Search is not available for this dataset
text
stringlengths
75
104k
def _dispatch_coroutine(self, event, listener, *args, **kwargs): """Schedule a coroutine for execution. Args: event (str): The name of the event that triggered this call. listener (async def): The async def that needs to be executed. *args: Any number of positional arguments. **kwargs: Any number of keyword arguments. The values of *args and **kwargs are passed, unaltered, to the async def when generating the coro. If there is an exception generating the coro, such as the wrong number of arguments, the emitter's error event is triggered. If the triggering event _is_ the emitter's error event then the exception is reraised. The reraised exception may show in debug mode for the event loop but is otherwise silently dropped. """ try: coro = listener(*args, **kwargs) except Exception as exc: if event == self.LISTENER_ERROR_EVENT: raise return self.emit(self.LISTENER_ERROR_EVENT, event, listener, exc) asyncio.ensure_future( _try_catch_coro(self, event, listener, coro), loop=self._loop, )
def _dispatch_function(self, event, listener, *args, **kwargs): """Execute a sync function. Args: event (str): The name of the event that triggered this call. listener (def): The def that needs to be executed. *args: Any number of positional arguments. **kwargs: Any number of keyword arguments. The values of *args and **kwargs are passed, unaltered, to the def when exceuting. If there is an exception executing the def, such as the wrong number of arguments, the emitter's error event is triggered. If the triggering event _is_ the emitter's error event then the exception is reraised. The reraised exception may show in debug mode for the event loop but is otherwise silently dropped. """ try: return listener(*args, **kwargs) except Exception as exc: if event == self.LISTENER_ERROR_EVENT: raise return self.emit(self.LISTENER_ERROR_EVENT, event, listener, exc)
def _dispatch(self, event, listener, *args, **kwargs): """Dispatch an event to a listener. Args: event (str): The name of the event that triggered this call. listener (def or async def): The listener to trigger. *args: Any number of positional arguments. **kwargs: Any number of keyword arguments. This method inspects the listener. If it is a def it dispatches the listener to a method that will execute that def. If it is an async def it dispatches it to a method that will schedule the resulting coro with the event loop. """ if ( asyncio.iscoroutinefunction(listener) or isinstance(listener, functools.partial) and asyncio.iscoroutinefunction(listener.func) ): return self._dispatch_coroutine(event, listener, *args, **kwargs) return self._dispatch_function(event, listener, *args, **kwargs)
def emit(self, event, *args, **kwargs): """Call each listener for the event with the given arguments. Args: event (str): The event to trigger listeners on. *args: Any number of positional arguments. **kwargs: Any number of keyword arguments. This method passes all arguments other than the event name directly to the listeners. If a listener raises an exception for any reason the 'listener-error', or current value of LISTENER_ERROR_EVENT, is emitted. Listeners to this event are given the event name, listener object, and the exception raised. If an error listener fails it does so silently. All event listeners are fired in a deferred way so this method returns immediately. The calling coro must yield at some point for the event to propagate to the listeners. """ listeners = self._listeners[event] listeners = itertools.chain(listeners, self._once[event]) self._once[event] = [] for listener in listeners: self._loop.call_soon( functools.partial( self._dispatch, event, listener, *args, **kwargs, ) ) return self
def count(self, event): """Get the number of listeners for the event. Args: event (str): The event for which to count all listeners. The resulting count is a combination of listeners added using 'on'/'add_listener' and 'once'. """ return len(self._listeners[event]) + len(self._once[event])
def phasicTonic(self,m1=None,m2=None,chunkMs=50,quietPercentile=10, histResolution=.5,plotToo=False): """ let's keep the chunkMs as high as we reasonably can. 50ms is good. Things get flakey at lower numbers like 10ms. IMPORTANT! for this to work, prevent 0s from averaging in, so keep bin sizes well above the data resolution. """ # prepare sectioning values to be used later m1=0 if m1 is None else m1*self.pointsPerSec m2=len(abf.sweepY) if m2 is None else m2*self.pointsPerSec m1,m2=int(m1),int(m2) # prepare histogram values to be used later padding=200 # pA or mV of maximum expected deviation chunkPoints=int(chunkMs*self.pointsPerMs) histBins=int((padding*2)/histResolution) # center the data at 0 using peak histogram, not the mean Y=self.sweepY[m1:m2] hist,bins=np.histogram(Y,bins=2*padding) Yoffset=bins[np.where(hist==max(hist))[0][0]] Y=Y-Yoffset # we don't have to, but PDF math is easier # calculate all histogram nChunks=int(len(Y)/chunkPoints) hist,bins=np.histogram(Y,bins=histBins,range=(-padding,padding)) hist=hist/len(Y) # count as a fraction of total Xs=bins[1:] # get baseline data from chunks with smallest variance chunks=np.reshape(Y[:nChunks*chunkPoints],(nChunks,chunkPoints)) variances=np.var(chunks,axis=1) percentiles=np.empty(len(variances)) for i,variance in enumerate(variances): percentiles[i]=sorted(variances).index(variance)/len(variances)*100 blData=chunks[np.where(percentiles<=quietPercentile)[0]].flatten() # generate the standard curve and pull it to the histogram height sigma=np.sqrt(np.var(blData)) center=np.average(blData)+histResolution/2 blCurve=mlab.normpdf(Xs,center,sigma) blCurve=blCurve*max(hist)/max(blCurve) # determine the phasic current by subtracting-out the baseline #diff=hist-blCurve diff=hist IGNORE_DISTANCE=5 # KEEP THIS FIXED, NOT A FUNCTION OF VARIANCE ignrCenter=len(Xs)/2 ignrPad=IGNORE_DISTANCE/histResolution ignr1,ignt2=int(ignrCenter-ignrPad),int(ignrCenter+ignrPad) diff[ignr1:ignt2]=0 # optionally graph all this if plotToo: plt.figure(figsize=(15,5)) plt.plot(Y) plt.figure(figsize=(7,7)) ax1=plt.subplot(211) plt.title(abf.ID+" phasic analysis") plt.ylabel("fraction") plt.plot(Xs,hist,'-',alpha=.8,color='b',lw=3) plt.plot(Xs,blCurve,lw=3,alpha=.5,color='r') plt.margins(0,.1) plt.subplot(212,sharex=ax1) plt.title("baseline subtracted") plt.ylabel("fraction") plt.xlabel("data points (%s)"%abf.units) plt.plot(Xs,diff,'-',alpha=.8,color='b',lw=3) plt.axhline(0,lw=3,alpha=.5,color='r') plt.axvline(0,lw=3,alpha=.5,color='k') plt.margins(0,.1) plt.axis([-50,50,None,None]) plt.tight_layout() plt.show() print(np.sum(np.split(diff,2),1)) return diff/len(Y)*abf.pointsPerSec
def genPNGs(folder,files=None): """Convert each TIF to PNG. Return filenames of new PNGs.""" if files is None: files=glob.glob(folder+"/*.*") new=[] for fname in files: ext=os.path.basename(fname).split(".")[-1].lower() if ext in ['tif','tiff']: if not os.path.exists(fname+".png"): print(" -- converting %s to PNG..."%os.path.basename(fname)) cm.image_convert(fname) new.append(fname) #fancy burn-in of image data else: pass #print(" -- already converted %s to PNG..."%os.path.basename(fname)) return new
def htmlABFcontent(ID,group,d): """generate text to go inside <body> for single ABF page.""" html="" files=[] for abfID in group: files.extend(d[abfID]) files=sorted(files) #start with root images html+="<hr>" for fname in files: if ".png" in fname.lower() and not "swhlab4" in fname: fname="../"+os.path.basename(fname) html+='<a href="%s"><img src="%s" width="348"></a> '%(fname,fname) #progress to /swhlab4/ images html+="<hr>" #ABFinfo lastID='' for fname in sorted(files): if not "swhlab4" in fname: continue ID=os.path.basename(fname).split("_")[0] if not ID==lastID: lastID=ID html+="<h3>%s</h3>"%os.path.basename(fname).split("_")[0] if ".png" in fname.lower(): fname=os.path.basename(fname) html+='<a href="%s"><img src="%s" height="300"></a> '%(fname,fname) continue html+="<hr>" for fname in files: if not "swhlab4" in fname: continue if ".pkl" in fname: callit=os.path.basename(fname) thing=cm.getPkl(fname) if "_APs.pkl" in fname: callit+=" (first AP)" thing=cm.dictFlat(thing) if len(thing): thing=thing[0] elif "_MTs.pkl" in fname: if type(thing) == dict: callit+=" (from AVG of all sweeps)" else: callit+=" (first sweep)" thing=thing[0] elif "_SAP.pkl" in fname: continue #don't plot those, too complicated elif "_info.pkl" in fname or "_iv.pkl" in fname: pass #no trouble, go for it else: print(" ?? not sure how to index [%s]"%os.path.basename(fname)) continue if type(thing) is dict: thing=cm.msgDict(thing) if type(thing) is list: out='' for item in thing: out+=str(item)+"\n" thing=out thing=str(thing) #lol stringthing thing="### %s ###\n"%os.path.basename(fname)+thing # putting it in a textbox is obnoxious. put it in the source instead. #html+='<br><br><textarea rows="%d" cols="70">%s</textarea>'%(str(thing).count("\n")+5,thing) html+="(view source for %s) <!--\n\n%s\n\n-->"%(os.path.basename(fname),thing) return html
def htmlABF(ID,group,d,folder,overwrite=False): """given an ID and the dict of files, generate a static html for that abf.""" fname=folder+"/swhlab4/%s_index.html"%ID if overwrite is False and os.path.exists(fname): return html=TEMPLATES['abf'] html=html.replace("~ID~",ID) html=html.replace("~CONTENT~",htmlABFcontent(ID,group,d)) print(" <- writing [%s]"%os.path.basename(fname)) with open(fname,'w') as f: f.write(html) return
def expMenu(groups,folder): """read experiment.txt and return a dict with [firstOfNewExp, color, star, comments].""" ### GENERATE THE MENU DATA BASED ON EXPERIMENT FILE orphans = sorted(list(groups.keys())) menu=[] if os.path.exists(folder+'/experiment.txt'): with open(folder+'/experiment.txt') as f: raw=f.read() else: raw="" for line in raw.split("\n"): item={} if len(line)==0: continue if line.startswith("~"): line=line[1:].split(" ",2) item["ID"]=line[0] item["symbol"]='' if len(line)>1: item["color"]=line[1] else: item["color"]="white" if len(line)>2 and len(line[2]): item["comment"]=line[2] if item["comment"][0]=="*": item["symbol"]='*' else: item["comment"]='' if item["ID"] in orphans: orphans.remove(item["ID"]) elif line.startswith("###"): line=line[3:].strip().split(" ",1) item["title"]=line[0] item["comment"]='' if len(line)>1: if line[1].startswith("- "): line[1]=line[1][2:] item["comment"]=line[1] else: item["unknown"]=line menu.append(item) menu.append({"title":"orphans","comment":""}) for ophan in orphans: menu.append({"orphan":ophan,"ID":ophan,"color":'',"symbol":'',"comment":''}) return menu
def genIndex(folder,forceIDs=[]): """expects a folder of ABFs.""" if not os.path.exists(folder+"/swhlab4/"): print(" !! cannot index if no /swhlab4/") return timestart=cm.timethis() files=glob.glob(folder+"/*.*") #ABF folder files.extend(glob.glob(folder+"/swhlab4/*.*")) print(" -- indexing glob took %.02f ms"%(cm.timethis(timestart)*1000)) files.extend(genPNGs(folder,files)) files=sorted(files) timestart=cm.timethis() d=cm.getIDfileDict(files) #TODO: this is really slow print(" -- filedict length:",len(d)) print(" -- generating ID dict took %.02f ms"%(cm.timethis(timestart)*1000)) groups=cm.getABFgroups(files) print(" -- groups length:",len(groups)) for ID in sorted(list(groups.keys())): overwrite=False for abfID in groups[ID]: if abfID in forceIDs: overwrite=True try: htmlABF(ID,groups[ID],d,folder,overwrite) except: print("~~ HTML GENERATION FAILED!!!") menu=expMenu(groups,folder) makeSplash(menu,folder) makeMenu(menu,folder) htmlFrames(d,folder) makeMenu(menu,folder) makeSplash(menu,folder)
def drawPhasePlot(abf,m1=0,m2=None): """ Given an ABF object (SWHLab), draw its phase plot of the current sweep. m1 and m2 are optional marks (in seconds) for plotting only a range of data. Assume a matplotlib figure is already open and just draw on top if it. """ if not m2: m2 = abf.sweepLength cm = plt.get_cmap('CMRmap') #cm = plt.get_cmap('CMRmap_r') #cm = plt.get_cmap('spectral') #cm = plt.get_cmap('winter') # prepare Xs, Ys, and dYs Y = abf.sweepY Y = Y[int(abf.pointsPerSec*m1):int(abf.pointsPerSec*m2)] dY = (Y[1:]-Y[:-1])*abf.rate/1000.0 # mV/ms dY = np.append(dY,dY[-1]) Xs = np.arange(len(dY))/abf.pointsPerSec Xs = Xs + Xs[-1]*abf.sweep # plot the voltage plt.subplot(131) plt.grid(alpha=.5) plt.plot(Xs,Y,lw=.5,color=cm(abf.sweep/abf.sweeps)) plt.title("membrane voltage") plt.ylabel("V (mV)") plt.xlabel("time (sec)") plt.margins(0,.1) # plot the first derivative of the voltage plt.subplot(132) plt.grid(alpha=.5) plt.plot(Xs,dY,lw=.5,color=cm(abf.sweep/abf.sweeps)) plt.title("voltage velocity") plt.ylabel("dV (mV/ms)") plt.xlabel("time (sec)") plt.margins(0,.1) # make the phase plot plt.subplot(133) plt.grid(alpha=.5) plt.plot(Y,dY,alpha=.5,lw=.5,color=cm(abf.sweep/abf.sweeps)) plt.title("phase plot") plt.ylabel("dV (mV/ms)") plt.xlabel("V (mV)") plt.margins(.1,.1) # tighten up the figure plt.tight_layout()
def plotAllSweeps(abfFile): """simple example how to load an ABF file and plot every sweep.""" r = io.AxonIO(filename=abfFile) bl = r.read_block(lazy=False, cascade=True) print(abfFile+"\nplotting %d sweeps..."%len(bl.segments)) plt.figure(figsize=(12,10)) plt.title(abfFile) for sweep in range(len(bl.segments)): trace = bl.segments[sweep].analogsignals[0] plt.plot(trace.times-trace.times[0],trace.magnitude,alpha=.5) plt.ylabel(trace.dimensionality) plt.xlabel("seconds") plt.show() plt.close()
def TIF_to_jpg(fnameTiff, overwrite=False, saveAs=""): """ given a TIF taken by our cameras, make it a pretty labeled JPG. if the filename contains "f10" or "f20", add appropraite scale bars. automatic contrast adjustment is different depending on if its a DIC image or fluorescent image (which is detected automatically). """ if saveAs == "": saveAs=fnameTiff+".jpg" if overwrite is False and os.path.exists(saveAs): print("file exists, not overwriting...") return # load the image img=pylab.imread(fnameTiff) img=img/np.max(img) # now the data is from 0 to 1 # determine the old histogram hist1,bins1=np.histogram(img.ravel(),bins=256, range=(0,1)) #pylab.plot(bins[:-1],hist) # detect darkfield by average: if np.average(img)<.2: vmin=None vmax=None msg=" | FLU" while np.average(img)<.5: img=np.sqrt(img) msg+="^(.5)" else: msg=" | DIC" percentile=.005 vmin=np.percentile(img.ravel(),percentile) vmax=np.percentile(img.ravel(),100-percentile) # determine the new histogram hist2,bins2=np.histogram(img.ravel(),bins=256, range=(0,1)) # plot it with resizing magic fig=pylab.figure(facecolor='r') fig.gca().imshow(img,cmap=pylab.gray(),vmin=vmin,vmax=vmax) pylab.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) pylab.gca().xaxis.set_major_locator(pylab.NullLocator()) pylab.gca().yaxis.set_major_locator(pylab.NullLocator()) pylab.axis('off') # resize it to the original size fig.set_size_inches(img.shape[1]/100, img.shape[0]/100) # add text msg="%s | %s"%(os.path.basename(fnameTiff), datetime.datetime.fromtimestamp(os.path.getmtime(fnameTiff)))+msg center=10 pylab.text(center,center,"%s"%(msg),va="top",color='w',size='small', family='monospace',weight='bold', bbox=dict(facecolor='k', alpha=.5)) # add scale bar scaleWidthPx=False if "f10" in fnameTiff: scaleWidthPx,scaleBarText=39,"25 um" if "f20" in fnameTiff: scaleWidthPx,scaleBarText=31,"10 um" if scaleWidthPx: scaleBarPadding=10 x2,y2=img.shape[1]-scaleBarPadding,img.shape[0]-scaleBarPadding x1,y1=x2-scaleWidthPx,y2 for offset,color,alpha in [[2,'k',.5],[0,'w',1]]: pylab.plot([x1+offset,x2+offset],[y1+offset,y2+offset],'-', color=color,lw=4,alpha=alpha) pylab.text((x1+x2)/2+offset,y1-5+offset,scaleBarText,color=color, ha="center",weight="bold",alpha=alpha, size="small",va="bottom",family="monospace") # add histogram #pylab.plot(img.shape[1]-bins1[:-1][::-1]*200,-hist1/max(hist1)*100+110,color='g') #pylab.plot(img.shape[1]-bins2[:-1][::-1]*200,-hist2/max(hist2)*100+110,color='b') #pylab.show() # save it pylab.savefig(saveAs,dpi=100) # clean up pylab.close()
def TIF_to_jpg_all(path): """run TIF_to_jpg() on every TIF of a folder.""" for fname in sorted(glob.glob(path+"/*.tif")): print(fname) TIF_to_jpg(fname)
def analyzeSweep(abf,sweep,m1=None,m2=None,plotToo=False): """ m1 and m2, if given, are in seconds. returns [# EPSCs, # IPSCs] """ abf.setsweep(sweep) if m1 is None: m1=0 else: m1=m1*abf.pointsPerSec if m2 is None: m2=-1 else: m2=m2*abf.pointsPerSec # obtain X and Y Yorig=abf.sweepY[int(m1):int(m2)] X=np.arange(len(Yorig))/abf.pointsPerSec Ylpf=linear_gaussian(Yorig,sigmaSize=abf.pointsPerMs*300,forwardOnly=False) Yflat=Yorig-Ylpf EPSCs,IPSCs=[],[] if plotToo: plt.figure(figsize=(15,6)) ax1=plt.subplot(211) plt.title("%s sweep %d"%(abf.ID,sweep)) plt.grid() plt.plot(X,Yorig,alpha=.5) plt.plot(X,Ylpf,'k',alpha=.5,lw=2) plt.margins(0,.2) plt.subplot(212,sharex=ax1) plt.title("gaussian baseline subtraction") plt.grid() plt.plot(X,Yflat,alpha=.5) plt.axhline(0,color='k',lw=2,alpha=.5) plt.tight_layout() plt.show() # TEST GAUSS hist, bin_edges = np.histogram(Yflat, density=True, bins=200) peakPa=bin_edges[np.where(hist==max(hist))[0][0]+1] if plotToo: plt.figure() plt.grid() plt.plot(bin_edges[1:],hist,alpha=.5) plt.axvline(0,color='k') plt.axvline(peakPa,color='r',ls='--',lw=2,alpha=.5) plt.semilogy() plt.title("sweep data distribution") plt.ylabel("power") plt.xlabel("pA deviation") plt.show() return peakPa
def convert(fname,saveAs=True,showToo=False): """ Convert weird TIF files into web-friendly versions. Auto contrast is applied (saturating lower and upper 0.1%). make saveAs True to save as .TIF.png make saveAs False and it won't save at all make saveAs "someFile.jpg" to save it as a different path/format """ # load the image #im = Image.open(fname) #PIL can't handle 12-bit TIFs well im=ndimage.imread(fname) #scipy does better with it im=np.array(im,dtype=float) # now it's a numpy array # do all image enhancement here cutoffLow=np.percentile(im,.01) cutoffHigh=np.percentile(im,99.99) im[np.where(im<cutoffLow)]=cutoffLow im[np.where(im>cutoffHigh)]=cutoffHigh # IMAGE FORMATTING im-=np.min(im) #auto contrast im/=np.max(im) #normalize im*=255 #stretch contrast (8-bit) im = Image.fromarray(im) # IMAGE DRAWING msg="%s\n"%os.path.basename(fname) msg+="%s\n"%cm.epochToString(os.path.getmtime(fname)) d = ImageDraw.Draw(im) fnt = ImageFont.truetype("arial.ttf", 20) d.text((6,6),msg,font=fnt,fill=0) d.text((4,4),msg,font=fnt,fill=255) if showToo: im.show() if saveAs is False: return if saveAs is True: saveAs=fname+".png" im.convert('RGB').save(saveAs) return saveAs
def plot_shaded_data(X,Y,variances,varianceX): """plot X and Y data, then shade its background by variance.""" plt.plot(X,Y,color='k',lw=2) nChunks=int(len(Y)/CHUNK_POINTS) for i in range(0,100,PERCENT_STEP): varLimitLow=np.percentile(variances,i) varLimitHigh=np.percentile(variances,i+PERCENT_STEP) varianceIsAboveMin=np.where(variances>=varLimitLow)[0] varianceIsBelowMax=np.where(variances<=varLimitHigh)[0] varianceIsRange=[chunkNumber for chunkNumber in range(nChunks) \ if chunkNumber in varianceIsAboveMin \ and chunkNumber in varianceIsBelowMax] for chunkNumber in varianceIsRange: t1=chunkNumber*CHUNK_POINTS/POINTS_PER_SEC t2=t1+CHUNK_POINTS/POINTS_PER_SEC plt.axvspan(t1,t2,alpha=.3,color=COLORMAP(i/100),lw=0)
def show_variances(Y,variances,varianceX,logScale=False): """create some fancy graphs to show color-coded variances.""" plt.figure(1,figsize=(10,7)) plt.figure(2,figsize=(10,7)) varSorted=sorted(variances) plt.figure(1) plt.subplot(211) plt.grid() plt.title("chronological variance") plt.ylabel("original data") plot_shaded_data(X,Y,variances,varianceX) plt.margins(0,.1) plt.subplot(212) plt.ylabel("variance (pA) (log%s)"%str(logScale)) plt.xlabel("time in sweep (sec)") plt.plot(varianceX,variances,'k-',lw=2) plt.figure(2) plt.ylabel("variance (pA) (log%s)"%str(logScale)) plt.xlabel("chunk number") plt.title("sorted variance") plt.plot(varSorted,'k-',lw=2) for i in range(0,100,PERCENT_STEP): varLimitLow=np.percentile(variances,i) varLimitHigh=np.percentile(variances,i+PERCENT_STEP) label="%2d-%d percentile"%(i,i++PERCENT_STEP) color=COLORMAP(i/100) print("%s: variance = %.02f - %.02f"%(label,varLimitLow,varLimitHigh)) plt.figure(1) plt.axhspan(varLimitLow,varLimitHigh,alpha=.5,lw=0,color=color,label=label) plt.figure(2) chunkLow=np.where(varSorted>=varLimitLow)[0][0] chunkHigh=np.where(varSorted>=varLimitHigh)[0][0] plt.axvspan(chunkLow,chunkHigh,alpha=.5,lw=0,color=color,label=label) for fignum in [1,2]: plt.figure(fignum) if logScale: plt.semilogy() plt.margins(0,0) plt.grid() if fignum is 2: plt.legend(fontsize=10,loc='upper left',shadow=True) plt.tight_layout() plt.savefig('2016-12-15-variance-%d-log%s.png'%(fignum,str(logScale))) plt.show()
def ensureDetection(self): """ run this before analysis. Checks if event detection occured. If not, runs AP detection on all sweeps. """ if self.APs==False: self.log.debug("analysis attempted before event detection...") self.detect()
def detect(self): """runs AP detection on every sweep.""" self.log.info("initializing AP detection on all sweeps...") t1=cm.timeit() for sweep in range(self.abf.sweeps): self.detectSweep(sweep) self.log.info("AP analysis of %d sweeps found %d APs (completed in %s)", self.abf.sweeps,len(self.APs),cm.timeit(t1))
def detectSweep(self,sweep=0): """perform AP detection on current sweep.""" if self.APs is False: # indicates detection never happened self.APs=[] # now indicates detection occured # delete every AP from this sweep from the existing array for i,ap in enumerate(self.APs): if ap["sweep"]==sweep: self.APs[i]=None if self.APs.count(None): self.log.debug("deleting %d existing APs from memory",self.APs.count(None)) while None in self.APs: self.APs.remove(None) self.log.debug("initiating AP detection (%d already in memory)",len(self.APs)) self.abf.derivative=True self.abf.setsweep(sweep) # detect potential AP (Is) by a dV/dT threshold crossing Is = cm.where_cross(self.abf.sweepD,self.detect_over) self.log.debug("initial AP detection: %d APs"%len(Is)) # eliminate APs where dV/dT doesn't cross below -10 V/S within 2 ms for i,I in enumerate(Is): if np.min(self.abf.sweepD[I:I+2*self.abf.pointsPerMs])>-10: Is[i]=0 Is=Is[np.nonzero(Is)] self.log.debug("after lower threshold checking: %d APs"%len(Is)) # walk 1ms backwards and find point of +10 V/S threshold crossing for i,I in enumerate(Is): stepBack=0 while(self.abf.sweepD[I-stepBack])>10 and stepBack/self.abf.pointsPerMs<1: #2ms max stepBack+=1 Is[i]-=stepBack # analyze each AP sweepAPs=[] for i,I in enumerate(Is): try: timeInSweep=I/self.abf.pointsPerSec if timeInSweep<self.detect_time1 or timeInSweep>self.detect_time2: continue # skip because it's not within the marks ap={} # create the AP entry ap["sweep"]=sweep # number of the sweep containing this AP ap["I"]=I # index sweep point of start of AP (10 mV/ms threshold crossing) ap["Tsweep"]=I/self.abf.pointsPerSec # time in the sweep of index crossing (sec) ap["T"]=ap["Tsweep"]+self.abf.sweepInterval*sweep # time in the experiment ap["Vthreshold"]=self.abf.sweepY[I] # threshold at rate of -10mV/ms # determine how many points from the start dV/dt goes below -10 (from a 5ms chunk) chunk=self.abf.sweepD[I:I+5*self.abf.pointsPerMs] # give it 5ms to cross once I_toNegTen=np.where(chunk<-10)[0][0] chunk=self.abf.sweepD[I+I_toNegTen:I+I_toNegTen+10*self.abf.pointsPerMs] # give it 30ms to cross back if not max(chunk)>-10: self.log.debug("skipping unreal AP at T=%f"%ap["T"]) self.log.error("^^^ can you confirm this is legit?") continue # probably a pre-AP "bump" to be ignored I_recover=np.where(chunk>-10)[0][0]+I_toNegTen+I # point where trace returns to above -10 V/S ap["dVfastIs"]=[I,I_recover] # span of the fast component of the dV/dt trace ap["dVfastMS"]=(I_recover-I)/self.abf.pointsPerMs # time (in ms) of this fast AP component # determine derivative min/max from a 2ms chunk which we expect to capture the fast AP chunk=self.abf.sweepD[ap["dVfastIs"][0]:ap["dVfastIs"][1]] ap["dVmax"]=np.max(chunk) ap["dVmaxI"]=np.where(chunk==ap["dVmax"])[0][0]+I ap["dVmin"]=np.min(chunk) ap["dVminI"]=np.where(chunk==ap["dVmin"])[0][0]+I if ap["dVmax"]<10 or ap["dVmin"]>-10: self.log.debug("throwing out AP with low dV/dt to be an AP") self.log.error("^^^ can you confirm this is legit?") continue # before determining AP shape stats, see where trace recovers to threshold chunkSize=self.abf.pointsPerMs*10 #AP shape may be 10ms if len(Is)-1>i and Is[i+1]<(I+chunkSize): # if slow AP runs into next AP chunkSize=Is[i+1]-I # chop it down if chunkSize<(self.abf.pointsPerMs*2): continue # next AP is so soon, it's >500 Hz. Can't be real. ap["VslowIs"]=[I,I+chunkSize] # time range of slow AP dynamics chunk=self.abf.sweepY[I:I+chunkSize] # determine AP peak and minimum ap["Vmax"]=np.max(chunk) ap["VmaxI"]=np.where(chunk==ap["Vmax"])[0][0]+I chunkForMin=np.copy(chunk) # so we can destroy it chunkForMin[:ap["VmaxI"]-I]=np.inf # minimum won't be before peak now ap["Vmin"]=np.min(chunkForMin) # supposedly the minimum is the AHP ap["VminI"]=np.where(chunkForMin==ap["Vmin"])[0][0]+I if ap["VminI"]<ap["VmaxI"]: self.log.error("-------------------------------") self.log.error("how is the AHP before the peak?") #TODO: start chunk at the peak self.log.error("-------------------------------") #print((I+len(chunk))-ap["VminI"],len(chunk)) if (len(chunk))-((I+len(chunk))-ap["VminI"])<10: self.log.error("-------------------------------") self.log.error("HP too close for comfort!") self.log.error("-------------------------------") ap["msRiseTime"]=(ap["VmaxI"]-I)/self.abf.pointsPerMs # time from threshold to peak ap["msFallTime"]=(ap["VminI"]-ap["VmaxI"])/self.abf.pointsPerMs # time from peak to nadir # determine halfwidth ap["Vhalf"]=np.average([ap["Vmax"],ap["Vthreshold"]]) # half way from threshold to peak ap["VhalfI1"]=cm.where_cross(chunk,ap["Vhalf"])[0]+I # time it's first crossed ap["VhalfI2"]=cm.where_cross(-chunk,-ap["Vhalf"])[1]+I # time it's second crossed ap["msHalfwidth"]=(ap["VhalfI2"]-ap["VhalfI1"])/self.abf.pointsPerMs # time between crossings # AP error checking goes here # TODO: # if we got this far, add the AP to the list sweepAPs.extend([ap]) except Exception as e: self.log.error("crashed analyzing AP %d of %d",i,len(Is)) self.log.error(cm.exceptionToString(e)) #cm.pause() #cm.waitFor(30) #self.log.error("EXCEPTION!:\n%s"%str(sys.exc_info())) self.log.debug("finished analyzing sweep. Found %d APs",len(sweepAPs)) self.APs.extend(sweepAPs) self.abf.derivative=False
def get_times(self): """return an array of times (in sec) of all APs.""" self.ensureDetection() times=[] for ap in self.APs: times.append(ap["T"]) return np.array(sorted(times))
def get_bySweep(self,feature="freqs"): """ returns AP info by sweep arranged as a list (by sweep). feature: * "freqs" - list of instantaneous frequencies by sweep. * "firsts" - list of first instantaneous frequency by sweep. * "times" - list of times of each AP in the sweep. * "count" - numer of APs per sweep. * "average" - average instanteous frequency per sweep. * "median" - median instanteous frequency per sweep. """ self.ensureDetection() bySweepTimes=[[]]*self.abf.sweeps # determine AP spike times by sweep for sweep in range(self.abf.sweeps): sweepTimes=[] for ap in self.APs: if ap["sweep"]==sweep: sweepTimes.append(ap["Tsweep"]) bySweepTimes[sweep]=sweepTimes # determine instantaneous frequencies by sweep bySweepFreqs=[[]]*self.abf.sweeps for i,times in enumerate(bySweepTimes): if len(times)<2: continue diffs=np.array(times[1:])-np.array(times[:-1]) bySweepFreqs[i]=np.array(1/diffs).tolist() # give the user what they want if feature == "freqs": return bySweepFreqs elif feature == "firsts": result=np.zeros(self.abf.sweeps) # initialize to this for i,freqs in enumerate(bySweepFreqs): if len(freqs): result[i]=freqs[0] return result elif feature == "times": return bySweepTimes elif feature == "count": result=np.zeros(self.abf.sweeps) # initialize to this for i,times in enumerate(bySweepTimes): result[i]=len(bySweepTimes[i]) return result elif feature == "average": result=np.zeros(self.abf.sweeps) # initialize to this for i,freqs in enumerate(bySweepFreqs): if len(freqs): result[i]=np.nanmean(freqs) return result elif feature == "median": result=np.zeros(self.abf.sweeps) # initialize to this for i,freqs in enumerate(bySweepFreqs): if len(freqs): result[i]=np.nanmedian(freqs) return result else: self.log.error("get_bySweep() can't handle [%s]",feature) return None
def get_author_and_version(package): """ Return package author and version as listed in `init.py`. """ init_py = open(os.path.join(package, '__init__.py')).read() author = re.search("__author__ = ['\"]([^'\"]+)['\"]", init_py).group(1) version = re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1) return author, version
def api_subclass_factory(name, docstring, remove_methods, base=SlackApi): """Create an API subclass with fewer methods than its base class. Arguments: name (:py:class:`str`): The name of the new class. docstring (:py:class:`str`): The docstring for the new class. remove_methods (:py:class:`dict`): The methods to remove from the base class's :py:attr:`API_METHODS` for the subclass. The key is the name of the root method (e.g. ``'auth'`` for ``'auth.test'``, the value is either a tuple of child method names (e.g. ``('test',)``) or, if all children should be removed, the special value :py:const:`ALL`. base (:py:class:`type`, optional): The base class (defaults to :py:class:`SlackApi`). Returns: :py:class:`type`: The new subclass. Raises: :py:class:`KeyError`: If the method wasn't in the superclass. """ methods = deepcopy(base.API_METHODS) for parent, to_remove in remove_methods.items(): if to_remove is ALL: del methods[parent] else: for method in to_remove: del methods[parent][method] return type(name, (base,), dict(API_METHODS=methods, __doc__=docstring))
async def execute_method(self, method, **params): """Execute a specified Slack Web API method. Arguments: method (:py:class:`str`): The name of the method. **params (:py:class:`dict`): Any additional parameters required. Returns: :py:class:`dict`: The JSON data from the response. Raises: :py:class:`aiohttp.web_exceptions.HTTPException`: If the HTTP request returns a code other than 200 (OK). SlackApiError: If the Slack API is reached but the response contains an error message. """ url = self.url_builder(method, url_params=params) logger.info('Executing method %r', method) response = await aiohttp.get(url) logger.info('Status: %r', response.status) if response.status == 200: json = await response.json() logger.debug('...with JSON %r', json) if json.get('ok'): return json raise SlackApiError(json['error']) else: raise_for_status(response)
def method_exists(cls, method): """Whether a given method exists in the known API. Arguments: method (:py:class:`str`): The name of the method. Returns: :py:class:`bool`: Whether the method is in the known API. """ methods = cls.API_METHODS for key in method.split('.'): methods = methods.get(key) if methods is None: break if isinstance(methods, str): logger.debug('%r: %r', method, methods) return True return False
def _add_parsley_ns(cls, namespace_dict): """ Extend XPath evaluation with Parsley extensions' namespace """ namespace_dict.update({ 'parslepy' : cls.LOCAL_NAMESPACE, 'parsley' : cls.LOCAL_NAMESPACE, }) return namespace_dict
def make(self, selection): """ XPath expression can also use EXSLT functions (as long as they are understood by libxslt) """ cached = self._selector_cache.get(selection) if cached: return cached try: selector = lxml.etree.XPath(selection, namespaces = self.namespaces, extensions = self.extensions, smart_strings=(self.SMART_STRINGS or self._test_smart_strings_needed(selection)), ) except lxml.etree.XPathSyntaxError as syntax_error: syntax_error.msg += ": %s" % selection raise syntax_error except Exception as e: if self.DEBUG: print(repr(e), selection) raise # wrap it/cache it self._selector_cache[selection] = Selector(selector) return self._selector_cache[selection]
def extract(self, document, selector, debug_offset=''): """ Try and convert matching Elements to unicode strings. If this fails, the selector evaluation probably already returned some string(s) of some sort, or boolean value, or int/float, so return that instead. """ selected = self.select(document, selector) if selected is not None: if isinstance(selected, (list, tuple)): # FIXME: return None or return empty list? if not len(selected): return return [self._extract_single(m) for m in selected] else: return self._extract_single(selected) # selector did not match anything else: if self.DEBUG: print(debug_offset, "selector did not match anything; return None") return None
def make(self, selection): """ Scopes and selectors are tested in this order: * is this a CSS selector with an appended @something attribute? * is this a regular CSS selector? * is this an XPath expression? XPath expression can also use EXSLT functions (as long as they are understood by libxslt) """ cached = self._selector_cache.get(selection) if cached: return cached namespaces = self.EXSLT_NAMESPACES self._add_parsley_ns(namespaces) try: # CSS with attribute? (non-standard but convenient) # CSS selector cannot select attributes # this "<css selector> @<attr>" syntax is a Parsley extension # construct CSS selector and append attribute to XPath expression m = self.REGEX_ENDING_ATTRIBUTE.match(selection) if m: # the selector should be a regular CSS selector cssxpath = css_to_xpath(m.group("expr")) # if "|" is used for namespace prefix reference, # convert it to XPath prefix syntax attribute = m.group("attr").replace('|', ':') cssxpath = "%s/%s" % (cssxpath, attribute) else: cssxpath = css_to_xpath(selection) selector = lxml.etree.XPath( cssxpath, namespaces = self.namespaces, extensions = self.extensions, smart_strings=(self.SMART_STRINGS or self._test_smart_strings_needed(selection)), ) except tuple(self.CSSSELECT_SYNTAXERROR_EXCEPTIONS) as syntax_error: if self.DEBUG: print(repr(syntax_error), selection) print("Try interpreting as XPath selector") try: selector = lxml.etree.XPath(selection, namespaces = self.namespaces, extensions = self.extensions, smart_strings=(self.SMART_STRINGS or self._test_smart_strings_needed(selection)), ) except lxml.etree.XPathSyntaxError as syntax_error: syntax_error.msg += ": %s" % selection raise syntax_error except Exception as e: if self.DEBUG: print(repr(e), selection) raise # for exception when trying to convert <cssselector> @<attribute> syntax except lxml.etree.XPathSyntaxError as syntax_error: syntax_error.msg += ": %s" % selection raise syntax_error except Exception as e: if self.DEBUG: print(repr(e), selection) raise # wrap it/cache it self._selector_cache[selection] = Selector(selector) return self._selector_cache[selection]
async def join_rtm(self, filters=None): """Join the real-time messaging service. Arguments: filters (:py:class:`dict`, optional): Dictionary mapping message filters to the functions they should dispatch to. Use a :py:class:`collections.OrderedDict` if precedence is important; only one filter, the first match, will be applied to each message. """ if filters is None: filters = [cls(self) for cls in self.MESSAGE_FILTERS] url = await self._get_socket_url() logger.debug('Connecting to %r', url) async with ws_connect(url) as socket: first_msg = await socket.receive() self._validate_first_message(first_msg) self.socket = socket async for message in socket: if message.tp == MsgType.text: await self.handle_message(message, filters) elif message.tp in (MsgType.closed, MsgType.error): if not socket.closed: await socket.close() self.socket = None break logger.info('Left real-time messaging.')
async def handle_message(self, message, filters): """Handle an incoming message appropriately. Arguments: message (:py:class:`aiohttp.websocket.Message`): The incoming message to handle. filters (:py:class:`list`): The filters to apply to incoming messages. """ data = self._unpack_message(message) logger.debug(data) if data.get('type') == 'error': raise SlackApiError( data.get('error', {}).get('msg', str(data)) ) elif self.message_is_to_me(data): text = data['text'][len(self.address_as):].strip() if text == 'help': return self._respond( channel=data['channel'], text=self._instruction_list(filters), ) elif text == 'version': return self._respond( channel=data['channel'], text=self.VERSION, ) for _filter in filters: if _filter.matches(data): logger.debug('Response triggered') async for response in _filter: self._respond(channel=data['channel'], text=response)
def message_is_to_me(self, data): """If you send a message directly to me""" return (data.get('type') == 'message' and data.get('text', '').startswith(self.address_as))
async def from_api_token(cls, token=None, api_cls=SlackBotApi): """Create a new instance from the API token. Arguments: token (:py:class:`str`, optional): The bot's API token (defaults to ``None``, which means looking in the environment). api_cls (:py:class:`type`, optional): The class to create as the ``api`` argument for API access (defaults to :py:class:`aslack.slack_api.SlackBotApi`). Returns: :py:class:`SlackBot`: The new instance. """ api = api_cls.from_env() if token is None else api_cls(api_token=token) data = await api.execute_method(cls.API_AUTH_ENDPOINT) return cls(data['user_id'], data['user'], api)
def _format_message(self, channel, text): """Format an outgoing message for transmission. Note: Adds the message type (``'message'``) and incremental ID. Arguments: channel (:py:class:`str`): The channel to send to. text (:py:class:`str`): The message text to send. Returns: :py:class:`str`: The JSON string of the message. """ payload = {'type': 'message', 'id': next(self._msg_ids)} payload.update(channel=channel, text=text) return json.dumps(payload)
async def _get_socket_url(self): """Get the WebSocket URL for the RTM session. Warning: The URL expires if the session is not joined within 30 seconds of the API call to the start endpoint. Returns: :py:class:`str`: The socket URL. """ data = await self.api.execute_method( self.RTM_START_ENDPOINT, simple_latest=True, no_unreads=True, ) return data['url']
def _instruction_list(self, filters): """Generates the instructions for a bot and its filters. Note: The guidance for each filter is generated by combining the docstrings of the predicate filter and resulting dispatch function with a single space between. The class's :py:attr:`INSTRUCTIONS` and the default help command are added. Arguments: filters (:py:class:`list`): The filters to apply to incoming messages. Returns: :py:class:`str`: The bot's instructions. """ return '\n\n'.join([ self.INSTRUCTIONS.strip(), '*Supported methods:*', 'If you send "@{}: help" to me I reply with these ' 'instructions.'.format(self.user), 'If you send "@{}: version" to me I reply with my current ' 'version.'.format(self.user), ] + [filter.description() for filter in filters])
def _respond(self, channel, text): """Respond to a message on the current socket. Args: channel (:py:class:`str`): The channel to send to. text (:py:class:`str`): The message text to send. """ result = self._format_message(channel, text) if result is not None: logger.info( 'Sending message: %r', truncate(result, max_len=50), ) self.socket.send_str(result)
def _validate_first_message(cls, msg): """Check the first message matches the expected handshake. Note: The handshake is provided as :py:attr:`RTM_HANDSHAKE`. Arguments: msg (:py:class:`aiohttp.Message`): The message to validate. Raises: :py:class:`SlackApiError`: If the data doesn't match the expected handshake. """ data = cls._unpack_message(msg) logger.debug(data) if data != cls.RTM_HANDSHAKE: raise SlackApiError('Unexpected response: {!r}'.format(data)) logger.info('Joined real-time messaging.')
def find_first_existing_executable(exe_list): """ Accepts list of [('executable_file_path', 'options')], Returns first working executable_file_path """ for filepath, opts in exe_list: try: proc = subprocess.Popen([filepath, opts], stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.communicate() except OSError: pass else: return filepath
def get_app_locations(): """ Returns list of paths to tested apps """ return [os.path.dirname(os.path.normpath(import_module(app_name).__file__)) for app_name in PROJECT_APPS]
def get_tasks(): """Get the imported task classes for each task that will be run""" task_classes = [] for task_path in TASKS: try: module, classname = task_path.rsplit('.', 1) except ValueError: raise ImproperlyConfigured('%s isn\'t a task module' % task_path) try: mod = import_module(module) except ImportError as e: raise ImproperlyConfigured('Error importing task %s: "%s"' % (module, e)) try: task_class = getattr(mod, classname) except AttributeError: raise ImproperlyConfigured('Task module "%s" does not define a ' '"%s" class' % (module, classname)) task_classes.append(task_class) return task_classes
def get_task_options(): """Get the options for each task that will be run""" options = () task_classes = get_tasks() for cls in task_classes: options += cls.option_list return options
def to_cldf(self, dest, mdname='cldf-metadata.json'): """ Write the data from the db to a CLDF dataset according to the metadata in `self.dataset`. :param dest: :param mdname: :return: path of the metadata file """ dest = Path(dest) if not dest.exists(): dest.mkdir() data = self.read() if data[self.source_table_name]: sources = Sources() for src in data[self.source_table_name]: sources.add(Source( src['genre'], src['id'], **{k: v for k, v in src.items() if k not in ['id', 'genre']})) sources.write(dest / self.dataset.properties.get('dc:source', 'sources.bib')) for table_type, items in data.items(): try: table = self.dataset[table_type] table.common_props['dc:extent'] = table.write( [self.retranslate(table, item) for item in items], base=dest) except KeyError: assert table_type == self.source_table_name, table_type return self.dataset.write_metadata(dest / mdname)
def validate(args): """ cldf validate <DATASET> Validate a dataset against the CLDF specification, i.e. check - whether required tables and columns are present - whether values for required columns are present - the referential integrity of the dataset """ ds = _get_dataset(args) ds.validate(log=args.log)
def stats(args): """ cldf stats <DATASET> Print basic stats for CLDF dataset <DATASET>, where <DATASET> may be the path to - a CLDF metadata file - a CLDF core data file """ ds = _get_dataset(args) print(ds) md = Table('key', 'value') md.extend(ds.properties.items()) print(md.render(condensed=False, tablefmt=None)) print() t = Table('Path', 'Type', 'Rows') for p, type_, r in ds.stats(): t.append([p, type_, r]) print(t.render(condensed=False, tablefmt=None))
def createdb(args): """ cldf createdb <DATASET> <SQLITE_DB_PATH> Load CLDF dataset <DATASET> into a SQLite DB, where <DATASET> may be the path to - a CLDF metadata file - a CLDF core data file """ if len(args.args) < 2: raise ParserError('not enough arguments') ds = _get_dataset(args) db = Database(ds, fname=args.args[1]) db.write_from_tg() args.log.info('{0} loaded in {1}'.format(ds, db.fname))
def dumpdb(args): """ cldf dumpdb <DATASET> <SQLITE_DB_PATH> [<METADATA_PATH>] """ if len(args.args) < 2: raise ParserError('not enough arguments') # pragma: no cover ds = _get_dataset(args) db = Database(ds, fname=args.args[1]) mdpath = Path(args.args[2]) if len(args.args) > 2 else ds.tablegroup._fname args.log.info('dumped db to {0}'.format(db.to_cldf(mdpath.parent, mdname=mdpath.name)))
def description(self): """A user-friendly description of the handler. Returns: :py:class:`str`: The handler's description. """ if self._description is None: text = '\n'.join(self.__doc__.splitlines()[1:]).strip() lines = [] for line in map(str.strip, text.splitlines()): if line and lines: lines[-1] = ' '.join((lines[-1], line)) elif line: lines.append(line) else: lines.append('') self._description = '\n'.join(lines) return self._description
def from_jsonfile(cls, fp, selector_handler=None, strict=False, debug=False): """ Create a Parselet instance from a file containing the Parsley script as a JSON object >>> import parslepy >>> with open('parselet.json') as fp: ... parslepy.Parselet.from_jsonfile(fp) ... <parslepy.base.Parselet object at 0x2014e50> :param file fp: an open file-like pointer containing the Parsley script :rtype: :class:`.Parselet` Other arguments: same as for :class:`.Parselet` contructor """ return cls._from_jsonlines(fp, selector_handler=selector_handler, strict=strict, debug=debug)
def from_yamlfile(cls, fp, selector_handler=None, strict=False, debug=False): """ Create a Parselet instance from a file containing the Parsley script as a YAML object >>> import parslepy >>> with open('parselet.yml') as fp: ... parslepy.Parselet.from_yamlfile(fp) ... <parslepy.base.Parselet object at 0x2014e50> :param file fp: an open file-like pointer containing the Parsley script :rtype: :class:`.Parselet` Other arguments: same as for :class:`.Parselet` contructor """ return cls.from_yamlstring(fp.read(), selector_handler=selector_handler, strict=strict, debug=debug)
def from_yamlstring(cls, s, selector_handler=None, strict=False, debug=False): """ Create a Parselet instance from s (str) containing the Parsley script as YAML >>> import parslepy >>> parsley_string = '''--- title: h1 link: a @href ''' >>> p = parslepy.Parselet.from_yamlstring(parsley_string) >>> type(p) <class 'parslepy.base.Parselet'> >>> :param string s: a Parsley script as a YAML string :rtype: :class:`.Parselet` Other arguments: same as for :class:`.Parselet` contructor """ import yaml return cls(yaml.load(s), selector_handler=selector_handler, strict=strict, debug=debug)
def from_jsonstring(cls, s, selector_handler=None, strict=False, debug=False): """ Create a Parselet instance from s (str) containing the Parsley script as JSON >>> import parslepy >>> parsley_string = '{ "title": "h1", "link": "a @href"}' >>> p = parslepy.Parselet.from_jsonstring(parsley_string) >>> type(p) <class 'parslepy.base.Parselet'> >>> :param string s: a Parsley script as a JSON string :rtype: :class:`.Parselet` Other arguments: same as for :class:`.Parselet` contructor """ return cls._from_jsonlines(s.split("\n"), selector_handler=selector_handler, strict=strict, debug=debug)
def _from_jsonlines(cls, lines, selector_handler=None, strict=False, debug=False): """ Interpret input lines as a JSON Parsley script. Python-style comment lines are skipped. """ return cls(json.loads( "\n".join([l for l in lines if not cls.REGEX_COMMENT_LINE.match(l)]) ), selector_handler=selector_handler, strict=strict, debug=debug)
def parse(self, fp, parser=None, context=None): """ Parse an HTML or XML document and return the extacted object following the Parsley rules give at instantiation. :param fp: file-like object containing an HTML or XML document, or URL or filename :param parser: *lxml.etree._FeedParser* instance (optional); defaults to lxml.etree.HTMLParser() :param context: user-supplied context that will be passed to custom XPath extensions (as first argument) :rtype: Python :class:`dict` object with mapped extracted content :raises: :class:`.NonMatchingNonOptionalKey` To parse from a string, use the :meth:`~base.Parselet.parse_fromstring` method instead. Note that the fp paramater is passed directly to `lxml.etree.parse <http://lxml.de/api/lxml.etree-module.html#parse>`_, so you can also give it an URL, and lxml will download it for you. (Also see `<http://lxml.de/tutorial.html#the-parse-function>`_.) """ if parser is None: parser = lxml.etree.HTMLParser() doc = lxml.etree.parse(fp, parser=parser).getroot() return self.extract(doc, context=context)
def parse_fromstring(self, s, parser=None, context=None): """ Parse an HTML or XML document and return the extacted object following the Parsley rules give at instantiation. :param string s: an HTML or XML document as a string :param parser: *lxml.etree._FeedParser* instance (optional); defaults to lxml.etree.HTMLParser() :param context: user-supplied context that will be passed to custom XPath extensions (as first argument) :rtype: Python :class:`dict` object with mapped extracted content :raises: :class:`.NonMatchingNonOptionalKey` """ if parser is None: parser = lxml.etree.HTMLParser() doc = lxml.etree.fromstring(s, parser=parser) return self.extract(doc, context=context)
def compile(self): """ Build the abstract Parsley tree starting from the root node (recursive) """ if not isinstance(self.parselet, dict): raise ValueError("Parselet must be a dict of some sort. Or use .from_jsonstring(), " \ ".from_jsonfile(), .from_yamlstring(), or .from_yamlfile()") self.parselet_tree = self._compile(self.parselet)
def _compile(self, parselet_node, level=0): """ Build part of the abstract Parsley extraction tree Arguments: parselet_node (dict) -- part of the Parsley tree to compile (can be the root dict/node) level (int) -- current recursion depth (used for debug) """ if self.DEBUG: debug_offset = "".join([" " for x in range(level)]) if self.DEBUG: print(debug_offset, "%s::compile(%s)" % ( self.__class__.__name__, parselet_node)) if isinstance(parselet_node, dict): parselet_tree = ParsleyNode() for k, v in list(parselet_node.items()): # we parse the key raw elements but without much # interpretation (which is done by the SelectorHandler) try: m = self.REGEX_PARSELET_KEY.match(k) if not m: if self.DEBUG: print(debug_offset, "could not parse key", k) raise InvalidKeySyntax(k) except: raise InvalidKeySyntax("Key %s is not valid" % k) key = m.group('key') # by default, fields are required key_required = True operator = m.group('operator') if operator == '?': key_required = False # FIXME: "!" operator not supported (complete array) scope = m.group('scope') # example: get list of H3 tags # { "titles": ["h3"] } # FIXME: should we support multiple selectors in list? # e.g. { "titles": ["h1", "h2", "h3", "h4"] } if isinstance(v, (list, tuple)): v = v[0] iterate = True else: iterate = False # keys in the abstract Parsley trees are of type `ParsleyContext` try: parsley_context = ParsleyContext( key, operator=operator, required=key_required, scope=self.selector_handler.make(scope) if scope else None, iterate=iterate) except SyntaxError: if self.DEBUG: print("Invalid scope:", k, scope) raise if self.DEBUG: print(debug_offset, "current context:", parsley_context) # go deeper in the Parsley tree... try: child_tree = self._compile(v, level=level+1) except SyntaxError: if self.DEBUG: print("Invalid value: ", v) raise except: raise if self.DEBUG: print(debug_offset, "child tree:", child_tree) parselet_tree[parsley_context] = child_tree return parselet_tree # a string leaf should match some kind of selector, # let the selector handler deal with it elif isstr(parselet_node): return self.selector_handler.make(parselet_node) else: raise ValueError( "Unsupported type(%s) for Parselet node <%s>" % ( type(parselet_node), parselet_node))
def extract(self, document, context=None): """ Extract values as a dict object following the structure of the Parsley script (recursive) :param document: lxml-parsed document :param context: user-supplied context that will be passed to custom XPath extensions (as first argument) :rtype: Python *dict* object with mapped extracted content :raises: :class:`.NonMatchingNonOptionalKey` >>> import lxml.etree >>> import parslepy >>> html = ''' ... <!DOCTYPE html> ... <html> ... <head> ... <title>Sample document to test parslepy</title> ... <meta http-equiv="content-type" content="text/html;charset=utf-8" /> ... </head> ... <body> ... <h1 id="main">What&rsquo;s new</h1> ... <ul> ... <li class="newsitem"><a href="/article-001.html">This is the first article</a></li> ... <li class="newsitem"><a href="/article-002.html">A second report on something</a></li> ... <li class="newsitem"><a href="/article-003.html">Python is great!</a> <span class="fresh">New!</span></li> ... </ul> ... </body> ... </html> ... ''' >>> html_parser = lxml.etree.HTMLParser() >>> doc = lxml.etree.fromstring(html, parser=html_parser) >>> doc <Element html at 0x7f5fb1fce9b0> >>> rules = { ... "headingcss": "#main", ... "headingxpath": "//h1[@id='main']" ... } >>> p = parslepy.Parselet(rules) >>> p.extract(doc) {'headingcss': u'What\u2019s new', 'headingxpath': u'What\u2019s new'} """ if context: self.selector_handler.context = context return self._extract(self.parselet_tree, document)
def _extract(self, parselet_node, document, level=0): """ Extract values at this document node level using the parselet_node instructions: - go deeper in tree - or call selector handler in case of a terminal selector leaf """ if self.DEBUG: debug_offset = "".join([" " for x in range(level)]) # we must go deeper in the Parsley tree if isinstance(parselet_node, ParsleyNode): # default output output = {} # process all children for ctx, v in list(parselet_node.items()): if self.DEBUG: print(debug_offset, "context:", ctx, v) extracted=None try: # scoped-extraction: # extraction should be done deeper in the document tree if ctx.scope: extracted = [] selected = self.selector_handler.select(document, ctx.scope) if selected: for i, elem in enumerate(selected, start=1): parse_result = self._extract(v, elem, level=level+1) if isinstance(parse_result, (list, tuple)): extracted.extend(parse_result) else: extracted.append(parse_result) # if we're not in an array, # we only care about the first iteration if not ctx.iterate: break if self.DEBUG: print(debug_offset, "parsed %d elements in scope (%s)" % (i, ctx.scope)) # local extraction else: extracted = self._extract(v, document, level=level+1) except NonMatchingNonOptionalKey as e: if self.DEBUG: print(debug_offset, str(e)) if not ctx.required or not self.STRICT_MODE: output[ctx.key] = {} else: raise except Exception as e: if self.DEBUG: print(str(e)) raise # replace empty-list result when not looping by empty dict if ( isinstance(extracted, list) and not extracted and not ctx.iterate): extracted = {} # keep only the first element if we're not in an array if self.KEEP_ONLY_FIRST_ELEMENT_IF_LIST: try: if ( isinstance(extracted, list) and extracted and not ctx.iterate): if self.DEBUG: print(debug_offset, "keep only 1st element") extracted = extracted[0] except Exception as e: if self.DEBUG: print(str(e)) print(debug_offset, "error getting first element") # extraction for a required key gave nothing if ( self.STRICT_MODE and ctx.required and extracted is None): raise NonMatchingNonOptionalKey( 'key "%s" is required but yield nothing\nCurrent path: %s/(%s)\n' % ( ctx.key, document.getroottree().getpath(document),v ) ) # special key to extract a selector-defined level deeper # but still output at same level # this can be useful for breaking up long selectors # or when you need to mix XPath and CSS selectors # e.g. # { # "something(#content div.main)": { # "--(.//div[re:test(@class, 'style\d{3,6}')])": { # "title": "h1", # "subtitle": "h2" # } # } # } # if ctx.key == self.SPECIAL_LEVEL_KEY: if isinstance(extracted, dict): output.update(extracted) elif isinstance(extracted, list): if extracted: raise RuntimeError( "could not merge non-empty list at higher level") else: #empty list, dont bother? pass else: # required keys are handled above if extracted is not None: output[ctx.key] = extracted else: # do not add this optional key/value pair in the output pass return output # a leaf/Selector node elif isinstance(parselet_node, Selector): return self.selector_handler.extract(document, parselet_node) else: # FIXME: can this happen? # if selector handler returned None at compile time, # probably yes pass
def auto_constraints(self, component=None): """ Use CLDF reference properties to implicitely create foreign key constraints. :param component: A Table object or `None`. """ if not component: for table in self.tables: self.auto_constraints(table) return if not component.tableSchema.primaryKey: idcol = component.get_column(term_uri('id')) if idcol: component.tableSchema.primaryKey = [idcol.name] self._auto_foreign_keys(component) try: table_type = self.get_tabletype(component) except ValueError: # New component is not a known CLDF term, so cannot add components # automatically. TODO: We might me able to infer some based on # `xxxReference` column properties? return # auto-add foreign keys targetting the new component: for table in self.tables: self._auto_foreign_keys(table, component=component, table_type=table_type)
def url_builder(self, endpoint, *, root=None, params=None, url_params=None): """Create a URL for the specified endpoint. Arguments: endpoint (:py:class:`str`): The API endpoint to access. root: (:py:class:`str`, optional): The root URL for the service API. params: (:py:class:`dict`, optional): The values for format into the created URL (defaults to ``None``). url_params: (:py:class:`dict`, optional): Parameters to add to the end of the URL (defaults to ``None``). Returns: :py:class:`str`: The resulting URL. """ if root is None: root = self.ROOT scheme, netloc, path, _, _ = urlsplit(root) return urlunsplit(( scheme, netloc, urljoin(path, endpoint), urlencode(url_params or {}), '', )).format(**params or {})
def raise_for_status(response): """Raise an appropriate error for a given response. Arguments: response (:py:class:`aiohttp.ClientResponse`): The API response. Raises: :py:class:`aiohttp.web_exceptions.HTTPException`: The appropriate error for the response's status. """ for err_name in web_exceptions.__all__: err = getattr(web_exceptions, err_name) if err.status_code == response.status: payload = dict( headers=response.headers, reason=response.reason, ) if issubclass(err, web_exceptions._HTTPMove): # pylint: disable=protected-access raise err(response.headers['Location'], **payload) raise err(**payload)
def truncate(text, max_len=350, end='...'): """Truncate the supplied text for display. Arguments: text (:py:class:`str`): The text to truncate. max_len (:py:class:`int`, optional): The maximum length of the text before truncation (defaults to 350 characters). end (:py:class:`str`, optional): The ending to use to show that the text was truncated (defaults to ``'...'``). Returns: :py:class:`str`: The truncated text. """ if len(text) <= max_len: return text return text[:max_len].rsplit(' ', maxsplit=1)[0] + end
def add(self, *entries): """ Add a source, either specified by glottolog reference id, or as bibtex record. """ for entry in entries: if isinstance(entry, string_types): self._add_entries(database.parse_string(entry, bib_format='bibtex')) else: self._add_entries(entry)
def primary_avatar(user, size=AVATAR_DEFAULT_SIZE): """ This tag tries to get the default avatar for a user without doing any db requests. It achieve this by linking to a special view that will do all the work for us. If that special view is then cached by a CDN for instance, we will avoid many db calls. """ alt = unicode(user) url = reverse('avatar_render_primary', kwargs={'user' : user, 'size' : size}) return """<img src="%s" alt="%s" />""" % (url, alt, )
def get_cache_key(user_or_username, size, prefix): """ Returns a cache key consisten of a username and image size. """ if isinstance(user_or_username, get_user_model()): user_or_username = user_or_username.username return '%s_%s_%s' % (prefix, user_or_username, size)
def cache_result(func): """ Decorator to cache the result of functions that take a ``user`` and a ``size`` value. """ def cache_set(key, value): cache.set(key, value, AVATAR_CACHE_TIMEOUT) return value def cached_func(user, size): prefix = func.__name__ cached_funcs.add(prefix) key = get_cache_key(user, size, prefix=prefix) return cache.get(key) or cache_set(key, func(user, size)) return cached_func
def invalidate_cache(user, size=None): """ Function to be called when saving or changing an user's avatars. """ sizes = set(AUTO_GENERATE_AVATAR_SIZES) if size is not None: sizes.add(size) for prefix in cached_funcs: for size in sizes: cache.delete(get_cache_key(user, size, prefix))
def get_field_for_proxy(pref_proxy): """Returns a field object instance for a given PrefProxy object. :param PrefProxy pref_proxy: :rtype: models.Field """ field = { bool: models.BooleanField, int: models.IntegerField, float: models.FloatField, datetime: models.DateTimeField, }.get(type(pref_proxy.default), models.TextField)() update_field_from_proxy(field, pref_proxy) return field
def update_field_from_proxy(field_obj, pref_proxy): """Updates field object with data from a PrefProxy object. :param models.Field field_obj: :param PrefProxy pref_proxy: """ attr_names = ('verbose_name', 'help_text', 'default') for attr_name in attr_names: setattr(field_obj, attr_name, getattr(pref_proxy, attr_name))
def get_pref_model_class(app, prefs, get_prefs_func): """Returns preferences model class dynamically crated for a given app or None on conflict.""" module = '%s.%s' % (app, PREFS_MODULE_NAME) model_dict = { '_prefs_app': app, '_get_prefs': staticmethod(get_prefs_func), '__module__': module, 'Meta': type('Meta', (models.options.Options,), { 'verbose_name': _('Preference'), 'verbose_name_plural': _('Preferences'), 'app_label': app, 'managed': False, }) } for field_name, val_proxy in prefs.items(): model_dict[field_name] = val_proxy.field model = type('Preferences', (models.Model,), model_dict) def fake_save_base(self, *args, **kwargs): updated_prefs = { f.name: getattr(self, f.name) for f in self._meta.fields if not isinstance(f, models.fields.AutoField) } app_prefs = self._get_prefs(self._prefs_app) for pref in app_prefs.keys(): if pref in updated_prefs: app_prefs[pref].db_value = updated_prefs[pref] self.pk = self._prefs_app # Make Django 1.7 happy. prefs_save.send(sender=self, app=self._prefs_app, updated_prefs=updated_prefs) return True model.save_base = fake_save_base return model
def get_frame_locals(stepback=0): """Returns locals dictionary from a given frame. :param int stepback: :rtype: dict """ with Frame(stepback=stepback) as frame: locals_dict = frame.f_locals return locals_dict
def traverse_local_prefs(stepback=0): """Generator to walk through variables considered as preferences in locals dict of a given frame. :param int stepback: :rtype: tuple """ locals_dict = get_frame_locals(stepback+1) for k in locals_dict: if not k.startswith('_') and k.upper() == k: yield k, locals_dict
def import_prefs(): """Imports preferences modules from packages (apps) and project root.""" # settings.py locals if autodiscover_siteprefs() is in urls.py settings_locals = get_frame_locals(3) if 'self' not in settings_locals: # If not SiteprefsConfig.ready() # Try to import project-wide prefs. project_package = settings_locals['__package__'] # Expected project layout introduced in Django 1.4 if not project_package: # Fallback to old layout. project_package = os.path.split(os.path.dirname(settings_locals['__file__']))[-1] import_module(project_package, PREFS_MODULE_NAME) import_project_modules(PREFS_MODULE_NAME)
def print_file_info(): """Prints file details in the current directory""" tpl = TableLogger(columns='file,created,modified,size') for f in os.listdir('.'): size = os.stat(f).st_size date_created = datetime.fromtimestamp(os.path.getctime(f)) date_modified = datetime.fromtimestamp(os.path.getmtime(f)) tpl(f, date_created, date_modified, size)
def _bind_args(sig, param_matchers, args, kwargs): ''' Attempt to bind the args to the type signature. First try to just bind to the signature, then ensure that all arguments match the parameter types. ''' #Bind to signature. May throw its own TypeError bound = sig.bind(*args, **kwargs) if not all(param_matcher(bound.arguments[param_name]) for param_name, param_matcher in param_matchers): raise TypeError return bound
def _make_param_matcher(annotation, kind=None): ''' For a given annotation, return a function which, when called on a function argument, returns true if that argument matches the annotation. If the annotation is a type, it calls isinstance; if it's a callable, it calls it on the object; otherwise, it performs a value comparison. If the parameter is variadic (*args) and the annotation is a type, the matcher will attempt to match each of the arguments in args ''' if isinstance(annotation, type) or ( isinstance(annotation, tuple) and all(isinstance(a, type) for a in annotation)): if kind is Parameter.VAR_POSITIONAL: return (lambda args: all(isinstance(x, annotation) for x in args)) else: return (lambda x: isinstance(x, annotation)) elif callable(annotation): return annotation else: return (lambda x: x == annotation)
def _make_all_matchers(cls, parameters): ''' For every parameter, create a matcher if the parameter has an annotation. ''' for name, param in parameters: annotation = param.annotation if annotation is not Parameter.empty: yield name, cls._make_param_matcher(annotation, param.kind)
def _make_dispatch(cls, func): ''' Create a dispatch pair for func- a tuple of (bind_args, func), where bind_args is a function that, when called with (args, kwargs), attempts to bind those args to the type signature of func, or else raise a TypeError ''' sig = signature(func) matchers = tuple(cls._make_all_matchers(sig.parameters.items())) return (partial(cls._bind_args, sig, matchers), func)
def _make_wrapper(self, func): ''' Makes a wrapper function that executes a dispatch call for func. The wrapper has the dispatch and dispatch_first attributes, so that additional overloads can be added to the group. ''' #TODO: consider using a class to make attribute forwarding easier. #TODO: consider using simply another DispatchGroup, with self.callees # assigned by reference to the original callees. @wraps(func) def executor(*args, **kwargs): return self.execute(args, kwargs) executor.dispatch = self.dispatch executor.dispatch_first = self.dispatch_first executor.func = func executor.lookup = self.lookup return executor
def dispatch(self, func): ''' Adds the decorated function to this dispatch. ''' self.callees.append(self._make_dispatch(func)) return self._make_wrapper(func)
def dispatch_first(self, func): ''' Adds the decorated function to this dispatch, at the FRONT of the order. Useful for allowing third parties to add overloaded functionality to be executed before default functionality. ''' self.callees.appendleft(self._make_dispatch(func)) return self._make_wrapper(func)
def lookup_explicit(self, args, kwargs): ''' Lookup the function that will be called with a given set of arguments, or raise DispatchError. Requires explicit tuple/dict grouping of arguments (see DispatchGroup.lookup for a function-like interface). ''' for bind_args, callee in self.callees: try: #bind to the signature and types. Raises TypeError on failure bind_args(args, kwargs) except TypeError: #TypeError: failed to bind arguments. Try the next dispatch continue #All the parameters matched. Return the function and args return callee else: #Nothing was able to bind. Error. raise DispatchError(args, kwargs, self)
def execute(self, args, kwargs): ''' Dispatch a call. Call the first function whose type signature matches the arguemts. ''' return self.lookup_explicit(args, kwargs)(*args, **kwargs)
def setup_formatters(self, *args): """Setup formatters by observing the first row. Args: *args: row cells """ formatters = [] col_offset = 0 # initialize formatters for row-id, timestamp and time-diff columns if self.rownum: formatters.append(fmt.RowNumberFormatter.setup(0)) col_offset += 1 if self.timestamp: formatters.append(fmt.DatetimeFormatter.setup( datetime.datetime.now(), fmt='{:%Y-%m-%d %H:%M:%S.%f}'.format, col_width=26)) col_offset += 1 if self.time_diff: formatters.append(fmt.TimeDeltaFormatter.setup(0)) col_offset += 1 # initialize formatters for user-defined columns for coli, value in enumerate(args): fmt_class = type2fmt.get(type(value), fmt.GenericFormatter) kwargs = {} # set column width if self.default_colwidth is not None: kwargs['col_width'] = self.default_colwidth if coli in self.column_widths: kwargs['col_width'] = self.column_widths[coli] elif self.columns and self.columns[coli + col_offset] in self.column_widths: kwargs['col_width'] = self.column_widths[self.columns[coli + col_offset]] # set formatter function if fmt_class == fmt.FloatFormatter and self.float_format is not None: kwargs['fmt'] = self.float_format if coli in self.column_formatters: kwargs['fmt'] = self.column_formatters[coli] elif self.columns and self.columns[coli + col_offset] in self.column_formatters: kwargs['fmt'] = self.column_formatters[self.columns[coli + col_offset]] formatter = fmt_class.setup(value, **kwargs) formatters.append(formatter) self.formatters = formatters
def setup(self, *args): """Do preparations before printing the first row Args: *args: first row cells """ self.setup_formatters(*args) if self.columns: self.print_header() elif self.border and not self.csv: self.print_line(self.make_horizontal_border())
def csv_format(self, row): """Converts row values into a csv line Args: row: a list of row cells as unicode Returns: csv_line (unicode) """ if PY2: buf = io.BytesIO() csvwriter = csv.writer(buf) csvwriter.writerow([c.strip().encode(self.encoding) for c in row]) csv_line = buf.getvalue().decode(self.encoding).rstrip() else: buf = io.StringIO() csvwriter = csv.writer(buf) csvwriter.writerow([c.strip() for c in row]) csv_line = buf.getvalue().rstrip() return csv_line
def convertShpToExtend(pathToShp): """ reprojette en WGS84 et recupere l'extend """ driver = ogr.GetDriverByName('ESRI Shapefile') dataset = driver.Open(pathToShp) if dataset is not None: # from Layer layer = dataset.GetLayer() spatialRef = layer.GetSpatialRef() # from Geometry feature = layer.GetNextFeature() geom = feature.GetGeometryRef() spatialRef = geom.GetSpatialReference() #WGS84 outSpatialRef = osr.SpatialReference() outSpatialRef.ImportFromEPSG(4326) coordTrans = osr.CoordinateTransformation(spatialRef, outSpatialRef) env = geom.GetEnvelope() pointMAX = ogr.Geometry(ogr.wkbPoint) pointMAX.AddPoint(env[1], env[3]) pointMAX.Transform(coordTrans) pointMIN = ogr.Geometry(ogr.wkbPoint) pointMIN.AddPoint(env[0], env[2]) pointMIN.Transform(coordTrans) return [pointMAX.GetPoint()[1],pointMIN.GetPoint()[0],pointMIN.GetPoint()[1],pointMAX.GetPoint()[0]] else: exit(" shapefile not found. Please verify your path to the shapefile")
def create_request_gfs(dateStart,dateEnd,stepList,levelList,grid,extent,paramList,typeData): """ Genere la structure de requete pour le téléchargement de données GFS INPUTS:\n -date : au format annee-mois-jour\n -heure : au format heure:minute:seconde\n -coord : une liste des coordonnees au format [N,W,S,E]\n -dim_grille : taille de la grille en degree \n """ URLlist=[] #Control datetype listForcastSurface=['GUST','HINDEX','PRES','HGT','TMP','WEASD','SNOD','CPOFP','WILT','FLDCP','SUNSD','LFTX','CAPE','CIN','4LFTX','HPBL','LAND'] if (0 not in [int(x) for x in stepList]): listForcastSurface=listForcastSurface+['PEVPR','CPRAT','PRATE','APCP','ACPCP','WATR','CSNOW','CICEP','CFPER','CRAIN','LHTFL','SHTFL','SHTFL','GFLUX','UFLX','VFLX','U-GWD','V-GWD','DSWRF','DLWRF','ULWRF','USWRF','ALBDO'] listAnalyseSurface=['HGT','PRES','LFTX','CAPE','CIN','4LFTX'] if typeData == 'analyse' and all([x in listAnalyseSurface for x in paramList]): typeData= 'analyse' validChoice = None prbParameters = None else: if all([x in listForcastSurface for x in paramList]) and typeData != 'cycleforecast': if typeData=='analyse': typeData= 'forecast' validChoice = typeData else: validChoice = None indexParameters=[i for i, elem in enumerate([x in listAnalyseSurface for x in paramList], 1) if not elem] prbParameters=[] for i in indexParameters: prbParameters.append(paramList[i-1]) else: if typeData != 'cycleforecast': typeData= 'cycleforecast' validChoice = typeData else: validChoice = None indexParameters=[i for i, elem in enumerate([x in listAnalyseSurface for x in paramList], 1) if not elem] prbParameters=[] for i in indexParameters: prbParameters.append(paramList[i-1]) #Control si date/timeList disponible today=date.today() lastData = today - timedelta(days=14) if dateStart < lastData or dateEnd > today : exit('date are not in 14 days range from today' ) else: #Pour chaque jour souhaité nbDays=(dateEnd-dateStart).days+1 for i in range(0,nbDays): #on crontrole pour les timeList if dateStart + timedelta(days=i) == today: maxT=datetime.now().hour-5 timeListCorr=[ x for x in stepList if x<maxT ] else: timeListCorr=stepList for t in timeListCorr: URL='http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_' #grid URL=URL+"{:.2f}".format(grid).replace('.','p')+'.pl?file=gfs.' #time ( attention limiter avec décalage horaire for today URL=URL+'t'+str(t).zfill(2)+'z.' if (grid==0.5): URL=URL+'pgrb2full.' else: URL=URL+'pgrb2.' URL=URL+"{:.2f}".format(grid).replace('.','p')+'.' if typeData=='cycleforecast': URL=URL+'f006&lev_' elif typeData=='forecast': URL=URL+'f000&lev_' else: URL=URL+'anl&lev_' URL=URL+"=on&lev_".join(levelList)+"=on&var_" URL=URL+"=on&var_".join(paramList)+"=on&subregion=&" URL=URL+"leftlon="+str(round(float(extent[1])-0.05,1))+"&rightlon="+str(round(float(extent[3])+0.05,1))+"&toplat="+str(round(float(extent[0])+0.5,1))+"&bottomlat="+str(round(float(extent[2])-0.5,1)) URL=URL+"&dir=%2Fgfs."+"{:%Y%m%d}".format(dateStart+timedelta(days=i))+str(t).zfill(2) URLlist.append(URL) return (URLlist,validChoice,prbParameters)
def convertGribToTiff(listeFile,listParam,listLevel,liststep,grid,startDate,endDate,outFolder): """ Convert GRIB to Tif""" dicoValues={} for l in listeFile: grbs = pygrib.open(l) grbs.seek(0) index=1 for j in range(len(listLevel),0,-1): for i in range(len(listParam)-1,-1,-1): grb = grbs[index] p=grb.name.replace(' ','_') if grb.level != 0: l=str(grb.level)+'_'+grb.typeOfLevel else: l=grb.typeOfLevel if p+'_'+l not in dicoValues.keys(): dicoValues[p+'_'+l]=[] dicoValues[p+'_'+l].append(grb.values) shape=grb.values.shape lat,lon=grb.latlons() geoparam=(lon.min(),lat.max(),grid,grid) index+= 1 nbJour=(endDate-startDate).days+1 #on joute des arrayNan si il manque des fichiers for s in range(0, (len(liststep)*nbJour-len(listeFile))): for k in dicoValues.keys(): dicoValues[k].append(np.full(shape, np.nan)) #On écrit pour chacune des variables dans un fichier for i in range(len(dicoValues.keys())-1,-1,-1): dictParam=dict((k,dicoValues[dicoValues.keys()[i]][k]) for k in range(0,len(dicoValues[dicoValues.keys()[i]]))) sorted(dictParam.items(), key=lambda x: x[0]) outputImg=outFolder+'/'+dicoValues.keys()[i]+'_'+startDate.strftime('%Y%M%d')+'_'+endDate.strftime('%Y%M%d')+'.tif' writeTiffFromDicoArray(dictParam,outputImg,shape,geoparam) for f in listeFile: os.remove(f)
def on_pref_update(*args, **kwargs): """Triggered on dynamic preferences model save. Issues DB save and reread. """ Preference.update_prefs(*args, **kwargs) Preference.read_prefs(get_prefs())
def get_app_prefs(app=None): """Returns a dictionary with preferences for a certain app/module. :param str|unicode app: :rtype: dict """ if app is None: with Frame(stepback=1) as frame: app = frame.f_globals['__name__'].split('.')[0] prefs = get_prefs() if app not in prefs: return {} return prefs[app]
def bind_proxy(values, category=None, field=None, verbose_name=None, help_text='', static=True, readonly=False): """Binds PrefProxy objects to module variables used by apps as preferences. :param list|tuple values: Preference values. :param str|unicode category: Category name the preference belongs to. :param Field field: Django model field to represent this preference. :param str|unicode verbose_name: Field verbose name. :param str|unicode help_text: Field help text. :param bool static: Leave this preference static (do not store in DB). :param bool readonly: Make this field read only. :rtype: list """ addrs = OrderedDict() depth = 3 for local_name, locals_dict in traverse_local_prefs(depth): addrs[id(locals_dict[local_name])] = local_name proxies = [] locals_dict = get_frame_locals(depth) for value in values: # Try to preserve fields order. id_val = id(value) if id_val in addrs: local_name = addrs[id_val] local_val = locals_dict[local_name] if isinstance(local_val, PatchedLocal) and not isinstance(local_val, PrefProxy): proxy = PrefProxy( local_name, value.val, category=category, field=field, verbose_name=verbose_name, help_text=help_text, static=static, readonly=readonly, ) app_name = locals_dict['__name__'].split('.')[-2] # x.y.settings -> y prefs = get_prefs() if app_name not in prefs: prefs[app_name] = OrderedDict() prefs[app_name][local_name.lower()] = proxy # Replace original pref variable with a proxy. locals_dict[local_name] = proxy proxies.append(proxy) return proxies
def register_admin_models(admin_site): """Registers dynamically created preferences models for Admin interface. :param admin.AdminSite admin_site: AdminSite object. """ global __MODELS_REGISTRY prefs = get_prefs() for app_label, prefs_items in prefs.items(): model_class = get_pref_model_class(app_label, prefs_items, get_app_prefs) if model_class is not None: __MODELS_REGISTRY[app_label] = model_class admin_site.register(model_class, get_pref_model_admin_class(prefs_items))
def autodiscover_siteprefs(admin_site=None): """Automatically discovers and registers all preferences available in all apps. :param admin.AdminSite admin_site: Custom AdminSite object. """ if admin_site is None: admin_site = admin.site # Do not discover anything if called from manage.py (e.g. executing commands from cli). if 'manage' not in sys.argv[0] or (len(sys.argv) > 1 and sys.argv[1] in MANAGE_SAFE_COMMANDS): import_prefs() Preference.read_prefs(get_prefs()) register_admin_models(admin_site)
def patch_locals(depth=2): """Temporarily (see unpatch_locals()) replaces all module variables considered preferences with PatchedLocal objects, so that every variable has different hash returned by id(). """ for name, locals_dict in traverse_local_prefs(depth): locals_dict[name] = PatchedLocal(name, locals_dict[name]) get_frame_locals(depth)[__PATCHED_LOCALS_SENTINEL] = True
def unpatch_locals(depth=3): """Restores the original values of module variables considered preferences if they are still PatchedLocal and not PrefProxy. """ for name, locals_dict in traverse_local_prefs(depth): if isinstance(locals_dict[name], PatchedLocal): locals_dict[name] = locals_dict[name].val del get_frame_locals(depth)[__PATCHED_LOCALS_SENTINEL]