Search is not available for this dataset
text
stringlengths 75
104k
|
---|
def _x10_command(self, house_code, unit_number, state):
"""Real implementation"""
# log = log or default_logger
log = default_logger
if state.startswith('xdim') or state.startswith('dim') or state.startswith('bright'):
raise NotImplementedError('xdim/dim/bright %r' % ((house_code, unit_num, state), ))
if unit_number is not None:
house_and_unit = '%s%d' % (house_code, unit_number)
else:
raise NotImplementedError('mochad all ON/OFF %r' % ((house_code, unit_number, state), ))
house_and_unit = house_code
house_and_unit = to_bytes(house_and_unit)
# TODO normalize/validate state
state = to_bytes(state)
mochad_cmd = self.default_type + b' ' + house_and_unit + b' ' + state + b'\n' # byte concat works with older Python 3.4
log.debug('mochad send: %r', mochad_cmd)
mochad_host, mochad_port = self.device_address
result = netcat(mochad_host, mochad_port, mochad_cmd)
log.debug('mochad received: %r', result) |
def _x10_command(self, house_code, unit_number, state):
"""Real implementation"""
# log = log or default_logger
log = default_logger
# FIXME move these functions?
def scale_255_to_8(x):
"""Scale x from 0..255 to 0..7
0 is considered OFF
8 is considered fully on
"""
factor = x / 255.0
return 8 - int(abs(round(8 * factor)))
def scale_31_to_8(x):
"""Scale x from 0..31 to 0..7
0 is considered OFF
8 is considered fully on
"""
factor = x / 31.0
return 8 - int(abs(round(8 * factor)))
serial_port_name = self.device_address
house_code = normalize_housecode(house_code)
if unit_number is not None:
unit_number = normalize_unitnumber(unit_number)
else:
# command is intended for the entire house code, not a single unit number
if firecracker:
log.error('using python-x10-firecracker-interface NO support for all ON/OFF')
# TODO normalize/validate state, sort of implemented below
if firecracker:
log.debug('firecracker send: %r', (serial_port_name, house_code, unit_number, state))
firecracker.send_command(serial_port_name, house_code, unit_number, state)
else:
if unit_number is not None:
if state.startswith('xdim') or state.startswith('dim') or state.startswith('bright'):
dim_count = int(state.split()[-1])
if state.startswith('xdim'):
dim_count = scale_255_to_8(dim_count)
else:
# assumed dim or bright
dim_count = scale_31_to_8(dim_count)
dim_str = ', %s dim' % (house_code, )
dim_list = []
for _ in range(dim_count):
dim_list.append(dim_str)
dim_str = ''.join(dim_list)
if dim_count == 0:
# No dim
x10_command_str = '%s%s %s' % (house_code, unit_number, 'on')
else:
# If lamp is already dimmed, need to turn it off and then back on
x10_command_str = '%s%s %s, %s%s %s%s' % (house_code, unit_number, 'off', house_code, unit_number, 'on', dim_str)
else:
x10_command_str = '%s%s %s' % (house_code, unit_number, state)
else:
# Assume a command for house not a specific unit
state = x10_mapping[state]
x10_command_str = '%s %s' % (house_code, state)
log.debug('x10_command_str send: %r', x10_command_str)
x10.sendCommands(serial_port_name, x10_command_str) |
def get_parser():
"""
Generate an appropriate parser.
:returns: an argument parser
:rtype: `ArgumentParser`
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"package",
choices=arg_map.keys(),
help="designates the package to test")
parser.add_argument("--ignore", help="ignore these files")
return parser |
def get_command(namespace):
"""
Get the pylint command for these arguments.
:param `Namespace` namespace: the namespace
"""
cmd = ["pylint", namespace.package] + arg_map[namespace.package]
if namespace.ignore:
cmd.append("--ignore=%s" % namespace.ignore)
return cmd |
def _wrapper(func):
"""
Wraps a generated function so that it catches all Type- and ValueErrors
and raises IntoDPValueErrors.
:param func: the transforming function
"""
@functools.wraps(func)
def the_func(expr):
"""
The actual function.
:param object expr: the expression to be xformed to dbus-python types
"""
try:
return func(expr)
except (TypeError, ValueError) as err:
raise IntoDPValueError(expr, "expr", "could not be transformed") \
from err
return the_func |
def xformers(sig):
"""
Get the list of xformer functions for the given signature.
:param str sig: a signature
:returns: a list of xformer functions for the given signature.
:rtype: list of tuple of a function * str
Each function catches all TypeErrors it encounters and raises
corresponding IntoDPValueError exceptions.
"""
return \
[(_wrapper(f), l) for (f, l) in \
_XFORMER.PARSER.parseString(sig, parseAll=True)] |
def xformer(signature):
"""
Returns a transformer function for the given signature.
:param str signature: a dbus signature
:returns: a function to transform a list of objects to inhabit the signature
:rtype: (list of object) -> (list of object)
"""
funcs = [f for (f, _) in xformers(signature)]
def the_func(objects):
"""
Returns the a list of objects, transformed.
:param objects: a list of objects
:type objects: list of object
:returns: transformed objects
:rtype: list of object (in dbus types)
"""
if len(objects) != len(funcs):
raise IntoDPValueError(
objects,
"objects",
"must have exactly %u items, has %u" % \
(len(funcs), len(objects))
)
return [x for (x, _) in (f(a) for (f, a) in zip(funcs, objects))]
return the_func |
def _variant_levels(level, variant):
"""
Gets the level for the variant.
:param int level: the current variant level
:param int variant: the value for this level if variant
:returns: a level for the object and one for the function
:rtype: int * int
"""
return (level + variant, level + variant) \
if variant != 0 else (variant, level) |
def _handle_variant(self):
"""
Generate the correct function for a variant signature.
:returns: function that returns an appropriate value
:rtype: ((str * object) or list)-> object
"""
def the_func(a_tuple, variant=0):
"""
Function for generating a variant value from a tuple.
:param a_tuple: the parts of the variant
:type a_tuple: (str * object) or list
:param int variant: object's variant index
:returns: a value of the correct type with correct variant level
:rtype: object * int
"""
# pylint: disable=unused-argument
(signature, an_obj) = a_tuple
(func, sig) = self.COMPLETE.parseString(signature)[0]
assert sig == signature
(xformed, _) = func(an_obj, variant=variant + 1)
return (xformed, xformed.variant_level)
return (the_func, 'v') |
def _handle_array(toks):
"""
Generate the correct function for an array signature.
:param toks: the list of parsed tokens
:returns: function that returns an Array or Dictionary value
:rtype: ((or list dict) -> ((or Array Dictionary) * int)) * str
"""
if len(toks) == 5 and toks[1] == '{' and toks[4] == '}':
subtree = toks[2:4]
signature = ''.join(s for (_, s) in subtree)
[key_func, value_func] = [f for (f, _) in subtree]
def the_dict_func(a_dict, variant=0):
"""
Function for generating a Dictionary from a dict.
:param a_dict: the dictionary to transform
:type a_dict: dict of (`a * `b)
:param int variant: variant level
:returns: a dbus dictionary of transformed values and level
:rtype: Dictionary * int
"""
elements = \
[(key_func(x), value_func(y)) for (x, y) in a_dict.items()]
level = 0 if elements == [] \
else max(max(x, y) for ((_, x), (_, y)) in elements)
(obj_level, func_level) = \
_ToDbusXformer._variant_levels(level, variant)
return (dbus.types.Dictionary(
((x, y) for ((x, _), (y, _)) in elements),
signature=signature,
variant_level=obj_level), func_level)
return (the_dict_func, 'a{' + signature + '}')
if len(toks) == 2:
(func, sig) = toks[1]
def the_array_func(a_list, variant=0):
"""
Function for generating an Array from a list.
:param a_list: the list to transform
:type a_list: list of `a
:param int variant: variant level of the value
:returns: a dbus Array of transformed values and variant level
:rtype: Array * int
"""
if isinstance(a_list, dict):
raise IntoDPValueError(a_list, "a_list",
"is a dict, must be an array")
elements = [func(x) for x in a_list]
level = 0 if elements == [] else max(x for (_, x) in elements)
(obj_level, func_level) = \
_ToDbusXformer._variant_levels(level, variant)
return (dbus.types.Array(
(x for (x, _) in elements),
signature=sig,
variant_level=obj_level), func_level)
return (the_array_func, 'a' + sig)
raise IntoDPValueError(toks, "toks",
"unexpected tokens") |
def _handle_struct(toks):
"""
Generate the correct function for a struct signature.
:param toks: the list of parsed tokens
:returns: function that returns an Array or Dictionary value
:rtype: ((list or tuple) -> (Struct * int)) * str
"""
subtrees = toks[1:-1]
signature = ''.join(s for (_, s) in subtrees)
funcs = [f for (f, _) in subtrees]
def the_func(a_list, variant=0):
"""
Function for generating a Struct from a list.
:param a_list: the list to transform
:type a_list: list or tuple
:param int variant: variant index
:returns: a dbus Struct of transformed values and variant level
:rtype: Struct * int
:raises IntoDPValueError:
"""
if isinstance(a_list, dict):
raise IntoDPValueError(a_list, "a_list",
"must be a simple sequence, is a dict")
if len(a_list) != len(funcs):
raise IntoDPValueError(
a_list,
"a_list",
"must have exactly %u items, has %u" % \
(len(funcs), len(a_list))
)
elements = [f(x) for (f, x) in zip(funcs, a_list)]
level = 0 if elements == [] else max(x for (_, x) in elements)
(obj_level, func_level) = \
_ToDbusXformer._variant_levels(level, variant)
return (dbus.types.Struct(
(x for (x, _) in elements),
signature=signature,
variant_level=obj_level), func_level)
return (the_func, '(' + signature + ')') |
def _handle_base_case(klass, symbol):
"""
Handle a base case.
:param type klass: the class constructor
:param str symbol: the type code
"""
def the_func(value, variant=0):
"""
Base case.
:param int variant: variant level for this object
:returns: a tuple of a dbus object and the variant level
:rtype: dbus object * int
"""
(obj_level, func_level) = _ToDbusXformer._variant_levels(
0, variant)
return (klass(value, variant_level=obj_level), func_level)
return lambda: (the_func, symbol) |
def signature(dbus_object, unpack=False):
"""
Get the signature of a dbus object.
:param dbus_object: the object
:type dbus_object: a dbus object
:param bool unpack: if True, unpack from enclosing variant type
:returns: the corresponding signature
:rtype: str
"""
# pylint: disable=too-many-return-statements
# pylint: disable=too-many-branches
if dbus_object.variant_level != 0 and not unpack:
return 'v'
if isinstance(dbus_object, dbus.Array):
sigs = frozenset(signature(x) for x in dbus_object)
len_sigs = len(sigs)
if len_sigs > 1: # pragma: no cover
raise IntoDPValueError(dbus_object, "dbus_object",
"has bad signature")
if len_sigs == 0:
return 'a' + dbus_object.signature
return 'a' + [x for x in sigs][0]
if isinstance(dbus_object, dbus.Struct):
sigs = (signature(x) for x in dbus_object)
return '(' + "".join(x for x in sigs) + ')'
if isinstance(dbus_object, dbus.Dictionary):
key_sigs = frozenset(signature(x) for x in dbus_object.keys())
value_sigs = frozenset(signature(x) for x in dbus_object.values())
len_key_sigs = len(key_sigs)
len_value_sigs = len(value_sigs)
if len_key_sigs != len_value_sigs: # pragma: no cover
raise IntoDPValueError(dbus_object, "dbus_object",
"has bad signature")
if len_key_sigs > 1: # pragma: no cover
raise IntoDPValueError(dbus_object, "dbus_object",
"has bad signature")
if len_key_sigs == 0:
return 'a{' + dbus_object.signature + '}'
return 'a{' + [x for x in key_sigs][0] + [x
for x in value_sigs][0] + '}'
if isinstance(dbus_object, dbus.Boolean):
return 'b'
if isinstance(dbus_object, dbus.Byte):
return 'y'
if isinstance(dbus_object, dbus.Double):
return 'd'
if isinstance(dbus_object, dbus.Int16):
return 'n'
if isinstance(dbus_object, dbus.Int32):
return 'i'
if isinstance(dbus_object, dbus.Int64):
return 'x'
if isinstance(dbus_object, dbus.ObjectPath):
return 'o'
if isinstance(dbus_object, dbus.Signature):
return 'g'
if isinstance(dbus_object, dbus.String):
return 's'
if isinstance(dbus_object, dbus.UInt16):
return 'q'
if isinstance(dbus_object, dbus.UInt32):
return 'u'
if isinstance(dbus_object, dbus.UInt64):
return 't'
if isinstance(dbus_object, dbus.types.UnixFd): # pragma: no cover
return 'h'
raise IntoDPValueError(dbus_object, "dbus_object",
"has no signature") |
def plot_indices(mis, dims=None, weights=None, groups=1,legend = True,index_labels=None, colors = None,axis_labels = None,size_exponent=0.1,ax=None):
'''
Plot multi-index set
:param mis: Multi-index set
:type mis: Iterable of SparseIndices
:param dims: Which dimensions to use for plotting
:type dims: List of integers.
:param weights: Weights associated with each multi-index
:type weights: Dictionary
:param quantiles: Number of groups plotted in different colors
:type quantiles: Integer>=1 or list of colors
TODO: exchange index_labels and dims, exchange quantiles and dims
'''
if weights is None:
weights = {mi: 1 for mi in mis}
if Function.valid(weights):
weights = {mi:weights(mi) for mi in mis}
values = list(weights.values())
if Integer.valid(groups):
N_g = groups
groups = [[mi for mi in mis if (weights[mi] > np.percentile(values, 100/groups*g) or g==0) and weights[mi] <= np.percentile(values, 100/groups*(g+1))] for g in range(N_g)]
group_names = ['{:.0f} -- {:.0f} percentile'.format(100/N_g*(N_g-i-1),100/N_g*(N_g-i)) for i in reversed(range(N_g))]
else:
if Function.valid(groups):
groups = {mi:groups(mi) for mi in mis}
group_names = unique(list(groups.values()))
groups = [[mi for mi in mis if groups[mi]==name] for name in group_names]
N_g = len(group_names)
if colors is None:
colors = matplotlib.cm.rainbow(np.linspace(0, 1, N_g)) # @UndefinedVariable
if Dict.valid(mis):
if index_labels is None or weights is None:
temp = list(mis.keys())
if (List|Tuple).valid(temp[0]):
if not (index_labels is None and weights is None):
raise ValueError('mis cannot be dictionary with tuple entries if both index_labels and weights are specified separately')
weights = {mi:mis[mi][0] for mi in mis}
index_labels= {mi:mis[mi][1] for mi in mis}
else:
if weights is None:
weights = mis
else:
index_labels = mis
mis = temp
else:
raise ValueError('mis cannot be dictionary if index_labels are specified separately')
if dims is None:
try:
dims = len(mis[0])
except TypeError:
dims = sorted(list(set.union(*(set(mi.active_dims()) for mi in mis))))
if len(dims) > 3:
raise ValueError('Cannot plot in more than three dimensions.')
if len(dims) < 1:
warnings.warn('Sure you don\'t want to plot anything?')
return
if ax is None:
fig = plt.figure() # Creates new figure, because adding onto old axes doesn't work if they were created without 3d
if len(dims) == 3:
ax = fig.gca(projection='3d')
else:
ax = fig.gca()
size_function = lambda mi: sum([weights[mi2] for mi2 in mis if mi.equal_mod(mi2, lambda dim: dim not in dims)])
sizes = {mi: np.power(size_function(mi), size_exponent) for mi in mis}
for i,plot_indices in enumerate(groups):
X = np.array([mi[dims[0]] for mi in plot_indices])
if len(dims) > 1:
Y = np.array([mi[dims[1]] for mi in plot_indices])
else:
Y = np.array([0 for mi in plot_indices])
if len(dims) > 2:
Z = np.array([mi[dims[2]] for mi in plot_indices])
else:
Z = np.array([0 for mi in plot_indices])
sizes_plot = np.array([sizes[mi] for mi in plot_indices])
if weights:
if len(dims) == 3:
ax.scatter(X, Y, Z, s = 50 * sizes_plot / max(sizes.values()), color=colors[i], alpha=1)
else:
ax.scatter(X, Y, s = 50 * sizes_plot / max(sizes.values()), color=colors[i], alpha=1)
else:
if len(dims) == 3:
ax.scatter(X, Y, Z,color = colors[i],alpha=1)
else:
ax.scatter(X, Y,color=colors[i],alpha=1)
if True:
if len(dims)==3:
axs='xyz'
else:
axs='xy'
extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in axs])
sz = extents[:,1] - extents[:,0]
maxsize = max(abs(sz))
for dim in axs:
getattr(ax, 'set_{}lim'.format(dim))(0, maxsize)
if axis_labels is not None:
ax.set_xlabel(axis_labels[0])
if len(dims)>1:
ax.set_ylabel(axis_labels[1])
if len(dims)>1:
ax.set_zlabel(axis_labels[2])
else:
ax.set_xlabel('$k_' + str(dims[0])+'$',size=20)
if len(dims) > 1:
ax.set_ylabel('$k_' + str(dims[1])+'$',size=20)
if len(dims) > 2:
ax.set_zlabel('$k_' + str(dims[2])+'$',size=20)
plt.grid()
x_coordinates = [mi[dims[0]] for mi in mis]
xticks=list(range(min(x_coordinates),max(x_coordinates)+1))
ax.set_xticks(xticks)
if len(dims)>1:
y_coordinates = [mi[dims[1]] for mi in mis]
ax.set_yticks(list(range(min(y_coordinates),max(y_coordinates)+1)))
if len(dims)>2:
z_coordinates = [mi[dims[2]] for mi in mis]
ax.set_zticks(list(range(min(z_coordinates),max(z_coordinates)+1)))
if index_labels:
for mi in index_labels:
ax.annotate('{:.3g}'.format(index_labels[mi]),xy=(mi[0],mi[1]))
if legend and len(group_names)>1:
ax.legend([patches.Patch(color=color) for color in np.flipud(colors)],group_names)
return ax |
def ezplot(f,xlim,ylim=None,ax = None,vectorized=True,N=None,contour = False,args=None,kwargs=None,dry_run=False,show=None,include_endpoints=False):
'''
Plot polynomial approximation.
:param vectorized: `f` can handle an array of inputs
'''
kwargs = kwargs or {}
args = args or []
d = 1 if ylim is None else 2
if ax is None:
fig = plt.figure()
show = show if show is not None else True
ax = fig.gca() if (d==1 or contour) else fig.gca(projection='3d')
if d == 1:
if N is None:
N = 200
if include_endpoints:
X = np.linspace(xlim[0],xlim[1],N)
else:
L = xlim[1] - xlim[0]
X = np.linspace(xlim[0] + L / N, xlim[1] - L / N, N)
X = X.reshape((-1, 1))
if vectorized:
Z = f(X)
else:
Z = np.array([f(x) for x in X])
if not dry_run:
C = ax.plot(X, Z,*args,**kwargs)
elif d == 2:
if N is None:
N = 30
T = np.zeros((N, 2))
if include_endpoints:
T[:,0]=np.linspace(xlim[0],xlim[1],N)
T[:,1]=np.linspace(ylim[0],ylim[1],N)
else:
L = xlim[1] - xlim[0]
T[:, 0] = np.linspace(xlim[0] + L / N, xlim[1] - L / N, N)
L = ylim[1] - ylim[0]
T[:, 1] = np.linspace(ylim[0] + L / N, ylim[1] - L / N, N)
X, Y = meshgrid(T[:, 0], T[:, 1])
Z = grid_evaluation(X, Y, f,vectorized=vectorized)
if contour:
if not dry_run:
# C = ax.contour(X,Y,Z,levels = np.array([0.001,1000]),colors=['red','blue'])
N=200
colors=np.concatenate((np.ones((N,1)),np.tile(np.linspace(1,0,N).reshape(-1,1),(1,2))),axis=1)
colors = [ [1,1,1],*colors,[1,0,0]]
print('max',np.max(Z[:]))
C = ax.contourf(X,Y,Z,levels = [-np.inf,*np.linspace(-20,20,N),np.inf],colors=colors)
else:
if not dry_run:
C = ax.plot_surface(X, Y, Z)#cmap=cm.coolwarm,
# C = ax.plot_wireframe(X, Y, Z, rcount=30,ccount=30)
if show:
plt.show()
return ax,C,Z |
def plot3D(X, Y, Z):
'''
Surface plot.
Generate X and Y using, for example
X,Y = np.mgrid[0:1:50j, 0:1:50j]
or
X,Y= np.meshgrid([0,1,2],[1,2,3]).
:param X: 2D-Array of x-coordinates
:param Y: 2D-Array of y-coordinates
:param Z: 2D-Array of z-coordinates
'''
fig = plt.figure()
ax = Axes3D(fig)
light = LightSource(90, 90)
illuminated_surface = light.shade(Z, cmap=cm.coolwarm) # @UndefinedVariable
Xmin = np.amin(X)
Xmax = np.amax(X)
Ymin = np.amin(Y)
Ymax = np.amax(Y)
Zmin = np.amin(Z)
Zmax = np.amax(Z)
ax.contourf(X, Y, Z, zdir='x', offset=Xmin - 0.1 * (Xmax - Xmin), cmap=cm.coolwarm, alpha=1) # @UndefinedVariable
ax.contourf(X, Y, Z, zdir='y', offset=Ymax + 0.1 * (Ymax - Ymin), cmap=cm.coolwarm, alpha=1) # @UndefinedVariable
ax.contourf(X, Y, Z, zdir='z', offset=Zmin - 0.1 * (Zmax - Zmin), cmap=cm.coolwarm, alpha=1) # @UndefinedVariable
ax.plot_surface(X, Y, Z, cstride=5, rstride=5, facecolors=illuminated_surface, alpha=0.5)
plt.show() |
def plot_convergence(times, values, name=None, title=None, reference='self', convergence_type='algebraic', expect_residuals=None,
expect_times=None, plot_rate='fit', base = np.exp(0),xlabel = 'x', p=2, preasymptotics=True, stagnation=False, marker='.',
legend='lower left',relative = False,ax = None):
'''
Show loglog or semilogy convergence plot.
Specify :code:`reference` if exact limit is known. Otherwise limit is
taken to be last entry of :code:`values`.
Distance to limit is computed as RMSE (or analogous p-norm if p is specified)
Specify either :code:`plot_rate`(pass number or 'fit') or
:code:`expect_residuals` and :code:`expect_times` to add a second plot with
the expected convergence.
:param times: Runtimes
:type times: List of positive numbers
:param values: Outputs
:type values: List of arrays
:param reference: Exact solution, or 'self' if not available
:type reference: Array or 'self'
:param convergence_type: Convergence type
:type convergence_type: 'algebraic' or 'exponential'
:param expect_residuals: Expected residuals
:type expect_residuals: List of positive numbers
:param expect_times: Expected runtimes
:type expect_times: List of positive numbers
:param plot_rate: Expected convergence order
:type plot_rate: Real or 'fit'
:param preasymptotics: Ignore initial entries for rate fitting
:type preasymptotics: Boolean
:param stagnation: Ignore final entries from rate fitting
:type stagnation: Boolean
:param marker: Marker for data points
:type marker: Matplotlib marker string
:return: fitted convergence order
'''
name = name or ''
self_reference = (isinstance(reference,str) and reference=='self') #reference == 'self' complains when reference is a numpy array
ax = ax or plt.gca()
color = next(ax._get_lines.prop_cycler)['color']
ax.tick_params(labeltop=False, labelright=True, right=True, which='both')
ax.yaxis.grid(which="minor", linestyle='-', alpha=0.5)
ax.yaxis.grid(which="major", linestyle='-', alpha=0.6)
c_ticks = 3
ACCEPT_MISFIT = 0.1
values, times = np.squeeze(values), np.squeeze(times)
assert(times.ndim == 1)
assert(len(times) == len(values))
sorting = np.argsort(times)
times = times[sorting]
values = values[sorting]
if plot_rate == True:
plot_rate = 'fit'
if plot_rate !='fit':
plot_rate = plot_rate*np.log(base)#Convert to a rate w.r.t. exp
if self_reference:
if len(times) <= 2:
raise ValueError('Too few data points')
limit = values[-1]
limit_time = times[-1]
times = times[0:-1]
values = values[0:-1]
else:
limit = np.squeeze(reference)
limit_time = np.Inf
residuals = np.zeros(len(times))
N = limit.size
for L in range(len(times)):
if p < np.Inf:
residuals[L] = np.power(np.sum(np.power(np.abs(values[L] - limit), p) / N), 1. / p) #
else:
residuals[L] = np.amax(np.abs(values[L] - limit))
if relative:
if p<np.Inf:
residuals /= np.power(np.sum(np.power(np.abs(limit),p)/N),1./p)
else:
residuals /= np.amax(np.abs(limit))
try:
remove = np.isnan(times) | np.isinf(times) | np.isnan(residuals) | np.isinf(residuals) | (residuals == 0) | ((times == 0) & (convergence_type == 'algebraic'))
except TypeError:
print(times,residuals)
times = times[~remove]
if sum(~remove) < (2 if self_reference else 1):
raise ValueError('Too few valid data points')
residuals = residuals[~remove]
if convergence_type == 'algebraic':
x = np.log(times)
limit_x = np.log(limit_time)
else:
x = times
limit_x = limit_time
#min_x = min(x)
max_x = max(x)
y = np.log(residuals)
try:
rate, offset, min_x_fit, max_x_fit = _fit_rate(x, y, stagnation, preasymptotics, limit_x, have_rate=False if (plot_rate == 'fit' or plot_rate is None) else plot_rate)
except FitError as e:
warnings.warn(str(e))
plot_rate = False
rate = None
if self_reference:
if rate >= 0:
warnings.warn('No sign of convergence')
else:
real_rate = _real_rate(rate, l_bound=min_x_fit, r_bound=max_x_fit, reference_x=limit_x)
if (real_rate is None or abs((real_rate - rate) / rate) >= ACCEPT_MISFIT):
warnings.warn(('Self-convergence strongly affects plot and would yield misleading fit.')
+ (' Estimated true rate: {}.'.format(real_rate) if real_rate else '')
+ (' Fitted rate: {}.'.format(rate) if rate else ''))
if plot_rate:
name += 'Fitted rate: ' if plot_rate == 'fit' else 'Plotted rate: '
if convergence_type == 'algebraic':
name+='{:.2g})'.format(rate)
else:
base_rate = rate/np.log(base)
base_rate_str = f'{base_rate:.2g}'
if base_rate_str=='-1':
base_rate_str='-'
if base_rate_str =='1':
base_rate_str = ''
name+=f'${base}^{{{base_rate_str}{xlabel}}}$'
if convergence_type == 'algebraic':
X = np.linspace(np.exp(min_x_fit), np.exp(max_x_fit), c_ticks)
ax.loglog(X, np.exp(offset) * X ** rate, '--', color=color)
else:
X = np.linspace(min_x_fit, max_x_fit, c_ticks)
ax.semilogy(X, np.exp(offset + rate * X), '--', color=color)
max_x_data = max_x
keep_1 = (x <= max_x_data)
if convergence_type == 'algebraic':
ax.loglog(np.array(times)[keep_1], np.array(residuals)[keep_1], label=name, marker=marker, color=color)
ax.loglog(np.array(times), np.array(residuals), marker=marker, color=color, alpha=0.5)
else:
ax.semilogy(np.array(times)[keep_1], np.array(residuals)[keep_1], label=name, marker=marker, color=color)
ax.semilogy(np.array(times), np.array(residuals), marker=marker, color=color, alpha=0.5)
if expect_times is not None and expect_residuals is not None:
ax.loglog(expect_times, expect_residuals, '--', marker=marker, color=color)
if name:
ax.legend(loc=legend)
if title:
ax.set_title(title)
return rate |
def lower(option,value):
'''
Enforces lower case options and option values where appropriate
'''
if type(option) is str:
option=option.lower()
if type(value) is str:
value=value.lower()
return (option,value) |
def to_float(option,value):
'''
Converts string values to floats when appropriate
'''
if type(value) is str:
try:
value=float(value)
except ValueError:
pass
return (option,value) |
def to_bool(option,value):
'''
Converts string values to booleans when appropriate
'''
if type(value) is str:
if value.lower() == 'true':
value=True
elif value.lower() == 'false':
value=False
return (option,value) |
def fork(self,name):
'''
Create fork and store it in current instance
'''
fork=deepcopy(self)
self[name]=fork
return fork |
def smart_range(*args):
'''
smart_range(1,3,9)==[1,3,5,7,9]
'''
if len(args)==1:#String
string_input = True
string = args[0].replace(' ','')
original_args=string.split(',')
args = []
for arg in original_args:
try:
args.append(ast.literal_eval(arg))
except (ValueError,SyntaxError):
try:# Maybe an arithmetic expression?
args.append(eval(arg,{'__builtins__':{}}))
except (NameError,SyntaxError):#Input was actually meant to be a string, e.g. smart_range('a,...,z'), or input was interval type, e.g. smart_range('[1,3]/10')
args.append(arg)
else:
string_input = False
arg_start = args[0]
if len(args)>2:
arg_step = args[1]
if len(args)>3:
raise ValueError('At most 3 arguments: start, step, stop')
else:
arg_step = None
arg_end = args[-1]
if String.valid(arg_start) and len(arg_start)==1:#Character
range_type = 'char'
elif all(Integer.valid(arg) for arg in args):
range_type = 'integer'
else:
if string_input and original_args[0][0] in ['(','[']:
range_type = 'linspace'
else:
range_type = 'float'
if range_type == 'char':
start = ord(arg_start)
step = (ord(arg_step)- start) if arg_step else 1
end = ord(arg_end)
out = [chr(i) for i in range(start,end+step,step)]
if np.sign(step)*(ord(out[-1])-end)>0:
del out[-1]
return out
elif range_type == 'integer':
if string_input:
if len(args)==2 and all('**' in oa for oa in original_args):#Attempt geometric progresesion
bases,exponents = zip(*[oa.split('**') for oa in original_args])
if len(set(bases))==1:#Keep attempting geometric progression
return [int(bases[0])**exponent for exponent in smart_range(','.join(exponents))]
start = arg_start
step = (arg_step - arg_start) if arg_step is not None else 1
end = arg_end
out = list(range(start,end+step,step))
if np.sign(step)*(out[-1]-end)>0:
del out[-1]
return out
elif range_type == 'float':
if len(args)==2 and all('**' in oa for oa in original_args):#Attempt geometric progresesion
bases,exponents = zip(*[oa.split('**') for oa in original_args])
if len(set(bases))==1:#Keep attempting geometric progression
return [float(bases[0])**exponent for exponent in smart_range(','.join(exponents)) ]
if len(args) == 2:
raise ValueError()
start = arg_start
step = arg_step - arg_start
end = arg_end
out = list(np.arange(start,end+1e-12*step,step))
return out
elif range_type == 'linspace':
lopen,start = (original_args[0][0]=='('),float(original_args[0][1:])
end,N = original_args[1].split('/')
end,ropen = float(end[:-1]),(end[-1]==')')
N = ast.literal_eval(N)+lopen +ropen
points = np.linspace(start,end,num=N)
return points[lopen:len(points)-ropen] |
def ld_to_dl(ld):
'''
Convert list of dictionaries to dictionary of lists
'''
if ld:
keys = list(ld[0])
dl = {key:[d[key] for d in ld] for key in keys}
return dl
else:
return {} |
def chain(*fs):
'''
Concatenate functions
'''
def chained(x):
for f in reversed(fs):
if f:
x=f(x)
return x
return chained |
def split_list(l,N):
'''
Subdivide list into N lists
'''
npmode = isinstance(l,np.ndarray)
if npmode:
l=list(l)
g=np.concatenate((np.array([0]),np.cumsum(split_integer(len(l),length=N))))
s=[l[g[i]:g[i+1]] for i in range(N)]
if npmode:
s=[np.array(sl) for sl in s]
return s |
def random_word(length,dictionary = False):#may return offensive words if dictionary = True
'''
Creates random lowercase words from dictionary or by alternating vowels and consonants
The second method chooses from 85**length words.
The dictionary method chooses from 3000--12000 words for 3<=length<=12
(though this of course depends on the available dictionary)
:param length: word length
:param dictionary: Try reading from dictionary, else fall back to artificial words
'''
if dictionary:
try:
with open('/usr/share/dict/words') as fp:
words = [word.lower()[:-1] for word in fp.readlines() if re.match('[A-Za-z0-9]{}$'.format('{'+str(length)+'}'),word)]
return random.choice(words)
except FileNotFoundError:
pass
vowels = list('aeiou')
consonants = list('bcdfghklmnprstvwz')
pairs = [(random.choice(consonants),random.choice(vowels)) for _ in range(length//2+1)]
return ''.join([l for p in pairs for l in p])[:length] |
def string_from_seconds(seconds):
'''
Converts seconds into elapsed time string of form
(X days(s)?,)? HH:MM:SS.YY
'''
td = str(timedelta(seconds = seconds))
parts = td.split('.')
if len(parts) == 1:
td = td+'.00'
elif len(parts) == 2:
td = '.'.join([parts[0],parts[1][:2]])
return td |
def input_with_prefill(prompt, text):
'''
https://stackoverflow.com/questions/8505163/is-it-possible-to-prefill-a-input-in-python-3s-command-line-interface
'''
def hook():
readline.insert_text(text)
readline.redisplay()
try:
readline.set_pre_input_hook(hook)
except Exception:
pass
result = input(prompt)
try:
readline.set_pre_input_hook()
except Exception:
pass
return result |
def EasyHPC(backend:In('MP', 'MPI')|Function='MP',
n_tasks:In('implicitly many', 'many', 'one', 'count')='one',#Count is special case of implicitly many where it is already known how to split jobs
n_results:In('many', 'one')='one',
aux_output:Bool=True, # Parellelize only first entry of n_results is tuple
reduce:Function=None,
split_job=NotPassed,
parallel = True,#If false, use the wrapper functionality of EasyHPC but don't actually use multiprocessing
method = None,
pool = None
):
'''
:param n_tasks: How many tasks does the decorated function handle?
:param n_results: If the decorated function handles many tasks at once, are the results reduced (n_results = 'one') or not (as many results as tasks)?
:param reduce: Function that reduces multiple outputs to a single output
:param splitjob: Function that converts an input (to the decorated function) that represents one large job to two smaller jobs
NOTE: don't turn this into a class, you'll run into strange pickling errors
'''
self = argparse.Namespace()
direct_call = (~String&Function).valid(backend)
if direct_call:
f = backend
backend = 'MP'
if backend == 'MPI':
self.processor = _MPI_processor
self.finalizer = _MPI_finalizer
if backend == 'MP':
self.processor = _MP_processor
self.finalizer = None
self.info = argparse.Namespace()
self.info.n_tasks = n_tasks
self.info.n_results = n_results
self.info.parallel = parallel
self.info.reduce = reduce
self.info.wrap_MPI = False
self.info.aux_output = aux_output
self.info.method = method
self.info.pool = pool or Pool()
self.info.split_job = split_job
if self.info.n_tasks == 'implicitly many':
if self.info.n_results == 'many':
raise ValueError('Do not know how to handle functions that handle implicitly many tasks and return multiple results')
if NotPassed(self.info.split_job):
raise ValueError('Functions handling implicitly many tasks must specify how to split a job using `split_job`')
if direct_call:
def _lam(*args,**kwargs):
return _MultiProcessorWrapper_call(args,kwargs,f,self.processor,self.finalizer,self.info)
return _lam
return lambda f: _easy_hpc_call(f,self) |
def path_from_keywords(keywords,into='path'):
'''
turns keyword pairs into path or filename
if `into=='path'`, then keywords are separted by underscores, else keywords are used to create a directory hierarchy
'''
subdirs = []
def prepare_string(s):
s = str(s)
s = re.sub('[][{},*"'+f"'{os.sep}]",'_',s)#replace characters that make bash life difficult by underscore
if into=='file':
s = s.replace('_', ' ')#Remove underscore because they will be used as separator
if ' ' in s:
s = s.title()
s = s.replace(' ','')
return s
if isinstance(keywords,set):
keywords_list = sorted(keywords)
for property in keywords_list:
subdirs.append(prepare_string(property))
else:
keywords_list = sorted(keywords.items())
for property,value in keywords_list: # @reservedassignment
if Bool.valid(value):
subdirs.append(('' if value else ('not_' if into=='path' else 'not'))+prepare_string(property))
#elif String.valid(value):
# subdirs.append(prepare_string(value))
elif (Float|Integer).valid(value):
subdirs.append('{}{}'.format(prepare_string(property),prepare_string(value)))
else:
subdirs.append('{}{}{}'.format(prepare_string(property),'_' if into == 'path' else '',prepare_string(value)))
if into == 'path':
out = os.path.join(*subdirs)
else:
out = '_'.join(subdirs)
return out |
def find_files(pattern, path=None,match_name=False):
'''
https://stackoverflow.com/questions/1724693/find-a-file-in-python
WARNING: pattern is by default matched to entire path not to file names
'''
if not path:
path = os.getcwd()
result = []
for root, __, files in os.walk(path):
for name in files:
if fnmatch.fnmatch(name if match_name else os.path.join(root,name),pattern):
result.append(os.path.join(root, name))
return result |
def find_directories(pattern, path=None,match_name=False):
'''
WARNING: pattern is matched to entire path, not directory names, unless
match_name = True
'''
if not path:
path = os.getcwd()
result = []
for root, __, __ in os.walk(path):
match_against = os.path.basename(root) if match_name else root
try:
does_match = pattern.match(match_against)
except AttributeError:
does_match = fnmatch.fnmatch(match_against,pattern)
if does_match:
result.append(root)
return result |
def zip_dir(zip_name, source_dir,rename_source_dir=False):
'''
https://stackoverflow.com/questions/1855095/how-to-create-a-zip-archive-of-a-directory
'''
src_path = Path(source_dir).expanduser().resolve()
with ZipFile(zip_name, 'w', ZIP_DEFLATED) as zf:
for file in src_path.rglob('*'):
path_in_zip = str(file.relative_to(src_path.parent))
if rename_source_dir != False:
_,tail = path_in_zip.split(os.sep,1)
path_in_zip=os.sep.join([rename_source_dir,tail])
zf.write(str(file.resolve()), path_in_zip) |
def integral(A=None,dF=None,F=None,axis = 0,trapez = False,cumulative = False):
'''
Turns an array A of length N (the function values in N points)
and an array dF of length N-1 (the masses of the N-1 intervals)
into an array of length N (the integral \int A dF at N points, with first entry 0)
:param A: Integrand (optional, default ones, length N)
:param dF: Integrator (optional, default ones, length N-1)
:param F: Alternative to dF (optional, length N)
:param trapez: Use trapezoidal rule (else left point)
'''
ndim = max(v.ndim for v in (A,dF,F) if v is not None)
def broadcast(x):
new_shape = [1]*ndim
new_shape[axis] = -1
return np.reshape(x,new_shape)
if F is not None:
assert(dF is None)
if F.ndim<ndim:
F = broadcast(F)
N = F.shape[axis]
dF = F.take(indices = range(1,N),axis = axis)-F.take(indices = range(N-1),axis = axis)
elif dF is not None:
if dF.ndim<ndim:
dF = broadcast(dF)
N = dF.shape[axis]+1
else:
if A.ndim<ndim:
A = broadcast(A)
N = A.shape[axis]
if A is not None:
if trapez:
midA = (A.take(indices = range(1,N),axis = axis)+A.take(indices = range(N-1),axis = axis))/2
else:
midA = A.take(indices=range(N-1),axis=axis)
if dF is not None:
dY = midA*dF
else:
dY = midA
else:
dY = dF
pad_shape = list(dY.shape)
pad_shape[axis] = 1
pad = np.zeros(pad_shape)
if cumulative:
return np.concatenate((pad,np.cumsum(dY,axis = axis)),axis = axis)
else:
return np.sum(dY,axis = axis) |
def toeplitz_multiplication(a,b,v):
'''
Multiply Toeplitz matrix with first row a and first column b with vector v
Normal matrix multiplication would require storage and runtime O(n^2);
embedding into a circulant matrix and using FFT yields O(log(n)n)
'''
a = np.reshape(a,(-1))
b = np.reshape(b,(-1))
n = len(a)
c = np.concatenate((a[[0]],b[1:],np.zeros(1),a[-1:0:-1]))
p = ifft(fft(c)*fft(v.T,n=2*n)).T#fft autopads input with zeros if n is supplied
if np.all(np.isreal(a)) and np.all(np.isreal(b)) and np.all(np.isreal(v)):
return np.real(p[:n])
else:
return p[:n] |
def grid_evaluation(X, Y, f,vectorized=True):
'''
Evaluate function on given grid and return values in grid format
Assume X and Y are 2-dimensional arrays containing x and y coordinates,
respectively, of a two-dimensional grid, and f is a function that takes
1-d arrays with two entries. This function evaluates f on the grid points
described by X and Y and returns another 2-dimensional array of the shape
of X and Y that contains the values of f.
:param X: 2-dimensional array of x-coordinates
:param Y: 2-dimensional array of y-coordinates
:param f: function to be evaluated on grid
:param vectorized: `f` can handle arrays of inputs
:return: 2-dimensional array of values of f
'''
XX = np.reshape(np.concatenate([X[..., None], Y[..., None]], axis=2), (X.size, 2), order='C')
if vectorized:
ZZ = f(XX)
else:
ZZ = np.array([f(x) for x in XX])
return np.reshape(ZZ, X.shape, order='C') |
def orthonormal_complement_basis(v:NDim(1)):
'''
Return orthonormal basis of complement of vector.
:param v: 1-dimensional numpy array
:return: Matrix whose .dot() computes coefficients w.r.t. an orthonormal basis of the complement of v
(i.e. whose row vectors form an orthonormal basis of the complement of v)
'''
_, _, V = np.linalg.svd(np.array([v]))
return V[1:] |
def weighted_median(values, weights):
'''
Returns element such that sum of weights below and above are (roughly) equal
:param values: Values whose median is sought
:type values: List of reals
:param weights: Weights of each value
:type weights: List of positive reals
:return: value of weighted median
:rtype: Real
'''
if len(values) == 1:
return values[0]
if len(values) == 0:
raise ValueError('Cannot take median of empty list')
values = [float(value) for value in values]
indices_sorted = np.argsort(values)
values = [values[ind] for ind in indices_sorted]
weights = [weights[ind] for ind in indices_sorted]
total_weight = sum(weights)
below_weight = 0
i = -1
while below_weight < total_weight / 2:
i += 1
below_weight += weights[i]
return values[i] |
def log_calls(function):
'''
Decorator that logs function calls in their self.log
'''
def wrapper(self,*args,**kwargs):
self.log.log(group=function.__name__,message='Enter')
function(self,*args,**kwargs)
self.log.log(group=function.__name__,message='Exit')
return wrapper |
def add_runtime(function):
'''
Decorator that adds a runtime profile object to the output
'''
def wrapper(*args,**kwargs):
pr=cProfile.Profile()
pr.enable()
output = function(*args,**kwargs)
pr.disable()
return pr,output
return wrapper |
def print_memory(function):
'''
Decorator that prints memory information at each call of the function
'''
import memory_profiler
def wrapper(*args,**kwargs):
m = StringIO()
temp_func = memory_profiler.profile(func = function,stream=m,precision=4)
output = temp_func(*args,**kwargs)
print(m.getvalue())
m.close()
return output
return wrapper |
def print_profile(function):
'''
Decorator that prints memory and runtime information at each call of the function
'''
import memory_profiler
def wrapper(*args,**kwargs):
m=StringIO()
pr=cProfile.Profile()
pr.enable()
temp_func = memory_profiler.profile(func=function,stream=m,precision=4)
output = temp_func(*args,**kwargs)
print(m.getvalue())
pr.disable()
ps = pstats.Stats(pr)
ps.sort_stats('cumulative').print_stats('(?!.*memory_profiler.*)(^.*$)',20)
m.close()
return output
return wrapper |
def declaration(function):
'''
Declare abstract function.
Requires function to be empty except for docstring describing semantics.
To apply function, first argument must come with implementation of semantics.
'''
function,name=_strip_function(function)
if not function.__code__.co_code in [empty_function.__code__.co_code, doc_string_only_function.__code__.co_code]:
raise ValueError('Declaration requires empty function definition')
def not_implemented_function(*args,**kwargs):
raise ValueError('Argument \'{}\' did not specify how \'{}\' should act on it'.format(args[0],name))
not_implemented_function.__qualname__=not_implemented_function.__name__
return default(not_implemented_function,name=name) |
def print_runtime(function):
'''
Decorator that prints running time information at each call of the function
'''
def wrapper(*args,**kwargs):
pr=cProfile.Profile()
pr.enable()
output = function(*args,**kwargs)
pr.disable()
ps = pstats.Stats(pr)
ps.sort_stats('tot').print_stats(20)
return output
return wrapper |
def print_peak_memory(func,stream = None):
"""
Print peak memory usage (in MB) of a function call
:param func: Function to be called
:param stream: Stream to write peak memory usage (defaults to stdout)
https://stackoverflow.com/questions/9850995/tracking-maximum-memory-usage-by-a-python-function
"""
import time
import psutil
import os
memory_denominator=1024**2
memory_usage_refresh=0.05
def wrapper(*args,**kwargs):
from multiprocessing.pool import ThreadPool
pool = ThreadPool(processes=1)
process = psutil.Process(os.getpid())
start_mem = process.memory_info().rss
delta_mem = 0
max_memory = 0
async_result = pool.apply_async(func, args,kwargs)
# do some other stuff in the main process
while(not async_result.ready()):
current_mem = process.memory_info().rss
delta_mem = current_mem - start_mem
if delta_mem > max_memory:
max_memory = delta_mem
# Check to see if the library call is complete
time.sleep(memory_usage_refresh)
return_val = async_result.get() # get the return value from your function.
max_memory /= memory_denominator
if stream is not None:
stream.write(str(max_memory))
return return_val
return wrapper |
def validate(arg, spec):
'''
Make sure `arg` adheres to specification
:param arg: Anything
:param spec: Specification
:type spec: Specification
:return: Validated object
'''
rejection_subreason = None
if spec is None:
return arg
try:
return spec._validate(arg)
except Exception as e:
rejection_subreason = e
try:
lenience = spec.lenience
except AttributeError:
pass
else:
for level in range(1, lenience + 1):
temp = None
try:
temp = spec.forgive(arg=arg, level=level)
except Exception:
pass # Forgiving might fail, it is very hard to predict what happens when you do stuff to things that aren't what you think
if temp is not None and temp is not arg:
arg = temp
try:
return spec._validate(arg)
except Exception as e:
rejection_subreason = e
rejection_reason = '`{}` was rejected by `{}`.'.format(arg, spec)
rejection_subreason = ' ({}: {})'.format(rejection_subreason.__class__.__name__, rejection_subreason) if rejection_subreason is not None else ''
raise ValidationError(rejection_reason + rejection_subreason) |
def _validate_many(args, specs, defaults,passed_conditions,value_conditions,
allow_unknowns,unknowns_spec):
'''
Similar to validate but validates multiple objects at once, each with their own specification.
Fill objects that were specified but not provided with NotPassed or default values
Apply `value_condition` to object dictionary as a whole
'''
validated_args = builtins.dict()
passed_but_not_specified = set(args.keys()) - set(specs.keys())
if passed_but_not_specified:
if not allow_unknowns:
raise ValueError(('Arguments {} were passed but not specified (use ' +
'`allow_unknowns=True` to avoid this error)'.format(passed_but_not_specified)))
else:
for arg in passed_but_not_specified:
if unknowns_spec is not None:
specs[arg] = unknowns_spec
if passed_conditions:
validate(args, Dict(passed_conditions=passed_conditions))
for arg in specs:
if (not arg in args) or NotPassed(args[arg]):
if arg in defaults:
if isinstance(defaults[arg],DefaultGenerator):
validated_args[arg] = defaults[arg]()
else:
validated_args[arg] = defaults[arg]
else:
validated_args[arg] = NotPassed
else:#Default values and NotPassed values are not validated. Former has advantage that default values need to be `correct` without validation and thus encourage the user to pass stuff that doesn't need validation, and is therefore faster
validated_args[arg] = validate(args[arg], specs[arg])
if value_conditions:
validated_args = validate(validated_args, value_conditions)
return validated_args |
def black_scholes(times,r,sigma,S0,d,M,dW=None):
'''
Return M Euler-Maruyama sample paths with N time steps of S_t, where
dS_t = S_t*r*dt+S_t*sigma*dW_t
S(0)=S0
:rtype: M x N x d array
'''
N=len(times)
times = times.flatten()
p0 = np.log(S0)
if dW is None:
dW=np.sqrt(times[1:]-times[:-1])[None,:,None]*np.random.normal(size=(M,N-1,d))
if np.squeeze(sigma).ndim<=1:
dF = sigma*dW
ito_correction = np.squeeze(sigma**2/2)
else:
dF = np.einsum('ij,...j',sigma,dW)
ito_correction = np.sum(sigma**2,1)/2
drift = (r-ito_correction)*times[None,:,None]
diffusion = integral(dF=dF,axis=1,cumulative = True)
return np.exp(p0 + drift + diffusion) |
def heston(times,mu,rho,kappa,theta,xi,S0,nu0,d,M,nu_1d=True):
'''
Return M Euler-Maruyama sample paths with N time steps of (S_t,v_t), where
(S_t,v_t) follows the Heston model of mathematical finance
:rtype: M x N x d array
'''
d_nu = 1 if nu_1d else d
nu = np.zeros((M,len(times),d_nu))
S = np.zeros((M,len(times),d))
nu[:,0,:] = nu0
S[:,0,:] = S0
if 2*kappa*theta<=xi**2:
raise ValueError('Feller condition not satisfied')
test = np.std(np.diff(times.flatten()))
if test>1e-12:
raise ValueError
dt = times[1]-times[0]
N = len(times)
if d == 1:
if np.array(rho).size ==1:
rho = np.array([[1,rho],[rho,1]])
chol = np.linalg.cholesky(rho)
dW = np.sqrt(dt)*np.einsum('ij,...j',chol,np.random.normal(size=(M,N-1,d+d_nu)))
for i in range(1,N):
dt = times[i]-times[i-1]
nu[:,i,:] = np.abs(nu[:,i-1,:] + kappa*(theta-nu[:,i-1,:])*dt+xi*np.sqrt(nu[:,i-1,:])*dW[:,i-1,d:])
S = S0*np.exp(integral(np.sqrt(nu),dF = dW[:,:,:d],axis=1,cumulative = True)+integral(mu - 0.5*nu,F = times,axis=1,trapez=False,cumulative = True))
return np.concatenate((S,nu),axis=-1) |
def fBrown(H,T,N,M,dW = None,cholesky = False):
'''
Sample fractional Brownian motion with differentiability index H
on interval [0,T] (H=1/2 yields standard Brownian motion)
:param H: Differentiability, larger than 0
:param T: Final time
:param N: Number of time steps
:param M: Number of samples
:param dW: Driving noise, optional
'''
alpha = 0.5-H
times = np.linspace(0, T, N)
dt = T/(N-1)
if cholesky:
if dW is not None:
raise ValueError('Cannot use provided dW if Cholesky method is used')
times = times[1:]
tdt = times/np.reshape(times,(-1,1))
tdt[np.tril_indices(N-1,-1)]=0
cov = np.reshape(times,(-1,1))**(1-2*alpha)*(1/(1-alpha))*(tdt-1)**(-alpha)*scipy.special.hyp2f1(alpha,1-alpha,2-alpha,1/(1-tdt))
cov[0,:] = 0
np.fill_diagonal(cov,times**(1-2*alpha)/(1-2*alpha))
cov[np.tril_indices(N-1,-1)] = cov.T[np.tril_indices(N-1,-1)]
L = scipy.linalg.cholesky(cov)
return np.concatenate((np.zeros((1,M)),[email protected](size=(N-1,M))))
if dW is None:
dW = np.sqrt(dt)*np.random.normal(size=(N-1,M))
if H == 0.5:
return integral(dF = dW,cumulative = True)
a = 1/dt/(1-alpha)*((T-times[N-2::-1])**(1-alpha)-(T-times[:0:-1])**(1-alpha))#a is array that is convolved with dW. Values arise from conditioning integral pieces on dW
out = toeplitz_multiplication(a,np.zeros_like(a),dW[::-1])[::-1]
out -=a[0]*dW#Redo last bit of defining integral with exact simulation below
cov = np.array([[ dt**(1-2*alpha)/(1-2*alpha),dt**(1-alpha)/(1-alpha)],[dt**(1-alpha)/(1-alpha),dt]])
var = cov[0,0]-cov[0,1]**2/cov[1,1]
out += cov[0,1]/cov[1,1]*dW #Conditional mean
out += np.sqrt(var)*np.random.normal(size = (N-1,M))#Conditional variance
out = np.concatenate((np.zeros((1,M)),out))
return out |
def r_bergomi(H,T,eta,xi,rho,S0,r,N,M,dW=None,dW_orth=None,cholesky = False,return_v=False):
'''
Return M Euler-Maruyama sample paths with N time steps of (S_t,v_t), where
(S_t,v_t) follows the rBergomi model of mathematical finance
:rtype: M x N x d array
'''
times = np.linspace(0, T, N)
dt = T/(N-1)
times = np.reshape(times,(-1,1))
if dW is None:
dW = np.sqrt(dt)*np.random.normal(size=(N-1,M))
if dW_orth is None:
dW_orth = np.sqrt(dt)*np.random.normal(size=(N-1,M))
dZ = rho*dW+np.sqrt(1-rho**2)*dW_orth
Y = eta*np.sqrt(2*H)*fBrown(H,T,N,M,dW =dW,cholesky = cholesky)
v = xi*np.exp(Y-0.5*(eta**2)*times**(2*H))
S = S0*np.exp(integral(np.sqrt(v),dF = dZ,axis=0,cumulative = True)+integral(r - 0.5*v,F = times,axis=0,trapez=False,cumulative = True))
if return_v:
return np.array([S,v]).T
else:
return np.array([S]).T |
def unique(seq):
'''
https://stackoverflow.com/questions/480214/how-do-you-remove-duplicates-from-a-list-in-whilst-preserving-order
'''
has = []
return [x for x in seq if not (x in has or has.append(x))] |
def get_default_fields(self):
"""
get all fields of model, execpt id
"""
field_names = self._meta.get_all_field_names()
if 'id' in field_names:
field_names.remove('id')
return field_names |
def get_field_value(self, field, value_verbose=True):
"""
返回显示的值,而不是单纯的数据库中的值
field 是model中的field type
value_verbose 为True,返回数据的显示数据,会转换为choice的内容,
如果value_verbose 为False, 返回数据的实际值
"""
if not value_verbose:
"""
value_verbose == false, return raw value
"""
value = field._get_val_from_obj(self)
else:
if isinstance(field, ForeignKey):
# 获取外键的内容
value = getattr(self, field.name)
else:
# 非外键
try:
value = self._get_FIELD_display(field)
except :
value = field._get_val_from_obj(self)
if(value == True or value == False or isinstance(value, (int, float))):
return value
return unicode(value) |
def get_fields(self, field_verbose=True, value_verbose=True, fields=[], extra_fields=[], remove_fields = []):
'''
返回字段名及其对应值的列表
field_verbose 为True,返回定义中的字段的verbose_name, False返回其name
value_verbose 为True,返回数据的显示数据,会转换为choice的内容,为False, 返回数据的实际值
fields 指定了要显示的字段
extra_fields 指定了要特殊处理的非field,比如是函数
remove_fields 指定了不显示的字段
'''
field_list = []
for field in self.__class__._meta.fields:
if field.name in remove_fields:
# 不显示的字段,跳过循环
continue
if fields and field.name not in fields:
# fields 不为空列表,即指定了要显示的字段,并且field.name 不再指定的列表中,跳过循环
continue
if field.verbose_name and field_verbose:
value_tuple = (field.verbose_name, self.get_field_value(field, value_verbose))
else:
value_tuple = (field.name, self.get_field_value(field, value_verbose))
field_list.append(value_tuple)
for name in extra_fields:
# 处理函数
method = getattr(self, name)
result = method()
value_tuple = (name, result)
field_list.append(value_tuple)
return field_list |
def get_url(request):
"""
通过menu_id,获取对应的URL
eg. /easyui/MenuListView/
"""
menu_id = request.GET.get('menu_id')
m_object = Menu.objects.get(pk=menu_id)
namespace = m_object.namespace
viewname = m_object.viewname
url_string = '%s:%s' %(namespace, viewname)
url = reverse(url_string)
return HttpResponse(url) |
def post(self, request, *args, **kwargs):
"""
Handles POST requests only
argument:
row_index HTML中第几行的标记,原值返回
app_label
model_name
pk app_label + model_name + pk 可以获取一个object
method object + method 得到要调用的方法
其它参数,html和method中同时定义, 在上面的方法中使用
"""
query_dict = dict(self.request.POST.items())
# row_index原值返回,在datagrid对应行显示结果
row_index = query_dict.pop('row_index')
# 如果命令执行成功,并且没有返回值,则返回 "text+'成功'" 的提示
text = query_dict.pop('text', None)
app_label = query_dict.pop('app_label')
model_name = query_dict.pop('model_name')
method = query_dict.pop('method')
pk = query_dict.pop('pk')
model = get_model(app_label, model_name)
object = model.objects.get(pk=pk)
try:
status = 0 # 0 success; else fail
func = getattr(object, method)
# query_dict中的其它参数传递给调用的方法, 所有参数都是字符串
print query_dict
return_value = func(**query_dict)
message = return_value
except Exception, error_message:
# ajax 处理失败
status = 1 # 1 means fail
message = unicode(error_message)
# 如果命令执行成功,并且没有返回值,则返回 "text+'成功'" 的提示
if not message:
message = text+'成功'
return self.render_to_json_response({'status':status, 'message':message, 'row_index':row_index}) |
def get_menu_checked(self, request):
"""
获取用户或者用户组checked的菜单列表
usermenu_form.html 中定义
usermenu 这两个model的定义类似,比如menus_checked和menus_show
groupmenu
@return eg. ['1', '8', '9', '10' ]
获取用户或者用户组的check_ids,会给出app_label, model_name, pk eg. /easyui/menulistview/?app_label=easyui&model_name=UserMenu&pk=1
"""
checked_id = []
qd = request.GET
query_dict = dict(qd.items())
if query_dict:
#object = get_object(**query_dict)
app_label = query_dict['app_label']
model_name = query_dict['model_name']
pk = query_dict['pk']
model = get_model(app_label, model_name)
object = model.objects.get(pk=pk)
checked_id = object.menus_checked.split(',')
return checked_id |
def fetch(self, url, path, filename):
"""Verify if the file is already downloaded and complete. If they don't
exists or if are not complete, use homura download function to fetch
files. Return a list with the path of the downloaded file and the size
of the remote file.
"""
logger.debug('initializing download in ', url)
remote_file_size = self.get_remote_file_size(url)
if exists(join(path, filename)):
size = getsize(join(path, filename))
if size == remote_file_size:
logger.error('%s already exists on your system' % filename)
print('%s already exists on your system' % filename)
return [join(path, filename), size]
logger.debug('Downloading: %s' % filename)
print('Downloading: %s' % filename)
fetch(url, path)
print('stored at %s' % path)
logger.debug('stored at %s' % path)
return [join(path, filename), remote_file_size] |
def validate_bands(self, bands):
"""Validate bands parameter."""
if not isinstance(bands, list):
logger.error('Parameter bands must be a "list"')
raise TypeError('Parameter bands must be a "list"')
valid_bands = list(range(1, 12)) + ['BQA']
for band in bands:
if band not in valid_bands:
logger.error('%s is not a valid band' % band)
raise InvalidBandError('%s is not a valid band' % band) |
def validate_sceneInfo(self):
"""Check scene name and whether remote file exists. Raises
WrongSceneNameError if the scene name is wrong.
"""
if self.sceneInfo.prefix not in self.__satellitesMap:
logger.error('Google Downloader: Prefix of %s (%s) is invalid'
% (self.sceneInfo.name, self.sceneInfo.prefix))
raise WrongSceneNameError('Google Downloader: Prefix of %s (%s) is invalid'
% (self.sceneInfo.name, self.sceneInfo.prefix)) |
def download(self, bands, download_dir=None, metadata=False):
"""Download remote .tar.bz file."""
super(GoogleDownloader, self).validate_bands(bands)
pattern = re.compile('^[^\s]+_(.+)\.tiff?', re.I)
image_list = []
band_list = ['B%i' % (i,) if isinstance(i, int) else i for i in bands]
if download_dir is None:
download_dir = DOWNLOAD_DIR
check_create_folder(join(download_dir, self.sceneInfo.name))
filename = "%s%s" % (self.sceneInfo.name, self.__remote_file_ext)
downloaded = self.fetch(self.remote_file_url, download_dir, filename)
try:
tar = tarfile.open(downloaded[0], 'r')
folder_path = join(download_dir, self.sceneInfo.name)
logger.debug('Starting data extraction in directory ', folder_path)
tar.extractall(folder_path)
remove(downloaded[0])
images_path = listdir(folder_path)
for image_path in images_path:
matched = pattern.match(image_path)
file_path = join(folder_path, image_path)
if matched and matched.group(1) in band_list:
image_list.append([file_path, getsize(file_path)])
elif matched:
remove(file_path)
except tarfile.ReadError as error:
logger.error('Error when extracting files: ', error)
print('Error when extracting files.')
return image_list |
def validate_sceneInfo(self):
"""Check whether sceneInfo is valid to download from AWS Storage."""
if self.sceneInfo.prefix not in self.__prefixesValid:
raise WrongSceneNameError('AWS: Prefix of %s (%s) is invalid'
% (self.sceneInfo.name, self.sceneInfo.prefix)) |
def remote_file_exists(self):
"""Verify whether the file (scene) exists on AWS Storage."""
url = join(self.base_url, 'index.html')
return super(AWSDownloader, self).remote_file_exists(url) |
def download(self, bands, download_dir=None, metadata=False):
"""Download each specified band and metadata."""
super(AWSDownloader, self).validate_bands(bands)
if download_dir is None:
download_dir = DOWNLOAD_DIR
dest_dir = check_create_folder(join(download_dir, self.sceneInfo.name))
downloaded = []
for band in bands:
if band == 'BQA':
filename = '%s_%s.%s' % (self.sceneInfo.name, band, self.__remote_file_ext)
else:
filename = '%s_B%s.%s' % (self.sceneInfo.name, band, self.__remote_file_ext)
band_url = join(self.base_url, filename)
downloaded.append(self.fetch(band_url, dest_dir, filename))
if metadata:
filename = '%s_MTL.txt' % (self.sceneInfo.name)
url = join(self.base_url, filename)
self.fetch(url, dest_dir, filename)
return downloaded |
def open_archive(fs_url, archive):
"""Open an archive on a filesystem.
This function tries to mimick the behaviour of `fs.open_fs` as closely
as possible: it accepts either a FS URL or a filesystem instance, and
will close all resources it had to open.
Arguments:
fs_url (FS or text_type): a FS URL, or a filesystem
instance, where the archive file is located.
archive (text_type): the path to the archive file on the
given filesystem.
Raises:
`fs.opener._errors.Unsupported`: when the archive type is not supported
(either the file extension is unknown or the opener requires unmet
dependencies).
Example:
>>> from fs.archive import open_archive
>>> with open_archive('mem://', 'test.tar.gz') as archive_fs:
... type(archive_fs)
<class 'fs.archive.tarfs.TarFS'>
Hint:
This function finds the entry points defined in group
``fs.archive.open_archive``, using the names of the entry point
as the registered extension.
"""
it = pkg_resources.iter_entry_points('fs.archive.open_archive')
entry_point = next((ep for ep in it if archive.endswith(ep.name)), None)
if entry_point is None:
raise UnsupportedProtocol(
'unknown archive extension: {}'.format(archive))
try:
archive_opener = entry_point.load()
except pkg_resources.DistributionNotFound as df: # pragma: no cover
six.raise_from(UnsupportedProtocol(
'extension {} requires {}'.format(entry_point.name, df.req)), None)
try:
binfile = None
archive_fs = None
fs = open_fs(fs_url)
if issubclass(archive_opener, base.ArchiveFS):
try:
binfile = fs.openbin(archive, 'r+')
except errors.ResourceNotFound:
binfile = fs.openbin(archive, 'w')
except errors.ResourceReadOnly:
binfile = fs.openbin(archive, 'r')
archive_opener = archive_opener._read_fs_cls
elif issubclass(archive_opener, base.ArchiveReadFS):
binfile = fs.openbin(archive, 'r')
if not hasattr(binfile, 'name'):
binfile.name = basename(archive)
archive_fs = archive_opener(binfile)
except Exception:
getattr(archive_fs, 'close', lambda: None)()
getattr(binfile, 'close', lambda: None)()
raise
else:
return archive_fs |
def iso_name_slugify(name):
"""Slugify a name in the ISO-9660 way.
Example:
>>> slugify('épatant')
"_patant"
"""
name = name.encode('ascii', 'replace').replace(b'?', b'_')
return name.decode('ascii') |
def iso_name_increment(name, is_dir=False, max_length=8):
"""Increment an ISO name to avoid name collision.
Example:
>>> iso_name_increment('foo.txt')
'foo1.txt'
>>> iso_name_increment('bar10')
'bar11'
>>> iso_name_increment('bar99', max_length=5)
'ba100'
"""
# Split the extension if needed
if not is_dir and '.' in name:
name, ext = name.rsplit('.')
ext = '.{}'.format(ext)
else:
ext = ''
# Find the position of the last letter
for position, char in reversed(list(enumerate(name))):
if char not in string.digits:
break
# Extract the numbers and the text from the name
base, tag = name[:position+1], name[position+1:]
tag = str(int(tag or 0) + 1)
# Crop the text if the numbers are too long
if len(tag) + len(base) > max_length:
base = base[:max_length - len(tag)]
# Return the name with the extension
return ''.join([base, tag, ext]) |
def iso_path_slugify(path, path_table, is_dir=False, strict=True):
"""Slugify a path, maintaining a map with the previously slugified paths.
The path table is used to prevent slugified names from collisioning,
using the `iso_name_increment` function to deduplicate slugs.
Example:
>>> path_table = {'/': '/'}
>>> iso_path_slugify('/ébc.txt', path_table)
'/_BC.TXT'
>>> iso_path_slugify('/àbc.txt', path_table)
'/_BC2.TXT'
"""
# Split the path to extract the parent and basename
parent, base = split(path)
# Get the parent in slugified form
slug_parent = path_table[parent]
# Slugify the base name
if is_dir:
slug_base = iso_name_slugify(base)[:8]
else:
name, ext = base.rsplit('.', 1) if '.' in base else (base, '')
slug_base = '.'.join([iso_name_slugify(name)[:8], ext])
if strict:
slug_base = slug_base.upper()
# Deduplicate slug if needed and update path_table
slugs = set(path_table.values())
path_table[path] = slug = join(slug_parent, slug_base)
while slug in slugs:
slug_base = iso_name_increment(slug_base, is_dir)
path_table[path] = slug = join(slug_parent, slug_base)
# Return the unique slug
return slug |
def get_querydict(self):
"""
这个函数跟 self.method有关
self.method 暂时没用, querydict都是POST的
"""
if self.method:
querydict = getattr(self.request, self.method.upper())
else:
querydict = getattr(self.request, 'POST'.upper())
# copy make querydict mutable
query_dict = dict(querydict.items())
return query_dict |
def get_filter_dict(self):
'''
处理过滤字段
rows 一页显示多少行
page 第几页, 1开始
order desc, asc
sort 指定排序的字段 order_by(sort)
querydict 中的字段名和格式需要可以直接查询
'''
querydict = self.get_querydict()
# post ,在cookie中设置了csrfmiddlewaretoken
if querydict.has_key('csrfmiddlewaretoken'):
querydict.pop('csrfmiddlewaretoken')
try:
page = int(querydict.pop('page'))
rows = int(querydict.pop('rows'))
setattr(self, 'easyui_page', page)
setattr(self, 'easyui_rows', rows)
except KeyError:
setattr(self, 'easyui_page', None)
setattr(self, 'easyui_rows', None)
try:
# order-> string The default sort order, can only be 'asc' or 'desc'
# sort-> filed name
# order_by('id') order_by('-id')
order = querydict.pop('order')
sort = querydict.pop('sort')
# order = 1
# sort = 1
if order == 'asc':
setattr(self, 'easyui_order', sort)
else:
setattr(self, 'easyui_order', '-%s'% sort)
except KeyError:
setattr(self, 'easyui_order', None)
# 过滤掉那些没有填写数据的input字段
remove_key = []
for key in querydict:
if querydict[key] == '':
remove_key.append(key)
for key in remove_key:
querydict.pop(key)
return querydict |
def get_slice_start(self):
"""
返回queryset切片的头
"""
value = None
if self.easyui_page:
value = (self.easyui_page -1) * self.easyui_rows
return value |
def get_slice_end(self):
"""
返回queryset切片的尾巴
"""
value = None
if self.easyui_page:
value = self.easyui_page * self.easyui_rows
return value |
def get_queryset(self):
"""
queryset
"""
filter_dict = self.get_filter_dict()
queryset = super(EasyUIListMixin, self).get_queryset()
queryset = queryset.filter(**filter_dict)
if self.easyui_order:
# 如果指定了排序字段,返回排序的queryset
queryset = queryset.order_by(self.easyui_order)
return queryset |
def get_limit_queryset(self):
"""
返回分页之后的queryset
"""
queryset = self.get_queryset()
limit_queryset = queryset.all()[self.get_slice_start() :self.get_slice_end()] #等增加排序
return limit_queryset |
def get_easyui_context(self, **kwargs):
"""
初始化一个空的context
"""
context = {}
queryset = self.get_queryset()
limit_queryset = self.get_limit_queryset()
data = model_serialize(limit_queryset, self.extra_fields, self.remove_fields)
count = queryset.count()
# datagrid 返回的数据中,total是总的行数,rows是查询到的结果集
context.update(rows=data)
context.update(total=count)
return context |
def register_views(app_name, view_filename, urlpatterns=None):
"""
app_name APP名
view_filename views 所在的文件
urlpatterns url中已经存在的urlpatterns
return urlpatterns
只导入View结尾的,是类的视图
"""
app_module = __import__(app_name)
view_module = getattr(app_module, view_filename)
views = dir(view_module)
for view_name in views:
if view_name.endswith('View'):
view = getattr(view_module, view_name)
if isinstance(view, object):
if urlpatterns:
urlpatterns += patterns('',
url(r'^(?i)%s/$' % view_name, view.as_view(), name=view_name),
)
else:
urlpatterns = patterns('',
url(r'^(?i)%s/$' % view_name, view.as_view(), name=view_name),
)
else:
pass
return urlpatterns |
def get_template_names(self):
"""
datagrid的默认模板
"""
names = super(EasyUIDatagridView, self).get_template_names()
names.append('easyui/datagrid.html')
return names |
def get_template_names(self):
"""
datagrid的默认模板
"""
names = super(EasyUICreateView, self).get_template_names()
names.append('easyui/form.html')
return names |
def get_template_names(self):
"""
datagrid的默认模板
"""
names = super(EasyUIUpdateView, self).get_template_names()
names.append('easyui/form.html')
return names |
def get_template_names(self):
"""
datagrid的默认模板
"""
names = super(EasyUIDeleteView, self).get_template_names()
names.append('easyui/confirm_delete.html')
return names |
def get_template_names(self):
"""
datagrid的默认模板
"""
names = super(CommandDatagridView, self).get_template_names()
names.append('easyui/command_datagrid.html')
return names |
def dispatch(self, request, *args, **kwargs):
"""
增加了权限控制,当self存在model和permission_required时,才会检查权限
"""
if getattr(self, 'model', None) and self.permission_required:
app_label = self.model._meta.app_label
model_name = self.model.__name__.lower()
permission_required = self.permission_required.lower()
permission = '%(app_label)s.%(permission_required)s_%(model_name)s' % {
'app_label':app_label,
'permission_required':permission_required,
'model_name': model_name
}
if not self.request.user.has_perm(permission):
return HttpResponseRedirect(reverse_lazy('easyui:login'))
return super(LoginRequiredMixin, self).dispatch(request, *args, **kwargs) |
def writable_path(path):
"""Test whether a path can be written to.
"""
if os.path.exists(path):
return os.access(path, os.W_OK)
try:
with open(path, 'w'):
pass
except (OSError, IOError):
return False
else:
os.remove(path)
return True |
def writable_stream(handle):
"""Test whether a stream can be written to.
"""
if isinstance(handle, io.IOBase) and sys.version_info >= (3, 5):
return handle.writable()
try:
handle.write(b'')
except (io.UnsupportedOperation, IOError):
return False
else:
return True |
def from_curvilinear(cls, x, y, z, formatter=numpy_formatter):
"""Construct a contour generator from a curvilinear grid.
Note
----
This is an alias for the default constructor.
Parameters
----------
x : array_like
x coordinates of each point in `z`. Must be the same size as `z`.
y : array_like
y coordinates of each point in `z`. Must be the same size as `z`.
z : array_like
The 2-dimensional curvilinear grid of data to compute
contours for. Masked arrays are supported.
formatter : callable
A conversion function to convert from the internal `Matplotlib`_
contour format to an external format. See :ref:`formatters` for
more information.
Returns
-------
: :class:`QuadContourGenerator`
Initialized contour generator.
"""
return cls(x, y, z, formatter) |
def from_rectilinear(cls, x, y, z, formatter=numpy_formatter):
"""Construct a contour generator from a rectilinear grid.
Parameters
----------
x : array_like
x coordinates of each column of `z`. Must be the same length as
the number of columns in `z`. (len(x) == z.shape[1])
y : array_like
y coordinates of each row of `z`. Must be the same length as the
number of columns in `z`. (len(y) == z.shape[0])
z : array_like
The 2-dimensional rectilinear grid of data to compute contours for.
Masked arrays are supported.
formatter : callable
A conversion function to convert from the internal `Matplotlib`_
contour format to an external format. See :ref:`formatters` for
more information.
Returns
-------
: :class:`QuadContourGenerator`
Initialized contour generator.
"""
x = np.asarray(x, dtype=np.float64)
y = np.asarray(y, dtype=np.float64)
z = np.ma.asarray(z, dtype=np.float64)
# Check arguments.
if x.ndim != 1:
raise TypeError(
"'x' must be a 1D array but is a {:d}D array".format(x.ndim))
if y.ndim != 1:
raise TypeError(
"'y' must be a 1D array but is a {:d}D array".format(y.ndim))
if z.ndim != 2:
raise TypeError(
"'z' must be a 2D array but it a {:d}D array".format(z.ndim))
if x.size != z.shape[1]:
raise TypeError(
("the length of 'x' must be equal to the number of columns in "
"'z' but the length of 'x' is {:d} and 'z' has {:d} "
"columns").format(x.size, z.shape[1]))
if y.size != z.shape[0]:
raise TypeError(
("the length of 'y' must be equal to the number of rows in "
"'z' but the length of 'y' is {:d} and 'z' has {:d} "
"rows").format(y.size, z.shape[0]))
# Convert to curvilinear format and call constructor.
y, x = np.meshgrid(y, x, indexing='ij')
return cls(x, y, z, formatter) |
def from_uniform(
cls, z, origin=(0, 0), step=(1, 1), formatter=numpy_formatter):
"""Construct a contour generator from a uniform grid.
NOTE
----
The default `origin` and `step` values is equivalent to calling
:meth:`matplotlib.axes.Axes.contour` with only the `z` argument.
Parameters
----------
z : array_like
The 2-dimensional uniform grid of data to compute contours for.
Masked arrays are supported.
origin : (number.Number, number.Number)
The (x, y) coordinate of data point `z[0,0]`.
step : (number.Number, number.Number)
The (x, y) distance between data points in `z`.
formatter : callable
A conversion function to convert from the internal `Matplotlib`_
contour format to an external format. See :ref:`formatters` for
more information.
Returns
-------
: :class:`QuadContourGenerator`
Initialized contour generator.
"""
z = np.ma.asarray(z, dtype=np.float64)
# Check arguments.
if z.ndim != 2:
raise TypeError(
"'z' must be a 2D array but it a {:d}D array".format(z.ndim))
if len(origin) != 2:
raise TypeError(
"'origin' must be of length 2 but has length {:d}".format(
len(origin)))
if len(step) != 2:
raise TypeError(
"'step' must be of length 2 but has length {:d}".format(
len(step)))
if any(s == 0 for s in step):
raise ValueError(
"'step' must have non-zero values but is {:s}".format(
str(step)))
# Convert to curvilinear format and call constructor.
y, x = np.mgrid[
origin[0]:(origin[0]+step[0]*z.shape[0]):step[0],
origin[1]:(origin[1]+step[1]*z.shape[1]):step[1]]
return cls(x, y, z, formatter) |
def options(self, parser, env=None):
"""
Sphinx config file that can optionally take the following python
template string arguments:
``database_name``
``database_password``
``database_username``
``database_host``
``database_port``
``sphinx_search_data_dir``
``searchd_log_dir``
"""
if env is None:
env = os.environ
parser.add_option(
'--sphinx-config-tpl',
help='Path to the Sphinx configuration file template.',
)
super(SphinxSearchPlugin, self).options(parser, env) |
def _wait_for_connection(self, port):
"""
Wait until we can make a socket connection to sphinx.
"""
connected = False
max_tries = 10
num_tries = 0
wait_time = 0.5
while not connected or num_tries >= max_tries:
time.sleep(wait_time)
try:
af = socket.AF_INET
addr = ('127.0.0.1', port)
sock = socket.socket(af, socket.SOCK_STREAM)
sock.connect(addr)
except socket.error:
if sock:
sock.close()
num_tries += 1
continue
connected = True
if not connected:
print("Error connecting to sphinx searchd", file=sys.stderr) |
def get_unique_token(self):
"""
Get a unique token for usage in differentiating test runs that need to
run in parallel.
"""
if self._unique_token is None:
self._unique_token = self._random_token()
return self._unique_token |
def _random_token(self, bits=128):
"""
Generates a random token, using the url-safe base64 alphabet.
The "bits" argument specifies the bits of randomness to use.
"""
alphabet = string.ascii_letters + string.digits + '-_'
# alphabet length is 64, so each letter provides lg(64) = 6 bits
num_letters = int(math.ceil(bits / 6.0))
return ''.join(random.choice(alphabet) for i in range(num_letters)) |
def url(self):
"""Returns the url of the poll. If the poll has not been submitted yet,
an empty string is returned instead.
"""
if self.id is None:
return ''
return '{}/{}'.format(strawpoll.API._BASE_URL, self.id) |
def get_poll(self, arg, *, request_policy=None):
"""Retrieves a poll from strawpoll.
:param arg: Either the ID of the poll or its strawpoll url.
:param request_policy: Overrides :attr:`API.requests_policy` for that \
request.
:type request_policy: Optional[:class:`RequestsPolicy`]
:raises HTTPException: Requesting the poll failed.
:returns: A poll constructed with the requested data.
:rtype: :class:`Poll`
"""
if isinstance(arg, str):
# Maybe we received an url to parse
match = self._url_re.match(arg)
if match:
arg = match.group('id')
return self._http_client.get('{}/{}'.format(self._POLLS, arg),
request_policy=request_policy,
cls=strawpoll.Poll) |
def submit_poll(self, poll, *, request_policy=None):
"""Submits a poll on strawpoll.
:param poll: The poll to submit.
:type poll: :class:`Poll`
:param request_policy: Overrides :attr:`API.requests_policy` for that \
request.
:type request_policy: Optional[:class:`RequestsPolicy`]
:raises ExistingPoll: This poll instance has already been submitted.
:raises HTTPException: The submission failed.
:returns: The given poll updated with the data sent back from the submission.
:rtype: :class:`Poll`
.. note::
Only polls that have a non empty title and between 2 and 30 options
can be submitted.
"""
if poll.id is not None:
raise ExistingPoll()
options = poll.options
data = {
'title': poll.title,
'options': options,
'multi': poll.multi,
'dupcheck': poll.dupcheck,
'captcha': poll.captcha
}
return self._http_client.post(self._POLLS,
data=data,
request_policy=request_policy,
cls=strawpoll.Poll) |
def numpy_formatter(_, vertices, codes=None):
"""`NumPy`_ style contour formatter.
Contours are returned as a list of Nx2 arrays containing the x and y
vertices of the contour line.
For filled contours the direction of vertices matters:
* CCW (ACW): The vertices give the exterior of a contour polygon.
* CW: The vertices give a hole of a contour polygon. This hole will
always be inside the exterior of the last contour exterior.
.. note:: This is the fastest format.
.. _NumPy: http://www.numpy.org
"""
if codes is None:
return vertices
numpy_vertices = []
for vertices_, codes_ in zip(vertices, codes):
starts = np.nonzero(codes_ == MPLPATHCODE.MOVETO)[0]
stops = np.nonzero(codes_ == MPLPATHCODE.CLOSEPOLY)[0]
for start, stop in zip(starts, stops):
numpy_vertices.append(vertices_[start:stop+1, :])
return numpy_vertices |
def matlab_formatter(level, vertices, codes=None):
"""`MATLAB`_ style contour formatter.
Contours are returned as a single Nx2, `MATLAB`_ style, contour array.
There are two types of rows in this format:
* Header: The first element of a header row is the level of the contour
(the lower level for filled contours) and the second element is the
number of vertices (to follow) belonging to this contour line.
* Vertex: x,y coordinate pairs of the vertex.
A header row is always followed by the coresponding number of vertices.
Another header row may follow if there are more contour lines.
For filled contours the direction of vertices matters:
* CCW (ACW): The vertices give the exterior of a contour polygon.
* CW: The vertices give a hole of a contour polygon. This hole will
always be inside the exterior of the last contour exterior.
For further explanation of this format see the `Mathworks documentation
<https://www.mathworks.com/help/matlab/ref/contour-properties.html#prop_ContourMatrix>`_
noting that the MATLAB format used in the `contours` package is the
transpose of that used by `MATLAB`_ (since `MATLAB`_ is column-major
and `NumPy`_ is row-major by default).
.. _NumPy: http://www.numpy.org
.. _MATLAB: https://www.mathworks.com/products/matlab.html
"""
vertices = numpy_formatter(level, vertices, codes)
if codes is not None:
level = level[0]
headers = np.vstack((
[v.shape[0] for v in vertices],
[level]*len(vertices))).T
vertices = np.vstack(
list(it.__next__() for it in
itertools.cycle((iter(headers), iter(vertices)))))
return vertices |
def shapely_formatter(_, vertices, codes=None):
"""`Shapely`_ style contour formatter.
Contours are returned as a list of :class:`shapely.geometry.LineString`,
:class:`shapely.geometry.LinearRing`, and :class:`shapely.geometry.Point`
geometry elements.
Filled contours return a list of :class:`shapely.geometry.Polygon`
elements instead.
.. note:: If possible, `Shapely speedups`_ will be enabled.
.. _Shapely: http://toblerity.org/shapely/manual.html
.. _Shapely speedups: http://toblerity.org/shapely/manual.html#performance
See Also
--------
`descartes <https://bitbucket.org/sgillies/descartes/>`_ : Use `Shapely`_
or GeoJSON-like geometric objects as matplotlib paths and patches.
"""
elements = []
if codes is None:
for vertices_ in vertices:
if np.all(vertices_[0, :] == vertices_[-1, :]):
# Contour is single point.
if len(vertices) < 3:
elements.append(Point(vertices_[0, :]))
# Contour is closed.
else:
elements.append(LinearRing(vertices_))
# Contour is open.
else:
elements.append(LineString(vertices_))
else:
for vertices_, codes_ in zip(vertices, codes):
starts = np.nonzero(codes_ == MPLPATHCODE.MOVETO)[0]
stops = np.nonzero(codes_ == MPLPATHCODE.CLOSEPOLY)[0]
try:
rings = [LinearRing(vertices_[start:stop+1, :])
for start, stop in zip(starts, stops)]
elements.append(Polygon(rings[0], rings[1:]))
except ValueError as err:
# Verify error is from degenerate (single point) polygon.
if np.any(stop - start - 1 == 0):
# Polygon is single point, remove the polygon.
if stops[0] < starts[0]+2:
pass
# Polygon has single point hole, remove the hole.
else:
rings = [
LinearRing(vertices_[start:stop+1, :])
for start, stop in zip(starts, stops)
if stop >= start+2]
elements.append(Polygon(rings[0], rings[1:]))
else:
raise(err)
return elements |
def contour(self, level):
"""Get contour lines at the given level.
Parameters
----------
level : numbers.Number
The data level to calculate the contour lines for.
Returns
-------
:
The result of the :attr:`formatter` called on the contour at the
given `level`.
"""
if not isinstance(level, numbers.Number):
raise TypeError(
("'_level' must be of type 'numbers.Number' but is "
"'{:s}'").format(type(level)))
vertices = self._contour_generator.create_contour(level)
return self.formatter(level, vertices) |
def filled_contour(self, min=None, max=None):
"""Get contour polygons between the given levels.
Parameters
----------
min : numbers.Number or None
The minimum data level of the contour polygon. If :obj:`None`,
``numpy.finfo(numpy.float64).min`` will be used.
max : numbers.Number or None
The maximum data level of the contour polygon. If :obj:`None`,
``numpy.finfo(numpy.float64).max`` will be used.
Returns
-------
:
The result of the :attr:`formatter` called on the filled contour
between `min` and `max`.
"""
# pylint: disable=redefined-builtin,redefined-outer-name
# Get the contour vertices.
if min is None:
min = np.finfo(np.float64).min
if max is None:
max = np.finfo(np.float64).max
vertices, codes = (
self._contour_generator.create_filled_contour(min, max))
return self.formatter((min, max), vertices, codes) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.