviderTest, GetAllParamsWithTfliteInferenceParams) { DelegateProviders providers; int argc = 2; const char* argv[] = {"program_name", "--num_threads=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); const auto& default_params = providers.GetAllParams(); EXPECT_EQ(1, default_params.Get<int>("num_threads")); TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); params.set_num_threads(4); tools::ToolParams tool_params = providers.GetAllParams(params); EXPECT_EQ(4, tool_params.Get<int>("num_threads")); EXPECT_EQ(1, argc); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/evaluation_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/evaluation_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a521486a-75e5-4dda-8e18-e58c91d51eb9
cpp
tensorflow/tensorflow
inference_profiler_stage
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.cc
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <cmath> #include <cstdint> #include <limits> #include <memory> #include <random> #include "fp16.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" namespace tflite { namespace evaluation { namespace { constexpr float kGaussianFloatMean = 0.5; constexpr float kGaussianStdDev = 1.0 / 3; template <typename T> void GenerateRandomGaussianData(int64_t num_elements, float min, float max, std::vector<T>* data) { data->clear(); data->reserve(num_elements); static std::normal_distribution<double> distribution(kGaussianFloatMean, kGaussianStdDev); static std::default_random_engine generator; for (int i = 0; i < num_elements; ++i) { auto rand_n = distribution(generator); while (rand_n < 0 || rand_n >= 1) { rand_n = distribution(generator); } auto rand_float = min + (max - min) * static_cast<float>(rand_n); data->push_back(static_cast<T>(rand_float)); } } template <typename T> float CalculateAverageError(T* reference, T* test, int64_t num_elements) { float error = 0; for (int i = 0; i < num_elements; i++) { float test_value = static_cast<float>(test[i]); float reference_value = static_cast<float>(reference[i]); error += std::abs(test_value - reference_value); } error /= num_elements; return error; } } TfLiteStatus InferenceProfilerStage::Init( const DelegateProviders* delegate_providers) { test_stage_ = std::make_unique<TfliteInferenceStage>(config_); if (test_stage_->Init(delegate_providers) != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Test interpreter has been initialized."; EvaluationStageConfig reference_config; reference_config.set_name("reference_inference"); auto* params = reference_config.mutable_specification() ->mutable_tflite_inference_params(); params->set_model_file_path( config_.specification().tflite_inference_params().model_file_path()); params->set_invocations_per_run( config_.specification().tflite_inference_params().invocations_per_run()); reference_stage_ = std::make_unique<TfliteInferenceStage>(reference_config); if (reference_stage_->Init() != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Reference interpreter (1 thread on CPU) has been initialized."; model_info_ = reference_stage_->GetModelInfo(); for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8 || model_input_type == kTfLiteInt8 || model_input_type == kTfLiteInt32 || model_input_type == kTfLiteInt64 || model_input_type == kTfLiteBool || model_input_type == kTfLiteFloat32 || model_input_type == kTfLiteFloat16) { } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int32/int64/bool " "input types"; return kTfLiteError; } auto* input_shape = model_info_->inputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < input_shape->size; i++) { total_num_elements *= input_shape->data[i]; } input_num_elements_.push_back(total_num_elements); float_tensors_.emplace_back(); uint8_tensors_.emplace_back(); int8_tensors_.emplace_back(); float16_tensors_.emplace_back(); int64_tensors_.emplace_back(); int32_tensors_.emplace_back(); bool_tensors_.emplace_back(); } for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; if (model_output_type == kTfLiteUInt8 || model_output_type == kTfLiteInt8 || model_output_type == kTfLiteInt32 || model_output_type == kTfLiteBool || model_output_type == kTfLiteFloat32) { } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float32/int8/uint8/int32/bool " "output types"; return kTfLiteError; } auto* output_shape = model_info_->outputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < output_shape->size; i++) { total_num_elements *= output_shape->data[i]; } output_num_elements_.push_back(total_num_elements); error_stats_.emplace_back(); } return kTfLiteOk; } TfLiteStatus InferenceProfilerStage::Run() { std::vector<void*> input_ptrs; for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(), &uint8_tensors_[i]); input_ptrs.push_back(uint8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(), &int8_tensors_[i]); input_ptrs.push_back(int8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt32) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(), &int32_tensors_[i]); input_ptrs.push_back(int32_tensors_[i].data()); } else if (model_input_type == kTfLiteInt64) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(), &int64_tensors_[i]); input_ptrs.push_back(int64_tensors_[i].data()); } else if (model_input_type == kTfLiteBool) { GenerateRandomGaussianData(input_num_elements_[i], 0, 1, &bool_tensors_[i]); input_ptrs.push_back(bool_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat32) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); input_ptrs.push_back(float_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat16) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); for (size_t j = 0; j < float_tensors_[i].size(); j++) { float16_tensors_[i][j] = fp16_ieee_from_fp32_value(float_tensors_[i][j]); } input_ptrs.push_back(float16_tensors_[i].data()); } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int32/int64/bool " "input types"; return kTfLiteError; } } test_stage_->SetInputs(input_ptrs); reference_stage_->SetInputs(input_ptrs); if (test_stage_->Run() != kTfLiteOk) return kTfLiteError; if (reference_stage_->Run() != kTfLiteOk) return kTfLiteError; for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; void* reference_ptr = reference_stage_->GetOutputs()->at(i); void* test_ptr = test_stage_->GetOutputs()->at(i); float output_diff = 0; if (model_output_type == kTfLiteUInt8) { output_diff = CalculateAverageError(static_cast<uint8_t*>(reference_ptr), static_cast<uint8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteInt8) { output_diff = CalculateAverageError(static_cast<int8_t*>(reference_ptr), static_cast<int8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteInt32) { output_diff = CalculateAverageError(static_cast<int32_t*>(reference_ptr), static_cast<int32_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteBool) { output_diff = CalculateAverageError(static_cast<int8_t*>(reference_ptr), static_cast<int8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteFloat32) { output_diff = CalculateAverageError(static_cast<float*>(reference_ptr), static_cast<float*>(test_ptr), output_num_elements_[i]); } error_stats_[i].UpdateStat(output_diff); } return kTfLiteOk; } EvaluationStageMetrics InferenceProfilerStage::LatestMetrics() { EvaluationStageMetrics metrics; const auto& reference_metrics = reference_stage_->LatestMetrics(); metrics.set_num_runs(reference_metrics.num_runs()); auto* inference_profiler_metrics = metrics.mutable_process_metrics()->mutable_inference_profiler_metrics(); *inference_profiler_metrics->mutable_reference_latency() = reference_metrics.process_metrics().total_latency(); *inference_profiler_metrics->mutable_test_latency() = test_stage_->LatestMetrics().process_metrics().total_latency(); for (int i = 0; i < error_stats_.size(); ++i) { AccuracyMetrics* diff = inference_profiler_metrics->add_output_errors(); diff->set_avg_value(error_stats_[i].avg()); diff->set_std_deviation(error_stats_[i].std_deviation()); diff->set_min_value(error_stats_[i].min()); if (error_stats_[i].avg() != 0) { diff->set_max_value(error_stats_[i].max()); } else { diff->set_max_value(0); } } return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kInferenceProfilerStageName[] = "inference_profiler_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; EvaluationStageConfig GetInferenceProfilerStageConfig(int num_threads = 1) { EvaluationStageConfig config; config.set_name(kInferenceProfilerStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); params->set_num_threads(num_threads); return config; } TEST(InferenceProfilerStage, NoParams) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoModelPath) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoOutputDiffForDefaultConfig) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); for (int i = 0; i < 5; ++i) { EXPECT_EQ(stage.Run(), kTfLiteOk); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_TRUE(metrics.process_metrics().has_inference_profiler_metrics()); auto profiler_metrics = metrics.process_metrics().inference_profiler_metrics(); EXPECT_TRUE(profiler_metrics.has_reference_latency()); EXPECT_TRUE(profiler_metrics.has_test_latency()); EXPECT_EQ(profiler_metrics.output_errors_size(), 1); EXPECT_EQ(profiler_metrics.output_errors(0).avg_value(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/inference_profiler_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
28c9bf17-b5d5-4830-a34f-6402572d733a
cpp
tensorflow/tensorflow
tflite_inference_stage
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.cc
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <cstring> #include <fstream> #include <memory> #include <string> #include <utility> #include "absl/base/attributes.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/profiling/time.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" void RegisterSelectedOps(::tflite::MutableOpResolver* resolver); void ABSL_ATTRIBUTE_WEAK RegisterSelectedOps(::tflite::MutableOpResolver* resolver) {} namespace tflite { namespace evaluation { namespace { TfLiteModelInfo GetTfliteModelInfo(const Interpreter& interpreter) { TfLiteModelInfo model_info; for (int i : interpreter.inputs()) { model_info.inputs.push_back(interpreter.tensor(i)); } for (int i : interpreter.outputs()) { model_info.outputs.push_back(interpreter.tensor(i)); } return model_info; } } void TfliteInferenceStage::UpdateModelInfo() { model_info_ = GetTfliteModelInfo(*interpreter_); outputs_.clear(); outputs_.reserve(interpreter_->outputs().size()); for (int i : interpreter_->outputs()) { TfLiteTensor* tensor = interpreter_->tensor(i); outputs_.push_back(tensor->data.raw); } } TfLiteStatus TfliteInferenceStage::ResizeInputs( const std::vector<std::vector<int>>& shapes) { const std::vector<int>& interpreter_inputs = interpreter_->inputs(); if (interpreter_inputs.size() != shapes.size()) { LOG(ERROR) << "New shape is not compatible"; return kTfLiteError; } for (int j = 0; j < shapes.size(); ++j) { int i = interpreter_inputs[j]; TfLiteTensor* t = interpreter_->tensor(i); if (t->type != kTfLiteString) { TF_LITE_ENSURE_STATUS(interpreter_->ResizeInputTensor(i, shapes[j])); } } TF_LITE_ENSURE_STATUS(interpreter_->AllocateTensors()); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::ApplyCustomDelegate( Interpreter::TfLiteDelegatePtr delegate) { if (!interpreter_) { LOG(ERROR) << "Stage not initialized before calling ApplyCustomDelegate"; return kTfLiteError; } if (!delegate) { LOG(WARNING) << "Tried to apply null TfLiteDelegatePtr to TfliteInferenceStage"; return kTfLiteOk; } delegates_.push_back(std::move(delegate)); TF_LITE_ENSURE_STATUS( interpreter_->ModifyGraphWithDelegate(delegates_.back().get())); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Init( const DelegateProviders* delegate_providers) { if (!config_.specification().has_tflite_inference_params()) { LOG(ERROR) << "TfliteInferenceParams not provided"; return kTfLiteError; } auto& params = config_.specification().tflite_inference_params(); if (!params.has_model_file_path()) { LOG(ERROR) << "Model path not provided"; return kTfLiteError; } std::ifstream model_check(params.model_file_path()); if (!model_check.good()) { LOG(ERROR) << "Model file not found"; return kTfLiteError; } model_ = FlatBufferModel::BuildFromFile(params.model_file_path().c_str()); bool apply_default_delegates = true; if (delegate_providers != nullptr) { const auto& provider_params = delegate_providers->GetAllParams(); if (provider_params.HasParam("use_xnnpack") && provider_params.HasValueSet<bool>("use_xnnpack") && !provider_params.Get<bool>("use_xnnpack")) { apply_default_delegates = false; } } if (apply_default_delegates) { resolver_ = std::make_unique<ops::builtin::BuiltinOpResolver>(); } else { resolver_ = std::make_unique< ops::builtin::BuiltinOpResolverWithoutDefaultDelegates>(); } RegisterSelectedOps(resolver_.get()); InterpreterBuilder(*model_, *resolver_)(&interpreter_); if (!interpreter_) { LOG(ERROR) << "Could not build interpreter"; return kTfLiteError; } interpreter_->SetNumThreads(params.num_threads()); if (!delegate_providers) { std::string error_message; auto delegate = CreateTfLiteDelegate(params, &error_message); if (delegate) { delegates_.push_back(std::move(delegate)); LOG(INFO) << "Successfully created " << params.Delegate_Name(params.delegate()) << " delegate."; } else { LOG(WARNING) << error_message; } } else { auto delegates = delegate_providers->CreateAllDelegates(params); for (auto& one : delegates) delegates_.push_back(std::move(one.delegate)); } for (int i = 0; i < delegates_.size(); ++i) { if (interpreter_->ModifyGraphWithDelegate(delegates_[i].get()) != kTfLiteOk) { LOG(FATAL) << "Failed to apply delegate " << i; } } interpreter_->AllocateTensors(); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Run() { if (!inputs_) { LOG(ERROR) << "Input data not set"; return kTfLiteError; } for (int i = 0; i < interpreter_->inputs().size(); ++i) { TfLiteTensor* tensor = interpreter_->tensor(interpreter_->inputs()[i]); tensor->data.raw = static_cast<char*>(inputs_->at(i)); } auto& params = config_.specification().tflite_inference_params(); for (int i = 0; i < params.invocations_per_run(); ++i) { int64_t start_us = profiling::time::NowMicros(); if (interpreter_->Invoke() != kTfLiteOk) { LOG(ERROR) << "TFLite interpreter failed to invoke at run " << i; return kTfLiteError; } latency_stats_.UpdateStat(profiling::time::NowMicros() - start_us); } return kTfLiteOk; } EvaluationStageMetrics TfliteInferenceStage::LatestMetrics() { auto& params = config_.specification().tflite_inference_params(); EvaluationStageMetrics metrics; auto* latency_metrics = metrics.mutable_process_metrics()->mutable_total_latency(); latency_metrics->set_last_us(latency_stats_.newest()); latency_metrics->set_max_us(latency_stats_.max()); latency_metrics->set_min_us(latency_stats_.min()); latency_metrics->set_sum_us(latency_stats_.sum()); latency_metrics->set_avg_us(latency_stats_.avg()); latency_metrics->set_std_deviation_us(latency_stats_.std_deviation()); metrics.set_num_runs( static_cast<int>(latency_stats_.count() / params.invocations_per_run())); auto* inference_metrics = metrics.mutable_process_metrics()->mutable_tflite_inference_metrics(); inference_metrics->set_num_inferences(latency_stats_.count()); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" namespace tflite { namespace evaluation { namespace { constexpr char kTfliteInferenceStageName[] = "tflite_inference_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; constexpr int kTotalElements = 1 * 8 * 8 * 3; template <typename T> T* SetValues(T array[], T value) { for (int i = 0; i < kTotalElements; i++) { array[i] = value; } return array; } EvaluationStageConfig GetTfliteInferenceStageConfig() { EvaluationStageConfig config; config.set_name(kTfliteInferenceStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); return config; } TEST(TfliteInferenceStage, NoParams) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, IncorrectModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->set_model_file_path("xyz.tflite"); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoInputData) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TfliteInferenceStage, CorrectModelInfo) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 1); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 1); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, TestResizeModel) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ResizeInputs({{3, 8, 8, 3}}), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 3); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 3); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, CorrectOutput) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); uint8_t input_tensor[kTotalElements]; SetValues(input_tensor, static_cast<uint8_t>(2)); std::vector<void*> inputs; inputs.push_back(input_tensor); stage.SetInputs(inputs); EXPECT_EQ(stage.Run(), kTfLiteOk); uint8_t* output_tensor = static_cast<uint8_t*>(stage.GetOutputs()->at(0)); for (int i = 0; i < kTotalElements; i++) { EXPECT_EQ(output_tensor[i], static_cast<uint8_t>(6)); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(metrics.num_runs(), 1); const auto& latency = metrics.process_metrics().total_latency(); const auto max_latency = latency.max_us(); EXPECT_GT(max_latency, 0); EXPECT_LT(max_latency, 1e7); EXPECT_LE(latency.last_us(), max_latency); EXPECT_LE(latency.min_us(), max_latency); EXPECT_GE(latency.sum_us(), max_latency); EXPECT_LE(latency.avg_us(), max_latency); EXPECT_TRUE(latency.has_std_deviation_us()); EXPECT_EQ( metrics.process_metrics().tflite_inference_metrics().num_inferences(), 2); } TEST(TfliteInferenceStage, CustomDelegate) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); Interpreter::TfLiteDelegatePtr test_delegate = CreateNNAPIDelegate(); EXPECT_NE(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/tflite_inference_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66f3c55a-dbb9-4df7-90ab-dabb19c6b4bc
cpp
tensorflow/tensorflow
topk_accuracy_eval_stage
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.cc
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <algorithm> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { std::vector<int> GetTopKIndices(const std::vector<float>& values, int k) { std::vector<int> indices(values.size()); std::iota(indices.begin(), indices.end(), 0); std::stable_sort(indices.begin(), indices.end(), [&values](int a, int b) { return values[a] > values[b]; }); indices.resize(k); return indices; } } TfLiteStatus TopkAccuracyEvalStage::Init() { num_runs_ = 0; auto& params = config_.specification().topk_accuracy_eval_params(); if (!params.has_k()) { LOG(ERROR) << "Value of k not provided for TopkAccuracyEvalStage"; return kTfLiteError; } accuracy_counts_ = std::vector<int>(params.k(), 0); if (ground_truth_labels_.empty()) { LOG(ERROR) << "Ground-truth labels are empty"; return kTfLiteError; } num_total_labels_ = ground_truth_labels_.size(); if (params.k() > num_total_labels_) { LOG(ERROR) << "k is too large"; return kTfLiteError; } if (!model_output_shape_) { LOG(ERROR) << "Model output details not correctly set"; return kTfLiteError; } if (!(model_output_shape_->size == 2) || !(model_output_shape_->data[0] == 1) || !(model_output_shape_->data[1] == num_total_labels_)) { LOG(ERROR) << "Invalid model_output_shape_"; return kTfLiteError; } if (model_output_type_ != kTfLiteFloat32 && model_output_type_ != kTfLiteUInt8 && model_output_type_ != kTfLiteInt8) { LOG(ERROR) << "model_output_type_ not supported"; return kTfLiteError; } return kTfLiteOk; } TfLiteStatus TopkAccuracyEvalStage::Run() { if (!model_output_) { LOG(ERROR) << "model_output_ not set correctly"; return kTfLiteError; } if (!ground_truth_label_) { LOG(ERROR) << "ground_truth_label_ not provided"; return kTfLiteError; } auto& params = config_.specification().topk_accuracy_eval_params(); std::vector<float> probabilities; probabilities.reserve(num_total_labels_); if (model_output_type_ == kTfLiteFloat32) { auto probs = static_cast<float*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteUInt8) { auto probs = static_cast<uint8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteInt8) { auto probs = static_cast<int8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } std::vector<int> top_k = GetTopKIndices(probabilities, params.k()); UpdateCounts(top_k); return kTfLiteOk; } EvaluationStageMetrics TopkAccuracyEvalStage::LatestMetrics() { EvaluationStageMetrics metrics; if (num_runs_ == 0) return metrics; metrics.set_num_runs(num_runs_); auto* topk_metrics = metrics.mutable_process_metrics()->mutable_topk_accuracy_metrics(); for (const auto& count : accuracy_counts_) { topk_metrics->add_topk_accuracies(static_cast<float>(count) / num_runs_); } return metrics; } void TopkAccuracyEvalStage::UpdateCounts(const std::vector<int>& topk_indices) { for (size_t i = 0; i < topk_indices.size(); ++i) { if (*ground_truth_label_ == ground_truth_labels_[topk_indices[i]]) { for (size_t j = i; j < topk_indices.size(); j++) { accuracy_counts_[j] += 1; } break; } } num_runs_++; } } }
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kTopkAccuracyEvalStageName[] = "topk_accuracy_eval_stage"; constexpr int kNumCategories = 1001; EvaluationStageConfig GetTopkAccuracyEvalStageConfig() { EvaluationStageConfig config; config.set_name(kTopkAccuracyEvalStageName); auto* params = config.mutable_specification()->mutable_topk_accuracy_eval_params(); params->set_k(5); return config; } template <typename T> T* ResetOutputArray(T array[]) { for (int i = 0; i < kNumCategories; i++) { array[i] = 0; } return array; } std::vector<std::string> CreateGroundTruthLabels() { std::vector<std::string> ground_truth_labels; ground_truth_labels.reserve(kNumCategories); for (int i = 0; i < kNumCategories; i++) { ground_truth_labels.push_back(std::to_string(i)); } return ground_truth_labels; } TEST(TopkAccuracyEvalStage, NoInitializers) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TopkAccuracyEvalStage, NoK) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification() ->mutable_topk_accuracy_eval_params() ->clear_k(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoGroundTruthLabels) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = {}; TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, KTooLarge) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification()->mutable_topk_accuracy_eval_params()->set_k( 10000); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, WeirdModelOutputShape) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, UnsupportedModelOutputType) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteComplex64; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoInputs) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, InvalidGroundTruth) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[0] = 0.8; stage.SetEvalInputs(tensor, nullptr); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, FloatTest_CorrectLabelsAtLastIndices) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[4] = 0.9; tensor[3] = 0.8; tensor[2] = 0.7; tensor[1] = 0.6; tensor[0] = 0.5; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); for (int i = 0; i < 4; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); EXPECT_FLOAT_EQ(0.5, accuracy_metrics.topk_accuracies(3)); for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } } class CorrectTopkAccuracyEvalTest : public ::testing::Test { protected: template <typename T> void VerifyCorrectBehaviorForType(T ground_truth_0_value, T ground_truth_1_value, TfLiteType model_output_type) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(0, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_EQ(0, accuracy_metrics.topk_accuracies_size()); T array[kNumCategories]; T* tensor = ResetOutputArray(array); tensor[0] = ground_truth_0_value; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } tensor[1] = ground_truth_1_value; ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } } }; TEST_F(CorrectTopkAccuracyEvalTest, FloatTest) { VerifyCorrectBehaviorForType(static_cast<float>(0.8), static_cast<float>(0.9), kTfLiteFloat32); } TEST_F(CorrectTopkAccuracyEvalTest, Int8Test) { VerifyCorrectBehaviorForType(static_cast<int8_t>(1), static_cast<int8_t>(2), kTfLiteInt8); } TEST_F(CorrectTopkAccuracyEvalTest, UInt8Test) { VerifyCorrectBehaviorForType(static_cast<uint8_t>(1), static_cast<uint8_t>(2), kTfLiteUInt8); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
91de9e22-48a4-4a8d-8ce5-150626fc675b
cpp
tensorflow/tensorflow
image_preprocessing_stage
tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.cc
tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.h" #include <algorithm> #include <cmath> #include <cstdint> #include <fstream> #include <ios> #include <iterator> #include <memory> #include <streambuf> #include <string> #include <vector> #include "absl/base/casts.h" #include "absl/strings/ascii.h" #include "jpeglib.h" #include "tensorflow/core/lib/jpeg/jpeg_mem.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/kernels/internal/reference/pad.h" #include "tensorflow/lite/kernels/internal/reference/resize_bilinear.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/profiling/time.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/proto/preprocessing_steps.pb.h" namespace tflite { namespace evaluation { namespace { const int kNumChannels = 3; inline int ImageArrayOffset(int height, int width, int h, int w, int c) { return (h * width + w) * kNumChannels + c; } struct ImageData { uint32_t width; uint32_t height; std::unique_ptr<std::vector<float>> data; float GetData(int h, int w, int c) { return data->at(ImageArrayOffset(height, width, h, w, c)); } }; inline void LoadImageRaw(std::string* filename, ImageData* image_data) { std::ifstream stream(filename->c_str(), std::ios::in | std::ios::binary); std::vector<uint8_t> raw_data((std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>()); std::vector<float>* orig_image = new std::vector<float>(); orig_image->reserve(raw_data.size()); for (int i = 0; i < raw_data.size(); ++i) { orig_image->push_back(static_cast<float>(raw_data[i])); } image_data->data.reset(orig_image); } inline void LoadImageJpeg(std::string* filename, ImageData* image_data) { std::ifstream t(*filename); std::string image_str((std::istreambuf_iterator<char>(t)), std::istreambuf_iterator<char>()); const int fsize = image_str.size(); auto temp = absl::bit_cast<const uint8_t*>(image_str.data()); std::unique_ptr<uint8_t[]> original_image; int original_width, original_height, original_channels; tensorflow::jpeg::UncompressFlags flags; flags.dct_method = JDCT_ISLOW; flags.components = kNumChannels; original_image.reset(Uncompress(temp, fsize, flags, &original_width, &original_height, &original_channels, nullptr)); image_data->width = original_width; image_data->height = original_height; int original_size = original_height * original_width * original_channels; std::vector<float>* float_image = new std::vector<float>(); float_image->reserve(original_size); for (int i = 0; i < original_size; ++i) { float_image->push_back(static_cast<float>(original_image[i])); } image_data->data.reset(float_image); } inline void Crop(ImageData* image_data, const CroppingParams& crop_params) { int crop_height, crop_width; int input_width = image_data->width; int input_height = image_data->height; if (crop_params.has_cropping_fraction()) { crop_height = static_cast<int>(round(crop_params.cropping_fraction() * input_height)); crop_width = static_cast<int>(round(crop_params.cropping_fraction() * input_width)); } else if (crop_params.has_target_size()) { crop_height = crop_params.target_size().height(); crop_width = crop_params.target_size().width(); } if (crop_params.has_cropping_fraction() && crop_params.square_cropping()) { crop_height = std::min(crop_height, crop_width); crop_width = crop_height; } int start_w = static_cast<int>(round((input_width - crop_width) / 2.0)); int start_h = static_cast<int>(round((input_height - crop_height) / 2.0)); std::vector<float>* cropped_image = new std::vector<float>(); cropped_image->reserve(crop_height * crop_width * kNumChannels); for (int in_h = start_h; in_h < start_h + crop_height; ++in_h) { for (int in_w = start_w; in_w < start_w + crop_width; ++in_w) { for (int c = 0; c < kNumChannels; ++c) { cropped_image->push_back(image_data->GetData(in_h, in_w, c)); } } } image_data->height = crop_height; image_data->width = crop_width; image_data->data.reset(cropped_image); } inline void ResizeBilinear(ImageData* image_data, const ResizingParams& params) { tflite::ResizeBilinearParams resize_params; resize_params.align_corners = false; resize_params.half_pixel_centers = false; tflite::RuntimeShape input_shape({1, static_cast<int>(image_data->height), static_cast<int>(image_data->width), kNumChannels}); int output_height, output_width; if (params.aspect_preserving()) { float ratio_w = params.target_size().width() / static_cast<float>(image_data->width); float ratio_h = params.target_size().height() / static_cast<float>(image_data->height); if (ratio_w >= ratio_h) { output_width = params.target_size().width(); output_height = static_cast<int>(round(image_data->height * ratio_w)); } else { output_width = static_cast<int>(round(image_data->width * ratio_h)); output_height = params.target_size().height(); } } else { output_height = params.target_size().height(); output_width = params.target_size().width(); } tflite::RuntimeShape output_size_dims({1, 1, 1, 2}); std::vector<int32_t> output_size_data = {output_height, output_width}; tflite::RuntimeShape output_shape( {1, output_height, output_width, kNumChannels}); int output_size = output_width * output_height * kNumChannels; std::vector<float>* output_data = new std::vector<float>(output_size, 0); tflite::reference_ops::ResizeBilinear( resize_params, input_shape, image_data->data->data(), output_size_dims, output_size_data.data(), output_shape, output_data->data()); image_data->height = output_height; image_data->width = output_width; image_data->data.reset(output_data); } inline void Pad(ImageData* image_data, const PaddingParams& params) { int output_width = params.target_size().width(); int output_height = params.target_size().height(); int pad_value = params.padding_value(); tflite::PadParams pad_params; pad_params.left_padding_count = 4; std::uninitialized_fill_n(pad_params.left_padding, 4, 0); pad_params.left_padding[1] = static_cast<int>(round((output_height - image_data->height) / 2.0)); pad_params.left_padding[2] = static_cast<int>(round((output_width - image_data->width) / 2.0)); pad_params.right_padding_count = 4; std::uninitialized_fill_n(pad_params.right_padding, 4, 0); pad_params.right_padding[1] = output_height - pad_params.left_padding[1] - image_data->height; pad_params.right_padding[2] = output_width - pad_params.left_padding[2] - image_data->width; tflite::RuntimeShape input_shape({1, static_cast<int>(image_data->height), static_cast<int>(image_data->width), kNumChannels}); tflite::RuntimeShape output_shape( {1, output_height, output_width, kNumChannels}); int output_size = output_width * output_height * kNumChannels; std::vector<float>* output_data = new std::vector<float>(output_size, 0); tflite::reference_ops::Pad(pad_params, input_shape, image_data->data->data(), &pad_value, output_shape, output_data->data()); image_data->height = output_height; image_data->width = output_width; image_data->data.reset(output_data); } inline void Normalize(ImageData* image_data, const NormalizationParams& params) { float scale = params.scale(); float* data_end = image_data->data->data() + image_data->data->size(); if (params.has_channelwise_mean()) { float mean = params.channelwise_mean(); for (float* data = image_data->data->data(); data < data_end; ++data) { *data = (*data - mean) * scale; } } else { float r_mean = params.means().r_mean(); float g_mean = params.means().g_mean(); float b_mean = params.means().b_mean(); for (float* data = image_data->data->data(); data < data_end;) { *data = (*data - r_mean) * scale; ++data; *data = (*data - g_mean) * scale; ++data; *data = (*data - b_mean) * scale; ++data; } } } } TfLiteStatus ImagePreprocessingStage::Init() { if (!config_.has_specification() || !config_.specification().has_image_preprocessing_params()) { LOG(ERROR) << "No preprocessing params"; return kTfLiteError; } const ImagePreprocessingParams& params = config_.specification().image_preprocessing_params(); for (const ImagePreprocessingStepParams& param : params.steps()) { if (param.has_cropping_params()) { const CroppingParams& crop_params = param.cropping_params(); if (crop_params.has_cropping_fraction() && (crop_params.cropping_fraction() <= 0 || crop_params.cropping_fraction() > 1.0)) { LOG(ERROR) << "Invalid cropping fraction"; return kTfLiteError; } } } output_type_ = static_cast<TfLiteType>(params.output_type()); return kTfLiteOk; } TfLiteStatus ImagePreprocessingStage::Run() { if (!image_path_) { LOG(ERROR) << "Image path not set"; return kTfLiteError; } ImageData image_data; const ImagePreprocessingParams& params = config_.specification().image_preprocessing_params(); int64_t start_us = profiling::time::NowMicros(); string image_ext = image_path_->substr(image_path_->find_last_of(".")); absl::AsciiStrToLower(&image_ext); bool is_raw_image = (image_ext == ".rgb8"); if (image_ext == ".rgb8") { LoadImageRaw(image_path_, &image_data); } else if (image_ext == ".jpg" || image_ext == ".jpeg") { LoadImageJpeg(image_path_, &image_data); } else { LOG(ERROR) << "Extension " << image_ext << " is not supported"; return kTfLiteError; } for (const ImagePreprocessingStepParams& param : params.steps()) { if (param.has_cropping_params()) { if (is_raw_image) { LOG(WARNING) << "Image cropping will not be performed on raw images"; continue; } Crop(&image_data, param.cropping_params()); } else if (param.has_resizing_params()) { if (is_raw_image) { LOG(WARNING) << "Image resizing will not be performed on raw images"; continue; } ResizeBilinear(&image_data, param.resizing_params()); } else if (param.has_padding_params()) { if (is_raw_image) { LOG(WARNING) << "Image padding will not be performed on raw images"; continue; } Pad(&image_data, param.padding_params()); } else if (param.has_normalization_params()) { Normalize(&image_data, param.normalization_params()); } } if (output_type_ == kTfLiteUInt8) { uint8_preprocessed_image_.clear(); uint8_preprocessed_image_.resize(image_data.data->size() + 16); for (int i = 0; i < image_data.data->size(); ++i) { uint8_preprocessed_image_[i] = static_cast<uint8_t>(image_data.data->at(i)); } } else if (output_type_ == kTfLiteInt8) { int8_preprocessed_image_.clear(); int8_preprocessed_image_.resize(image_data.data->size() + 16); for (int i = 0; i < image_data.data->size(); ++i) { int8_preprocessed_image_[i] = static_cast<int8_t>(image_data.data->at(i)); } } else if (output_type_ == kTfLiteFloat32) { float_preprocessed_image_ = *image_data.data; } latency_stats_.UpdateStat(profiling::time::NowMicros() - start_us); return kTfLiteOk; } void* ImagePreprocessingStage::GetPreprocessedImageData() { if (latency_stats_.count() == 0) return nullptr; if (output_type_ == kTfLiteUInt8) { return uint8_preprocessed_image_.data(); } else if (output_type_ == kTfLiteInt8) { return int8_preprocessed_image_.data(); } else if (output_type_ == kTfLiteFloat32) { return float_preprocessed_image_.data(); } return nullptr; } EvaluationStageMetrics ImagePreprocessingStage::LatestMetrics() { EvaluationStageMetrics metrics; auto* latency_metrics = metrics.mutable_process_metrics()->mutable_total_latency(); latency_metrics->set_last_us(latency_stats_.newest()); latency_metrics->set_max_us(latency_stats_.max()); latency_metrics->set_min_us(latency_stats_.min()); latency_metrics->set_sum_us(latency_stats_.sum()); latency_metrics->set_avg_us(latency_stats_.avg()); metrics.set_num_runs(static_cast<int>(latency_stats_.count())); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kImagePreprocessingStageName[] = "inception_preprocessing_stage"; constexpr char kTestImage[] = "tensorflow/lite/tools/evaluation/stages/testdata/" "grace_hopper.jpg"; constexpr int kImageDim = 224; TEST(ImagePreprocessingStage, NoParams) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); EvaluationStageConfig config = builder.build(); config.mutable_specification()->clear_image_preprocessing_params(); ImagePreprocessingStage stage = ImagePreprocessingStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ImagePreprocessingStage, InvalidCroppingFraction) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(-0.8); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ImagePreprocessingStage, ImagePathNotSet) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.Run(), kTfLiteError); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); } TEST(ImagePreprocessingStage, TestImagePreprocessingFloat) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(127.5, 1.0 / 127.5); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_FLOAT_EQ(preprocessed_image_ptr[0], -0.74901962); EXPECT_FLOAT_EQ(preprocessed_image_ptr[1], -0.74901962); EXPECT_FLOAT_EQ(preprocessed_image_ptr[2], -0.68627453); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingFloat_NoCrop) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(127.5, 1.0 / 127.5); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_FLOAT_EQ(preprocessed_image_ptr[0], -0.83529419); EXPECT_FLOAT_EQ(preprocessed_image_ptr[1], -0.7960785); EXPECT_FLOAT_EQ(preprocessed_image_ptr[2], -0.35686275); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingUInt8Quantized) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteUInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); uint8_t* preprocessed_image_ptr = static_cast<uint8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], 32); EXPECT_EQ(preprocessed_image_ptr[1], 32); EXPECT_EQ(preprocessed_image_ptr[2], 40); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingInt8Quantized) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(128.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); int8_t* preprocessed_image_ptr = static_cast<int8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -96); EXPECT_EQ(preprocessed_image_ptr[1], -96); EXPECT_EQ(preprocessed_image_ptr[2], -88); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingPadding) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddPaddingStep(225, 225, 0); builder.AddNormalizationStep(128.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); int8_t* preprocessed_image_ptr = static_cast<int8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -128); EXPECT_EQ(preprocessed_image_ptr[224], -128); EXPECT_EQ(preprocessed_image_ptr[225 * 3], -128); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 3], -96); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 4], -96); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 5], -88); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingSubtractMean) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddPerChannelNormalizationStep(110.0, 120.0, 123.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -78); EXPECT_EQ(preprocessed_image_ptr[1], -88); EXPECT_EQ(preprocessed_image_ptr[2], -83); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cadcf136-1281-4209-bb13-7b782228d794
cpp
tensorflow/tensorflow
object_detection_average_precision_stage
tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.cc
tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.h" #include <stdint.h> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" namespace tflite { namespace evaluation { namespace { image::Detection ConvertProtoToDetection( const ObjectDetectionResult::ObjectInstance& input, int image_id) { image::Detection detection; detection.box.x.min = input.bounding_box().normalized_left(); detection.box.x.max = input.bounding_box().normalized_right(); detection.box.y.min = input.bounding_box().normalized_top(); detection.box.y.max = input.bounding_box().normalized_bottom(); detection.imgid = image_id; detection.score = input.score(); return detection; } } TfLiteStatus ObjectDetectionAveragePrecisionStage::Init() { num_classes_ = config_.specification() .object_detection_average_precision_params() .num_classes(); if (num_classes_ <= 0) { LOG(ERROR) << "num_classes cannot be <= 0"; return kTfLiteError; } for (int i = 0; i < num_classes_; ++i) { ground_truth_object_vectors_.emplace_back(); predicted_object_vectors_.emplace_back(); } return kTfLiteOk; } TfLiteStatus ObjectDetectionAveragePrecisionStage::Run() { for (int i = 0; i < ground_truth_objects_.objects_size(); ++i) { const int class_id = ground_truth_objects_.objects(i).class_id(); if (class_id >= num_classes_) { LOG(ERROR) << "Encountered invalid class ID: " << class_id; return kTfLiteError; } ground_truth_object_vectors_[class_id].push_back(ConvertProtoToDetection( ground_truth_objects_.objects(i), current_image_index_)); } for (int i = 0; i < predicted_objects_.objects_size(); ++i) { const int class_id = predicted_objects_.objects(i).class_id(); if (class_id >= num_classes_) { LOG(ERROR) << "Encountered invalid class ID: " << class_id; return kTfLiteError; } predicted_object_vectors_[class_id].push_back(ConvertProtoToDetection( predicted_objects_.objects(i), current_image_index_)); } current_image_index_++; return kTfLiteOk; } EvaluationStageMetrics ObjectDetectionAveragePrecisionStage::LatestMetrics() { EvaluationStageMetrics metrics; if (current_image_index_ == 0) return metrics; metrics.set_num_runs(current_image_index_); auto* ap_metrics = metrics.mutable_process_metrics() ->mutable_object_detection_average_precision_metrics(); auto& ap_params = config_.specification().object_detection_average_precision_params(); std::vector<float> iou_thresholds; if (ap_params.iou_thresholds_size() == 0) { float threshold = 0.5; for (int i = 0; i < 10; ++i) { iou_thresholds.push_back(threshold + i * 0.05); } } else { for (auto& threshold : ap_params.iou_thresholds()) { iou_thresholds.push_back(threshold); } } image::AveragePrecision::Options opts; opts.num_recall_points = ap_params.num_recall_points(); float ap_sum = 0; int num_total_aps = 0; for (float threshold : iou_thresholds) { float threshold_ap_sum = 0; int num_counted_classes = 0; for (int i = 0; i < num_classes_; ++i) { if (ground_truth_object_vectors_[i].empty() && predicted_object_vectors_[i].empty()) continue; float ap_value = 0.0; if (!ground_truth_object_vectors_[i].empty()) { opts.iou_threshold = threshold; ap_value = image::AveragePrecision(opts).FromBoxes( ground_truth_object_vectors_[i], predicted_object_vectors_[i]); } ap_sum += ap_value; num_total_aps += 1; threshold_ap_sum += ap_value; num_counted_classes += 1; } if (num_counted_classes == 0) continue; auto* threshold_ap = ap_metrics->add_individual_average_precisions(); threshold_ap->set_average_precision(threshold_ap_sum / num_counted_classes); threshold_ap->set_iou_threshold(threshold); } if (num_total_aps == 0) return metrics; ap_metrics->set_overall_mean_average_precision(ap_sum / num_total_aps); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kAveragePrecisionStageName[] = "object_detection_average_precision"; EvaluationStageConfig GetAveragePrecisionStageConfig(int num_classes) { EvaluationStageConfig config; config.set_name(kAveragePrecisionStageName); auto* params = config.mutable_specification() ->mutable_object_detection_average_precision_params(); params->add_iou_thresholds(0.5); params->add_iou_thresholds(0.999); params->set_num_classes(num_classes); return config; } ObjectDetectionResult GetGroundTruthDetectionResult() { ObjectDetectionResult ground_truth; ground_truth.set_image_name("some_image.jpg"); auto* object_1 = ground_truth.add_objects(); object_1->set_class_id(1); auto* object_1_bbox = object_1->mutable_bounding_box(); object_1_bbox->set_normalized_top(0.5); object_1_bbox->set_normalized_bottom(1.0); object_1_bbox->set_normalized_left(0.5); object_1_bbox->set_normalized_right(1.0); auto* object_2 = ground_truth.add_objects(); object_2->set_class_id(1); auto* object_2_bbox = object_2->mutable_bounding_box(); object_2_bbox->set_normalized_top(0); object_2_bbox->set_normalized_bottom(1.0); object_2_bbox->set_normalized_left(0); object_2_bbox->set_normalized_right(1.0); auto* object_3 = ground_truth.add_objects(); object_3->set_class_id(2); auto* object_3_bbox = object_3->mutable_bounding_box(); object_3_bbox->set_normalized_top(0.5); object_3_bbox->set_normalized_bottom(1.0); object_3_bbox->set_normalized_left(0.5); object_3_bbox->set_normalized_right(1.0); return ground_truth; } ObjectDetectionResult GetPredictedDetectionResult() { ObjectDetectionResult predicted; auto* object_1 = predicted.add_objects(); object_1->set_class_id(1); object_1->set_score(0.8); auto* object_1_bbox = object_1->mutable_bounding_box(); object_1_bbox->set_normalized_top(0.091); object_1_bbox->set_normalized_bottom(1.0); object_1_bbox->set_normalized_left(0.091); object_1_bbox->set_normalized_right(1.0); auto* object_2 = predicted.add_objects(); object_2->set_class_id(1); object_2->set_score(0.9); auto* object_2_bbox = object_2->mutable_bounding_box(); object_2_bbox->set_normalized_top(0.474); object_2_bbox->set_normalized_bottom(1.0); object_2_bbox->set_normalized_left(0.474); object_2_bbox->set_normalized_right(1.0); auto* object_3 = predicted.add_objects(); object_3->set_class_id(1); object_3->set_score(0.95); auto* object_3_bbox = object_3->mutable_bounding_box(); object_3_bbox->set_normalized_top(0.474); object_3_bbox->set_normalized_bottom(1.0); object_3_bbox->set_normalized_left(0.474); object_3_bbox->set_normalized_right(1.0); return predicted; } TEST(ObjectDetectionAveragePrecisionStage, ZeroClasses) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(0); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ObjectDetectionAveragePrecisionStage, SampleInputs) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(3); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const ObjectDetectionResult ground_truth = GetGroundTruthDetectionResult(); const ObjectDetectionResult predicted = GetPredictedDetectionResult(); stage.SetEvalInputs(ObjectDetectionResult(), ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); ObjectDetectionAveragePrecisionMetrics detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.0); EXPECT_EQ(detection_metrics.individual_average_precisions_size(), 2); stage.SetEvalInputs(ground_truth, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.50495052); EXPECT_EQ(metrics.num_runs(), 2); stage.SetEvalInputs(predicted, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).iou_threshold(), 0.5); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).average_precision(), 0.4841584); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(1).iou_threshold(), 0.999); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(1).average_precision(), 0.33663365); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.41039604); } TEST(ObjectDetectionAveragePrecisionStage, DefaultIoUThresholds) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(3); auto* params = config.mutable_specification() ->mutable_object_detection_average_precision_params(); params->clear_iou_thresholds(); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const ObjectDetectionResult ground_truth = GetGroundTruthDetectionResult(); const ObjectDetectionResult predicted = GetPredictedDetectionResult(); stage.SetEvalInputs(ground_truth, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); ObjectDetectionAveragePrecisionMetrics detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 1.0); EXPECT_EQ(detection_metrics.individual_average_precisions_size(), 10); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).iou_threshold(), 0.5); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(9).iou_threshold(), 0.95); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
63ccecee-2364-4308-a602-e2ce86fff0bc
cpp
tensorflow/tensorflow
image_metrics
tensorflow/lite/tools/evaluation/stages/utils/image_metrics.cc
tensorflow/lite/tools/evaluation/stages/utils/image_metrics_test.cc
#include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" #include <algorithm> #include <cmath> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/logging.h" namespace tflite { namespace evaluation { namespace image { float Box2D::Length(const Box2D::Interval& a) { return std::max(0.f, a.max - a.min); } float Box2D::Intersection(const Box2D::Interval& a, const Box2D::Interval& b) { return Length(Interval{std::max(a.min, b.min), std::min(a.max, b.max)}); } float Box2D::Area() const { return Length(x) * Length(y); } float Box2D::Intersection(const Box2D& other) const { return Intersection(x, other.x) * Intersection(y, other.y); } float Box2D::Union(const Box2D& other) const { return Area() + other.Area() - Intersection(other); } float Box2D::IoU(const Box2D& other) const { const float total = Union(other); if (total > 0) { return Intersection(other) / total; } else { return 0.0; } } float Box2D::Overlap(const Box2D& other) const { const float intersection = Intersection(other); return intersection > 0 ? intersection / Area() : 0.0; } float AveragePrecision::FromPRCurve(const std::vector<PR>& pr, std::vector<PR>* pr_out) { float p = 0; float sum = 0; int r_level = opts_.num_recall_points; for (int i = pr.size() - 1; i >= 0; --i) { const PR& item = pr[i]; if (i > 0) { if (item.r < pr[i - 1].r) { LOG(ERROR) << "recall points are not in order: " << pr[i - 1].r << ", " << item.r; return 0; } } while (item.r * opts_.num_recall_points < r_level) { const float recall = static_cast<float>(r_level) / opts_.num_recall_points; if (r_level < 0) { LOG(ERROR) << "Number of recall points should be > 0"; return 0; } sum += p; r_level -= 1; if (pr_out != nullptr) { pr_out->emplace_back(p, recall); } } p = std::max(p, item.p); } for (; r_level >= 0; --r_level) { const float recall = static_cast<float>(r_level) / opts_.num_recall_points; sum += p; if (pr_out != nullptr) { pr_out->emplace_back(p, recall); } } return sum / (1 + opts_.num_recall_points); } float AveragePrecision::FromBoxes(const std::vector<Detection>& groundtruth, const std::vector<Detection>& prediction, std::vector<PR>* pr_out) { absl::flat_hash_map<int64_t, std::list<Detection>> gt; int num_gt = 0; for (auto& box : groundtruth) { gt[box.imgid].push_back(box); if (!box.difficult && box.ignore == kDontIgnore) { ++num_gt; } } if (num_gt == 0) { return NAN; } std::vector<Detection> pd = prediction; std::sort(pd.begin(), pd.end(), [](const Detection& a, const Detection& b) { return a.score > b.score; }); std::vector<PR> pr; int correct = 0; int num_pd = 0; for (int i = 0; i < pd.size(); ++i) { const Detection& b = pd[i]; auto* g = &gt[b.imgid]; auto best = g->end(); float best_iou = -INFINITY; for (auto it = g->begin(); it != g->end(); ++it) { const auto iou = b.box.IoU(it->box); if (iou > best_iou) { best = it; best_iou = iou; } } if ((best != g->end()) && (best_iou >= opts_.iou_threshold)) { if (best->difficult) { continue; } switch (best->ignore) { case kDontIgnore: { ++correct; ++num_pd; g->erase(best); pr.push_back({static_cast<float>(correct) / num_pd, static_cast<float>(correct) / num_gt}); break; } case kIgnoreOneMatch: { g->erase(best); break; } case kIgnoreAllMatches: { break; } } } else { ++num_pd; pr.push_back({static_cast<float>(correct) / num_pd, static_cast<float>(correct) / num_gt}); } } return FromPRCurve(pr, pr_out); } } } }
#include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" #include <stdint.h> #include <algorithm> #include <cmath> #include <cstdlib> #include <gtest/gtest.h> namespace tflite { namespace evaluation { namespace image { float MaxP(float minr, const std::vector<PR>& prs) { float p = 0; for (auto& pr : prs) { if (pr.r >= minr) p = std::max(p, pr.p); } return p; } float ExpectedAP(const std::vector<PR>& prs) { float sum = 0; for (float r = 0; r <= 1.0; r += 0.01) { sum += MaxP(r, prs); } return sum / 101; } float GenerateRandomFraction() { return static_cast<float>(std::rand()) / RAND_MAX; } TEST(ImageMetricsTest, APBasic) { std::vector<PR> prs; prs = {{1., 1.}, {0.5, 1.0}, {1 / 3, 1.0}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); prs = {{1.0, 0.01}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); prs = {{1.0, 0.2}, {1.0, 0.4}, {0.67, 0.4}, {0.5, 0.4}, {0.4, 0.4}, {0.5, 0.6}, {0.57, 0.8}, {0.5, 0.8}, {0.44, 0.8}, {0.5, 1.0}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); } TEST(ImageMetricsTest, APRandom) { std::vector<PR> prs; for (int i = 0; i < 5000; ++i) { float p = GenerateRandomFraction(); float r = GenerateRandomFraction(); prs.push_back({p, r}); } const float expected = ExpectedAP(prs); std::sort(std::begin(prs), std::end(prs), [](const PR& a, const PR& b) { return a.r < b.r; }); const float actual = AveragePrecision().FromPRCurve(prs); EXPECT_NEAR(expected, actual, 1e-5); } TEST(ImageMetricsTest, BBoxAPBasic) { std::vector<Detection> gt; gt.push_back(Detection({false, 100, 1, {{0, 1}, {0, 1}}})); gt.push_back(Detection({false, 200, 1, {{1, 2}, {1, 2}}})); std::vector<Detection> pd; pd.push_back(Detection({false, 100, 0.8, {{0.1, 1.1}, {0.1, 1.1}}})); pd.push_back(Detection({false, 200, 0.8, {{0.9, 1.9}, {0.9, 1.9}}})); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); AveragePrecision::Options opts; opts.iou_threshold = 0.85; EXPECT_NEAR(0.0, AveragePrecision(opts).FromBoxes(gt, pd), 1e-6); } TEST(ImageMetricsTest, Box2DOverlap) { Box2D a({{0, 1}, {0, 1}}); Box2D b({{0.5, 2.5}, {0.5, 2.5}}); EXPECT_NEAR(0.25, a.Overlap(b), 1e-6); EXPECT_NEAR(0.0625, b.Overlap(a), 1e-6); } TEST(ImageMetricsTest, BBoxAPwithIgnoredGroundTruth) { std::vector<Detection> gt; std::vector<Detection> pd; gt.push_back(Detection({false, 100, 1, {{1, 2}, {1, 2}}, kIgnoreOneMatch})); pd.push_back(Detection({false, 100, 0.8, {{0.1, 1.1}, {0.1, 1.1}}})); EXPECT_TRUE(std::isnan(AveragePrecision().FromBoxes(gt, pd))); gt.push_back({false, 100, 1, {{0, 1}, {0, 1}}}); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); pd.push_back({false, 100, 0.9, {{0.9, 1.9}, {0.9, 1.9}}}); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); pd.push_back({false, 100, 0.95, {{0.9, 1.9}, {0.9, 1.9}}}); EXPECT_NEAR(0.5, AveragePrecision().FromBoxes(gt, pd), 1e-6); gt[0].ignore = kIgnoreAllMatches; EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); } TEST(ImageMetricsTest, BBoxAPRandom) { auto rand = [](int64_t id) { auto xmin = GenerateRandomFraction(); auto xmax = xmin + GenerateRandomFraction(); auto ymin = GenerateRandomFraction(); auto ymax = ymin + GenerateRandomFraction(); return Detection( {false, id, GenerateRandomFraction(), {{xmin, xmax}, {ymin, ymax}}}); }; std::vector<Detection> gt; for (int i = 0; i < 100; ++i) { gt.push_back(rand(i % 10)); } std::vector<Detection> pd = gt; for (int i = 0; i < 10000; ++i) { pd.push_back(rand(i % 10)); } std::vector<PR> pr; AveragePrecision().FromBoxes(gt, pd, &pr); EXPECT_EQ(101, pr.size()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/utils/image_metrics.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/utils/image_metrics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5dee0d93-d903-4902-acfb-be17f27a8659
cpp
tensorflow/tensorflow
delegate_provider
tensorflow/lite/tools/delegates/delegate_provider.cc
tensorflow/lite/tools/delegates/delegate_provider_test.cc
#include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <algorithm> #include <string> #include <utility> #include <vector> namespace tflite { namespace tools { TfLiteDelegatePtr CreateNullDelegate() { return TfLiteDelegatePtr(nullptr, [](TfLiteOpaqueDelegate*) {}); } void ProvidedDelegateList::AddAllDelegateParams() const { for (const auto& provider : providers_) { params_->Merge(provider->DefaultParams()); } } void ProvidedDelegateList::AppendCmdlineFlags(std::vector<Flag>& flags) const { for (const auto& provider : providers_) { auto delegate_flags = provider->CreateFlags(params_); flags.insert(flags.end(), delegate_flags.begin(), delegate_flags.end()); } } void ProvidedDelegateList::RemoveCmdlineFlag(std::vector<Flag>& flags, const std::string& name) const { decltype(flags.begin()) it; for (it = flags.begin(); it < flags.end();) { if (it->GetFlagName() == name) { it = flags.erase(it); } else { ++it; } } } std::vector<ProvidedDelegateList::ProvidedDelegate> ProvidedDelegateList::CreateAllRankedDelegates(const ToolParams& params) const { std::vector<ProvidedDelegateList::ProvidedDelegate> delegates; for (const auto& provider : providers_) { auto ptr_rank = provider->CreateRankedTfLiteDelegate(params); if (ptr_rank.first == nullptr) continue; static bool already_logged = false; if (!already_logged) { TFLITE_LOG(INFO) << provider->GetName() << " delegate created."; #ifndef NDEBUG provider->LogParams(params, false); #endif already_logged = true; } ProvidedDelegateList::ProvidedDelegate info; info.provider = provider.get(); info.delegate = std::move(ptr_rank.first); info.rank = ptr_rank.second; delegates.emplace_back(std::move(info)); } std::sort(delegates.begin(), delegates.end(), [](const ProvidedDelegateList::ProvidedDelegate& a, const ProvidedDelegateList::ProvidedDelegate& b) { return a.rank < b.rank; }); return delegates; } } }
#include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/test_util.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { TEST(ProvidedDelegateListTest, AddAllDelegateParams) { ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); EXPECT_TRUE(params.HasParam("use_xnnpack")); #if !TFLITE_WITH_STABLE_ABI EXPECT_TRUE(params.HasParam("use_nnapi")); #endif } TEST(ProvidedDelegateListTest, AppendCmdlineFlags) { std::vector<Flag> flags; ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); providers.AppendCmdlineFlags(flags); EXPECT_FALSE(flags.empty()); } TEST(KernelTestDelegateProvidersTest, CreateAllRankedDelegates) { #if !defined(__Fuchsia__) && !defined(__s390x__) && \ !defined(TFLITE_WITHOUT_XNNPACK) ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); #if TFLITE_WITH_STABLE_ABI ASSERT_EQ(TfLiteInitializeShimsForTest(), 0); params.Set<bool>("use_xnnpack", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("XNNPACK", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); #else params.Set<bool>("use_xnnpack", true, 2); params.Set<bool>("use_dummy_delegate", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(2, delegates.size()); EXPECT_EQ("DummyDelegate", delegates.front().provider->GetName()); EXPECT_EQ(1, delegates.front().rank); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ("XNNPACK", delegates.back().provider->GetName()); EXPECT_NE(nullptr, delegates.back().delegate.get()); EXPECT_EQ(2, delegates.back().rank); #endif #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
924450a7-b081-4c29-b3f6-2bb71a1b42d4
cpp
tensorflow/tensorflow
xnnpack_delegate_provider
tensorflow/lite/tools/delegates/xnnpack_delegate_provider.cc
tensorflow/lite/tools/delegates/xnnpack_delegate_provider_test.cc
#include <string> #include <utility> #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/evaluation/utils.h" namespace tflite { namespace tools { class XnnpackDelegateProvider : public DelegateProvider { public: XnnpackDelegateProvider() { default_params_.AddParam("use_xnnpack", ToolParam::Create<bool>(false)); default_params_.AddParam("xnnpack_force_fp16", ToolParam::Create<bool>(false)); default_params_.AddParam("xnnpack_weight_cache_file_path", ToolParam::Create<std::string>("")); } std::vector<Flag> CreateFlags(ToolParams* params) const final; void LogParams(const ToolParams& params, bool verbose) const final; TfLiteDelegatePtr CreateTfLiteDelegate(const ToolParams& params) const final; std::pair<TfLiteDelegatePtr, int> CreateRankedTfLiteDelegate( const ToolParams& params) const final; std::string GetName() const final { return "XNNPACK"; } }; REGISTER_DELEGATE_PROVIDER(XnnpackDelegateProvider); std::vector<Flag> XnnpackDelegateProvider::CreateFlags( ToolParams* params) const { std::vector<Flag> flags = { CreateFlag<bool>("use_xnnpack", params, "explicitly apply the XNNPACK delegate. Note the " "XNNPACK delegate could " "be implicitly applied by the TF Lite runtime " "regardless the value of " "this parameter. To disable this implicit application, " "set the value to " "false explicitly."), CreateFlag<bool>("xnnpack_force_fp16", params, "enforce float16 inference."), CreateFlag<std::string>("xnnpack_weight_cache_file_path", params, "enable file-backed weight caching."), }; return flags; } void XnnpackDelegateProvider::LogParams(const ToolParams& params, bool verbose) const { LOG_TOOL_PARAM(params, bool, "use_xnnpack", "Use xnnpack", verbose); LOG_TOOL_PARAM(params, bool, "xnnpack_force_fp16", "xnnpack_force_fp16", verbose); LOG_TOOL_PARAM(params, std::string, "xnnpack_weight_cache_file_path", "xnnpack_weight_cache_file_path", verbose); } TfLiteDelegatePtr XnnpackDelegateProvider::CreateTfLiteDelegate( const ToolParams& params) const { if (params.Get<bool>("use_xnnpack")) { return evaluation::CreateXNNPACKDelegate( params.Get<int32_t>("num_threads"), params.Get<bool>("xnnpack_force_fp16"), params.Get<std::string>("xnnpack_weight_cache_file_path").c_str()); } return CreateNullDelegate(); } std::pair<TfLiteDelegatePtr, int> XnnpackDelegateProvider::CreateRankedTfLiteDelegate( const ToolParams& params) const { auto ptr = CreateTfLiteDelegate(params); return std::make_pair(std::move(ptr), params.GetPosition<bool>("use_xnnpack")); } } }
#include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { TEST(XNNPackDelegateProviderTest, Test) { const std::string kFakeCacheParam = testing::TempDir() + "/XNNPackDelegateProviderTest.xnnpack_cache"; const auto& providers = GetRegisteredDelegateProviders(); ASSERT_EQ(providers.size(), 1); ToolParams params; const auto& xnnpack_provider = providers[0]; ASSERT_NE(xnnpack_provider, nullptr); params.Merge(xnnpack_provider->DefaultParams()); params.AddParam("num_threads", ToolParam::Create<int32_t>(-1)); EXPECT_TRUE(params.HasParam("use_xnnpack")); EXPECT_FALSE(params.HasValueSet<bool>("use_xnnpack")); ASSERT_NE(params.GetParam("use_xnnpack"), nullptr); EXPECT_TRUE(params.HasParam("xnnpack_force_fp16")); EXPECT_FALSE(params.HasValueSet<bool>("xnnpack_force_fp16")); ASSERT_NE(params.GetParam("xnnpack_force_fp16"), nullptr); EXPECT_TRUE(params.HasParam("xnnpack_weight_cache_file_path")); EXPECT_FALSE( params.HasValueSet<std::string>("xnnpack_weight_cache_file_path")); ASSERT_NE(params.GetParam("xnnpack_weight_cache_file_path"), nullptr); params.Set<bool>("use_xnnpack", true, 0); { TfLiteDelegatePtr delegate = xnnpack_provider->CreateTfLiteDelegate(params); const TfLiteXNNPackDelegateOptions* options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_NE(options, nullptr); EXPECT_EQ(options->weight_cache_file_path, nullptr); } params.Set<bool>("xnnpack_force_fp16", true, 1); params.Set<std::string>("xnnpack_weight_cache_file_path", kFakeCacheParam, 2); { TfLiteDelegatePtr delegate = xnnpack_provider->CreateTfLiteDelegate(params); const TfLiteXNNPackDelegateOptions* options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_NE(options, nullptr); EXPECT_THAT(options->weight_cache_file_path, testing::StrEq(kFakeCacheParam)); EXPECT_TRUE(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_FORCE_FP16); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/xnnpack_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/xnnpack_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6824ada7-01ad-4c47-ba4e-358ca1192093
cpp
tensorflow/tensorflow
gpu_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker_test.cc
#include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <functional> #include <memory> #include <string> #include <unordered_map> #include "absl/status/status.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { namespace { void convertToValidationFailureType(absl::Status status, proto::OpCompatibilityResult* op_result) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(std::string(status.message())); switch (status.code()) { case absl::StatusCode::kInvalidArgument: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INVALID_ARGUMENT); break; case absl::StatusCode::kUnimplemented: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNIMPLEMENTED_ERROR); break; case absl::StatusCode::kInternal: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); break; case absl::StatusCode::kOutOfRange: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_OUT_OF_RANGE); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } } std::unordered_map<std::string, std::string> tools::GpuDelegateCompatibilityChecker::getDccConfigurations() { return {}; } absl::Status tools::GpuDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { return absl::OkStatus(); } absl::Status tools::GpuDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { return absl::UnimplementedError( "Online mode is not supported on GPU delegate compatibility checker."); } absl::Status tools::GpuDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { auto status = CheckGpuDelegateCompatibility(op_sig); if (!status.ok()) { convertToValidationFailureType(status, op_result); op_result->set_is_supported(false); } else { op_result->set_is_supported(true); } return absl::OkStatus(); } } }
#include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; } TEST(GpuDelegateCompatibilityCheckerTest, CheckOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_EQ( gpu_dcc .checkModelCompatibilityOnline(fb_model.get(), &compatibility_result) .code(), absl::StatusCode::kUnimplemented); } TEST(GpuDelegateCompatibilityCheckerTest, CompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 2); } TEST(GpuDelegateCompatibilityCheckerTest, IncompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/conv3d_huge_im2col.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd52ecf5-ef65-40cf-bffe-d2d368a8ecdf
cpp
tensorflow/tensorflow
nnapi_compatibility_lib
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.cc
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib_test.cc
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.h" #include <map> #include <utility> #include <vector> #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace tools { using ::tflite::delegate::nnapi::NNAPIValidationFailure; TfLiteStatus CheckCompatibility( TfLiteContext* context, int32_t runtime_feature_level, std::vector<int>* supported_nodes, std::map<int, std::vector<NNAPIValidationFailure>>* failures_by_node) { if (!context) { TFLITE_LOG_PROD_ONCE(TFLITE_LOG_ERROR, "Context is nullptr."); return kTfLiteError; } TfLiteIntArray* execution_plan; TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan)); for (int node_index : TfLiteIntArrayView(execution_plan)) { TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Node index: %d", node_index); TfLiteNode* node; TfLiteRegistration* registration; TF_LITE_ENSURE_STATUS(context->GetNodeAndRegistration( context, node_index, &node, &registration)); std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures; if (NNAPIDelegateKernel::Validate( context, registration, runtime_feature_level, node, true, nullptr, &map_failures)) { TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Built-in Code: %d", registration->builtin_code); if (supported_nodes) { supported_nodes->push_back(node_index); } } else { if (failures_by_node) { (*failures_by_node)[node_index] = std::move(map_failures); } } } return kTfLiteOk; } } }
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.h" #include <map> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace tools { namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type, CompatibilityCheckerDelegate* checker_delegate) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); SetDelegate(checker_delegate); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; } TEST(NnapiDelegateCompabilityTest, InvalidInput) { EXPECT_EQ(CheckCompatibility(nullptr, 0, nullptr, nullptr), kTfLiteError); } TEST(NnapiDelegateCompabilityTest, CompatibleModel) { CompatibilityCheckerDelegate checker_delegate( tflite::delegate::nnapi::kMinSdkVersionForNNAPI13); AddOpModel add_op_model( {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE, &checker_delegate); EXPECT_EQ(checker_delegate.GetSupportedNodes().size(), 1); EXPECT_EQ(checker_delegate.GetFailuresByNode().size(), 0); } TEST(NnapiDelegateCompabilityTest, IncompatibleModel) { CompatibilityCheckerDelegate checker_delegate( tflite::delegate::nnapi::kMinSdkVersionForNNAPI13); AddOpModel add_op_model( {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_RELU_N1_TO_1, &checker_delegate); EXPECT_EQ(checker_delegate.GetSupportedNodes().size(), 0); EXPECT_EQ(checker_delegate.GetFailuresByNode().size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02ed9897-f442-4266-a42c-c0acb98922cf
cpp
tensorflow/tensorflow
nnapi_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker_test.cc
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cctype> #include <cstdlib> #include <functional> #include <limits> #include <memory> #include <sstream> #include <string> #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/tools/delegates/compatibility/common/delegate_compatibility_checker_util.h" #include "tensorflow/lite/tools/delegates/compatibility/common/online_helper_delegate.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { namespace { void getCanonicalFeatureLevel(int runtime_feature_level, int& canonical_feature_level) { switch (runtime_feature_level) { case 1: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_1; break; case 2: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_2; break; case 3: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_3; break; case 4: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_4; break; case 5: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_5; break; case 6: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_6; break; case 7: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_7; break; case 8: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; break; default: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; } } absl::Status IsValidFeatureLevelInt(const std::string& s) { if (s.size() == 1 && std::isdigit(s[0]) && s[0] > '0' && s[0] < '9') { return absl::OkStatus(); } return absl::InvalidArgumentError("Invalid runtime feature level."); } absl::Status extractRuntimeFeatureLevel( const std::unordered_map<std::string, std::string>& dcc_configs, int& runtime_feature_level) { std::string str_runtime_feature_level; if (dcc_configs.find("nnapi-runtime_feature_level") == dcc_configs.end()) { for (const auto& dcc_config : dcc_configs) { if (absl::StrContains(dcc_config.first, "nnapi")) { return absl::InvalidArgumentError( "The correct flag name is 'nnapi-runtime_feature_level"); } } str_runtime_feature_level = std::to_string(tools::kDefaultRuntimeFeatureLevel); } else { str_runtime_feature_level = dcc_configs.at("nnapi-runtime_feature_level"); RETURN_IF_ERROR(IsValidFeatureLevelInt(str_runtime_feature_level)); } runtime_feature_level = std::stoi(str_runtime_feature_level); return absl::OkStatus(); } absl::Status convertToCompatibilityFailureType( std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures, proto::OpCompatibilityResult* op_result) { for (const auto& status : map_failures) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(status.message); switch (status.type) { case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedAndroidVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedInputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_INPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kNotRestrictedScaleCompliant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_NOT_RESTRICTED_SCALE_COMPLIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOutputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OUTPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandSize: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_SIZE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperandValue: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_VALUE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedHybridOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_HYBRID_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_QUANTIZATION_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kMissingRequiredOperand: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_MISSING_REQUIRED_OPERAND); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandRank: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_RANK); break; case delegate::nnapi::NNAPIValidationFailureType:: kInputTensorShouldHaveConstantShape: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_INPUT_TENSOR_SHOULD_HAVE_CONSTANT_SHAPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVariant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VARIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kNoActivationExpected: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_NO_ACTIVATION_EXPECTED); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationParameters: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_UNSUPPORTED_QUANTIZATION_PARAMETERS); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } return absl::OkStatus(); } } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpCompatibilityOnline( TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration, std::unordered_map<std::string, std::string> dcc_configs, tflite::proto::OpCompatibilityResult* op_result) { std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures; int runtime_feature_level; RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level)); getCanonicalFeatureLevel(runtime_feature_level, runtime_feature_level); if (NNAPIDelegateKernel::Validate( context, registration, runtime_feature_level, node, true, nullptr, &map_failures)) { op_result->set_is_supported(true); } else { RETURN_IF_ERROR(convertToCompatibilityFailureType(map_failures, op_result)); op_result->set_is_supported(false); } return absl::OkStatus(); } std::unordered_map<std::string, std::string> tools::NnapiDelegateCompatibilityChecker::getDccConfigurations() { std::unordered_map<std::string, std::string> dcc_configs; dcc_configs["nnapi-runtime_feature_level"] = std::to_string(runtime_feature_level_); return dcc_configs; } absl::Status tools::NnapiDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level_)); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreter_builder(*model_buffer, resolver); auto dcc_configs = getDccConfigurations(); std::function<absl::Status(TfLiteContext*, const TfLiteNode*, const TfLiteRegistration*, std::unordered_map<std::string, std::string>, proto::OpCompatibilityResult*)> check_op_func_ptr = &checkOpCompatibilityOnline; OnlineHelperDelegate delegate(dcc_configs, check_op_func_ptr, result); interpreter_builder.AddDelegate(&delegate); interpreter_builder(&interpreter); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { return absl::UnimplementedError( "Offline mode is not yet supported on NNAPI delegate compatibility " "checker."); } } }
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cstdint> #include <limits> #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; class NnapiDccTest : public ::testing::Test { protected: void SetUp() override {} void TearDown() override { compatibility_result_.Clear(); } NnapiDelegateCompatibilityChecker nnapi_dcc_; proto::CompatibilityResult compatibility_result_; }; } TEST_F(NnapiDccTest, ValidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); EXPECT_EQ(dcc_configs["nnapi-runtime_feature_level"], "8"); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "1"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "8"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs.clear(); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); EXPECT_EQ(nnapi_dcc_.getDccConfigurations()["nnapi-runtime_feature_level"], "8"); } TEST_F(NnapiDccTest, InvalidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); dcc_configs["nnapi-runtime_feature_level"] = "03"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "a"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "28123497123489123841212344516"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "30.0"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "-30"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "9"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs.clear(); dcc_configs["nnapi-runtim_feature_level"] = "8"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); } TEST_F(NnapiDccTest, CompatibleModelOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); EXPECT_EQ(model->subgraphs()->size(), 1); EXPECT_EQ(model->subgraphs()->Get(0)->operators()->size(), 2); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 2); } TEST_F(NnapiDccTest, IncompatibleModelOperation) { AddOpModel add_op_model( {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_RELU_N1_TO_1); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } TEST_F(NnapiDccTest, IncompatibleModelFeatureLevel) { AddOpModel add_op_model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_NONE); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); auto nnapi_configs = nnapi_dcc_.getDccConfigurations(); nnapi_configs["nnapi-runtime_feature_level"] = "2"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(nnapi_configs)); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90c6fcba-9e56-454e-aa32-12dd171fd942
cpp
tensorflow/tensorflow
stable_delegate_provider
tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider.cc
tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider_test.cc
#include <cstdint> #include <map> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" #if !defined(_WIN32) #include "tensorflow/lite/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #endif namespace tflite { namespace tools { #if !defined(_WIN32) namespace { TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path); class StableDelegatePluginLoader { public: static StableDelegatePluginLoader& GetInstance() { static StableDelegatePluginLoader* const instance = new StableDelegatePluginLoader; return *instance; } TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path); private: struct CacheEntry { const TfLiteStableDelegate* stable_delegate = nullptr; delegates::utils::TfLiteSettingsJsonParser parser; const TFLiteSettings* parsed_settings = nullptr; }; StableDelegatePluginLoader() = default; const CacheEntry* LoadStableDelegatePlugin( const std::string& json_settings_file_path); std::map<std::string , CacheEntry> cache_; }; const StableDelegatePluginLoader::CacheEntry* StableDelegatePluginLoader::LoadStableDelegatePlugin( const std::string& json_settings_file_path) { auto it = cache_.find(json_settings_file_path); if (it != cache_.end()) { return &it->second; } CacheEntry result; const TFLiteSettings* tflite_settings = result.parser.Parse(json_settings_file_path); result.parsed_settings = tflite_settings; if (!tflite_settings || !tflite_settings->stable_delegate_loader_settings() || !tflite_settings->stable_delegate_loader_settings()->delegate_path()) { TFLITE_LOG(ERROR) << "Invalid TFLiteSettings for the stable delegate."; result.stable_delegate = nullptr; } else { std::string delegate_path = tflite_settings->stable_delegate_loader_settings() ->delegate_path() ->str(); result.stable_delegate = delegates::utils::LoadDelegateFromSharedLibrary(delegate_path); if (!result.stable_delegate || !result.stable_delegate->delegate_plugin) { TFLITE_LOG(ERROR) << "Failed to load stable ABI delegate from stable ABI " "delegate binary (" << delegate_path << ")."; } } auto it2 = cache_.emplace(json_settings_file_path, std::move(result)).first; return &it2->second; } TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path) { return StableDelegatePluginLoader::GetInstance().CreateStableDelegate( json_settings_file_path); } TfLiteDelegatePtr StableDelegatePluginLoader::CreateStableDelegate( const std::string& json_settings_file_path) { if (json_settings_file_path.empty()) { return CreateNullDelegate(); } const CacheEntry* entry = StableDelegatePluginLoader::GetInstance().LoadStableDelegatePlugin( json_settings_file_path); if (!entry || !entry->stable_delegate || !entry->stable_delegate->delegate_plugin) { return CreateNullDelegate(); } const TfLiteOpaqueDelegatePlugin* delegate_plugin = entry->stable_delegate->delegate_plugin; return TfLiteDelegatePtr(delegate_plugin->create(entry->parsed_settings), delegate_plugin->destroy); } } #endif class StableAbiDelegateProvider : public DelegateProvider { public: StableAbiDelegateProvider() { default_params_.AddParam("stable_delegate_settings_file", ToolParam::Create<std::string>("")); } std::vector<Flag> CreateFlags(ToolParams* params) const final; void LogParams(const ToolParams& params, bool verbose) const final; TfLiteDelegatePtr CreateTfLiteDelegate(const ToolParams& params) const final; std::pair<TfLiteDelegatePtr, int> CreateRankedTfLiteDelegate( const ToolParams& params) const final; std::string GetName() const final { return "STABLE_DELEGATE"; } }; REGISTER_DELEGATE_PROVIDER(StableAbiDelegateProvider); std::vector<Flag> StableAbiDelegateProvider::CreateFlags( ToolParams* params) const { std::vector<Flag> flags = { CreateFlag<std::string>("stable_delegate_settings_file", params, "The path to the delegate settings JSON file.")}; return flags; } void StableAbiDelegateProvider::LogParams(const ToolParams& params, bool verbose) const { if (params.Get<std::string>("stable_delegate_settings_file").empty()) return; LOG_TOOL_PARAM(params, std::string, "stable_delegate_settings_file", "Delegate settings file path", verbose); } TfLiteDelegatePtr StableAbiDelegateProvider::CreateTfLiteDelegate( const ToolParams& params) const { #if !defined(_WIN32) std::string stable_delegate_settings_file = params.Get<std::string>("stable_delegate_settings_file"); return CreateStableDelegate(stable_delegate_settings_file); #else return CreateNullDelegate(); #endif } std::pair<TfLiteDelegatePtr, int> StableAbiDelegateProvider::CreateRankedTfLiteDelegate( const ToolParams& params) const { auto ptr = CreateTfLiteDelegate(params); return std::make_pair(std::move(ptr), params.GetPosition<std::string>( "stable_delegate_settings_file")); } } }
#include <string> #include <vector> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { static constexpr char kTestSettingsSrcDir[] = "tensorflow/lite/tools/delegates/experimental/stable_delegate/"; static constexpr char kGoodStableDelegateSettings[] = "test_sample_stable_delegate_settings.json"; static constexpr char kGoodXNNPackDelegateSettings[] = "test_stable_xnnpack_settings.json"; static constexpr char kBadMissingFile[] = "missing.json"; static constexpr char kBadInvalidSettings[] = "test_invalid_settings.json"; static constexpr char kBadMissingStableDelegateSettings[] = "test_missing_stable_delegate_settings.json"; static constexpr char kBadMissingDelegatePathSettings[] = "test_missing_delegate_path_settings.json"; std::vector<ProvidedDelegateList::ProvidedDelegate> CreateDelegates( const std::string& settings_file_path) { ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); params.Set<std::string>("stable_delegate_settings_file", settings_file_path, 1); return providers.CreateAllRankedDelegates(); } TEST(StableAbiDelegateProviderTest, CreateDelegate) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + kGoodStableDelegateSettings); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("STABLE_DELEGATE", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); } TEST(StableAbiDelegateProviderTest, CreateDelegateWithStableXNNPack) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + kGoodXNNPackDelegateSettings); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("STABLE_DELEGATE", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); pthreadpool_t threadpool = static_cast<pthreadpool_t>( TfLiteXNNPackDelegateGetThreadPool(delegates.front().delegate.get())); EXPECT_EQ(5, pthreadpool_get_threads_count(threadpool)); } TEST(StableAbiDelegateProviderTest, CreateDelegateFailedWithInvalidSettings) { std::vector<std::string> invalid_settings_names = { kBadMissingFile, kBadInvalidSettings, kBadMissingStableDelegateSettings, kBadMissingDelegatePathSettings}; for (const std::string& name : invalid_settings_names) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + name); EXPECT_EQ(0, delegates.size()); } } TEST(StableAbiDelegateProviderTest, CreateDelegateFailedWithBlankSettingsPath) { auto delegates = CreateDelegates(""); EXPECT_EQ(0, delegates.size()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f219ac4f-dc25-438c-ac93-f9d42e2ee63b
cpp
tensorflow/tensorflow
op_signature
tensorflow/lite/tools/versioning/op_signature.cc
tensorflow/lite/tools/versioning/op_signature_test.cc
#include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstdlib> #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" namespace tflite { namespace { class MallocDataAllocator : public BuiltinDataAllocator { public: void* Allocate(size_t size, size_t alignment_hint) override { return malloc(size); } void Deallocate(void* data) override { free(data); } }; inline int GetNumDims(const SubGraph* subgraph, const Operator* op, int idx) { const flatbuffers::Vector<int32_t>* ret = subgraph->tensors()->Get(op->inputs()->Get(idx))->shape(); if (ret) { return ret->size(); } else { return 0; } } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( const flatbuffers::Vector<int32_t>* tensors, const SubGraph* subgraph, const Model* model) { std::vector<OpSignatureTensorSpec> tensor_specs; if (!tensors) { return tensor_specs; } StderrReporter error_reporter; for (int32_t i = 0; i < tensors->Length(); ++i) { int32_t tensor_no = tensors->Get(i); OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { if (subgraph->tensors() && tensor_no < subgraph->tensors()->Length()) { auto* fb_tensor = subgraph->tensors()->Get(tensor_no); ConvertTensorType(fb_tensor->type(), &tensor_spec.type, &error_reporter); auto buffer_idx = fb_tensor->buffer(); if (buffer_idx != 0 && buffer_idx < model->buffers()->Length()) { auto* buffer = model->buffers()->Get(buffer_idx); if (buffer->data() && buffer->data()->size() != 0) { tensor_spec.is_const = true; } } const flatbuffers::Vector<int32_t>* shape_vec = fb_tensor->shape(); if (shape_vec) { for (int32_t j = 0; j < shape_vec->Length(); ++j) { tensor_spec.dims.push_back(shape_vec->Get(j)); } } const flatbuffers::Vector<int32_t>* shape_signature_vec = fb_tensor->shape_signature(); tensor_spec.is_shape_dynamic = false; if (shape_signature_vec) { for (int32_t j = 0; j < shape_signature_vec->Length(); ++j) { if (shape_signature_vec->Get(j) == -1) { tensor_spec.is_shape_dynamic = true; break; } } } } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( TfLiteIntArray* tensors, const TfLiteContext* context, const TfLiteNode* tflite_node) { std::vector<OpSignatureTensorSpec> tensor_specs; for (int32_t i = 0; i < tensors->size; ++i) { int32_t tensor_no = tensors->data[i]; OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { const TfLiteTensor* tfl_tensor; if (context->tensors != nullptr) { tfl_tensor = &context->tensors[tensor_no]; } else { tfl_tensor = context->GetTensor(context, tensor_no); } if (tfl_tensor != nullptr) { tensor_spec.type = tfl_tensor->type; tensor_spec.is_const = (tfl_tensor->allocation_type == kTfLiteMmapRo); if (tfl_tensor->dims) { for (int32_t j = 0; j < tfl_tensor->dims->size; ++j) { tensor_spec.dims.push_back(tfl_tensor->dims->data[j]); } } tensor_spec.is_shape_dynamic = HasUnspecifiedDimension(tfl_tensor); } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } } OpSignature GetOpSignature(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model) { auto builtin_code = GetBuiltinCode(op_code); OpSignature op_sig = {builtin_code}; std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); if (builtin_code != BuiltinOperator_CUSTOM) { StderrReporter error_reporter; MallocDataAllocator allocator; ParseOpData(op, builtin_code, &error_reporter, &allocator, &op_sig.builtin_data); } else { op_sig.custom_name = op_code->custom_code()->str(); } switch (builtin_code) { case BuiltinOperator_DEPTHWISE_CONV_2D: { const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_channels = filter_tensor->shape()->Get(3); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_channels) { op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized = true; } } break; case BuiltinOperator_FULLY_CONNECTED: { const Tensor* weight_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); op_sig.ext_options.fully_connected.sparse_weight = (weight_tensor->sparsity() != nullptr); const QuantizationParameters* weight_quant = weight_tensor->quantization(); if (weight_quant && weight_quant->scale() && weight_quant->scale()->size() && weight_tensor->shape() && weight_tensor->shape()->size()) { op_sig.ext_options.fully_connected.is_per_channel_quantized = weight_quant->scale()->size() > 1 && weight_quant->scale()->size() == weight_tensor->shape()->Get(0); } } break; case BuiltinOperator_MUL: { if (op->inputs()->Length() < 2 || op->outputs()->Length() < 1) { break; } const Tensor* input1_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* input2_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* input1_quant = input1_tensor->quantization(); const QuantizationParameters* input2_qunt = input2_tensor->quantization(); const QuantizationParameters* output_quant = output_tensor->quantization(); if (input1_quant && input1_quant->scale() && input1_quant->scale()->Length() && input2_qunt && input2_qunt->scale() && input2_qunt->scale()->Length() && output_quant && output_quant->scale() && output_quant->scale()->Length()) { op_sig.ext_options.mul.input1_scale = input1_quant->scale()->Get(0); op_sig.ext_options.mul.input2_scale = input2_qunt->scale()->Get(0); op_sig.ext_options.mul.output_scale = output_quant->scale()->Get(0); } if (input1_quant || input2_qunt) { op_sig.ext_options.mul.input_quantized = true; } } break; case BuiltinOperator_CONV_2D: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_filters = filter_tensor->shape()->Get(0); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_filters) { op_sig.ext_options.conv_2d.is_per_channel_quantized = true; } if (input_tensor->shape() && input_tensor->shape()->size()) { int num_input_channels = input_tensor->shape()->Get(3); int num_filter_input_channels = filter_tensor->shape()->Get(3); op_sig.ext_options.conv_2d.is_grouped_convolution = num_input_channels != num_filter_input_channels; } else { op_sig.ext_options.conv_2d.is_grouped_convolution = false; } } break; case BuiltinOperator_STRIDED_SLICE: { op_sig.ext_options.strided_slice.num_dims = GetNumDims(subgraph, op, 0); } break; case BuiltinOperator_ABS: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.abs.input_quantized = true; } } break; case BuiltinOperator_DEQUANTIZE: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const QuantizationParameters* input_quant = input_tensor->quantization(); if (input_quant && input_quant->scale() && input_quant->scale()->Length() > 1 && input_quant->scale()->Length() == input_tensor->shape()->Get(input_quant->quantized_dimension())) { op_sig.ext_options.dequantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_QUANTIZE: { const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* output_quant = output_tensor->quantization(); if (output_quant && output_quant->scale() && output_quant->scale()->Length() > 1 && output_quant->scale()->Length() == output_tensor->shape()->Get( output_quant->quantized_dimension())) { op_sig.ext_options.quantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_ADD: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.add.input_quantized = true; } } break; case BuiltinOperator_EMBEDDING_LOOKUP: { const Tensor* table_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* table_quant = table_tensor->quantization(); if (table_quant && table_quant->scale() && table_quant->scale()->size() && table_tensor->shape() && table_tensor->shape()->size()) { op_sig.ext_options.embedding_lookup.is_per_channel_quantized = table_quant->scale()->size() > 1 && table_quant->scale()->size() == table_tensor->shape()->Get(0); } } break; default: break; } op_sig.inputs = GetOpSignatureTensorSpecs(op->inputs(), subgraph, model); op_sig.outputs = GetOpSignatureTensorSpecs(op->outputs(), subgraph, model); op_sig.version = op_code->version(); return op_sig; } OpSignature GetOpSignature(const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration) { OpSignature op_sig = { static_cast<BuiltinOperator>(registration->builtin_code)}; op_sig.builtin_data = node->builtin_data; if (op_sig.op == BuiltinOperator_CUSTOM) { op_sig.custom_name = registration->custom_name; op_sig.custom_initial_data = node->custom_initial_data; } std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); op_sig.inputs = GetOpSignatureTensorSpecs(node->inputs, context, node); op_sig.outputs = GetOpSignatureTensorSpecs(node->outputs, context, node); op_sig.version = registration->version; return op_sig; } }
#include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstring> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/model_builder.h" namespace tflite { class StubTfLiteContext : public TfLiteContext { public: StubTfLiteContext(const int builtin_code, const int op_version, const int num_inputs) : TfLiteContext({0}) { exec_plan_ = TfLiteIntArrayCreate(3); for (int i = 0; i < 3; ++i) exec_plan_->data[i] = i; int tensor_no = 0; std::memset(nodes_, 0, sizeof(nodes_)); std::memset(registrations_, 0, sizeof(registrations_)); nodes_[0].inputs = TfLiteIntArrayCreate(1); nodes_[0].inputs->data[0] = tensor_no++; nodes_[0].outputs = TfLiteIntArrayCreate(1); nodes_[0].outputs->data[0] = tensor_no; nodes_[0].builtin_data = nullptr; nodes_[1].inputs = TfLiteIntArrayCreate(num_inputs); for (int i = 0; i < num_inputs; i++) { nodes_[1].inputs->data[i] = tensor_no++; } nodes_[1].outputs = TfLiteIntArrayCreate(1); nodes_[1].outputs->data[0] = tensor_no; nodes_[1].builtin_data = malloc(1024); std::memset(nodes_[1].builtin_data, 0, 1024); nodes_[2].inputs = TfLiteIntArrayCreate(1); nodes_[2].inputs->data[0] = tensor_no++; nodes_[2].outputs = TfLiteIntArrayCreate(1); nodes_[2].outputs->data[0] = tensor_no++; nodes_[2].builtin_data = nullptr; tensors_.resize(tensor_no); for (size_t i = 0; i < tensors_.size(); i++) { std::memset(&tensors_[i], 0, sizeof(tensors_[i])); tensors_[i].buffer_handle = kTfLiteNullBufferHandle; tensors_[i].type = kTfLiteFloat32; tensors_[i].dims = TfLiteIntArrayCreate(4); for (int d = 0; d < 4; d++) { tensors_[i].dims->data[d] = 1; } } tensors = tensors_.data(); tensors_size = tensors_.size(); registrations_[0].builtin_code = kTfLiteBuiltinAdd; registrations_[1].builtin_code = builtin_code; registrations_[1].version = op_version; registrations_[2].builtin_code = kTfLiteBuiltinAdd; this->GetExecutionPlan = StubGetExecutionPlan; this->GetNodeAndRegistration = StubGetNodeAndRegistration; } ~StubTfLiteContext() { for (auto& node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); if (node.builtin_data) { free(node.builtin_data); } } for (auto& tensor : tensors_) { TfLiteIntArrayFree(tensor.dims); } TfLiteIntArrayFree(exec_plan_); } TfLiteIntArray* exec_plan() const { return exec_plan_; } TfLiteNode* node() { return &nodes_[1]; } TfLiteRegistration* registration() { return &registrations_[1]; } TfLiteNode* node(int node_index) { return &nodes_[node_index]; } TfLiteRegistration* registration(int reg_index) { return &registrations_[reg_index]; } TfLiteTensor* tensor(int tensor_index) { return &tensors_[tensor_index]; } private: static TfLiteStatus StubGetExecutionPlan(TfLiteContext* context, TfLiteIntArray** execution_plan) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *execution_plan = stub->exec_plan(); return kTfLiteOk; } static TfLiteStatus StubGetNodeAndRegistration( TfLiteContext* context, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *node = stub->node(node_index); *registration = stub->registration(node_index); return kTfLiteOk; } TfLiteIntArray* exec_plan_; TfLiteNode nodes_[3]; TfLiteRegistration registrations_[3]; std::vector<TfLiteTensor> tensors_; }; TEST(GetOpSignature, FlatBufferModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); auto subgraphs = model->subgraphs(); const SubGraph* subgraph = subgraphs->Get(0); const Operator* op1 = subgraph->operators()->Get(0); const OperatorCode* op_code1 = model->operator_codes()->Get(op1->opcode_index()); OpSignature op_sig = GetOpSignature(op_code1, op1, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const Operator* op2 = subgraph->operators()->Get(1); const OperatorCode* op_code2 = model->operator_codes()->Get(op2->opcode_index()); op_sig = GetOpSignature(op_code2, op2, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const std::string& full_path3 = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/multi_signatures.bin"); auto fb_model3 = FlatBufferModel::BuildFromFile(full_path3.data()); ASSERT_TRUE(fb_model3); auto model3 = fb_model3->GetModel(); auto subgraphs3 = model3->subgraphs(); const SubGraph* subgraph3 = subgraphs3->Get(0); const Operator* op3 = subgraph3->operators()->Get(0); const OperatorCode* op_code3 = model3->operator_codes()->Get(op3->opcode_index()); op_sig = GetOpSignature(op_code3, op3, subgraph3, model3); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 1); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_TRUE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 1); EXPECT_TRUE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); } TEST(GetOpSignature, TfLiteContext) { auto context = std::make_unique<StubTfLiteContext>(kTfLiteBuiltinAdd, 1, 4); OpSignature op_sig = GetOpSignature(context.get(), context->node(), context->registration()); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/op_signature.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/op_signature_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe3e861d-aa7d-4a4b-9a82-7d51d95dcf7a
cpp
tensorflow/tensorflow
runtime_version
tensorflow/lite/tools/versioning/runtime_version.cc
tensorflow/lite/tools/versioning/runtime_version_test.cc
#include "tensorflow/lite/tools/versioning/runtime_version.h" #include <cstring> #include <map> #include <string> #include <utility> #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { bool CompareRuntimeVersion(const std::string& v1, const std::string& v2) { const std::vector<std::string> vec1 = absl::StrSplit(v1, '.'); const std::vector<std::string> vec2 = absl::StrSplit(v2, '.'); int i = 0; while (i < vec1.size() && i < vec2.size()) { int v1_val, v2_val; if (absl::SimpleAtoi(vec1[i], &v1_val) && absl::SimpleAtoi(vec2[i], &v2_val)) { if (v1_val != v2_val) return v1_val < v2_val; } ++i; } return i < vec2.size(); } std::string FindMinimumRuntimeVersionForOp(tflite::BuiltinOperator op_code, int op_version) { static const std::map<std::pair<BuiltinOperator, int>, std::string>* op_version_map = new std::map<std::pair<BuiltinOperator, int>, std::string>( {{{BuiltinOperator_AVERAGE_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_AVERAGE_POOL_2D, 2}, "1.14.0"}, {{BuiltinOperator_AVERAGE_POOL_2D, 3}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 1}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 2}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 3}, "2.4.0"}, {{BuiltinOperator_BATCH_MATMUL, 4}, "2.5.0"}, {{BuiltinOperator_BROADCAST_TO, 2}, "2.5.0"}, {{BuiltinOperator_BROADCAST_TO, 3}, "2.5.0"}, {{BuiltinOperator_CONV_2D, 1}, "1.5.0"}, {{BuiltinOperator_CONV_2D, 2}, "1.14.0"}, {{BuiltinOperator_CONV_2D, 3}, "1.14.0"}, {{BuiltinOperator_CONV_2D, 4}, "2.3.0"}, {{BuiltinOperator_CONV_2D, 5}, "2.4.0"}, {{BuiltinOperator_CONV_2D, 6}, "2.9.0"}, {{BuiltinOperator_CONV_2D, 7}, "2.11.0"}, {{BuiltinOperator_CONV_2D, 8}, "2.15.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 1}, "1.5.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 2}, "1.12.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 3}, "1.14.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 4}, "2.2.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 5}, "2.3.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 6}, "2.3.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 7}, "2.11.0"}, {{BuiltinOperator_ADD, 1}, "1.5.0"}, {{BuiltinOperator_ADD, 2}, "1.14.0"}, {{BuiltinOperator_ADD, 3}, "2.4.0"}, {{BuiltinOperator_ADD, 4}, "2.6.0"}, {{BuiltinOperator_ADD, 5}, "2.13.0"}, {{BuiltinOperator_ADD_N, 1}, "1.14.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 1}, "1.6.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 2}, "1.14.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 3}, "2.3.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 4}, "2.12.0"}, {{BuiltinOperator_SUB, 1}, "1.6.0"}, {{BuiltinOperator_SUB, 2}, "1.14.0"}, {{BuiltinOperator_SUB, 3}, "2.3.0"}, {{BuiltinOperator_SUB, 4}, "2.4.0"}, {{BuiltinOperator_SUB, 5}, "2.4.0"}, {{BuiltinOperator_DENSIFY, 1}, "2.2.0"}, {{BuiltinOperator_DIV, 1}, "1.6.0"}, {{BuiltinOperator_DIV, 2}, "2.3.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 1}, "1.6.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 2}, "1.14.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 3}, "2.3.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 4}, "2.12.0"}, {{BuiltinOperator_CAST, 1}, "1.5.0"}, {{BuiltinOperator_CAST, 2}, "2.7.0"}, {{BuiltinOperator_CAST, 3}, "2.8.0"}, {{BuiltinOperator_CAST, 4}, "2.9.0"}, {{BuiltinOperator_CAST, 5}, "2.12.0"}, {{BuiltinOperator_CAST, 6}, "2.15.0"}, {{BuiltinOperator_CONCATENATION, 1}, "1.5.0"}, {{BuiltinOperator_CONCATENATION, 2}, "1.14.0"}, {{BuiltinOperator_CONCATENATION, 3}, "2.3.0"}, {{BuiltinOperator_CONCATENATION, 4}, "2.14.0"}, {{BuiltinOperator_DEPTH_TO_SPACE, 1}, "2.1.0"}, {{BuiltinOperator_DEPTH_TO_SPACE, 2}, "2.5.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 1}, "1.13.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 2}, "1.14.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 3}, "1.14.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 4}, "2.18.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, 1}, "1.5.0"}, {{BuiltinOperator_FAKE_QUANT, 1}, "1.5.0"}, {{BuiltinOperator_FAKE_QUANT, 2}, "1.10.0"}, {{BuiltinOperator_FULLY_CONNECTED, 1}, "1.5.0"}, {{BuiltinOperator_FULLY_CONNECTED, 2}, "1.10.0"}, {{BuiltinOperator_FULLY_CONNECTED, 3}, "1.14.0"}, {{BuiltinOperator_FULLY_CONNECTED, 4}, "1.14.0"}, {{BuiltinOperator_FULLY_CONNECTED, 5}, "2.0.0"}, {{BuiltinOperator_FULLY_CONNECTED, 6}, "2.1.0"}, {{BuiltinOperator_FULLY_CONNECTED, 7}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 8}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 9}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 10}, "2.11.0"}, {{BuiltinOperator_FULLY_CONNECTED, 11}, "2.15.0"}, {{BuiltinOperator_FULLY_CONNECTED, 12}, "2.17.0"}, {{BuiltinOperator_FULLY_CONNECTED, 13}, "2.18.0"}, {{BuiltinOperator_GATHER, 1}, "1.6.0"}, {{BuiltinOperator_GATHER, 2}, "1.14.0"}, {{BuiltinOperator_GATHER, 3}, "1.15.0"}, {{BuiltinOperator_GATHER, 4}, "2.4.0"}, {{BuiltinOperator_GATHER, 5}, "2.5.0"}, {{BuiltinOperator_GATHER, 6}, "2.13.0"}, {{BuiltinOperator_GATHER, 7}, "2.15.0"}, {{BuiltinOperator_GATHER_ND, 1}, "1.14.0"}, {{BuiltinOperator_GATHER_ND, 2}, "2.3.0"}, {{BuiltinOperator_GATHER_ND, 3}, "2.5.0"}, {{BuiltinOperator_GATHER_ND, 4}, "2.13.0"}, {{BuiltinOperator_GATHER_ND, 5}, "2.16.0"}, {{BuiltinOperator_HASHTABLE_LOOKUP, 1}, "1.5.0"}, {{BuiltinOperator_SVDF, 1}, "1.5.0"}, {{BuiltinOperator_SVDF, 2}, "1.14.0"}, {{BuiltinOperator_SVDF, 3}, "2.2.0"}, {{BuiltinOperator_SVDF, 4}, "2.3.0"}, {{BuiltinOperator_L2_NORMALIZATION, 1}, "1.5.0"}, {{BuiltinOperator_L2_NORMALIZATION, 2}, "1.14.0"}, {{BuiltinOperator_L2_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, 1}, "1.5.0"}, {{BuiltinOperator_MAX_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_MAX_POOL_2D, 2}, "1.14.0"}, {{BuiltinOperator_MAX_POOL_2D, 3}, "2.3.0"}, {{BuiltinOperator_MAXIMUM, 1}, "1.14.0"}, {{BuiltinOperator_MAXIMUM, 2}, "1.14.0"}, {{BuiltinOperator_MAXIMUM, 3}, "2.3.0"}, {{BuiltinOperator_MAXIMUM, 4}, "2.3.0"}, {{BuiltinOperator_MINIMUM, 1}, "1.14.0"}, {{BuiltinOperator_MINIMUM, 2}, "1.14.0"}, {{BuiltinOperator_MINIMUM, 3}, "2.3.0"}, {{BuiltinOperator_MINIMUM, 4}, "2.3.0"}, {{BuiltinOperator_MUL, 1}, "1.5.0"}, {{BuiltinOperator_MUL, 2}, "1.14.0"}, {{BuiltinOperator_MUL, 3}, "1.15.0"}, {{BuiltinOperator_MUL, 4}, "2.3.0"}, {{BuiltinOperator_MUL, 5}, "2.6.0"}, {{BuiltinOperator_MUL, 6}, "2.11.0"}, {{BuiltinOperator_MUL, 7}, "2.13.0"}, {{BuiltinOperator_NON_MAX_SUPPRESSION_V4, 1}, "2.1.0"}, {{BuiltinOperator_NON_MAX_SUPPRESSION_V5, 1}, "2.1.0"}, {{BuiltinOperator_PAD, 1}, "1.5.0"}, {{BuiltinOperator_PAD, 2}, "1.14.0"}, {{BuiltinOperator_PAD, 3}, "2.4.0"}, {{BuiltinOperator_PAD, 4}, "2.6.0"}, {{BuiltinOperator_TILE, 1}, "1.10.1"}, {{BuiltinOperator_TILE, 2}, "2.2.0"}, {{BuiltinOperator_TILE, 3}, "2.8.0"}, {{BuiltinOperator_PADV2, 1}, "1.9.0"}, {{BuiltinOperator_PADV2, 2}, "1.14.0"}, {{BuiltinOperator_PADV2, 3}, "2.4.0"}, {{BuiltinOperator_PADV2, 4}, "2.6.0"}, {{BuiltinOperator_RESHAPE, 1}, "1.5.0"}, {{BuiltinOperator_SOFTMAX, 1}, "1.5.0"}, {{BuiltinOperator_SOFTMAX, 2}, "1.14.0"}, {{BuiltinOperator_SOFTMAX, 3}, "2.3.0"}, {{BuiltinOperator_SPACE_TO_DEPTH, 1}, "1.5.0"}, {{BuiltinOperator_SPACE_TO_DEPTH, 2}, "1.14.0"}, {{BuiltinOperator_TRANSPOSE, 1}, "1.6.0"}, {{BuiltinOperator_TRANSPOSE, 2}, "1.14.0"}, {{BuiltinOperator_TRANSPOSE, 3}, "1.15.0"}, {{BuiltinOperator_TRANSPOSE, 4}, "2.3.0"}, {{BuiltinOperator_TRANSPOSE, 5}, "2.4.0"}, {{BuiltinOperator_TRANSPOSE, 6}, "2.12.0"}, {{BuiltinOperator_LSTM, 1}, "1.7.0"}, {{BuiltinOperator_LSTM, 2}, "1.10.0"}, {{BuiltinOperator_LSTM, 3}, "1.14.0"}, {{BuiltinOperator_LSTM, 4}, "2.3.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 1}, "1.13.1"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 2}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 3}, "2.3.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 4}, "2.12.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 1}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 2}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 3}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 1}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 2}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 3}, "2.3.0"}, {{BuiltinOperator_MEAN, 1}, "1.6.0"}, {{BuiltinOperator_MEAN, 2}, "1.14.0"}, {{BuiltinOperator_MEAN, 3}, "2.4.0"}, {{BuiltinOperator_SUM, 1}, "1.10.0"}, {{BuiltinOperator_SUM, 2}, "1.15.0"}, {{BuiltinOperator_REDUCE_MAX, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_MAX, 2}, "1.14.0"}, {{BuiltinOperator_REDUCE_MAX, 3}, "2.5.0"}, {{BuiltinOperator_REDUCE_MIN, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_MIN, 2}, "1.14.0"}, {{BuiltinOperator_REDUCE_MIN, 3}, "2.5.0"}, {{BuiltinOperator_REDUCE_PROD, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_PROD, 2}, "2.6.0"}, {{BuiltinOperator_REDUCE_ANY, 1}, "1.11.0"}, {{BuiltinOperator_RELU6, 1}, "1.5.0"}, {{BuiltinOperator_RELU6, 2}, "1.14.0"}, {{BuiltinOperator_RELU6, 3}, "2.5.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 1}, "1.7.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 2}, "1.14.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 3}, "2.2.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 4}, "2.5.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 1}, "1.13.1"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 2}, "1.14.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 3}, "2.3.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 4}, "2.4.0"}, {{BuiltinOperator_RNN, 1}, "1.5.0"}, {{BuiltinOperator_RNN, 2}, "1.14.0"}, {{BuiltinOperator_RNN, 3}, "2.3.0"}, {{BuiltinOperator_SKIP_GRAM, 1}, "1.5.0"}, {{BuiltinOperator_SQUEEZE, 1}, "1.6.0"}, {{BuiltinOperator_SQUEEZE, 2}, "2.5.0"}, {{BuiltinOperator_SPLIT, 1}, "1.5.0"}, {{BuiltinOperator_SPLIT, 2}, "1.14.0"}, {{BuiltinOperator_SPLIT, 3}, "1.14.0"}, {{BuiltinOperator_SPLIT, 4}, "2.3.0"}, {{BuiltinOperator_SPLIT_V, 1}, "1.13.1"}, {{BuiltinOperator_SPLIT_V, 2}, "2.3.0"}, {{BuiltinOperator_STRIDED_SLICE, 1}, "1.6.0"}, {{BuiltinOperator_STRIDED_SLICE, 2}, "1.14.0"}, {{BuiltinOperator_STRIDED_SLICE, 3}, "2.1.0"}, {{BuiltinOperator_STRIDED_SLICE, 4}, "2.2.0"}, {{BuiltinOperator_STRIDED_SLICE, 5}, "2.5.0"}, {{BuiltinOperator_STRIDED_SLICE, 6}, "2.6.0"}, {{BuiltinOperator_STRIDED_SLICE, 7}, "2.14.0"}, {{BuiltinOperator_STRIDED_SLICE, 8}, "2.14.0"}, {{BuiltinOperator_TOPK_V2, 1}, "1.7.0"}, {{BuiltinOperator_TOPK_V2, 2}, "1.14.0"}, {{BuiltinOperator_TOPK_V2, 3}, "2.13.0"}, {{BuiltinOperator_ARG_MAX, 1}, "1.9.0"}, {{BuiltinOperator_ARG_MAX, 2}, "1.14.0"}, {{BuiltinOperator_ARG_MAX, 3}, "2.9.0"}, {{BuiltinOperator_ARG_MIN, 1}, "1.9.0"}, {{BuiltinOperator_ARG_MIN, 2}, "1.14.0"}, {{BuiltinOperator_ARG_MIN, 3}, "2.9.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 1}, "1.9.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 2}, "2.2.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 3}, "2.3.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 4}, "2.13.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 5}, "2.15.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 1}, "1.9.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 2}, "1.14.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 3}, "1.15.0"}, {{BuiltinOperator_EXPAND_DIMS, 1}, "1.10.0"}, {{BuiltinOperator_PACK, 1}, "1.11.0"}, {{BuiltinOperator_PACK, 2}, "1.14.0"}, {{BuiltinOperator_PACK, 3}, "2.3.0"}, {{BuiltinOperator_PACK, 4}, "2.13.0"}, {{BuiltinOperator_SHAPE, 1}, "1.10.0"}, {{BuiltinOperator_SLICE, 1}, "1.14.0"}, {{BuiltinOperator_SLICE, 2}, "1.14.0"}, {{BuiltinOperator_SLICE, 3}, "1.14.0"}, {{BuiltinOperator_SLICE, 4}, "2.4.0"}, {{BuiltinOperator_SLICE, 5}, "2.5.0"}, {{BuiltinOperator_SLICE, 6}, "2.14.0"}, {{BuiltinOperator_TANH, 1}, "1.14.0"}, {{BuiltinOperator_TANH, 2}, "1.14.0"}, {{BuiltinOperator_TANH, 3}, "2.3.0"}, {{BuiltinOperator_ONE_HOT, 1}, "1.11.0"}, {{BuiltinOperator_UNPACK, 1}, "1.11.0"}, {{BuiltinOperator_UNPACK, 2}, "1.14.0"}, {{BuiltinOperator_UNPACK, 3}, "2.2.0"}, {{BuiltinOperator_UNPACK, 4}, "2.3.0"}, {{BuiltinOperator_LEAKY_RELU, 1}, "1.13.1"}, {{BuiltinOperator_LEAKY_RELU, 2}, "2.3.0"}, {{BuiltinOperator_LOGISTIC, 1}, "1.14.0"}, {{BuiltinOperator_LOGISTIC, 2}, "1.14.0"}, {{BuiltinOperator_LOGISTIC, 3}, "2.3.0"}, {{BuiltinOperator_LOG_SOFTMAX, 1}, "1.14.0"}, {{BuiltinOperator_LOG_SOFTMAX, 2}, "1.14.0"}, {{BuiltinOperator_LSH_PROJECTION, 1}, "1.5.0"}, {{BuiltinOperator_SQUARED_DIFFERENCE, 1}, "1.13.1"}, {{BuiltinOperator_SQUARED_DIFFERENCE, 2}, "2.5.0"}, {{BuiltinOperator_MIRROR_PAD, 1}, "1.13.1"}, {{BuiltinOperator_MIRROR_PAD, 2}, "2.3.0"}, {{BuiltinOperator_MIRROR_PAD, 3}, "2.12.0"}, {{BuiltinOperator_UNIQUE, 1}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 1}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 2}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 3}, "2.3.0"}, {{BuiltinOperator_WHERE, 1}, "1.14.0"}, {{BuiltinOperator_DEQUANTIZE, 1}, "1.13.1"}, {{BuiltinOperator_DEQUANTIZE, 2}, "1.14.0"}, {{BuiltinOperator_DEQUANTIZE, 3}, "1.15.0"}, {{BuiltinOperator_DEQUANTIZE, 4}, "2.2.0"}, {{BuiltinOperator_DEQUANTIZE, 5}, "2.7.0"}, {{BuiltinOperator_DEQUANTIZE, 6}, "2.18.0"}, {{BuiltinOperator_REVERSE_SEQUENCE, 1}, "1.14.0"}, {{BuiltinOperator_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_EQUAL, 3}, "2.3.0"}, {{BuiltinOperator_EQUAL, 4}, "2.13.0"}, {{BuiltinOperator_NOT_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_NOT_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_NOT_EQUAL, 3}, "2.3.0"}, {{BuiltinOperator_GREATER, 1}, "1.14.0"}, {{BuiltinOperator_GREATER, 2}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 3}, "2.13.0"}, {{BuiltinOperator_LESS, 1}, "1.14.0"}, {{BuiltinOperator_LESS, 2}, "1.14.0"}, {{BuiltinOperator_LESS, 3}, "2.13.0"}, {{BuiltinOperator_LESS_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_LESS_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_SCATTER_ND, 1}, "2.1.0"}, {{BuiltinOperator_SEGMENT_SUM, 1}, "2.2.0"}, {{BuiltinOperator_SELECT, 1}, "1.14.0"}, {{BuiltinOperator_SELECT, 2}, "1.14.0"}, {{BuiltinOperator_SELECT, 3}, "2.12.0"}, {{BuiltinOperator_SELECT, 4}, "2.12.0"}, {{BuiltinOperator_SELECT_V2, 1}, "2.2.0"}, {{BuiltinOperator_SELECT_V2, 2}, "2.12.0"}, {{BuiltinOperator_IF, 1}, "1.15.0"}, {{BuiltinOperator_FLOOR_DIV, 1}, "1.14.0"}, {{BuiltinOperator_FLOOR_DIV, 2}, "1.14.0"}, {{BuiltinOperator_FLOOR_DIV, 3}, "2.13.0"}, {{BuiltinOperator_FLOOR, 1}, "1.9.0"}, {{BuiltinOperator_CEIL, 1}, "1.14.0"}, {{BuiltinOperator_MATRIX_DIAG, 1}, "1.14.0"}, {{BuiltinOperator_MATRIX_SET_DIAG, 1}, "1.14.0"}, {{BuiltinOperator_ELU, 1}, "1.14.0"}, {{BuiltinOperator_QUANTIZE, 1}, "1.14.0"}, {{BuiltinOperator_QUANTIZE, 2}, "1.15.0"}, {{BuiltinOperator_QUANTIZE, 3}, "2.7.0"}, {{BuiltinOperator_ROUND, 1}, "1.14.0"}, {{BuiltinOperator_RELU, 1}, "1.5.0"}, {{BuiltinOperator_RELU, 2}, "2.1.0"}, {{BuiltinOperator_RELU, 3}, "2.5.0"}, {{BuiltinOperator_RELU_N1_TO_1, 1}, "1.5.0"}, {{BuiltinOperator_RELU_0_TO_1, 1}, "2.10.0"}, {{BuiltinOperator_PRELU, 1}, "1.8.0"}, {{BuiltinOperator_EXP, 1}, "1.7.0"}, {{BuiltinOperator_EXP, 2}, "2.12.0"}, {{BuiltinOperator_COS, 1}, "1.14.0"}, {{BuiltinOperator_NEG, 1}, "1.9.0"}, {{BuiltinOperator_POW, 1}, "1.10.0"}, {{BuiltinOperator_LOGICAL_OR, 1}, "1.11.0"}, {{BuiltinOperator_LOGICAL_AND, 1}, "1.11.0"}, {{BuiltinOperator_LOGICAL_NOT, 1}, "1.11.0"}, {{BuiltinOperator_FLOOR_MOD, 1}, "1.13.0"}, {{BuiltinOperator_FLOOR_MOD, 2}, "2.13.0"}, {{BuiltinOperator_RANGE, 1}, "1.13.0"}, {{BuiltinOperator_RANGE, 2}, "2.14.0"}, {{BuiltinOperator_SIN, 1}, "1.9.0"}, {{BuiltinOperator_LOG, 1}, "1.14.0"}, {{BuiltinOperator_LOG, 2}, "2.15.0"}, {{BuiltinOperator_SQRT, 1}, "1.10.0"}, {{BuiltinOperator_RSQRT, 1}, "1.10.0"}, {{BuiltinOperator_RSQRT, 2}, "2.5.0"}, {{BuiltinOperator_RSQRT, 3}, "2.15.0"}, {{BuiltinOperator_SQUARE, 1}, "1.12.0"}, {{BuiltinOperator_ZEROS_LIKE, 1}, "1.12.0"}, {{BuiltinOperator_ABS, 1}, "1.13.0"}, {{BuiltinOperator_ABS, 2}, "2.4.0"}, {{BuiltinOperator_ABS, 3}, "2.5.0"}, {{BuiltinOperator_ABS, 4}, "2.6.0"}, {{BuiltinOperator_ABS, 5}, "2.12.0"}, {{BuiltinOperator_HARD_SWISH, 1}, "1.15.0"}, {{BuiltinOperator_FILL, 1}, "1.13.0"}, {{BuiltinOperator_FILL, 2}, "2.3.0"}, {{BuiltinOperator_FILL, 3}, "2.5.0"}, {{BuiltinOperator_FILL, 4}, "2.12.0"}, {{BuiltinOperator_REVERSE_V2, 1}, "1.14.0"}, {{BuiltinOperator_REVERSE_V2, 2}, "2.2.0"}, {{BuiltinOperator_REVERSE_V2, 3}, "2.5.0"}, {{BuiltinOperator_RANK, 1}, "1.14.0"}, {{BuiltinOperator_WHILE, 1}, "1.15.0"}, {{BuiltinOperator_CUMSUM, 1}, "2.4.0"}, {{BuiltinOperator_CALL_ONCE, 1}, "2.5.0"}, {{BuiltinOperator_RFFT2D, 1}, "2.5.0"}, {{BuiltinOperator_CONV_3D, 1}, "2.5.0"}, {{BuiltinOperator_IMAG, 1}, "2.5.0"}, {{BuiltinOperator_REAL, 1}, "2.5.0"}, {{BuiltinOperator_COMPLEX_ABS, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_FIND, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_IMPORT, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_SIZE, 1}, "2.5.0"}, {{BuiltinOperator_REDUCE_ALL, 1}, "2.6.0"}, {{BuiltinOperator_CONV_3D_TRANSPOSE, 1}, "2.6.0"}, {{BuiltinOperator_VAR_HANDLE, 1}, "2.6.0"}, {{BuiltinOperator_READ_VARIABLE, 1}, "2.6.0"}, {{BuiltinOperator_ASSIGN_VARIABLE, 1}, "2.6.0"}, {{BuiltinOperator_BROADCAST_ARGS, 1}, "2.6.0"}, {{BuiltinOperator_RANDOM_STANDARD_NORMAL, 1}, "2.8.0"}, {{BuiltinOperator_BUCKETIZE, 1}, "2.8.0"}, {{BuiltinOperator_WHERE, 2}, "2.8.0"}, {{BuiltinOperator_RANDOM_UNIFORM, 1}, "2.8.0"}, {{BuiltinOperator_MULTINOMIAL, 1}, "2.8.0"}, {{BuiltinOperator_GELU, 1}, "2.9.0"}, {{BuiltinOperator_GELU, 2}, "2.9.0"}, {{BuiltinOperator_DYNAMIC_UPDATE_SLICE, 1}, "2.9.0"}, {{BuiltinOperator_DYNAMIC_UPDATE_SLICE, 2}, "2.17.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_PROD, 1}, "2.10.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_MAX, 1}, "2.10.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_MIN, 1}, "2.11.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_SUM, 1}, "2.10.0"}, {{BuiltinOperator_ATAN2, 1}, "2.10.0"}, {{BuiltinOperator_SIGN, 1}, "2.11.0"}, {{BuiltinOperator_SIGN, 2}, "2.12.0"}, {{BuiltinOperator_BITCAST, 1}, "2.13.0"}, {{BuiltinOperator_BITWISE_XOR, 1}, "2.13.0"}, {{BuiltinOperator_RIGHT_SHIFT, 1}, "2.13.0"}, {{BuiltinOperator_STABLEHLO_SCATTER, 1}, "2.15.0"}, {{BuiltinOperator_DILATE, 1}, "2.15.0"}, {{BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, 1}, "2.15.0"}, {{BuiltinOperator_REDUCE_WINDOW, 1}, "2.15.0"}, {{BuiltinOperator_STABLEHLO_GATHER, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_ADD, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MULTIPLY, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_REDUCE_WINDOW, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MAXIMUM, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MINIMUM, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_PAD, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_COMPOSITE, 1}, "2.17.0"}, {{BuiltinOperator_STABLEHLO_AND, 1}, "2.17.0"}, {{BuiltinOperator_STABLEHLO_SHIFT_LEFT, 1}, "2.17.0"}, {{BuiltinOperator_STABLEHLO_CBRT, 1}, "2.17.0"}}); std::pair<BuiltinOperator, int> version_key = {op_code, op_version}; auto it = op_version_map->find(version_key); if (it == op_version_map->end()) { return std::string(); } return it->second; } void UpdateMinimumRuntimeVersionForModel(uint8_t* model_buffer_pointer) { auto model = GetMutableModel(model_buffer_pointer); std::string model_min_version; auto subgraphs = model->subgraphs(); for (int i = 0; i < subgraphs->Length(); ++i) { const SubGraph* subgraph = subgraphs->Get(i); for (int j = 0; j < subgraph->operators()->Length(); ++j) { const Operator* op = subgraph->operators()->Get(j); const OperatorCode* op_code = model->operator_codes()->Get(op->opcode_index()); std::string runtime_version = FindMinimumRuntimeVersionForOp( GetBuiltinCode(op_code), op_code->version()); if (runtime_version.empty()) { continue; } if (CompareRuntimeVersion(model_min_version, runtime_version)) { model_min_version = runtime_version; } } } if (model_min_version.size() >= 16) { TFLITE_LOG(TFLITE_LOG_WARNING, "Skip writing minimum runtime version string since it's " "longer than 16 bytes."); return; } for (int i = 0; i < model->metadata()->size(); ++i) { if (model->metadata()->Get(i)->name()->str() == "min_runtime_version") { auto buffer = model->metadata()->Get(i)->buffer(); auto buffer_data = model->mutable_buffers()->GetMutableObject(buffer)->mutable_data(); memset(buffer_data->data(), 0, buffer_data->size()); memcpy(buffer_data->data(), model_min_version.data(), model_min_version.size()); break; } } } }
#include "tensorflow/lite/tools/versioning/runtime_version.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { TEST(OpVersionTest, CompareRuntimeVersion) { EXPECT_TRUE(CompareRuntimeVersion("1.9", "1.13")); EXPECT_FALSE(CompareRuntimeVersion("1.13", "1.13")); EXPECT_TRUE(CompareRuntimeVersion("1.14", "1.14.1")); EXPECT_FALSE(CompareRuntimeVersion("1.14.1", "1.14")); EXPECT_FALSE(CompareRuntimeVersion("1.14.1", "1.9")); EXPECT_FALSE(CompareRuntimeVersion("1.0.9", "1.0.8")); EXPECT_FALSE(CompareRuntimeVersion("2.1.0", "1.2.0")); EXPECT_TRUE(CompareRuntimeVersion("", "1.13")); EXPECT_FALSE(CompareRuntimeVersion("", "")); } TEST(OpVersionTest, OpversionMissing) { tflite::ops::builtin::BuiltinOpResolver resolver; for (int id = BuiltinOperator_MIN; id <= BuiltinOperator_MAX; ++id) { for (int version = 1;; ++version) { auto op_code = static_cast<tflite::BuiltinOperator>(id); if (resolver.FindOp(op_code, version) == nullptr) break; std::string runtime_version = FindMinimumRuntimeVersionForOp(op_code, version); EXPECT_NE(runtime_version, "") << "Please add the version " << version << " of " << tflite::EnumNamesBuiltinOperator()[op_code] << " to runtime_version.cc"; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/runtime_version.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/runtime_version_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
35f936ca-0998-4bd1-b503-610007d31953
cpp
tensorflow/tensorflow
op_version
tensorflow/lite/tools/versioning/op_version.cc
tensorflow/lite/tools/versioning/op_version_test.cc
#include "tensorflow/lite/tools/versioning/op_version.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace { bool NeedBroadcastForBinaryInputs(const OpSignature& op_sig) { if (op_sig.inputs.size() < 2) { return false; } return (op_sig.inputs.at(0).dims != op_sig.inputs.at(1).dims); } int GetInputMaxDims(const OpSignature& op_sig) { int max_dims = 0; for (auto& input : op_sig.inputs) { if (input.dims.size() > max_dims) { max_dims = input.dims.size(); } } return max_dims; } } int GetBuiltinOperatorVersion(const OpSignature& op_sig) { switch (op_sig.op) { case BuiltinOperator_CONV_2D: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto conv_params = reinterpret_cast<TfLiteConvParams*>(op_sig.builtin_data); TFLITE_DCHECK(conv_params != nullptr); if (conv_params->quantized_bias_type) { return 8; } } if (op_sig.ext_options.conv_2d.is_grouped_convolution) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(1).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 7; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (op_sig.ext_options.conv_2d.is_per_channel_quantized) { return 5; } return 2; } return 1; } case BuiltinOperator_DEPTHWISE_CONV_2D: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(1).type == kTfLiteInt16) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized) { return 6; } return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 7; } auto depthwise_conv_params = reinterpret_cast<TfLiteDepthwiseConvParams*>(op_sig.builtin_data); TFLITE_DCHECK(depthwise_conv_params != nullptr); if (depthwise_conv_params->dilation_width_factor != 1 || depthwise_conv_params->dilation_height_factor != 1) { return 2; } return 1; } case BuiltinOperator_EMBEDDING_LOOKUP: { if (op_sig.inputs.at(1).type == kTfLiteInt4 || op_sig.ext_options.embedding_lookup.is_per_channel_quantized) { return 4; } return 1; } case BuiltinOperator_FAKE_QUANT: { auto fake_quant_params = reinterpret_cast<TfLiteFakeQuantParams*>(op_sig.builtin_data); TFLITE_DCHECK(fake_quant_params != nullptr); if (fake_quant_params->narrow_range) { return 2; } return 1; } case BuiltinOperator_FULLY_CONNECTED: { auto fully_connected_params = reinterpret_cast<TfLiteFullyConnectedParams*>(op_sig.builtin_data); TFLITE_DCHECK(fully_connected_params != nullptr); if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 13; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32 && op_sig.ext_options.fully_connected.is_per_channel_quantized) { return 12; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { if (fully_connected_params->quantized_bias_type) { return 11; } } if (op_sig.ext_options.fully_connected.sparse_weight) { return 8; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 7; } if (op_sig.inputs.size() == 2) { return 6; } if (fully_connected_params->keep_num_dims) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 10; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (fully_connected_params->asymmetric_quantize_inputs) { return 9; } return 3; } if (fully_connected_params->weights_format == kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8) { return 2; } return 1; } case BuiltinOperator_GATHER: { if (op_sig.inputs.at(0).type == kTfLiteInt4) { return 7; } if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 6; } auto gather_params = reinterpret_cast<TfLiteGatherParams*>(op_sig.builtin_data); if (gather_params && gather_params->batch_dims != 0) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_SVDF: { if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto svdf_params = reinterpret_cast<TfLiteSVDFParams*>(op_sig.builtin_data); if (svdf_params && svdf_params->asymmetric_quantize_inputs) { return 4; } return 2; } return 1; } case BuiltinOperator_SIGN: if (op_sig.inputs.at(0).type == kTfLiteInt32) { return 2; } return 1; case BuiltinOperator_MUL: if ((op_sig.inputs.at(0).type == kTfLiteInt16 && !op_sig.ext_options.mul.input_quantized) || op_sig.inputs.at(0).type == kTfLiteUInt32) { return 7; } if (op_sig.inputs.at(0).type == kTfLiteComplex64) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt64) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.ext_options.mul.input1_scale != 0 && op_sig.ext_options.mul.input2_scale != 0 && op_sig.ext_options.mul.output_scale != 0 && (op_sig.ext_options.mul.input1_scale * op_sig.ext_options.mul.input2_scale / op_sig.ext_options.mul.output_scale) >= 1.0) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_MAX_POOL_2D: case BuiltinOperator_AVERAGE_POOL_2D: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_TRANSPOSE: if (op_sig.inputs.at(0).dims.size() > 5) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 5; } if (op_sig.inputs.at(0).dims.size() > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_TRANSPOSE_CONV: { auto transpose_conv_params = reinterpret_cast<TfLiteTransposeConvParams*>(op_sig.builtin_data); if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { TFLITE_DCHECK(transpose_conv_params != nullptr); if (transpose_conv_params->quantized_bias_type) { return 5; } } if (transpose_conv_params != nullptr && transpose_conv_params->activation) { return 4; } if (op_sig.inputs.size() == 4 && op_sig.inputs.at(3).type != kTfLiteNoType) { return 3; } if (op_sig.inputs.at(1).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_LSTM: { auto lstm_params = reinterpret_cast<TfLiteLSTMParams*>(op_sig.builtin_data); if (lstm_params->kernel_type == kTfLiteLSTMFullKernel && op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 5; } TFLITE_DCHECK(lstm_params != nullptr); if (lstm_params->kernel_type == kTfLiteLSTMFullKernel && op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (lstm_params->asymmetric_quantize_inputs) { return 4; } return 3; } if (lstm_params->kernel_type == kTfLiteLSTMBasicKernel) { return 2; } return 1; } case BuiltinOperator_SPLIT: if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(1).type == kTfLiteInt32) { return 3; } if (op_sig.inputs.at(1).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SPARSE_TO_DENSE: if (op_sig.inputs.at(2).type == kTfLiteInt8 || op_sig.inputs.at(2).type == kTfLiteUInt8) { return 3; } if (op_sig.inputs.at(2).type == kTfLiteInt64) { return 2; } return 1; case BuiltinOperator_SLICE: if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 6; } if (op_sig.inputs.at(0).dims.size() > 4) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_UNPACK: if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 4; } return 1; case BuiltinOperator_DEQUANTIZE: if (op_sig.inputs.at(0).type == kTfLiteInt4) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteFloat16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { if (op_sig.ext_options.dequantize.is_per_channel_quantized) { return 5; } return 2; } return 1; case BuiltinOperator_QUANTIZE: if (op_sig.inputs.at(0).type == kTfLiteInt4 || op_sig.outputs.at(0).type == kTfLiteInt4) { return 4; } if (op_sig.ext_options.quantize.is_per_channel_quantized) { return 3; } if (op_sig.outputs.at(0).type == kTfLiteInt16) { return 2; } return 1; case BuiltinOperator_FLOOR_DIV: if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteFloat32) { return 2; } return 1; case BuiltinOperator_FLOOR_MOD: if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_L2_NORMALIZATION: if (op_sig.outputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_ABS: if (op_sig.inputs.at(0).type == kTfLiteInt32) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return op_sig.ext_options.abs.input_quantized ? 3 : 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } return 1; case BuiltinOperator_RELU: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } return 1; case BuiltinOperator_STRIDED_SLICE: { auto strided_slice_params = reinterpret_cast<TfLiteStridedSliceParams*>(op_sig.builtin_data); TFLITE_DCHECK(strided_slice_params != nullptr); if (strided_slice_params->offset == true) { return 8; } if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 7; } if (strided_slice_params->ellipsis_mask != 0 || strided_slice_params->new_axis_mask != 0) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 5; } if (op_sig.ext_options.strided_slice.num_dims > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_REVERSE_V2: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 2; } return 1; case BuiltinOperator_RESIZE_BILINEAR: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } auto resize_bilinear_params = reinterpret_cast<TfLiteResizeBilinearParams*>(op_sig.builtin_data); TFLITE_DCHECK(resize_bilinear_params != nullptr); if (resize_bilinear_params->half_pixel_centers) { return 3; } else if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } auto resize_nearest_neighbor_params = reinterpret_cast<TfLiteResizeNearestNeighborParams*>( op_sig.builtin_data); TFLITE_DCHECK(resize_nearest_neighbor_params != nullptr); if (resize_nearest_neighbor_params->half_pixel_centers || resize_nearest_neighbor_params->align_corners) { return 3; } else if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_MAXIMUM: case BuiltinOperator_MINIMUM: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 4; } if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_PACK: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } return 1; case BuiltinOperator_TILE: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_SQUEEZE: if (op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_SPACE_TO_BATCH_ND: case BuiltinOperator_BATCH_TO_SPACE_ND: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).dims.size() != 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_ADD: { if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt16 && !op_sig.ext_options.add.input_quantized) { return 5; } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt64) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto add_params = reinterpret_cast<TfLiteAddParams*>(op_sig.builtin_data); if (add_params && !add_params->pot_scale_int16) { return 3; } } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_SUB: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto sub_params = reinterpret_cast<TfLiteSubParams*>(op_sig.builtin_data); if (sub_params && !sub_params->pot_scale_int16) { return 5; } } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt64) { return 4; } if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_GATHER_ND: if (op_sig.inputs.at(0).type == kTfLiteBool) { return 5; } if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 4; } if (!op_sig.inputs.empty() && (op_sig.inputs.at(0).type == kTfLiteInt16)) { return 3; } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_DIV: if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 2; } return 1; case BuiltinOperator_TANH: case BuiltinOperator_LOGISTIC: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_FILL: if (op_sig.inputs.size() >= 2) { if (op_sig.inputs.at(1).type == kTfLiteFloat16) return 4; if (op_sig.inputs.at(1).type == kTfLiteInt8 || op_sig.inputs.at(1).type == kTfLiteInt16) { return 3; } else if ((op_sig.inputs.at(1).type == kTfLiteBool || op_sig.inputs.at(1).type == kTfLiteString)) { return 2; } } return 1; case BuiltinOperator_EQUAL: if (!op_sig.inputs.empty()) { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } } return 1; case BuiltinOperator_NOT_EQUAL: if (!op_sig.inputs.empty()) { if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } } return 1; case BuiltinOperator_LEAKY_RELU: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 2; } return 1; case BuiltinOperator_RANGE: if (op_sig.inputs.at(0).type == kTfLiteInt64) { return 2; } return 1; case BuiltinOperator_BATCH_MATMUL: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto batch_mat_mul_params = reinterpret_cast<TfLiteBatchMatMulParams*>(op_sig.builtin_data); if (batch_mat_mul_params && batch_mat_mul_params->asymmetric_quantize_inputs) { return 4; } } return 1; } case BuiltinOperator_PAD: case BuiltinOperator_PADV2: if (op_sig.inputs.at(0).dims.size() > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_CONCATENATION: if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SOFTMAX: case BuiltinOperator_MEAN: case BuiltinOperator_MIRROR_PAD: case BuiltinOperator_REDUCE_MAX: case BuiltinOperator_REDUCE_MIN: case BuiltinOperator_RELU6: case BuiltinOperator_RSQRT: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto rnn_params = reinterpret_cast<TfLiteRNNParams*>(op_sig.builtin_data); if (rnn_params && rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto sequence_rnn_params = reinterpret_cast<TfLiteSequenceRNNParams*>(op_sig.builtin_data); if (sequence_rnn_params && sequence_rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto bidirectional_sequence_rnn_params = reinterpret_cast<TfLiteBidirectionalSequenceRNNParams*>( op_sig.builtin_data); if (bidirectional_sequence_rnn_params && bidirectional_sequence_rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto bidirectional_sequence_lstm_params = reinterpret_cast<TfLiteBidirectionalSequenceLSTMParams*>( op_sig.builtin_data); if (bidirectional_sequence_lstm_params && bidirectional_sequence_lstm_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: { auto unidirectional_sequence_lstm_params = reinterpret_cast<TfLiteUnidirectionalSequenceLSTMParams*>( op_sig.builtin_data); if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 5; } if (unidirectional_sequence_lstm_params && unidirectional_sequence_lstm_params->diagonal_recurrent_tensors) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (unidirectional_sequence_lstm_params && unidirectional_sequence_lstm_params->asymmetric_quantize_inputs) { return 3; } return 2; } return 1; } case BuiltinOperator_ARG_MAX: case BuiltinOperator_ARG_MIN: if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SELECT: { if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } if (op_sig.inputs.at(0).dims.size() == 5 || op_sig.inputs.at(1).dims.size() == 5 || op_sig.inputs.at(2).dims.size() == 5) return 3; if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_LESS: case BuiltinOperator_GREATER_EQUAL: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_SELECT_V2: { if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 2; } return 1; } case BuiltinOperator_SPACE_TO_DEPTH: case BuiltinOperator_SPLIT_V: case BuiltinOperator_SUM: case BuiltinOperator_LOG_SOFTMAX: case BuiltinOperator_GREATER: case BuiltinOperator_LESS_EQUAL: case BuiltinOperator_SQUARED_DIFFERENCE: case BuiltinOperator_DEPTH_TO_SPACE: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_TOPK_V2: if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(1).type == kTfLiteInt16 || op_sig.outputs.at(1).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_EXP: case BuiltinOperator_LOG: case BuiltinOperator_REDUCE_PROD: if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteInt16) { return 2; } return 1; case BuiltinOperator_DYNAMIC_UPDATE_SLICE: if (op_sig.inputs.at(2).type == kTfLiteInt64) return 2; return 1; case BuiltinOperator_BROADCAST_TO: if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } return 2; case BuiltinOperator_CAST: if (op_sig.inputs.at(0).type == kTfLiteBFloat16 || op_sig.outputs.at(0).type == kTfLiteBFloat16) { return 7; } else if (op_sig.inputs.at(0).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteFloat32) { return 6; } else if (op_sig.inputs.at(0).type == kTfLiteFloat64 || op_sig.outputs.at(0).type == kTfLiteFloat64 || op_sig.inputs.at(0).type == kTfLiteFloat16 || op_sig.outputs.at(0).type == kTfLiteFloat16) { return 5; } else if (op_sig.inputs.at(0).type == kTfLiteUInt16 || op_sig.outputs.at(0).type == kTfLiteUInt16) { return 4; } else if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.outputs.at(0).type == kTfLiteInt8) { return 3; } else if (op_sig.inputs.at(0).type == kTfLiteUInt32 || op_sig.outputs.at(0).type == kTfLiteUInt32) { return 2; } return 1; case BuiltinOperator_WHERE: if (op_sig.inputs.at(0).type == kTfLiteBool) return 1; return 2; case BuiltinOperator_GELU: if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } return 1; default: return 1; } } void UpdateOpVersion(uint8_t* model_buffer_pointer) { auto model = GetMutableModel(model_buffer_pointer); auto subgraphs = model->subgraphs(); for (int i = 0; i < subgraphs->Length(); ++i) { const SubGraph* subgraph = subgraphs->Get(i); for (int j = 0; j < subgraph->operators()->Length(); ++j) { const Operator* op = subgraph->operators()->Get(j); OperatorCode* op_code = model->mutable_operator_codes()->GetMutableObject(op->opcode_index()); auto builtin_code = GetBuiltinCode(op_code); if (builtin_code != BuiltinOperator_CUSTOM) { OpSignature op_sig = GetOpSignature(op_code, op, subgraph, model); int32_t op_ver = GetBuiltinOperatorVersion(op_sig); if (op_sig.builtin_data) { free(op_sig.builtin_data); } if (op_ver <= op_code->version()) { continue; } if (!op_code->mutate_version(op_ver)) { LOG(ERROR) << "Can't set operator " << EnumNameBuiltinOperator(builtin_code) << " to version " << op_ver; } } } } } }
#include "tensorflow/lite/tools/versioning/op_version.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const std::vector<TfLiteType>& types) { std::vector<OpSignatureTensorSpec> tensor_specs; for (auto type : types) { OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const std::vector<TfLiteType>& types, int rank) { std::vector<OpSignatureTensorSpec> tensor_specs; for (auto type : types) { OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; for (int i = 0; i < rank; i++) { tensor_spec.dims.push_back(4); } tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; tensor_specs.push_back(tensor_spec); return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type, const int dim) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; for (int i = 0; i < dim; i++) { tensor_spec.dims.push_back(4); } tensor_specs.push_back(tensor_spec); return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type, const int dim1, const int dim2) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec1 = {}; tensor_spec1.type = type; for (int i = 0; i < dim1; i++) { tensor_spec1.dims.push_back(4); } tensor_specs.push_back(tensor_spec1); OpSignatureTensorSpec tensor_spec2 = {}; tensor_spec2.type = type; for (int i = 0; i < dim2; i++) { tensor_spec2.dims.push_back(4); } tensor_specs.push_back(tensor_spec2); return tensor_specs; } } TEST(OpVersionTest, VersioningSpareToDense) { OpSignature fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8, kTfLiteInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8, kTfLiteUInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt64, kTfLiteInt64, kTfLiteInt64}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } void SimpleVersioningTest(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } void SimpleVersioningTestExtended(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); SimpleVersioningTest(op); } void SimpleOutputVersioningTest(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = std::vector<OpSignatureTensorSpec>{}, .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = op, .inputs = std::vector<OpSignatureTensorSpec>{}, .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningEqualTest) { SimpleVersioningTest(BuiltinOperator_EQUAL); OpSignature fake_op_sig = { .op = BuiltinOperator_EQUAL, .inputs = CreateOpSignatureTensorSpecs(kTfLiteString), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningNotEqualTest) { SimpleVersioningTest(BuiltinOperator_NOT_EQUAL); OpSignature fake_op_sig = { .op = BuiltinOperator_NOT_EQUAL, .inputs = CreateOpSignatureTensorSpecs(kTfLiteString), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningLessTest) { SimpleVersioningTest(BuiltinOperator_LESS); } TEST(OpVersionTest, VersioningLessEqualTest) { SimpleVersioningTest(BuiltinOperator_LESS_EQUAL); } TEST(OpVersionTest, VersioningGreaterTest) { SimpleVersioningTest(BuiltinOperator_GREATER); } TEST(OpVersionTest, VersioningGreaterEqualTest) { SimpleVersioningTest(BuiltinOperator_GREATER_EQUAL); } TEST(OpVersionTest, VersioningSpaceToBatchNDTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_SPACE_TO_BATCH_ND, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningLogSoftmaxTest) { SimpleVersioningTest(BuiltinOperator_LOG_SOFTMAX); } TEST(OpVersionTest, VersioningPackTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningUnpackTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningRangeTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_RANGE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningReluTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningBatchToSpaceNDTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_BATCH_TO_SPACE_ND, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningTanhTest) { SimpleVersioningTest(BuiltinOperator_TANH); } TEST(OpVersionTest, VersioningStridedSliceTest) { TfLiteStridedSliceParams strided_slice_params = {}; OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_STRIDED_SLICE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); fake_op_sig.builtin_data = reinterpret_cast<void*>(&strided_slice_params); strided_slice_params.ellipsis_mask = 0; strided_slice_params.new_axis_mask = 2; fake_op_sig.ext_options.strided_slice.num_dims = 5; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); strided_slice_params.new_axis_mask = 0; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.ext_options.strided_slice.num_dims = 4; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); strided_slice_params.offset = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); } TEST(OpVersionTest, VersioningSpaceToDepthTest) { SimpleVersioningTest(BuiltinOperator_SPACE_TO_DEPTH); } TEST(OpVersionTest, VersioningSliceTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig = { .op = BuiltinOperator_SLICE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteString, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SLICE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SLICE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); } TEST(OpVersionTest, VersioningLogisticTest) { SimpleVersioningTest(BuiltinOperator_SPACE_TO_DEPTH); } TEST(OpVersionTest, VersioningL2NormTest) { SimpleOutputVersioningTest(BuiltinOperator_L2_NORMALIZATION); } TEST(OpVersionTest, VersioningMaxTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_MAXIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 5, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_MAXIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningMinTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_MINIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 5, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_MINIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningMeanTest) { SimpleVersioningTestExtended(BuiltinOperator_MEAN); } TEST(OpVersionTest, VersioningSumTest) { SimpleVersioningTest(BuiltinOperator_SUM); } TEST(OpVersionTest, VersioningReduceMinTest) { SimpleVersioningTestExtended(BuiltinOperator_REDUCE_MIN); } TEST(OpVersionTest, VersioningReduceMaxTest) { SimpleVersioningTestExtended(BuiltinOperator_REDUCE_MAX); } TEST(OpVersionTest, VersioningMirrorPadTest) { SimpleVersioningTestExtended(BuiltinOperator_MIRROR_PAD); } TEST(OpVersionTest, VersioningReduceProdTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_REDUCE_PROD; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningAddTest) { TfLiteAddParams add_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_ADD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&add_params)}; add_params.pot_scale_int16 = false; fake_op_sig.ext_options.add.input_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.ext_options.add.input_quantized = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); SimpleVersioningTest(BuiltinOperator_ADD); } TEST(OpVersionTest, VersioningSubTest) { TfLiteSubParams sub_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_SUB, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&sub_params)}; sub_params.pot_scale_int16 = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); SimpleVersioningTest(BuiltinOperator_SUB); } TEST(OpVersionTest, VersioningMUL7TestInt16) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); fake_op_sig.ext_options.mul.input_quantized = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); } TEST(OpVersionTest, VersioningMUL7TestUInt32) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); } TEST(OpVersionTest, VersioningMUL6Test) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteComplex64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); } TEST(OpVersionTest, VersioningMUL5Test) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); } TEST(OpVersionTest, VersioningSub4Test) { OpSignature fake_op_sig = { .op = BuiltinOperator_SUB, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } void SimpleMulVersioningTest(TfLiteType data_type, float multiplier, int version) { OpSignature fake_op_sig = { .op = BuiltinOperator_MUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{data_type, data_type}), .outputs = CreateOpSignatureTensorSpecs(data_type), }; fake_op_sig.ext_options.mul = {1.0f, 1.0f, 1.0f / multiplier}; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), version); } TEST(OpVersionTest, VersioningMulTest) { SimpleMulVersioningTest(kTfLiteUInt8, 0.5f, 1); SimpleMulVersioningTest(kTfLiteInt8, 0.5f, 2); SimpleMulVersioningTest(kTfLiteInt8, 2.0f, 3); } TEST(OpVersionTest, VersioningPadTest) { SimpleVersioningTest(BuiltinOperator_PAD); } TEST(OpVersionTest, VersioningPadV2Test) { SimpleVersioningTest(BuiltinOperator_PADV2); } TEST(OpVersionTest, VersioningConcatenationTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_CONCATENATION; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningSelectTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt32, kTfLiteUInt32, kTfLiteUInt32}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8, kTfLiteUInt8}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8, kTfLiteInt8}, 4); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32}, 4); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningSelectV2Test) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT_V2; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt32, kTfLiteUInt32, kTfLiteUInt32}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT_V2; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32, kTfLiteInt32}, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningRelu6Test) { SimpleVersioningTestExtended(BuiltinOperator_RELU6); } TEST(OpVersionTest, VersioningFullyConnectedTest) { TfLiteFullyConnectedParams fully_connected_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatDefault; fake_op_sig.ext_options.fully_connected.sparse_weight = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.asymmetric_quantize_inputs = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fully_connected_params.asymmetric_quantize_inputs = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 9); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.quantized_bias_type = kTfLiteInt32; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 11); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fake_op_sig.ext_options.fully_connected.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 12); } TEST(OpVersionTest, VersioningDequantizeTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.ext_options.dequantize.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningQuantizeTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_QUANTIZE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.ext_options.quantize.is_per_channel_quantized = false; fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.ext_options.quantize.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningConv2DTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; fake_op_sig.ext_options.conv_2d.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig.op = BuiltinOperator_CONV_2D; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.ext_options.conv_2d.is_grouped_convolution = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); TfLiteConvParams conv_params = {}; fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&conv_params), }; conv_params.quantized_bias_type = kTfLiteInt32; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); } TEST(OpVersionTest, VersioningFloorDivOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningFloorModOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_FLOOR_MOD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_FLOOR_MOD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningTransposeConvOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteUInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt8, kTfLiteInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); const auto none_type = kTfLiteNoType; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, none_type}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); TfLiteTransposeConvParams transpose_conv_params = {}; transpose_conv_params.activation = kTfLiteActRelu; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, none_type}), .builtin_data = reinterpret_cast<void*>(&transpose_conv_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); transpose_conv_params = {}; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&transpose_conv_params), }; transpose_conv_params.quantized_bias_type = kTfLiteInt32; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); } TEST(OpVersionTest, VersioningSVDFOperatorTest) { TfLiteSVDFParams svdf_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_SVDF, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&svdf_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_SVDF, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8, kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&svdf_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); svdf_params.asymmetric_quantize_inputs = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); svdf_params = {}; fake_op_sig = { .op = BuiltinOperator_SVDF, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt8, kTfLiteInt8, kTfLiteInt32, kTfLiteInt32, kTfLiteInt16}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&svdf_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningDepthwiseConv2DTest) { TfLiteDepthwiseConvParams depthwise_conv_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_DEPTHWISE_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&depthwise_conv_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); depthwise_conv_params = {}; fake_op_sig = { .op = BuiltinOperator_DEPTHWISE_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&depthwise_conv_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_DEPTHWISE_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&depthwise_conv_params), }; depthwise_conv_params.dilation_width_factor = 2; depthwise_conv_params.dilation_height_factor = 2; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_DEPTHWISE_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&depthwise_conv_params), }; depthwise_conv_params.dilation_width_factor = 1; depthwise_conv_params.dilation_height_factor = 1; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningTileOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_TILE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_TILE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteString), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningTransposeTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_TRANSPOSE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteBool, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteBool, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningGatherNdOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_GATHER_ND, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_GATHER_ND, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteString, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_GATHER_ND, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_GATHER_ND, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt16}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = { .op = BuiltinOperator_GATHER_ND, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteBool, kTfLiteInt16}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); } TEST(OpVersionTest, VersioningDivTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_DIV, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 5, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 5, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTEst, VersioningFillTest) { OpSignature fake_op_sig = {BuiltinOperator_FILL}; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteFloat16}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt64, kTfLiteFloat16}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt8}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt64, kTfLiteInt16}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteBool}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteString}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningResizeBilinearTest) { TfLiteResizeBilinearParams resize_bilinear_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_RESIZE_BILINEAR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&resize_bilinear_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); resize_bilinear_params.align_corners = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); resize_bilinear_params.align_corners = false; resize_bilinear_params.half_pixel_centers = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); resize_bilinear_params = {}; fake_op_sig = { .op = BuiltinOperator_RESIZE_BILINEAR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&resize_bilinear_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); resize_bilinear_params.half_pixel_centers = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); resize_bilinear_params = {}; fake_op_sig = { .op = BuiltinOperator_RESIZE_BILINEAR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&resize_bilinear_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningResizeNearestNeighborTest) { TfLiteResizeNearestNeighborParams resize_nearest_neighbor_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&resize_nearest_neighbor_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); resize_nearest_neighbor_params.align_corners = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); resize_nearest_neighbor_params.align_corners = false; resize_nearest_neighbor_params.half_pixel_centers = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); resize_nearest_neighbor_params = {}; fake_op_sig = { .op = BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&resize_nearest_neighbor_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); resize_nearest_neighbor_params.align_corners = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); resize_nearest_neighbor_params = {}; fake_op_sig = { .op = BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&resize_nearest_neighbor_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningAbsTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_ABS, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_ABS, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_ABS, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; fake_op_sig.ext_options.abs.input_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_ABS, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_ABS; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); } TEST(OpVersionTest, VersioningSignTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_SIGN; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SIGN; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningBatchMatMulTest) { TfLiteBatchMatMulParams batch_mat_mul_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_BATCH_MATMUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&batch_mat_mul_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); batch_mat_mul_params = {}; fake_op_sig = { .op = BuiltinOperator_BATCH_MATMUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&batch_mat_mul_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_BATCH_MATMUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&batch_mat_mul_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_BATCH_MATMUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&batch_mat_mul_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_BATCH_MATMUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&batch_mat_mul_params), }; batch_mat_mul_params.asymmetric_quantize_inputs = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningSquaredDifferenceTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_SQUARED_DIFFERENCE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_SQUARED_DIFFERENCE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningRsqrtTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_RSQRT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningBroadcastToTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_BROADCAST_TO, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_BROADCAST_TO, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_BROADCAST_TO, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningGeluTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_GELU; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.op = BuiltinOperator_GELU; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.op = BuiltinOperator_GELU; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningUnidirectionalLstmTest) { TfLiteUnidirectionalSequenceLSTMParams params = {}; OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32}); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.builtin_data = reinterpret_cast<void*>(&params); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteInt8}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); params.asymmetric_quantize_inputs = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); params.diagonal_recurrent_tensors = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningExpTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_EXP, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_EXP, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_EXP, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningLogTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_LOG; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningDynamicUpdateSliceTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_DYNAMIC_UPDATE_SLICE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteInt32}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteInt64}); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/op_version.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/op_version_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
60745d33-3a8b-4264-9983-da7112c95926
cpp
tensorflow/tensorflow
signature_runner
tensorflow/lite/core/signature_runner.cc
tensorflow/lite/core/signature_runner_test.cc
#include "tensorflow/lite/core/signature_runner.h" #include <vector> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/internal/signature_def.h" namespace tflite { namespace impl { SignatureRunner::SignatureRunner(const internal::SignatureDef* signature_def, Subgraph* subgraph) : signature_def_(signature_def), subgraph_(subgraph) { for (const auto& it : signature_def_->inputs) { input_names_.push_back(it.first.c_str()); } for (const auto& it : signature_def_->outputs) { output_names_.push_back(it.first.c_str()); } } TfLiteTensor* SignatureRunner::input_tensor(const char* input_name) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return nullptr; } return subgraph_->tensor(it->second); } const TfLiteTensor* SignatureRunner::output_tensor( const char* output_name) const { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return nullptr; } return subgraph_->tensor(it->second); } TfLiteStatus SignatureRunner::SetInputBufferHandle( const char* input_name, TfLiteBufferHandle buffer_handle, TfLiteDelegate* delegate, bool release_existing_buffer_handle) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->SetBufferHandle(it->second, buffer_handle, delegate, release_existing_buffer_handle); } TfLiteStatus SignatureRunner::SetOutputBufferHandle( const char* output_name, TfLiteBufferHandle buffer_handle, TfLiteDelegate* delegate, bool release_existing_buffer_handle) { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return kTfLiteError; } return subgraph_->SetBufferHandle(it->second, buffer_handle, delegate, release_existing_buffer_handle); } TfLiteStatus SignatureRunner::ResizeInputTensor( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensor(it->second, new_size); } TfLiteStatus SignatureRunner::ResizeInputTensorStrict( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensorStrict(it->second, new_size); } TfLiteStatus SignatureRunner::Invoke() { if (subgraph_->continue_invocation_) (void)subgraph_->continue_invocation_->test_and_set(); TF_LITE_ENSURE_STATUS(subgraph_->Invoke()); if (!allow_buffer_handle_output_) { for (int tensor_index : subgraph_->outputs()) { TF_LITE_ENSURE_STATUS( subgraph_->EnsureTensorDataIsReadable(tensor_index)); } } return kTfLiteOk; } TfLiteStatus SignatureRunner::SetCustomAllocationForInputTensor( const char* input_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } TfLiteStatus SignatureRunner::SetCustomAllocationForOutputTensor( const char* output_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } } }
#include "tensorflow/lite/core/signature_runner.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace impl { namespace { TEST(SignatureRunnerTest, TestMultiSignatures) { TestErrorReporter reporter; auto model = FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/multi_signatures.bin", &reporter); ASSERT_TRUE(model); ops::builtin::BuiltinOpResolver resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> interpreter; ASSERT_EQ(builder(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); std::vector<const std::string*> signature_defs = interpreter->signature_keys(); ASSERT_EQ(signature_defs.size(), 2); ASSERT_EQ(*(signature_defs[0]), "add"); ASSERT_EQ(*(signature_defs[1]), "sub"); ASSERT_EQ(interpreter->GetSignatureRunner("dummy"), nullptr); SignatureRunner* add_runner = interpreter->GetSignatureRunner(signature_defs[0]->c_str()); ASSERT_NE(add_runner, nullptr); ASSERT_EQ(add_runner->signature_key(), "add"); const std::vector<const char*>& input_names = add_runner->input_names(); const std::vector<const char*>& output_names = add_runner->output_names(); ASSERT_EQ(input_names.size(), 1); ASSERT_EQ(std::string(input_names[0]), "x"); ASSERT_EQ(output_names.size(), 1); ASSERT_EQ(std::string(output_names[0]), "output_0"); ASSERT_EQ(add_runner->ResizeInputTensor("x", {2}), kTfLiteOk); ASSERT_EQ(add_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* add_input = add_runner->input_tensor("x"); ASSERT_EQ(add_runner->input_tensor("dummy"), nullptr); const TfLiteTensor* add_output = add_runner->output_tensor("output_0"); ASSERT_EQ(add_runner->output_tensor("dummy"), nullptr); ASSERT_NE(add_input, nullptr); ASSERT_NE(add_output, nullptr); add_input->data.f[0] = 2; add_input->data.f[1] = 4; ASSERT_EQ(add_runner->Invoke(), kTfLiteOk); ASSERT_EQ(add_output->data.f[0], 4); ASSERT_EQ(add_output->data.f[1], 6); SignatureRunner* sub_runner = interpreter->GetSignatureRunner("sub"); ASSERT_NE(sub_runner, nullptr); ASSERT_EQ(sub_runner->signature_key(), "sub"); const std::vector<const char*>& input_names2 = sub_runner->input_names(); const std::vector<const char*>& output_names2 = sub_runner->output_names(); ASSERT_EQ(input_names2.size(), 1); ASSERT_EQ(std::string(input_names2[0]), "x"); ASSERT_EQ(output_names2.size(), 1); ASSERT_EQ(std::string(output_names2[0]), "output_0"); ASSERT_EQ(sub_runner->ResizeInputTensor("x", {3}), kTfLiteOk); ASSERT_EQ(sub_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* sub_input = sub_runner->input_tensor("x"); const TfLiteTensor* sub_output = sub_runner->output_tensor("output_0"); ASSERT_NE(sub_input, nullptr); ASSERT_NE(sub_output, nullptr); sub_input->data.f[0] = 2; sub_input->data.f[1] = 4; sub_input->data.f[2] = 6; ASSERT_EQ(sub_runner->Invoke(), kTfLiteOk); ASSERT_EQ(sub_output->data.f[0], -1); ASSERT_EQ(sub_output->data.f[1], 1); ASSERT_EQ(sub_output->data.f[2], 3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/signature_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/signature_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66e616d3-0a41-4d1a-8c15-b0138948b0b7
cpp
tensorflow/tensorflow
xnnpack_plugin
tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin_test.cc
#include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); auto options(TfLiteXNNPackDelegateOptionsDefault()); const auto* xnnpack_settings = tflite_settings->xnnpack_settings(); if (xnnpack_settings) { options.num_threads = xnnpack_settings->num_threads(); if (xnnpack_settings->flags()) { options.flags = xnnpack_settings->flags(); } if (xnnpack_settings->weight_cache_file_path()) { options.weight_cache_file_path = xnnpack_settings->weight_cache_file_path()->c_str(); } } return TfLiteXNNPackDelegateCreate(&options); } static void DestroyDelegate(TfLiteDelegate* delegate) { TfLiteXNNPackDelegateDelete(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { return 0; } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteXnnpackDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "pthreadpool.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { class XnnpackTest : public testing::Test { public: static constexpr int kNumThreadsForTest = 7; void SetUp() override { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_num_threads(kNumThreadsForTest); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~XnnpackTest() override = default; protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; constexpr int XnnpackTest::kNumThreadsForTest; TEST_F(XnnpackTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int error_number = TfLiteXnnpackDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, SetsCorrectThreadCount) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); pthreadpool_t threadpool = static_cast<pthreadpool_t>(TfLiteXNNPackDelegateGetThreadPool(delegate)); int thread_count = pthreadpool_get_threads_count(threadpool); EXPECT_EQ(thread_count, kNumThreadsForTest); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsByDefault) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesSpecifiedFlagsWhenNonzero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsWhenZero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_NO_FLAGS); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e737928b-b99f-4fe5-8078-5b380e7871df
cpp
tensorflow/tensorflow
stable_delegate_registry
tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.cc
tensorflow/lite/core/acceleration/configuration/stable_delegate_registry_test.cc
#include "tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.h" #include <string> #include "absl/synchronization/mutex.h" #include "tensorflow/lite/core/acceleration/configuration/c/stable_delegate.h" namespace tflite { namespace delegates { void StableDelegateRegistry::RegisterStableDelegate( const TfLiteStableDelegate* delegate) { auto* const instance = StableDelegateRegistry::GetSingleton(); instance->RegisterStableDelegateImpl(delegate); } const TfLiteStableDelegate* StableDelegateRegistry::RetrieveStableDelegate( const std::string& name) { auto* const instance = StableDelegateRegistry::GetSingleton(); return instance->RetrieveStableDelegateImpl(name); } void StableDelegateRegistry::RegisterStableDelegateImpl( const TfLiteStableDelegate* delegate) { absl::MutexLock lock(&mutex_); registry_[delegate->delegate_name] = delegate; } const TfLiteStableDelegate* StableDelegateRegistry::RetrieveStableDelegateImpl( const std::string& name) { absl::MutexLock lock(&mutex_); if (registry_.find(name) == registry_.end()) { return nullptr; } else { return registry_[name]; } } StableDelegateRegistry* StableDelegateRegistry::GetSingleton() { static auto* instance = new StableDelegateRegistry(); return instance; } } }
#include "tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/acceleration/configuration/c/stable_delegate.h" namespace { using tflite::delegates::StableDelegateRegistry; TfLiteStableDelegate CreateTestStableDelegate() { TfLiteStableDelegate stable_delegate = {TFL_STABLE_DELEGATE_ABI_VERSION, "test_delegate", "V1.0.0", nullptr}; return stable_delegate; } class StableDelegateRegistryTest : public testing::Test { public: void SetUp() override { stable_delegate_ = CreateTestStableDelegate(); StableDelegateRegistry::RegisterStableDelegate(&stable_delegate_); } protected: TfLiteStableDelegate stable_delegate_; }; TEST_F(StableDelegateRegistryTest, TestRetrieval) { EXPECT_EQ(StableDelegateRegistry::RetrieveStableDelegate("test_delegate"), &stable_delegate_); } TEST_F(StableDelegateRegistryTest, NoRegistrationFound) { EXPECT_EQ( StableDelegateRegistry::RetrieveStableDelegate("not_valid_delegate"), nullptr); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/stable_delegate_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
61891652-f14f-40b2-a1d0-94d7c26d4bf6
cpp
tensorflow/tensorflow
nnapi_plugin
tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin_test.cc
#include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/core/acceleration/configuration/nnapi_plugin.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); tflite::delegates::NnapiPlugin nnapi_plugin(*tflite_settings); auto support_library_handle = nnapi_plugin.GetSupportLibraryHandle(); if (support_library_handle) { auto nnapi_support_library_driver = reinterpret_cast<const NnApiSLDriverImplFL5*>(support_library_handle); return new tflite::StatefulNnApiDelegate(nnapi_support_library_driver, nnapi_plugin.Options()); } return new tflite::StatefulNnApiDelegate(nnapi_plugin.Options()); } static void DestroyDelegate(TfLiteDelegate* delegate) { delete static_cast<tflite::StatefulNnApiDelegate*>(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { auto nnapi_delegate = static_cast<tflite::StatefulNnApiDelegate*>(from_delegate); return nnapi_delegate->GetNnApiErrno(); } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteNnapiDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { class NnapiTest : public testing::Test { public: void SetUp() override { NNAPISettingsBuilder nnapi_settings_builder(flatbuffer_builder_); flatbuffers::Offset<NNAPISettings> nnapi_settings = nnapi_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_nnapi_settings(nnapi_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~NnapiTest() override {} protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; TEST_F(NnapiTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } TEST_F(NnapiTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); int error_number = TfLiteNnapiDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e8ad88dc-6c07-443c-8df2-ecbfd02997c0
cpp
tensorflow/tensorflow
register
tensorflow/lite/core/kernels/register.cc
tensorflow/lite/core/kernels/register_test.cc
#include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tflite_with_xnnpack_optional.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_NUMERIC_VERIFY(); TfLiteRegistration* Register_AUDIO_SPECTROGRAM(); TfLiteRegistration* Register_MFCC(); TfLiteRegistration* Register_DETECTION_POSTPROCESS(); } namespace builtin { BuiltinOpResolver::BuiltinOpResolver() { AddBuiltin(BuiltinOperator_ABS, Register_ABS(), 1, 5); AddBuiltin(BuiltinOperator_HARD_SWISH, Register_HARD_SWISH()); AddBuiltin(BuiltinOperator_RELU, Register_RELU(), 1, 3); AddBuiltin(BuiltinOperator_RELU_N1_TO_1, Register_RELU_N1_TO_1()); AddBuiltin(BuiltinOperator_RELU_0_TO_1, Register_RELU_0_TO_1()); AddBuiltin(BuiltinOperator_RELU6, Register_RELU6(), 1, 3); AddBuiltin(BuiltinOperator_TANH, Register_TANH(), 1, 3); AddBuiltin(BuiltinOperator_LOGISTIC, Register_LOGISTIC(), 1, 3); AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Register_AVERAGE_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_MAX_POOL_2D, Register_MAX_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_L2_POOL_2D, Register_L2_POOL_2D()); AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), 1, 8); AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Register_DEPTHWISE_CONV_2D(), 1, 7); AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), 1, 4); AddBuiltin(BuiltinOperator_RNN, Register_RNN(), 1, 3); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, Register_BIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, Register_UNIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP, Register_EMBEDDING_LOOKUP(), 1, 4); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, Register_EMBEDDING_LOOKUP_SPARSE()); AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Register_FULLY_CONNECTED(), 1, 13); AddBuiltin(BuiltinOperator_LSH_PROJECTION, Register_LSH_PROJECTION()); AddBuiltin(BuiltinOperator_HASHTABLE_LOOKUP, Register_HASHTABLE_LOOKUP()); AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(), 1, 3); AddBuiltin(BuiltinOperator_CONCATENATION, Register_CONCATENATION(), 1, 4); AddBuiltin(BuiltinOperator_ADD, Register_ADD(), 1, 5); AddBuiltin(BuiltinOperator_SPACE_TO_BATCH_ND, Register_SPACE_TO_BATCH_ND(), 1, 4); AddBuiltin(BuiltinOperator_BATCH_TO_SPACE_ND, Register_BATCH_TO_SPACE_ND(), 1, 4); AddBuiltin(BuiltinOperator_MUL, Register_MUL(), 1, 7); AddBuiltin(BuiltinOperator_L2_NORMALIZATION, Register_L2_NORMALIZATION(), 1, 2); AddBuiltin(BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, Register_LOCAL_RESPONSE_NORMALIZATION()); AddBuiltin(BuiltinOperator_LSTM, Register_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, Register_BIDIRECTIONAL_SEQUENCE_LSTM(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, Register_UNIDIRECTIONAL_SEQUENCE_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_PAD, Register_PAD(), 1, 4); AddBuiltin(BuiltinOperator_PADV2, Register_PADV2(), 1, 4); AddBuiltin(BuiltinOperator_RESHAPE, Register_RESHAPE()); AddBuiltin(BuiltinOperator_RESIZE_BILINEAR, Register_RESIZE_BILINEAR(), 1, 4); AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, Register_RESIZE_NEAREST_NEIGHBOR(), 1, 4); AddBuiltin(BuiltinOperator_SKIP_GRAM, Register_SKIP_GRAM()); AddBuiltin(BuiltinOperator_SPACE_TO_DEPTH, Register_SPACE_TO_DEPTH(), 1, 2); AddBuiltin(BuiltinOperator_DEPTH_TO_SPACE, Register_DEPTH_TO_SPACE(), 1, 2); AddBuiltin(BuiltinOperator_GATHER, Register_GATHER(), 1, 7); AddBuiltin(BuiltinOperator_TRANSPOSE, Register_TRANSPOSE(), 1, 6); AddBuiltin(BuiltinOperator_MEAN, Register_MEAN(), 1, 3); AddBuiltin(BuiltinOperator_DIV, Register_DIV(), 1, 2); AddBuiltin(BuiltinOperator_SUB, Register_SUB(), 1, 5); AddBuiltin(BuiltinOperator_SPLIT, Register_SPLIT(), 1, 4); AddBuiltin(BuiltinOperator_SPLIT_V, Register_SPLIT_V(), 1, 2); AddBuiltin(BuiltinOperator_SQUEEZE, Register_SQUEEZE(), 1, 2); AddBuiltin(BuiltinOperator_STRIDED_SLICE, Register_STRIDED_SLICE(), 1, 8); AddBuiltin(BuiltinOperator_EXP, Register_EXP(), 1, 2); AddBuiltin(BuiltinOperator_TOPK_V2, Register_TOPK_V2(), 1, 3); AddBuiltin(BuiltinOperator_LOG, Register_LOG(), 1, 2); AddBuiltin(BuiltinOperator_LOG_SOFTMAX, Register_LOG_SOFTMAX(), 1, 2); AddBuiltin(BuiltinOperator_CAST, Register_CAST(), 1, 6); AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 6); AddBuiltin(BuiltinOperator_PRELU, Register_PRELU()); AddBuiltin(BuiltinOperator_MAXIMUM, Register_MAXIMUM(), 1, 4); AddBuiltin(BuiltinOperator_MINIMUM, Register_MINIMUM(), 1, 4); AddBuiltin(BuiltinOperator_ARG_MAX, Register_ARG_MAX(), 1, 3); AddBuiltin(BuiltinOperator_ARG_MIN, Register_ARG_MIN(), 1, 3); AddBuiltin(BuiltinOperator_GREATER, Register_GREATER(), 1, 2); AddBuiltin(BuiltinOperator_GREATER_EQUAL, Register_GREATER_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_LESS, Register_LESS(), 1, 3); AddBuiltin(BuiltinOperator_LESS_EQUAL, Register_LESS_EQUAL(), 1, 2); AddBuiltin(BuiltinOperator_FLOOR, Register_FLOOR()); AddBuiltin(BuiltinOperator_CEIL, Register_CEIL()); AddBuiltin(BuiltinOperator_ROUND, Register_ROUND()); AddBuiltin(BuiltinOperator_NEG, Register_NEG()); AddBuiltin(BuiltinOperator_SELECT, Register_SELECT(), 1, 4); AddBuiltin(BuiltinOperator_SELECT_V2, Register_SELECT_V2(), 1, 2); AddBuiltin(BuiltinOperator_SLICE, Register_SLICE(), 1, 6); AddBuiltin(BuiltinOperator_SIN, Register_SIN()); AddBuiltin(BuiltinOperator_COS, Register_COS()); AddBuiltin(BuiltinOperator_TRANSPOSE_CONV, Register_TRANSPOSE_CONV(), 1, 5); AddBuiltin(BuiltinOperator_TILE, Register_TILE(), 1, 3); AddBuiltin(BuiltinOperator_SUM, Register_SUM(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_PROD, Register_REDUCE_PROD(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_MAX, Register_REDUCE_MAX(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_MIN, Register_REDUCE_MIN(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_ANY, Register_REDUCE_ANY()); AddBuiltin(BuiltinOperator_REDUCE_ALL, Register_REDUCE_ALL()); AddBuiltin(BuiltinOperator_EXPAND_DIMS, Register_EXPAND_DIMS()); AddBuiltin(BuiltinOperator_SPARSE_TO_DENSE, Register_SPARSE_TO_DENSE(), 1, 3); AddBuiltin(BuiltinOperator_EQUAL, Register_EQUAL(), 1, 4); AddBuiltin(BuiltinOperator_NOT_EQUAL, Register_NOT_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_SQRT, Register_SQRT()); AddBuiltin(BuiltinOperator_RSQRT, Register_RSQRT(), 1, 3); AddBuiltin(BuiltinOperator_SHAPE, Register_SHAPE()); AddBuiltin(BuiltinOperator_RANK, Register_RANK()); AddBuiltin(BuiltinOperator_POW, Register_POW()); AddBuiltin(BuiltinOperator_FAKE_QUANT, Register_FAKE_QUANT(), 1, 2); AddBuiltin(BuiltinOperator_PACK, Register_PACK(), 1, 4); AddBuiltin(BuiltinOperator_ONE_HOT, Register_ONE_HOT()); AddBuiltin(BuiltinOperator_LOGICAL_OR, Register_LOGICAL_OR()); AddBuiltin(BuiltinOperator_LOGICAL_AND, Register_LOGICAL_AND()); AddBuiltin(BuiltinOperator_LOGICAL_NOT, Register_LOGICAL_NOT()); AddBuiltin(BuiltinOperator_UNPACK, Register_UNPACK(), 1, 4); AddBuiltin(BuiltinOperator_FLOOR_DIV, Register_FLOOR_DIV(), 1, 3); AddBuiltin(BuiltinOperator_SQUARE, Register_SQUARE()); AddBuiltin(BuiltinOperator_ZEROS_LIKE, Register_ZEROS_LIKE()); AddBuiltin(BuiltinOperator_FLOOR_MOD, Register_FLOOR_MOD(), 1, 2); AddBuiltin(BuiltinOperator_RANGE, Register_RANGE(), 1, 2); AddBuiltin(BuiltinOperator_LEAKY_RELU, Register_LEAKY_RELU(), 1, 2); AddBuiltin(BuiltinOperator_SQUARED_DIFFERENCE, Register_SQUARED_DIFFERENCE(), 1, 2); AddBuiltin(BuiltinOperator_FILL, Register_FILL(), 1, 4); AddBuiltin(BuiltinOperator_MIRROR_PAD, Register_MIRROR_PAD(), 1, 3); AddBuiltin(BuiltinOperator_UNIQUE, Register_UNIQUE()); AddBuiltin(BuiltinOperator_REVERSE_V2, Register_REVERSE_V2(), 1, 3); AddBuiltin(BuiltinOperator_ADD_N, Register_ADD_N()); AddBuiltin(BuiltinOperator_GATHER_ND, Register_GATHER_ND(), 1, 5); AddBuiltin(BuiltinOperator_WHERE, Register_WHERE(), 1, 2); AddBuiltin(BuiltinOperator_ELU, Register_ELU()); AddBuiltin(BuiltinOperator_REVERSE_SEQUENCE, Register_REVERSE_SEQUENCE()); AddBuiltin(BuiltinOperator_MATRIX_DIAG, Register_MATRIX_DIAG()); AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(), 1, 3); AddBuiltin(BuiltinOperator_MATRIX_SET_DIAG, Register_MATRIX_SET_DIAG()); AddBuiltin(BuiltinOperator_IF, tflite::ops::builtin::Register_IF()); AddBuiltin(BuiltinOperator_WHILE, tflite::ops::builtin::Register_WHILE()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V4, Register_NON_MAX_SUPPRESSION_V4()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V5, Register_NON_MAX_SUPPRESSION_V5()); AddBuiltin(BuiltinOperator_SCATTER_ND, Register_SCATTER_ND()); AddBuiltin(BuiltinOperator_DENSIFY, Register_DENSIFY()); AddBuiltin(BuiltinOperator_SEGMENT_SUM, Register_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_BATCH_MATMUL, Register_BATCH_MATMUL(), 1, 4); AddBuiltin(BuiltinOperator_CUMSUM, Register_CUMSUM()); AddBuiltin(BuiltinOperator_BROADCAST_TO, Register_BROADCAST_TO(), 2, 3); AddBuiltin(BuiltinOperator_CALL_ONCE, tflite::ops::builtin::Register_CALL_ONCE()); AddBuiltin(BuiltinOperator_RFFT2D, Register_RFFT2D()); AddBuiltin(BuiltinOperator_CONV_3D, Register_CONV_3D()); AddBuiltin(BuiltinOperator_IMAG, Register_IMAG()); AddBuiltin(BuiltinOperator_REAL, Register_REAL()); AddBuiltin(BuiltinOperator_COMPLEX_ABS, Register_COMPLEX_ABS()); AddBuiltin(BuiltinOperator_BROADCAST_ARGS, Register_BROADCAST_ARGS()); AddBuiltin(BuiltinOperator_HASHTABLE, Register_HASHTABLE()); AddBuiltin(BuiltinOperator_HASHTABLE_FIND, Register_HASHTABLE_FIND()); AddBuiltin(BuiltinOperator_HASHTABLE_IMPORT, Register_HASHTABLE_IMPORT()); AddBuiltin(BuiltinOperator_HASHTABLE_SIZE, Register_HASHTABLE_SIZE()); AddBuiltin(BuiltinOperator_CONV_3D_TRANSPOSE, Register_CONV_3D_TRANSPOSE()); AddBuiltin(BuiltinOperator_VAR_HANDLE, Register_VAR_HANDLE()); AddBuiltin(BuiltinOperator_READ_VARIABLE, Register_READ_VARIABLE()); AddBuiltin(BuiltinOperator_ASSIGN_VARIABLE, Register_ASSIGN_VARIABLE()); AddBuiltin(BuiltinOperator_MULTINOMIAL, Register_MULTINOMIAL()); AddBuiltin(BuiltinOperator_RANDOM_STANDARD_NORMAL, Register_RANDOM_STANDARD_NORMAL()); AddBuiltin(BuiltinOperator_BUCKETIZE, Register_BUCKETIZE()); AddBuiltin(BuiltinOperator_RANDOM_UNIFORM, Register_RANDOM_UNIFORM()); AddBuiltin(BuiltinOperator_GELU, Register_GELU(), 1, 2); AddBuiltin(BuiltinOperator_DYNAMIC_UPDATE_SLICE, Register_DYNAMIC_UPDATE_SLICE(), 1, 2); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_PROD, Register_UNSORTED_SEGMENT_PROD()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MAX, Register_UNSORTED_SEGMENT_MAX()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MIN, Register_UNSORTED_SEGMENT_MIN()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_SUM, Register_UNSORTED_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_ATAN2, Register_ATAN2()); AddBuiltin(BuiltinOperator_SIGN, Register_SIGN(), 1, 2); AddBuiltin(BuiltinOperator_BITCAST, Register_BITCAST()); AddBuiltin(BuiltinOperator_BITWISE_XOR, Register_BITWISE_XOR()); AddBuiltin(BuiltinOperator_RIGHT_SHIFT, Register_RIGHT_SHIFT()); AddBuiltin(BuiltinOperator_STABLEHLO_SCATTER, Register_STABLEHLO_SCATTER()); AddBuiltin(BuiltinOperator_DILATE, Register_DILATE()); AddBuiltin(BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, Register_STABLEHLO_RNG_BIT_GENERATOR()); AddBuiltin(BuiltinOperator_REDUCE_WINDOW, Register_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_REDUCE_WINDOW, Register_STABLEHLO_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_GATHER, Register_STABLEHLO_GATHER()); AddBuiltin(BuiltinOperator_STABLEHLO_ADD, Register_STABLEHLO_ADD()); AddBuiltin(BuiltinOperator_STABLEHLO_AND, Register_STABLEHLO_AND()); AddBuiltin(BuiltinOperator_STABLEHLO_MULTIPLY, Register_STABLEHLO_MULTIPLY()); AddBuiltin(BuiltinOperator_STABLEHLO_MAXIMUM, Register_STABLEHLO_MAXIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_MINIMUM, Register_STABLEHLO_MINIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_SHIFT_LEFT, Register_STABLEHLO_SHIFT_LEFT()); AddBuiltin(BuiltinOperator_STABLEHLO_PAD, Register_STABLEHLO_PAD()); AddBuiltin(BuiltinOperator_STABLEHLO_COMPOSITE, Register_STABLEHLO_COMPOSITE()); AddCustom("NumericVerify", tflite::ops::custom::Register_NUMERIC_VERIFY()); AddCustom("Mfcc", tflite::ops::custom::Register_MFCC()); AddCustom("AudioSpectrogram", tflite::ops::custom::Register_AUDIO_SPECTROGRAM()); AddCustom("TFLite_Detection_PostProcess", tflite::ops::custom::Register_DETECTION_POSTPROCESS()); may_directly_contain_user_defined_ops_ = false; delegate_creators_.push_back([](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, XNNPackQS8Options::default_value); }); } BuiltinOpResolverWithXNNPACK::BuiltinOpResolverWithXNNPACK( bool enable_xnnpack_unsigned_quantized) { delegate_creators_.clear(); XNNPackQS8Options xnnpack_qs8_options = enable_xnnpack_unsigned_quantized ? XNNPackQS8Options::enabled : XNNPackQS8Options::disabled; delegate_creators_.push_back([xnnpack_qs8_options](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, xnnpack_qs8_options); }); } } } }
#include "tensorflow/lite/core/kernels/register.h" #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite::ops::builtin { namespace { TEST(BuiltinOpResolverTest, SupportsAdd) { BuiltinOpResolver builtin_op_resolver; const TfLiteRegistration *add = builtin_op_resolver.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } TEST(BuiltinOpResolverTest, CopySupportsAdd) { BuiltinOpResolver builtin_op_resolver; MutableOpResolver copy = builtin_op_resolver; const TfLiteRegistration *add = copy.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } #if defined(TFLITE_WITHOUT_XNNPACK) TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8_QU8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, Disable_QU8) { BuiltinOpResolverWithXNNPACK builtin_op_resolver(false); ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, 0); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/kernels/register.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/kernels/register_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0239edc1-2484-43d0-8cc0-3407d549341e
cpp
tensorflow/tensorflow
c_api
tensorflow/c/eager/c_api.cc
tensorflow/c/eager/c_api_test.cc
#include "tensorflow/c/eager/c_api.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api_internal.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/immediate_execution_operation.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/eager/tfe_context_internal.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_buffer_internal.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor_internal.h" #include "xla/tsl/c/tsl_status_internal.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/custom_device.h" #include "tensorflow/core/common_runtime/eager/custom_device_op_handler.h" #include "tensorflow/core/common_runtime/eager/execute.h" #include "tensorflow/core/common_runtime/eager/placement_utils.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/version.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/common_runtime/eager/context_distributed_manager.h" #endif using tensorflow::string; namespace { string DeviceName(const tensorflow::Device* d) { return (d == nullptr) ? "cpu:0" : d->name(); } void AnnotateEagerRuntimeConstructionContext( tensorflow::FunctionDef& function_def) { tensorflow::AttrValue value; SetAttrValue("kEagerRuntime", &value); (*function_def.mutable_attr())["_construction_context"] = value; } } extern "C" { TFE_ContextOptions* TFE_NewContextOptions() { return new TFE_ContextOptions; } void TFE_ContextOptionsSetConfig(TFE_ContextOptions* options, const void* proto, size_t proto_len, TF_Status* status) { TF_SetConfig(&options->session_options, proto, proto_len, status); } void TFE_ContextOptionsSetAsync(TFE_ContextOptions* options, unsigned char enable) { options->async = enable; } void TFE_ContextOptionsSetDevicePlacementPolicy( TFE_ContextOptions* options, TFE_ContextDevicePlacementPolicy policy) { options->device_placement_policy = policy; } void TFE_DeleteContextOptions(TFE_ContextOptions* options) { delete options; } TFE_Context* TFE_NewContext(const TFE_ContextOptions* opts, TF_Status* status) { if (opts->use_tfrt) { status->status = tensorflow::errors::Unimplemented("TFRT is not supported"); return nullptr; } std::vector<std::unique_ptr<tensorflow::Device>> devices; status->status = tensorflow::DeviceFactory::AddDevices( opts->session_options.options, "/job:localhost/replica:0/task:0", &devices); if (!status->status.ok()) return nullptr; std::unique_ptr<tensorflow::DeviceMgr> device_mgr( new tensorflow::DynamicDeviceMgr(std::move(devices))); auto r = tsl::core::RefCountPtr<tensorflow::IntraProcessRendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); tensorflow::EagerContext* eager_context = new tensorflow::EagerContext( opts->session_options.options, static_cast<tensorflow::ContextDevicePlacementPolicy>( opts->device_placement_policy), opts->async, device_mgr.release(), true, std::move(r), nullptr, nullptr, opts->run_eager_op_as_function, opts->jit_compile_rewrite); #if !defined(IS_MOBILE_PLATFORM) eager_context->SetDistributedManager( std::make_unique<tensorflow::EagerContextDistributedManager>( eager_context)); #endif return tensorflow::wrap(eager_context); } void TFE_DeleteContext(TFE_Context* ctx) { if (ctx == nullptr) { return; } tensorflow::unwrap(ctx)->Release(); } TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx, TF_Status* status) { TF_DeviceList* l = new TF_DeviceList; tensorflow::unwrap(ctx)->ListDevices(&l->response); return l; } void TFE_ContextClearCaches(TFE_Context* ctx) { tensorflow::unwrap(ctx)->ClearCachesAndThreadExecutors(); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, 0, 0, status, false); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status, bool clear_existing_contexts) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, init_timeout_in_ms, 0, status, clear_existing_contexts); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeoutAndRetries( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, int retries, TF_Status* status, bool clear_existing_contexts) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, true, keep_alive_secs, init_timeout_in_ms, retries, clear_existing_contexts); #endif } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextUpdateServerDefWithTimeout(ctx, keep_alive_secs, proto, proto_len, 0, status); } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextUpdateServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } else if (context->GetContextId() == tensorflow::EagerContext::kInvalidContextId) { status->status = tensorflow::errors::InvalidArgument( "Trying to update a context with invalid context id."); } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, false, keep_alive_secs, init_timeout_in_ms, 0); #endif } TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx, const char* worker_name, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); return false; #else bool is_alive; status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->CheckRemoteAlive( worker_name, &is_alive); return is_alive; #endif } TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::OkStatus(); #else status->status = tensorflow::unwrap(ctx)->AsyncWait(); #endif } void TFE_ContextSetThreadLocalDevicePlacementPolicy( TFE_Context* ctx, TFE_ContextDevicePlacementPolicy policy) { tensorflow::unwrap(ctx)->SetThreadLocalDevicePlacementPolicy( static_cast<tensorflow::ContextDevicePlacementPolicy>(policy)); } extern TFE_ContextDevicePlacementPolicy TFE_ContextGetDevicePlacementPolicy( TFE_Context* ctx) { return static_cast<TFE_ContextDevicePlacementPolicy>( tensorflow::unwrap(ctx)->GetDevicePlacementPolicy()); } TFE_TensorHandle* TFE_NewTensorHandle(const TF_Tensor* t, TF_Status* status) { tensorflow::Tensor tensor; status->status = tensorflow::TF_TensorToTensor(t, &tensor); if (!status->status.ok()) return nullptr; return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle(tensor)); } void TFE_DeleteTensorHandle(TFE_TensorHandle* h) { if (h == nullptr) return; tsl::profiler::TraceMe activity("TFE_DeleteTensorHandle", tsl::profiler::TraceMeLevel::kInfo); if (h) { tensorflow::unwrap(h)->Unref(); } } TF_DataType TFE_TensorHandleDataType(TFE_TensorHandle* h) { return static_cast<TF_DataType>(tensorflow::unwrap(h)->DataType()); } int TFE_TensorHandleNumDims(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int num_dims = -1; status->status = tensorflow::unwrap(h)->NumDims(&num_dims); return num_dims; } int64_t TFE_TensorHandleNumElements(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t num_elements = -1; status->status = tensorflow::unwrap(h)->NumElements(&num_elements); return num_elements; } int64_t TFE_TensorHandleDim(TFE_TensorHandle* h, int dim_index, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t dim = -1; status->status = tensorflow::unwrap(h)->Dim(dim_index, &dim); return dim; } const char* TFE_TensorHandleDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->DeviceName(&status->status); } const char* TFE_TensorHandleBackingDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->BackingDeviceName(&status->status); } TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor( TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::unwrap(h)->Ref(); return h; } TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::AbstractTensorInterface* t = tensorflow::unwrap(h)->Resolve(&status->status); if (t == nullptr) { return nullptr; } return new TF_Tensor{t}; } void* TFE_TensorHandleDevicePointer(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::ImmediateExecutionTensorHandle* unwrapped_handle = tensorflow::unwrap(h); if (tensorflow::CustomDeviceTensorHandle::classof(unwrapped_handle)) { return tensorflow::down_cast<tensorflow::CustomDeviceTensorHandle*>( unwrapped_handle) ->DevicePointer(); } if (!tensorflow::TensorHandle::classof(unwrapped_handle)) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(unwrapped_handle); if (handle->Type() != tensorflow::TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "TFE_TensorHandleDevicePointer may not be called on a ", handle->TypeString(), " tensor handle."); return nullptr; } tensorflow::Device* device(handle->device()); if (device != nullptr) { status->status = device->Sync(); if (!status->status.ok()) { return nullptr; } } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } return const_cast<void*>( static_cast<const void*>(tensor->tensor_data().data())); } namespace tensorflow { namespace { class CustomDeviceAPI : public tensorflow::CustomDevice { public: CustomDeviceAPI(TFE_Context* context, TFE_CustomDevice device, void* info, string name) : context_(context), device_(device), info_(info), name_(name) {} ~CustomDeviceAPI() override { device_.delete_device(info_); } const string& name() override { return name_; } tensorflow::Status CopyTensorToDevice( ImmediateExecutionTensorHandle* handle, ImmediateExecutionTensorHandle** result) override { handle->Ref(); TF_Status status; TFE_TensorHandle* result_handle = device_.copy_tensor_to_device( context_, tensorflow::wrap(handle), &status, info_); handle->Unref(); if (!status.status.ok()) return status.status; *result = tensorflow::unwrap(result_handle); (*result)->Ref(); TFE_DeleteTensorHandle(result_handle); return status.status; } tensorflow::Status CopyTensorFromDevice( ImmediateExecutionTensorHandle* handle, const tensorflow::string& target_device_name, ImmediateExecutionTensorHandle** result) override { TF_Status status; handle->Ref(); TFE_TensorHandle* result_handle = device_.copy_tensor_from_device( context_, tensorflow::wrap(handle), target_device_name.c_str(), &status, info_); handle->Unref(); if (!status.status.ok()) return status.status; *result = tensorflow::unwrap(result_handle); (*result)->Ref(); TFE_DeleteTensorHandle(result_handle); return status.status; } tensorflow::Status Execute(const ImmediateExecutionOperation* op, ImmediateExecutionTensorHandle** retvals, int* num_retvals) override { std::vector<TFE_TensorHandle*> outputs(*num_retvals); TF_Status status; device_.execute(tensorflow::wrap(op), num_retvals, outputs.data(), &status, info_); if (status.status.ok()) { for (int i = 0; i < *num_retvals; ++i) { retvals[i] = tensorflow::unwrap(outputs[i]); retvals[i]->Ref(); TFE_DeleteTensorHandle(outputs[i]); } } return status.status; } tensorflow::Status Pack(absl::Span<ImmediateExecutionTensorHandle*> handles, ImmediateExecutionTensorHandle** result) override { TF_Status status; *result = tensorflow::unwrap(device_.pack(context_, tensorflow::wrap(handles.data()), handles.size(), &status, info_)); return status.status; } absl::StatusOr<bool> ShallPinToThisDevice( const ImmediateExecutionOperation* op) override { TF_Status status; if (device_.shall_pin_to_this_device != nullptr) { return device_.shall_pin_to_this_device(tensorflow::wrap(op), &status); } return errors::Unimplemented("No custom device pinning implementation."); } private: TFE_Context* context_; TFE_CustomDevice device_; void* info_; string name_; }; class CAPICustomDeviceTensorHandle : public tensorflow::CustomDeviceTensorHandle { public: CAPICustomDeviceTensorHandle(tensorflow::ImmediateExecutionContext* context, tensorflow::CustomDevice* device, tensorflow::DataType dtype, void* data, TFE_CustomDeviceTensorHandleMethods methods) : tensorflow::CustomDeviceTensorHandle(context, device, dtype), data_(data), methods_(methods) {} ~CAPICustomDeviceTensorHandle() override { methods_.deallocator(data_); } void* DevicePointer() const override { return data_; } Status NumDims(int* num_dims) const override { TF_Status s; *num_dims = methods_.num_dims(data_, &s); return s.status; } Status Dim(int dim_index, int64_t* dim) const override { TF_Status s; *dim = methods_.dim(data_, dim_index, &s); return s.status; } bool PreferCustomSummarizer() const override { return methods_.summarize != nullptr; } Status SummarizeValue(std::string& summary) const override { if (methods_.summarize == nullptr) { return tensorflow::CustomDeviceTensorHandle::SummarizeValue(summary); } TF_Status c_status; std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> summary_buffer( methods_.summarize(data_, &c_status), TF_DeleteBuffer); if (!c_status.status.ok()) { return c_status.status; } summary = std::string(reinterpret_cast<const char*>(summary_buffer->data), summary_buffer->length); return absl::OkStatus(); } private: void* const data_; const TFE_CustomDeviceTensorHandleMethods methods_; }; } } TFE_TensorHandle* TFE_NewCustomDeviceTensorHandle( TFE_Context* ctx, const char* device_name, TF_DataType dtype, void* data, TFE_CustomDeviceTensorHandleMethods methods, TF_Status* status) { tensorflow::ImmediateExecutionContext* context = tensorflow::unwrap(ctx); tensorflow::CustomDevice* device = nullptr; if (!context->GetCustomDeviceOpHandler().FindCustomDeviceFromName(device_name, &device)) { methods.deallocator(data); status->status = tensorflow::errors::InvalidArgument(device_name, " unknown device."); return nullptr; } return tensorflow::wrap(new tensorflow::CAPICustomDeviceTensorHandle( context, device, *reinterpret_cast<tensorflow::DataType*>(&dtype), data, methods)); } TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory( TFE_Context* ctx, const char* device_name, TF_DataType dtype, const int64_t* dims, int num_dims, void* data, size_t len, void (*deallocator)(void* data, size_t len, void* arg), void* deallocator_arg, TF_Status* status) { tensorflow::Device* device = nullptr; tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); status->status = context->FindDeviceFromName(device_name, &device); if (!status->status.ok()) { deallocator(data, len, deallocator_arg); status->status = tensorflow::errors::InvalidArgument(device_name, " unknown device."); return nullptr; } std::vector<int64_t> dimvec(num_dims); for (int i = 0; i < num_dims; ++i) { dimvec[i] = static_cast<int64_t>(dims[i]); } TF_ManagedBuffer* buf = new TF_ManagedBuffer(data, len, deallocator, deallocator_arg, false); tensorflow::Tensor t(static_cast<tensorflow::DataType>(dtype), tensorflow::TensorShape(dimvec), buf); buf->Unref(); return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle( std::move(t), device, device, context)); } size_t TFE_TensorHandleDeviceMemorySize(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return 0; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(h)); if (handle->Type() != tensorflow::TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "TFE_TensorHandleDeviceMemorySize may not be called on a ", handle->TypeString(), " tensor handle."); return 0; } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return 0; } return tensor->TotalBytes(); } TFE_Op* TFE_NewOp(TFE_Context* ctx, const char* op_or_function_name, TF_Status* status) { tensorflow::ImmediateExecutionOperation* new_op = tensorflow::unwrap(ctx)->CreateOperation(); status->status = new_op->Reset(op_or_function_name, nullptr); if (!status->status.ok()) { new_op->Release(); new_op = nullptr; } return tensorflow::wrap(new_op); } void TFE_DeleteOp(TFE_Op* op) { if (op == nullptr) { return; } tensorflow::unwrap(op)->Release(); } const char* TFE_OpGetName(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->Name().c_str(); } TFE_Context* TFE_OpGetContext(const TFE_Op* op, TF_Status* status) { return tensorflow::wrap(tensorflow::unwrap(op)->GetContext()); } void TFE_OpSetDevice(TFE_Op* op, const char* device_name, TF_Status* status) { status->status = tensorflow::unwrap(op)->SetDeviceName(device_name); } const char* TFE_OpGetDevice(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->DeviceName().c_str(); } void TFE_OpAddInput(TFE_Op* op, TFE_TensorHandle* input, TF_Status* status) { status->status = tensorflow::unwrap(op)->AddInput(tensorflow::unwrap(input)); } void TFE_OpAddInputList(TFE_Op* op, TFE_TensorHandle** inputs, int num_inputs, TF_Status* status) { status->status = tensorflow::unwrap(op)->AddInputList( {reinterpret_cast<tensorflow::AbstractTensorHandle**>( tensorflow::unwrap(inputs)), static_cast<size_t>(num_inputs)}); } extern int TFE_OpGetFlatInputCount(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->GetInputs().size(); } extern TFE_TensorHandle* TFE_OpGetFlatInput(const TFE_Op* op, int index, TF_Status* status) { return tensorflow::wrap(tensorflow::unwrap(op)->GetInputs()[index]); } TF_AttrType TFE_OpGetAttrType(TFE_Op* op, const char* attr_name, unsigned char* is_list, TF_Status* status) { TF_AttrType ret = TF_ATTR_INT; const tensorflow::AttrTypeMap* attr_types_; bool is_function; status->status = tensorflow::AttrTypeMapForOp( tensorflow::unwrap(op)->Name().c_str(), &attr_types_, &is_function); if (!status->status.ok()) { return ret; } status->status = tensorflow::AttrTypeByName(*attr_types_, attr_name, &ret, is_list); return ret; } TF_AttrType TFE_OpNameGetAttrType(TFE_Context* ctx, const char* op_or_function_name, const char* attr_name, unsigned char* is_list, TF_Status* status) { TF_AttrType ret; TFE_Op* op = TFE_NewOp(ctx, op_or_function_name, status); if (status->status.ok()) { ret = TFE_OpGetAttrType(op, attr_name, is_list, status); } else { ret = TF_ATTR_INT; } TFE_DeleteOp(op); return ret; } void TFE_OpSetAttrString(TFE_Op* op, const char* attr_name, const void* value, size_t length) { auto s = tensorflow::unwrap(op)->SetAttrString( attr_name, static_cast<const char*>(value), length); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrInt(TFE_Op* op, const char* attr_name, int64_t value) { auto s = tensorflow::unwrap(op)->SetAttrInt(attr_name, value); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFloat(TFE_Op* op, const char* attr_name, float value) { auto s = tensorflow::unwrap(op)->SetAttrFloat(attr_name, value); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrBool(TFE_Op* op, const char* attr_name, unsigned char value) { auto s = tensorflow::unwrap(op)->SetAttrBool(attr_name, (value == 0) ? false : true); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrType(TFE_Op* op, const char* attr_name, TF_DataType value) { auto s = tensorflow::unwrap(op)->SetAttrType( attr_name, static_cast<tensorflow::DataType>(value)); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrShape(TFE_Op* op, const char* attr_name, const int64_t* dims, const int num_dims, TF_Status* out_status) { out_status->status = tensorflow::unwrap(op)->SetAttrShape(attr_name, dims, num_dims); } void TFE_OpSetAttrFunction(TFE_Op* op, const char* attr_name, const TFE_Op* value) { auto s = tensorflow::unwrap(op)->SetAttrFunction( attr_name, tensorflow::unwrap(const_cast<TFE_Op*>(value))); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFunctionName(TFE_Op* op, const char* attr_name, const char* data, size_t length) { auto s = tensorflow::unwrap(op)->SetAttrFunctionName(attr_name, data, length); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrTensor(TFE_Op* op, const char* attr_name, TF_Tensor* tensor, TF_Status* status) { tensorflow::Tensor t; status->status = TF_TensorToTensor(tensor, &t); tensorflow::TensorInterface interface(t); status->status = tensorflow::unwrap(op)->SetAttrTensor(attr_name, &interface); } void TFE_OpSetAttrStringList(TFE_Op* op, const char* attr_name, const void* const* values, const size_t* lengths, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrStringList(attr_name, values, lengths, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFloatList(TFE_Op* op, const char* attr_name, const float* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrFloatList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrIntList(TFE_Op* op, const char* attr_name, const int64_t* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrIntList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrTypeList(TFE_Op* op, const char* attr_name, const TF_DataType* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrTypeList( attr_name, reinterpret_cast<const tensorflow::DataType*>(values), num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrBoolList(TFE_Op* op, const char* attr_name, const unsigned char* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrBoolList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrShapeList(TFE_Op* op, const char* attr_name, const int64_t** dims, const int* num_dims, int num_values, TF_Status* out_status) { out_status->status = tensorflow::unwrap(op)->SetAttrShapeList( attr_name, dims, num_dims, num_values); } void TFE_OpSetAttrFunctionList(TFE_Op* op, const char* attr_name, const TFE_Op** value, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrFunctionList( attr_name, {reinterpret_cast<const tensorflow::AbstractOperation**>( tensorflow::unwrap(value)), static_cast<size_t>(num_values)}); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrValueProto(const TFE_Op* op, const char* attr_name, const void* proto, size_t proto_len, TF_Status* status) { tensorflow::AttrValue attr_value; if (!attr_value.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument("Unparseable AttrValue proto"); return; } if (op == nullptr) { status->status = tensorflow::errors::InvalidArgument( "Got a null or uninitialized `op` argument"); return; } tensorflow::EagerOperation* operation = OperationFromInterface(tensorflow::unwrap(const_cast<TFE_Op*>(op))); operation->MutableAttrs()->Set(attr_name, attr_value); } TF_CAPI_EXPORT extern int TFE_OpGetInputLength(TFE_Op* op, const char* input_name, TF_Status* status) { int ret = -1; status->status = tensorflow::unwrap(op)->InputLength(input_name, &ret); return ret; } TF_CAPI_EXPORT extern int TFE_OpGetOutputLength(TFE_Op* op, const char* output_name, TF_Status* status) { int ret = -1; status->status = tensorflow::unwrap(op)->OutputLength(output_name, &ret); return ret; } void TFE_Execute(TFE_Op* op, TFE_TensorHandle** retvals, int* num_retvals, TF_Status* status) { tensorflow::ImmediateExecutionOperation* unwrapped_op = tensorflow::unwrap(op); status->status = unwrapped_op->GetContext()->GetCustomDeviceOpHandler().Execute( unwrapped_op, reinterpret_cast<tensorflow::ImmediateExecutionTensorHandle**>( retvals), num_retvals); } TFE_TensorHandle* TFE_TensorHandleCopyToDevice(TFE_TensorHandle* h, TFE_Context* ctx, const char* device_name, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::ImmediateExecutionContext* unwrapped_ctx = tensorflow::unwrap(ctx); auto* result = unwrapped_ctx->GetCustomDeviceOpHandler().CopyTensorHandleToDevice( unwrapped_ctx, tensorflow::unwrap(h), device_name, &status->status); if (status->status.ok()) { return tensorflow::wrap(result); } return nullptr; } void TFE_ContextAddFunctionDef(TFE_Context* ctx, const char* serialized_function_def, size_t size, TF_Status* status) { tensorflow::FunctionDef function_def; if (!function_def.ParseFromArray(serialized_function_def, size)) { status->status = tensorflow::errors::InvalidArgument("Invalid FunctionDef proto"); return; } AnnotateEagerRuntimeConstructionContext(function_def); status->status = tensorflow::unwrap(ctx)->AddFunctionDef(function_def); } void TFE_ContextAddFunction(TFE_Context* ctx, TF_Function* function, TF_Status* status) { auto fdef_or = function->record->mutable_fdef(); if (!fdef_or.ok()) { status->status = fdef_or.status(); return; } AnnotateEagerRuntimeConstructionContext(*fdef_or.value()); status->status = tensorflow::unwrap(ctx)->AddFunctionDefWithStackTraces( *fdef_or.value(), function->record->stack_traces()); } TF_Function* TFE_ContextGetFunction(TFE_Context* ctx, const char* name, TF_Status* status) { tensorflow::core::RefCountPtr<tensorflow::FunctionRecord> record = tensorflow::unwrap(ctx)->FindRecord(name); if (record == nullptr) { status->status = tensorflow::errors::NotFound( "Unable to find Function with name: ", name); return nullptr; } TF_Function* result = new TF_Function(); record->Ref(); result->record = record.get(); return result; } void TFE_ContextRemoveFunction(TFE_Context* ctx, const char* name, TF_Status* status) { status->status = tensorflow::unwrap(ctx)->RemoveFunction(name); } unsigned char TFE_ContextHasFunction(TFE_Context* ctx, const char* name) { return tensorflow::unwrap(ctx)->FindFunctionDef(name) != nullptr; } void TFE_ContextEnableRunMetadata(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(true); } void TFE_ContextDisableRunMetadata(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(false); } } TFE_TensorHandle* TFE_NewTensorHandle(const tensorflow::Tensor& t, TF_Status* status) { return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle(t)); } void TFE_ContextExportRunMetadata(TFE_Context* ctx, TF_Buffer* buf, TF_Status* status) { auto* context = tensorflow::unwrap(ctx); status->status = context->AsyncWait(); if (!status->status.ok()) return; auto run_metadata = context->ExportRunMetadata(); status->status = MessageToBuffer(*run_metadata, buf); } namespace { TFE_Op* GetFunc(TFE_Context* ctx, const tensorflow::NameAttrList& func, TF_Status* status) { TFE_Op* func_op = TFE_NewOp(ctx, func.name().data(), status); for (const auto& attr : func.attr()) { if (!status->status.ok()) return nullptr; SetOpAttrValueScalar(ctx, func_op, attr.second, attr.first.data(), status); if (!status->status.ok()) return nullptr; } return func_op; } } void TFE_ContextStartStep(TFE_Context* ctx) { tensorflow::unwrap(ctx)->StartStep(); } void TFE_ContextEndStep(TFE_Context* ctx) { tensorflow::unwrap(ctx)->EndStep(); } const TFE_OpAttrs* TFE_OpGetAttrs(const TFE_Op* op) { return tensorflow::wrap(tensorflow::unwrap(op)->GetOpAttrs()); } void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs) { tensorflow::unwrap(op)->AddAttrs(tensorflow::unwrap(attrs)); } void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs, TF_Buffer* buf, TF_Status* status) { tensorflow::NameAttrList name_and_attrs; tensorflow::unwrap(attrs)->GetNameAttrList(&name_and_attrs); status->status = MessageToBuffer(name_and_attrs, buf); } namespace tensorflow { void SetOpAttrValueScalar(TFE_Context* ctx, TFE_Op* op, const tensorflow::AttrValue& default_value, const char* attr_name, TF_Status* status) { switch (default_value.value_case()) { case tensorflow::AttrValue::kS: { const string& v = default_value.s(); TFE_OpSetAttrString(op, attr_name, v.data(), v.size()); break; } case tensorflow::AttrValue::kI: TFE_OpSetAttrInt(op, attr_name, static_cast<int64_t>(default_value.i())); break; case tensorflow::AttrValue::kF: TFE_OpSetAttrFloat(op, attr_name, default_value.f()); break; case tensorflow::AttrValue::kB: TFE_OpSetAttrBool(op, attr_name, default_value.b()); break; case tensorflow::AttrValue::kType: TFE_OpSetAttrType(op, attr_name, static_cast<TF_DataType>(default_value.type())); break; case tensorflow::AttrValue::kShape: { const auto& tensor_shape = default_value.shape(); if (tensor_shape.unknown_rank()) { TFE_OpSetAttrShape(op, attr_name, nullptr, -1, status); } else { const auto num_dims = tensor_shape.dim_size(); std::unique_ptr<int64_t[]> dims(new int64_t[num_dims]); for (int i = 0; i < num_dims; ++i) { dims[i] = tensor_shape.dim(i).size(); } TFE_OpSetAttrShape(op, attr_name, dims.get(), num_dims, status); } } break; case tensorflow::AttrValue::kFunc: { const auto func_op = GetFunc(ctx, default_value.func(), status); if (!status->status.ok()) return; TFE_OpSetAttrFunction(op, attr_name, func_op); TFE_DeleteOp(func_op); } break; case tensorflow::AttrValue::kList: { if (const int s_size = default_value.list().s_size()) { absl::InlinedVector<const void*, 4> values_vector; values_vector.reserve(s_size); absl::InlinedVector<size_t, 4> lengths_vector; lengths_vector.reserve(s_size); for (int i = 0; i < s_size; ++i) { const string& v = default_value.list().s(i); values_vector.push_back(v.data()); lengths_vector.push_back(v.size()); } TFE_OpSetAttrStringList(op, attr_name, values_vector.data(), lengths_vector.data(), s_size); } if (const int i_size = default_value.list().i_size()) { absl::InlinedVector<int64_t, 4> i_vector; i_vector.reserve(i_size); for (int i = 0; i < i_size; ++i) { i_vector.push_back(default_value.list().i(i)); } TFE_OpSetAttrIntList(op, attr_name, i_vector.data(), i_size); } if (const int f_size = default_value.list().f_size()) { absl::InlinedVector<float, 4> f_vector; f_vector.reserve(f_size); for (int i = 0; i < f_size; ++i) { f_vector.push_back(default_value.list().f(i)); } TFE_OpSetAttrFloatList(op, attr_name, f_vector.data(), f_size); } if (const int b_size = default_value.list().b_size()) { absl::InlinedVector<unsigned char, 4> b_vector; b_vector.reserve(b_size); for (int i = 0; i < b_size; i++) { b_vector.push_back(default_value.list().b(i)); } TFE_OpSetAttrBoolList(op, attr_name, b_vector.data(), b_size); } if (const int type_size = default_value.list().type_size()) { absl::InlinedVector<unsigned int, 4> type_vector; type_vector.reserve(type_size); for (int i = 0; i < type_size; ++i) { type_vector.push_back(default_value.list().type(i)); } TFE_OpSetAttrTypeList( op, attr_name, reinterpret_cast<const TF_DataType*>(type_vector.data()), type_size); } if (default_value.list().shape_size() > 0 || default_value.list().func_size() > 0 || default_value.list().tensor_size() > 0) { TF_SetStatus( status, TF_UNIMPLEMENTED, tensorflow::strings::StrCat("Unable to get setfor default value: ", default_value.DebugString()) .data()); } } break; case tensorflow::AttrValue::kTensor: TF_FALLTHROUGH_INTENDED; case tensorflow::AttrValue::kPlaceholder: TF_FALLTHROUGH_INTENDED; case tensorflow::AttrValue::VALUE_NOT_SET: TF_SetStatus( status, TF_UNIMPLEMENTED, tensorflow::strings::StrCat("Unable to get setfor default value: ", default_value.DebugString()) .data()); } } } namespace { TFE_TensorHandle* DefaultCustomDevicePack(TFE_Context* context, TFE_TensorHandle** handles, int num_handles, TF_Status* status, void* device_info) { TF_SetStatus(status, TF_UNIMPLEMENTED, "This custom device does not support packing tensors."); return nullptr; } } extern "C" { bool TFE_IsCustomDevice(TFE_Context* ctx, const char* device_name) { return tensorflow::unwrap(ctx)->IsCustomDevice(device_name); } void TFE_RegisterCustomDevice(TFE_Context* ctx, TFE_CustomDevice device, const char* device_name, void* device_info, TF_Status* status) { if (device.pack == nullptr) { device.pack = &DefaultCustomDevicePack; } auto custom_device = std::make_unique<tensorflow::CustomDeviceAPI>( ctx, device, device_info, device_name); status->status = tensorflow::unwrap(ctx)->RegisterCustomDevice( device_name, std::move(custom_device)); } }
#include "tensorflow/c/eager/c_api.h" #include <string.h> #include <memory> #include <string> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/platform.h" #include "absl/strings/match.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/protobuf/tensorflow_server.pb.h" using tensorflow::string; namespace { void BM_InitOp(::testing::benchmark::State& state) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); for (auto s : state) { TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_DeleteOp(matmul); } TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_InitOp); void BM_Execute(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteAsync" : "Execute"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = TFE_NewOp(ctx, "MatMul", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(matmul, "MatMul", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(matmul, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute)->Arg(0)->Arg(1); void BM_Execute_Identity(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteIdentityAsync" : "ExecuteIdentity"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* identity = TFE_NewOp(ctx, "Identity", status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(identity, "Identity", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(identity, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(identity, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(identity); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute_Identity)->Arg(0)->Arg(1); TEST(CAPI, Context) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); TFE_DeleteContextOptions(opts); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const int num_devices = TF_DeviceListCount(devices); EXPECT_GE(num_devices, 1) << "At least one CPU device should exist"; for (int i = 0; i < num_devices; ++i) { EXPECT_NE("", TF_DeviceListName(devices, i, status)) << i; EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); } TF_DeleteDeviceList(devices); TF_DeleteStatus(status); } TEST(CAPI, TensorHandle) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); CHECK_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle(ctx); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(16, TF_TensorByteSize(t)); float data[4] = {0}; memcpy(&data[0], TF_TensorData(t), TF_TensorByteSize(t)); EXPECT_EQ(1.0, data[0]); EXPECT_EQ(2.0, data[1]); EXPECT_EQ(3.0, data[2]); EXPECT_EQ(4.0, data[3]); TF_DeleteTensor(t); TFE_DeleteTensorHandle(h); TFE_DeleteContext(ctx); } void TensorHandleCopyBetweenDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); const char* kCPUDevice = "CPU:0"; for (int i = 0; i < num_devices; ++i) { const string name(TF_DeviceListName(devices, i, status.get())); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << i << " -- " << TF_Message(status.get()); continue; } auto tag = tensorflow::strings::StrCat("Device #", i, " (", name, ")"); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice(hdevice, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag; continue; } EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)) << tag; EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))) << tag; TF_DeleteTensor(tcopy); } TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevices) { TensorHandleCopyBetweenDevices(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesAsync) { TensorHandleCopyBetweenDevices(true); } void TensorHandleCopyBetweenDevicesError(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* kErrorDevice = "NoSuchDevice:0"; TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, kErrorDevice, status.get()); EXPECT_NE(TF_OK, TF_GetCode(status.get())); const char* msg = "NoSuchDevice:0 unknown device"; EXPECT_TRUE(strstr(TF_Message(status.get()), msg) != nullptr) << TF_Message(status.get()); TF_SetStatus(status.get(), TF_OK, ""); const char* kCPUDevice = "CPU:0"; TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hcpu, ctx, kCPUDevice, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteTensorHandle(hcopy); TFE_DeleteTensorHandle(hcpu); if (hdevice != nullptr) TFE_DeleteTensorHandle(hdevice); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevicesError) { TensorHandleCopyBetweenDevicesError(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesErrorAsync) { TensorHandleCopyBetweenDevicesError(true); } void TensorHandleCopyBetweenTwoGPUDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); bool has_gpu0 = false; bool has_gpu1 = false; for (int i = 0; i < num_devices; ++i) { const char* dev = TF_DeviceListName(devices, i, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); string device_name(dev); if (device_name.find("GPU:0") != string::npos) { has_gpu0 = true; } if (device_name.find("GPU:1") != string::npos) { has_gpu1 = true; } } const char* kCPUDevice = "CPU:0"; if (!has_gpu0 || !has_gpu1) { TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); return; } const string gpu_1_name(TF_DeviceListName(devices, 1, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); const string gpu_2_name(TF_DeviceListName(devices, 2, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, gpu_1_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice( hdevice, ctx, gpu_2_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)); EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))); TF_DeleteTensor(tcopy); TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevices) { TensorHandleCopyBetweenTwoGPUDevices(false); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevicesAsync) { TensorHandleCopyBetweenTwoGPUDevices(true); } void TensorHandleSilentCopy(bool async, TFE_ContextDevicePlacementPolicy global_policy, TFE_ContextDevicePlacementPolicy thread_policy, bool cpu_op) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_ContextOptionsSetDevicePlacementPolicy(opts, global_policy); TFE_Context* ctx = TFE_NewContext(opts, status.get()); if (thread_policy != global_policy) { TFE_ContextSetThreadLocalDevicePlacementPolicy(ctx, thread_policy); } TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); auto cpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hcpu)); auto gpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hgpu)); auto gpu_device = gpu_arg->device(); ASSERT_FALSE(cpu_arg->HasLocalMirror(gpu_device)); TFE_Op* matmul = MatMulOp(ctx, hcpu, hgpu); if (cpu_op) { string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(matmul, cpu_device_name.c_str(), status.get()); } else { TFE_OpSetDevice(matmul, gpu_device_name.c_str(), status.get()); } ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ASSERT_TRUE(cpu_arg->HasLocalMirror(gpu_device)); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleSilentCopy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } void SetAndGetOpDevices(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_OpSetDevice(matmul, "GPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); const char* device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "GPU:0") != nullptr); TFE_OpSetDevice(matmul, "CPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "CPU:0") != nullptr); } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, TensorHandleNullptr) { TFE_TensorHandle* h = nullptr; std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(t, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); const char* device_name = TFE_TensorHandleDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); device_name = TFE_TensorHandleBackingDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int num_dims = TFE_TensorHandleNumDims(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(num_dims, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int dim = TFE_TensorHandleDim(h, 0, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(dim, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); } TEST(CAPI, TensorHandleDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* device_name = TFE_TensorHandleDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "CPU:0")) << device_name; const char* backing_device_name = TFE_TensorHandleBackingDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_Op* shape_op = ShapeOp(ctx, hgpu); TFE_OpSetDevice(shape_op, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(shape_op, &retvals[0], &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); device_name = TFE_TensorHandleDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "GPU:0")) << device_name; backing_device_name = TFE_TensorHandleBackingDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; TFE_DeleteOp(shape_op); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } void ExecuteAdd(bool async, bool forward_input, bool tfrt) { #ifdef PLATFORM_WINDOWS return; #else TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, tfrt); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* n = TestMatrixTensorHandle100x100(ctx); std::string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* n_gpu = TFE_TensorHandleCopyToDevice(n, ctx, gpu_device_name.c_str(), status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(n); n = n_gpu; } TFE_TensorHandle* m = TestMatrixTensorHandle100x100(ctx); TF_Tensor* orig = TFE_TensorHandleResolve(n, status); void* orig_ptr = TF_TensorData(orig); TF_DeleteTensor(orig); TFE_Op* add_op = AddOp(ctx, n, m); std::string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(add_op, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (forward_input) { TFE_DeleteTensorHandle(n); } int num_retvals = 1; if (async) { for (int i = 0; i < 100000; ++i) { TFE_Op* add_op_dummy = AddOp(ctx, m, m); TFE_OpSetDevice(add_op_dummy, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* dummy = nullptr; TFE_Execute(add_op_dummy, &dummy, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(dummy); TFE_DeleteOp(add_op_dummy); } } TFE_TensorHandle* retval = nullptr; TFE_Execute(add_op, &retval, &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (!forward_input) { TFE_DeleteTensorHandle(n); } TFE_DeleteOp(add_op); TF_Tensor* t = TFE_TensorHandleResolve(retval, status); if (async) { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } } else { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_NE(orig_ptr, TF_TensorData(t)); } } ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(m); TFE_DeleteTensorHandle(retval); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float result[100 * 100] = {0}; EXPECT_EQ(sizeof(result), TF_TensorByteSize(t)); memcpy(&result[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); for (int i = 0; i < 100 * 100; ++i) { EXPECT_EQ(2.0f, result[i]); } TFE_DeleteContext(ctx); TF_DeleteStatus(status); #endif } TEST(CAPI, ExecuteAdd) { ExecuteAdd( false, false, false); } TEST(CAPI, DISABLED_ExecuteAddAsync) { ExecuteAdd( true, false, false); } TEST(CAPI, ExecuteAddForward) { ExecuteAdd( false, true, false); } TEST(CAPI, ExecuteAddForwardAsync) { ExecuteAdd( true, true, false); } #ifdef PLATFORM_GOOGLE TEST(CAPI, DISABLED_ExecuteAddTfrt) { ExecuteAdd( false, false, true); } #endif void Execute_MatMul_CPU(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[2] = {nullptr, nullptr}; int num_retvals = 2; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU) { Execute_MatMul_CPU(false); } TEST(CAPI, Execute_MatMul_CPUAsync) { Execute_MatMul_CPU(true); } void Execute_MatMul_CPU_Runtime_Error(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* m2 = DoubleTestMatrixTensorHandle3X2(ctx); TFE_Op* matmul = MatMulOp(ctx, m1, m2); TFE_OpSetDevice(matmul, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* matmul2 = MatMulOp(ctx, m1, m1); TFE_OpSetDevice(matmul2, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); TFE_DeleteOp(matmul); if (!async) { EXPECT_NE(TF_OK, TF_GetCode(status)); } else { TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_NE(TF_OK, TF_GetCode(status)); EXPECT_EQ(nullptr, t); const char* msg = "Matrix size-incompatible: In[0]: [2,2], In[1]: [3,2]"; EXPECT_TRUE(strstr(TF_Message(status), msg) != nullptr) << TF_Message(status); TF_SetStatus(status, TF_OK, ""); TFE_DeleteTensorHandle(retvals[0]); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TF_SetStatus(status, TF_OK, ""); retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TFE_ExecutorClearError(executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } TF_SetStatus(status, TF_OK, ""); if (retvals[0] != nullptr) { TFE_DeleteTensorHandle(retvals[0]); } retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_DeleteTensor(t); TFE_DeleteOp(matmul2); TFE_DeleteTensorHandle(m1); TFE_DeleteTensorHandle(m2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU_Runtime_Error) { Execute_MatMul_CPU_Runtime_Error(false); } TEST(CAPI, Execute_MatMul_CPU_Runtime_ErrorAsync) { Execute_MatMul_CPU_Runtime_Error(true); } void Execute_MatMul_CPU_Type_Error(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* m2 = DoubleTestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m1, m2); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m1); TFE_DeleteTensorHandle(m2); if (retvals[0] != nullptr) { TFE_DeleteTensorHandle(retvals[0]); } TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU_Type_Error) { Execute_MatMul_CPU_Type_Error(false); } TEST(CAPI, Execute_MatMul_CPU_Type_ErrorAsync) { Execute_MatMul_CPU_Type_Error(true); } TEST(CAPI, Execute_Min_CPU) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input = TestMatrixTensorHandle(ctx); TFE_TensorHandle* axis = TestAxisTensorHandle(ctx); TFE_Op* minOp = MinOp(ctx, input, axis); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(minOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(minOp); TFE_DeleteTensorHandle(input); TFE_DeleteTensorHandle(axis); ASSERT_EQ(1, num_retvals); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); float output[2] = {0}; EXPECT_EQ(sizeof(output), TF_TensorByteSize(t)); memcpy(&output[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(1, output[0]); EXPECT_EQ(3, output[1]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } void ExecuteWithTracing(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); TFE_ContextEnableRunMetadata(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TF_Buffer* b = TF_NewBuffer(); TFE_ContextExportRunMetadata(ctx, b, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::RunMetadata rm; EXPECT_TRUE( rm.ParseFromString({reinterpret_cast<const char*>(b->data), b->length})); TF_DeleteBuffer(b); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, ExecuteWithTracing) { ExecuteWithTracing(false); } TEST(CAPI, ExecuteWithTracingAsync) { ExecuteWithTracing(true); } REGISTER_OP("TestNonCommUnavailable") .Output("out: string") .Doc(R"doc(Test non-communication op throwing Unavailable error.)doc"); REGISTER_OP("TestCommUnavailable") .Output("out: string") .SetIsDistributedCommunication() .Doc(R"doc(Test communication op throwing Unavailable error.)doc"); class TestUnavailableErrorOp : public tensorflow::OpKernel { public: explicit TestUnavailableErrorOp(tensorflow::OpKernelConstruction* ctx) : tensorflow::OpKernel(ctx) {} void Compute(tensorflow::OpKernelContext* ctx) override { ctx->SetStatus(tensorflow::errors::Unavailable("Test error.")); } }; REGISTER_KERNEL_BUILDER( Name("TestNonCommUnavailable").Device(tensorflow::DEVICE_DEFAULT), TestUnavailableErrorOp); REGISTER_KERNEL_BUILDER( Name("TestCommUnavailable").Device(tensorflow::DEVICE_DEFAULT), TestUnavailableErrorOp); string FunctionWithErrorOp(const tensorflow::StringPiece op_name) { const std::string& func_str = " signature {" " name: 'FunctionWith__OP_NAME__'" " output_arg {" " name: 'out'" " type: DT_STRING" " }" " }" " node_def {" " name: 'error_op'" " op: '__OP_NAME__'" " }" " ret {" " key: 'out'" " value: 'error_op:out'" " }"; tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( tensorflow::str_util::StringReplace(func_str, "__OP_NAME__", op_name, true), &def)); return def.SerializeAsString(); } TEST(CAPI, ExecuteOpAndFunctionWithError) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(false)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* non_comm_op = TFE_NewOp(ctx, "TestNonCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retval[1] = {}; int num_retvals = 1; TFE_Execute(non_comm_op, retval, &num_retvals, status); EXPECT_EQ(TF_INTERNAL, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(non_comm_op); TFE_Op* comm_op = TFE_NewOp(ctx, "TestCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(comm_op, retval, &num_retvals, status); EXPECT_EQ(TF_UNAVAILABLE, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(comm_op); const string& fdef1 = FunctionWithErrorOp("TestNonCommUnavailable"); TFE_ContextAddFunctionDef(ctx, fdef1.data(), fdef1.size(), status); TFE_Op* fn1 = TFE_NewOp(ctx, "FunctionWithTestNonCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(fn1, retval, &num_retvals, status); EXPECT_EQ(TF_INTERNAL, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(fn1); const string& fdef2 = FunctionWithErrorOp("TestCommUnavailable"); TFE_ContextAddFunctionDef(ctx, fdef2.data(), fdef2.size(), status); TFE_Op* fn2 = TFE_NewOp(ctx, "FunctionWithTestCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(fn2, retval, &num_retvals, status); EXPECT_EQ(TF_UNAVAILABLE, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(fn2); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } string MatMulFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'MatMulFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'm'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'matmul'" " op: 'MatMul'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'm'" " value: 'matmul:product'" " }", &def)); return def.SerializeAsString(); } string AddFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'AddFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'o'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'output'" " op: 'Add'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'o'" " value: 'output:z'" " }", &def)); return def.SerializeAsString(); } void FunctionDefAndExecute(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = MatMulFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (bool clear_cache : {true, false, true}) { if (clear_cache) { TFE_ContextClearCaches(ctx); } TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; TFE_Op* op = TFE_NewOp(ctx, "MatMulFunction", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, m, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &retval[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TFE_DeleteOp(op); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retval[0], status); TFE_DeleteTensorHandle(retval[0]); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); } TFE_ContextRemoveFunction(ctx, "MatMulFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, FunctionDefAndExecute) { FunctionDefAndExecute(false); } TEST(CAPI, FunctionDefAndExecuteAsync) { FunctionDefAndExecute(true); } void RunAddFunction(bool use_tfrt, bool enable_grappler) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, use_tfrt); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = AddFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; TFE_Op* op = TFE_NewOp(ctx, "AddFunction", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (enable_grappler) { tensorflow::ConfigProto config; config.mutable_graph_options() ->mutable_rewrite_options() ->set_min_graph_nodes(-1); string serialized_config; ASSERT_TRUE(config.SerializeToString(&serialized_config)); TFE_OpSetAttrString( op, "config_proto", reinterpret_cast<const void*>(serialized_config.c_str()), serialized_config.length()); } if (use_tfrt) { TFE_OpSetAttrBool(op, "TFRT_TEST_enable_native_ops", false); TFE_OpSetAttrBool(op, "TFRT_TEST_enable_grappler", enable_grappler); } ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, m, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &retval[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TFE_DeleteOp(op); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retval[0], status); TFE_DeleteTensorHandle(retval[0]); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(2, product[0]); EXPECT_EQ(4, product[1]); EXPECT_EQ(6, product[2]); EXPECT_EQ(8, product[3]); if (use_tfrt) { TF_Buffer* buf = TF_NewBuffer(); TFE_GetExecutedOpNames(ctx, buf, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); #ifndef NDEBUG if (enable_grappler) EXPECT_NE(strstr(static_cast<const char*>(buf->data), "tf.Mul"), nullptr); else EXPECT_NE(strstr(static_cast<const char*>(buf->data), "tf.Add"), nullptr); #endif TF_DeleteBuffer(buf); } TFE_ContextRemoveFunction(ctx, "AddFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, RunAddFunctionWithGrappler) { RunAddFunction(false, true); } void BM_ExecuteFunction(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteFunctionAsync" : "ExecuteFunction"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = MatMulFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; for (auto s : state) { TFE_Op* matmul = TFE_NewOp(ctx, "MatMulFunction", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(matmul, &retval[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteTensorHandle(m); TFE_DeleteTensorHandle(retval[0]); TFE_ContextRemoveFunction(ctx, "MatMulFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_ExecuteFunction)->Arg(0)->Arg(1); TEST(CAPI, Variables) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* var_handle = TestVariable(ctx, 12.0); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* op = TFE_NewOp(ctx, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* value_handle = nullptr; TFE_Execute(op, &value_handle, &num_retvals, status); TFE_DeleteOp(op); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(value_handle)); EXPECT_EQ(0, TFE_TensorHandleNumDims(value_handle, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(value_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(12.0, value); TFE_DeleteTensorHandle(var_handle); TFE_DeleteTensorHandle(value_handle); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } void BM_ReadVariable(::testing::benchmark::State& state) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* var_handle = TestVariable(ctx, 5.0); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* h = nullptr; for (auto s : state) { TFE_Op* op = TFE_NewOp(ctx, "ReadVariableOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &h, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); CHECK_EQ(1, num_retvals); CHECK(h); CHECK_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); CHECK_EQ(0, TFE_TensorHandleNumDims(h, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); h = nullptr; TFE_DeleteOp(op); } TFE_DeleteTensorHandle(var_handle); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_ReadVariable); TEST(CAPI, StringAttributes) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); std::vector<int64_t> dims(4, 1); TFE_Op* op = TFE_NewOp(ctx, "AvgPool", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* tensor = TF_AllocateTensor(TF_FLOAT, dims.data(), dims.size(), sizeof(float)); float tensor_data[] = {1}; memcpy(TF_TensorData(tensor), tensor_data, TF_TensorByteSize(tensor)); TFE_TensorHandle* tensor_handle = TFE_NewTensorHandle(tensor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, tensor_handle, status); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(tensor_handle); std::vector<int64_t> values(4, 1); TFE_OpSetAttrIntList(op, "ksize", values.data(), values.size()); TFE_OpSetAttrIntList(op, "strides", values.data(), values.size()); const int BUFFER_SIZE = 10; char buffer[BUFFER_SIZE]; std::strncpy(buffer, "VALID", BUFFER_SIZE); TFE_OpSetAttrString(op, "padding", buffer, std::strlen(buffer)); std::strncpy(buffer, "NHWC", BUFFER_SIZE); TFE_OpSetAttrString(op, "data_format", buffer, std::strlen(buffer)); TFE_OpSetAttrType(op, "T", TF_FLOAT); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(op, &retvals[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); tensor = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(4, TF_TensorByteSize(tensor)); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteOp(op); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TestTFE_SetOpAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); std::vector<int64_t> dims(4, 1); TFE_Op* op = TFE_NewOp(ctx, "AvgPool", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* tensor = TF_AllocateTensor(TF_FLOAT, dims.data(), dims.size(), sizeof(float)); float tensor_data[] = {1}; memcpy(TF_TensorData(tensor), tensor_data, TF_TensorByteSize(tensor)); TFE_TensorHandle* tensor_handle = TFE_NewTensorHandle(tensor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, tensor_handle, status); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(tensor_handle); tensorflow::AttrValue i_list_values; for (int i = 0; i < 4; ++i) { i_list_values.mutable_list()->add_i(1); } SetOpAttrValueScalar(ctx, op, i_list_values, "ksize", status); SetOpAttrValueScalar(ctx, op, i_list_values, "strides", status); tensorflow::AttrValue padding_value; *padding_value.mutable_s() = "VALID"; tensorflow::SetOpAttrValueScalar(ctx, op, padding_value, "padding", status); tensorflow::AttrValue data_format_value; *data_format_value.mutable_s() = "NHWC"; tensorflow::SetOpAttrValueScalar(ctx, op, data_format_value, "data_format", status); TFE_OpSetAttrType(op, "T", TF_FLOAT); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(op, &retvals[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); tensor = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(4, TF_TensorByteSize(tensor)); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteOp(op); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TestTFE_TensorHandleCopySharingUnderlyingTensorHandle) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); CHECK_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle(ctx); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); TFE_TensorHandle* h_shares_tensor = TFE_TensorHandleCopySharingTensor(h, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_Tensor* t = TFE_TensorHandleResolve(h_shares_tensor, status.get()); ASSERT_EQ(16, TF_TensorByteSize(t)); float data[4] = {0}; memcpy(&data[0], TF_TensorData(t), TF_TensorByteSize(t)); EXPECT_EQ(1.0, data[0]); EXPECT_EQ(2.0, data[1]); EXPECT_EQ(3.0, data[2]); EXPECT_EQ(4.0, data[3]); TF_DeleteTensor(t); TFE_DeleteTensorHandle(h); TFE_DeleteTensorHandle(h_shares_tensor); TFE_DeleteContext(ctx); } tensorflow::AttrValueMap ExtractAttrs(TFE_Op* op) { tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* operation = tensorflow::OperationFromInterface(tensorflow::unwrap(op)); operation->Attrs().FillAttrValueMap(&attr_values); return attr_values; } TEST(CAPI, TestTFE_OpInferSingleInputAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input = TestMatrixTensorHandle(ctx); TFE_TensorHandle* axis = TestAxisTensorHandle(ctx); TFE_Op* minOp = TFE_NewOp(ctx, "Min", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(minOp, input, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(minOp, axis, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(minOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_FLOAT); attr_found = attr_values.find("Tidx"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_INT32); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(minOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(minOp); TFE_DeleteTensorHandle(input); TFE_DeleteTensorHandle(axis); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpInferSingleTypeInputListAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* dim = TestScalarTensorHandle(ctx, 0); TFE_Op* concatOp = TFE_NewOp(ctx, "Concat", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInput(concatOp, dim, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInputList(concatOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(concatOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_FLOAT); attr_found = attr_values.find("N"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.i(), 2); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(concatOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(concatOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(dim); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpInferMixedTypeInputListAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* condition = TestScalarTensorHandle(ctx, true); TFE_TensorHandle* t1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* t2 = TestAxisTensorHandle(ctx); TFE_Op* assertOp = TFE_NewOp(ctx, "Assert", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(assertOp, condition, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* data[] = {condition, t1, t2}; TFE_OpAddInputList(assertOp, data, 3, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(assertOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.list().type(0), tensorflow::DataType::DT_BOOL); EXPECT_EQ(attr_found->second.list().type(1), tensorflow::DataType::DT_FLOAT); EXPECT_EQ(attr_found->second.list().type(2), tensorflow::DataType::DT_INT32); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(assertOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(assertOp); TFE_DeleteTensorHandle(condition); TFE_DeleteTensorHandle(t1); TFE_DeleteTensorHandle(t2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpAttrsInferenceDisabledWhenNotCallingOpAddInputList) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* dim = TestScalarTensorHandle(ctx, 0); TFE_Op* concatOp = TFE_NewOp(ctx, "Concat", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInput(concatOp, dim, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); CHECK(tensorflow::unwrap(concatOp)->OpDef()); TFE_OpAddInput(concatOp, inputs[0], status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_FALSE(tensorflow::unwrap(concatOp)->OpDef()) << "Inference context is still present"; TFE_OpAddInput(concatOp, inputs[1], status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(concatOp); EXPECT_EQ(attr_values.find("T"), attr_values.end()); EXPECT_EQ(attr_values.find("N"), attr_values.end()); TF_DeleteStatus(status); TFE_DeleteOp(concatOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(dim); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpGetInputAndOutputLengths) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* identityOp = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_NE(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_NE(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(identityOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[2] = {nullptr}; int num_retvals = 2; TFE_Execute(identityOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(identityOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(retvals[1]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpGetInputAndOutputLengthsFailForUnknownArguments) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* identityOp = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(identityOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetInputLength(identityOp, "cheese", status)); CHECK_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetOutputLength(identityOp, "cheese", status)); CHECK_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(identityOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteContext(ctx); } void TestOpAddAttrs(bool use_tfrt) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, use_tfrt); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* var_op = TFE_NewOp(ctx, "VarHandleOp", status); TFE_OpSetAttrType(var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(var_op, "shape", {}, 0, status); const TFE_OpAttrs* attributes = TFE_OpGetAttrs(var_op); TFE_Op* copy_op = TFE_NewOp(ctx, "VarHandleOp", status); TFE_OpSetAttrType(copy_op, "dtype", TF_FLOAT); TFE_OpAddAttrs(copy_op, attributes); unsigned char is_list = 0; ASSERT_EQ(TF_ATTR_TYPE, TFE_OpGetAttrType(copy_op, "dtype", &is_list, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(TF_ATTR_SHAPE, TFE_OpGetAttrType(copy_op, "shape", &is_list, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* op = tensorflow::OperationFromInterface(tensorflow::unwrap(copy_op)); op->Attrs().FillAttrValueMap(&attr_values); EXPECT_EQ(tensorflow::DT_FLOAT, attr_values.find("dtype")->second.type()); TF_DeleteStatus(status); TFE_DeleteOp(var_op); TFE_DeleteOp(copy_op); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpAddAttrs) { TestOpAddAttrs(false); } TEST(CAPI, TestTFE_OpAttrsSerialize) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* var_op = TFE_NewOp(ctx, "VarHandleOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(var_op, "shape", {}, 0, status); const TFE_OpAttrs* attributes = TFE_OpGetAttrs(var_op); TF_Buffer* serialized_attr_values = TF_NewBuffer(); TFE_OpAttrsSerialize(attributes, serialized_attr_values, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::NameAttrList name_and_attrs; ASSERT_TRUE(name_and_attrs.ParseFromArray(serialized_attr_values->data, serialized_attr_values->length)); ASSERT_EQ("VarHandleOp", name_and_attrs.name()); ASSERT_EQ(tensorflow::DT_INT64, name_and_attrs.attr().find("dtype")->second.type()); TF_DeleteBuffer(serialized_attr_values); TFE_Op* var_op_2 = TFE_NewOp(ctx, "VarHandleOp", status); string serialized_dtype; ASSERT_TRUE(name_and_attrs.attr().find("dtype")->second.SerializeToString( &serialized_dtype)); TFE_OpSetAttrValueProto( var_op_2, "dtype", reinterpret_cast<const void*>(serialized_dtype.c_str()), serialized_dtype.length(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* op = tensorflow::OperationFromInterface(tensorflow::unwrap(var_op_2)); op->Attrs().FillAttrValueMap(&attr_values); EXPECT_EQ(tensorflow::DT_INT64, attr_values.find("dtype")->second.type()); TF_DeleteStatus(status); TFE_DeleteOp(var_op); TFE_DeleteOp(var_op_2); TFE_DeleteContext(ctx); } TFE_Op* CloneOp(const TFE_Op* other) { TF_Status* status = TF_NewStatus(); TFE_Context* context = TFE_OpGetContext(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const char* op_name = TFE_OpGetName(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* ret = TFE_NewOp(context, op_name, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const char* device = TFE_OpGetDevice(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetDevice(ret, device, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddAttrs(ret, TFE_OpGetAttrs(other)); int num_inputs = TFE_OpGetFlatInputCount(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (int input_index = 0; input_index < num_inputs; ++input_index) { TFE_TensorHandle* input = TFE_OpGetFlatInput(other, input_index, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(ret, input, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); } TF_DeleteStatus(status); return ret; } TEST(CAPI, TestTFE_OpRecreation) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* original_var_op = TFE_NewOp(ctx, "VarHandleOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(original_var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(original_var_op, "shape", {}, 0, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ("", std::string(TFE_OpGetDevice(original_var_op, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetDevice(original_var_op, "/job:localhost/replica:0/task:0/device:CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* cloned = CloneOp(original_var_op); EXPECT_EQ("/job:localhost/replica:0/task:0/device:CPU:0", std::string(TFE_OpGetDevice(cloned, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ("VarHandleOp", std::string(TFE_OpGetName(cloned, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* ret; TFE_Execute(cloned, &ret, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(ret); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* original_identity = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(original_identity, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* cloned_identity = CloneOp(original_identity); EXPECT_EQ("", std::string(TFE_OpGetDevice(cloned_identity, status))); TFE_TensorHandle* identity_ret[] = {nullptr, nullptr}; num_retvals = 2; TFE_Execute(cloned_identity, identity_ret, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(identity_ret[0]); TFE_DeleteTensorHandle(identity_ret[1]); TFE_DeleteOp(cloned_identity); TFE_DeleteOp(original_identity); TFE_DeleteOp(original_var_op); TFE_DeleteOp(cloned); TF_DeleteStatus(status); TFE_DeleteContext(ctx); } TEST(CAPI, ShareVariableAcrossContextsWorks) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, 0); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, 0); const char remote_device[] = "/job:localhost/replica:0/task:1/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var2"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var2"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } TEST(CAPI, ShareVariableAcrossContextsAfterUpdateContextWorks) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, 0); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, 0); const char remote_device[] = "/job:localhost/replica:0/task:2/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); int port = tensorflow::testing::PickUnusedPortOrDie(); ReplaceTaskInServerDef(&server_def_0, 1, "localhost", port); ReplaceTaskInServerDef(&server_def_1, 1, "localhost", port); server_def_0.set_task_index(1); worker_server1.release(); ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); { server_def_0.set_task_index(0); string serialized_update = server_def_0.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDef(ctx_0, 0, serialized_update.data(), serialized_update.size(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { server_def_1.set_task_index(0); string serialized_update = server_def_1.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDef(ctx_1, 0, serialized_update.data(), serialized_update.size(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } tensorflow::ServerDef CreateSingleHostServerDef( const tensorflow::ServerDef& cluster_server_def, int task_index) { tensorflow::ServerDef single_host_server_def; single_host_server_def.set_job_name("worker"); single_host_server_def.set_protocol(cluster_server_def.protocol()); single_host_server_def.set_task_index(0); tensorflow::ClusterDef* cluster_def = single_host_server_def.mutable_cluster(); tensorflow::JobDef* job_def = cluster_def->add_job(); job_def->set_name("client"); job_def->mutable_tasks()->insert( {0, tensorflow::strings::StrCat( "localhost:", tensorflow::testing::PickUnusedPortOrDie())}); tensorflow::JobDef* job_def2 = cluster_def->add_job(); job_def2->set_name("worker"); for (auto task : cluster_server_def.cluster().job(0).tasks()) { if (task.first == task_index) { job_def2->mutable_tasks()->insert({task.first, task.second}); } } return single_host_server_def; } tensorflow::ServerDef GetClusterServerDef(const string& worker_job_name, int num_workers) { tensorflow::ServerDef server_def = GetServerDef(worker_job_name, num_workers); tensorflow::ClusterDef* cluster_def = server_def.mutable_cluster(); tensorflow::JobDef* job_def2 = cluster_def->add_job(); job_def2->set_name("client"); job_def2->mutable_tasks()->insert( {0, tensorflow::strings::StrCat( "localhost:", tensorflow::testing::PickUnusedPortOrDie())}); return server_def; } TEST(CAPI, SingleHostServerDefV1Works) { tensorflow::ServerDef cluster_server_def = GetClusterServerDef("worker", 2); tensorflow::ServerDef worker_1_server_def = CreateSingleHostServerDef(cluster_server_def, 1); worker_1_server_def.set_task_index(1); worker_1_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create(worker_1_server_def, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); worker_1_server_def.set_task_index(0); worker_1_server_def.set_job_name("client"); TFE_Context* local_ctx = CreateContext(worker_1_server_def.SerializeAsString(), false, 0); const char remote_device[] = "/job:worker/replica:0/task:1/device:CPU:0"; TFE_TensorHandle* handle_0 = CreateVariable(local_ctx, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(local_ctx, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteTensorHandle(handle_0); tensorflow::ServerDef worker_0_server_def = CreateSingleHostServerDef(cluster_server_def, 0); worker_0_server_def.set_task_index(0); std::unique_ptr<tensorflow::GrpcServer> worker_server0; ASSERT_TRUE(tensorflow::GrpcServer::Create(worker_0_server_def, tensorflow::Env::Default(), &worker_server0) .ok()); ASSERT_TRUE(worker_server0->Start().ok()); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("client"); TFE_Context* remote_ctx = CreateContext(cluster_server_def.SerializeAsString(), false, 0); { TFE_TensorHandle* var_handle = CreateVarHandle(remote_ctx, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(remote_ctx, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteContext(local_ctx); TFE_DeleteContext(remote_ctx); worker_server1.release(); worker_server0.release(); } TEST(CAPI, SingleHostServerDefV2Works) { tensorflow::ServerDef cluster_server_def = GetClusterServerDef("worker", 2); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server0; ASSERT_TRUE(tensorflow::GrpcServer::Create(cluster_server_def, tensorflow::Env::Default(), &worker_server0) .ok()); ASSERT_TRUE(worker_server0->Start().ok()); cluster_server_def.set_task_index(1); cluster_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create(cluster_server_def, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("client"); TFE_Context* ctx_with_cluster_server_def = CreateContext(cluster_server_def.SerializeAsString(), false, 0); const char worker_1_device[] = "/job:worker/replica:0/task:1/device:CPU:0"; TFE_TensorHandle* handle_0 = CreateVariable(ctx_with_cluster_server_def, 1.2, worker_1_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_with_cluster_server_def, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteTensorHandle(handle_0); tensorflow::ServerDef worker_1_server_def = CreateSingleHostServerDef(cluster_server_def, 1); worker_1_server_def.set_task_index(0); worker_1_server_def.set_job_name("client"); TFE_Context* ctx_with_worker_1_server_def = CreateContext(worker_1_server_def.SerializeAsString(), false, 0); { TFE_TensorHandle* var_handle = CreateVarHandle( ctx_with_worker_1_server_def, worker_1_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_with_worker_1_server_def, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteContext(ctx_with_worker_1_server_def); TFE_DeleteContext(ctx_with_cluster_server_def); worker_server1.release(); worker_server0.release(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9aff0930-974e-4a79-88e7-15f021c37799
cpp
tensorflow/tensorflow
verifier
tensorflow/lite/core/tools/verifier.cc
tensorflow/lite/core/tools/verifier_test.cc
#include "tensorflow/lite/core/tools/verifier.h" #include <stdarg.h> #include <algorithm> #include <climits> #include <complex> #include <cstdint> #include <cstring> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/types/optional.h" #include "flatbuffers/string.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/tools/verifier_internal.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/util.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { const char* NameOrEmptyString(const flatbuffers::String* str) { if (str == nullptr || str->c_str() == nullptr) { return ""; } return str->c_str(); } bool IsNullOrEmptyString(const flatbuffers::String* str) { return strcmp(NameOrEmptyString(str), "") == 0; } void ReportError(ErrorReporter* error_reporter, const char* format, ...) { if (error_reporter) { va_list args; va_start(args, format); TF_LITE_REPORT_ERROR(error_reporter, format, args); va_end(args); } } uint32_t GetIntPtr(const char* ptr) { #if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return flatbuffers::EndianScalar(*reinterpret_cast<const uint32_t*>(ptr)); #else return *reinterpret_cast<const uint32_t*>(ptr); #endif } const uint32_t kMaxNumString = UINT_MAX / sizeof(int32_t) - 2; bool VerifyStringTensorBuffer(const Tensor& tensor, const Buffer& buffer, ErrorReporter* error_reporter) { uint32_t buffer_size = buffer.data()->size(); if (buffer_size < sizeof(uint32_t)) { ReportError(error_reporter, "String tensor %s is invalid (empty)", NameOrEmptyString(tensor.name())); return false; } const char* buffer_ptr = reinterpret_cast<const char*>(buffer.data()->data()); uint32_t num_strings = GetIntPtr(buffer_ptr); if (num_strings > kMaxNumString) { ReportError(error_reporter, "String tensor %s has invalid num of string set: %d", NameOrEmptyString(tensor.name()), num_strings); return false; } uint32_t header_offsets = static_cast<uint32_t>(num_strings + 2) * sizeof(int32_t); if (buffer_size < header_offsets) { ReportError(error_reporter, "String tensor %s buffer requires at least %d bytes, but is " "allocated with %d bytes", NameOrEmptyString(tensor.name()), header_offsets, buffer_size); return false; } uint32_t prev_ptr = header_offsets; uint32_t offset = sizeof(int32_t); if (GetIntPtr(buffer_ptr + offset) != header_offsets) { ReportError(error_reporter, "String tensor %s buffer initial offset must be: %d", NameOrEmptyString(tensor.name()), header_offsets); return false; } offset += sizeof(int32_t); for (int i = 1, end = num_strings; i <= end; i++, offset += sizeof(int32_t)) { int string_offset = GetIntPtr(buffer_ptr + offset); if (string_offset < static_cast<int>(prev_ptr) || string_offset > static_cast<int>(buffer_size)) { ReportError(error_reporter, "String tensor %s buffer is invalid: index %d", NameOrEmptyString(tensor.name()), i); return false; } } if (GetIntPtr(buffer_ptr + offset - sizeof(int32_t)) != buffer_size) { ReportError(error_reporter, "String tensor %s buffer last offset must be %d", NameOrEmptyString(tensor.name()), buffer_size); return false; } return true; } bool CheckArraySegments(const DimensionMetadata* dim_metadata) { if (dim_metadata->array_segments() == nullptr) { return false; } switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return (dim_metadata->array_segments_as_Int32Vector()->values() != nullptr); case SparseIndexVector_Uint16Vector: return (dim_metadata->array_segments_as_Uint16Vector()->values() != nullptr); case SparseIndexVector_Uint8Vector: return (dim_metadata->array_segments_as_Uint8Vector()->values() != nullptr); default: return false; } } int GetSizeOfSegments(const DimensionMetadata* dim_metadata) { switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return dim_metadata->array_segments_as_Int32Vector()->values()->size(); case SparseIndexVector_Uint16Vector: return dim_metadata->array_segments_as_Uint16Vector()->values()->size(); case SparseIndexVector_Uint8Vector: return dim_metadata->array_segments_as_Uint8Vector()->values()->size(); default: return -1; } } int GetValueOfSegmentsAt(const DimensionMetadata* dim_metadata, const int i) { switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return static_cast<int>( dim_metadata->array_segments_as_Int32Vector()->values()->Get(i)); case SparseIndexVector_Uint16Vector: return static_cast<int>( dim_metadata->array_segments_as_Uint16Vector()->values()->Get(i)); case SparseIndexVector_Uint8Vector: return static_cast<int>( dim_metadata->array_segments_as_Uint8Vector()->values()->Get(i)); default: return -1; } } bool CheckArrayIndices(const DimensionMetadata* dim_metadata) { if (dim_metadata->array_indices() == nullptr) { return false; } switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return (dim_metadata->array_indices_as_Int32Vector()->values() != nullptr); case SparseIndexVector_Uint16Vector: return (dim_metadata->array_indices_as_Uint16Vector()->values() != nullptr); case SparseIndexVector_Uint8Vector: return (dim_metadata->array_indices_as_Uint8Vector()->values() != nullptr); default: return false; } } int GetSizeOfIndices(const DimensionMetadata* dim_metadata) { switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return dim_metadata->array_indices_as_Int32Vector()->values()->size(); case SparseIndexVector_Uint16Vector: return dim_metadata->array_indices_as_Uint16Vector()->values()->size(); case SparseIndexVector_Uint8Vector: return dim_metadata->array_indices_as_Uint8Vector()->values()->size(); default: return -1; } } int GetValueOfIndicesAt(const DimensionMetadata* dim_metadata, const int i) { switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return static_cast<int>( dim_metadata->array_indices_as_Int32Vector()->values()->Get(i)); case SparseIndexVector_Uint16Vector: return static_cast<int>( dim_metadata->array_indices_as_Uint16Vector()->values()->Get(i)); case SparseIndexVector_Uint8Vector: return static_cast<int>( dim_metadata->array_indices_as_Uint8Vector()->values()->Get(i)); default: return -1; } return -1; } absl::optional<uint64_t> VerifyAndCountElements( const SparsityParameters& sparsity, const std::vector<int>& dim_sizes) { const int total_level = sparsity.traversal_order()->size(); uint64_t num_elements = 1; for (int i = 0; i < total_level; i++) { const int original_dim = sparsity.traversal_order()->Get(i); const auto* dim_metadata = sparsity.dim_metadata()->Get(i); if (dim_metadata->format() == DimensionType_DENSE) { if (dim_metadata->dense_size() != dim_sizes[original_dim]) { return absl::nullopt; } num_elements *= dim_metadata->dense_size(); } else { if (!CheckArraySegments(dim_metadata) || !CheckArrayIndices(dim_metadata)) { return absl::nullopt; } int array_segments_size = GetSizeOfSegments(dim_metadata); int array_indices_size = GetSizeOfIndices(dim_metadata); for (int j = 0; j < array_segments_size - 1; j++) { if (GetValueOfSegmentsAt(dim_metadata, j) < 0 || GetValueOfSegmentsAt(dim_metadata, j + 1) < 0 || GetValueOfSegmentsAt(dim_metadata, j) > GetValueOfSegmentsAt(dim_metadata, j + 1)) { return absl::nullopt; } } if (static_cast<int>(num_elements) != array_segments_size - 1) { return absl::nullopt; } if (array_indices_size != GetValueOfSegmentsAt(dim_metadata, array_segments_size - 1)) { return absl::nullopt; } for (int j = 0; j < array_indices_size; j++) { if (GetValueOfIndicesAt(dim_metadata, j) < 0 || GetValueOfIndicesAt(dim_metadata, j) >= dim_sizes[original_dim]) { return absl::nullopt; } } num_elements = array_indices_size; } } return num_elements; } absl::optional<uint64_t> VerifyAndCountSparseElements(const Tensor& tensor) { const auto* sparsity = tensor.sparsity(); if (sparsity->traversal_order() == nullptr || sparsity->dim_metadata() == nullptr) { return absl::nullopt; } const int total_dims = sparsity->traversal_order()->size(); const int original_rank = tensor.shape()->size(); const int sparsity_dim_metadata_size = sparsity->dim_metadata()->size(); if (total_dims < original_rank || sparsity_dim_metadata_size != total_dims) { return absl::nullopt; } const int block_rank = total_dims - original_rank; if (block_rank > 0) { if (sparsity->block_map() == nullptr) { return absl::nullopt; } const int sparse_rank = sparsity->block_map()->size(); if (sparse_rank != block_rank) { return absl::nullopt; } } std::vector<int> traversal_order(total_dims); for (int i = 0; i < total_dims; i++) { traversal_order[i] = sparsity->traversal_order()->Get(i); } std::sort(traversal_order.begin(), traversal_order.begin() + original_rank); for (int i = 0; i < original_rank; i++) { if (traversal_order[i] != i) { return absl::nullopt; } } std::sort(traversal_order.begin() + original_rank, traversal_order.end()); for (int i = original_rank; i < total_dims; i++) { if (traversal_order[i] != i) { return absl::nullopt; } } std::vector<int> expanded_dim_sizes; expanded_dim_sizes.resize(total_dims); for (int i = 0; i < original_rank; i++) { expanded_dim_sizes[i] = tensor.shape()->Get(i); } for (int i = 0; i < block_rank; i++) { int original_block_dim = sparsity->traversal_order()->Get(i + original_rank); if (original_block_dim < 0 || original_block_dim >= total_dims) { return absl::nullopt; } int block_dim_size = sparsity->dim_metadata()->Get(i + original_rank)->dense_size(); if (block_dim_size <= 0) { return absl::nullopt; } expanded_dim_sizes[original_block_dim] = block_dim_size; int mapped_block_dim = sparsity->block_map()->Get(i); if (mapped_block_dim < 0 || mapped_block_dim >= total_dims) { return absl::nullopt; } expanded_dim_sizes[mapped_block_dim] /= block_dim_size; } return VerifyAndCountElements(*sparsity, expanded_dim_sizes); } bool VerifyNumericTensorBuffer(const Tensor& tensor, const Buffer& buffer, ErrorReporter* error_reporter) { uint64_t bytes_required = 1; if (!tensor.shape()) { return true; } if (tensor.sparsity() != nullptr) { const auto num_elements = VerifyAndCountSparseElements(tensor); if (!num_elements.has_value()) { ReportError(error_reporter, "Tensor %s has invalid sparsity parameters", NameOrEmptyString(tensor.name())); return false; } bytes_required = num_elements.value(); if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } } else { for (int dim : *tensor.shape()) { bytes_required *= dim; if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } } } switch (tensor.type()) { case TensorType_FLOAT32: bytes_required *= sizeof(float); break; case TensorType_FLOAT16: bytes_required *= sizeof(uint16_t); break; case TensorType_BFLOAT16: bytes_required *= sizeof(uint16_t); break; case TensorType_FLOAT64: bytes_required *= sizeof(double); break; case TensorType_INT32: bytes_required *= sizeof(int32_t); break; case TensorType_UINT32: bytes_required *= sizeof(uint32_t); break; case TensorType_INT4: bytes_required *= sizeof(int8_t); break; case TensorType_UINT8: bytes_required *= sizeof(uint8_t); break; case TensorType_INT8: bytes_required *= sizeof(int8_t); break; case TensorType_INT64: bytes_required *= sizeof(int64_t); break; case TensorType_UINT64: bytes_required *= sizeof(uint64_t); break; case TensorType_BOOL: bytes_required *= sizeof(bool); break; case TensorType_INT16: bytes_required *= sizeof(uint16_t); break; case TensorType_UINT16: bytes_required *= sizeof(uint16_t); break; case TensorType_COMPLEX64: bytes_required *= sizeof(std::complex<float>); break; case TensorType_COMPLEX128: bytes_required *= sizeof(std::complex<double>); break; default: ReportError(error_reporter, "Tensor %s invalid type: %d", NameOrEmptyString(tensor.name()), tensor.type()); return false; } if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } if (bytes_required != buffer.data()->size()) { ReportError( error_reporter, "Tensor %s requires %d bytes, but is allocated with %d bytes buffer", NameOrEmptyString(tensor.name()), bytes_required, buffer.data()->size()); return false; } return true; } using flatbuffers::Offset; using flatbuffers::Vector; bool VerifyOperators(const Vector<Offset<Operator>>& operators, ErrorReporter* error_reporter) { for (const auto* op : operators) { if (!op->inputs()) { ReportError(error_reporter, "Missing 'inputs' for operator."); return false; } if (!op->outputs()) { ReportError(error_reporter, "Missing 'outputs' for operator."); return false; } } return true; } bool IsConstantTensor(const Tensor& tensor, const Model& model) { if (!tensor.buffer() || !model.buffers()) return false; if (tensor.buffer() > 0 && tensor.buffer() < model.buffers()->size()) { auto* buffer = model.buffers()->Get(tensor.buffer()); if (buffer && buffer->data()) { return true; } } return false; } bool VerifySubGraphConsistency(const Model& model, const SubGraph& subgraph, ErrorReporter* error_reporter) { absl::flat_hash_set<int> subgraph_input_tensors, constant_tensors, variable_tensors, output_tensors; if (subgraph.tensors()) { for (int i = 0, end = subgraph.tensors()->size(); i < end; ++i) { const auto* tensor = subgraph.tensors()->Get(i); if (IsConstantTensor(*tensor, model)) { constant_tensors.insert(i); } else if (tensor->is_variable()) { variable_tensors.insert(i); } } } if (subgraph.inputs()) { for (const int tensor_idx : *subgraph.inputs()) { subgraph_input_tensors.insert(tensor_idx); } } if (subgraph.operators()) { for (int op_idx = 0, end = subgraph.operators()->size(); op_idx < end; ++op_idx) { const auto* op = subgraph.operators()->Get(op_idx); if (!model.operator_codes() || (op->opcode_index() >= model.operator_codes()->size())) { ReportError(error_reporter, "Operator %d does not exist in model op codes", op->opcode_index()); return false; } const auto& opcode = model.operator_codes()->Get(op->opcode_index()); auto builtin_code = GetBuiltinCode(opcode); for (const int input_idx : *op->inputs()) { if (input_idx == kTfLiteOptionalTensor) continue; if (constant_tensors.find(input_idx) == constant_tensors.end() && variable_tensors.find(input_idx) == variable_tensors.end() && subgraph_input_tensors.find(input_idx) == subgraph_input_tensors.end() && output_tensors.find(input_idx) == output_tensors.end()) { ReportError(error_reporter, "Input tensor %d to op %d (%s) is not produced", input_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } } for (const int output_idx : *op->outputs()) { if (constant_tensors.find(output_idx) != constant_tensors.end()) { ReportError( error_reporter, "Output tensor %d to op %d (%s) is a constant", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (variable_tensors.find(output_idx) != variable_tensors.end()) { ReportError( error_reporter, "Output tensor %d to op %d (%s) is a variable", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (subgraph_input_tensors.find(output_idx) != subgraph_input_tensors.end()) { ReportError(error_reporter, "Output tensor %d to op %d (%s) is a subgraph input", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (output_tensors.find(output_idx) != output_tensors.end()) { ReportError(error_reporter, "Output tensor %d to op %d (%s) is an output from " "another op. There is a cycle in the graph", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } output_tensors.insert(output_idx); } } } return true; } bool VerifySubGraphs(const Model& model, ErrorReporter* error_reporter) { if (!model.subgraphs()) { ReportError(error_reporter, "Missing 'subgraphs' section."); return false; } for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->operators()) { ReportError(error_reporter, "Missing 'operators' section in subgraph."); return false; } if (!VerifyOperators(*subgraph->operators(), error_reporter)) { return false; } if (!VerifySubGraphConsistency(model, *subgraph, error_reporter)) { return false; } } return true; } bool VerifyTensors(const Model& model, ErrorReporter* error_reporter) { if (!model.subgraphs()) { return true; } if (!model.buffers()) { ReportError(error_reporter, "Missing 'buffers' section."); return false; } for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->tensors()) { continue; } for (const auto* tensor : *subgraph->tensors()) { if (!tensor->buffer()) { continue; } if (tensor->buffer() >= model.buffers()->size()) { ReportError(error_reporter, "Tensor %s invalid buffer index: %d", NameOrEmptyString(tensor->name()), tensor->buffer()); return false; } auto* buffer = model.buffers()->Get(tensor->buffer()); if (!buffer) { ReportError(error_reporter, "Tensor %s buffer %d not set", NameOrEmptyString(tensor->name()), tensor->buffer()); return false; } if (buffer->data()) { if (tensor->type() == TensorType_STRING) { if (!VerifyStringTensorBuffer(*tensor, *buffer, error_reporter)) { return false; } } else { if (!VerifyNumericTensorBuffer(*tensor, *buffer, error_reporter)) { return false; } } } } } return true; } bool VerifyOps(const Model& model, const OpResolver& resolver, ErrorReporter* error_reporter) { if (!model.operator_codes()) { return true; } absl::flat_hash_set<int> regular_code_indices; absl::flat_hash_set<int> validation_code_indices; for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->operators()) { continue; } if (subgraph->name() && IsValidationSubgraph(subgraph->name()->c_str())) { for (const auto& op : *(subgraph->operators())) { validation_code_indices.insert(op->opcode_index()); } } else { for (const auto* op : *(subgraph->operators())) { regular_code_indices.insert(op->opcode_index()); } } } for (int i = 0; i < model.operator_codes()->size(); i++) { const auto* opcode = model.operator_codes()->Get(i); auto builtin_code = GetBuiltinCode(opcode); if (builtin_code < BuiltinOperator_MIN || builtin_code > BuiltinOperator_MAX) { ReportError(error_reporter, "Operator id '%d' is out of range.", builtin_code); return false; } if (builtin_code == BuiltinOperator_CUSTOM) { if (IsNullOrEmptyString(opcode->custom_code())) { ReportError(error_reporter, "Invalid custom op name, cannot be null/empty."); return false; } else if (!resolver.FindOp(opcode->custom_code()->c_str(), opcode->version())) { if (regular_code_indices.contains(i) || !validation_code_indices.contains(i)) { ReportError(error_reporter, "Unsupported custom op: %s, version: %d", opcode->custom_code()->c_str(), opcode->version()); return false; } } } else { if (!resolver.FindOp(builtin_code, opcode->version())) { ReportError(error_reporter, "Unsupported builtin op: %s, version: %d", EnumNameBuiltinOperator(builtin_code), opcode->version()); return false; } } } return true; } bool VerifyModel(const Model* model, ErrorReporter* error_reporter) { if (model == nullptr) { ReportError(error_reporter, "Invalid flatbuffer format"); return false; } if (model->version() != TFLITE_SCHEMA_VERSION) { ReportError(error_reporter, "Invalid model version %d", model->version()); return false; } if (!VerifySubGraphs(*model, error_reporter)) { return false; } if (!VerifyTensors(*model, error_reporter)) { return false; } return true; } } bool Verify(const void* buf, size_t len, ErrorReporter* error_reporter) { const Model* model = internal::VerifyFlatBufferAndGetModel(buf, len); return VerifyModel(model, error_reporter); } bool Verify(const void* buf, size_t len, const OpResolver& resolver, ErrorReporter* error_reporter) { const Model* model = internal::VerifyFlatBufferAndGetModel(buf, len); if (!VerifyModel(model, error_reporter)) { return false; } if (!VerifyOps(*model, resolver, error_reporter)) { return false; } return true; } }
#include "tensorflow/lite/core/tools/verifier.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include "tensorflow/lite/error_reporter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/util.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { static const char* kSparseTensorTestModel = "tensorflow/lite/testdata/sparse_tensor.bin"; } class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ = vsnprintf(buffer_, kBufferSize, format, args); return buffer_size_; } int GetBufferSize() { return buffer_size_; } string GetAsString() const { return string(buffer_, buffer_size_); } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; class TfLiteFlatbufferModelBuilder { public: TfLiteFlatbufferModelBuilder() { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); } TfLiteFlatbufferModelBuilder(const std::vector<BuiltinOperator>& builtin_ops, const std::vector<std::string>& custom_ops) { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); for (const auto& iter : builtin_ops) { resolver_.AddBuiltin(iter, &fake_op_); } for (const auto& iter : custom_ops) { resolver_.AddCustom(iter.data(), &fake_op_); } } void AddTensor(const std::vector<int>& shape, tflite::TensorType type, const std::vector<uint8_t>& buffer, const char* name, const bool is_variable = false) { int buffer_index = 0; if (!buffer.empty()) { buffer_index = buffers_.size(); buffers_.push_back(CreateBuffer(builder_, builder_.CreateVector(buffer))); } if (shape.empty()) { tensors_.push_back(CreateTensorDirect(builder_, nullptr, type, buffer_index, name, 0, is_variable)); return; } tensors_.push_back(CreateTensorDirect(builder_, &shape, type, buffer_index, name, 0, is_variable)); } void AddOperator(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, tflite::BuiltinOperator builtin_op, const char* custom_op) { operator_codes_.push_back( CreateOperatorCodeDirect(builder_, builtin_op, custom_op)); operators_.push_back(CreateOperator( builder_, operator_codes_.size() - 1, builder_.CreateVector(inputs), builder_.CreateVector(outputs), BuiltinOptions_NONE, 0, 0, tflite::CustomOptionsFormat_FLEXBUFFERS)); } enum BuilderMode { kBuilderModeEmptyVectorIsEmpty, kBuilderModeEmptyVectorIsNull, kBuilderModeDefault = kBuilderModeEmptyVectorIsEmpty, }; void FinishModel(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, BuilderMode mode = kBuilderModeDefault) { auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>({CreateSubGraph( builder_, CreateVector(tensors_, mode), CreateVector(inputs, mode), CreateVector(outputs, mode), CreateVector(operators_, mode), builder_.CreateString("test_subgraph"))}); auto result = CreateModel( builder_, TFLITE_SCHEMA_VERSION, CreateVector(operator_codes_, mode), CreateVector(subgraph, mode), builder_.CreateString("test_model"), CreateVector(buffers_, mode)); tflite::FinishModelBuffer(builder_, result); } bool Verify() { return tflite::Verify(builder_.GetBufferPointer(), builder_.GetSize(), &mock_reporter_); } bool VerifyWithOpResolver() { return tflite::Verify(builder_.GetBufferPointer(), builder_.GetSize(), resolver_, &mock_reporter_); } string GetErrorString() { return mock_reporter_.GetAsString(); } private: template <typename T> flatbuffers::Offset<flatbuffers::Vector<T>> CreateVector( const std::vector<T>& v, BuilderMode mode) { if (mode == kBuilderModeEmptyVectorIsNull && v.empty()) { return 0; } return builder_.CreateVector(v); } flatbuffers::FlatBufferBuilder builder_; MutableOpResolver resolver_; TfLiteRegistration fake_op_{}; MockErrorReporter mock_reporter_; std::vector<flatbuffers::Offset<Operator>> operators_; std::vector<flatbuffers::Offset<OperatorCode>> operator_codes_; std::vector<flatbuffers::Offset<Tensor>> tensors_; std::vector<flatbuffers::Offset<Buffer>> buffers_; }; TEST(VerifyModel, TestEmptyModel) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Missing 'subgraphs' section.")); } TEST(VerifyModel, TestEmptyVector) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {3}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor({}, TensorType_UINT8, {}, "empty_vector"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {3}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); } TEST(VerifyModel, TestSimpleModel) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TestNullTensors) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.FinishModel( {}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ(builder.GetErrorString(), "Input tensor 0 to op 0 (CUSTOM) is not produced"); } TEST(VerifyModel, TestNullOperators) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.FinishModel( {0, 1}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Missing 'operators' section in subgraph")); } TEST(VerifyModel, TestNullInputs) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel( {}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TestCorruptedData) { std::string model = "123"; MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(model.data(), model.size(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Invalid flatbuffer format")); } TEST(VerifyModel, TestUnsupportedVersion) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, 1, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Invalid model version 1")); } TEST(VerifyModel, TestRandomModificationIsNotAllowed) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); std::string model_content(reinterpret_cast<char*>(builder.GetBufferPointer()), builder.GetSize()); for (size_t i = 0; i < model_content.size(); i++) { model_content[i] = (model_content[i] + 137) % 255; EXPECT_FALSE(Verify(model_content.data(), model_content.size(), MutableOpResolver{}, DefaultErrorReporter())) << "Fail at position: " << i; } } TEST(VerifyModel, TestIntTensorShapeIsGreaterThanBuffer) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires 6 bytes, but is " "allocated with 4 bytes buffer")); } TEST(VerifyModel, TestIntTensorShapeIsSmallerThanBuffer) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2, 1}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires 2 bytes, but is " "allocated with 4 bytes buffer")); } TEST(VerifyModel, TestIntTensorShapeOverflow) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({1024, 2048, 4096}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input dimension overflow")); } TEST(VerifyModel, TensorBufferIsNotValid) { flatbuffers::FlatBufferBuilder builder; std::vector<int> shape = {2, 3}; auto tensors = builder.CreateVector(std::vector<flatbuffers::Offset<Tensor>>{ CreateTensorDirect(builder, &shape, TensorType_INT32, 2, "input", 0)}); auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>( {CreateSubGraph(builder, tensors, 0, 0, 0, builder.CreateString("Main"))}); auto buffers = builder.CreateVector(std::vector<flatbuffers::Offset<Buffer>>{ CreateBuffer(builder, builder.CreateVector( std::vector<uint8_t>{1, 2, 3, 4, 5, 6})), }); auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, builder.CreateVector(subgraph), builder.CreateString("SmartReply"), buffers); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT( mock_reporter.GetAsString(), ::testing::ContainsRegex("Missing 'operators' section in subgraph.")); } TEST(VerifyModel, StringTensorIsEmpty) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2}, TensorType_STRING, {0x00}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ(builder.GetErrorString(), "String tensor input is invalid (empty)"); } TEST(VerifyModel, StringTensorHasInvalidNumString) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {0x00, 0x00, 0x00, 0x20, 16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer requires at least -2147483640 bytes, " "but is allocated with 18 bytes")); } TEST(VerifyModel, StringTensorOffsetTooSmall) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 12, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer initial offset must be: 16")); } TEST(VerifyModel, StringTensorOffsetOutOfRange) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 22, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer is invalid: index 2")); } TEST(VerifyModel, StringTensorIsLargerThanRequired) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B', 'C'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer last offset must be 19")); } TEST(VerifyModel, AllOpsAreSupported) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output1"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output2"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.AddOperator({0, 1}, {3}, BuiltinOperator_CUSTOM, "CustomOp"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, UseUnsupportedBuiltinOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_SUB}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Unsupported builtin op: ADD, version: 1")); } TEST(VerifyModel, UseUnsupportedCustomOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"NewOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "Not supported"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "Unsupported custom op: Not supported, version: 1")); } TEST(VerifyModel, UseUnnamedCustomOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"NewOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, ""); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "Invalid custom op name, cannot be null/empty.")); } TEST(VerifyModel, UnpopulatedInputToOp) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({1, 2}, {3}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor({2, 3}, TensorType_UINT8, {}, "invalid_input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 2}, {3}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Input tensor 1 to op 0 (CUSTOM) is not produced", builder.GetErrorString()); } TEST(VerifyModel, MultipleOpsOutputToSameTensor) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output1"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "CustomOp"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ( "Output tensor 2 to op 1 (CUSTOM) is an output from another op. " "There is a cycle in the graph", builder.GetErrorString()); } TEST(VerifyModel, OutputIsAConstantTensor) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {1, 2, 3, 4, 5, 6}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a constant", builder.GetErrorString()); } TEST(VerifyModel, OutputIsSubgraphInput) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1, 2}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a subgraph input", builder.GetErrorString()); } TEST(VerifyModel, OutputIsAVariable) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output", true); builder.FinishModel({0, 1}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a variable", builder.GetErrorString()); } TEST(VerifyModel, OpWithOptionalTensor) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({kTfLiteOptionalTensor, 0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TypedTensorShapeMismatchWithTensorBufferSize) { TfLiteFlatbufferModelBuilder builder; for (int tensor_type = TensorType_MIN; tensor_type <= TensorType_MAX; ++tensor_type) { if (tensor_type == TensorType_STRING) continue; builder.AddTensor({2, 3}, static_cast<TensorType>(tensor_type), {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires .* bytes, but is " "allocated with 4 bytes buffer")); } } TEST(VerifyModel, TypedTensorShapeMatchesTensorBufferSize) { TfLiteFlatbufferModelBuilder builder; for (int tensor_type = TensorType_MIN; tensor_type <= TensorType_MAX; ++tensor_type) { if (tensor_type == TensorType_STRING || tensor_type == TensorType_RESOURCE || tensor_type == TensorType_VARIANT) continue; TfLiteType lite_type = kTfLiteNoType; ASSERT_EQ(ConvertTensorType(static_cast<TensorType>(tensor_type), &lite_type, nullptr), kTfLiteOk); size_t size_bytes = 0; ASSERT_EQ(GetSizeOfType(nullptr, lite_type, &size_bytes), kTfLiteOk); std::vector<uint8_t> buffer(size_bytes); builder.AddTensor({1}, static_cast<TensorType>(tensor_type), buffer, "input"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); } } TEST(VerifyModel, SimpleValidSparseTensor) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_TRUE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_TRUE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); } TEST(VerifyModel, InvalidSparseTensorMissingBlockMap) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->block_map = {}; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, InvalidSparseTensorIndexOutOfBound) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->dim_metadata[1]->array_indices.AsUint8Vector()->values[1] = 5; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, InvalidSparseTensorInvalidBuffer) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); scoped_model->buffers[1]->data = {0, 1, 2, 3, 4, 5, 6, 7}; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex( "requires 12 bytes, but is allocated with 8 bytes buffer")); } TEST(VerifyModel, InvalidSparseTensorInvalidTraversalOrder) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->traversal_order[0] = 10; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, ValidSparseTensorBCSC) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->traversal_order = {1, 0, 3, 2}; tensor->sparsity->block_map = {0, 1}; tensor->sparsity->dim_metadata[0]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[0]->dense_size = 2; tensor->sparsity->dim_metadata[1]->format = DimensionType_SPARSE_CSR; tensor->sparsity->dim_metadata[1]->array_segments.AsUint8Vector()->values = { 0, 1, 3}; tensor->sparsity->dim_metadata[1]->array_indices.AsUint8Vector()->values = { 0, 0, 1}; tensor->sparsity->dim_metadata[2]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[2]->dense_size = 2; tensor->sparsity->dim_metadata[3]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[3]->dense_size = 2; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_TRUE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_TRUE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/tools/verifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/tools/verifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
111cb924-fbfa-4fec-8fee-aef598b480b7
cpp
tensorflow/tensorflow
verifier_internal
tensorflow/lite/core/tools/verifier_internal.cc
tensorflow/lite/core/tools/verifier_internal_test.cc
#include "tensorflow/lite/core/tools/verifier_internal.h" #include <stddef.h> #include <stdint.h> #include "flatbuffers/verifier.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace internal { const Model* VerifyFlatBufferAndGetModel(const void* buf, size_t len) { ::flatbuffers::Verifier verifier(static_cast<const uint8_t*>(buf), len); if (VerifyModelBuffer(verifier)) { return ::tflite::GetModel(buf); } else { return nullptr; } } } }
#include "tensorflow/lite/core/tools/verifier_internal.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" namespace tflite { class TfLiteFlatbufferModelBuilder { public: TfLiteFlatbufferModelBuilder() { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); } TfLiteFlatbufferModelBuilder(const std::vector<BuiltinOperator>& builtin_ops, const std::vector<std::string>& custom_ops) { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); for (const auto& iter : builtin_ops) { resolver_.AddBuiltin(iter, &fake_op_); } for (const auto& iter : custom_ops) { resolver_.AddCustom(iter.data(), &fake_op_); } } void AddTensor(const std::vector<int>& shape, tflite::TensorType type, const std::vector<uint8_t>& buffer, const char* name, const bool is_variable = false) { int buffer_index = 0; if (!buffer.empty()) { buffer_index = buffers_.size(); buffers_.push_back(CreateBuffer(builder_, builder_.CreateVector(buffer))); } if (shape.empty()) { tensors_.push_back(CreateTensorDirect(builder_, nullptr, type, buffer_index, name, 0, is_variable)); return; } tensors_.push_back(CreateTensorDirect(builder_, &shape, type, buffer_index, name, 0, is_variable)); } void AddOperator(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, tflite::BuiltinOperator builtin_op, const char* custom_op) { operator_codes_.push_back( CreateOperatorCodeDirect(builder_, builtin_op, custom_op)); operators_.push_back(CreateOperator( builder_, operator_codes_.size() - 1, builder_.CreateVector(inputs), builder_.CreateVector(outputs), BuiltinOptions_NONE, 0, 0, tflite::CustomOptionsFormat_FLEXBUFFERS)); } enum BuilderMode { kBuilderModeEmptyVectorIsEmpty, kBuilderModeEmptyVectorIsNull, kBuilderModeDefault = kBuilderModeEmptyVectorIsEmpty, }; void FinishModel(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, BuilderMode mode = kBuilderModeDefault) { auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>({CreateSubGraph( builder_, CreateVector(tensors_, mode), CreateVector(inputs, mode), CreateVector(outputs, mode), CreateVector(operators_, mode), builder_.CreateString("test_subgraph"))}); auto result = CreateModel( builder_, TFLITE_SCHEMA_VERSION, CreateVector(operator_codes_, mode), CreateVector(subgraph, mode), builder_.CreateString("test_model"), CreateVector(buffers_, mode)); tflite::FinishModelBuffer(builder_, result); } bool Verify(const void* buf, size_t length) { return tflite::internal::VerifyFlatBufferAndGetModel(buf, length); } bool Verify() { return Verify(builder_.GetBufferPointer(), builder_.GetSize()); } private: template <typename T> flatbuffers::Offset<flatbuffers::Vector<T>> CreateVector( const std::vector<T>& v, BuilderMode mode) { if (mode == kBuilderModeEmptyVectorIsNull && v.empty()) { return 0; } return builder_.CreateVector(v); } flatbuffers::FlatBufferBuilder builder_; MutableOpResolver resolver_; TfLiteRegistration fake_op_{}; std::vector<flatbuffers::Offset<Operator>> operators_; std::vector<flatbuffers::Offset<OperatorCode>> operator_codes_; std::vector<flatbuffers::Offset<Tensor>> tensors_; std::vector<flatbuffers::Offset<Buffer>> buffers_; }; TEST(VerifyModel, TestEmptyModel) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); ASSERT_TRUE(::tflite::internal::VerifyFlatBufferAndGetModel( builder.GetBufferPointer(), builder.GetSize())); } TEST(VerifyModel, TestSimpleModel) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); } TEST(VerifyModel, TestCorruptedData) { std::string model = "123"; ASSERT_FALSE(::tflite::internal::VerifyFlatBufferAndGetModel(model.data(), model.size())); } TEST(VerifyModel, TestRandomModificationIsNotAllowed) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); std::string model_content(reinterpret_cast<char*>(builder.GetBufferPointer()), builder.GetSize()); for (size_t i = 0; i < model_content.size(); i++) { model_content[i] = (model_content[i] + 137) % 255; EXPECT_FALSE(tflite::internal::VerifyFlatBufferAndGetModel( model_content.data(), model_content.size())) << "Fail at position: " << i; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/tools/verifier_internal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/tools/verifier_internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7e011ad8-1944-4d60-9a4c-0f9cc292d713
cpp
tensorflow/tensorflow
async_subgraph
tensorflow/lite/core/async/async_subgraph.cc
tensorflow/lite/core/async/async_subgraph_test.cc
#include "tensorflow/lite/core/async/async_subgraph.h" #include <vector> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace async { namespace { TfLiteAsyncKernel* GetAsyncKernel(TfLiteContext* context, const TfLiteRegistration& op_reg, TfLiteNode& node) { if (op_reg.registration_external) { auto* context_ = reinterpret_cast<TfLiteOpaqueContext*>(context); auto* node_ = reinterpret_cast<TfLiteOpaqueNode*>(&node); if (op_reg.registration_external->async_kernel_with_data) { auto user_data = op_reg.registration_external->user_data; return op_reg.registration_external->async_kernel_with_data( user_data, context_, node_); } else if (op_reg.registration_external->async_kernel) { return op_reg.registration_external->async_kernel(context_, node_); } } if (op_reg.async_kernel) { return op_reg.async_kernel(context, &node); } return nullptr; } } Subgraph* AsyncSubgraph::subgraph() const { return subgraph_; } TfLiteContext* AsyncSubgraph::context() const { return subgraph_->context(); } TfLiteOpaqueContext* AsyncSubgraph::opaque_context() const { return reinterpret_cast<TfLiteOpaqueContext*>(context()); } TfLiteAsyncKernel* AsyncSubgraph::async_kernel() const { return async_kernel_; } AsyncSubgraph::AsyncSubgraph(Subgraph* subgraph) : subgraph_(subgraph) { if (!IsFullyDelegated()) { subgraph->ReportError("Model is not fully delegated by 1 backend."); return; } auto node_index = subgraph_->execution_plan()[0]; TfLiteNode& node = subgraph_->nodes_and_registration_[node_index].first; const TfLiteRegistration& registration = subgraph_->nodes_and_registration_[node_index].second; async_kernel_ = GetAsyncKernel(context(), registration, node); if (!async_kernel_) { subgraph->ReportError("Backend does not support asynchronous execution."); return; } opaque_node_ = reinterpret_cast<TfLiteOpaqueNode*>(const_cast<TfLiteNode*>(&node)); #define POPULATE_VECTOR(io_type, accessor, dest) \ { \ const char* const* types = nullptr; \ size_t n_types = 0; \ (*async_kernel_->accessor)(async_kernel_, io_type, &types, &n_types); \ dest[io_type] = std::vector<const char*>(types, types + n_types); \ } POPULATE_VECTOR(kTfLiteIoTypeInput, supported_buffer_types, supported_buffer_types_); POPULATE_VECTOR(kTfLiteIoTypeOutput, supported_buffer_types, supported_buffer_types_); POPULATE_VECTOR(kTfLiteIoTypeInput, supported_synchronizations, supported_synchronizations_); POPULATE_VECTOR(kTfLiteIoTypeOutput, supported_synchronizations, supported_synchronizations_); #undef POPULATE_VECTOR } bool AsyncSubgraph::IsFullyDelegated() const { if (subgraph_->execution_plan().size() != 1) return false; const TfLiteNode& node = subgraph_->nodes_and_registration()[subgraph_->execution_plan()[0]].first; if (node.delegate == nullptr) return false; return true; } TfLiteStatus AsyncSubgraph::RegisterBuffer(TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (buffer == nullptr || attrs == nullptr || handle == nullptr || async_kernel() == nullptr) { return kTfLiteError; } *handle = next_buffer_handle_.fetch_add(1, std::memory_order_relaxed); return (*async_kernel_->register_buffer)( async_kernel_, reinterpret_cast<TfLiteOpaqueContext*>(context()), io_type, buffer, attrs, *handle); } TfLiteStatus AsyncSubgraph::RegisterBufferSlice(TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (attrs == nullptr || handle == nullptr || async_kernel() == nullptr) { return kTfLiteError; } *handle = next_buffer_handle_.fetch_add(1, std::memory_order_relaxed); return (*async_kernel_->register_buffer_slice)( async_kernel_, opaque_context(), buffer_pool, attrs, *handle); } TfLiteStatus AsyncSubgraph::UnregisterBuffer(TfLiteBufferHandle handle) { if (async_kernel() == nullptr) return kTfLiteError; return (*async_kernel_->unregister_buffer)(async_kernel_, opaque_context(), handle); } const std::vector<const char*>& AsyncSubgraph::SupportedBufferTypes( TfLiteIoType io_type) const { return supported_buffer_types_.at(io_type); } const std::vector<const char*>& AsyncSubgraph::SupportedSynchronizations( TfLiteIoType io_type) const { return supported_synchronizations_.at(io_type); } bool AsyncSubgraph::ReconcileRestrictions( int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) const { if (user_provided_attributes == nullptr || merged == nullptr || async_kernel() == nullptr) { return false; } if (tensor_index < 0 || tensor_index >= subgraph_->tensors_size()) { return false; } return (*async_kernel_->reconcile_restrictions)( async_kernel_, opaque_context(), opaque_node_, tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus AsyncSubgraph::SetAttributes(int tensor_index, const TfLiteAttributeMap* attrs) { if (attrs == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (tensor_index < 0 || tensor_index >= subgraph_->tensors_size()) { return kTfLiteError; } return (*async_kernel_->set_attributes)(async_kernel_, opaque_context(), opaque_node_, tensor_index, attrs); } TfLiteStatus AsyncSubgraph::SetBufferAttributes( const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs) { return (*async_kernel_->set_buffer_attributes)(async_kernel_, buffer, attrs); } TfLiteStatus AsyncSubgraph::GetBufferAttributes( const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs) { return (*async_kernel_->get_buffer_attributes)(async_kernel_, buffer, attrs); } TfLiteStatus AsyncSubgraph::Prepare() { if (async_kernel() == nullptr) return kTfLiteError; return (*async_kernel_->prepare)(async_kernel_, opaque_context(), opaque_node_); } TfLiteExecutionTask* AsyncSubgraph::CreateTask() { return new TfLiteExecutionTask; } TfLiteStatus AsyncSubgraph::InvokeAsync(TfLiteExecutionTask* task) { if (task == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (task->task->SetScheduled(true)) { TFLITE_LOG(tflite::TFLITE_LOG_ERROR, "The task has already been scheduled for execution."); return kTfLiteError; } auto ret = (*async_kernel_->eval)(async_kernel_, opaque_context(), opaque_node_, task); task->task->SetStatus(ret); return ret; } TfLiteStatus AsyncSubgraph::Wait(TfLiteExecutionTask* task) { if (task == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (!task->task->Scheduled()) { return task->task->Status(); } auto ret = (*async_kernel_->wait)(async_kernel_, opaque_context(), task); task->task->SetStatus(ret); task->task->SetScheduled(false); return ret; } TfLiteStatus AsyncSubgraph::Finish(TfLiteExecutionTask* task) { if (async_kernel() == nullptr) return kTfLiteError; auto ret = (*async_kernel_->finish)(async_kernel_, opaque_context(), task); if (ret != kTfLiteOk) { subgraph_->ReportError("Failed to finish task."); } delete task; return ret; } } }
#include "tensorflow/lite/core/async/async_subgraph.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" #include "tensorflow/lite/core/async/testing/test_backend.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" using ::testing::_; namespace tflite { namespace async { class AsyncSubgraphTestPeer { public: explicit AsyncSubgraphTestPeer(AsyncSubgraph* subgraph) : subgraph_(subgraph) {} bool IsFullyDelegated() const { return subgraph_->IsFullyDelegated(); } private: AsyncSubgraph* subgraph_; }; class AsyncSubgraphTest : public ::testing::Test { protected: void SetUp() override { kernel_ = std::make_unique<testing::MockAsyncKernel>(); backend_ = std::make_unique<testing::TestBackend>(kernel_->kernel()); interpreter_ = std::make_unique<Interpreter>(); interpreter_->AddTensors(5); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({3, 4}); TfLiteQuantizationParams quant; interpreter_->SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(4, kTfLiteFloat32, "", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); void* builtin_data_2 = malloc(sizeof(int)); void* builtin_data_3 = malloc(sizeof(int)); interpreter_->AddNodeWithParameters({0, 0}, {2}, nullptr, 0, builtin_data_1, reg); interpreter_->AddNodeWithParameters({1, 1}, {3}, nullptr, 0, builtin_data_2, reg); interpreter_->AddNodeWithParameters({2, 1}, {4}, nullptr, 0, builtin_data_3, reg); } void BuildAsyncSubgraph() { interpreter_->ModifyGraphWithDelegate(backend_->get_delegate()); subgraph_ = std::make_unique<AsyncSubgraph>(interpreter_->subgraph(0)); } void TearDown() override { subgraph_.reset(); } protected: std::unique_ptr<testing::MockAsyncKernel> kernel_; std::unique_ptr<testing::TestBackend> backend_; std::unique_ptr<Interpreter> interpreter_; std::unique_ptr<AsyncSubgraph> subgraph_; }; TEST_F(AsyncSubgraphTest, FullyDelegated) { BuildAsyncSubgraph(); EXPECT_TRUE(AsyncSubgraphTestPeer(subgraph_.get()).IsFullyDelegated()); } TEST_F(AsyncSubgraphTest, NotFullyDelegated) { backend_->SetMinPartitionedNodes(42); BuildAsyncSubgraph(); EXPECT_FALSE(AsyncSubgraphTestPeer(subgraph_.get()).IsFullyDelegated()); } TEST_F(AsyncSubgraphTest, BasicTest) { BuildAsyncSubgraph(); EXPECT_CALL(*kernel_, RegisterBuffer(_, _, _, _, _)); EXPECT_CALL(*kernel_, RegisterBufferSlice(_, _, _, _)); EXPECT_CALL(*kernel_, UnregisterBuffer(_, _)); EXPECT_CALL(*kernel_, ReconcileRestrictions(_, _, _, _, _, _)); EXPECT_CALL(*kernel_, SetAttributes(_, _, _, _)); EXPECT_CALL(*kernel_, Prepare(_, _)); EXPECT_CALL(*kernel_, Eval(_, _, _)); EXPECT_CALL(*kernel_, Wait(_, _)); EXPECT_CALL(*kernel_, Finish(_, _)); auto* buffer = TfLiteBackendBufferCreate(); auto* attrs = new TfLiteAttributeMap(kTfLiteAttrMapTypeBuffer); TfLiteBufferHandle handle = 1; TfLiteBufferHandle another_handle = 1; auto* task = new TfLiteExecutionTask; EXPECT_FALSE(task->task->Scheduled()); subgraph_->RegisterBuffer(kTfLiteIoTypeInput, buffer, attrs, &handle); subgraph_->RegisterBufferSlice(handle, attrs, &another_handle); subgraph_->UnregisterBuffer(handle); subgraph_->ReconcileRestrictions(0, attrs, attrs, attrs); subgraph_->SetAttributes(0, attrs); subgraph_->Prepare(); EXPECT_EQ(kTfLiteOk, subgraph_->InvokeAsync(task)); EXPECT_TRUE(task->task->Scheduled()); EXPECT_EQ(kTfLiteError, subgraph_->InvokeAsync(task)); EXPECT_TRUE(task->task->Scheduled()); EXPECT_EQ(kTfLiteOk, task->task->Status()); EXPECT_EQ(kTfLiteOk, subgraph_->Wait(task)); task->task->SetStatus(kTfLiteError); EXPECT_EQ(kTfLiteError, subgraph_->Wait(task)); EXPECT_EQ(kTfLiteError, subgraph_->Wait(task)); EXPECT_FALSE(task->task->Scheduled()); subgraph_->Finish(task); TfLiteBackendBufferDelete(buffer); delete attrs; EXPECT_NE(handle, another_handle); } TEST_F(AsyncSubgraphTest, OutOfBoundTest) { BuildAsyncSubgraph(); auto* attrs = new TfLiteAttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(subgraph_->ReconcileRestrictions(42, attrs, attrs, attrs)); EXPECT_EQ(kTfLiteError, subgraph_->SetAttributes(42, attrs)); delete attrs; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/async_subgraph.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/async_subgraph_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
831eba5a-1e8a-4c10-b485-c8cc4caf6274
cpp
tensorflow/tensorflow
task_internal
tensorflow/lite/core/async/task_internal.cc
tensorflow/lite/core/async/task_internal_test.cc
#include "tensorflow/lite/core/async/task_internal.h" #include <cstdint> #include <map> #include <memory> #include <string> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace async { bool ExecutionTask::GetTensorIdx(TfLiteIoType io_type, const char* name, int* idx) const { const std::map<std::string, uint32_t>* map = nullptr; if (io_type == kTfLiteIoTypeInput) { map = input_name_to_idx_; } else { map = output_name_to_idx_; } if (!map) return false; if (auto it_idx = map->find(name); it_idx != map->end()) { *idx = it_idx->second; return true; } return false; } TfLiteBufferHandle ExecutionTask::GetBufferHandle(TfLiteIoType io_type, const char* name) const { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteNullBufferHandle; } return GetBufferHandle(index); } TfLiteBufferHandle ExecutionTask::GetBufferHandle(int tensor_index) const { if (auto it = io_data_.find(tensor_index); it != io_data_.end()) { return it->second.buf; } return kTfLiteNullBufferHandle; } TfLiteStatus ExecutionTask::SetBufferHandle(TfLiteIoType io_type, const char* name, TfLiteBufferHandle handle) { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteError; } return SetBufferHandle(index, handle); } TfLiteStatus ExecutionTask::SetBufferHandle(int tensor_index, TfLiteBufferHandle handle) { io_data_[tensor_index].buf = handle; return kTfLiteOk; } TfLiteSynchronization* ExecutionTask::GetSynchronization( TfLiteIoType io_type, const char* name) const { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return nullptr; } return GetSynchronization(index); } TfLiteSynchronization* ExecutionTask::GetSynchronization( int tensor_index) const { if (auto it = io_data_.find(tensor_index); it != io_data_.end()) { return it->second.sync; } return nullptr; } TfLiteStatus ExecutionTask::SetSynchronization(TfLiteIoType io_type, const char* name, TfLiteSynchronization* sync) { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteError; } return SetSynchronization(index, sync); } TfLiteStatus ExecutionTask::SetSynchronization(int tensor_index, TfLiteSynchronization* sync) { io_data_[tensor_index].sync = sync; return kTfLiteOk; } } } TfLiteExecutionTask::TfLiteExecutionTask() { task = std::make_unique<tflite::async::ExecutionTask>(); }
#include "tensorflow/lite/core/async/task_internal.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite::async { TEST(TfLiteExecutionTaskTest, BasicTest) { tflite::async::ExecutionTask task; tflite::async::ExecutionTask::TensorNameMapT input_names; input_names["x"] = 1; input_names["y"] = 2; tflite::async::ExecutionTask::TensorNameMapT output_names; output_names["a"] = 3; task.SetInputNameMap(&input_names); task.SetOutputNameMap(&output_names); auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, task.SetSynchronization(kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ(42, task.GetBufferHandle(kTfLiteIoTypeInput, "x")); EXPECT_EQ(43, task.GetBufferHandle(kTfLiteIoTypeInput, "y")); EXPECT_EQ(44, task.GetBufferHandle(kTfLiteIoTypeOutput, "a")); EXPECT_EQ(sync, task.GetSynchronization(kTfLiteIoTypeInput, "x")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeInput, "y")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "a")); TfLiteSynchronizationDelete(sync); } TEST(TfLiteExecutionTaskTest, NameMapUninitialized) { tflite::async::ExecutionTask task; EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeInput, "foo")); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeOutput, "foo")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "foo")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "foo")); } TEST(TfLiteExecutionTaskTest, NoMatchingName) { tflite::async::ExecutionTask task; tflite::async::ExecutionTask::TensorNameMapT input_names; input_names["x"] = 1; input_names["y"] = 2; tflite::async::ExecutionTask::TensorNameMapT output_names; output_names["a"] = 3; task.SetInputNameMap(&input_names); task.SetOutputNameMap(&output_names); auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteError, task.SetBufferHandle(kTfLiteIoTypeInput, "xx", 42)); EXPECT_EQ(kTfLiteError, task.SetBufferHandle(kTfLiteIoTypeOutput, "aa", 44)); EXPECT_EQ(kTfLiteError, task.SetSynchronization(kTfLiteIoTypeInput, "xx", sync)); EXPECT_EQ(kTfLiteError, task.SetSynchronization(kTfLiteIoTypeOutput, "aa", sync)); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeInput, "xx")); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeOutput, "aa")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeInput, "xx")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "aa")); TfLiteSynchronizationDelete(sync); } TEST(TfLiteExecutionTaskTest, DelegateData) { TfLiteAsyncKernel kernel{}; int data = 0; tflite::async::ExecutionTask task; EXPECT_EQ(nullptr, task.GetDelegateExecutionData(&kernel)); task.SetDelegateExecutionData(&kernel, &data); EXPECT_EQ(&data, task.GetDelegateExecutionData(&kernel)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/task_internal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/task_internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
22e618cf-019a-4ec3-904c-f4d326d6e1d6
cpp
tensorflow/tensorflow
async_signature_runner
tensorflow/lite/core/async/c/async_signature_runner.cc
tensorflow/lite/core/async/c/async_signature_runner_test.cc
#include "tensorflow/lite/core/async/c/async_signature_runner.h" #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/core/async/async_signature_runner.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/c/c_api_types.h" TfLiteAsyncSignatureRunner* TfLiteInterpreterGetAsyncSignatureRunner( const TfLiteInterpreter* interpreter, const char* signature_key) { if (!interpreter) return nullptr; tflite::async::AsyncSignatureRunner* runner = interpreter->impl->GetAsyncSignatureRunner(signature_key); if (!runner) return nullptr; return new TfLiteAsyncSignatureRunner{runner}; } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBuffer(io_type, buffer, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBufferSlice( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBufferSlice(buffer_pool, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerUnregisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->UnregisterBuffer(handle); } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& buffer_types = async_signature_runner->impl->SupportedBufferTypes(io_type); *types = buffer_types.data(); *num_types = buffer_types.size(); return kTfLiteOk; } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& synchronization_types = async_signature_runner->impl->SupportedSynchronizations(io_type); *types = synchronization_types.data(); *num_types = synchronization_types.size(); return kTfLiteOk; } bool TfLiteAsyncSignatureRunnerReconcileRestrictions( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( io_type, name, user_provided_attributes, merged, conflict); } bool TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( const TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributes( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(io_type, name, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributesByIndex( TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(tensor_index, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerPrepareBackends( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->PrepareBackends(); } TfLiteExecutionTask* TfLiteAsyncSignatureRunnerCreateTask( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->CreateTask(); } TfLiteStatus TfLiteAsyncSignatureRunnerInvokeAsync( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->InvokeAsync(task); } TfLiteStatus TfLiteAsyncSignatureRunnerWait( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Wait(task); } TfLiteStatus TfLiteAsyncSignatureRunnerFinish( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Finish(task); } size_t TfLiteAsyncSignatureRunnerGetInputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->input_size(); } const char* TfLiteAsyncSignatureRunnerGetInputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t input_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetInputCount(async_signature_runner); if (input_index < 0 || input_index >= count) { return nullptr; } const auto& input_names = async_signature_runner->impl->input_names(); if (input_index >= input_names.size()) { return nullptr; } return input_names[input_index]; } size_t TfLiteAsyncSignatureRunnerGetOutputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->output_size(); } const char* TfLiteAsyncSignatureRunnerGetOutputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t output_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetOutputCount(async_signature_runner); if (output_index < 0 || output_index >= count) { return nullptr; } const auto& output_names = async_signature_runner->impl->output_names(); if (output_index >= output_names.size()) { return nullptr; } return async_signature_runner->impl->output_names()[output_index]; } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetInputTensor( TfLiteAsyncSignatureRunner* async_signature_runner, const char* input_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->input_tensor(input_name); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetOutputTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, const char* output_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->output_tensor(output_name); } void TfLiteAsyncSignatureRunnerDelete( TfLiteAsyncSignatureRunner* signature_runner) { delete signature_runner; } const int* TfLiteAsyncSignatureRunnerInputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->inputs().data(); } const int* TfLiteAsyncSignatureRunnerOutputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->outputs().data(); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, int index) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->tensor(index); }
#include "tensorflow/lite/core/async/c/async_signature_runner.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" #include "tensorflow/lite/core/async/testing/test_backend.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/interpreter_test_util.h" using ::testing::_; using ::testing::Return; namespace tflite { namespace async { class AsyncSignatureRunnerTest : public InterpreterTest, public ::testing::WithParamInterface<bool> { protected: void SetUp() override { kernel_ = std::make_unique<::testing::StrictMock<testing::MockAsyncKernel>>(); backend_ = std::make_unique<testing::TestBackend>(kernel_->kernel()); auto interpreter = std::make_unique<Interpreter>(); interpreter->AddTensors(2); interpreter->SetInputs({0}); interpreter->SetOutputs({1}); TfLiteQuantizationParams quant; interpreter->SetTensorParametersReadWrite(0, kTfLiteFloat32, "x", {3}, quant); interpreter->SetTensorParametersReadWrite(1, kTfLiteFloat32, "a", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); interpreter->AddNodeWithParameters({0, 0}, {1}, nullptr, 0, builtin_data_1, reg); tflite_interpreter_.impl = std::move(interpreter); } void BuildRunner(bool has_signature) { auto* interpreter = tflite_interpreter_.impl.get(); if (has_signature) { const char kSignatureKey[] = "serving_default"; BuildSignature(interpreter, kSignatureKey, {{"input", 0}}, {{"output", 1}}); interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, kSignatureKey); } else { interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, nullptr); } ASSERT_NE(nullptr, runner_); } void TearDown() override { TfLiteAsyncSignatureRunnerDelete(runner_); } protected: TfLiteAsyncSignatureRunner* runner_ = nullptr; std::unique_ptr<::testing::StrictMock<testing::MockAsyncKernel>> kernel_; std::unique_ptr<testing::TestBackend> backend_; internal::SignatureDef signature_def_; TfLiteInterpreter tflite_interpreter_{}; }; INSTANTIATE_TEST_SUITE_P(AsyncSignatureRunnerTest, AsyncSignatureRunnerTest, ::testing::Bool()); TEST_P(AsyncSignatureRunnerTest, RegisterBufferTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, RegisterBuffer(_, _, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, RegisterBufferSlice(_, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, UnregisterBuffer(_, _)).WillOnce(Return(kTfLiteOk)); TfLiteBufferHandle handle; auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); auto* buf = TfLiteBackendBufferCreate(); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBuffer( runner_, kTfLiteIoTypeInput, buf, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBufferSlice( runner_, handle, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerUnregisterBuffer(runner_, handle)); TfLiteAttributeMapDelete(attr); TfLiteBackendBufferDelete(buf); } TEST_P(AsyncSignatureRunnerTest, SupportedTypesTest) { BuildRunner(GetParam()); const char* const* buffer_types = nullptr; size_t num_buffer_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( runner_, kTfLiteIoTypeInput, &buffer_types, &num_buffer_types)); EXPECT_EQ(1, num_buffer_types); EXPECT_STREQ("buffer_type", buffer_types[0]); const char* const* sync_types = nullptr; size_t num_sync_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( runner_, kTfLiteIoTypeInput, &sync_types, &num_sync_types)); EXPECT_EQ(1, num_sync_types); EXPECT_STREQ("sync_type", sync_types[0]); } TEST_P(AsyncSignatureRunnerTest, ReconcileTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_CALL(*kernel_, ReconcileRestrictions(_, _, _, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*kernel_, SetAttributes(_, _, _, _)).WillOnce(Return(kTfLiteOk)); auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); if (has_signature) { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictions( runner_, kTfLiteIoTypeInput, "input", attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributes( runner_, kTfLiteIoTypeInput, "input", attr)); } else { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( runner_, 0, attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributesByIndex(runner_, 0, attr)); } TfLiteAttributeMapDelete(attr); } TEST_P(AsyncSignatureRunnerTest, ExecutionTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, Prepare(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Eval(_, _, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Wait(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Finish(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerPrepareBackends(runner_)); auto* task = TfLiteAsyncSignatureRunnerCreateTask(runner_); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerInvokeAsync(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerWait(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerFinish(runner_, task)); } TEST_P(AsyncSignatureRunnerTest, InputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); if (has_signature) { EXPECT_STREQ("input", TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_STREQ( "x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "input"))); } else { EXPECT_STREQ("x", TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_STREQ("x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "x"))); } } TEST_P(AsyncSignatureRunnerTest, OutputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); if (has_signature) { EXPECT_STREQ("output", TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_STREQ( "a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "output"))); } else { EXPECT_STREQ("a", TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_STREQ("a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "a"))); } } TEST_P(AsyncSignatureRunnerTest, InputByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerInputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, OutputsByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerOutputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, IndexOutOfBound) { BuildRunner(GetParam()); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetTensor(runner_, 42)); } TEST(AsyncSignatureRunnerTest, TestNoSignatures) { TfLiteModel* model = TfLiteModelCreateFromFile( "third_party/tensorflow/lite/testdata/no_signatures.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); auto kernel = std::make_unique<::testing::StrictMock<testing::MockAsyncKernel>>(); auto backend = std::make_unique<testing::TestBackend>(kernel->kernel()); TfLiteInterpreterOptionsAddDelegate(options, backend->get_delegate()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); int nun_signatures = TfLiteInterpreterGetSignatureCount(interpreter); ASSERT_EQ(nun_signatures, 0); ASSERT_EQ(TfLiteInterpreterGetAsyncSignatureRunner(interpreter, "foo"), nullptr); TfLiteAsyncSignatureRunner* runner = TfLiteInterpreterGetAsyncSignatureRunner(interpreter, nullptr); ASSERT_NE(runner, nullptr); int num_interpreter_inputs = TfLiteInterpreterGetInputTensorCount(interpreter); int num_runner_inputs = TfLiteAsyncSignatureRunnerGetInputCount(runner); ASSERT_EQ(num_runner_inputs, num_interpreter_inputs); for (int i = 0; i < num_interpreter_inputs; ++i) { auto* interpreter_input_tensor = TfLiteInterpreterGetInputTensor(interpreter, i); ASSERT_NE(interpreter_input_tensor, nullptr); auto* interpreter_input_name = TfLiteTensorName(interpreter_input_tensor); ASSERT_NE(interpreter_input_name, nullptr); auto* runner_input_name = TfLiteAsyncSignatureRunnerGetInputName(runner, i); ASSERT_NE(runner_input_name, nullptr); EXPECT_STREQ(runner_input_name, interpreter_input_name); auto* runner_input_tensor = TfLiteAsyncSignatureRunnerGetInputTensor( runner, interpreter_input_name); ASSERT_NE(runner_input_tensor, nullptr); ASSERT_EQ(runner_input_tensor, reinterpret_cast<const TfLiteOpaqueTensor*>( interpreter_input_tensor)); } int num_interpreter_outputs = TfLiteInterpreterGetOutputTensorCount(interpreter); int num_runner_outputs = TfLiteAsyncSignatureRunnerGetOutputCount(runner); ASSERT_EQ(num_runner_outputs, num_interpreter_outputs); for (int i = 0; i < num_interpreter_outputs; ++i) { auto* interpreter_output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, i); ASSERT_NE(interpreter_output_tensor, nullptr); auto* interpreter_output_name = TfLiteTensorName(interpreter_output_tensor); ASSERT_NE(interpreter_output_name, nullptr); auto* runner_output_name = TfLiteAsyncSignatureRunnerGetOutputName(runner, i); ASSERT_NE(runner_output_name, nullptr); EXPECT_STREQ(runner_output_name, interpreter_output_name); auto* runner_output_tensor = TfLiteAsyncSignatureRunnerGetOutputTensor( runner, interpreter_output_name); ASSERT_NE(runner_output_tensor, nullptr); ASSERT_EQ(runner_output_tensor, reinterpret_cast<const TfLiteOpaqueTensor*>( interpreter_output_tensor)); } EXPECT_CALL(*kernel, Prepare(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel, Eval(_, _, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel, Wait(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel, Finish(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerPrepareBackends(runner)); auto* task = TfLiteAsyncSignatureRunnerCreateTask(runner); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerInvokeAsync(runner, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerWait(runner, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerFinish(runner, task)); TfLiteAsyncSignatureRunnerDelete(runner); TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/async_signature_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/async_signature_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7ebe33fa-b0b5-44fd-81fd-f58aa8e47d6e
cpp
tensorflow/tensorflow
reconcile_fns
tensorflow/lite/core/async/interop/reconcile_fns.cc
tensorflow/lite/core/async/interop/reconcile_fns_test.cc
#include "tensorflow/lite/core/async/interop/reconcile_fns.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <set> #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { namespace { template <typename T> T gcd(T x, T y) { while (y) { auto m = x % y; x = y; y = m; } return x; } template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; } void ReconcileAlignment(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeyAlignment), lcm(l, r)); } void ReconcilePadding(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeyPadding), lcm(l, r)); } bool CheckMultiples(size_t l, size_t r) { return l % r == 0; } void ReconcileSize(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeySize), std::max(l, r)); } bool CheckSize(size_t l, size_t r) { return l >= r; } } bool ReconcileGeneralAttributeKeys(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* merged, AttributeMap::ContainerT* conflict) { if (lhs == nullptr || rhs == nullptr || merged == nullptr) return false; bool ret = true; std::set<uint32_t> keys; std::transform(lhs->begin(), lhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); std::transform(rhs->begin(), rhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); for (auto k : keys) { const auto l = lhs->find(k); const auto r = rhs->find(k); if (l == lhs->end() || l->second.GetPtr() == nullptr) { merged->insert_or_assign(k, r->second); continue; } if (r == rhs->end() || r->second.GetPtr() == nullptr) { merged->insert_or_assign(k, l->second); continue; } if (type == kTfLiteAttrMapTypeBuffer) { switch (static_cast<TfLiteBufferAttrKey>(k)) { case kTfLiteBufferAttrKeySize: ReconcileSize(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; case kTfLiteBufferAttrKeyAlignment: ReconcileAlignment(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; case kTfLiteBufferAttrKeyPadding: ReconcilePadding(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; default: if (l->second == r->second) { merged->insert_or_assign(k, l->second); } else { ret = false; if (conflict) conflict->insert_or_assign(k, r->second); } } } else { if (l->second == r->second) { merged->insert_or_assign(k, l->second); } else { ret = false; if (conflict) conflict->insert_or_assign(k, r->second); } } } return ret; } bool CheckGeneralAttributeKeysCoverage(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* conflict) { if (lhs == nullptr || rhs == nullptr) return false; bool ret = true; std::set<uint32_t> keys; std::transform(lhs->begin(), lhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); std::transform(rhs->begin(), rhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); for (auto k : keys) { bool has_conflict = false; const auto l = lhs->find(k); const auto r = rhs->find(k); if (r == rhs->end() || r->second.GetPtr() == nullptr) { continue; } else if (l == lhs->end() || l->second.GetPtr() == nullptr) { has_conflict = true; } else { if (type == kTfLiteAttrMapTypeBuffer) { switch (static_cast<TfLiteBufferAttrKey>(k)) { case kTfLiteBufferAttrKeySize: has_conflict |= !CheckSize(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; case kTfLiteBufferAttrKeyAlignment: has_conflict |= !CheckMultiples(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; case kTfLiteBufferAttrKeyPadding: has_conflict |= !CheckSize(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; default: if (l->second != r->second) { has_conflict = true; } } } else { if (l->second != r->second) { has_conflict = true; } } } if (has_conflict) { if (conflict != nullptr) conflict->insert_or_assign(k, r->second); ret = false; } } return ret; } } }
#include "tensorflow/lite/core/async/interop/reconcile_fns.h" #include <cstddef> #include <cstdint> #include <cstring> #include <string> #include <tuple> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite::interop { namespace { using ContainerT = AttributeMap::ContainerT; template <typename ValT, typename KeyT> void SetAttr(ContainerT* c, KeyT k, ValT v) { c->insert_or_assign(static_cast<uint32_t>(k), v); } template <typename ValT, typename KeyT> ValT GetAttr(const ContainerT& c, KeyT k) { return *(c.at(static_cast<uint32_t>(k)).Get<ValT>()); } TEST(ReconcileTest, NullCheck) { ContainerT m1, m2; EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &m1, &m2, nullptr, nullptr)); EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, nullptr, &m1, &m2, nullptr)); EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &m1, nullptr, &m2, nullptr)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, nullptr, &m1, &m2)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &m1, nullptr, &m2)); } TEST(ReconcileTest, MissingAttributeTest) { { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(4, GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } { ContainerT lhs, rhs, merged; SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(4, GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } { ContainerT lhs, rhs, merged; const char value[] = "string"; SetAttr(&rhs, kTfLiteSynchronizationAttrKeyObjectTypeName, value); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeSync, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(value, GetAttr<const char*>( merged, kTfLiteSynchronizationAttrKeyObjectTypeName)); } } TEST(CheckCoverageTest, MissingAttributeTest) { { ContainerT lhs, rhs; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, nullptr)); } { ContainerT lhs, rhs, merged; SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, nullptr)); } } class ReconcileAlignmentTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcileAlignmentTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } INSTANTIATE_TEST_SUITE_P(ReconcileAlignmentTest, ReconcileAlignmentTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 24))); class CheckAlignmentTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckAlignmentTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ( !std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeyAlignment))); } INSTANTIATE_TEST_SUITE_P(CheckAlignmentTest, CheckAlignmentTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcilePaddingTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcilePaddingTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyPadding, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyPadding, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeyPadding)); } INSTANTIATE_TEST_SUITE_P(ReconcilePaddingTest, ReconcilePaddingTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 24))); class CheckPaddingTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckPaddingTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeyPadding, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyPadding, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ(!std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeyPadding))); } INSTANTIATE_TEST_SUITE_P(CheckPaddingTest, CheckPaddingTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcileSizeTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcileSizeTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeySize, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeySize, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeySize)); } INSTANTIATE_TEST_SUITE_P(ReconcileSizeTest, ReconcileSizeTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 8))); class CheckSizeTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckSizeTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeySize, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeySize, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ(!std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeySize))); } INSTANTIATE_TEST_SUITE_P(CheckSizeTest, CheckSizeTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcileNameTest : public testing::TestWithParam<std::tuple<TfLiteAttrMapType, uint32_t>> {}; TEST_P(ReconcileNameTest, Test) { constexpr char name_string1[] = "string1"; std::string name_string1_1 = "string1"; constexpr char name_string2[] = "string2"; { ContainerT lhs, rhs, merged; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string1_1.c_str()); EXPECT_TRUE(ReconcileGeneralAttributeKeys(std::get<0>(GetParam()), &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(0, strcmp(GetAttr<const char*>(merged, std::get<1>(GetParam())), name_string1)); } { ContainerT lhs, rhs, merged, conflict; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string2); EXPECT_FALSE(ReconcileGeneralAttributeKeys(std::get<0>(GetParam()), &lhs, &rhs, &merged, &conflict)); EXPECT_TRUE(conflict.count(std::get<1>(GetParam()))); } } INSTANTIATE_TEST_SUITE_P( ReconcileNameTest, ReconcileNameTest, testing::Values( std::make_tuple( kTfLiteAttrMapTypeBuffer, static_cast<uint32_t>(kTfLiteBufferAttrKeyResourceTypeName)), std::make_tuple(kTfLiteAttrMapTypeSync, static_cast<uint32_t>( kTfLiteSynchronizationAttrKeyObjectTypeName)))); class CheckNameTest : public testing::TestWithParam<std::tuple<TfLiteAttrMapType, uint32_t>> {}; TEST_P(CheckNameTest, Test) { constexpr char name_string1[] = "string1"; std::string name_string1_1 = "string1"; constexpr char name_string2[] = "string2"; { ContainerT lhs, rhs; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string1_1.c_str()); EXPECT_TRUE(CheckGeneralAttributeKeysCoverage(std::get<0>(GetParam()), &lhs, &rhs, nullptr)); } { ContainerT lhs, rhs, conflict; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string2); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(std::get<0>(GetParam()), &lhs, &rhs, &conflict)); EXPECT_TRUE(conflict.count(std::get<1>(GetParam()))); } } INSTANTIATE_TEST_SUITE_P( CheckNameTest, CheckNameTest, testing::Values( std::make_tuple( kTfLiteAttrMapTypeBuffer, static_cast<uint32_t>(kTfLiteBufferAttrKeyResourceTypeName)), std::make_tuple(kTfLiteAttrMapTypeSync, static_cast<uint32_t>( kTfLiteSynchronizationAttrKeyObjectTypeName)))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/reconcile_fns.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/reconcile_fns_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3fc1de5f-22d4-46d6-9a7d-6cf17b61d645
cpp
tensorflow/tensorflow
attribute_map_internal
tensorflow/lite/core/async/interop/attribute_map_internal.cc
tensorflow/lite/core/async/interop/attribute_map_internal_test.cc
#include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/reconcile_fns.h" namespace tflite { namespace interop { bool AttributeMap::ReconcileAttributes(const AttributeMap* other, AttributeMap* merged, AttributeMap* conflict) const { if (other == nullptr || merged == nullptr) return false; if (type_ != other->type_) return false; merged->type_ = type_; if (conflict) conflict->type_ = type_; return tflite::interop::ReconcileGeneralAttributeKeys( type_, &attrs_, &other->attrs_, &merged->attrs_, conflict ? &conflict->attrs_ : nullptr); } bool AttributeMap::CheckAttributeCoverage(const AttributeMap* other, AttributeMap* conflict) const { if (other == nullptr) return false; if (type_ != other->type_) return false; if (conflict) conflict->type_ = type_; return tflite::interop::CheckGeneralAttributeKeysCoverage( type_, &attrs_, &other->attrs_, conflict ? &conflict->attrs_ : nullptr); } } }
#include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include <cstdint> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { namespace { TEST(AttributeMapTest, TypeTest) { { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_TRUE(attrs.IsBufferAttributeMap()); EXPECT_FALSE(attrs.IsSyncAttributeMap()); } { auto attrs = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs.IsSyncAttributeMap()); EXPECT_FALSE(attrs.IsBufferAttributeMap()); } } TEST(AttributeMapTest, AccessorTest) { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); { attrs.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); size_t result; EXPECT_TRUE(attrs.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } { attrs.SetCustomAttr("Foo", 12); int result; EXPECT_FALSE(attrs.GetCustomAttr("Bar", &result)); EXPECT_TRUE(attrs.GetCustomAttr("Foo", &result)); EXPECT_EQ(12, result); } } TEST(AttributeMapTest, ReconcileFailDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE( attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); } TEST(AttributeMapTest, NullptrTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(nullptr, &attrs2, nullptr)); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, nullptr, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(nullptr, nullptr)); } TEST(AttributeMapTest, ReconcileDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); } TEST(AttributeMapTest, ReconcileTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs4 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.ReconcileAttributes(&attrs2, &attrs3, &attrs4)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); EXPECT_TRUE(attrs4.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(attrs3.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } TEST(AttributeMapTest, CoverageTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); } TEST(AttributeMapTest, CoverageFailedTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(10)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto conflict = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &conflict)); EXPECT_TRUE(conflict.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(conflict.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(4, result); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/attribute_map_internal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/attribute_map_internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2dfa250a-7737-404a-b9d5-dbff2dca84a2
cpp
tensorflow/tensorflow
task
tensorflow/lite/core/async/c/task.cc
tensorflow/lite/core/async/c/task_test.cc
#include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" extern "C" { TfLiteStatus TfLiteExecutionTaskSetBuffer(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetBufferHandle(io_type, tensor_signature_name, handle); } TfLiteStatus TfLiteExecutionTaskSetBufferByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetBufferHandle(tensor_index, handle); } TfLiteStatus TfLiteExecutionTaskSetSync(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetSynchronization(io_type, tensor_signature_name, sync); } TfLiteStatus TfLiteExecutionTaskSetSyncByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetSynchronization(tensor_index, sync); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(io_type, tensor_signature_name); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return nullptr; return task->task->GetSynchronization(io_type, tensor_signature_name); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(tensor_index); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetSynchronization(tensor_index); } void* TfLiteExecutionTaskGetDelegateExecutionData( const TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetDelegateExecutionData(kernel); } void TfLiteExecutionTaskSetDelegateExecutionData(TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel, void* data) { if (task == nullptr || task->task == nullptr) return; task->task->SetDelegateExecutionData(kernel, data); } TfLiteStatus TfLiteExecutionTaskGetStatus(const TfLiteExecutionTask* task) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->Status(); } void TfLiteExecutionTaskSetStatus(TfLiteExecutionTask* task, TfLiteStatus status) { if (task == nullptr || task->task == nullptr) return; task->task->SetStatus(status); } }
#include "tensorflow/lite/core/async/c/task.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/common.h" namespace { class TfLiteExecutionTaskTest : public ::testing::Test { protected: void SetUp() override { input_names_["x"] = 1; input_names_["y"] = 2; output_names_["a"] = 3; task_.task->SetInputNameMap(&input_names_); task_.task->SetOutputNameMap(&output_names_); } TfLiteExecutionTask* task() { return &task_; } protected: tflite::async::ExecutionTask::TensorNameMapT input_names_; tflite::async::ExecutionTask::TensorNameMapT output_names_; TfLiteExecutionTask task_; }; TEST_F(TfLiteExecutionTaskTest, BasicTest) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ( 42, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ( 43, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ( 44, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeOutput, "a")); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeOutput, "a")); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, BasicTestByTensorIndex) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ(42, TfLiteExecutionTaskGetBufferByIndex(task(), 1)); EXPECT_EQ(43, TfLiteExecutionTaskGetBufferByIndex(task(), 2)); EXPECT_EQ(44, TfLiteExecutionTaskGetBufferByIndex(task(), 3)); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByIndex(task(), 1)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 2)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 3)); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, NullTest) { EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBuffer(nullptr, kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSync( nullptr, kTfLiteIoTypeInput, "x", nullptr)); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByName( nullptr, kTfLiteIoTypeOutput, "a")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(nullptr, kTfLiteIoTypeInput, "x")); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByIndex(nullptr, 3)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(nullptr, 3)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(nullptr)); TfLiteExecutionTaskSetStatus(nullptr, kTfLiteOk); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBufferByIndex(nullptr, 0, 0)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSyncByIndex(nullptr, 0, nullptr)); } TEST_F(TfLiteExecutionTaskTest, StatusTest) { EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskGetStatus(task())); TfLiteExecutionTaskSetStatus(task(), kTfLiteError); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(task())); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/task.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/task_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c1f8f33e-1147-4fa1-b5d6-6457a9b6e08e
cpp
tensorflow/tensorflow
flatbuffer_conversions
tensorflow/lite/core/api/flatbuffer_conversions.cc
tensorflow/lite/core/api/flatbuffer_conversions_test.cc
#include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { class SafeBuiltinDataAllocator { public: class BuiltinDataDeleter { public: explicit BuiltinDataDeleter(BuiltinDataAllocator* allocator) : allocator_(allocator) {} void operator()(void* data) { allocator_->Deallocate(data); } private: BuiltinDataAllocator* allocator_; }; template <typename T> using BuiltinDataPtr = std::unique_ptr<T, BuiltinDataDeleter>; explicit SafeBuiltinDataAllocator(BuiltinDataAllocator* allocator) : allocator_(allocator) {} template <typename T> BuiltinDataPtr<T> Allocate() { return BuiltinDataPtr<T>(allocator_->AllocatePOD<T>(), BuiltinDataDeleter(allocator_)); } private: BuiltinDataAllocator* allocator_; }; void CheckParsePointerParams(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { TFLITE_DCHECK(op != nullptr); TFLITE_DCHECK(error_reporter != nullptr); TFLITE_DCHECK(allocator != nullptr); TFLITE_DCHECK(builtin_data != nullptr); } template <typename DataType = int32_t> static TfLiteStatus FlatBufferIntVectorToArray( int max_size_of_buffer, const flatbuffers::Vector<DataType>* flat_vector, DataType* buffer, ErrorReporter* error_reporter, const char* op_name) { if (!flat_vector) { TF_LITE_REPORT_ERROR(error_reporter, "Input array not provided for operation '%s'.\n", op_name); return kTfLiteError; } else { size_t num_dimensions = flat_vector->size(); if (num_dimensions > max_size_of_buffer / sizeof(DataType)) { TF_LITE_REPORT_ERROR( error_reporter, "Found too many dimensions in the input array of operation '%s'.\n", op_name); return kTfLiteError; } else { for (size_t i = 0; i < num_dimensions; ++i) { buffer[i] = flat_vector->Get(i); } } } return kTfLiteOk; } TfLiteFusedActivation ConvertActivation(ActivationFunctionType activation) { switch (activation) { case ActivationFunctionType_NONE: return kTfLiteActNone; case ActivationFunctionType_RELU: return kTfLiteActRelu; case ActivationFunctionType_RELU_N1_TO_1: return kTfLiteActReluN1To1; case ActivationFunctionType_RELU6: return kTfLiteActRelu6; case ActivationFunctionType_TANH: return kTfLiteActTanh; case ActivationFunctionType_SIGN_BIT: return kTfLiteActSignBit; } return kTfLiteActNone; } TfLitePadding ConvertPadding(Padding padding) { switch (padding) { case Padding_SAME: return kTfLitePaddingSame; case Padding_VALID: return kTfLitePaddingValid; } return kTfLitePaddingUnknown; } TfLiteMirrorPaddingMode ConvertMirrorPadding(MirrorPadMode padding) { switch (padding) { case MirrorPadMode_REFLECT: return kTfLiteMirrorPaddingReflect; case MirrorPadMode_SYMMETRIC: return kTfLiteMirrorPaddingSymmetric; } return kTfLiteMirrorPaddingUnknown; } TfLiteRngAlgorithm ConvertRngAlgorithm(RngAlgorithm algorithm) { switch (algorithm) { case RngAlgorithm_THREEFRY: return kTfLiteRngAlgorithmThreefry; case RngAlgorithm_PHILOX: return kTfLiteRngAlgorithmPhilox; case RngAlgorithm_DEFAULT: return kTfLiteRngAlgorithmDefault; } return kTfLiteRngAlgorithmUnknown; } #ifndef TF_LITE_STATIC_MEMORY TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { auto parseLSHProjectionType = [](LSHProjectionType type) { switch (type) { case LSHProjectionType_SPARSE: return kTfLiteLshProjectionSparse; case LSHProjectionType_DENSE: return kTfLiteLshProjectionDense; default: return kTfLiteLshProjectionUnknown; } }; auto parseCombinerType = [](CombinerType type) { switch (type) { case CombinerType_MEAN: return kTfLiteCombinerTypeMean; case CombinerType_SQRTN: return kTfLiteCombinerTypeSqrtn; case CombinerType_SUM: default: return kTfLiteCombinerTypeSum; } }; SafeBuiltinDataAllocator safe_allocator(allocator); *builtin_data = nullptr; switch (op_type) { case BuiltinOperator_ABS: { return ParseAbs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD: { return ParseAdd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD_N: { return ParseAddN(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MAX: { return ParseArgMax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MIN: { return ParseArgMin(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ASSIGN_VARIABLE: { return ParseAssignVariable(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_AVERAGE_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_MATMUL: { return ParseBatchMatMul(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_TO_SPACE_ND: { return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_ARGS: { return ParseBroadcastArgs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_TO: { return ParseBroadcastTo(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CALL_ONCE: { return ParseCallOnce(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CEIL: { return ParseCeil(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONCATENATION: { return ParseConcatenation(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONV_2D: { return ParseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CUMSUM: { return ParseCumsum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTH_TO_SPACE: { return ParseDepthToSpace(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTHWISE_CONV_2D: { return ParseDepthwiseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEQUANTIZE: { return ParseDequantize(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DIV: { return ParseDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ELU: { return ParseElu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EMBEDDING_LOOKUP: { return ParseEmbeddingLookup(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXP: { return ParseExp(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXPAND_DIMS: { return ParseExpandDims(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FILL: { return ParseFill(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR: { return ParseFloor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_DIV: { return ParseFloorDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_MOD: { return ParseFloorMod(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FULLY_CONNECTED: { return ParseFullyConnected(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GATHER_ND: { return ParseGatherNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER: { return ParseGreater(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER_EQUAL: { return ParseGreaterEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_HARD_SWISH: { return ParseHardSwish(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_NORMALIZATION: { return ParseL2Normalization(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LEAKY_RELU: { return ParseLeakyRelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LESS: { return ParseLess(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LESS_EQUAL: { return ParseLessEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOG: { return ParseLog(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_AND: { return ParseLogicalAnd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_NOT: { return ParseLogicalNot(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_OR: { return ParseLogicalOr(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGISTIC: { return ParseLogistic(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOG_SOFTMAX: { return ParseLogSoftmax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LSTM: { return ParseLSTM(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MAXIMUM: { return ParseMaximum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MAX_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MIRROR_PAD: { return ParseMirrorPad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MEAN: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MINIMUM: { return ParseMinimum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MUL: { return ParseMul(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_NEG: { return ParseNeg(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_NOT_EQUAL: { return ParseNotEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PACK: { return ParsePack(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PAD: { return ParsePad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PADV2: { return ParsePadV2(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_POW: { return ParsePow(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PRELU: { return ParsePrelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_QUANTIZE: { return ParseQuantize(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_READ_VARIABLE: { return ParseReadVariable(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_ANY: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_ALL: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_MAX: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_MIN: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_PROD: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RELU: { return ParseRelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RELU6: { return ParseRelu6(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESHAPE: { return ParseReshape(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESIZE_BILINEAR: { return ParseResizeBilinear(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR: { return ParseResizeNearestNeighbor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ROUND: { return ParseRound(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RSQRT: { return ParseRsqrt(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SELECT_V2: { return ParseSelectV2(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SHAPE: { return ParseShape(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SIN: { return ParseSin(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SOFTMAX: { return ParseSoftmax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPACE_TO_BATCH_ND: { return ParseSpaceToBatchNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPACE_TO_DEPTH: { return ParseSpaceToDepth(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPLIT: { return ParseSplit(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPLIT_V: { return ParseSplitV(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQRT: { return ParseSqrt(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUARE: { return ParseSquare(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUARED_DIFFERENCE: { return ParseSquaredDifference(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUEEZE: { return ParseSqueeze(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STRIDED_SLICE: { return ParseStridedSlice(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SUB: { return ParseSub(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SUM: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SVDF: { return ParseSvdf(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_TANH: { return ParseTanh(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_TRANSPOSE_CONV: { return ParseTransposeConv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_UNPACK: { return ParseUnpack(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_VAR_HANDLE: { return ParseVarHandle(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ZEROS_LIKE: { return ParseZerosLike(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BITWISE_XOR: { return ParseBitwiseXor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RIGHT_SHIFT: { return ParseRightShift(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CAST: { return ParseCast(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LSH_PROJECTION: { auto params = safe_allocator.Allocate<TfLiteLSHProjectionParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* lshParams = op->builtin_options_as_LSHProjectionOptions()) { params->type = parseLSHProjectionType(lshParams->type()); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN: { auto params = safe_allocator.Allocate<TfLiteSequenceRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* sequence_rnn_params = op->builtin_options_as_SequenceRNNOptions()) { params->activation = ConvertActivation(sequence_rnn_params->fused_activation_function()); params->time_major = sequence_rnn_params->time_major(); params->asymmetric_quantize_inputs = sequence_rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN: { auto params = safe_allocator.Allocate<TfLiteBidirectionalSequenceRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bidi_sequence_rnn_params = op->builtin_options_as_BidirectionalSequenceRNNOptions()) { params->activation = ConvertActivation( bidi_sequence_rnn_params->fused_activation_function()); params->time_major = bidi_sequence_rnn_params->time_major(); params->merge_outputs = bidi_sequence_rnn_params->merge_outputs(); params->asymmetric_quantize_inputs = bidi_sequence_rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RNN: { auto params = safe_allocator.Allocate<TfLiteRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* rnn_params = op->builtin_options_as_RNNOptions()) { params->activation = ConvertActivation(rnn_params->fused_activation_function()); params->asymmetric_quantize_inputs = rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_EMBEDDING_LOOKUP_SPARSE: { auto params = safe_allocator.Allocate<TfLiteEmbeddingLookupSparseParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* embedding_params = op->builtin_options_as_EmbeddingLookupSparseOptions()) { params->combiner = parseCombinerType(embedding_params->combiner()); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_HASHTABLE_LOOKUP: return kTfLiteOk; case BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION: { auto params = safe_allocator.Allocate<TfLiteLocalResponseNormParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_LocalResponseNormalizationOptions()) { params->radius = schema_params->radius(); params->bias = schema_params->bias(); params->alpha = schema_params->alpha(); params->beta = schema_params->beta(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: { return ParseUnidirectionalSequenceLSTM(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: { auto params = safe_allocator.Allocate<TfLiteBidirectionalSequenceLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bidi_lstm_params = op->builtin_options_as_BidirectionalSequenceLSTMOptions()) { params->activation = ConvertActivation(bidi_lstm_params->fused_activation_function()); params->cell_clip = bidi_lstm_params->cell_clip(); params->proj_clip = bidi_lstm_params->proj_clip(); params->merge_outputs = bidi_lstm_params->merge_outputs(); params->time_major = bidi_lstm_params->time_major(); params->asymmetric_quantize_inputs = bidi_lstm_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_SKIP_GRAM: { auto params = safe_allocator.Allocate<TfLiteSkipGramParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* skip_gram_params = op->builtin_options_as_SkipGramOptions()) { params->ngram_size = skip_gram_params->ngram_size(); params->max_skip_size = skip_gram_params->max_skip_size(); params->include_all_ngrams = skip_gram_params->include_all_ngrams(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_GATHER: { return ParseGather(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPARSE_TO_DENSE: { auto params = safe_allocator.Allocate<TfLiteSparseToDenseParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* sparse_to_dense_params = op->builtin_options_as_SparseToDenseOptions()) { params->validate_indices = sparse_to_dense_params->validate_indices(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_DELEGATE: { TF_LITE_REPORT_ERROR(error_reporter, "DELEGATE op shouldn't exist in model."); return kTfLiteError; } case BuiltinOperator_FAKE_QUANT: { auto params = safe_allocator.Allocate<TfLiteFakeQuantParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_FakeQuantOptions()) { params->min = schema_params->min(); params->max = schema_params->max(); params->num_bits = schema_params->num_bits(); params->narrow_range = schema_params->narrow_range(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_ONE_HOT: { auto params = safe_allocator.Allocate<TfLiteOneHotParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_OneHotOptions()) { params->axis = schema_params->axis(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIQUE: { auto params = safe_allocator.Allocate<TfLiteUniqueParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* unique_params = op->builtin_options_as_UniqueOptions(); if (unique_params != nullptr) { params->index_out_type = unique_params->idx_out_type() == tflite::TensorType_INT64 ? TfLiteType::kTfLiteInt64 : TfLiteType::kTfLiteInt32; } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_REVERSE_SEQUENCE: { auto params = safe_allocator.Allocate<TfLiteReverseSequenceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* reverse_seq_params = op->builtin_options_as_ReverseSequenceOptions()) { params->seq_dim = reverse_seq_params->seq_dim(); params->batch_dim = reverse_seq_params->batch_dim(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_IF: { auto params = safe_allocator.Allocate<TfLiteIfParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* if_params = op->builtin_options_as_IfOptions()) { params->then_subgraph_index = if_params->then_subgraph_index(); params->else_subgraph_index = if_params->else_subgraph_index(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_WHILE: { auto params = safe_allocator.Allocate<TfLiteWhileParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* while_params = op->builtin_options_as_WhileOptions()) { params->cond_subgraph_index = while_params->cond_subgraph_index(); params->body_subgraph_index = while_params->body_subgraph_index(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_CONV_3D: case BuiltinOperator_CONV_3D_TRANSPOSE: { auto params = safe_allocator.Allocate<TfLiteConv3DParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* conv3d_params = op->builtin_options_as_Conv3DOptions()) { params->padding = ConvertPadding(conv3d_params->padding()); params->activation = ConvertActivation(conv3d_params->fused_activation_function()); params->stride_depth = conv3d_params->stride_d(); params->stride_height = conv3d_params->stride_h(); params->stride_width = conv3d_params->stride_w(); params->dilation_depth_factor = conv3d_params->dilation_d_factor(); params->dilation_height_factor = conv3d_params->dilation_h_factor(); params->dilation_width_factor = conv3d_params->dilation_w_factor(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_HASHTABLE: { auto params = safe_allocator.Allocate<TfLiteHashtableParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* hashtable_params = op->builtin_options_as_HashtableOptions()) { params->table_id = hashtable_params->table_id(); TF_LITE_ENSURE_STATUS(ConvertTensorType( hashtable_params->key_dtype(), &params->key_dtype, error_reporter)); TF_LITE_ENSURE_STATUS(ConvertTensorType(hashtable_params->value_dtype(), &params->value_dtype, error_reporter)); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_MULTINOMIAL: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* multinomial_params = op->builtin_options_as_RandomOptions()) { params->seed = multinomial_params->seed(); params->seed2 = multinomial_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RANDOM_STANDARD_NORMAL: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* random_std_normal_params = op->builtin_options_as_RandomOptions()) { params->seed = random_std_normal_params->seed(); params->seed2 = random_std_normal_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_BUCKETIZE: { auto params = safe_allocator.Allocate<TfLiteBucketizeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bucketize_params = op->builtin_options_as_BucketizeOptions()) { const flatbuffers::Vector<float>* boundaries = bucketize_params->boundaries(); if (boundaries == nullptr) { TF_LITE_REPORT_ERROR( error_reporter, "boundaries array not provided for operation 'bucketize'.\n"); return kTfLiteError; } params->num_boundaries = boundaries->size(); if (boundaries->data() == nullptr) { TF_LITE_REPORT_ERROR(error_reporter, "boundaries.data() returned nullptr for " "operation 'bucketize'.\n"); return kTfLiteError; } params->boundaries = boundaries->data(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RANDOM_UNIFORM: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* random_uniform_params = op->builtin_options_as_RandomOptions()) { params->seed = random_uniform_params->seed(); params->seed2 = random_uniform_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_GELU: { auto params = safe_allocator.Allocate<TfLiteGeluParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* gelu_params = op->builtin_options_as_GeluOptions()) { params->approximate = gelu_params->approximate(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_STABLEHLO_SCATTER: { return ParseStablehloScatter(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR: { return ParseStablehloRngBitGenerator(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_GATHER: { return ParseStablehloGather(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_REDUCE_WINDOW: { return ParseStablehloReduceWindow(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_WINDOW: { auto params = safe_allocator.Allocate<TfLiteReduceWindowParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* reduce_params = op->builtin_options_2_as_ReduceWindowOptions()) { switch (reduce_params->reduce_function()) { case ReduceWindowFunction_ADD: params->reduce_function = TfLiteReduceWindowFunctionAdd; break; case ReduceWindowFunction_MUL: params->reduce_function = TfLiteReduceWindowFunctionMul; break; case ReduceWindowFunction_MINIMUM: params->reduce_function = TfLiteReduceWindowFunctionMin; break; case ReduceWindowFunction_MAXIMUM: params->reduce_function = TfLiteReduceWindowFunctionMax; break; case ReduceWindowFunction_ALL: params->reduce_function = TfLiteReduceWindowFunctionAll; break; case ReduceWindowFunction_ANY: params->reduce_function = TfLiteReduceWindowFunctionAny; break; case ReduceWindowFunction_UNSUPPORTED: default: return kTfLiteError; } } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_STABLEHLO_PAD: { return ParseStablehloPad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_COMPOSITE: { return ParseStablehloComposite(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_SHIFT_LEFT: { return ParseStablehloShiftLeft(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_SLICE: case BuiltinOperator_STABLEHLO_BROADCAST_IN_DIM: case BuiltinOperator_STABLEHLO_CONVOLUTION: case BuiltinOperator_STABLEHLO_LOGISTIC: case BuiltinOperator_STABLEHLO_ADD: case BuiltinOperator_STABLEHLO_DIVIDE: case BuiltinOperator_STABLEHLO_MULTIPLY: case BuiltinOperator_STABLEHLO_MAXIMUM: case BuiltinOperator_STABLEHLO_RESHAPE: case BuiltinOperator_STABLEHLO_CLAMP: case BuiltinOperator_STABLEHLO_CONCATENATE: case BuiltinOperator_STABLEHLO_CUSTOM_CALL: case BuiltinOperator_STABLEHLO_REDUCE: case BuiltinOperator_STABLEHLO_ABS: case BuiltinOperator_STABLEHLO_AND: case BuiltinOperator_STABLEHLO_COSINE: case BuiltinOperator_STABLEHLO_EXPONENTIAL: case BuiltinOperator_STABLEHLO_FLOOR: case BuiltinOperator_STABLEHLO_LOG: case BuiltinOperator_STABLEHLO_MINIMUM: case BuiltinOperator_STABLEHLO_NEGATE: case BuiltinOperator_STABLEHLO_OR: case BuiltinOperator_STABLEHLO_POWER: case BuiltinOperator_STABLEHLO_REMAINDER: case BuiltinOperator_STABLEHLO_RSQRT: case BuiltinOperator_STABLEHLO_SELECT: case BuiltinOperator_STABLEHLO_SUBTRACT: case BuiltinOperator_STABLEHLO_TANH: case BuiltinOperator_STABLEHLO_DYNAMIC_SLICE: case BuiltinOperator_STABLEHLO_DYNAMIC_UPDATE_SLICE: case BuiltinOperator_STABLEHLO_IOTA: case BuiltinOperator_STABLEHLO_COMPARE: case BuiltinOperator_STABLEHLO_CONVERT: case BuiltinOperator_STABLEHLO_DOT_GENERAL: case BuiltinOperator_STABLEHLO_SORT: case BuiltinOperator_STABLEHLO_WHILE: case BuiltinOperator_STABLEHLO_TRANSPOSE: case BuiltinOperator_STABLEHLO_CBRT: case BuiltinOperator_CALL: case BuiltinOperator_COMPLEX_ABS: case BuiltinOperator_CONCAT_EMBEDDINGS: case BuiltinOperator_COS: case BuiltinOperator_CUSTOM: case BuiltinOperator_DENSIFY: case BuiltinOperator_DYNAMIC_UPDATE_SLICE: case BuiltinOperator_EQUAL: case BuiltinOperator_HASHTABLE_FIND: case BuiltinOperator_HASHTABLE_IMPORT: case BuiltinOperator_HASHTABLE_SIZE: case BuiltinOperator_IMAG: case BuiltinOperator_MATRIX_DIAG: case BuiltinOperator_MATRIX_SET_DIAG: case BuiltinOperator_NON_MAX_SUPPRESSION_V4: case BuiltinOperator_NON_MAX_SUPPRESSION_V5: case BuiltinOperator_RELU_N1_TO_1: case BuiltinOperator_RELU_0_TO_1: case BuiltinOperator_SCATTER_ND: case BuiltinOperator_SELECT: case BuiltinOperator_SLICE: case BuiltinOperator_TILE: case BuiltinOperator_TOPK_V2: case BuiltinOperator_TRANSPOSE: case BuiltinOperator_RANGE: case BuiltinOperator_RANK: case BuiltinOperator_REAL: case BuiltinOperator_RFFT2D: case BuiltinOperator_SEGMENT_SUM: case BuiltinOperator_REVERSE_V2: case BuiltinOperator_UNSORTED_SEGMENT_MAX: case BuiltinOperator_UNSORTED_SEGMENT_MIN: case BuiltinOperator_UNSORTED_SEGMENT_PROD: case BuiltinOperator_UNSORTED_SEGMENT_SUM: case BuiltinOperator_ATAN2: case BuiltinOperator_SIGN: case BuiltinOperator_BITCAST: case BuiltinOperator_WHERE: case BuiltinOperator_DILATE: return kTfLiteOk; case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES: return kTfLiteError; } return kTfLiteError; } #endif } TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type, ErrorReporter* error_reporter) { switch (tensor_type) { case TensorType_FLOAT16: *type = kTfLiteFloat16; return kTfLiteOk; case TensorType_BFLOAT16: *type = kTfLiteBFloat16; return kTfLiteOk; case TensorType_FLOAT32: *type = kTfLiteFloat32; return kTfLiteOk; case TensorType_FLOAT64: *type = kTfLiteFloat64; return kTfLiteOk; case TensorType_INT16: *type = kTfLiteInt16; return kTfLiteOk; case TensorType_UINT16: *type = kTfLiteUInt16; return kTfLiteOk; case TensorType_INT32: *type = kTfLiteInt32; return kTfLiteOk; case TensorType_UINT32: *type = kTfLiteUInt32; return kTfLiteOk; case TensorType_UINT8: *type = kTfLiteUInt8; return kTfLiteOk; case TensorType_INT8: *type = kTfLiteInt8; return kTfLiteOk; case TensorType_INT64: *type = kTfLiteInt64; return kTfLiteOk; case TensorType_UINT64: *type = kTfLiteUInt64; return kTfLiteOk; case TensorType_STRING: *type = kTfLiteString; return kTfLiteOk; case TensorType_BOOL: *type = kTfLiteBool; return kTfLiteOk; case TensorType_COMPLEX64: *type = kTfLiteComplex64; return kTfLiteOk; case TensorType_COMPLEX128: *type = kTfLiteComplex128; return kTfLiteOk; case TensorType_RESOURCE: *type = kTfLiteResource; return kTfLiteOk; case TensorType_VARIANT: *type = kTfLiteVariant; return kTfLiteOk; case TensorType_INT4: *type = kTfLiteInt4; return kTfLiteOk; default: *type = kTfLiteNoType; TF_LITE_REPORT_ERROR(error_reporter, "Unsupported data type %d in tensor\n", tensor_type); return kTfLiteError; } } TfLiteStatus ParseAbs(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteAddParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteAddParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const AddOptions* schema_params = op->builtin_options_as_AddOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->pot_scale_int16 = schema_params->pot_scale_int16(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseAddN(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { return kTfLiteOk; } TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteArgMaxParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteArgMaxParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ArgMaxOptions* schema_params = op->builtin_options_as_ArgMaxOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->output_type(), &params->output_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteArgMinParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteArgMinParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ArgMinOptions* schema_params = op->builtin_options_as_ArgMinOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->output_type(), &params->output_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseAssignVariable(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteBatchMatMulParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bmm_params = op->builtin_options_as_BatchMatMulOptions()) { params->adj_x = bmm_params->adj_x(); params->adj_y = bmm_params->adj_y(); params->asymmetric_quantize_inputs = bmm_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseBatchToSpaceNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBroadcastArgs(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBroadcastTo(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteCallOnceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteCallOnceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const CallOnceOptions* schema_params = op->builtin_options_as_CallOnceOptions(); if (schema_params != nullptr) { params->init_subgraph_index = schema_params->init_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCast(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteCastParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_CastOptions()) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->in_data_type(), &params->in_data_type, error_reporter)); TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_data_type(), &params->out_data_type, error_reporter)); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCeil(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseConcatenation(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteConcatenationParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteConcatenationParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ConcatenationOptions* schema_params = op->builtin_options_as_ConcatenationOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const Conv2DOptions* schema_params = op->builtin_options_as_Conv2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->dilation_width_factor = schema_params->dilation_w_factor(); params->dilation_height_factor = schema_params->dilation_h_factor(); TF_LITE_ENSURE_STATUS( ConvertTensorType(schema_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCumsum(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteCumsumParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* cumsum_params = op->builtin_options_as_CumsumOptions()) { params->exclusive = cumsum_params->exclusive(); params->reverse = cumsum_params->reverse(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCos(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseDepthToSpace(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteDepthToSpaceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteDepthToSpaceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* schema_params = op->builtin_options_as_DepthToSpaceOptions(); if (schema_params != nullptr) { params->block_size = schema_params->block_size(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseDepthwiseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteDepthwiseConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteDepthwiseConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const DepthwiseConv2DOptions* schema_params = op->builtin_options_as_DepthwiseConv2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->depth_multiplier = schema_params->depth_multiplier(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->dilation_width_factor = schema_params->dilation_w_factor(); params->dilation_height_factor = schema_params->dilation_h_factor(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseDequantize(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseDiv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteDivParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_DivOptions()) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseElu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseEmbeddingLookup(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseExp(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseExpandDims(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFill(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloor(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloorDiv(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloorMod(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFullyConnected(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteFullyConnectedParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteFullyConnectedParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const FullyConnectedOptions* schema_params = op->builtin_options_as_FullyConnectedOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->keep_num_dims = schema_params->keep_num_dims(); params->asymmetric_quantize_inputs = schema_params->asymmetric_quantize_inputs(); TF_LITE_ENSURE_STATUS( ConvertTensorType(schema_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); switch (schema_params->weights_format()) { case FullyConnectedOptionsWeightsFormat_DEFAULT: params->weights_format = kTfLiteFullyConnectedWeightsFormatDefault; break; case FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8: params->weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; break; default: TF_LITE_REPORT_ERROR(error_reporter, "Unhandled fully-connected weights format."); return kTfLiteError; } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteGatherParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); params->axis = 0; params->batch_dims = 0; if (const auto* gather_params = op->builtin_options_as_GatherOptions()) { params->axis = gather_params->axis(); params->batch_dims = gather_params->batch_dims(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseGatherNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseGreater(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseGreaterEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseHardSwish(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseIf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteIfParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteIfParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const IfOptions* schema_params = op->builtin_options_as_IfOptions(); if (schema_params != nullptr) { params->then_subgraph_index = schema_params->then_subgraph_index(); params->else_subgraph_index = schema_params->else_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseL2Normalization(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteL2NormParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteL2NormParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const L2NormOptions* schema_params = op->builtin_options_as_L2NormOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseLeakyRelu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteLeakyReluParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* leaky_relu_params = op->builtin_options_as_LeakyReluOptions()) { params->alpha = leaky_relu_params->alpha(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseLess(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLessEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLog(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalAnd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalNot(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalOr(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogistic(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogSoftmax(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* lstm_params = op->builtin_options_as_LSTMOptions()) { params->activation = ConvertActivation(lstm_params->fused_activation_function()); params->cell_clip = lstm_params->cell_clip(); params->proj_clip = lstm_params->proj_clip(); switch (lstm_params->kernel_type()) { case LSTMKernelType_FULL: params->kernel_type = kTfLiteLSTMFullKernel; break; case LSTMKernelType_BASIC: params->kernel_type = kTfLiteLSTMBasicKernel; break; default: TF_LITE_REPORT_ERROR(error_reporter, "Unhandled LSTM kernel type: %d", lstm_params->kernel_type()); return kTfLiteError; } params->asymmetric_quantize_inputs = lstm_params->asymmetric_quantize_inputs(); } else { TF_LITE_REPORT_ERROR(error_reporter, "No valid LSTM builtin options exist"); return kTfLiteError; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseMaximum(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseMinimum(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseMirrorPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteMirrorPaddingParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteMirrorPaddingParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const MirrorPadOptions* schema_params = op->builtin_options_as_MirrorPadOptions(); if (schema_params != nullptr) { params->mode = ConvertMirrorPadding(schema_params->mode()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteMulParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteMulParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const MulOptions* schema_params = op->builtin_options_as_MulOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseNeg(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseNotEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLitePackParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLitePackParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const PackOptions* schema_params = op->builtin_options_as_PackOptions(); if (schema_params != nullptr) { params->values_count = schema_params->values_count(); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParsePad(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePadV2(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLitePoolParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLitePoolParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const Pool2DOptions* schema_params = op->builtin_options_as_Pool2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->filter_width = schema_params->filter_width(); params->filter_height = schema_params->filter_height(); params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParsePow(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePrelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseQuantize(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReadVariable(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteReducerParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteReducerParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ReducerOptions* schema_params = op->builtin_options_as_ReducerOptions(); if (schema_params != nullptr) { params->keep_dims = schema_params->keep_dims(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseRelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRelu6(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReshape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteReshapeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteReshapeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ReshapeOptions* schema_params = op->builtin_options_as_ReshapeOptions(); if (schema_params != nullptr) { const flatbuffers::Vector<int32_t>* new_shape = schema_params->new_shape(); if (new_shape != nullptr) { TF_LITE_ENSURE_STATUS( FlatBufferIntVectorToArray(sizeof(params->shape), new_shape, params->shape, error_reporter, "reshape")); params->num_dimensions = new_shape->size(); } else { } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseResizeBilinear(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteResizeBilinearParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteResizeBilinearParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ResizeBilinearOptions* schema_params = op->builtin_options_as_ResizeBilinearOptions(); if (schema_params != nullptr) { params->align_corners = schema_params->align_corners(); params->half_pixel_centers = schema_params->half_pixel_centers(); } else { params->align_corners = false; params->half_pixel_centers = false; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseResizeNearestNeighbor(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteResizeNearestNeighborParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteResizeNearestNeighborParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ResizeNearestNeighborOptions* schema_params = op->builtin_options_as_ResizeNearestNeighborOptions(); if (schema_params != nullptr) { params->align_corners = schema_params->align_corners(); params->half_pixel_centers = schema_params->half_pixel_centers(); } else { params->align_corners = false; params->half_pixel_centers = false; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloReduceWindow(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloReduceWindowParams>(); const StablehloReduceWindowOptions* schema_params = op->builtin_options_2_as_StablehloReduceWindowOptions(); if (schema_params) { if (!schema_params->window_dimensions() || schema_params->window_dimensions()->size() == 0) { TF_LITE_REPORT_ERROR(error_reporter, "'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty."); return kTfLiteError; } const size_t rank = schema_params->window_dimensions()->size(); auto LoadAttr = [&error_reporter]( int64_t* params_array, size_t params_array_size_bytes, const flatbuffers::Vector<int64_t>* flatbuffer_vector, const char* attr_name, const size_t expected_size, const int64_t fill_value) -> TfLiteStatus { if (flatbuffer_vector && flatbuffer_vector->size()) { if (expected_size != 0 && flatbuffer_vector->size() != expected_size) { TF_LITE_REPORT_ERROR( error_reporter, "'%s' attribute of 'stablehlo.reduce_window' does not have the " "expected size (%llu != %llu).", attr_name, flatbuffer_vector->size(), expected_size); return kTfLiteError; } TfLiteStatus status = FlatBufferIntVectorToArray( params_array_size_bytes, flatbuffer_vector, params_array, error_reporter, "stablehlo.reduce_window"); if (status != kTfLiteOk) { TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.", attr_name); return status; } } else { std::fill_n(params_array, params_array_size_bytes / sizeof(int64_t), fill_value); } return kTfLiteOk; }; TF_LITE_ENSURE_STATUS( LoadAttr(params->window_dimensions, sizeof(params->window_dimensions), schema_params->window_dimensions(), "window_dimensions", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->window_strides, sizeof(params->window_strides), schema_params->window_strides(), "window_strides", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->base_dilations, sizeof(params->base_dilations), schema_params->base_dilations(), "base_dilations", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->window_dilations, sizeof(params->window_dilations), schema_params->window_dilations(), "window_dilations", rank, 1)); TF_LITE_ENSURE_STATUS(LoadAttr(params->padding, sizeof(params->padding), schema_params->padding(), "padding", 2 * rank, 0)); params->body_subgraph_index = schema_params->body_subgraph_index(); *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR( error_reporter, "Could not get 'stablehlo.reduce_window' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloScatter(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloScatterParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloScatterParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloScatterOptions* schema_params = op->builtin_options_2_as_StablehloScatterOptions(); if (schema_params) { params->indices_are_sorted = schema_params->indices_are_sorted(); if (schema_params->update_window_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->update_window_dims()->size() * sizeof(int64_t), schema_params->update_window_dims(), params->update_window_dims, error_reporter, "stablehlo_scatter")); params->num_update_window_dims = schema_params->update_window_dims()->size(); } if (schema_params->inserted_window_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->inserted_window_dims()->size() * sizeof(int64_t), schema_params->inserted_window_dims(), params->inserted_window_dims, error_reporter, "stablehlo_scatter")); params->num_inserted_window_dims = schema_params->inserted_window_dims()->size(); } if (schema_params->scatter_dims_to_operand_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->scatter_dims_to_operand_dims()->size() * sizeof(int64_t), schema_params->scatter_dims_to_operand_dims(), params->scatter_dims_to_operand_dims, error_reporter, "stablehlo_scatter")); params->num_scatter_dims_to_operand_dims = schema_params->scatter_dims_to_operand_dims()->size(); } params->index_vector_dim = schema_params->index_vector_dim(); params->unique_indices = schema_params->unique_indices(); params->update_computation_subgraph_index = schema_params->update_computation_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloRngBitGenerator(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloRngBitGeneratorParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloRngBitGeneratorParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloRngBitGeneratorOptions* schema_params = op->builtin_options_2_as_StablehloRngBitGeneratorOptions(); if (schema_params != nullptr) { params->algorithm = ConvertRngAlgorithm(schema_params->algorithm()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloGatherParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloGatherParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloGatherOptions* schema_params = op->builtin_options_2_as_StablehloGatherOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->offset_dims()->size() * sizeof(int64_t), schema_params->offset_dims(), params->offset_dims, error_reporter, "stablehlo_gather")); params->num_offset_dims = schema_params->offset_dims()->size(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->collapsed_slice_dims()->size() * sizeof(int64_t), schema_params->collapsed_slice_dims(), params->collapsed_slice_dims, error_reporter, "stablehlo_gather")); params->num_collapsed_slice_dims = schema_params->collapsed_slice_dims()->size(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->start_index_map()->size() * sizeof(int64_t), schema_params->start_index_map(), params->start_index_map, error_reporter, "stablehlo_gather")); params->num_start_index_map = schema_params->start_index_map()->size(); params->index_vector_dim = schema_params->index_vector_dim(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->slice_sizes()->size() * sizeof(int64_t), schema_params->slice_sizes(), params->slice_sizes, error_reporter, "stablehlo_gather")); params->num_slice_sizes = schema_params->slice_sizes()->size(); params->indices_are_sorted = schema_params->indices_are_sorted(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloPadParams>(); const StablehloPadOptions* schema_params = op->builtin_options_2_as_StablehloPadOptions(); if (schema_params) { auto LoadAttr = [&error_reporter]( int64_t* params_array, const size_t params_array_size_bytes, const flatbuffers::Vector<int64_t>* const flatbuffer_vector, const char* const attr_name) -> TfLiteStatus { TfLiteStatus status = FlatBufferIntVectorToArray( params_array_size_bytes, flatbuffer_vector, params_array, error_reporter, "stablehlo.pad"); if (status != kTfLiteOk) { TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.", attr_name); } return status; }; TF_LITE_ENSURE_STATUS( LoadAttr(params->edge_padding_low, sizeof(params->edge_padding_low), schema_params->edge_padding_low(), "edge_padding_low")); TF_LITE_ENSURE_STATUS( LoadAttr(params->edge_padding_high, sizeof(params->edge_padding_high), schema_params->edge_padding_high(), "edge_padding_high")); TF_LITE_ENSURE_STATUS( LoadAttr(params->interior_padding, sizeof(params->interior_padding), schema_params->interior_padding(), "interior_padding")); if (schema_params->edge_padding_low()->size() != schema_params->edge_padding_high()->size() || schema_params->edge_padding_low()->size() != schema_params->interior_padding()->size()) { TF_LITE_REPORT_ERROR(error_reporter, "'stablehlo.pad' operation parameter array sizes " "are not consistent."); return kTfLiteError; } *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR(error_reporter, "Could not get 'stablehlo.pad' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloComposite(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloCompositeParams>(); const StableHLOCompositeOptions* schema_params = op->builtin_options_2_as_StableHLOCompositeOptions(); if (schema_params) { params->name = schema_params->name()->c_str(); params->version = schema_params->version(); params->subgraph_index = schema_params->decomposition_subgraph_index(); params->attributes = schema_params->composite_attributes()->data(); params->attributes_size = schema_params->composite_attributes()->size(); *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR( error_reporter, "Could not get 'stablehlo.composite' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloShiftLeft(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { return kTfLiteOk; } TfLiteStatus ParseRound(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRsqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSelectV2(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseShape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteShapeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteShapeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ShapeOptions* schema_params = op->builtin_options_as_ShapeOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_type(), &params->out_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSin(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSlice(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSoftmaxParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSoftmaxParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SoftmaxOptions* schema_params = op->builtin_options_as_SoftmaxOptions(); if (schema_params != nullptr) { params->beta = schema_params->beta(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSpaceToBatchNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSpaceToDepth(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSpaceToDepthParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSpaceToDepthParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* schema_params = op->builtin_options_as_SpaceToDepthOptions(); if (schema_params != nullptr) { params->block_size = schema_params->block_size(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSplitParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSplitParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SplitOptions* schema_params = op->builtin_options_as_SplitOptions(); if (schema_params != nullptr) { params->num_splits = schema_params->num_splits(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSplitVParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSplitVParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SplitVOptions* schema_params = op->builtin_options_as_SplitVOptions(); if (schema_params != nullptr) { params->num_splits = schema_params->num_splits(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseUnidirectionalSequenceLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteUnidirectionalSequenceLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* seq_lstm_params = op->builtin_options_as_UnidirectionalSequenceLSTMOptions()) { params->activation = ConvertActivation(seq_lstm_params->fused_activation_function()); params->cell_clip = seq_lstm_params->cell_clip(); params->proj_clip = seq_lstm_params->proj_clip(); params->time_major = seq_lstm_params->time_major(); params->asymmetric_quantize_inputs = seq_lstm_params->asymmetric_quantize_inputs(); params->diagonal_recurrent_tensors = seq_lstm_params->diagonal_recurrent_tensors(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSqueezeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSqueezeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SqueezeOptions* schema_params = op->builtin_options_as_SqueezeOptions(); if (schema_params != nullptr) { const auto* squeeze_dims = schema_params->squeeze_dims(); if (squeeze_dims != nullptr) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray( sizeof(params->squeeze_dims), squeeze_dims, params->squeeze_dims, error_reporter, "squeeze")); params->num_squeeze_dims = squeeze_dims->size(); } else { params->num_squeeze_dims = 0; } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSquare(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSquaredDifference(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseStridedSlice(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStridedSliceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStridedSliceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StridedSliceOptions* schema_params = op->builtin_options_as_StridedSliceOptions(); if (schema_params != nullptr) { params->begin_mask = schema_params->begin_mask(); params->end_mask = schema_params->end_mask(); params->ellipsis_mask = schema_params->ellipsis_mask(); params->new_axis_mask = schema_params->new_axis_mask(); params->shrink_axis_mask = schema_params->shrink_axis_mask(); params->offset = schema_params->offset(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSub(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSubParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSubParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SubOptions* schema_params = op->builtin_options_as_SubOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->pot_scale_int16 = schema_params->pot_scale_int16(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSVDFParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSVDFParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SVDFOptions* schema_params = op->builtin_options_as_SVDFOptions(); if (schema_params != nullptr) { params->rank = schema_params->rank(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->asymmetric_quantize_inputs = schema_params->asymmetric_quantize_inputs(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseTanh(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseTranspose(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseTransposeConv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteTransposeConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteTransposeConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const TransposeConvOptions* transpose_conv_params = op->builtin_options_as_TransposeConvOptions(); if (transpose_conv_params != nullptr) { params->padding = ConvertPadding(transpose_conv_params->padding()); params->stride_width = transpose_conv_params->stride_w(); params->stride_height = transpose_conv_params->stride_h(); params->activation = ConvertActivation(transpose_conv_params->fused_activation_function()); TF_LITE_ENSURE_STATUS( ConvertTensorType(transpose_conv_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteUnpackParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteUnpackParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const UnpackOptions* schema_params = op->builtin_options_as_UnpackOptions(); if (schema_params != nullptr) { params->num = schema_params->num(); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteVarHandleParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteVarHandleParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const VarHandleOptions* schema_params = op->builtin_options_as_VarHandleOptions(); if (schema_params != nullptr) { if (schema_params->container()) { params->container = schema_params->container()->c_str(); } if (schema_params->shared_name()) { params->shared_name = schema_params->shared_name()->c_str(); } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseWhile(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteWhileParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteWhileParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const WhileOptions* schema_params = op->builtin_options_as_WhileOptions(); if (schema_params != nullptr) { params->cond_subgraph_index = schema_params->cond_subgraph_index(); params->body_subgraph_index = schema_params->body_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseZerosLike(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBitwiseXor(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRightShift(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { #ifdef TF_LITE_STATIC_MEMORY TF_LITE_REPORT_ERROR( error_reporter, "ParseOpData is unsupported on TfLiteMicro, please use the operator " "specific parse functions (e.g. ParseAdd etc.).\n"); return kTfLiteError; #else return ParseOpDataTfLite(op, op_type, error_reporter, allocator, builtin_data); #endif } }
#include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <cstdarg> #include <cstdint> #include <cstdio> #include <cstring> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" using testing::AllOf; using testing::Each; using testing::ElementsAre; using testing::Eq; using testing::HasSubstr; using testing::StrEq; namespace tflite { namespace { class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ += vsnprintf(buffer_ + buffer_size_, kBufferSize - buffer_size_, format, args); return buffer_size_; } const char* GetBuffer() const { return buffer_; } int GetBufferSize() const { return buffer_size_; } bool IsEmpty() const { return !buffer_size_; } string GetString() const { return string(buffer_, buffer_size_); } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; class MockDataAllocator : public BuiltinDataAllocator { public: MockDataAllocator() : is_allocated_(false) {} void* Allocate(size_t size, size_t alignment_hint) override { EXPECT_FALSE(is_allocated_); const int max_size = kBufferSize; EXPECT_LE(size, max_size); is_allocated_ = true; return buffer_; } void Deallocate(void* data) override { is_allocated_ = false; } private: static constexpr int kBufferSize = 1024; char buffer_[kBufferSize]; bool is_allocated_; }; } class FlatbufferConversionsTest : public ::testing::Test { public: const Operator* BuildTestOperator(BuiltinOptions op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect(builder_, 0, nullptr, nullptr, op_type, options, nullptr, CustomOptionsFormat_FLEXBUFFERS, nullptr); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } const Operator* BuildTestOperator(BuiltinOptions2 op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect( builder_, 0, nullptr, nullptr, tflite::BuiltinOptions_NONE, 0, nullptr, tflite::CustomOptionsFormat_FLEXBUFFERS, nullptr, nullptr, 0, 0, op_type, options); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } protected: MockErrorReporter mock_reporter_; MockDataAllocator mock_allocator_; flatbuffers::FlatBufferBuilder builder_; }; TEST_F(FlatbufferConversionsTest, ParseSqueezeAll) { const Operator* op = BuildTestOperator( BuiltinOptions_SqueezeOptions, CreateSqueezeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_SQUEEZE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, ParseDynamicReshape) { const Operator* op = BuildTestOperator( BuiltinOptions_ReshapeOptions, CreateReshapeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_RESHAPE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataConv) { const Operator* conv_op = BuildTestOperator(BuiltinOptions_Conv2DOptions, CreateConv2DOptions(builder_, Padding_SAME, 1, 2, ActivationFunctionType_RELU, 3, 4) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(conv_op, BuiltinOperator_CONV_2D, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_NE(nullptr, output_data); TfLiteConvParams* params = reinterpret_cast<TfLiteConvParams*>(output_data); EXPECT_EQ(kTfLitePaddingSame, params->padding); EXPECT_EQ(1, params->stride_width); EXPECT_EQ(2, params->stride_height); EXPECT_EQ(kTfLiteActRelu, params->activation); EXPECT_EQ(3, params->dilation_width_factor); EXPECT_EQ(4, params->dilation_height_factor); } TEST_F(FlatbufferConversionsTest, ParseBadFullyConnected) { const Operator* conv_op = BuildTestOperator( BuiltinOptions_FullyConnectedOptions, CreateFullyConnectedOptions( builder_, ActivationFunctionType_RELU, static_cast<FullyConnectedOptionsWeightsFormat>(-1), true) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteError, ParseOpData(conv_op, BuiltinOperator_FULLY_CONNECTED, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataCustom) { const Operator* custom_op = BuildTestOperator(BuiltinOptions_NONE, flatbuffers::Offset<void>()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(custom_op, BuiltinOperator_CUSTOM, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_EQ(nullptr, output_data); } TEST_F(FlatbufferConversionsTest, TestConvertTensorType) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT32, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat32, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeBFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_BFLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteBFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeInt4) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_INT4, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteInt4, type); } class StablehloReduceWindowFlatbufferConversionsTest : public FlatbufferConversionsTest { public: static constexpr int kMaxDims = TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT; static constexpr int64_t kValidValue = 5; auto ValidAttr() { return builder_.CreateVector(std::vector<int64_t>(kMaxDims, kValidValue)); } auto InvalidAttr() { return builder_.CreateVector( std::vector<int64_t>(kMaxDims + 1, kValidValue)); } auto ValidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims, kValidValue)); } auto InvalidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims + 1, kValidValue)); } auto EmptyAttr() { return builder_.CreateVector<int64_t>({}); } }; TEST_F(StablehloReduceWindowFlatbufferConversionsTest, Succeeds) { const Operator* stablehlo_reduce_window_op = BuildTestOperator( BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, builder_.CreateVector<int64_t>({1, 2}), builder_.CreateVector<int64_t>({3, 4}), builder_.CreateVector<int64_t>({5, 6}), builder_.CreateVector<int64_t>({7, 8}), builder_.CreateVector<int64_t>({9, 10, 11, 12}), 13) .Union()); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, 2), ElementsAre(1, 2)); EXPECT_THAT(std::make_tuple(output_data->window_strides, 2), ElementsAre(3, 4)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, 2), ElementsAre(5, 6)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, 2), ElementsAre(7, 8)); EXPECT_THAT(std::make_tuple(output_data->padding, 4), ElementsAre(9, 10, 11, 12)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithNoWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, 0, ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), 0, ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), 0, ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), 0, ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), 0, 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithEmptyWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, EmptyAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), EmptyAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), EmptyAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithParamsAtMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDimensionsHasMoreThanMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, InvalidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), AllOf(HasSubstr("Found too many dimensions in the input array of " "operation 'stablehlo.reduce_window'."), HasSubstr("Check the 'window_dimensions' attribute."))); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowStridesHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), InvalidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'window_strides' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenBaseDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), InvalidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'base_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), InvalidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr( "'window_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenPaddingHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), InvalidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'padding' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithWrongOptions) { const Operator* stablehlo_reduce_window_op = BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, 0); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr( "Could not get 'stablehlo.reduce_window' operation parameters.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, DeathTests) { const Operator* stablehlo_reduce_window_op = BuildTestOperator( BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()); TfLiteStablehloReduceWindowParams* output_data = nullptr; #ifdef NDEBUG GTEST_SKIP(); #endif EXPECT_DEATH( ParseOpData(nullptr, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, nullptr, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, nullptr, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, nullptr), ""); } class StablehloPadFlatbufferConversionsTest : public FlatbufferConversionsTest { public: static constexpr int kMaxDims = TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT; static constexpr int64_t kValidValue = 5; }; TEST_F(StablehloPadFlatbufferConversionsTest, Succeeds) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(std::make_tuple(output_data->edge_padding_low, 3), ElementsAre(1, 0, -1)); EXPECT_THAT(std::make_tuple(output_data->edge_padding_high, 3), ElementsAre(2, 0, -2)); EXPECT_THAT(std::make_tuple(output_data->interior_padding, 3), ElementsAre(3, 0, 3)); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingLowPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, 0, builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'edge_padding_low' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingHighPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), 0, builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'edge_padding_high' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingInteriorPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), 0) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'interior_padding' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsInconsistentSizes) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, -3, 5})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'stablehlo.pad' operation parameter array sizes are " "not consistent.")); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithWrongOptions) { const Operator* stablehlo_pad_op = BuildTestOperator(BuiltinOptions_NONE, 0); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("Could not get 'stablehlo.pad' operation parameters.")); } TEST_F(StablehloPadFlatbufferConversionsTest, DeathTests) { const Operator* stablehlo_pad_op = BuildTestOperator(BuiltinOptions_NONE, 0); TfLiteStablehloPadParams* output_data = nullptr; #ifdef NDEBUG GTEST_SKIP(); #endif EXPECT_DEATH( ParseOpData(nullptr, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, nullptr, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, nullptr, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, nullptr), ""); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/flatbuffer_conversions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/flatbuffer_conversions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
03aad0e0-543f-4086-af9c-38f3b63304f7
cpp
tensorflow/tensorflow
op_resolver
tensorflow/lite/core/api/op_resolver.cc
tensorflow/lite/core/api/op_resolver_test.cc
#include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { TfLiteStatus GetRegistrationFromOpCode( const OperatorCode* opcode, const OpResolver& op_resolver, ErrorReporter* error_reporter, const TfLiteRegistration** registration) { TfLiteStatus status = kTfLiteOk; *registration = nullptr; auto builtin_code = GetBuiltinCode(opcode); int version = opcode->version(); if (builtin_code > BuiltinOperator_MAX) { TF_LITE_REPORT_ERROR( error_reporter, "Op builtin_code out of range: %d. Are you using old TFLite binary " "with newer model?", builtin_code); status = kTfLiteError; } else if (builtin_code != BuiltinOperator_CUSTOM) { *registration = op_resolver.FindOp(builtin_code, version); if (*registration == nullptr) { TF_LITE_REPORT_ERROR( error_reporter, "Didn't find op for builtin opcode '%s' version '%d'. " "An older version of this builtin might be supported. " "Are you using an old TFLite binary with a newer model?\n", EnumNameBuiltinOperator(builtin_code), version); status = kTfLiteError; } } else if (!opcode->custom_code()) { TF_LITE_REPORT_ERROR( error_reporter, "Operator with CUSTOM builtin_code has no custom_code.\n"); status = kTfLiteError; } else { const char* name = opcode->custom_code()->c_str(); *registration = op_resolver.FindOp(name, version); if (*registration == nullptr) { status = kTfLiteError; } } return status; } }
#include "tensorflow/lite/core/api/op_resolver.h" #include <cstring> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { void* MockInit(TfLiteContext* context, const char* buffer, size_t length) { return nullptr; } void MockFree(TfLiteContext* context, void* buffer) { } TfLiteStatus MockPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus MockInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } class MockOpResolver : public OpResolver { public: const TfLiteRegistration* FindOp(BuiltinOperator op, int version) const override { if (op == BuiltinOperator_CONV_2D) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } const TfLiteRegistration* FindOp(const char* op, int version) const override { if (strcmp(op, "mock_custom") == 0) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } }; class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ = vsnprintf(buffer_, kBufferSize, format, args); return buffer_size_; } char* GetBuffer() { return buffer_; } int GetBufferSize() { return buffer_size_; } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; } TEST(OpResolver, TestResolver) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; const TfLiteRegistration* registration = resolver->FindOp(BuiltinOperator_CONV_2D, 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp(BuiltinOperator_CAST, 0); EXPECT_EQ(nullptr, registration); registration = resolver->FindOp("mock_custom", 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp("nonexistent_custom", 0); EXPECT_EQ(nullptr, registration); } TEST(OpResolver, TestGetRegistrationFromOpCodeConv) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CONV_2D, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCast) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CAST, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_NE(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "mock_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeNonexistentCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "nonexistent_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/op_resolver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/op_resolver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f090185f-76b0-4a65-9cb4-8dd42979e2c4
cpp
tensorflow/tensorflow
operator
tensorflow/lite/toco/tflite/operator.cc
tensorflow/lite/toco/tflite/operator_test.cc
#include "tensorflow/lite/toco/tflite/operator.h" #include <map> #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/compiler/mlir/lite/delegates/flex/allowlisted_flex_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/graph_transformations/lstm_utils.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/tflite/builtin_operator.h" #include "tensorflow/lite/toco/tflite/custom_operator.h" #include "tensorflow/lite/toco/tflite/simple_operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/lite/tools/versioning/op_signature.h" #include "tensorflow/lite/tools/versioning/op_version.h" namespace toco { namespace tflite { TfLiteType GetTensorType(const ArrayDataType type) { const std::map<ArrayDataType, TfLiteType> tensor_type_map = { {ArrayDataType::kBool, kTfLiteBool}, {ArrayDataType::kFloat, kTfLiteFloat32}, {ArrayDataType::kInt8, kTfLiteInt8}, {ArrayDataType::kUint8, kTfLiteUInt8}, {ArrayDataType::kInt16, kTfLiteInt16}, {ArrayDataType::kUint16, kTfLiteUInt16}, {ArrayDataType::kInt32, kTfLiteInt32}, {ArrayDataType::kUint32, kTfLiteUInt32}, {ArrayDataType::kInt64, kTfLiteInt64}, {ArrayDataType::kUint64, kTfLiteUInt64}, {ArrayDataType::kString, kTfLiteString}, {ArrayDataType::kComplex64, kTfLiteComplex64}, {ArrayDataType::kComplex128, kTfLiteComplex128}, {ArrayDataType::kFloat16, kTfLiteFloat16}, {ArrayDataType::kFloat64, kTfLiteFloat64}}; auto it = tensor_type_map.find(type); if (it != tensor_type_map.end()) { return it->second; } return kTfLiteNoType; } ::tflite::OpSignature GetVersioningOpSig( const ::tflite::BuiltinOperator op, const OperatorSignature& op_signature) { std::vector<::tflite::OpSignatureTensorSpec> inputs, outputs; for (const auto& input_name : op_signature.op->inputs) { ::tflite::OpSignatureTensorSpec tensor = {kTfLiteNoType}; if (op_signature.model->HasArray(input_name)) { const Array& input_array = op_signature.model->GetArray(input_name); tensor.type = GetTensorType(input_array.data_type); if (input_array.has_shape()) { tensor.dims = input_array.shape().dims(); } } inputs.push_back(tensor); } for (const auto& output_name : op_signature.op->outputs) { ::tflite::OpSignatureTensorSpec tensor = {kTfLiteNoType}; if (op_signature.model->HasArray(output_name)) { const Array& output_array = op_signature.model->GetArray(output_name); tensor.type = GetTensorType(output_array.data_type); if (output_array.has_shape()) { tensor.dims = output_array.shape().dims(); } } outputs.push_back(tensor); } return ::tflite::OpSignature{op, inputs, outputs}; } class AveragePool : public BuiltinOperator<AveragePoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class Convolution : public BuiltinOperator<ConvOperator, ::tflite::Conv2DOptions, ::tflite::BuiltinOptions_Conv2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateConv2DOptions(*builder, padding, op.stride_width, op.stride_height, activation_function, op.dilation_width_factor, op.dilation_height_factor); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->dilation_width_factor = options.dilation_w_factor(); op->dilation_height_factor = options.dilation_h_factor(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class DepthwiseConvolution : public BuiltinOperator<DepthwiseConvOperator, ::tflite::DepthwiseConv2DOptions, ::tflite::BuiltinOptions_DepthwiseConv2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateDepthwiseConv2DOptions( *builder, padding, op.stride_width, op.stride_height, op.depth_multiplier, activation_function, op.dilation_width_factor, op.dilation_height_factor); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->depth_multiplier = options.depth_multiplier(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); op->dilation_width_factor = options.dilation_w_factor(); op->dilation_height_factor = options.dilation_h_factor(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& conv_op = static_cast<const DepthwiseConvOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteDepthwiseConvParams depthwise_conv_params = {}; depthwise_conv_params.dilation_width_factor = conv_op.dilation_width_factor; depthwise_conv_params.dilation_height_factor = conv_op.dilation_height_factor; op_sig.builtin_data = reinterpret_cast<void*>(&depthwise_conv_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Add : public BuiltinOperator<AddOperator, ::tflite::AddOptions, ::tflite::BuiltinOptions_AddOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateAddOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class AddN : public BuiltinOperator<AddNOperator, ::tflite::AddNOptions, ::tflite::BuiltinOptions_AddNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateAddNOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class SpaceToBatchND : public BuiltinOperator<SpaceToBatchNDOperator, ::tflite::SpaceToBatchNDOptions, ::tflite::BuiltinOptions_SpaceToBatchNDOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSpaceToBatchNDOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Sub : public BuiltinOperator<SubOperator, ::tflite::SubOptions, ::tflite::BuiltinOptions_SubOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateSubOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Div : public BuiltinOperator<DivOperator, ::tflite::DivOptions, ::tflite::BuiltinOptions_DivOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateDivOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class BatchToSpaceND : public BuiltinOperator<BatchToSpaceNDOperator, ::tflite::BatchToSpaceNDOptions, ::tflite::BuiltinOptions_BatchToSpaceNDOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBatchToSpaceNDOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Cast : public BuiltinOperator<CastOperator, ::tflite::CastOptions, ::tflite::BuiltinOptions_CastOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateCastOptions(*builder, DataType::Serialize(op.src_data_type), DataType::Serialize(op.dst_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->src_data_type = DataType::Deserialize(options.in_data_type()); op->dst_data_type = DataType::Deserialize(options.out_data_type()); } }; class Concatenation : public BuiltinOperator<ConcatenationOperator, ::tflite::ConcatenationOptions, ::tflite::BuiltinOptions_ConcatenationOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateConcatenationOptions(*builder, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = options.axis(); } }; class DepthToSpace : public BuiltinOperator<DepthToSpaceOperator, ::tflite::DepthToSpaceOptions, ::tflite::BuiltinOptions_DepthToSpaceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateDepthToSpaceOptions(*builder, op.block_size); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->block_size = options.block_size(); } }; class FakeQuant : public BuiltinOperator<FakeQuantOperator, ::tflite::FakeQuantOptions, ::tflite::BuiltinOptions_FakeQuantOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateFakeQuantOptions( *builder, op.minmax->min, op.minmax->max, op.num_bits, op.narrow_range); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { auto* minmax = new MinMax; minmax->min = options.min(); minmax->max = options.max(); op->minmax.reset(minmax); op->num_bits = options.num_bits(); op->narrow_range = options.narrow_range(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& fq_op = static_cast<const FakeQuantOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteFakeQuantParams fake_quant_params = {}; fake_quant_params.narrow_range = fq_op.narrow_range; op_sig.builtin_data = reinterpret_cast<void*>(&fake_quant_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class FullyConnected : public BuiltinOperator<FullyConnectedOperator, ::tflite::FullyConnectedOptions, ::tflite::BuiltinOptions_FullyConnectedOptions> { public: using BuiltinOperator::BuiltinOperator; ::tflite::FullyConnectedOptionsWeightsFormat GetWeightFormat( FullyConnectedWeightsFormat fmt) const { switch (fmt) { case FullyConnectedWeightsFormat::kDefault: return ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT; case FullyConnectedWeightsFormat::kShuffled4x16Int8: return ::tflite::FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8; default: LOG(ERROR) << "Unhandled FC weights format"; return ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT; } } flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateFullyConnectedOptions( *builder, activation_function, GetWeightFormat(op.weights_format)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); switch (options.weights_format()) { case ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT: op->weights_format = FullyConnectedWeightsFormat::kDefault; break; case ::tflite::FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8: op->weights_format = FullyConnectedWeightsFormat::kShuffled4x16Int8; break; default: LOG(ERROR) << "Unhandled FC weights format"; op->weights_format = FullyConnectedWeightsFormat::kDefault; } } int GetVersion(const OperatorSignature& op_signature) const override { const auto& fc_op = static_cast<const FullyConnectedOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteFullyConnectedParams fully_connected_params = {}; fully_connected_params.keep_num_dims = fc_op.keep_num_dims; fully_connected_params.weights_format = static_cast<TfLiteFullyConnectedWeightsFormat>( GetWeightFormat(fc_op.weights_format)); op_sig.builtin_data = reinterpret_cast<void*>(&fully_connected_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Gather : public BuiltinOperator<GatherOperator, ::tflite::GatherOptions, ::tflite::BuiltinOptions_GatherOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { int axis = op.axis ? op.axis.value() : 0; return ::tflite::CreateGatherOptions(*builder, axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = {options.axis()}; } }; class GatherNd : public BuiltinOperator<GatherNdOperator, ::tflite::GatherNdOptions, ::tflite::BuiltinOptions_GatherNdOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateGatherNdOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Svdf : public BuiltinOperator<SvdfOperator, ::tflite::SVDFOptions, ::tflite::BuiltinOptions_SVDFOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateSVDFOptions(*builder, op.rank, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); op->rank = options.rank(); } }; class L2Normalization : public BuiltinOperator<L2NormalizationOperator, ::tflite::L2NormOptions, ::tflite::BuiltinOptions_L2NormOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateL2NormOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class L2Pool : public BuiltinOperator<L2PoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class LocalResponseNormalization : public BuiltinOperator< LocalResponseNormalizationOperator, ::tflite::LocalResponseNormalizationOptions, ::tflite::BuiltinOptions_LocalResponseNormalizationOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateLocalResponseNormalizationOptions( *builder, op.range, op.bias, op.alpha, op.beta); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->range = options.radius(); op->bias = options.bias(); op->alpha = options.alpha(); op->beta = options.beta(); } }; class MaxPool : public BuiltinOperator<MaxPoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class Mul : public BuiltinOperator<MulOperator, ::tflite::MulOptions, ::tflite::BuiltinOptions_MulOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateMulOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { const std::string& input1_name = op_signature.op->inputs[0]; const std::string& input2_name = op_signature.op->inputs[1]; const std::string& output_name = op_signature.op->outputs[0]; const Array& input1_array = op_signature.model->GetArray(input1_name); const Array& input2_array = op_signature.model->GetArray(input2_name); const Array& output_array = op_signature.model->GetArray(output_name); const auto& input1_quant = input1_array.quantization_params; const auto& input2_quant = input2_array.quantization_params; const auto& output_quant = output_array.quantization_params; const float input1_scale = input1_quant ? input1_quant->scale : 0.0f; const float input2_scale = input2_quant ? input2_quant->scale : 0.0f; const float output_scale = output_quant ? output_quant->scale : 0.0f; const bool input_quantized = input1_quant || input2_quant; ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); op_sig.ext_options.mul.input1_scale = input1_scale; op_sig.ext_options.mul.input2_scale = input2_scale; op_sig.ext_options.mul.output_scale = output_scale; op_sig.ext_options.mul.input_quantized = input_quantized; return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Pad : public BuiltinOperator<PadOperator, ::tflite::PadOptions, ::tflite::BuiltinOptions_PadOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePadOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Tile : public BuiltinOperator<TensorFlowTileOperator, ::tflite::TileOptions, ::tflite::BuiltinOptions_TileOptions> { using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTileOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class PadV2 : public BuiltinOperator<PadV2Operator, ::tflite::PadV2Options, ::tflite::BuiltinOptions_PadV2Options> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePadV2Options(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Reshape : public BuiltinOperator<TensorFlowReshapeOperator, ::tflite::ReshapeOptions, ::tflite::BuiltinOptions_ReshapeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReshapeOptions(*builder, builder->CreateVector(op.shape)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->shape.insert(op->shape.end(), options.new_shape()->begin(), options.new_shape()->end()); } }; class Softmax : public BuiltinOperator<SoftmaxOperator, ::tflite::SoftmaxOptions, ::tflite::BuiltinOptions_SoftmaxOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSoftmaxOptions(*builder, op.beta); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->beta = options.beta(); } }; class SpaceToDepth : public BuiltinOperator<SpaceToDepthOperator, ::tflite::SpaceToDepthOptions, ::tflite::BuiltinOptions_SpaceToDepthOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSpaceToDepthOptions(*builder, op.block_size); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->block_size = options.block_size(); } }; class Transpose : public BuiltinOperator<TransposeOperator, ::tflite::TransposeOptions, ::tflite::BuiltinOptions_TransposeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTransposeOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Lstm : public BuiltinOperator<LstmCellOperator, ::tflite::LSTMOptions, ::tflite::BuiltinOptions_LSTMOptions> { public: using BuiltinOperator::BuiltinOperator; ::tflite::LSTMKernelType GetKernelType( LstmCellOperator::KernelType type) const { switch (type) { case LstmCellOperator::KERNEL_BASIC: return ::tflite::LSTMKernelType_BASIC; break; case LstmCellOperator::KERNEL_FULL: return ::tflite::LSTMKernelType_FULL; break; default: LOG(ERROR) << "Unhandled Kernel Type"; return static_cast<::tflite::LSTMKernelType>(-1); } } flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { ::tflite::LSTMKernelType kernel_type = GetKernelType(op.kernel_type); return ::tflite::CreateLSTMOptions(*builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, kernel_type); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { CHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); switch (options.kernel_type()) { case ::tflite::LSTMKernelType_BASIC: op->kernel_type = LstmCellOperator::KERNEL_BASIC; break; case ::tflite::LSTMKernelType_FULL: op->kernel_type = LstmCellOperator::KERNEL_FULL; break; } } int GetVersion(const OperatorSignature& op_signature) const override { const auto& lstm_op = static_cast<const LstmCellOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteLSTMParams lstm_params = {}; lstm_params.kernel_type = static_cast<TfLiteLSTMKernelType>(GetKernelType(lstm_op.kernel_type)); op_sig.builtin_data = reinterpret_cast<void*>(&lstm_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { const auto& lstm_op = static_cast<const LstmCellOperator&>(op); std::vector<bool> mutating_input_variables(op.inputs.size(), false); switch (lstm_op.kernel_type) { case LstmCellOperator::KERNEL_FULL: { mutating_input_variables[kInputActivationStateTensor] = true; mutating_input_variables[kInputCellStateTensor] = true; break; } case LstmCellOperator::KERNEL_BASIC: { mutating_input_variables[LstmCellOperator::PREV_ACTIV_INPUT] = true; mutating_input_variables[LstmCellOperator::PREV_STATE_INPUT] = true; break; } } return mutating_input_variables; } }; class UnidirectionalSequenceLstm : public BuiltinOperator< UnidirectionalSequenceLstmOperator, ::tflite::UnidirectionalSequenceLSTMOptions, ::tflite::BuiltinOptions_UnidirectionalSequenceLSTMOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateUnidirectionalSequenceLSTMOptions( *builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, true); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[kInputActivationStateTensor] = true; mutating_input_variables[kInputCellStateTensor] = true; return mutating_input_variables; } }; class BidirectionalSequenceLstm : public BuiltinOperator< BidirectionalSequenceLstmOperator, ::tflite::BidirectionalSequenceLSTMOptions, ::tflite::BuiltinOptions_BidirectionalSequenceLSTMOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBidirectionalSequenceLSTMOptions( *builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, op.merge_outputs, true); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); op->merge_outputs = options.merge_outputs(); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[35] = true; mutating_input_variables[36] = true; mutating_input_variables[37] = true; mutating_input_variables[38] = true; return mutating_input_variables; } }; class BidirectionalSequenceRnn : public BuiltinOperator< BidirectionalSequenceRnnOperator, ::tflite::BidirectionalSequenceRNNOptions, ::tflite::BuiltinOptions_BidirectionalSequenceRNNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBidirectionalSequenceRNNOptions( *builder, true, ::tflite::ActivationFunctionType_TANH, op.merge_outputs); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); op->merge_outputs = options.merge_outputs(); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[4] = true; mutating_input_variables[8] = true; return mutating_input_variables; } }; class Mean : public BuiltinOperator<MeanOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class Sum : public BuiltinOperator<TensorFlowSumOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceMax : public BuiltinOperator<TensorFlowMaxOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceMin : public BuiltinOperator<TensorFlowMinOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceProd : public BuiltinOperator<TensorFlowProdOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceAny : public BuiltinOperator<TensorFlowAnyOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ResizeBilinear : public BuiltinOperator<ResizeBilinearOperator, ::tflite::ResizeBilinearOptions, ::tflite::BuiltinOptions_ResizeBilinearOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateResizeBilinearOptions(*builder, op.align_corners, op.half_pixel_centers); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->align_corners = options.align_corners(); op->half_pixel_centers = options.half_pixel_centers(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& resize_bilinear_op = static_cast<const ResizeBilinearOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteResizeBilinearParams resize_bilinear_params = {}; resize_bilinear_params.half_pixel_centers = resize_bilinear_op.half_pixel_centers; resize_bilinear_params.align_corners = resize_bilinear_op.align_corners; op_sig.builtin_data = reinterpret_cast<void*>(&resize_bilinear_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class ResizeNearestNeighbor : public BuiltinOperator< ResizeNearestNeighborOperator, ::tflite::ResizeNearestNeighborOptions, ::tflite::BuiltinOptions_ResizeNearestNeighborOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateResizeNearestNeighborOptions( *builder, op.align_corners, op.half_pixel_centers); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->align_corners = options.align_corners(); op->half_pixel_centers = options.half_pixel_centers(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& resize_nn_op = static_cast<const ResizeNearestNeighborOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteResizeNearestNeighborParams resize_nearest_neighbor_params = {}; resize_nearest_neighbor_params.half_pixel_centers = resize_nn_op.half_pixel_centers; resize_nearest_neighbor_params.align_corners = resize_nn_op.align_corners; op_sig.builtin_data = reinterpret_cast<void*>(&resize_nearest_neighbor_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Squeeze : public BuiltinOperator<SqueezeOperator, ::tflite::SqueezeOptions, ::tflite::BuiltinOptions_SqueezeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto squeeze_dims = builder->CreateVector(op.squeeze_dims); return ::tflite::CreateSqueezeOptions(*builder, squeeze_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->squeeze_dims.insert(op->squeeze_dims.end(), options.squeeze_dims()->begin(), options.squeeze_dims()->end()); } }; class Split : public BuiltinOperator<TensorFlowSplitOperator, ::tflite::SplitOptions, ::tflite::BuiltinOptions_SplitOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSplitOptions(*builder, op.num_split); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num_split = options.num_splits(); } }; class SplitV : public BuiltinOperator<TensorFlowSplitVOperator, ::tflite::SplitVOptions, ::tflite::BuiltinOptions_SplitVOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSplitVOptions(*builder, op.num_split); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num_split = options.num_splits(); } }; class StridedSlice : public BuiltinOperator<StridedSliceOperator, ::tflite::StridedSliceOptions, ::tflite::BuiltinOptions_StridedSliceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateStridedSliceOptions( *builder, op.begin_mask, op.end_mask, op.ellipsis_mask, op.new_axis_mask, op.shrink_axis_mask); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->begin_mask = options.begin_mask(); op->end_mask = options.end_mask(); op->ellipsis_mask = options.ellipsis_mask(); op->new_axis_mask = options.new_axis_mask(); op->shrink_axis_mask = options.shrink_axis_mask(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& ss_op = static_cast<const StridedSliceOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); op_sig.ext_options.strided_slice.num_dims = ss_op.start_indices.size(); TfLiteStridedSliceParams strided_slice_params = {}; strided_slice_params.ellipsis_mask = ss_op.ellipsis_mask; strided_slice_params.new_axis_mask = ss_op.new_axis_mask; op_sig.builtin_data = reinterpret_cast<void*>(&strided_slice_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class TopK_V2 : public BuiltinOperator<TopKV2Operator, ::tflite::TopKV2Options, ::tflite::BuiltinOptions_TopKV2Options> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTopKV2Options(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class ArgMax : public BuiltinOperator<ArgMaxOperator, ::tflite::ArgMaxOptions, ::tflite::BuiltinOptions_ArgMaxOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateArgMaxOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.output_type()); } }; class ArgMin : public BuiltinOperator<ArgMinOperator, ::tflite::ArgMinOptions, ::tflite::BuiltinOptions_ArgMinOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateArgMinOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.output_type()); } }; class TransposeConv : public BuiltinOperator<TransposeConvOperator, ::tflite::TransposeConvOptions, ::tflite::BuiltinOptions_TransposeConvOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); return ::tflite::CreateTransposeConvOptions( *builder, padding, op.stride_width, op.stride_height); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); } }; class SparseToDense : public BuiltinOperator<SparseToDenseOperator, ::tflite::SparseToDenseOptions, ::tflite::BuiltinOptions_SparseToDenseOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSparseToDenseOptions(*builder, op.validate_indices); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->validate_indices = options.validate_indices(); } }; class ExpandDims : public BuiltinOperator<ExpandDimsOperator, ::tflite::ExpandDimsOptions, ::tflite::BuiltinOptions_ExpandDimsOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateExpandDimsOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Pack : public BuiltinOperator<PackOperator, ::tflite::PackOptions, ::tflite::BuiltinOptions_PackOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePackOptions(*builder, op.values_count, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->values_count = options.values_count(); op->axis = options.axis(); } }; class Shape : public BuiltinOperator<TensorFlowShapeOperator, ::tflite::ShapeOptions, ::tflite::BuiltinOptions_ShapeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateShapeOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.out_type()); } }; class OneHot : public BuiltinOperator<OneHotOperator, ::tflite::OneHotOptions, ::tflite::BuiltinOptions_OneHotOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateOneHotOptions(*builder, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = options.axis(); } }; class CTCBeamSearchDecoder : public CustomOperator<CTCBeamSearchDecoderOperator> { public: using CustomOperator::CustomOperator; void WriteOptions(const TocoOperator& op, flexbuffers::Builder* fbb) const override { fbb->Int("beam_width", op.beam_width); fbb->Int("top_paths", op.top_paths); fbb->Bool("merge_repeated", op.merge_repeated); } void ReadOptions(const flexbuffers::Map& m, TocoOperator* op) const override { op->beam_width = m["beam_width"].AsInt32(); op->top_paths = m["top_paths"].AsInt32(); op->merge_repeated = m["merge_repeated"].AsBool(); } int GetVersion(const OperatorSignature& op_signature) const override { return 1; } }; class Unpack : public BuiltinOperator<UnpackOperator, ::tflite::UnpackOptions, ::tflite::BuiltinOptions_UnpackOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateUnpackOptions(*builder, op.num, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num = options.num(); op->axis = options.axis(); } int GetVersion(const OperatorSignature& op_signature) const override { const std::string& input_name = op_signature.op->inputs[0]; const Array& input_array = op_signature.model->GetArray(input_name); if (input_array.data_type == ArrayDataType::kInt8 || input_array.data_type == ArrayDataType::kUint8) { return 2; } if (input_array.data_type == ArrayDataType::kBool) { return 3; } return 1; } }; class LeakyRelu : public BuiltinOperator<LeakyReluOperator, ::tflite::LeakyReluOptions, ::tflite::BuiltinOptions_LeakyReluOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateLeakyReluOptions(*builder, op.alpha); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->alpha = options.alpha(); } }; class SquaredDifference : public BuiltinOperator< SquaredDifferenceOperator, ::tflite::SquaredDifferenceOptions, ::tflite::BuiltinOptions_SquaredDifferenceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSquaredDifferenceOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class MirrorPad : public BuiltinOperator<MirrorPadOperator, ::tflite::MirrorPadOptions, ::tflite::BuiltinOptions_MirrorPadOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateMirrorPadOptions( *builder, op.mode == MirrorPadMode::kReflect ? ::tflite::MirrorPadMode::MirrorPadMode_REFLECT : ::tflite::MirrorPadMode::MirrorPadMode_SYMMETRIC); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->mode = options.mode() == ::tflite::MirrorPadMode::MirrorPadMode_REFLECT ? MirrorPadMode::kReflect : MirrorPadMode::kSymmetric; } }; class Unique : public BuiltinOperator<UniqueOperator, ::tflite::UniqueOptions, ::tflite::BuiltinOptions_UniqueOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { const UniqueOperator& unique_op = static_cast<const UniqueOperator&>(op); return ::tflite::CreateUniqueOptions( *builder, unique_op.idx_out_type == toco::ArrayDataType::kInt64 ? ::tflite::TensorType::TensorType_INT64 : ::tflite::TensorType_INT32); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { UniqueOperator* unique_op = static_cast<UniqueOperator*>(op); unique_op->idx_out_type = options.idx_out_type() == ::tflite::TensorType_INT64 ? toco::ArrayDataType::kInt64 : toco::ArrayDataType::kInt32; } }; class UnidirectionalSequenceRnn : public BuiltinOperator<UnidirectionalSequenceRnnOperator, ::tflite::SequenceRNNOptions, ::tflite::BuiltinOptions_SequenceRNNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSequenceRNNOptions( *builder, true, ::tflite::ActivationFunctionType_TANH); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[4] = true; return mutating_input_variables; } }; class Where : public BuiltinOperator<WhereOperator, ::tflite::WhereOptions, ::tflite::BuiltinOptions_WhereOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateWhereOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; std::unique_ptr<flexbuffers::Builder> WriteFlexOpOptions( const std::string& tensorflow_node_def) { auto fbb = std::make_unique<flexbuffers::Builder>(); ::tensorflow::NodeDef node_def; if (!node_def.ParseFromString(tensorflow_node_def)) { LOG(ERROR) << "Failed to parse TensorFlow NodeDef"; return {}; } fbb->Vector([&]() { fbb->String(node_def.op()); fbb->String(tensorflow_node_def); }); fbb->Finish(); LOG(INFO) << "Writing flex op: " << node_def.op(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } class TensorFlowUnsupported : public BaseOperator { public: TensorFlowUnsupported(const std::string& name, OperatorType type, bool enable_select_tf_ops) : BaseOperator(name, type), enable_select_tf_ops_(enable_select_tf_ops) {} Options Serialize(const Operator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto fbb = WriteOptions(static_cast<const TensorFlowUnsupportedOperator&>(op)); if (fbb) { return Options::Custom(builder->CreateVector(fbb->GetBuffer())); } else { return Options::Custom(0); } } std::unique_ptr<Operator> Deserialize( const BuiltinOptions* builtin_options, const CustomOptions* custom_options) const override { auto op = std::make_unique<TensorFlowUnsupportedOperator>(); if (custom_options) { auto flexbuffer_map = flexbuffers::GetRoot(custom_options->data(), custom_options->size()) .AsMap(); ReadOptions(flexbuffer_map, op.get()); } return std::unique_ptr<Operator>(op.release()); } std::unique_ptr<flexbuffers::Builder> WriteOptions( const TensorFlowUnsupportedOperator& op) const { if (enable_select_tf_ops_) { return WriteFlexOpOptions(op.tensorflow_node_def); } auto fbb = std::make_unique<flexbuffers::Builder>(); ::tensorflow::NodeDef node_def; if (!node_def.ParseFromString(op.tensorflow_node_def)) { LOG(ERROR) << "Failed to parse TensorFlow NodeDef"; return std::unique_ptr<flexbuffers::Builder>(); } if (ShouldExportAsFlexOp(enable_select_tf_ops_, node_def.op())) { fbb->Vector([&]() { fbb->String(node_def.op()); fbb->String(op.tensorflow_node_def); }); fbb->Finish(); LOG(INFO) << "Writing flex op: " << node_def.op(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } bool has_valid_attr = false; size_t map_start = fbb->StartMap(); for (const auto& pair : node_def.attr()) { const char* key = pair.first.c_str(); const auto& attr = pair.second; switch (attr.value_case()) { case ::tensorflow::AttrValue::kS: fbb->String(key, attr.s()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kI: fbb->Int(key, attr.i()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kF: fbb->Float(key, attr.f()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kB: fbb->Bool(key, attr.b()); has_valid_attr = true; break; case tensorflow::AttrValue::kList: if (attr.list().s_size() > 0) { auto start = fbb->StartVector(key); for (const std::string& v : attr.list().s()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else if (attr.list().i_size() > 0) { auto start = fbb->StartVector(key); for (const int64_t v : attr.list().i()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else if (attr.list().f_size() > 0) { auto start = fbb->StartVector(key); for (const float v : attr.list().f()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else { LOG(WARNING) << "Ignoring unsupported type in list attribute with key '" << key << "'"; } break; default: LOG(WARNING) << "Ignoring unsupported attribute type with key '" << key << "'"; break; } } if (!has_valid_attr) { return std::unique_ptr<flexbuffers::Builder>(); } fbb->EndMap(map_start); fbb->Finish(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } void ReadOptions(const flexbuffers::Map& m, TensorFlowUnsupportedOperator* op) const { ::tensorflow::NodeDef node_def; auto attr = node_def.mutable_attr(); const auto& keys = m.Keys(); for (size_t i = 0; i < keys.size(); ++i) { const auto key = keys[i].AsKey(); const auto& value = m[key]; switch (value.GetType()) { case flexbuffers::FBT_STRING: (*attr)[key].set_s(value.AsString().c_str()); break; case flexbuffers::FBT_INT: (*attr)[key].set_i(value.AsInt64()); break; case flexbuffers::FBT_FLOAT: (*attr)[key].set_f(value.AsFloat()); break; case flexbuffers::FBT_BOOL: (*attr)[key].set_b(value.AsBool()); if (std::string(key) == "_output_quantized") { op->quantized = value.AsBool(); } if (std::string(key) == "_support_output_type_float_in_quantized_op") { op->support_output_type_float_in_quantized_op = value.AsBool(); } break; case flexbuffers::FBT_VECTOR_INT: { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_i(vector[i].AsInt64()); } break; } case flexbuffers::FBT_VECTOR_FLOAT: { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_f(vector[i].AsFloat()); } break; } case 15 : { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_s(vector[i].AsString().str()); } break; } default: LOG(WARNING) << "Ignoring unsupported attribute type with key '" << key << "'"; break; } } node_def.SerializeToString(&op->tensorflow_node_def); } int GetVersion(const OperatorSignature& op_signature) const override { return 1; } private: const bool enable_select_tf_ops_; }; class Dequantize : public BuiltinOperator<DequantizeOperator, ::tflite::DequantizeOptions, ::tflite::BuiltinOptions_DequantizeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateDequantizeOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class ReverseSequence : public BuiltinOperator<ReverseSequenceOperator, ::tflite::ReverseSequenceOptions, ::tflite::BuiltinOptions_ReverseSequenceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReverseSequenceOptions(*builder, op.seq_dim, op.batch_dim); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->seq_dim = options.seq_dim(); op->batch_dim = options.batch_dim(); } }; namespace { std::vector<std::unique_ptr<BaseOperator>> BuildOperatorList( bool enable_select_tf_ops = false) { std::vector<std::unique_ptr<BaseOperator>> ops; ops.push_back( std::make_unique<Add>(::tflite::BuiltinOperator_ADD, OperatorType::kAdd)); ops.push_back(std::make_unique<AddN>(::tflite::BuiltinOperator_ADD_N, OperatorType::kAddN)); ops.push_back( std::make_unique<Div>(::tflite::BuiltinOperator_DIV, OperatorType::kDiv)); ops.push_back( std::make_unique<Sub>(::tflite::BuiltinOperator_SUB, OperatorType::kSub)); ops.push_back(std::make_unique<AveragePool>( ::tflite::BuiltinOperator_AVERAGE_POOL_2D, OperatorType::kAveragePool)); ops.push_back(std::make_unique<SpaceToBatchND>( ::tflite::BuiltinOperator_SPACE_TO_BATCH_ND, OperatorType::kSpaceToBatchND)); ops.push_back(std::make_unique<BatchToSpaceND>( ::tflite::BuiltinOperator_BATCH_TO_SPACE_ND, OperatorType::kBatchToSpaceND)); ops.push_back(std::make_unique<Concatenation>( ::tflite::BuiltinOperator_CONCATENATION, OperatorType::kConcatenation)); ops.push_back(std::make_unique<Convolution>(::tflite::BuiltinOperator_CONV_2D, OperatorType::kConv)); ops.push_back(std::make_unique<DepthwiseConvolution>( ::tflite::BuiltinOperator_DEPTHWISE_CONV_2D, OperatorType::kDepthwiseConv)); ops.push_back(std::make_unique<Dequantize>( ::tflite::BuiltinOperator_DEQUANTIZE, OperatorType::kDequantize)); ops.push_back(std::make_unique<FullyConnected>( ::tflite::BuiltinOperator_FULLY_CONNECTED, OperatorType::kFullyConnected)); ops.push_back(std::make_unique<Gather>(::tflite::BuiltinOperator_GATHER, OperatorType::kGather)); ops.push_back(std::make_unique<GatherNd>(::tflite::BuiltinOperator_GATHER_ND, OperatorType::kGatherNd)); ops.push_back(std::make_unique<L2Normalization>( ::tflite::BuiltinOperator_L2_NORMALIZATION, OperatorType::kL2Normalization)); ops.push_back(std::make_unique<L2Pool>(::tflite::BuiltinOperator_L2_POOL_2D, OperatorType::kL2Pool)); ops.push_back(std::make_unique<LocalResponseNormalization>( ::tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, OperatorType::kLocalResponseNormalization)); ops.push_back(std::make_unique<MaxPool>(::tflite::BuiltinOperator_MAX_POOL_2D, OperatorType::kMaxPool)); ops.push_back( std::make_unique<Mul>(::tflite::BuiltinOperator_MUL, OperatorType::kMul)); ops.push_back( std::make_unique<Pad>(::tflite::BuiltinOperator_PAD, OperatorType::kPad)); ops.push_back(std::make_unique<PadV2>(::tflite::BuiltinOperator_PADV2, OperatorType::kPadV2)); ops.push_back(std::make_unique<Reshape>(::tflite::BuiltinOperator_RESHAPE, OperatorType::kReshape)); ops.push_back(std::make_unique<Softmax>(::tflite::BuiltinOperator_SOFTMAX, OperatorType::kSoftmax)); ops.push_back(std::make_unique<SpaceToDepth>( ::tflite::BuiltinOperator_SPACE_TO_DEPTH, OperatorType::kSpaceToDepth)); ops.push_back(std::make_unique<DepthToSpace>( ::tflite::BuiltinOperator_DEPTH_TO_SPACE, OperatorType::kDepthToSpace)); ops.push_back(std::make_unique<Svdf>(::tflite::BuiltinOperator_SVDF, OperatorType::kSvdf)); ops.push_back(std::make_unique<Transpose>(::tflite::BuiltinOperator_TRANSPOSE, OperatorType::kTranspose)); ops.push_back(std::make_unique<Mean>(::tflite::BuiltinOperator_MEAN, OperatorType::kMean)); ops.push_back( std::make_unique<Sum>(::tflite::BuiltinOperator_SUM, OperatorType::kSum)); ops.push_back(std::make_unique<ReduceProd>( ::tflite::BuiltinOperator_REDUCE_PROD, OperatorType::kReduceProd)); ops.push_back(std::make_unique<ReduceMax>( ::tflite::BuiltinOperator_REDUCE_MAX, OperatorType::kReduceMax)); ops.push_back(std::make_unique<ReduceMin>( ::tflite::BuiltinOperator_REDUCE_MIN, OperatorType::kReduceMin)); ops.push_back(std::make_unique<ReduceAny>( ::tflite::BuiltinOperator_REDUCE_ANY, OperatorType::kAny)); ops.push_back(std::make_unique<ResizeBilinear>( ::tflite::BuiltinOperator_RESIZE_BILINEAR, OperatorType::kResizeBilinear)); ops.push_back(std::make_unique<ResizeNearestNeighbor>( ::tflite::BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, OperatorType::kResizeNearestNeighbor)); ops.push_back(std::make_unique<Squeeze>(::tflite::BuiltinOperator_SQUEEZE, OperatorType::kSqueeze)); ops.push_back(std::make_unique<Split>(::tflite::BuiltinOperator_SPLIT, OperatorType::kSplit)); ops.push_back(std::make_unique<SplitV>(::tflite::BuiltinOperator_SPLIT_V, OperatorType::kSplitV)); ops.push_back(std::make_unique<StridedSlice>( ::tflite::BuiltinOperator_STRIDED_SLICE, OperatorType::kStridedSlice)); ops.push_back(std::make_unique<TopK_V2>(::tflite::BuiltinOperator_TOPK_V2, OperatorType::kTopK_V2)); ops.push_back(std::make_unique<Lstm>(::tflite::BuiltinOperator_LSTM, OperatorType::kLstmCell)); ops.push_back(std::make_unique<Cast>(::tflite::BuiltinOperator_CAST, OperatorType::kCast)); ops.push_back(std::make_unique<ArgMax>(::tflite::BuiltinOperator_ARG_MAX, OperatorType::kArgMax)); ops.push_back(std::make_unique<ArgMin>(::tflite::BuiltinOperator_ARG_MIN, OperatorType::kArgMin)); ops.push_back(std::make_unique<Tile>(::tflite::BuiltinOperator_TILE, OperatorType::kTile)); ops.push_back(std::make_unique<ExpandDims>( ::tflite::BuiltinOperator_EXPAND_DIMS, OperatorType::kExpandDims)); ops.push_back(std::make_unique<TransposeConv>( ::tflite::BuiltinOperator_TRANSPOSE_CONV, OperatorType::kTransposeConv)); ops.push_back(std::make_unique<SparseToDense>( ::tflite::BuiltinOperator_SPARSE_TO_DENSE, OperatorType::kSparseToDense)); ops.push_back(std::make_unique<Shape>(::tflite::BuiltinOperator_SHAPE, OperatorType::kShape)); ops.push_back(std::make_unique<FakeQuant>( ::tflite::BuiltinOperator_FAKE_QUANT, OperatorType::kFakeQuant)); ops.push_back(std::make_unique<Pack>(::tflite::BuiltinOperator_PACK, OperatorType::kPack)); ops.emplace_back(std::make_unique<UnidirectionalSequenceLstm>( ::tflite::BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, OperatorType::kUnidirectionalSequenceLstm)); ops.emplace_back(std::make_unique<BidirectionalSequenceLstm>( ::tflite::BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, OperatorType::kBidirectionalSequenceLstm)); ops.emplace_back(std::make_unique<BidirectionalSequenceRnn>( ::tflite::BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, OperatorType::kBidirectionalSequenceRnn)); ops.push_back(std::make_unique<OneHot>(::tflite::BuiltinOperator_ONE_HOT, OperatorType::kOneHot)); ops.push_back(std::make_unique<Unpack>(::tflite::BuiltinOperator_UNPACK, OperatorType::kUnpack)); ops.push_back(std::make_unique<LeakyRelu>( ::tflite::BuiltinOperator_LEAKY_RELU, OperatorType::kLeakyRelu)); ops.push_back(std::make_unique<SquaredDifference>( ::tflite::BuiltinOperator_SQUARED_DIFFERENCE, OperatorType::kSquaredDifference)); ops.push_back(std::make_unique<MirrorPad>( ::tflite::BuiltinOperator_MIRROR_PAD, OperatorType::kMirrorPad)); ops.push_back(std::make_unique<Unique>(::tflite::BuiltinOperator_UNIQUE, OperatorType::kUnique)); ops.push_back(std::make_unique<UnidirectionalSequenceRnn>( ::tflite::BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, OperatorType::kUnidirectionalSequenceRnn)); ops.push_back(std::make_unique<Where>(::tflite::BuiltinOperator_WHERE, OperatorType::kWhere)); ops.push_back(std::make_unique<ReverseSequence>( ::tflite::BuiltinOperator_REVERSE_SEQUENCE, OperatorType::kReverseSequence)); ops.push_back(std::make_unique<SimpleOperator<MatrixDiagOperator>>( ::tflite::BuiltinOperator_MATRIX_DIAG, OperatorType::kMatrixDiag)); ops.push_back(std::make_unique<SimpleOperator<MatrixSetDiagOperator>>( ::tflite::BuiltinOperator_MATRIX_SET_DIAG, OperatorType::kMatrixSetDiag)); ops.push_back(std::make_unique<CTCBeamSearchDecoder>( "CTC_BEAM_SEARCH_DECODER", OperatorType::kCTCBeamSearchDecoder)); ops.push_back(std::make_unique<TensorFlowUnsupported>( "TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported, enable_select_tf_ops)); ops.push_back(std::make_unique<SimpleOperator<FloorOperator>>( ::tflite::BuiltinOperator_FLOOR, OperatorType::kFloor)); ops.push_back(std::make_unique<SimpleOperator<CeilOperator>>( ::tflite::BuiltinOperator_CEIL, OperatorType::kCeil)); ops.push_back(std::make_unique<SimpleOperator<EluOperator>>( ::tflite::BuiltinOperator_ELU, OperatorType::kElu)); ops.push_back(std::make_unique<SimpleOperator<RoundOperator>>( ::tflite::BuiltinOperator_ROUND, OperatorType::kRound)); ops.push_back(std::make_unique<SimpleOperator<ReluOperator>>( ::tflite::BuiltinOperator_RELU, OperatorType::kRelu)); ops.push_back(std::make_unique<SimpleOperator<Relu1Operator>>( ::tflite::BuiltinOperator_RELU_N1_TO_1, OperatorType::kRelu1)); ops.push_back(std::make_unique<SimpleOperator<Relu6Operator>>( ::tflite::BuiltinOperator_RELU6, OperatorType::kRelu6)); ops.push_back(std::make_unique<SimpleOperator<PReluOperator>>( ::tflite::BuiltinOperator_PRELU, OperatorType::kPRelu)); ops.push_back(std::make_unique<SimpleOperator<LogisticOperator>>( ::tflite::BuiltinOperator_LOGISTIC, OperatorType::kLogistic)); ops.push_back(std::make_unique<SimpleOperator<TanhOperator>>( ::tflite::BuiltinOperator_TANH, OperatorType::kTanh)); ops.push_back(std::make_unique<SimpleOperator<ExpOperator>>( ::tflite::BuiltinOperator_EXP, OperatorType::kExp)); ops.push_back(std::make_unique<SimpleOperator<CosOperator>>( ::tflite::BuiltinOperator_COS, OperatorType::kCos)); ops.push_back(std::make_unique<SimpleOperator<LogSoftmaxOperator>>( ::tflite::BuiltinOperator_LOG_SOFTMAX, OperatorType::kLogSoftmax)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowMaximumOperator>>( ::tflite::BuiltinOperator_MAXIMUM, OperatorType::kMaximum)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowMinimumOperator>>( ::tflite::BuiltinOperator_MINIMUM, OperatorType::kMinimum)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowGreaterOperator>>( ::tflite::BuiltinOperator_GREATER, OperatorType::kGreater)); ops.push_back( std::make_unique<SimpleOperator<TensorFlowGreaterEqualOperator>>( ::tflite::BuiltinOperator_GREATER_EQUAL, OperatorType::kGreaterEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowLessOperator>>( ::tflite::BuiltinOperator_LESS, OperatorType::kLess)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowLessEqualOperator>>( ::tflite::BuiltinOperator_LESS_EQUAL, OperatorType::kLessEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowEqualOperator>>( ::tflite::BuiltinOperator_EQUAL, OperatorType::kEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowNotEqualOperator>>( ::tflite::BuiltinOperator_NOT_EQUAL, OperatorType::kNotEqual)); ops.push_back(std::make_unique<SimpleOperator<NegOperator>>( ::tflite::BuiltinOperator_NEG, OperatorType::kNeg)); ops.push_back(std::make_unique<SimpleOperator<SelectOperator>>( ::tflite::BuiltinOperator_SELECT, OperatorType::kSelect)); ops.push_back(std::make_unique<SimpleOperator<SliceOperator>>( ::tflite::BuiltinOperator_SLICE, OperatorType::kSlice)); ops.push_back(std::make_unique<SimpleOperator<PowOperator>>( ::tflite::BuiltinOperator_POW, OperatorType::kPow)); ops.push_back(std::make_unique<SimpleOperator<LogicalOrOperator>>( ::tflite::BuiltinOperator_LOGICAL_OR, OperatorType::kLogicalOr)); ops.emplace_back(new SimpleOperator<LogicalAndOperator>( ::tflite::BuiltinOperator_LOGICAL_AND, OperatorType::kLogicalAnd)); ops.emplace_back(new SimpleOperator<LogicalNotOperator>( ::tflite::BuiltinOperator_LOGICAL_NOT, OperatorType::kLogicalNot)); ops.emplace_back(new SimpleOperator<FloorDivOperator>( ::tflite::BuiltinOperator_FLOOR_DIV, OperatorType::kFloorDiv)); ops.emplace_back(new SimpleOperator<FloorModOperator>( ::tflite::BuiltinOperator_FLOOR_MOD, OperatorType::kFloorMod)); ops.emplace_back(new SimpleOperator<RangeOperator>( ::tflite::BuiltinOperator_RANGE, OperatorType::kRange)); ops.push_back(std::make_unique<SimpleOperator<SinOperator>>( ::tflite::BuiltinOperator_SIN, OperatorType::kSin)); ops.push_back(std::make_unique<SimpleOperator<LogOperator>>( ::tflite::BuiltinOperator_LOG, OperatorType::kLog)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowSqrtOperator>>( ::tflite::BuiltinOperator_SQRT, OperatorType::kSqrt)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowRsqrtOperator>>( ::tflite::BuiltinOperator_RSQRT, OperatorType::kRsqrt)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowSquareOperator>>( ::tflite::BuiltinOperator_SQUARE, OperatorType::kSquare)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowZerosLikeOperator>>( ::tflite::BuiltinOperator_ZEROS_LIKE, OperatorType::kZerosLike)); ops.push_back(std::make_unique<SimpleOperator<AbsOperator>>( ::tflite::BuiltinOperator_ABS, OperatorType::kAbs)); ops.push_back(std::make_unique<SimpleOperator<HardSwishOperator>>( ::tflite::BuiltinOperator_HARD_SWISH, OperatorType::kHardSwish)); ops.push_back(std::make_unique<SimpleOperator<FillOperator>>( ::tflite::BuiltinOperator_FILL, OperatorType::kFill)); ops.push_back(std::make_unique<SimpleOperator<ReverseV2Operator>>( ::tflite::BuiltinOperator_REVERSE_V2, OperatorType::kReverseV2)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowRankOperator>>( ::tflite::BuiltinOperator_RANK, OperatorType::kRank)); ops.emplace_back(new SimpleOperator<SegmentSumOperator>( ::tflite::BuiltinOperator_SEGMENT_SUM, OperatorType::kSegmentSum)); ops.emplace_back(std::make_unique<SimpleOperator<ScatterNdOperator>>( ::tflite::BuiltinOperator_SCATTER_ND, OperatorType::kScatterNd)); return ops; } } std::map<OperatorType, std::unique_ptr<BaseOperator>> BuildOperatorByTypeMap( bool enable_select_tf_ops) { std::map<OperatorType, std::unique_ptr<BaseOperator>> result; std::vector<std::unique_ptr<BaseOperator>> ops = BuildOperatorList(enable_select_tf_ops); for (auto& op : ops) { result[op->type()] = std::move(op); } return result; } std::map<std::string, std::unique_ptr<BaseOperator>> BuildOperatorByNameMap( bool enable_select_tf_ops) { std::map<std::string, std::unique_ptr<BaseOperator>> result; std::vector<std::unique_ptr<BaseOperator>> ops = BuildOperatorList(enable_select_tf_ops); for (auto& op : ops) { result[op->name()] = std::move(op); } return result; } bool ShouldExportAsFlexOp(bool enable_select_tf_ops, const std::string& tensorflow_op_name) { if (!enable_select_tf_ops) { return false; } const tensorflow::OpDef* op_def = nullptr; if (!tensorflow::OpRegistry::Global() ->LookUpOpDef(tensorflow_op_name, &op_def) .ok()) { return false; } if (!::tflite::flex::IsAllowlistedFlexOp(tensorflow_op_name)) { LOG(WARNING) << "Op " << tensorflow_op_name << " is a valid TensorFlow op but has not been allowlisted for" " the TensorFlow Lite flex op set."; return false; } return true; } } }
#include "tensorflow/lite/toco/tflite/operator.h" #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace { class OperatorTest : public ::testing::Test { protected: const BaseOperator& GetOperator(const std::string& name, OperatorType type) { using OpsByName = std::map<std::string, std::unique_ptr<BaseOperator>>; using OpsByType = std::map<OperatorType, std::unique_ptr<BaseOperator>>; static auto* by_name = new OpsByName(BuildOperatorByNameMap()); static auto* by_type = new OpsByType(BuildOperatorByTypeMap()); CHECK(by_name->count(name)) << "No operator for '" << name << "'."; BaseOperator* op1 = by_name->at(name).get(); CHECK(op1->type() == type) << "while verifying '" << name << "'."; CHECK(by_type->count(type)) << "No operator for '" << OperatorTypeName(type) << "'."; BaseOperator* op2 = by_type->at(type).get(); CHECK(op2->name() == name) << "while verifying '" << OperatorTypeName(type) << "'."; return *op1; } template <typename T> std::unique_ptr<T> SerializeAndDeserialize(const BaseOperator& op, const T& toco_op, Options* options = nullptr) { flatbuffers::FlatBufferBuilder builder; Options input_options = op.Serialize(toco_op, &builder); if (options) { *options = input_options; } builder.Finish(CreateOperator(builder, 0, 0, 0, input_options.type, input_options.builtin, input_options.custom, ::tflite::CustomOptionsFormat_FLEXBUFFERS)); auto* output_options = flatbuffers::GetRoot<::tflite::Operator>(builder.GetBufferPointer()); auto new_toco_op = op.Deserialize(output_options->builtin_options(), output_options->custom_options()); CHECK(new_toco_op->type == toco_op.type) << "The type of the serialized and deserialized" << HelpfulOperatorTypeName(*new_toco_op) << " does not match the type of the original " << HelpfulOperatorTypeName(toco_op); return std::unique_ptr<T>(dynamic_cast<T*>(new_toco_op.release())); } template <typename T> void CheckSimpleOperator(const std::string& name, OperatorType type) { Options options; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), T(), &options); ASSERT_EQ(0, options.builtin.o); ASSERT_EQ(0, options.custom.o); ASSERT_EQ(::tflite::BuiltinOptions_NONE, options.type); ASSERT_NE(nullptr, output_toco_op.get()); } template <typename T> void CheckReducerOperator(const std::string& name, OperatorType type) { T op; op.keep_dims = false; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), op); EXPECT_EQ(op.keep_dims, output_toco_op->keep_dims); } }; TEST_F(OperatorTest, SimpleOperators) { CheckSimpleOperator<FloorOperator>("FLOOR", OperatorType::kFloor); CheckSimpleOperator<CeilOperator>("CEIL", OperatorType::kCeil); CheckSimpleOperator<EluOperator>("ELU", OperatorType::kElu); CheckSimpleOperator<RoundOperator>("ROUND", OperatorType::kRound); CheckSimpleOperator<ReluOperator>("RELU", OperatorType::kRelu); CheckSimpleOperator<Relu1Operator>("RELU_N1_TO_1", OperatorType::kRelu1); CheckSimpleOperator<Relu6Operator>("RELU6", OperatorType::kRelu6); CheckSimpleOperator<LogisticOperator>("LOGISTIC", OperatorType::kLogistic); CheckSimpleOperator<TanhOperator>("TANH", OperatorType::kTanh); CheckSimpleOperator<ExpOperator>("EXP", OperatorType::kExp); CheckSimpleOperator<CosOperator>("COS", OperatorType::kCos); CheckSimpleOperator<LogSoftmaxOperator>("LOG_SOFTMAX", OperatorType::kLogSoftmax); CheckSimpleOperator<TensorFlowMaximumOperator>( "MAXIMUM", OperatorType::kMaximum); CheckSimpleOperator<TensorFlowMinimumOperator>( "MINIMUM", OperatorType::kMinimum); CheckSimpleOperator<TensorFlowLessOperator>("LESS", OperatorType::kLess); CheckSimpleOperator<NegOperator>("NEG", OperatorType::kNeg); CheckSimpleOperator<SelectOperator>("SELECT", OperatorType::kSelect); CheckSimpleOperator<SliceOperator>("SLICE", OperatorType::kSlice); CheckSimpleOperator<SinOperator>("SIN", OperatorType::kSin); CheckSimpleOperator<TensorFlowEqualOperator>("EQUAL", OperatorType::kEqual); CheckSimpleOperator<TensorFlowNotEqualOperator>("NOT_EQUAL", OperatorType::kNotEqual); CheckSimpleOperator<LogOperator>("LOG", OperatorType::kLog); CheckSimpleOperator<TensorFlowSqrtOperator>("SQRT", OperatorType::kSqrt); CheckSimpleOperator<TensorFlowRsqrtOperator>("RSQRT", OperatorType::kRsqrt); CheckSimpleOperator<PowOperator>("POW", OperatorType::kPow); CheckSimpleOperator<LogicalOrOperator>("LOGICAL_OR", OperatorType::kLogicalOr); CheckSimpleOperator<LogicalAndOperator>("LOGICAL_AND", OperatorType::kLogicalAnd); CheckSimpleOperator<LogicalNotOperator>("LOGICAL_NOT", OperatorType::kLogicalNot); CheckSimpleOperator<FloorDivOperator>("FLOOR_DIV", OperatorType::kFloorDiv); CheckSimpleOperator<TensorFlowSquareOperator>("SQUARE", OperatorType::kSquare); CheckSimpleOperator<TensorFlowZerosLikeOperator>("ZEROS_LIKE", OperatorType::kZerosLike); CheckSimpleOperator<FloorModOperator>("FLOOR_MOD", OperatorType::kFloorMod); CheckSimpleOperator<RangeOperator>("RANGE", OperatorType::kRange); CheckSimpleOperator<FillOperator>("FILL", OperatorType::kFill); CheckSimpleOperator<ReverseV2Operator>("REVERSE_V2", OperatorType::kReverseV2); CheckSimpleOperator<TensorFlowRankOperator>("RANK", OperatorType::kRank); } TEST_F(OperatorTest, BuiltinAdd) { AddOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD", OperatorType::kAdd), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinAddN) { AddNOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD_N", OperatorType::kAddN), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinReducerOps) { CheckReducerOperator<MeanOperator>("MEAN", OperatorType::kMean); CheckReducerOperator<TensorFlowSumOperator>("SUM", OperatorType::kSum); CheckReducerOperator<TensorFlowProdOperator>("REDUCE_PROD", OperatorType::kReduceProd); CheckReducerOperator<TensorFlowMaxOperator>("REDUCE_MAX", OperatorType::kReduceMax); CheckReducerOperator<TensorFlowMinOperator>("REDUCE_MIN", OperatorType::kReduceMin); CheckReducerOperator<TensorFlowAnyOperator>("REDUCE_ANY", OperatorType::kAny); } TEST_F(OperatorTest, BuiltinCast) { CastOperator op; op.src_data_type = ArrayDataType::kFloat; op.dst_data_type = ArrayDataType::kUint8; auto output_toco_op = SerializeAndDeserialize(GetOperator("CAST", OperatorType::kCast), op); EXPECT_EQ(op.src_data_type, output_toco_op->src_data_type); EXPECT_EQ(op.dst_data_type, output_toco_op->dst_data_type); } TEST_F(OperatorTest, CustomConcatenation) { ConcatenationOperator op; op.axis = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("CONCATENATION", OperatorType::kConcatenation), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, CustomDepthToSpace) { DepthToSpaceOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTH_TO_SPACE", OperatorType::kDepthToSpace), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomFakeQuant) { FakeQuantOperator op; auto* minmax = new MinMax; minmax->min = -10; minmax->max = 200; op.minmax.reset(minmax); op.num_bits = 16; auto output_toco_op = SerializeAndDeserialize( GetOperator("FAKE_QUANT", OperatorType::kFakeQuant), op); EXPECT_EQ(op.minmax->min, output_toco_op->minmax->min); EXPECT_EQ(op.minmax->max, output_toco_op->minmax->max); EXPECT_EQ(op.num_bits, output_toco_op->num_bits); } TEST_F(OperatorTest, CustomFullyConnected) { FullyConnectedOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("FULLY_CONNECTED", OperatorType::kFullyConnected), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinGather) { GatherOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("GATHER", OperatorType::kGather), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinGatherNd) { GatherNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("GATHER_ND", OperatorType::kGatherNd), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinWhere) { WhereOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("WHERE", OperatorType::kWhere), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinL2Pool) { L2PoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_POOL_2D", OperatorType::kL2Pool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinLocalResponseNormalization) { LocalResponseNormalizationOperator op; op.range = 123; op.bias = 1.23; op.alpha = 12.3; op.beta = .123; auto output_toco_op = SerializeAndDeserialize( GetOperator("LOCAL_RESPONSE_NORMALIZATION", OperatorType::kLocalResponseNormalization), op); EXPECT_EQ(op.range, output_toco_op->range); EXPECT_EQ(op.bias, output_toco_op->bias); EXPECT_EQ(op.alpha, output_toco_op->alpha); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinMaxPool) { MaxPoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("MAX_POOL_2D", OperatorType::kMaxPool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinReshape) { TensorFlowReshapeOperator op; op.shape = {1, 2, 4, 5, 8}; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESHAPE", OperatorType::kReshape), op); EXPECT_EQ(op.shape, output_toco_op->shape); } TEST_F(OperatorTest, CustomSoftmax) { SoftmaxOperator op; op.beta = 123.1; auto output_toco_op = SerializeAndDeserialize( GetOperator("SOFTMAX", OperatorType::kSoftmax), op); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinSpaceToDepth) { SpaceToDepthOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPACE_TO_DEPTH", OperatorType::kSpaceToDepth), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomSplit) { TensorFlowSplitOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize(GetOperator("SPLIT", OperatorType::kSplit), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, CustomSplitV) { TensorFlowSplitVOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPLIT_V", OperatorType::kSplitV), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, BuiltinAveragePool) { AveragePoolOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("AVERAGE_POOL_2D", OperatorType::kAveragePool), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinConvolution) { ConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("CONV_2D", OperatorType::kConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinDepthwiseConvolution) { DepthwiseConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.depth_multiplier = 6; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTHWISE_CONV_2D", OperatorType::kDepthwiseConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.depth_multiplier, output_toco_op->depth_multiplier); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinL2Norm) { L2NormalizationOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_NORMALIZATION", OperatorType::kL2Normalization), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinMul) { MulOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("MUL", OperatorType::kMul), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, ResizeBilinear) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeBilinear_HalfPixelCenters) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor_HalfPixelCenters) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, Svdf) { SvdfOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu; op.rank = 1; auto output_toco_op = SerializeAndDeserialize(GetOperator("SVDF", OperatorType::kSvdf), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.rank, output_toco_op->rank); } TEST_F(OperatorTest, Squeeze) { SqueezeOperator op; op.squeeze_dims = {-2, -3, 4, 1, 4}; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUEEZE", OperatorType::kSqueeze), op); EXPECT_EQ(op.squeeze_dims, output_toco_op->squeeze_dims); } TEST_F(OperatorTest, StridedSlice) { StridedSliceOperator op; op.begin_mask = 1; op.end_mask = 2; op.ellipsis_mask = 1; op.new_axis_mask = 1; op.shrink_axis_mask = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("STRIDED_SLICE", OperatorType::kStridedSlice), op); EXPECT_EQ(op.start_indices, output_toco_op->start_indices); EXPECT_EQ(op.stop_indices, output_toco_op->stop_indices); EXPECT_EQ(op.strides, output_toco_op->strides); EXPECT_EQ(op.begin_mask, output_toco_op->begin_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.ellipsis_mask, output_toco_op->ellipsis_mask); EXPECT_EQ(op.new_axis_mask, output_toco_op->new_axis_mask); EXPECT_EQ(op.shrink_axis_mask, output_toco_op->shrink_axis_mask); } TEST_F(OperatorTest, BuiltinTopKV2) { TopKV2Operator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("TOPK_V2", OperatorType::kTopK_V2), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinArgMax) { ArgMaxOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MAX", OperatorType::kArgMax), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinArgMin) { ArgMinOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MIN", OperatorType::kArgMin), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinDequantize) { DequantizeOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEQUANTIZE", OperatorType::kDequantize), op); } TEST_F(OperatorTest, BuiltinTransposeConv) { TransposeConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; auto output_toco_op = SerializeAndDeserialize( GetOperator("TRANSPOSE_CONV", OperatorType::kTransposeConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); } TEST_F(OperatorTest, BuiltinShape) { TensorFlowShapeOperator op; op.output_data_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("SHAPE", OperatorType::kShape), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinSparseToDense) { SparseToDenseOperator op; op.validate_indices = false; std::unique_ptr<toco::SparseToDenseOperator> output_toco_op = SerializeAndDeserialize( GetOperator("SPARSE_TO_DENSE", OperatorType::kSparseToDense), op); EXPECT_EQ(op.validate_indices, output_toco_op->validate_indices); } TEST_F(OperatorTest, VersioningSpareToDense) { SparseToDenseOperator op; op.inputs = {"indices", "output_shape", "input_values", "default_value"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model int32_model; Array& int32_array = int32_model.GetOrCreateArray(op.inputs[2]); int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &op, .model = &int32_model}; EXPECT_EQ(base_op->GetVersion(int32_signature), 1); Model int64_model; Array& int64_array = int64_model.GetOrCreateArray(op.inputs[2]); int64_array.data_type = ArrayDataType::kInt64; OperatorSignature int64_signature = {.op = &op, .model = &int64_model}; EXPECT_EQ(base_op->GetVersion(int64_signature), 2); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[2]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 3); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[2]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 3); } TEST_F(OperatorTest, BuiltinPack) { PackOperator op; op.values_count = 3; op.axis = 1; std::unique_ptr<toco::PackOperator> output_toco_op = SerializeAndDeserialize(GetOperator("PACK", OperatorType::kPack), op); EXPECT_EQ(op.values_count, output_toco_op->values_count); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinOneHot) { OneHotOperator op; op.axis = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("ONE_HOT", OperatorType::kOneHot), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinUnpack) { UnpackOperator op; op.num = 5; op.axis = 2; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNPACK", OperatorType::kUnpack), op); EXPECT_EQ(op.num, output_toco_op->num); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinLeakyRelu) { LeakyReluOperator op; op.alpha = 3; auto output_toco_op = SerializeAndDeserialize( GetOperator("LEAKY_RELU", OperatorType::kLeakyRelu), op); EXPECT_EQ(op.alpha, output_toco_op->alpha); } TEST_F(OperatorTest, BuiltinSquaredDifference) { SquaredDifferenceOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUARED_DIFFERENCE", OperatorType::kSquaredDifference), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinScatterNd) { ScatterNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SCATTER_ND", OperatorType::kScatterNd), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, CustomCTCBeamSearchDecoder) { CTCBeamSearchDecoderOperator op; op.beam_width = 3; op.top_paths = 2; op.merge_repeated = false; std::unique_ptr<toco::CTCBeamSearchDecoderOperator> output_toco_op = SerializeAndDeserialize(GetOperator("CTC_BEAM_SEARCH_DECODER", OperatorType::kCTCBeamSearchDecoder), op); EXPECT_EQ(op.beam_width, output_toco_op->beam_width); EXPECT_EQ(op.top_paths, output_toco_op->top_paths); EXPECT_EQ(op.merge_repeated, output_toco_op->merge_repeated); } TEST_F(OperatorTest, TensorFlowUnsupported) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; ::tensorflow::NodeDef node_def; auto attr = node_def.mutable_attr(); (*attr)["float_attr"].set_f(2.0); (*attr)["str_attr"].set_s("Hello World"); (*attr)["int_attr"].set_i(17); (*attr)["bool_attr"].set_b(true); { auto* list = (*attr)["list_string_attr"].mutable_list(); list->add_s("abcde"); list->add_s("1234"); list->add_s(""); list->add_s("zyxwv"); list->add_s("!-."); } { auto* list = (*attr)["list_float_attr"].mutable_list(); list->add_f(std::numeric_limits<float>::min()); list->add_f(2.0); list->add_f(-std::numeric_limits<float>::max()); } { auto* list = (*attr)["list_int_attr"].mutable_list(); list->add_i(1); list->add_i(20); list->add_i(1LL << 40); list->add_i(-(1LL << 40)); } node_def.SerializeToString(&op.tensorflow_node_def); auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); const auto& output_attr = output_node_def.attr(); EXPECT_EQ(2.0, output_attr.at("float_attr").f()); EXPECT_EQ("Hello World", output_attr.at("str_attr").s()); EXPECT_EQ(17, output_attr.at("int_attr").i()); EXPECT_EQ(true, output_attr.at("bool_attr").b()); { const auto& list = output_attr.at("list_string_attr").list(); ASSERT_EQ(5, list.s_size()); EXPECT_EQ("abcde", list.s(0)); EXPECT_EQ("1234", list.s(1)); EXPECT_EQ("", list.s(2)); EXPECT_EQ("zyxwv", list.s(3)); EXPECT_EQ("!-.", list.s(4)); } { const auto& list = output_attr.at("list_float_attr").list(); ASSERT_EQ(3, list.f_size()); EXPECT_EQ(std::numeric_limits<float>::min(), list.f(0)); EXPECT_EQ(2.0, list.f(1)); EXPECT_EQ(-std::numeric_limits<float>::max(), list.f(2)); } { const auto& list = output_attr.at("list_int_attr").list(); ASSERT_EQ(4, list.i_size()); EXPECT_EQ(1, list.i(0)); EXPECT_EQ(20, list.i(1)); EXPECT_EQ(1LL << 40, list.i(2)); EXPECT_EQ(-(1LL << 40), list.i(3)); } } TEST_F(OperatorTest, TensorFlowUnsupportedWithoutAttr) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); EXPECT_TRUE(output_node_def.attr().empty()); } TEST_F(OperatorTest, TestShouldExportAsFlexOp) { EXPECT_FALSE(ShouldExportAsFlexOp(false, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "EluGrad")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RFFT")); EXPECT_FALSE(ShouldExportAsFlexOp(true, "MyAwesomeCustomOp")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RandomShuffle")); } TEST_F(OperatorTest, BuiltinMirrorPad) { MirrorPadOperator op; op.mode = MirrorPadMode::kReflect; auto output_toco_op = SerializeAndDeserialize( GetOperator("MIRROR_PAD", OperatorType::kMirrorPad), op); EXPECT_EQ(op.mode, output_toco_op->mode); } TEST_F(OperatorTest, BuiltinUnique) { UniqueOperator op; op.idx_out_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNIQUE", OperatorType::kUnique), op); ASSERT_NE(nullptr, output_toco_op.get()); EXPECT_EQ(output_toco_op->idx_out_type, op.idx_out_type); } TEST_F(OperatorTest, BuiltinSegmentSum) { SegmentSumOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SEGMENT_SUM", OperatorType::kSegmentSum), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinReverseSequence) { ReverseSequenceOperator op; op.seq_dim = 3; op.batch_dim = 1; std::unique_ptr<toco::ReverseSequenceOperator> output_toco_op = SerializeAndDeserialize( GetOperator("REVERSE_SEQUENCE", OperatorType::kReverseSequence), op); EXPECT_EQ(op.seq_dim, output_toco_op->seq_dim); EXPECT_EQ(op.batch_dim, output_toco_op->batch_dim); } TEST_F(OperatorTest, BuiltinMatrixDiag) { MatrixDiagOperator op; std::unique_ptr<toco::MatrixDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_DIAG", OperatorType::kMatrixDiag), op); } TEST_F(OperatorTest, BuiltinMatrixSetDiag) { MatrixSetDiagOperator op; std::unique_ptr<toco::MatrixSetDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_SET_DIAG", OperatorType::kMatrixSetDiag), op); } template <typename Op> void SimpleVersioningTest() { Op op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } template <typename Op> void SimpleOutputVersioningTest() { Op op; op.outputs = {"output1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.outputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.outputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } TEST_F(OperatorTest, VersioningEqualTest) { SimpleVersioningTest<TensorFlowEqualOperator>(); } TEST_F(OperatorTest, VersioningNotEqualTest) { SimpleVersioningTest<TensorFlowNotEqualOperator>(); } TEST_F(OperatorTest, VersioningLessTest) { SimpleVersioningTest<TensorFlowLessOperator>(); } TEST_F(OperatorTest, VersioningLessEqualTest) { SimpleVersioningTest<TensorFlowLessEqualOperator>(); } TEST_F(OperatorTest, VersioningGreaterTest) { SimpleVersioningTest<TensorFlowGreaterOperator>(); } TEST_F(OperatorTest, VersioningGreaterEqualTest) { SimpleVersioningTest<TensorFlowGreaterEqualOperator>(); } TEST_F(OperatorTest, VersioningSpaceToBatchNDTest) { SpaceToBatchNDOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.copy_shape({1, 2, 2, 2}); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.copy_shape({1, 2, 2, 2}); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model float_model; Array& float_array = float_model.GetOrCreateArray(op.inputs[0]); float_array.copy_shape({1, 2, 2}); float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &op, .model = &float_model}; EXPECT_EQ(base_op->GetVersion(float_signature), 3); } TEST_F(OperatorTest, VersioningLogSoftmaxTest) { SimpleVersioningTest<LogSoftmaxOperator>(); } TEST_F(OperatorTest, VersioningPackTest) { SimpleVersioningTest<PackOperator>(); } TEST_F(OperatorTest, VersioningUnpackTest) { UnpackOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model int32_model; Array& int32_array = int32_model.GetOrCreateArray(op.inputs[0]); int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &op, .model = &int32_model}; EXPECT_EQ(base_op->GetVersion(int32_signature), 1); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 2); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } TEST_F(OperatorTest, VersioningBatchToSpaceNDTest) { BatchToSpaceNDOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; uint8_array.copy_shape({1, 2, 2, 2}); OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; int8_array.copy_shape({1, 2, 2, 2}); OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model float_model; Array& float_array = float_model.GetOrCreateArray(op.inputs[0]); float_array.copy_shape({1, 2, 2}); float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &op, .model = &float_model}; EXPECT_EQ(base_op->GetVersion(float_signature), 3); } TEST_F(OperatorTest, VersioningTanhTest) { SimpleVersioningTest<TanhOperator>(); } TEST_F(OperatorTest, VersioningStridedSliceTest) { StridedSliceOperator op; op.inputs = {"input1"}; op.ellipsis_mask = 0; op.new_axis_mask = 0; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model bool_model; Array& bool_array = bool_model.GetOrCreateArray(op.inputs[0]); bool_array.data_type = ArrayDataType::kBool; OperatorSignature bool_signature = {.op = &op, .model = &bool_model}; EXPECT_EQ(base_op->GetVersion(bool_signature), 3); op.start_indices = {0, 0, 0, 0, 0}; op.stop_indices = {1, 2, 2, 2, 2}; op.strides = {1, 1, 1, 1, 1}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 4); EXPECT_EQ(base_op->GetVersion(int8_signature), 4); EXPECT_EQ(base_op->GetVersion(bool_signature), 4); } TEST_F(OperatorTest, VersioningSpaceToDepthTest) { SimpleVersioningTest<SpaceToDepthOperator>(); } TEST_F(OperatorTest, VersioningSliceTest) { SimpleVersioningTest<SliceOperator>(); SliceOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model string_model; Array& string_array = string_model.GetOrCreateArray(op.inputs[0]); string_array.data_type = ArrayDataType::kString; OperatorSignature string_signature = {.op = &op, .model = &string_model}; EXPECT_EQ(base_op->GetVersion(string_signature), 3); } TEST_F(OperatorTest, VersioningLogisticTest) { SimpleVersioningTest<LogisticOperator>(); } TEST_F(OperatorTest, VersioningL2NormTest) { SimpleOutputVersioningTest<L2NormalizationOperator>(); } TEST_F(OperatorTest, VersioningMaxTest) { SimpleVersioningTest<TensorFlowMaximumOperator>(); } TEST_F(OperatorTest, VersioningMinTest) { SimpleVersioningTest<TensorFlowMinimumOperator>(); } TEST_F(OperatorTest, VersioningMeanTest) { SimpleVersioningTest<MeanOperator>(); } TEST_F(OperatorTest, VersioningSumTest) { SimpleVersioningTest<TensorFlowSumOperator>(); } TEST_F(OperatorTest, VersioningAddTest) { SimpleVersioningTest<AddOperator>(); } void SimpleMulVersioningTest(ArrayDataType data_type, float multiplier, int version) { MulOperator op; op.inputs = {"input1", "input2"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.GetOrCreateQuantizationParams().scale = 1.0f; input1.data_type = data_type; input1.GetOrCreateQuantizationParams().scale = 1.0f; output.data_type = data_type; output.GetOrCreateQuantizationParams().scale = 1.0f / multiplier; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } TEST_F(OperatorTest, VersioningMulTest) { SimpleMulVersioningTest(ArrayDataType::kUint8, 0.5f, 1); SimpleMulVersioningTest(ArrayDataType::kInt8, 0.5f, 2); SimpleMulVersioningTest(ArrayDataType::kInt8, 2.0f, 3); } template <typename OpType> void SimpleTwoInputsVersioningTest(ArrayDataType data_type, Shape shape1, Shape shape2, int version) { OpType op; op.inputs = {"input1", "input2"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.copy_shape(shape1); input1.data_type = data_type; input1.copy_shape(shape2); output.data_type = data_type; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } template <typename OpType> void SimpleThreeInputsVersioningTest(ArrayDataType data_type, Shape shape1, Shape shape2, Shape shape3, int version) { OpType op; op.inputs = {"input1", "input2", "input3"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& input2 = model.GetOrCreateArray(op.inputs[2]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.copy_shape(shape1); input1.data_type = data_type; input1.copy_shape(shape2); input2.data_type = data_type; input2.copy_shape(shape3); output.data_type = data_type; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } TEST_F(OperatorTest, VersioningSubTest) { SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 2}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 2}, 2); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2}, {1, 2, 2}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2}, {1, 2, 2}, 2); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 1}, 2); SimpleTwoInputsVersioningTest<SubOperator>( ArrayDataType::kUint8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 3); SimpleTwoInputsVersioningTest<SubOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 3); } TEST_F(OperatorTest, VersioningDivTest) { SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 2}, 1); SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kInt8, {1, 2, 2}, {1, 2, 2}, 1); SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, 1); SimpleTwoInputsVersioningTest<DivOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 2); } TEST_F(OperatorTest, VersioningPadTest) { SimpleVersioningTest<PadOperator>(); } TEST_F(OperatorTest, VersioningPadV2Test) { SimpleVersioningTest<PadV2Operator>(); } TEST_F(OperatorTest, VersioningConcatenationTest) { SimpleVersioningTest<ConcatenationOperator>(); } TEST_F(OperatorTest, VersioningSelectTest) { SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, {1, 2, 2, 1}, 1); SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 1}, {1, 2, 2, 1}, 2); SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 1}, {1, 2, 2, 1, 1}, {1, 2, 2, 1, 1}, 3); } TEST_F(OperatorTest, VersioningRelu6Test) { SimpleVersioningTest<Relu6Operator>(); } TEST_F(OperatorTest, VersioningFullyConnectedTest) { FullyConnectedOperator fully_connected_op; fully_connected_op.inputs = {"input", "weight"}; fully_connected_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(fully_connected_op.type).get(); Model uint8_model; Array& input_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.inputs[0]); input_uint8_array.data_type = ArrayDataType::kUint8; Array& weight_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.inputs[1]); weight_uint8_array.data_type = ArrayDataType::kUint8; Array& output_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.outputs[0]); output_uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &fully_connected_op, .model = &uint8_model}; EXPECT_EQ(op->GetVersion(uint8_signature), 6); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(fully_connected_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; Array& weight_int8_array = int8_model.GetOrCreateArray(fully_connected_op.inputs[1]); weight_int8_array.data_type = ArrayDataType::kInt8; Array& output_int8_array = int8_model.GetOrCreateArray(fully_connected_op.outputs[0]); output_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &fully_connected_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 6); } TEST_F(OperatorTest, VersioningDequantizeTest) { DequantizeOperator dequant_op; dequant_op.inputs = {"input"}; dequant_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(dequant_op.type).get(); Model int16_model; Array& input_int16_array = int16_model.GetOrCreateArray(dequant_op.inputs[0]); input_int16_array.data_type = ArrayDataType::kInt16; OperatorSignature int16_signature = {.op = &dequant_op, .model = &int16_model}; EXPECT_EQ(op->GetVersion(int16_signature), 3); Model float16_model; Array& input_float16_array = float16_model.GetOrCreateArray(dequant_op.inputs[0]); input_float16_array.data_type = ArrayDataType::kFloat16; OperatorSignature float16_signature = {.op = &dequant_op, .model = &float16_model}; EXPECT_EQ(op->GetVersion(float16_signature), 3); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(dequant_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &dequant_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 2); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(dequant_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &dequant_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 1); } TEST_F(OperatorTest, VersioningConv2DTest) { ConvOperator conv_op; conv_op.inputs = {"input", "filter"}; conv_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(conv_op.type).get(); Model uint8_model; Array& input_uint8_array = uint8_model.GetOrCreateArray(conv_op.inputs[0]); input_uint8_array.data_type = ArrayDataType::kUint8; Array& filter_uint8_array = uint8_model.GetOrCreateArray(conv_op.inputs[1]); filter_uint8_array.data_type = ArrayDataType::kUint8; Array& output_uint8_array = uint8_model.GetOrCreateArray(conv_op.outputs[0]); output_uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &conv_op, .model = &uint8_model}; EXPECT_EQ(op->GetVersion(uint8_signature), 1); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(conv_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; Array& filter_int8_array = int8_model.GetOrCreateArray(conv_op.inputs[1]); filter_int8_array.data_type = ArrayDataType::kInt8; Array& output_int8_array = int8_model.GetOrCreateArray(conv_op.outputs[0]); output_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &conv_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 3); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(conv_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; Array& filter_int8_array1 = float_model.GetOrCreateArray(conv_op.inputs[1]); filter_int8_array1.data_type = ArrayDataType::kInt8; Array& output_float_array = float_model.GetOrCreateArray(conv_op.outputs[0]); output_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &conv_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 2); } TEST_F(OperatorTest, VersioningFloorDivOperatorTest) { FloorDivOperator floordiv_op; floordiv_op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(floordiv_op.type).get(); Model int32_model; Array& input_int32_array = int32_model.GetOrCreateArray(floordiv_op.inputs[0]); input_int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &floordiv_op, .model = &int32_model}; EXPECT_EQ(op->GetVersion(int32_signature), 1); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(floordiv_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &floordiv_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/operator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/operator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
05eda510-6916-41f3-b867-9622765d076c
cpp
tensorflow/tensorflow
c_api_opaque
tensorflow/lite/core/c/c_api_opaque.cc
tensorflow/lite/core/c/c_api_opaque_test.cc
#include "tensorflow/lite/core/c/c_api_opaque.h" #include <stdarg.h> #include <stdint.h> #include <cstdio> #include <vector> #include "tensorflow/lite/c/c_api_opaque_internal.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/util.h" namespace { const TfLiteTensor* Convert(const TfLiteOpaqueTensor* opaque_tensor) { return reinterpret_cast<const TfLiteTensor*>(opaque_tensor); } TfLiteTensor* Convert(TfLiteOpaqueTensor* opaque_tensor) { return reinterpret_cast<TfLiteTensor*>(opaque_tensor); } TfLiteNode* Convert(TfLiteOpaqueNode* opaque_node) { return reinterpret_cast<TfLiteNode*>(opaque_node); } const TfLiteNode* Convert(const TfLiteOpaqueNode* opaque_node) { return reinterpret_cast<const TfLiteNode*>(opaque_node); } const TfLiteContext* Convert(const TfLiteOpaqueContext* opaque_context) { return reinterpret_cast<const TfLiteContext*>(opaque_context); } TfLiteContext* Convert(TfLiteOpaqueContext* opaque_context) { return reinterpret_cast<TfLiteContext*>(opaque_context); } TfLiteOpaqueContext* Convert(TfLiteContext* tflite_context) { return reinterpret_cast<TfLiteOpaqueContext*>(tflite_context); } const ::tflite::Subgraph* GetSubgraph( const TfLiteOpaqueContext* opaque_context) { return reinterpret_cast<const ::tflite::Subgraph*>( Convert(opaque_context)->impl_); } ::tflite::Subgraph* GetSubgraph(TfLiteOpaqueContext* opaque_context) { return reinterpret_cast<::tflite::Subgraph*>(Convert(opaque_context)->impl_); } } struct TfLiteOpaqueTensorBuilder { TfLiteType type; void* data; TfLiteAllocationType allocation_type; TfLiteQuantizationParams quantization_params; TfLiteQuantization quantization; }; TfLiteType TfLiteOpaqueTensorType(const TfLiteOpaqueTensor* opaque_tensor) { return TfLiteTensorType(reinterpret_cast<const TfLiteTensor*>(opaque_tensor)); } int32_t TfLiteOpaqueTensorNumDims(const TfLiteOpaqueTensor* opaque_tensor) { return TfLiteTensorNumDims( reinterpret_cast<const TfLiteTensor*>(opaque_tensor)); } int32_t TfLiteOpaqueTensorDim(const TfLiteOpaqueTensor* opaque_tensor, int32_t dim_index) { return TfLiteTensorDim(reinterpret_cast<const TfLiteTensor*>(opaque_tensor), dim_index); } TfLiteStatus TfLiteOpaqueTensorGetNumDimsSignature( const TfLiteOpaqueTensor* opaque_tensor, int32_t* num_dims) { const TfLiteTensor* tensor = Convert(opaque_tensor); if (!tensor->dims_signature) { *num_dims = -1; return kTfLiteOk; } *num_dims = tensor->dims_signature->size; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueTensorGetDimSignature( const TfLiteOpaqueTensor* opaque_tensor, int32_t dim_index, int32_t* dim_length) { const TfLiteTensor* tensor = Convert(opaque_tensor); if (tensor->dims_signature != nullptr && tensor->dims_signature->size != 0) { *dim_length = tensor->dims_signature->data[dim_index]; } else { *dim_length = tensor->dims->data[dim_index]; } return kTfLiteOk; } int TfLiteOpaqueTensorIsVariable(const TfLiteOpaqueTensor* opaque_tensor) { return Convert(opaque_tensor)->is_variable ? 1 : 0; } size_t TfLiteOpaqueTensorByteSize(const TfLiteOpaqueTensor* opaque_tensor) { return TfLiteTensorByteSize( reinterpret_cast<const TfLiteTensor*>(opaque_tensor)); } void* TfLiteOpaqueTensorData(const TfLiteOpaqueTensor* opaque_tensor) { return opaque_tensor != nullptr ? TfLiteTensorData( reinterpret_cast<const TfLiteTensor*>(opaque_tensor)) : nullptr; } TfLiteAllocationType TfLiteOpaqueTensorGetAllocationType( const TfLiteOpaqueTensor* opaque_tensor) { return Convert(opaque_tensor)->allocation_type; } TfLiteAllocationStrategy TfLiteOpaqueTensorGetAllocationStrategy( const TfLiteOpaqueTensor* t) { return TfLiteTensorGetAllocationStrategy(Convert(t)); } TfLiteRunStability TfLiteOpaqueTensorGetBufferAddressStability( const TfLiteOpaqueTensor* t) { return TfLiteTensorGetBufferAddressStability(Convert(t)); } TfLiteRunStability TfLiteOpaqueTensorGetDataStability( const TfLiteOpaqueTensor* t) { return TfLiteTensorGetDataStability(Convert(t)); } TfLiteRunStep TfLiteOpaqueTensorGetDataKnownStep(const TfLiteOpaqueTensor* t) { return TfLiteTensorGetDataKnownStep(Convert(t)); } TfLiteRunStep TfLiteOpaqueTensorGetShapeKnownStep(const TfLiteOpaqueTensor* t) { return TfLiteTensorGetShapeKnownStep(Convert(t)); } const char* TfLiteOpaqueTensorName(const TfLiteOpaqueTensor* opaque_tensor) { return TfLiteTensorName(reinterpret_cast<const TfLiteTensor*>(opaque_tensor)); } TfLiteQuantization TfLiteOpaqueTensorGetQuantization( const TfLiteOpaqueTensor* opaque_tensor) { return Convert(opaque_tensor)->quantization; } TfLiteQuantizationParams TfLiteOpaqueTensorGetQuantizationParams( const TfLiteOpaqueTensor* opaque_tensor) { return Convert(opaque_tensor)->params; } TfLiteStatus TfLiteOpaqueTensorCopyFromBuffer(TfLiteOpaqueTensor* opaque_tensor, const void* input_data, size_t input_data_size) { return TfLiteTensorCopyFromBuffer( reinterpret_cast<TfLiteTensor*>(opaque_tensor), input_data, input_data_size); } TfLiteStatus TfLiteOpaqueTensorCopyToBuffer( const TfLiteOpaqueTensor* opaque_tensor, void* output_data, size_t output_data_size) { return TfLiteTensorCopyToBuffer( reinterpret_cast<const TfLiteTensor*>(opaque_tensor), output_data, output_data_size); } int TfLiteOpaqueTensorGetStringCount(const TfLiteOpaqueTensor* tensor) { return tflite::GetStringCount(Convert(tensor)); } TfLiteStatus TfLiteOpaqueTensorGetString(const TfLiteOpaqueTensor* tensor, int index, const char** str, int* len) { tflite::StringRef str_ref = tflite::GetString(Convert(tensor), index); *str = str_ref.str; *len = str_ref.len; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueTensorWriteStrings(TfLiteOpaqueTensor* tensor, const char* const* str_array, int str_array_len, const int* str_n_len) { tflite::DynamicBuffer buf; for (int i = 0; i < str_array_len; ++i) { buf.AddString(str_array[i], str_n_len[i]); } buf.WriteToTensorAsVector(Convert(tensor)); return kTfLiteOk; } TfLiteStatus TfLiteOpaqueTensorWriteString(TfLiteOpaqueTensor* tensor, const char* str, const int len) { TfLiteOpaqueTensorWriteStrings(tensor, &str, 1, &len); return kTfLiteOk; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderCreate() { return new TfLiteOpaqueTensorBuilder{}; } void TfLiteOpaqueTensorBuilderDelete(TfLiteOpaqueTensorBuilder* builder) { delete builder; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetType( TfLiteOpaqueTensorBuilder* builder, TfLiteType type) { builder->type = type; return builder; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetData( TfLiteOpaqueTensorBuilder* builder, void* data) { builder->data = data; return builder; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetAllocationType( TfLiteOpaqueTensorBuilder* builder, TfLiteAllocationType allocation_type) { builder->allocation_type = allocation_type; return builder; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetQuantizationParams( TfLiteOpaqueTensorBuilder* builder, TfLiteQuantizationParams params) { builder->quantization_params = params; return builder; } TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetQuantization( TfLiteOpaqueTensorBuilder* builder, TfLiteQuantization quantization) { builder->quantization = quantization; return builder; } void TfLiteOpaqueTensorSetAllocationTypeToDynamic(TfLiteOpaqueTensor* tensor) { tflite::SetTensorToDynamic(Convert(tensor)); } const TfLiteOpaqueTensor* TfLiteOpaqueNodeGetInput( const TfLiteOpaqueContext* opaque_context, const TfLiteOpaqueNode* opaque_node, int index) { const TfLiteTensor* tensor = tflite::GetInput(reinterpret_cast<const TfLiteContext*>(opaque_context), reinterpret_cast<const TfLiteNode*>(opaque_node), index); return reinterpret_cast<const TfLiteOpaqueTensor*>(tensor); } TfLiteOpaqueTensor* TfLiteOpaqueNodeGetOutput( TfLiteOpaqueContext* opaque_context, const TfLiteOpaqueNode* opaque_node, int index) { TfLiteTensor* tensor = tflite::GetOutput( reinterpret_cast<TfLiteContext*>(opaque_context), reinterpret_cast<const TfLiteNode*>(opaque_node), index); return reinterpret_cast<TfLiteOpaqueTensor*>(tensor); } int TfLiteOpaqueNodeNumberOfInputs(const TfLiteOpaqueNode* opaque_node) { return reinterpret_cast<const TfLiteNode*>(opaque_node)->inputs->size; } int TfLiteOpaqueNodeNumberOfOutputs(const TfLiteOpaqueNode* opaque_node) { return reinterpret_cast<const TfLiteNode*>(opaque_node)->outputs->size; } void* TfLiteOpaqueNodeGetUserData(const TfLiteOpaqueNode* opaque_node) { return reinterpret_cast<const TfLiteNode*>(opaque_node)->user_data; } void* TfLiteOpaqueNodeGetBuiltinData(const TfLiteOpaqueNode* opaque_node) { return Convert(opaque_node)->builtin_data; } TfLiteStatus TfLiteOpaqueNodeGetCustomInitialData( const TfLiteOpaqueNode* opaque_node, const void** init_data, int* size) { *init_data = Convert(opaque_node)->custom_initial_data; *size = Convert(opaque_node)->custom_initial_data_size; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueNodeInputs(const TfLiteOpaqueNode* opaque_node, const int** inputs, int* num_inputs) { const TfLiteNode* node = Convert(opaque_node); *inputs = node->inputs->data; *num_inputs = node->inputs->size; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueNodeOutputs(const TfLiteOpaqueNode* opaque_node, const int** outputs, int* num_outputs) { const TfLiteNode* node = Convert(opaque_node); *outputs = node->outputs->data; *num_outputs = node->outputs->size; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueNodeTemporaries(const TfLiteOpaqueNode* opaque_node, const int** temporaries, int* num_temporaries) { const TfLiteNode* node = Convert(opaque_node); *temporaries = node->temporaries->data; *num_temporaries = node->temporaries->size; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueNodeSetTemporaries(TfLiteOpaqueNode* opaque_node, const int* temporaries, int num_temporaries) { if (num_temporaries < 0) { return kTfLiteError; } TfLiteNode* node = Convert(opaque_node); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(num_temporaries); for (int i = 0; i < num_temporaries; ++i) { node->temporaries->data[i] = temporaries[i]; } return kTfLiteOk; } int TfLiteOpaqueNodeGetInputTensorIndex(const TfLiteOpaqueNode* opaque_node, int index_of_input) { auto* node = Convert(opaque_node); if (index_of_input < 0 || index_of_input >= node->inputs->size) { return -1; } return node->inputs->data[index_of_input]; } int TfLiteOpaqueNodeGetOutputTensorIndex(const TfLiteOpaqueNode* opaque_node, int index_of_output) { auto* node = Convert(opaque_node); if (index_of_output < 0 || index_of_output >= node->outputs->size) { return -1; } return node->outputs->data[index_of_output]; } TfLiteStatus TfLiteOpaqueContextGetExecutionPlan( TfLiteOpaqueContext* opaque_context, TfLiteIntArray** execution_plan) { auto context = reinterpret_cast<TfLiteContext*>(opaque_context); return context->GetExecutionPlan(context, execution_plan); } TfLiteStatus TfLiteOpaqueContextGetNodeAndRegistration( struct TfLiteOpaqueContext* opaque_context, int node_index, TfLiteOpaqueNode** node, TfLiteOperator** registration_external) { TfLiteContext* context = reinterpret_cast<TfLiteContext*>(opaque_context); TfLiteNode* local_node; TfLiteRegistration* registration; TfLiteStatus status = context->GetNodeAndRegistration( context, node_index, &local_node, &registration); if (status != kTfLiteOk) return status; *node = reinterpret_cast<TfLiteOpaqueNode*>(local_node); if (registration->registration_external) { *registration_external = registration->registration_external; return kTfLiteOk; } auto derived_registration = tflite::internal::CommonOpaqueConversionUtil::ObtainOperator( context, registration, node_index); if (derived_registration == nullptr) return kTfLiteError; *registration_external = derived_registration; return kTfLiteOk; } TfLiteStatus TfLiteOpaqueContextReplaceNodeSubsetsWithDelegateKernels( struct TfLiteOpaqueContext* opaque_context, TfLiteOperator* registration_external, const TfLiteIntArray* nodes_to_replace, TfLiteOpaqueDelegate* opaque_delegate) { TfLiteContext* context = reinterpret_cast<TfLiteContext*>(opaque_context); TfLiteDelegate* delegate = reinterpret_cast<TfLiteDelegate*>(opaque_delegate); TfLiteRegistration registration{}; registration.registration_external = registration_external; TfLiteStatus status = context->ReplaceNodeSubsetsWithDelegateKernels( context, registration, nodes_to_replace, delegate); return status; } TfLiteOpaqueTensor* TfLiteOpaqueContextGetOpaqueTensor( const TfLiteOpaqueContext* opaque_context, int index) { auto context = reinterpret_cast<const TfLiteContext*>(opaque_context); return reinterpret_cast<TfLiteOpaqueTensor*>(&context->tensors[index]); } TfLiteStatus TfLiteOpaqueContextGetInputs( const struct TfLiteOpaqueContext* opaque_context, const int** inputs, int* num_inputs) { auto* subgraph = GetSubgraph(opaque_context); const std::vector<int>& subgraph_inputs = subgraph->inputs(); *inputs = subgraph_inputs.data(); *num_inputs = subgraph_inputs.size(); return kTfLiteOk; } TfLiteStatus TfLiteOpaqueContextGetOutputs( const struct TfLiteOpaqueContext* opaque_context, const int** outputs, int* num_outputs) { auto* subgraph = GetSubgraph(opaque_context); const std::vector<int>& subgraph_outputs = subgraph->outputs(); *outputs = subgraph_outputs.data(); *num_outputs = subgraph_outputs.size(); return kTfLiteOk; } TfLiteStatus TfLiteOpaqueContextGetVariables( const struct TfLiteOpaqueContext* opaque_context, const int** variables, int* num_variables) { auto* subgraph = GetSubgraph(opaque_context); const std::vector<int>& subgraph_variables = subgraph->variables(); *variables = subgraph_variables.data(); *num_variables = subgraph_variables.size(); return kTfLiteOk; } size_t TfLiteOpaqueContextGetNumNodes( const struct TfLiteOpaqueContext* opaque_context) { auto* subgraph = GetSubgraph(opaque_context); return subgraph->nodes_size(); } size_t TfLiteOpaqueContextGetNumTensors( const struct TfLiteOpaqueContext* opaque_context) { auto* subgraph = GetSubgraph(opaque_context); return subgraph->tensors_size(); } const char* TfLiteOpaqueContextGetName( const struct TfLiteOpaqueContext* opaque_context) { auto* subgraph = GetSubgraph(opaque_context); return subgraph->GetName().c_str(); } TfLiteStatus TfLiteOpaqueContextResizeTensor(TfLiteOpaqueContext* context, TfLiteOpaqueTensor* tensor, TfLiteIntArray* new_size) { TfLiteContext* tflite_context = reinterpret_cast<TfLiteContext*>(context); return tflite_context->ResizeTensor( tflite_context, reinterpret_cast<TfLiteTensor*>(tensor), new_size); } TfLiteStatus TfLiteOpaqueContextAcquireSubgraphContext( struct TfLiteOpaqueContext* opaque_context, int subgraph_index, TfLiteOpaqueContext** acquired_opaque_context) { auto* subgraph = GetSubgraph(opaque_context); TfLiteContext* acquired_context; TfLiteStatus status = subgraph->AcquireSubgraphContext(subgraph_index, &acquired_context); if (status != kTfLiteOk) { return status; } *acquired_opaque_context = Convert(acquired_context); return kTfLiteOk; } TfLiteStatus TfLiteOpaqueContextReleaseSubgraphContext( struct TfLiteOpaqueContext* opaque_context, int subgraph_index) { return GetSubgraph(opaque_context)->ReleaseSubgraphContext(subgraph_index); } TfLiteStatus TfLiteOpaqueContextMarkSubgraphAsDelegationSkippable( TfLiteOpaqueContext* opaque_context, int subgraph_index) { auto* subgraph = GetSubgraph(opaque_context); return subgraph->MarkSubgraphAsDelegationSkippable(subgraph_index); } TfLiteStatus TfLiteOpaqueContextGetNodeInitDataMmapInfo( const TfLiteOpaqueContext* context, const TfLiteOpaqueNode* node, int* fd, int64_t* custom_initial_data_offset_in_file, int64_t* custom_initial_data_size) { auto* subgraph = GetSubgraph(context); return subgraph->GetNodeInitDataMmapInfo(Convert(node), fd, custom_initial_data_offset_in_file, custom_initial_data_size); } TfLiteStatus TfLiteOpaqueContextAddTensor(TfLiteOpaqueContext* context, TfLiteOpaqueTensorBuilder* builder, int* new_tensor_index) { if (builder->allocation_type != kTfLiteDynamic && builder->allocation_type != kTfLiteArenaRw && builder->allocation_type != kTfLiteArenaRwPersistent) { TfLiteOpaqueContextReportError( context, "Invalid allocation type '%d'. Allocation type for " "TfLiteOpaqueContextAddTensor must be one of: " "'kTfLiteDynamic', 'kTfLiteArenaRw' or 'kTfLiteArenaRwPersistent'.", builder->allocation_type); return kTfLiteError; } if (builder->allocation_type == kTfLiteDynamic && builder->data == nullptr) { TfLiteOpaqueContextReportError(context, "For tensors of allocation type " "'kTfLiteDynamic' 'data' must be provided."); return kTfLiteError; } if ((builder->allocation_type == kTfLiteArenaRw || builder->allocation_type == kTfLiteArenaRwPersistent) && builder->data != nullptr) { TfLiteOpaqueContextReportError( context, "For tensors of allocation type " "'kTfLiteArenaRw' or 'kTfLiteArenaRwPersistent' " "'data' must not be provided."); return kTfLiteError; } auto* tflite_context = Convert(context); int index = -1; auto status = tflite_context->AddTensors(tflite_context, 1, &index); if (status != kTfLiteOk) return status; tflite_context->tensors[index].type = builder->type; tflite_context->tensors[index].data.data = builder->data; tflite_context->tensors[index].allocation_type = builder->allocation_type; tflite_context->tensors[index].params = builder->quantization_params; tflite_context->tensors[index].quantization = builder->quantization; if (new_tensor_index != nullptr) { *new_tensor_index = index; } return status; } TfLiteStatus TfLiteOpaqueContextGetSizeOfType(TfLiteOpaqueContext* context, const TfLiteType type, size_t* bytes) { return tflite::GetSizeOfType(Convert(context), type, bytes); } void TfLiteOpaqueContextReportError(struct TfLiteOpaqueContext* opaque_context, const char* format, ...) { va_list vlist; va_start(vlist, format); TfLiteOpaqueContextReportErrorVa(opaque_context, format, vlist); va_end(vlist); } void TfLiteOpaqueContextReportErrorVa( struct TfLiteOpaqueContext* opaque_context, const char* format, va_list vlist) { va_list copy; va_copy(copy, vlist); int n = vsnprintf(nullptr, 0, format, copy); if (n < 0) { return; } size_t size = (size_t)n + 1; char* buffer = new char[size]; n = vsnprintf(buffer, size, format, vlist); if (n < 0) { delete[] buffer; return; } auto* context = reinterpret_cast<TfLiteContext*>(opaque_context); TF_LITE_KERNEL_LOG(context, "%s", buffer); delete[] buffer; } #ifndef TF_LITE_STATIC_MEMORY TfLiteOpaqueDelegate* TfLiteOpaqueDelegateCreate( const TfLiteOpaqueDelegateBuilder* opaque_delegate_builder) { if (!opaque_delegate_builder) return nullptr; TfLiteDelegate* result = new TfLiteDelegate{}; result->opaque_delegate_builder = new TfLiteOpaqueDelegateBuilder{}; *(result->opaque_delegate_builder) = *opaque_delegate_builder; return reinterpret_cast<TfLiteOpaqueDelegate*>(result); } void TfLiteOpaqueDelegateDelete(TfLiteOpaqueDelegate* opaque_delegate) { if (!opaque_delegate) return; const TfLiteDelegate* tflite_delegate = reinterpret_cast<const TfLiteDelegate*>(opaque_delegate); delete tflite_delegate->opaque_delegate_builder; delete tflite_delegate; } #endif void* TfLiteOpaqueDelegateGetData(const TfLiteOpaqueDelegate* delegate) { if (!delegate) return nullptr; const auto* tflite_delegate = reinterpret_cast<const TfLiteDelegate*>(delegate); if (!tflite_delegate->opaque_delegate_builder) return tflite_delegate->data_; return tflite_delegate->opaque_delegate_builder->data; }
#include "tensorflow/lite/core/c/c_api_opaque.h" #include <stddef.h> #include <cstring> #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api.h" namespace tflite { namespace { TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithMemNoneBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithMmapRoBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithArenaRwBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithArenaRwPersistentBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithDynamicBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithPersistentRoBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithCustomBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithVariantObjectBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithMemNoneBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithMmapRoBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithArenaRwBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithArenaRwPersistentBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithDynamicBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithPersistentRoBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithCustomBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithVariantObjectBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorData, ValidInput) { TfLiteTensor t; char data[] = "data"; t.data.raw = data; EXPECT_EQ(TfLiteOpaqueTensorData(reinterpret_cast<TfLiteOpaqueTensor*>(&t)), data); } TEST(TestTfLiteOpaqueTensorData, NullInput) { EXPECT_EQ(TfLiteOpaqueTensorData(nullptr), nullptr); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithMemNoneBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithMmapRoBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithArenaRwBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithArenaRwPersistentBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithDynamicBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithPersistentRoBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithCustomBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithVariantObjectBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithMemNoneBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithMmapRoBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithArenaRwBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithArenaRwPersistentBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithDynamicBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithPersistentRoBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithCustomBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithVariantObjectBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithMemNoneBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithMmapRoBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithArenaRwBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithArenaRwPersistentBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithDynamicBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithPersistentRoBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithCustomBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithVariantObjectBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueDelegate, CreateAndDelete) { std::unique_ptr<TfLiteOpaqueDelegateBuilder> opaque_delegate_builder( new TfLiteOpaqueDelegateBuilder{}); TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(opaque_delegate_builder.get()); TfLiteOpaqueDelegateDelete(opaque_delegate); } TEST(TestTfLiteOpaqueDelegate, Create_WithNull) { EXPECT_EQ(nullptr, TfLiteOpaqueDelegateCreate(nullptr)); } TEST(TestTfLiteOpaqueDelegate, Delete_WithNull) { TfLiteOpaqueDelegateDelete(nullptr); } TEST(TestTfLiteOpaqueDelegate, GetData_WellFormedOpaqueDelegate) { int delegate_data = 42; TfLiteOpaqueDelegateBuilder builder{}; builder.data = &delegate_data; TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(&builder); EXPECT_EQ(&delegate_data, TfLiteOpaqueDelegateGetData(opaque_delegate)); TfLiteOpaqueDelegateDelete(opaque_delegate); } TEST(TestTfLiteOpaqueDelegate, GetData_NotConstructedWithTfLiteOpaqueDelegateCreate) { int delegate_data = 42; TfLiteDelegate non_opaque_delegate = TfLiteDelegateCreate(); non_opaque_delegate.data_ = &delegate_data; auto* opaque_delegate = reinterpret_cast<TfLiteOpaqueDelegate*>(&non_opaque_delegate); EXPECT_EQ(&delegate_data, TfLiteOpaqueDelegateGetData(opaque_delegate)); } TEST(TestTfLiteOpaqueDelegate, GetData_NoDataSetViaOpaqueDelegateBuilder) { TfLiteOpaqueDelegateBuilder builder{}; TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(&builder); EXPECT_EQ(nullptr, TfLiteOpaqueDelegateGetData(opaque_delegate)); TfLiteOpaqueDelegateDelete(opaque_delegate); } namespace my_custom_op { struct MyOpData { int temp_tensor_index; }; void* Init(TfLiteOpaqueContext* context, const char* buffer, size_t length) { auto* op_data = new MyOpData{}; return op_data; } void Free(TfLiteOpaqueContext* context, void* buffer) { delete reinterpret_cast<MyOpData*>(buffer); } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { auto* op_data = reinterpret_cast<MyOpData*>(TfLiteOpaqueNodeGetUserData(node)); const int num_temporaries = 1; int temporary_tensor_indices[num_temporaries]; TfLiteStatus status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, -1); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteError); status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, 0); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteOk); TfLiteOpaqueTensorBuilder* builder = TfLiteOpaqueTensorBuilderCreate(); TfLiteOpaqueTensorBuilderSetType(builder, kTfLiteFloat32); TfLiteOpaqueTensorBuilderSetAllocationType(builder, kTfLiteArenaRw); TfLiteOpaqueContextAddTensor(context, builder, &temporary_tensor_indices[0]); TfLiteOpaqueTensorBuilderDelete(builder); status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, num_temporaries); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteOk); op_data->temp_tensor_index = temporary_tensor_indices[0]; TfLiteOpaqueTensor* temp_tensor = TfLiteOpaqueContextGetOpaqueTensor(context, op_data->temp_tensor_index); TfLiteIntArray* temp_size = TfLiteIntArrayCreate(1); temp_size->data[0] = 1; return TfLiteOpaqueContextResizeTensor(context, temp_tensor, temp_size); } TfLiteStatus Invoke(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { auto* op_data = reinterpret_cast<MyOpData*>(TfLiteOpaqueNodeGetUserData(node)); const int* temporary_tensor_indices; int num_temporaries; TfLiteOpaqueNodeTemporaries(node, &temporary_tensor_indices, &num_temporaries); TF_LITE_OPAQUE_ENSURE(context, num_temporaries == 1); TF_LITE_OPAQUE_ENSURE( context, temporary_tensor_indices[0] == op_data->temp_tensor_index); TfLiteOpaqueTensor* temp_tensor = TfLiteOpaqueContextGetOpaqueTensor(context, op_data->temp_tensor_index); TF_LITE_OPAQUE_ENSURE(context, TfLiteOpaqueTensorType(temp_tensor) == kTfLiteFloat32); TF_LITE_OPAQUE_ENSURE(context, TfLiteOpaqueTensorGetAllocationType( temp_tensor) == kTfLiteArenaRw); size_t temp_bytes = TfLiteOpaqueTensorByteSize(temp_tensor); void* temp_data = TfLiteOpaqueTensorData(temp_tensor); TF_LITE_OPAQUE_ENSURE(context, temp_bytes != 0); TF_LITE_OPAQUE_ENSURE(context, temp_data != nullptr); EXPECT_EQ(1, TfLiteOpaqueNodeNumberOfInputs(node)); const TfLiteOpaqueTensor* input = TfLiteOpaqueNodeGetInput(context, node, 0); size_t input_bytes = TfLiteOpaqueTensorByteSize(input); void* input_data = TfLiteOpaqueTensorData(input); EXPECT_EQ(input_bytes, temp_bytes); std::memcpy(temp_data, input_data, input_bytes); EXPECT_EQ(1, TfLiteOpaqueNodeNumberOfOutputs(node)); TfLiteOpaqueTensor* output = TfLiteOpaqueNodeGetOutput(context, node, 0); size_t output_bytes = TfLiteOpaqueTensorByteSize(output); void* output_data = TfLiteOpaqueTensorData(output); EXPECT_EQ(output_bytes, temp_bytes); std::memcpy(output_data, temp_data, output_bytes); return kTfLiteOk; } } TEST(TestTfLiteOpaqueNode, CustomOpWithSetAndGetTemporaries) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreate(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepare(reg, my_custom_op::Prepare); TfLiteOperatorSetInit(reg, my_custom_op::Init); TfLiteOperatorSetFree(reg, my_custom_op::Free); TfLiteOperatorSetInvoke(reg, my_custom_op::Invoke); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithLegacyCallbacks) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreate(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepare(reg, [](auto context, auto node) { return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInit(reg, [](auto context, auto buffer, auto length) { return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFree( reg, [](auto context, auto data) { my_custom_op::Free(context, data); }); TfLiteOperatorSetInvoke(reg, [](auto context, auto node) { return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithNoUserData) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreate(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepareWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInitWithData( reg, [](auto user_data, auto context, auto buffer, auto length) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFreeWithData(reg, [](auto user_data, auto context, auto data) { EXPECT_EQ(nullptr, user_data); my_custom_op::Free(context, data); }); TfLiteOperatorSetInvokeWithData(reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithData) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreate(kTfLiteBuiltinCustom, "Sinh", 1, reinterpret_cast<void*>(345)); TfLiteOperatorSetPrepareWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInitWithData( reg, [](auto user_data, auto context, auto buffer, auto length) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFreeWithData( reg, [](auto user_data, auto context, auto data) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); my_custom_op::Free(context, data); }); TfLiteOperatorSetInvokeWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/c/c_api_opaque.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/c/c_api_opaque_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c190acea-833e-4eb8-9ce8-56690a50f14c
cpp
tensorflow/tensorflow
c_api_experimental
tensorflow/c/eager/c_api_experimental.cc
tensorflow/c/eager/c_api_experimental_test.cc
#include "tensorflow/c/eager/c_api_experimental.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "absl/time/time.h" #include "tensorflow/c/c_api.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/tfe_context_internal.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "xla/tsl/c/tsl_status_internal.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/framework/cancellation.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/distributed_runtime/coordination/coordination_service_error_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/strcat.h" using tensorflow::string; void TFE_OpReset(TFE_Op* op_to_reset, const char* op_or_function_name, const char* raw_device_name, TF_Status* status) { if (op_to_reset) { tensorflow::ImmediateExecutionOperation* op = tensorflow::unwrap(op_to_reset); op->Clear(); status->status = op->Reset(op_or_function_name, raw_device_name); } else { TF_SetStatus(status, TF_INVALID_ARGUMENT, "op_to_reset should not be nullptr"); } } void TFE_ContextEnableGraphCollection(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(true); } void TFE_ContextDisableGraphCollection(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(false); } uint64_t TFE_GetContextId(TFE_Context* ctx) { tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); return context->GetContextId(); } void TFE_MonitoringCounterCellIncrementBy(TFE_MonitoringCounterCell* cell, int64_t value) { cell->cell.IncrementBy(value); } int64_t TFE_MonitoringCounterCellValue(TFE_MonitoringCounterCell* cell) { return cell->cell.value(); } TFE_MonitoringCounter0* TFE_MonitoringNewCounter0(const char* name, TF_Status* status, const char* description) { auto* result = new TFE_MonitoringCounter0({name, description}); tsl::Set_TF_Status_from_Status(status, result->counter->GetStatus()); if (!result->counter->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteCounter0(TFE_MonitoringCounter0* counter) { delete counter; } TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter0( TFE_MonitoringCounter0* counter) { return static_cast<TFE_MonitoringCounterCell*>( static_cast<void*>(counter->counter->GetCell())); } TFE_MonitoringCounter1* TFE_MonitoringNewCounter1(const char* name, TF_Status* status, const char* description, const char* label1) { auto* result = new TFE_MonitoringCounter1({name, description, label1}); tsl::Set_TF_Status_from_Status(status, result->counter->GetStatus()); if (!result->counter->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteCounter1(TFE_MonitoringCounter1* counter) { delete counter; } TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter1( TFE_MonitoringCounter1* counter, const char* label1) { return static_cast<TFE_MonitoringCounterCell*>( static_cast<void*>(counter->counter->GetCell(label1))); } TFE_MonitoringCounter2* TFE_MonitoringNewCounter2(const char* name, TF_Status* status, const char* description, const char* label1, const char* label2) { auto* result = new TFE_MonitoringCounter2({name, description, label1, label2}); tsl::Set_TF_Status_from_Status(status, result->counter->GetStatus()); if (!result->counter->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteCounter2(TFE_MonitoringCounter2* counter) { delete counter; } TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter2( TFE_MonitoringCounter2* counter, const char* label1, const char* label2) { return static_cast<TFE_MonitoringCounterCell*>( static_cast<void*>(counter->counter->GetCell(label1, label2))); } void TFE_MonitoringIntGaugeCellSet(TFE_MonitoringIntGaugeCell* cell, int64_t value) { cell->cell.Set(value); } int64_t TFE_MonitoringIntGaugeCellValue(TFE_MonitoringIntGaugeCell* cell) { return cell->cell.value(); } TFE_MonitoringIntGauge0* TFE_MonitoringNewIntGauge0(const char* name, TF_Status* status, const char* description) { auto* result = new TFE_MonitoringIntGauge0({name, description}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteIntGauge0(TFE_MonitoringIntGauge0* gauge) { delete gauge; } TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge0( TFE_MonitoringIntGauge0* gauge) { return static_cast<TFE_MonitoringIntGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell())); } TFE_MonitoringIntGauge1* TFE_MonitoringNewIntGauge1(const char* name, TF_Status* status, const char* description, const char* label1) { auto* result = new TFE_MonitoringIntGauge1({name, description, label1}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteIntGauge1(TFE_MonitoringIntGauge1* gauge) { delete gauge; } TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge1( TFE_MonitoringIntGauge1* gauge, const char* label1) { return static_cast<TFE_MonitoringIntGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1))); } TFE_MonitoringIntGauge2* TFE_MonitoringNewIntGauge2(const char* name, TF_Status* status, const char* description, const char* label1, const char* label2) { auto* result = new TFE_MonitoringIntGauge2({name, description, label1, label2}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteIntGauge2(TFE_MonitoringIntGauge2* gauge) { delete gauge; } TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge2( TFE_MonitoringIntGauge2* gauge, const char* label1, const char* label2) { return static_cast<TFE_MonitoringIntGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1, label2))); } void TFE_MonitoringStringGaugeCellSet(TFE_MonitoringStringGaugeCell* cell, const char* value) { cell->cell.Set({value}); } const void TFE_MonitoringStringGaugeCellValue( TFE_MonitoringStringGaugeCell* cell, TF_Buffer* buf) { tensorflow::string value = cell->cell.value(); void* data = tensorflow::port::Malloc(value.length()); value.copy(static_cast<char*>(data), value.length(), 0); buf->data = data; buf->length = value.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; } TFE_MonitoringStringGauge0* TFE_MonitoringNewStringGauge0( const char* name, TF_Status* status, const char* description) { auto* result = new TFE_MonitoringStringGauge0({name, description}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteStringGauge0(TFE_MonitoringStringGauge0* gauge) { delete gauge; } TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge0( TFE_MonitoringStringGauge0* gauge) { return static_cast<TFE_MonitoringStringGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell())); } TFE_MonitoringStringGauge1* TFE_MonitoringNewStringGauge1( const char* name, TF_Status* status, const char* description, const char* label1) { auto* result = new TFE_MonitoringStringGauge1({name, description, label1}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteStringGauge1(TFE_MonitoringStringGauge1* gauge) { delete gauge; } TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge1( TFE_MonitoringStringGauge1* gauge, const char* label1) { return static_cast<TFE_MonitoringStringGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1))); } TFE_MonitoringStringGauge2* TFE_MonitoringNewStringGauge2( const char* name, TF_Status* status, const char* description, const char* label1, const char* label2) { auto* result = new TFE_MonitoringStringGauge2({name, description, label1, label2}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteStringGauge2(TFE_MonitoringStringGauge2* gauge) { delete gauge; } TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge2( TFE_MonitoringStringGauge2* gauge, const char* label1, const char* label2) { return static_cast<TFE_MonitoringStringGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1, label2))); } TFE_MonitoringStringGauge3* TFE_MonitoringNewStringGauge3( const char* name, TF_Status* status, const char* description, const char* label1, const char* label2, const char* label3) { auto* result = new TFE_MonitoringStringGauge3( {name, description, label1, label2, label3}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteStringGauge3(TFE_MonitoringStringGauge3* gauge) { delete gauge; } TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge3( TFE_MonitoringStringGauge3* gauge, const char* label1, const char* label2, const char* label3) { return static_cast<TFE_MonitoringStringGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1, label2, label3))); } TFE_MonitoringStringGauge4* TFE_MonitoringNewStringGauge4( const char* name, TF_Status* status, const char* description, const char* label1, const char* label2, const char* label3, const char* label4) { auto* result = new TFE_MonitoringStringGauge4( {name, description, label1, label2, label3, label4}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteStringGauge4(TFE_MonitoringStringGauge4* gauge) { delete gauge; } TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge4( TFE_MonitoringStringGauge4* gauge, const char* label1, const char* label2, const char* label3, const char* label4) { return static_cast<TFE_MonitoringStringGaugeCell*>(static_cast<void*>( gauge->gauge->GetCell(label1, label2, label3, label4))); } void TFE_MonitoringBoolGaugeCellSet(TFE_MonitoringBoolGaugeCell* cell, bool value) { cell->cell.Set(value); } bool TFE_MonitoringBoolGaugeCellValue(TFE_MonitoringBoolGaugeCell* cell) { return cell->cell.value(); } TFE_MonitoringBoolGauge0* TFE_MonitoringNewBoolGauge0(const char* name, TF_Status* status, const char* description) { auto* result = new TFE_MonitoringBoolGauge0({name, description}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteBoolGauge0(TFE_MonitoringBoolGauge0* gauge) { delete gauge; } TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge0( TFE_MonitoringBoolGauge0* gauge) { return static_cast<TFE_MonitoringBoolGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell())); } TFE_MonitoringBoolGauge1* TFE_MonitoringNewBoolGauge1(const char* name, TF_Status* status, const char* description, const char* label1) { auto* result = new TFE_MonitoringBoolGauge1({name, description, label1}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteBoolGauge1(TFE_MonitoringBoolGauge1* gauge) { delete gauge; } TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge1( TFE_MonitoringBoolGauge1* gauge, const char* label1) { return static_cast<TFE_MonitoringBoolGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1))); } TFE_MonitoringBoolGauge2* TFE_MonitoringNewBoolGauge2(const char* name, TF_Status* status, const char* description, const char* label1, const char* label2) { auto* result = new TFE_MonitoringBoolGauge2({name, description, label1, label2}); tsl::Set_TF_Status_from_Status(status, result->gauge->GetStatus()); if (!result->gauge->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteBoolGauge2(TFE_MonitoringBoolGauge2* gauge) { delete gauge; } TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge2( TFE_MonitoringBoolGauge2* gauge, const char* label1, const char* label2) { return static_cast<TFE_MonitoringBoolGaugeCell*>( static_cast<void*>(gauge->gauge->GetCell(label1, label2))); } void TFE_MonitoringSamplerCellAdd(TFE_MonitoringSamplerCell* cell, double value) { cell->cell.Add(value); } void TFE_MonitoringSamplerCellValue(TFE_MonitoringSamplerCell* cell, TF_Buffer* buf) { string content; cell->cell.value().SerializeToString(&content); void* data = tensorflow::port::Malloc(content.length()); content.copy(static_cast<char*>(data), content.length(), 0); buf->data = data; buf->length = content.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; } TFE_MonitoringBuckets* TFE_MonitoringNewExponentialBuckets(double scale, double growth_factor, int bucket_count) { return new TFE_MonitoringBuckets([scale, growth_factor, bucket_count]() { return tensorflow::monitoring::Buckets::Exponential(scale, growth_factor, bucket_count); }); } void TFE_MonitoringDeleteBuckets(TFE_MonitoringBuckets* buckets) { delete buckets; } TFE_MonitoringSampler0* TFE_MonitoringNewSampler0( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* status, const char* description) { auto* result = new TFE_MonitoringSampler0( {name, buckets->create_buckets(), description}); tsl::Set_TF_Status_from_Status(status, result->sampler->GetStatus()); if (!result->sampler->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteSampler0(TFE_MonitoringSampler0* sampler) { delete sampler; } TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler0( TFE_MonitoringSampler0* sampler) { return static_cast<TFE_MonitoringSamplerCell*>( static_cast<void*>(sampler->sampler->GetCell())); } TFE_MonitoringSampler1* TFE_MonitoringNewSampler1( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* status, const char* description, const char* label1) { auto* result = new TFE_MonitoringSampler1( {name, buckets->create_buckets(), description, label1}); tsl::Set_TF_Status_from_Status(status, result->sampler->GetStatus()); if (!result->sampler->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteSampler1(TFE_MonitoringSampler1* sampler) { delete sampler; } TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler1( TFE_MonitoringSampler1* sampler, const char* label1) { return static_cast<TFE_MonitoringSamplerCell*>( static_cast<void*>(sampler->sampler->GetCell(label1))); } TFE_MonitoringSampler2* TFE_MonitoringNewSampler2( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* status, const char* description, const char* label1, const char* label2) { auto* result = new TFE_MonitoringSampler2( {name, buckets->create_buckets(), description, label1, label2}); tsl::Set_TF_Status_from_Status(status, result->sampler->GetStatus()); if (!result->sampler->GetStatus().ok()) { delete result; return nullptr; } return result; } void TFE_MonitoringDeleteSampler2(TFE_MonitoringSampler2* sampler) { delete sampler; } TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler2( TFE_MonitoringSampler2* sampler, const char* label1, const char* label2) { return static_cast<TFE_MonitoringSamplerCell*>( static_cast<void*>(sampler->sampler->GetCell(label1, label2))); } void TFE_ContextOptionsSetTfrt(TFE_ContextOptions* options, bool use_tfrt) { options->use_tfrt = use_tfrt; } TFE_CancellationManager* TFE_NewCancellationManager() { return tensorflow::wrap(new tensorflow::CancellationManager); } void TFE_CancellationManagerStartCancel( TFE_CancellationManager* cancellation_manager) { tensorflow::unwrap(cancellation_manager)->StartCancel(); } bool TFE_CancellationManagerIsCancelled( TFE_CancellationManager* cancellation_manager) { return tensorflow::unwrap(cancellation_manager)->IsCancelled(); } bool TFE_CancellationManagerIsCancelling( TFE_CancellationManager* cancellation_manager) { return tensorflow::unwrap(cancellation_manager)->IsCancelling(); } TFE_CancellationToken TFE_CancellationManagerGetToken( TFE_CancellationManager* cancellation_manager) { return tensorflow::unwrap(cancellation_manager)->get_cancellation_token(); } bool TFE_CancellationManagerRegisterCallback( TFE_CancellationManager* cancellation_manager, TFE_CancellationToken token, const TFE_CancelCallback* c_callback, const char* callback_name) { tensorflow::CancelCallback callback = [callback = c_callback->callback, context = c_callback->context]() { callback(context); }; return tensorflow::unwrap(cancellation_manager) ->RegisterCallbackWithErrorLogging(token, callback, callback_name); } bool TFE_CancellationManagerDeregisterCallback( TFE_CancellationManager* cancellation_manager, TFE_CancellationToken token) { return tensorflow::unwrap(cancellation_manager)->DeregisterCallback(token); } bool TFE_CancellationManagerTryDeregisterCallback( TFE_CancellationManager* cancellation_manager, TFE_CancellationToken token) { return tensorflow::unwrap(cancellation_manager)->TryDeregisterCallback(token); } void TFE_DeleteCancellationManager( TFE_CancellationManager* cancellation_manager) { delete tensorflow::unwrap(cancellation_manager); } void TFE_OpSetCancellationManager(TFE_Op* op, TFE_CancellationManager* cancellation_manager, TF_Status* status) { tensorflow::unwrap(op)->SetCancellationManager( tensorflow::unwrap(cancellation_manager)); status->status = absl::OkStatus(); } TFE_Executor* TFE_NewExecutor(bool is_async, bool enable_streaming_enqueue, int in_flight_nodes_limit) { return new TFE_Executor(is_async, enable_streaming_enqueue, in_flight_nodes_limit); } void TFE_DeleteExecutor(TFE_Executor* executor) { delete executor; } bool TFE_ExecutorIsAsync(TFE_Executor* executor) { return executor->executor()->Async(); } void TFE_ExecutorWaitForAllPendingNodes(TFE_Executor* executor, TF_Status* status) { status->status = executor->executor()->WaitForAllPendingNodes(); } void TFE_ExecutorClearError(TFE_Executor* executor) { executor->executor()->ClearError(); } void TFE_ContextSetExecutorForThread(TFE_Context* ctx, TFE_Executor* executor) { tensorflow::unwrap(ctx)->SetExecutorForThread(executor->executor()); } TFE_Executor* TFE_ContextGetExecutorForThread(TFE_Context* ctx) { return new TFE_Executor(&tensorflow::unwrap(ctx)->Executor()); } void TFE_HostAddressSpace(TFE_Context* ctx, TF_Buffer* buf) { auto address_space = tensorflow::DeviceNameUtils::AddressSpace( tensorflow::unwrap(ctx)->HostCPUParsedName()); auto str = tensorflow::DeviceNameUtils::ParsedNameToString(address_space); void* data = tensorflow::port::Malloc(str.length()); str.copy(static_cast<char*>(data), str.length(), 0); buf->data = data; buf->length = str.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; } void TFE_ContextGetFunctionDef(TFE_Context* ctx, const char* function_name, TF_Buffer* buf, TF_Status* status) { auto* function_def = tensorflow::unwrap(ctx)->FindFunctionDef(function_name); if (function_def == nullptr) { status->status = tensorflow::errors::NotFound( "Unable to find FunctionDef with name: ", function_name); return; } string str = function_def->SerializeAsString(); void* data = tensorflow::port::Malloc(str.length()); str.copy(static_cast<char*>(data), str.length(), 0); buf->data = data; buf->length = str.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; status->status = absl::OkStatus(); } void TFE_ContextGetGraphDebugInfo(TFE_Context* ctx, const char* function_name, TF_Buffer* buf, TF_Status* status) { auto function_record = tensorflow::unwrap(ctx)->FindRecord(function_name); if (function_record == nullptr) { status->status = tensorflow::errors::NotFound( "Unable to find function with name: ", function_name); return; } tensorflow::GraphDebugInfo debug_info = tensorflow::StackTracesMapToGraphDebugInfo( function_record->stack_traces()); string str = debug_info.SerializeAsString(); void* data = tensorflow::port::Malloc(str.length()); str.copy(static_cast<char*>(data), str.length(), 0); buf->data = data; buf->length = str.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; status->status = absl::OkStatus(); } TF_Tensor* TFE_AllocateHostTensor(TFE_Context* ctx, TF_DataType dtype, const int64_t* dims, int num_dims, TF_Status* status) { std::vector<int64_t> dimvec(num_dims); for (int i = 0; i < num_dims; ++i) { dimvec[i] = static_cast<int64_t>(dims[i]); } if (ctx == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid Context"); return nullptr; } tensorflow::AbstractTensorInterface* t = tensorflow::unwrap(ctx)->CreateTensor( static_cast<tensorflow::DataType>(dtype), dimvec); if (t == nullptr) { status->status = tensorflow::errors::InvalidArgument("Unsupported dtype: ", dtype); return nullptr; } return new TF_Tensor{t}; } TFE_TensorHandle* TFE_NewTensorHandleFromTensor(TFE_Context* ctx, TF_Tensor* t, TF_Status* status) { return tensorflow::wrap( tensorflow::unwrap(ctx)->CreateLocalHandle(t->tensor)); } TFE_TensorHandle* TFE_CreatePackedTensorHandle(TFE_Context* ctx, TFE_TensorHandle** handles, int* num_handles, TF_Status* status) { std::vector<tensorflow::TensorHandle*> tensor_handles; tensor_handles.reserve(*num_handles); for (int i = 0; i < *num_handles; ++i) { tensorflow::ImmediateExecutionTensorHandle* unwrapped_handle = tensorflow::unwrap(handles[i]); if (tensorflow::CustomDeviceTensorHandle::classof(unwrapped_handle)) { auto* custom_device_handle = tensorflow::down_cast<tensorflow::CustomDeviceTensorHandle*>( unwrapped_handle); tensorflow::ImmediateExecutionTensorHandle* result; status->status = custom_device_handle->device()->Pack( absl::Span<tensorflow::ImmediateExecutionTensorHandle*>( tensorflow::unwrap(handles), *num_handles), &result); return tensorflow::wrap(result); } tensor_handles.push_back( tensorflow::TensorHandleFromInterface(unwrapped_handle)); } tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); tensorflow::TensorHandle* handle = nullptr; status->status = tensorflow::TensorHandle::CreatePackedHandle( std::move(tensor_handles), context, &handle); return tensorflow::wrap(handle); } void TFE_ContextSetSoftDevicePlacement(TFE_Context* ctx, unsigned char enable, TF_Status* status) { tensorflow::unwrap(ctx)->SetAllowSoftPlacement(enable); } void TFE_ContextSetLogDevicePlacement(TFE_Context* ctx, unsigned char enable, TF_Status* status) { tensorflow::unwrap(ctx)->SetLogDevicePlacement(enable); } void TFE_ContextSetRunEagerOpAsFunction(TFE_Context* ctx, unsigned char enable, TF_Status* status) { tensorflow::unwrap(ctx)->SetRunEagerOpAsFunction(enable); } void TFE_ContextSetJitCompileRewrite(TFE_Context* ctx, unsigned char enable, TF_Status* status) { tensorflow::unwrap(ctx)->SetJitCompileRewrite(enable); } const char* TFE_TensorHandleDeviceType(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->DeviceType(&status->status); } int TFE_TensorHandleDeviceID(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } return tensorflow::unwrap(h)->DeviceId(&status->status); } TF_CAPI_EXPORT extern void TFE_TensorHandleGetStatus(TFE_TensorHandle* h, TF_Status* status) { status->status = tensorflow::unwrap(h)->TensorHandleStatus(); } void TFE_GetExecutedOpNames(TFE_Context* ctx, TF_Buffer* buf, TF_Status* status) { const std::vector<std::string>& op_names = tensorflow::unwrap(ctx)->GetLoggedOpsTestonly(); std::ostringstream op_names_oss; for (const auto& op : op_names) { op_names_oss << op << ", "; } const std::string& op_names_str = op_names_oss.str(); void* data = tensorflow::port::Malloc(op_names_str.length()); op_names_str.copy(static_cast<char*>(data), op_names_str.length(), 0); buf->data = data; buf->length = op_names_str.length(); buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; status->status = absl::OkStatus(); } void TFE_SetLogicalCpuDevices(TFE_Context* ctx, int num_cpus, const char* prefix, TF_Status* status) { std::vector<std::unique_ptr<tensorflow::Device>> devices; if (prefix == nullptr || strlen(prefix) == 0) prefix = "/job:localhost/replica:0/task:0"; tensorflow::SessionOptions sess_options; (*sess_options.config.mutable_device_count())["CPU"] = num_cpus; status->status = tensorflow::DeviceFactory::AddCpuDevices(sess_options, prefix, &devices); for (auto d = devices.begin(); d != devices.end();) { if (absl::StrContains(d->get()->name(), "CPU:0")) { d = devices.erase(d); } else { ++d; } } status->status = tensorflow::unwrap(ctx)->AddDevices(std::move(devices)); } void TFE_InsertConfigKeyValue(TFE_Context* ctx, const char* key, const char* value, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service agent is not enabled."); return; } status->status = coord_agent->InsertKeyValue(key, value); } void TFE_GetConfigKeyValue(TFE_Context* ctx, const char* key, int64_t timeout_in_ms, TF_Buffer* value_buf, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service is not enabled."); return; } absl::Duration timeout; if (timeout_in_ms > 0) { timeout = absl::Milliseconds(timeout_in_ms); } else { timeout = absl::InfiniteDuration(); } auto status_or_value = coord_agent->GetKeyValue(key, timeout); status->status = status_or_value.status(); if (!status_or_value.ok()) return; const std::string& value_string = status_or_value.value(); void* data = tensorflow::port::Malloc(value_string.length()); value_string.copy(static_cast<char*>(data), value_string.length(), 0); value_buf->data = data; value_buf->length = value_string.length(); value_buf->data_deallocator = [](void* data, size_t length) { tensorflow::port::Free(data); }; } void TFE_DeleteConfigKeyValue(TFE_Context* ctx, const char* key, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service is not enabled."); return; } status->status = coord_agent->DeleteKeyValue(key); } void TFE_ReportErrorToCluster(TFE_Context* ctx, int error_code, const char* error_message, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service is not enabled."); return; } tensorflow::Status s(static_cast<absl::StatusCode>(error_code), error_message); status->status = coord_agent->ReportError(s); } void TFE_GetTaskStates(TFE_Context* ctx, const TF_Buffer& tasks, void* states, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service is not enabled."); return; } std::vector<tensorflow::CoordinatedTask> task_vec(tasks.length); auto* task_iter = static_cast<const tensorflow::CoordinatedTask*>(tasks.data); for (size_t i = 0; i < tasks.length; ++i) { task_vec[i].set_job_name(task_iter->job_name()); task_vec[i].set_task_id(task_iter->task_id()); ++task_iter; } auto results = coord_agent->GetTaskState(task_vec); if (!results.ok()) { status->status = results.status(); return; } auto* state_iter = static_cast<TF_Status*>(states); for (size_t i = 0; i < tasks.length; ++i) { const auto& result = (*results)[i]; TF_Status s; TF_SetStatus(&s, static_cast<TF_Code>(result.error_code()), std::string(result.error_message()).data()); if (TF_GetCode(&s) != TF_Code::TF_OK) { tensorflow::CoordinationServiceError error; *error.mutable_source_task() = result.error_payload().source_task(); TF_SetPayload(&s, tensorflow::CoordinationErrorPayloadKey().data(), error.SerializeAsString().c_str()); } *state_iter = std::move(s); ++state_iter; } status->status = absl::OkStatus(); } void TFE_WaitAtBarrier(TFE_Context* ctx, const char* barrier_id, int64_t barrier_timeout_in_ms, TF_Status* status) { tensorflow::ImmediateExecutionDistributedManager* dist_mgr = tensorflow::unwrap(ctx)->GetDistributedManager(); tsl::CoordinationServiceAgent* coord_agent = dist_mgr->GetCoordinationServiceAgent(); if (coord_agent == nullptr) { status->status = tensorflow::errors::FailedPrecondition( "Coordination service is not enabled."); return; } status->status = coord_agent->WaitAtBarrier( barrier_id, absl::Milliseconds(barrier_timeout_in_ms), {}); } void TFE_InitializeLocalOnlyContext(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { tensorflow::ServerDef server_def; if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } status->status = tensorflow::unwrap(ctx) ->GetDistributedManager() ->InitializeLocalOnlyContext(server_def, keep_alive_secs); }
#include "tensorflow/c/eager/c_api_experimental.h" #include <string.h> #include <string> #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h" #include "tensorflow/core/distributed_runtime/server_lib.h" #include "tensorflow/core/lib/monitoring/collection_registry.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/config.pb.h" using tensorflow::string; namespace tensorflow { namespace { static bool HasSubstr(absl::string_view base, absl::string_view substr) { bool ok = absl::StrContains(base, substr); EXPECT_TRUE(ok) << base << ", expected substring " << substr; return ok; } TEST(CAPI, MonitoringCounter0) { TF_Status* status = TF_NewStatus(); auto* counter = TFE_MonitoringNewCounter0("test/counter", status, "description"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); auto* cell = TFE_MonitoringGetCellCounter0(counter); TFE_MonitoringCounterCellIncrementBy(cell, 1); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell), 1); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/counter", metrics->point_set_map.at("test/counter")->metric_name); EXPECT_EQ( 1, metrics->point_set_map.at("test/counter")->points.at(0)->int64_value); TFE_MonitoringCounterCellIncrementBy(cell, 5); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell), 6); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ( 6, metrics->point_set_map.at("test/counter")->points.at(0)->int64_value); TFE_MonitoringDeleteCounter0(counter); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(metrics->point_set_map.end(), metrics->point_set_map.find("test/counter")); } TEST(CAPI, MonitoringCounterMultiple) { TF_Status* status = TF_NewStatus(); auto* counter1 = TFE_MonitoringNewCounter1("test/counter1", status, "description", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellCounter1(counter1, "test"); TFE_MonitoringCounterCellIncrementBy(cell1, 1); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell1), 1); auto* counter2 = TFE_MonitoringNewCounter2("test/counter2", status, "description", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); auto* cell2 = TFE_MonitoringGetCellCounter2(counter2, "foo", "bar"); TFE_MonitoringCounterCellIncrementBy(cell2, 2); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell2), 2); TFE_MonitoringDeleteCounter1(counter1); TFE_MonitoringDeleteCounter2(counter2); } TEST(CAPI, MonitoringGauge0) { TF_Status* status = TF_NewStatus(); auto* gauge = TFE_MonitoringNewIntGauge0("test/gauge", status, "test"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell = TFE_MonitoringGetCellIntGauge0(gauge); TFE_MonitoringIntGaugeCellSet(cell, 1); EXPECT_EQ(TFE_MonitoringIntGaugeCellValue(cell), 1); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/gauge", metrics->point_set_map.at("test/gauge")->metric_name); EXPECT_EQ(1, metrics->point_set_map.at("test/gauge")->points.at(0)->int64_value); TFE_MonitoringIntGaugeCellSet(cell, 5); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(5, metrics->point_set_map.at("test/gauge")->points.at(0)->int64_value); TFE_MonitoringDeleteIntGauge0(gauge); TF_DeleteStatus(status); } TEST(CAPI, MonitoringMultipleGauge) { TF_Status* status = TF_NewStatus(); auto* gauge1 = TFE_MonitoringNewBoolGauge1("test/gauge1", status, "test", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellBoolGauge1(gauge1, "foo"); TFE_MonitoringBoolGaugeCellSet(cell1, true); EXPECT_TRUE(TFE_MonitoringBoolGaugeCellValue(cell1)); TFE_MonitoringDeleteBoolGauge1(gauge1); auto* gauge2 = TFE_MonitoringNewStringGauge2("test/gauge2", status, "test", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell2 = TFE_MonitoringGetCellStringGauge2(gauge2, "foo", "bar"); TFE_MonitoringStringGaugeCellSet(cell2, "str"); auto* buf = new TF_Buffer; TFE_MonitoringStringGaugeCellValue(cell2, buf); string data(static_cast<const char*>(buf->data), buf->length); TF_DeleteBuffer(buf); EXPECT_EQ(data, "str"); TFE_MonitoringDeleteStringGauge2(gauge2); TF_DeleteStatus(status); } TEST(CAPI, MonitoringSampler0) { TF_Status* status = TF_NewStatus(); auto* buckets = TFE_MonitoringNewExponentialBuckets(1.0, 2.0, 2); auto* sampler = TFE_MonitoringNewSampler0("test/sampler", buckets, status, "test"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell = TFE_MonitoringGetCellSampler0(sampler); TFE_MonitoringSamplerCellAdd(cell, 1.0); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/sampler", metrics->point_set_map.at("test/sampler")->metric_name); EXPECT_EQ(1.0, metrics->point_set_map.at("test/sampler") ->points.at(0) ->histogram_value.sum()); TFE_MonitoringSamplerCellAdd(cell, 5.0); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(6.0, metrics->point_set_map.at("test/sampler") ->points.at(0) ->histogram_value.sum()); TFE_MonitoringDeleteBuckets(buckets); TFE_MonitoringDeleteSampler0(sampler); TF_DeleteStatus(status); } TEST(CAPI, MonitoringMultipleSampler) { TF_Status* status = TF_NewStatus(); auto* buckets = TFE_MonitoringNewExponentialBuckets(1.0, 2.0, 2); auto* sampler1 = TFE_MonitoringNewSampler1("test/sampler1", buckets, status, "test", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellSampler1(sampler1, "foo"); TFE_MonitoringSamplerCellAdd(cell1, 1.0); TFE_MonitoringSamplerCellAdd(cell1, 2.0); TF_Buffer* result1 = TF_NewBuffer(); TFE_MonitoringSamplerCellValue(cell1, result1); tensorflow::HistogramProto histogram1; EXPECT_TRUE(histogram1.ParseFromString( {reinterpret_cast<const char*>(result1->data), result1->length})); EXPECT_EQ(histogram1.sum(), 3.0); TF_DeleteBuffer(result1); TFE_MonitoringDeleteSampler1(sampler1); auto* sampler2 = TFE_MonitoringNewSampler2("test/sampler2", buckets, status, "test", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell2 = TFE_MonitoringGetCellSampler2(sampler2, "foo", "bar"); TFE_MonitoringSamplerCellAdd(cell2, 2.0); TFE_MonitoringSamplerCellAdd(cell2, 3.0); TF_Buffer* result2 = TF_NewBuffer(); TFE_MonitoringSamplerCellValue(cell2, result2); tensorflow::HistogramProto histogram2; EXPECT_TRUE(histogram2.ParseFromString( {reinterpret_cast<const char*>(result2->data), result2->length})); EXPECT_EQ(histogram2.sum(), 5.0); TF_DeleteBuffer(result2); TFE_MonitoringDeleteSampler2(sampler2); TFE_MonitoringDeleteBuckets(buckets); TF_DeleteStatus(status); } TEST(CAPI, CancellationManager) { TFE_CancellationManager* c_mgr = TFE_NewCancellationManager(); EXPECT_FALSE(TFE_CancellationManagerIsCancelled(c_mgr)); TFE_CancelCallback callback1; callback1.callback = [](void* context) { ADD_FAILURE() << "Callback1 should be deregistered."; }; TFE_CancellationToken token1 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token1, &callback1, "callback1")); TFE_CancelCallback callback2; bool callback2_invoked = false; callback2.context = &callback2_invoked; callback2.callback = [](void* context) { *reinterpret_cast<bool*>(context) = true; }; TFE_CancellationToken token2 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token2, &callback2, "callback2")); TFE_CancellationToken token3 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token3, &callback1, "callback3")); EXPECT_TRUE(TFE_CancellationManagerDeregisterCallback(c_mgr, token1)); EXPECT_TRUE(TFE_CancellationManagerTryDeregisterCallback(c_mgr, token3)); TFE_CancellationManagerStartCancel(c_mgr); EXPECT_TRUE(TFE_CancellationManagerIsCancelled(c_mgr)); EXPECT_TRUE(callback2_invoked); TFE_DeleteCancellationManager(c_mgr); } TEST(CAPI, ExecutorContextDestructionOrder) { TF_Status* status = TF_NewStatus(); { TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* executor = TFE_NewExecutor( false, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_DeleteContext(ctx); TFE_DeleteExecutor(executor); } { TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* executor = TFE_NewExecutor( false, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TF_DeleteStatus(status); } TEST(CAPI, Function_ident_CPU) { TF_Graph* function_graph = TF_NewGraph(); TF_OperationDescription* arg_descr = TF_NewOperation(function_graph, "Placeholder", "arg"); TF_SetAttrType(arg_descr, "dtype", TF_INT32); TF_Status* status = TF_NewStatus(); TF_Operation* arg = TF_FinishOperation(arg_descr, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_OperationDescription* id_descr = TF_NewOperation(function_graph, "Identity", "id"); TF_SetAttrType(id_descr, "T", TF_INT32); TF_AddInput(id_descr, {arg, 0}); TF_Operation* id = TF_FinishOperation(id_descr, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_Output input{arg, 0}; TF_Output output{id, 0}; TF_Function* fn = TF_GraphToFunction(function_graph, "ident", 0, 1, &id, 1, &input, 1, &output, nullptr, nullptr, "test", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteGraph(function_graph); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_ContextAddFunction(ctx, fn, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteFunction(fn); for (bool async : {false, true, false}) { TFE_Executor* old_executor = TFE_ContextGetExecutorForThread(ctx); TFE_Executor* executor = TFE_NewExecutor( async, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* t = TF_AllocateTensor(TF_INT32, nullptr, 0, 1 * sizeof(tensorflow::int32)); *reinterpret_cast<tensorflow::int32*>(TF_TensorData(t)) = 42; TFE_TensorHandle* h = TFE_NewTensorHandle(t, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteTensor(t); TFE_Op* op = TFE_NewOp(ctx, "ident", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_OpAddInput(op, h, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); std::vector<TFE_TensorHandle*> result; result.push_back(nullptr); int num_retvals = 1; TFE_Execute(op, result.data(), &num_retvals, status); TFE_DeleteOp(op); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); ASSERT_EQ(num_retvals, 1); TF_Tensor* r = TFE_TensorHandleResolve(result[0], status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); EXPECT_EQ(*reinterpret_cast<tensorflow::int32*>(TF_TensorData(r)), 42); TFE_ContextSetExecutorForThread(ctx, old_executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); TFE_DeleteExecutor(old_executor); TFE_DeleteTensorHandle(h); TF_DeleteTensor(r); TFE_DeleteTensorHandle(result[0]); } TFE_ContextRemoveFunction(ctx, "ident", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteStatus(status); } void Executor_MatMul_CPU(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* old_executor = TFE_ContextGetExecutorForThread(ctx); TFE_Executor* executor = TFE_NewExecutor( async, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[2] = {nullptr, nullptr}; int num_retvals = 2; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); TFE_ContextSetExecutorForThread(ctx, old_executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); TFE_DeleteExecutor(old_executor); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, Executor_MatMul_CPU) { Executor_MatMul_CPU(false); } TEST(CAPI, Executor_MatMul_CPUAsync) { Executor_MatMul_CPU(true); } void Deleter(void* data, size_t unused, void* tensor_handle) { TFE_DeleteTensorHandle(static_cast<TFE_TensorHandle*>(tensor_handle)); } TEST(CAPI, TensorHandleOnDeviceMemory) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TF_Tensor* m_data = TFE_TensorHandleResolve(m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float* m_float = static_cast<float*>(TF_TensorData(m_data)); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_devices = TF_DeviceListCount(devices); for (int d = 0; d < num_devices; ++d) { const char* name = TF_DeviceListName(devices, d, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* copy = TFE_TensorHandleCopyToDevice(m, ctx, name, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); void* data = TFE_TensorHandleDevicePointer(copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); size_t size = TFE_TensorHandleDeviceMemorySize(copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int64_t dims[] = {2, 2}; TFE_TensorHandle* copy_aliased = TFE_NewTensorHandleFromDeviceMemory( ctx, name, TF_FLOAT, dims, 2, data, size, &Deleter, copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* on_host = TFE_TensorHandleCopyToDevice(copy_aliased, ctx, "CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* resolved = TFE_TensorHandleResolve(on_host, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const float* resolved_data = static_cast<const float*>(TF_TensorData(resolved)); EXPECT_EQ(0, memcmp(m_float, resolved_data, 4 * sizeof(float))); TF_DeleteTensor(resolved); TFE_DeleteTensorHandle(copy_aliased); TFE_DeleteTensorHandle(on_host); } TF_DeleteDeviceList(devices); TF_DeleteTensor(m_data); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TensorHandleNullptr) { TFE_TensorHandle* h = nullptr; std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); const char* device_type = TFE_TensorHandleDeviceType(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_type, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int device_id = TFE_TensorHandleDeviceID(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_id, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); } TEST(CAPI, TensorHandleDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* device_type = TFE_TensorHandleDeviceType(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = TFE_TensorHandleDeviceID(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_Op* shape_op = ShapeOp(ctx, hgpu); TFE_OpSetDevice(shape_op, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(shape_op, &retvals[0], &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); device_type = TFE_TensorHandleDeviceType(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "GPU")) << device_type; device_id = TFE_TensorHandleDeviceID(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; TFE_DeleteOp(shape_op); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleDefaults) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* h_default = TestMatrixTensorHandle(ctx); const char* device_type = TFE_TensorHandleDeviceType(h_default, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = TFE_TensorHandleDeviceID(h_default, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; TFE_TensorHandle* h_cpu = TFE_TensorHandleCopyToDevice( h_default, ctx, "/device:CPU:0", status.get()); const char* device_type_cpu = TFE_TensorHandleDeviceType(h_cpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type_cpu, "CPU")) << device_type_cpu; int device_id_cpu = TFE_TensorHandleDeviceID(h_cpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id_cpu) << device_id_cpu; TFE_DeleteTensorHandle(h_default); TFE_DeleteTensorHandle(h_cpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, CreateLocalContextAsReset) { tensorflow::ServerDef server_def = GetServerDef("worker", 2); server_def.mutable_default_session_config()->set_isolate_session_state(false); ServerFactory* factory; ASSERT_TRUE(ServerFactory::GetFactory(server_def, &factory).ok()); server_def.set_job_name("worker"); server_def.set_task_index(0); std::unique_ptr<tensorflow::ServerInterface> w0; ASSERT_TRUE( factory->NewServer(server_def, ServerFactory::Options(), &w0).ok()); ASSERT_TRUE(w0->Start().ok()); server_def.set_task_index(1); std::unique_ptr<tensorflow::ServerInterface> w1; ASSERT_TRUE( factory->NewServer(server_def, ServerFactory::Options(), &w1).ok()); ASSERT_TRUE(w1->Start().ok()); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); opts->session_options.options.config.set_isolate_session_state(false); TFE_ContextOptionsSetDevicePlacementPolicy(opts, TFE_DEVICE_PLACEMENT_SILENT); TFE_Context* ctx = TFE_NewContext(opts, status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); server_def.set_task_index(0); auto cluster = server_def.mutable_cluster(); auto client_job = cluster->add_job(); client_job->set_name("localhost"); int client_port = tensorflow::testing::PickUnusedPortOrDie(); client_job->mutable_tasks()->insert( {0, strings::StrCat("localhost:", client_port)}); server_def.set_job_name("localhost"); auto serialized = server_def.SerializeAsString(); TFE_ContextSetServerDef(ctx, 0, serialized.data(), serialized.size(), status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); server_def.set_job_name("worker"); server_def.set_task_index(0); tensorflow::ClusterDef* cluster_def = server_def.mutable_cluster(); tensorflow::JobDef* job_def = cluster_def->mutable_job(0); int worker_port = tensorflow::testing::PickUnusedPortOrDie(); job_def->mutable_tasks()->at(0) = tensorflow::strings::StrCat("localhost:", worker_port); serialized = server_def.SerializeAsString(); TFE_InitializeLocalOnlyContext(ctx, 0, serialized.data(), serialized.size(), status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_DeleteContext(ctx); TF_DeleteStatus(status); w0.release(); w1.release(); } TEST(CAPI, ShareVariableAcrossContextsAfterUpdateContextWorksWithTimeout) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); int32_t init_timeout_in_ms = 300000; TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, init_timeout_in_ms); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, init_timeout_in_ms); const char remote_device[] = "/job:localhost/replica:0/task:2/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); int port = tensorflow::testing::PickUnusedPortOrDie(); ReplaceTaskInServerDef(&server_def_0, 1, "localhost", port); ReplaceTaskInServerDef(&server_def_1, 1, "localhost", port); server_def_0.set_task_index(1); worker_server1.release(); ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); { server_def_0.set_task_index(0); string serialized_update = server_def_0.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDefWithTimeout(ctx_0, 0, serialized_update.data(), serialized_update.size(), init_timeout_in_ms, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { server_def_1.set_task_index(0); string serialized_update = server_def_1.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDefWithTimeout(ctx_1, 0, serialized_update.data(), serialized_update.size(), init_timeout_in_ms, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_experimental.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_experimental_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ecf36f2-7ab5-4fb0-8321-4f385b395019
cpp
tensorflow/tensorflow
backend_async_kernel_interface
tensorflow/lite/async/backend_async_kernel_interface.cc
tensorflow/lite/async/backend_async_kernel_interface_test.cc
#include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <vector> #include "tensorflow/lite/async/c/async_kernel.h" #include "tensorflow/lite/async/c/types.h" namespace tflite { namespace delegates { namespace internal { TfLiteStatus RegisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBuffer(context, io_type, buffer, attrs, handle); } TfLiteStatus RegisterBufferSlice(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteBufferHandle buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBufferSlice(context, buffer, attrs, handle); } TfLiteStatus UnregisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, const TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->UnregisterBuffer(context, handle); } void SupportedBufferTypes(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& buf_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedBufferTypes(io_type); *types = buf_types.data(); *n_types = buf_types.size(); } void SupportedSynchronizations(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& sync_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedSynchronizations(io_type); *types = sync_types.data(); *n_types = sync_types.size(); } bool ReconcileRestrictions(const TfLiteAsyncKernel* async_kernel, const TfLiteOpaqueContext* context, const TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { return reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->ReconcileRestrictions(context, node, tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus SetAttributes(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetAttributes(context, node, tensor_index, attrs); } TfLiteStatus Prepare(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Prepare(context, node); } TfLiteStatus Eval(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Eval(context, node, task); } TfLiteStatus Wait(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Wait(context, task); } TfLiteStatus Finish(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Finish(context, task); } TfLiteStatus SetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetBufferAttributes(buffer, attrs); } TfLiteStatus GetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->GetBufferAttributes(buffer, attrs); } } BackendAsyncKernelInterface::BackendAsyncKernelInterface() { kernel_ = TfLiteAsyncKernelCreate(this); TfLiteAsyncKernelSetRegisterBuffer(kernel_, internal::RegisterBuffer); TfLiteAsyncKernelSetRegisterBufferSlice(kernel_, internal::RegisterBufferSlice); TfLiteAsyncKernelSetUnregisterBuffer(kernel_, internal::UnregisterBuffer); TfLiteAsyncKernelSetSupportedBufferTypes(kernel_, internal::SupportedBufferTypes); TfLiteAsyncKernelSetSupportedSynchronizations( kernel_, internal::SupportedSynchronizations); TfLiteAsyncKernelSetReconcileRestrictions(kernel_, internal::ReconcileRestrictions); TfLiteAsyncKernelSetSetAttributes(kernel_, internal::SetAttributes); TfLiteAsyncKernelSetSetBufferAttributes(kernel_, internal::SetBufferAttributes); TfLiteAsyncKernelSetGetBufferAttributes(kernel_, internal::GetBufferAttributes); TfLiteAsyncKernelSetPrepare(kernel_, internal::Prepare); TfLiteAsyncKernelSetEval(kernel_, internal::Eval); TfLiteAsyncKernelSetWait(kernel_, internal::Wait); TfLiteAsyncKernelSetFinish(kernel_, internal::Finish); } } }
#include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/async/c/types.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" using ::testing::_; namespace tflite::delegates { namespace { TEST(BackendAsyncKernelInterfaceTest, BasicTest) { testing::StrictMock<async::testing::MockAsyncKernel> kernel; EXPECT_CALL(kernel, RegisterBuffer(_, _, _, _, _)); EXPECT_CALL(kernel, RegisterBufferSlice(_, _, _, _)); EXPECT_CALL(kernel, UnregisterBuffer(_, _)); EXPECT_CALL(kernel, ReconcileRestrictions(_, _, _, _, _, _)); EXPECT_CALL(kernel, SetAttributes(_, _, _, _)); EXPECT_CALL(kernel, SetBufferAttributes(_, _)); EXPECT_CALL(kernel, GetBufferAttributes(_, _)); EXPECT_CALL(kernel, Prepare(_, _)); EXPECT_CALL(kernel, Eval(_, _, _)); EXPECT_CALL(kernel, Wait(_, _)); EXPECT_CALL(kernel, Finish(_, _)); auto* tflite_kernel = kernel.kernel(); tflite_kernel->register_buffer(tflite_kernel, nullptr, kTfLiteIoTypeInput, nullptr, nullptr, 0); tflite_kernel->register_buffer_slice(tflite_kernel, nullptr, 0, nullptr, 0); tflite_kernel->unregister_buffer(tflite_kernel, nullptr, 0); tflite_kernel->reconcile_restrictions(tflite_kernel, nullptr, nullptr, 0, nullptr, nullptr, nullptr); tflite_kernel->set_attributes(tflite_kernel, nullptr, nullptr, 0, nullptr); tflite_kernel->set_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->get_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->prepare(tflite_kernel, nullptr, nullptr); tflite_kernel->eval(tflite_kernel, nullptr, nullptr, nullptr); tflite_kernel->wait(tflite_kernel, nullptr, nullptr); tflite_kernel->finish(tflite_kernel, nullptr, nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/async/backend_async_kernel_interface.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/async/backend_async_kernel_interface_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ee9ec021-ba6f-4611-b011-93d469b89593
cpp
tensorflow/tensorflow
tokenize
tensorflow/lite/testing/tokenize.cc
tensorflow/lite/testing/tokenize_test.cc
#include "tensorflow/lite/testing/tokenize.h" #include <istream> #include <string> #include "tensorflow/lite/string_type.h" namespace tflite { namespace testing { void Tokenize(std::istream* input, TokenProcessor* processor) { enum State { kBuildQuotedToken, kBuildToken, kIdle }; std::string current_token; State state = kIdle; auto start_token = [&](char c) { state = kBuildToken; current_token.clear(); current_token = c; }; auto issue_token = [&]() { state = kIdle; processor->ConsumeToken(&current_token); current_token.clear(); }; auto start_quoted_token = [&]() { state = kBuildQuotedToken; current_token.clear(); }; auto issue_quoted_token = [&]() { state = kIdle; processor->ConsumeToken(&current_token); current_token.clear(); }; auto issue_delim = [&](char d) { current_token = string(1, d); processor->ConsumeToken(&current_token); current_token.clear(); }; auto is_delim = [](char c) { return c == '{' || c == '}' || c == ':'; }; auto is_quote = [](char c) { return c == '"'; }; for (auto it = std::istreambuf_iterator<char>(*input); it != std::istreambuf_iterator<char>(); ++it) { switch (state) { case kIdle: if (is_delim(*it)) { issue_delim(*it); } else if (is_quote(*it)) { start_quoted_token(); } else if (!isspace(*it)) { start_token(*it); } break; case kBuildToken: if (is_delim(*it)) { issue_token(); issue_delim(*it); } else if (is_quote(*it)) { issue_token(); start_quoted_token(); } else if (isspace(*it)) { issue_token(); } else { current_token += *it; } break; case kBuildQuotedToken: if (is_quote(*it)) { issue_quoted_token(); } else { current_token += *it; } break; } } if (state != kIdle) { issue_token(); } } } }
#include "tensorflow/lite/testing/tokenize.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace testing { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; class TokenCollector : public TokenProcessor { public: void ConsumeToken(std::string* token) override { tokens_.push_back(*token); } const std::vector<std::string>& Tokens() { return tokens_; } private: std::vector<std::string> tokens_; }; std::vector<std::string> TokenizeString(const std::string& s) { std::stringstream ss(s); TokenCollector collector; Tokenize(&ss, &collector); return collector.Tokens(); } TEST(TokenizeTest, TokenDetection) { EXPECT_THAT(TokenizeString("x :1"), ElementsAre("x", ":", "1")); EXPECT_THAT(TokenizeString("x:1"), ElementsAre("x", ":", "1")); EXPECT_THAT(TokenizeString("x {1"), ElementsAre("x", "{", "1")); EXPECT_THAT(TokenizeString("x{1"), ElementsAre("x", "{", "1")); EXPECT_THAT(TokenizeString("x }1"), ElementsAre("x", "}", "1")); EXPECT_THAT(TokenizeString("x}1"), ElementsAre("x", "}", "1")); EXPECT_THAT(TokenizeString("x \"1"), ElementsAre("x", "1")); EXPECT_THAT(TokenizeString("x\"1"), ElementsAre("x", "1")); } TEST(TokenizeTest, QuotedTokenDetection) { EXPECT_THAT(TokenizeString("\"w:x{y}z\"1"), ElementsAre("w:x{y}z", "1")); EXPECT_THAT(TokenizeString("\"w:x{y}z\"\"1\""), ElementsAre("w:x{y}z", "1")); } TEST(TokenizeTest, Delimiters) { EXPECT_THAT(TokenizeString("}"), ElementsAre("}")); EXPECT_THAT(TokenizeString("}}"), ElementsAre("}", "}")); EXPECT_THAT(TokenizeString("{"), ElementsAre("{")); EXPECT_THAT(TokenizeString("{{"), ElementsAre("{", "{")); EXPECT_THAT(TokenizeString(":"), ElementsAre(":")); EXPECT_THAT(TokenizeString("::"), ElementsAre(":", ":")); } TEST(TokenizeTest, CornerCases) { EXPECT_THAT(TokenizeString(" i { b:a } "), ElementsAre("i", "{", "b", ":", "a", "}")); EXPECT_THAT(TokenizeString(" }"), ElementsAre("}")); EXPECT_THAT(TokenizeString(" } "), ElementsAre("}")); EXPECT_THAT(TokenizeString(" {} "), ElementsAre("{", "}")); EXPECT_THAT(TokenizeString(" x{} y{} "), ElementsAre("x", "{", "}", "y", "{", "}")); EXPECT_THAT(TokenizeString("x:1 y:2 "), ElementsAre("x", ":", "1", "y", ":", "2")); EXPECT_THAT(TokenizeString("x:\"1\" y:2 "), ElementsAre("x", ":", "1", "y", ":", "2")); EXPECT_THAT(TokenizeString("x:\"1, 2\" y:\"\" "), ElementsAre("x", ":", "1, 2", "y", ":", "")); } TEST(TokenizeTest, NewLines) { EXPECT_THAT(TokenizeString("x:\n1,\n 2 \n y :\n3 \n"), ElementsAre("x", ":", "1,", "2", "y", ":", "3")); } TEST(TokenizeTest, LongString) { EXPECT_THAT( TokenizeString(" i { b:a } input {" "a: \"1e-1, 2,3\" b:\"1,2,3\"\n c{ " "id:1 x{d{a:" "1}}} f:2 " "\n}\n t:1"), ElementsAreArray({"i", "{", "b", ":", "a", "}", "input", "{", "a", ":", "1e-1, 2,3", "b", ":", "1,2,3", "c", "{", "id", ":", "1", "x", "{", "d", "{", "a", ":", "1", "}", "}", "}", "f", ":", "2", "}", "t", ":", "1"})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/tokenize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/tokenize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea