Search is not available for this dataset
text
stringlengths 75
104k
|
---|
def complex_has_member(graph: BELGraph, complex_node: ComplexAbundance, member_node: BaseEntity) -> bool:
"""Does the given complex contain the member?"""
return any( # TODO can't you look in the members of the complex object (if it's enumerated)
v == member_node
for _, v, data in graph.out_edges(complex_node, data=True)
if data[RELATION] == HAS_COMPONENT
) |
def complex_increases_activity(graph: BELGraph, u: BaseEntity, v: BaseEntity, key: str) -> bool:
"""Return if the formation of a complex with u increases the activity of v."""
return (
isinstance(u, (ComplexAbundance, NamedComplexAbundance)) and
complex_has_member(graph, u, v) and
part_has_modifier(graph[u][v][key], OBJECT, ACTIVITY)
) |
def find_activations(graph: BELGraph):
"""Find edges that are A - A, meaning that some conditions in the edge best describe the interaction."""
for u, v, key, data in graph.edges(keys=True, data=True):
if u != v:
continue
bel = graph.edge_to_bel(u, v, data)
line = data.get(LINE)
if line is None:
continue # this was inferred, so need to investigate another way
elif has_protein_modification_increases_activity(graph, u, v, key):
print(line, '- pmod changes -', bel)
find_related(graph, v, data)
elif has_degradation_increases_activity(data):
print(line, '- degradation changes -', bel)
find_related(graph, v, data)
elif has_translocation_increases_activity(data):
print(line, '- translocation changes -', bel)
find_related(graph, v, data)
elif complex_increases_activity(graph, u, v, key):
print(line, '- complex changes - ', bel)
find_related(graph, v, data)
elif has_same_subject_object(graph, u, v, key):
print(line, '- same sub/obj -', bel)
else:
print(line, '- *** - ', bel) |
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = itt.tee(iterable)
next(b, None)
return zip(a, b) |
def rank_path(graph, path, edge_ranking=None):
"""Takes in a path (a list of nodes in the graph) and calculates a score
:param pybel.BELGraph graph: A BEL graph
:param list[tuple] path: A list of nodes in the path (includes terminal nodes)
:param dict edge_ranking: A dictionary of {relationship: score}
:return: The score for the edge
:rtype: int
"""
edge_ranking = default_edge_ranking if edge_ranking is None else edge_ranking
return sum(max(edge_ranking[d[RELATION]] for d in graph.edge[u][v].values()) for u, v in pairwise(path)) |
def find_root_in_path(graph, path_nodes):
"""Find the 'root' of the path -> The node with the lowest out degree, if multiple:
root is the one with the highest out degree among those with lowest out degree
:param pybel.BELGraph graph: A BEL Graph
:param list[tuple] path_nodes: A list of nodes in their order in a path
:return: A pair of the graph: graph of the path and the root node
:rtype: tuple[pybel.BELGraph,tuple]
"""
path_graph = graph.subgraph(path_nodes)
# node_in_degree_tuple: list of tuples with (node,in_degree_of_node) in ascending order
node_in_degree_tuple = sorted([(n, d) for n, d in path_graph.in_degree().items()], key=itemgetter(1))
# node_out_degree_tuple: ordered list of tuples with (node,in_degree_of_node) in descending order
node_out_degree_tuple = sorted([(n, d) for n, d in path_graph.out_degree().items()], key=itemgetter(1),
reverse=True)
# In case all have the same in degree it needs to be reference before
tied_root_index = 0
# Get index where the min in_degree stops (in case they are duplicates)
for i in range(0, (len(node_in_degree_tuple) - 1)):
if node_in_degree_tuple[i][1] < node_in_degree_tuple[i + 1][1]:
tied_root_index = i
break
# If there are multiple nodes with minimum in_degree take the one with max out degree
# (in case multiple have the same out degree pick one random)
if tied_root_index != 0:
root_tuple = max(node_out_degree_tuple[:tied_root_index], key=itemgetter(1))
else:
root_tuple = node_in_degree_tuple[0]
return path_graph, root_tuple[0] |
def summarize_edge_filter(graph: BELGraph, edge_predicates: EdgePredicates) -> None:
"""Print a summary of the number of edges passing a given set of filters."""
passed = count_passed_edge_filter(graph, edge_predicates)
print('{}/{} edges passed {}'.format(
passed, graph.number_of_edges(),
(
', '.join(edge_filter.__name__ for edge_filter in edge_predicates)
if isinstance(edge_predicates, Iterable) else
edge_predicates.__name__
)
)) |
def build_edge_data_filter(annotations: Mapping, partial_match: bool = True) -> EdgePredicate: # noqa: D202
"""Build a filter that keeps edges whose data dictionaries are super-dictionaries to the given dictionary.
:param annotations: The annotation query dict to match
:param partial_match: Should the query values be used as partial or exact matches? Defaults to :code:`True`.
"""
@edge_predicate
def annotation_dict_filter(data: EdgeData) -> bool:
"""A filter that matches edges with the given dictionary as a sub-dictionary."""
return subdict_matches(data, annotations, partial_match=partial_match)
return annotation_dict_filter |
def build_pmid_exclusion_filter(pmids: Strings) -> EdgePredicate:
"""Fail for edges with citations whose references are one of the given PubMed identifiers.
:param pmids: A PubMed identifier or list of PubMed identifiers to filter against
"""
if isinstance(pmids, str):
@edge_predicate
def pmid_exclusion_filter(data: EdgeData) -> bool:
"""Fail for edges with PubMed citations matching the contained PubMed identifier.
:return: If the edge has a PubMed citation with the contained PubMed identifier
"""
return has_pubmed(data) and data[CITATION][CITATION_REFERENCE] != pmids
elif isinstance(pmids, Iterable):
pmids = set(pmids)
@edge_predicate
def pmid_exclusion_filter(data: EdgeData) -> bool:
"""Pass for edges with PubMed citations matching one of the contained PubMed identifiers.
:return: If the edge has a PubMed citation with one of the contained PubMed identifiers
"""
return has_pubmed(data) and data[CITATION][CITATION_REFERENCE] not in pmids
else:
raise TypeError
return pmid_exclusion_filter |
def node_has_namespace(node: BaseEntity, namespace: str) -> bool:
"""Pass for nodes that have the given namespace."""
ns = node.get(NAMESPACE)
return ns is not None and ns == namespace |
def node_has_namespaces(node: BaseEntity, namespaces: Set[str]) -> bool:
"""Pass for nodes that have one of the given namespaces."""
ns = node.get(NAMESPACE)
return ns is not None and ns in namespaces |
def build_source_namespace_filter(namespaces: Strings) -> EdgePredicate:
"""Pass for edges whose source nodes have the given namespace or one of the given namespaces.
:param namespaces: The namespace or namespaces to filter by
"""
if isinstance(namespaces, str):
def source_namespace_filter(_, u: BaseEntity, __, ___) -> bool:
return node_has_namespace(u, namespaces)
elif isinstance(namespaces, Iterable):
namespaces = set(namespaces)
def source_namespace_filter(_, u: BaseEntity, __, ___) -> bool:
return node_has_namespaces(u, namespaces)
else:
raise TypeError
return source_namespace_filter |
def build_target_namespace_filter(namespaces: Strings) -> EdgePredicate:
"""Only passes for edges whose target nodes have the given namespace or one of the given namespaces
:param namespaces: The namespace or namespaces to filter by
"""
if isinstance(namespaces, str):
def target_namespace_filter(_, __, v: BaseEntity, ___) -> bool:
return node_has_namespace(v, namespaces)
elif isinstance(namespaces, Iterable):
namespaces = set(namespaces)
def target_namespace_filter(_, __, v: BaseEntity, ___) -> bool:
return node_has_namespaces(v, namespaces)
else:
raise TypeError
return target_namespace_filter |
def search_node_namespace_names(graph, query, namespace):
"""Search for nodes with the given namespace(s) and whose names containing a given string(s).
:param pybel.BELGraph graph: A BEL graph
:param query: The search query
:type query: str or iter[str]
:param namespace: The namespace(s) to filter
:type namespace: str or iter[str]
:return: An iterator over nodes whose names match the search query
:rtype: iter
"""
node_predicates = [
namespace_inclusion_builder(namespace),
build_node_name_search(query)
]
return filter_nodes(graph, node_predicates) |
def get_cutoff(value: float, cutoff: Optional[float] = None) -> int:
"""Assign if a value is greater than or less than a cutoff."""
cutoff = cutoff if cutoff is not None else 0
if value > cutoff:
return 1
if value < (-1 * cutoff):
return - 1
return 0 |
def calculate_concordance_helper(graph: BELGraph,
key: str,
cutoff: Optional[float] = None,
) -> Tuple[int, int, int, int]:
"""Help calculate network-wide concordance
Assumes data already annotated with given key
:param graph: A BEL graph
:param key: The node data dictionary key storing the logFC
:param cutoff: The optional logFC cutoff for significance
"""
scores = defaultdict(int)
for u, v, k, d in graph.edges(keys=True, data=True):
c = edge_concords(graph, u, v, k, d, key, cutoff=cutoff)
scores[c] += 1
return (
scores[Concordance.correct],
scores[Concordance.incorrect],
scores[Concordance.ambiguous],
scores[Concordance.unassigned],
) |
def calculate_concordance(graph: BELGraph, key: str, cutoff: Optional[float] = None,
use_ambiguous: bool = False) -> float:
"""Calculates network-wide concordance.
Assumes data already annotated with given key
:param graph: A BEL graph
:param key: The node data dictionary key storing the logFC
:param cutoff: The optional logFC cutoff for significance
:param use_ambiguous: Compare to ambiguous edges as well
"""
correct, incorrect, ambiguous, _ = calculate_concordance_helper(graph, key, cutoff=cutoff)
try:
return correct / (correct + incorrect + (ambiguous if use_ambiguous else 0))
except ZeroDivisionError:
return -1.0 |
def one_sided(value: float, distribution: List[float]) -> float:
"""Calculate the one-sided probability of getting a value more extreme than the distribution."""
assert distribution
return sum(value < element for element in distribution) / len(distribution) |
def calculate_concordance_probability(graph: BELGraph,
key: str,
cutoff: Optional[float] = None,
permutations: Optional[int] = None,
percentage: Optional[float] = None,
use_ambiguous: bool = False,
permute_type: str = 'shuffle_node_data',
) -> Tuple[float, List[float], float]:
"""Calculates a graph's concordance as well as its statistical probability.
:param graph: A BEL graph
:param str key: The node data dictionary key storing the logFC
:param float cutoff: The optional logFC cutoff for significance
:param int permutations: The number of random permutations to test. Defaults to 500
:param float percentage: The percentage of the graph's edges to maintain. Defaults to 0.9
:param bool use_ambiguous: Compare to ambiguous edges as well
:returns: A triple of the concordance score, the null distribution, and the p-value.
"""
if permute_type == 'random_by_edges':
permute_func = partial(random_by_edges, percentage=percentage)
elif permute_type == 'shuffle_node_data':
permute_func = partial(shuffle_node_data, key=key, percentage=percentage)
elif permute_type == 'shuffle_relations':
permute_func = partial(shuffle_relations, percentage=percentage)
else:
raise ValueError('Invalid permute_type: {}'.format(permute_type))
graph: BELGraph = graph.copy()
collapse_to_genes(graph)
collapse_all_variants(graph)
score = calculate_concordance(graph, key, cutoff=cutoff)
distribution = []
for _ in range(permutations or 500):
permuted_graph = permute_func(graph)
permuted_graph_scores = calculate_concordance(permuted_graph, key, cutoff=cutoff, use_ambiguous=use_ambiguous)
distribution.append(permuted_graph_scores)
return score, distribution, one_sided(score, distribution) |
def calculate_concordance_by_annotation(graph, annotation, key, cutoff=None):
"""Returns the concordance scores for each stratified graph based on the given annotation
:param pybel.BELGraph graph: A BEL graph
:param str annotation: The annotation to group by.
:param str key: The node data dictionary key storing the logFC
:param float cutoff: The optional logFC cutoff for significance
:rtype: dict[str,tuple]
"""
return {
value: calculate_concordance(subgraph, key, cutoff=cutoff)
for value, subgraph in get_subgraphs_by_annotation(graph, annotation).items()
} |
def calculate_concordance_probability_by_annotation(graph, annotation, key, cutoff=None, permutations=None,
percentage=None,
use_ambiguous=False):
"""Returns the results of concordance analysis on each subgraph, stratified by the given annotation.
:param pybel.BELGraph graph: A BEL graph
:param str annotation: The annotation to group by.
:param str key: The node data dictionary key storing the logFC
:param float cutoff: The optional logFC cutoff for significance
:param int permutations: The number of random permutations to test. Defaults to 500
:param float percentage: The percentage of the graph's edges to maintain. Defaults to 0.9
:param bool use_ambiguous: Compare to ambiguous edges as well
:rtype: dict[str,tuple]
"""
result = [
(value, calculate_concordance_probability(
subgraph,
key,
cutoff=cutoff,
permutations=permutations,
percentage=percentage,
use_ambiguous=use_ambiguous,
))
for value, subgraph in get_subgraphs_by_annotation(graph, annotation).items()
]
return dict(result) |
def _get_drug_target_interactions(manager: Optional['bio2bel_drugbank.manager'] = None) -> Mapping[str, List[str]]:
"""Get a mapping from drugs to their list of gene."""
if manager is None:
import bio2bel_drugbank
manager = bio2bel_drugbank.Manager()
if not manager.is_populated():
manager.populate()
return manager.get_drug_to_hgnc_symbols() |
def multi_run_epicom(graphs: Iterable[BELGraph], path: Union[None, str, TextIO]) -> None:
"""Run EpiCom analysis on many graphs."""
if isinstance(path, str):
with open(path, 'w') as file:
_multi_run_helper_file_wrapper(graphs, file)
else:
_multi_run_helper_file_wrapper(graphs, path) |
def main():
"""Convert the Alzheimer's and Parkinson's disease NeuroMMSig excel sheets to BEL."""
logging.basicConfig(level=logging.INFO)
log.setLevel(logging.INFO)
bms_base = get_bms_base()
neurommsig_base = get_neurommsig_base()
neurommsig_excel_dir = os.path.join(neurommsig_base, 'resources', 'excels', 'neurommsig')
nift_values = get_nift_values()
log.info('Starting Alzheimers')
ad_path = os.path.join(neurommsig_excel_dir, 'alzheimers', 'alzheimers.xlsx')
ad_df = preprocess(ad_path)
with open(os.path.join(bms_base, 'aetionomy', 'alzheimers', 'neurommsigdb_ad.bel'), 'w') as ad_file:
write_neurommsig_bel(ad_file, ad_df, mesh_alzheimer, nift_values)
log.info('Starting Parkinsons')
pd_path = os.path.join(neurommsig_excel_dir, 'parkinsons', 'parkinsons.xlsx')
pd_df = preprocess(pd_path)
with open(os.path.join(bms_base, 'aetionomy', 'parkinsons', 'neurommsigdb_pd.bel'), 'w') as pd_file:
write_neurommsig_bel(pd_file, pd_df, mesh_parkinson, nift_values) |
def remove_inconsistent_edges(graph: BELGraph) -> None:
"""Remove all edges between node pairs with inconsistent edges.
This is the all-or-nothing approach. It would be better to do more careful investigation of the evidences during
curation.
"""
for u, v in get_inconsistent_edges(graph):
edges = [(u, v, k) for k in graph[u][v]]
graph.remove_edges_from(edges) |
def get_walks_exhaustive(graph, node, length):
"""Gets all walks under a given length starting at a given node
:param networkx.Graph graph: A graph
:param node: Starting node
:param int length: The length of walks to get
:return: A list of paths
:rtype: list[tuple]
"""
if 0 == length:
return (node,),
return tuple(
(node, key) + path
for neighbor in graph.edge[node]
for path in get_walks_exhaustive(graph, neighbor, length - 1)
if node not in path
for key in graph.edge[node][neighbor]
) |
def match_simple_metapath(graph, node, simple_metapath):
"""Matches a simple metapath starting at the given node
:param pybel.BELGraph graph: A BEL graph
:param tuple node: A BEL node
:param list[str] simple_metapath: A list of BEL Functions
:return: An iterable over paths from the node matching the metapath
:rtype: iter[tuple]
"""
if 0 == len(simple_metapath):
yield node,
else:
for neighbor in graph.edges[node]:
if graph.nodes[neighbor][FUNCTION] == simple_metapath[0]:
for path in match_simple_metapath(graph, neighbor, simple_metapath[1:]):
if node not in path:
yield (node,) + path |
def build_database(manager: pybel.Manager, annotation_url: Optional[str] = None) -> None:
"""Build a database of scores for NeuroMMSig annotated graphs.
1. Get all networks that use the Subgraph annotation
2. run on each
"""
annotation_url = annotation_url or NEUROMMSIG_DEFAULT_URL
annotation = manager.get_namespace_by_url(annotation_url)
if annotation is None:
raise RuntimeError('no graphs in database with given annotation')
networks = get_networks_using_annotation(manager, annotation)
dtis = ...
for network in networks:
graph = network.as_bel()
scores = epicom_on_graph(graph, dtis)
for (drug_name, subgraph_name), score in scores.items():
drug_model = get_drug_model(manager, drug_name)
subgraph_model = manager.get_annotation_entry(annotation_url, subgraph_name)
score_model = Score(
network=network,
annotation=subgraph_model,
drug=drug_model,
score=score
)
manager.session.add(score_model)
t = time.time()
logger.info('committing scores')
manager.session.commit()
logger.info('committed scores in %.2f seconds', time.time() - t) |
def calculate_average_scores_on_graph(
graph: BELGraph,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
use_tqdm: bool = False,
):
"""Calculate the scores over all biological processes in the sub-graph.
As an implementation, it simply computes the sub-graphs then calls :func:`calculate_average_scores_on_subgraphs` as
described in that function's documentation.
:param graph: A BEL graph with heats already on the nodes
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param use_tqdm: Should there be a progress bar for runners?
:return: A dictionary of {pybel node tuple: results tuple}
:rtype: dict[tuple, tuple]
Suggested usage with :mod:`pandas`:
>>> import pandas as pd
>>> from pybel_tools.analysis.heat import calculate_average_scores_on_graph
>>> graph = ... # load graph and data
>>> scores = calculate_average_scores_on_graph(graph)
>>> pd.DataFrame.from_items(scores.items(), orient='index', columns=RESULT_LABELS)
"""
subgraphs = generate_bioprocess_mechanisms(graph, key=key)
scores = calculate_average_scores_on_subgraphs(
subgraphs,
key=key,
tag=tag,
default_score=default_score,
runs=runs,
use_tqdm=use_tqdm
)
return scores |
def calculate_average_scores_on_subgraphs(
subgraphs: Mapping[H, BELGraph],
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
use_tqdm: bool = False,
tqdm_kwargs: Optional[Mapping[str, Any]] = None,
) -> Mapping[H, Tuple[float, float, float, float, int, int]]:
"""Calculate the scores over precomputed candidate mechanisms.
:param subgraphs: A dictionary of keys to their corresponding subgraphs
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param use_tqdm: Should there be a progress bar for runners?
:return: A dictionary of keys to results tuples
Example Usage:
>>> import pandas as pd
>>> from pybel_tools.generation import generate_bioprocess_mechanisms
>>> from pybel_tools.analysis.heat import calculate_average_scores_on_subgraphs
>>> # load graph and data
>>> graph = ...
>>> candidate_mechanisms = generate_bioprocess_mechanisms(graph)
>>> scores = calculate_average_scores_on_subgraphs(candidate_mechanisms)
>>> pd.DataFrame.from_items(scores.items(), orient='index', columns=RESULT_LABELS)
"""
results = {}
log.info('calculating results for %d candidate mechanisms using %d permutations', len(subgraphs), runs)
it = subgraphs.items()
if use_tqdm:
_tqdm_kwargs = dict(total=len(subgraphs), desc='Candidate mechanisms')
if tqdm_kwargs:
_tqdm_kwargs.update(tqdm_kwargs)
it = tqdm(it, **_tqdm_kwargs)
for node, subgraph in it:
number_first_neighbors = subgraph.in_degree(node)
number_first_neighbors = 0 if isinstance(number_first_neighbors, dict) else number_first_neighbors
mechanism_size = subgraph.number_of_nodes()
runners = workflow(subgraph, node, key=key, tag=tag, default_score=default_score, runs=runs)
scores = [runner.get_final_score() for runner in runners]
if 0 == len(scores):
results[node] = (
None,
None,
None,
None,
number_first_neighbors,
mechanism_size,
)
continue
scores = np.array(scores)
average_score = np.average(scores)
score_std = np.std(scores)
med_score = np.median(scores)
chi_2_stat, norm_p = stats.normaltest(scores)
results[node] = (
average_score,
score_std,
norm_p,
med_score,
number_first_neighbors,
mechanism_size,
)
return results |
def workflow(
graph: BELGraph,
node: BaseEntity,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
minimum_nodes: int = 1,
) -> List['Runner']:
"""Generate candidate mechanisms and run the heat diffusion workflow.
:param graph: A BEL graph
:param node: The BEL node that is the focus of this analysis
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param minimum_nodes: The minimum number of nodes a sub-graph needs to try running heat diffusion
:return: A list of runners
"""
subgraph = generate_mechanism(graph, node, key=key)
if subgraph.number_of_nodes() <= minimum_nodes:
return []
runners = multirun(subgraph, node, key=key, tag=tag, default_score=default_score, runs=runs)
return list(runners) |
def multirun(graph: BELGraph,
node: BaseEntity,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
use_tqdm: bool = False,
) -> Iterable['Runner']:
"""Run the heat diffusion workflow multiple times, each time yielding a :class:`Runner` object upon completion.
:param graph: A BEL graph
:param node: The BEL node that is the focus of this analysis
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param use_tqdm: Should there be a progress bar for runners?
:return: An iterable over the runners after each iteration
"""
if runs is None:
runs = 100
it = range(runs)
if use_tqdm:
it = tqdm(it, total=runs)
for i in it:
try:
runner = Runner(graph, node, key=key, tag=tag, default_score=default_score)
runner.run()
yield runner
except Exception:
log.debug('Run %s failed for %s', i, node) |
def workflow_aggregate(graph: BELGraph,
node: BaseEntity,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
aggregator: Optional[Callable[[Iterable[float]], float]] = None,
) -> Optional[float]:
"""Get the average score over multiple runs.
This function is very simple, and can be copied to do more interesting statistics over the :class:`Runner`
instances. To iterate over the runners themselves, see :func:`workflow`
:param graph: A BEL graph
:param node: The BEL node that is the focus of this analysis
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param aggregator: A function that aggregates a list of scores. Defaults to :func:`numpy.average`.
Could also use: :func:`numpy.mean`, :func:`numpy.median`, :func:`numpy.min`, :func:`numpy.max`
:return: The average score for the target node
"""
runners = workflow(graph, node, key=key, tag=tag, default_score=default_score, runs=runs)
scores = [runner.get_final_score() for runner in runners]
if not scores:
log.warning('Unable to run the heat diffusion workflow for %s', node)
return
if aggregator is None:
return np.average(scores)
return aggregator(scores) |
def workflow_all(graph: BELGraph,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
) -> Mapping[BaseEntity, List[Runner]]:
"""Run the heat diffusion workflow and get runners for every possible candidate mechanism
1. Get all biological processes
2. Get candidate mechanism induced two level back from each biological process
3. Heat diffusion workflow for each candidate mechanism for multiple runs
4. Return all runner results
:param graph: A BEL graph
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:return: A dictionary of {node: list of runners}
"""
results = {}
for node in get_nodes_by_function(graph, BIOPROCESS):
results[node] = workflow(graph, node, key=key, tag=tag, default_score=default_score, runs=runs)
return results |
def workflow_all_aggregate(graph: BELGraph,
key: Optional[str] = None,
tag: Optional[str] = None,
default_score: Optional[float] = None,
runs: Optional[int] = None,
aggregator: Optional[Callable[[Iterable[float]], float]] = None,
):
"""Run the heat diffusion workflow to get average score for every possible candidate mechanism.
1. Get all biological processes
2. Get candidate mechanism induced two level back from each biological process
3. Heat diffusion workflow on each candidate mechanism for multiple runs
4. Report average scores for each candidate mechanism
:param graph: A BEL graph
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score'
:param default_score: The initial score for all nodes. This number can go up or down.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param aggregator: A function that aggregates a list of scores. Defaults to :func:`numpy.average`.
Could also use: :func:`numpy.mean`, :func:`numpy.median`, :func:`numpy.min`, :func:`numpy.max`
:return: A dictionary of {node: upstream causal subgraph}
"""
results = {}
bioprocess_nodes = list(get_nodes_by_function(graph, BIOPROCESS))
for bioprocess_node in tqdm(bioprocess_nodes):
subgraph = generate_mechanism(graph, bioprocess_node, key=key)
try:
results[bioprocess_node] = workflow_aggregate(
graph=subgraph,
node=bioprocess_node,
key=key,
tag=tag,
default_score=default_score,
runs=runs,
aggregator=aggregator
)
except Exception:
log.exception('could not run on %', bioprocess_node)
return results |
def calculate_average_score_by_annotation(
graph: BELGraph,
annotation: str,
key: Optional[str] = None,
runs: Optional[int] = None,
use_tqdm: bool = False,
) -> Mapping[str, float]:
"""For each sub-graph induced over the edges matching the annotation, calculate the average score
for all of the contained biological processes
Assumes you haven't done anything yet
1. Generates biological process upstream candidate mechanistic sub-graphs with
:func:`generate_bioprocess_mechanisms`
2. Calculates scores for each sub-graph with :func:`calculate_average_scores_on_sub-graphs`
3. Overlays data with pbt.integration.overlay_data
4. Calculates averages with pbt.selection.group_nodes.average_node_annotation
:param graph: A BEL graph
:param annotation: A BEL annotation
:param key: The key in the node data dictionary representing the experimental data. Defaults to
:data:`pybel_tools.constants.WEIGHT`.
:param runs: The number of times to run the heat diffusion workflow. Defaults to 100.
:param use_tqdm: Should there be a progress bar for runners?
:return: A dictionary from {str annotation value: tuple scores}
Example Usage:
>>> import pybel
>>> from pybel_tools.integration import overlay_data
>>> from pybel_tools.analysis.heat import calculate_average_score_by_annotation
>>> graph = pybel.from_path(...)
>>> scores = calculate_average_score_by_annotation(graph, 'subgraph')
"""
candidate_mechanisms = generate_bioprocess_mechanisms(graph, key=key)
#: {bp tuple: list of scores}
scores: Mapping[BaseEntity, Tuple] = calculate_average_scores_on_subgraphs(
subgraphs=candidate_mechanisms,
key=key,
runs=runs,
use_tqdm=use_tqdm,
)
subgraph_bp: Mapping[str, List[BaseEntity]] = defaultdict(list)
subgraphs: Mapping[str, BELGraph] = get_subgraphs_by_annotation(graph, annotation)
for annotation_value, subgraph in subgraphs.items():
subgraph_bp[annotation_value].extend(get_nodes_by_function(subgraph, BIOPROCESS))
#: Pick the average by slicing with 0. Refer to :func:`calculate_average_score_on_subgraphs`
return {
annotation_value: np.average(scores[bp][0] for bp in bps)
for annotation_value, bps in subgraph_bp.items()
} |
def iter_leaves(self) -> Iterable[BaseEntity]:
"""Return an iterable over all nodes that are leaves.
A node is a leaf if either:
- it doesn't have any predecessors, OR
- all of its predecessors have a score in their data dictionaries
"""
for node in self.graph:
if self.tag in self.graph.nodes[node]:
continue
if not any(self.tag not in self.graph.nodes[p] for p in self.graph.predecessors(node)):
yield node |
def in_out_ratio(self, node: BaseEntity) -> float:
"""Calculate the ratio of in-degree / out-degree of a node."""
return self.graph.in_degree(node) / float(self.graph.out_degree(node)) |
def unscored_nodes_iter(self) -> BaseEntity:
"""Iterate over all nodes without a score."""
for node, data in self.graph.nodes(data=True):
if self.tag not in data:
yield node |
def get_random_edge(self):
"""This function should be run when there are no leaves, but there are still unscored nodes. It will introduce
a probabilistic element to the algorithm, where some edges are disregarded randomly to eventually get a score
for the network. This means that the score can be averaged over many runs for a given graph, and a better
data structure will have to be later developed that doesn't destroy the graph (instead, annotates which edges
have been disregarded, later)
1. get all un-scored
2. rank by in-degree
3. weighted probability over all in-edges where lower in-degree means higher probability
4. pick randomly which edge
:return: A random in-edge to the lowest in/out degree ratio node. This is a 3-tuple of (node, node, key)
:rtype: tuple
"""
nodes = [
(n, self.in_out_ratio(n))
for n in self.unscored_nodes_iter()
if n != self.target_node
]
node, deg = min(nodes, key=itemgetter(1))
log.log(5, 'checking %s (in/out ratio: %.3f)', node, deg)
possible_edges = self.graph.in_edges(node, keys=True)
log.log(5, 'possible edges: %s', possible_edges)
edge_to_remove = random.choice(possible_edges)
log.log(5, 'chose: %s', edge_to_remove)
return edge_to_remove |
def remove_random_edge(self):
"""Remove a random in-edge from the node with the lowest in/out degree ratio."""
u, v, k = self.get_random_edge()
log.log(5, 'removing %s, %s (%s)', u, v, k)
self.graph.remove_edge(u, v, k) |
def remove_random_edge_until_has_leaves(self) -> None:
"""Remove random edges until there is at least one leaf node."""
while True:
leaves = set(self.iter_leaves())
if leaves:
return
self.remove_random_edge() |
def score_leaves(self) -> Set[BaseEntity]:
"""Calculate the score for all leaves.
:return: The set of leaf nodes that were scored
"""
leaves = set(self.iter_leaves())
if not leaves:
log.warning('no leaves.')
return set()
for leaf in leaves:
self.graph.nodes[leaf][self.tag] = self.calculate_score(leaf)
log.log(5, 'chomping %s', leaf)
return leaves |
def run_with_graph_transformation(self) -> Iterable[BELGraph]:
"""Calculate scores for all leaves until there are none, removes edges until there are, and repeats until
all nodes have been scored. Also, yields the current graph at every step so you can make a cool animation
of how the graph changes throughout the course of the algorithm
:return: An iterable of BEL graphs
"""
yield self.get_remaining_graph()
while not self.done_chomping():
while not list(self.iter_leaves()):
self.remove_random_edge()
yield self.get_remaining_graph()
self.score_leaves()
yield self.get_remaining_graph() |
def done_chomping(self) -> bool:
"""Determines if the algorithm is complete by checking if the target node of this analysis has been scored
yet. Because the algorithm removes edges when it gets stuck until it is un-stuck, it is always guaranteed to
finish.
:return: Is the algorithm done running?
"""
return self.tag in self.graph.nodes[self.target_node] |
def get_final_score(self) -> float:
"""Return the final score for the target node.
:return: The final score for the target node
"""
if not self.done_chomping():
raise ValueError('algorithm has not yet completed')
return self.graph.nodes[self.target_node][self.tag] |
def calculate_score(self, node: BaseEntity) -> float:
"""Calculate the new score of the given node."""
score = (
self.graph.nodes[node][self.tag]
if self.tag in self.graph.nodes[node] else
self.default_score
)
for predecessor, _, d in self.graph.in_edges(node, data=True):
if d[RELATION] in CAUSAL_INCREASE_RELATIONS:
score += self.graph.nodes[predecessor][self.tag]
elif d[RELATION] in CAUSAL_DECREASE_RELATIONS:
score -= self.graph.nodes[predecessor][self.tag]
return score |
def microcanonical_statistics_dtype(spanning_cluster=True):
"""
Return the numpy structured array data type for sample states
Helper function
Parameters
----------
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
Returns
-------
ret : list of pairs of str
A list of tuples of field names and data types to be used as ``dtype``
argument in numpy ndarray constructors
See Also
--------
http://docs.scipy.org/doc/numpy/user/basics.rec.html
canonical_statistics_dtype
"""
fields = list()
fields.extend([
('n', 'uint32'),
('edge', 'uint32'),
])
if spanning_cluster:
fields.extend([
('has_spanning_cluster', 'bool'),
])
fields.extend([
('max_cluster_size', 'uint32'),
('moments', '(5,)uint64'),
])
return _ndarray_dtype(fields) |
def bond_sample_states(
perc_graph, num_nodes, num_edges, seed, spanning_cluster=True,
auxiliary_node_attributes=None, auxiliary_edge_attributes=None,
spanning_sides=None,
**kwargs
):
'''
Generate successive sample states of the bond percolation model
This is a :ref:`generator function <python:tut-generators>` to successively
add one edge at a time from the graph to the percolation model.
At each iteration, it calculates and returns the cluster statistics.
CAUTION: it returns a reference to the internal array, not a copy.
Parameters
----------
perc_graph : networkx.Graph
The substrate graph on which percolation is to take place
num_nodes : int
Number ``N`` of sites in the graph
num_edges : int
Number ``M`` of bonds in the graph
seed : {None, int, array_like}
Random seed initializing the pseudo-random number generator.
Piped through to `numpy.random.RandomState` constructor.
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
auxiliary_node_attributes : optional
Return value of ``networkx.get_node_attributes(graph, 'span')``
auxiliary_edge_attributes : optional
Return value of ``networkx.get_edge_attributes(graph, 'span')``
spanning_sides : list, optional
List of keys (attribute values) of the two sides of the auxiliary
nodes.
Return value of ``list(set(auxiliary_node_attributes.values()))``
Yields
------
ret : ndarray
Structured array with dtype ``dtype=[('has_spanning_cluster', 'bool'),
('max_cluster_size', 'uint32'), ('moments', 'int64', 5)]``
ret['n'] : ndarray of int
The number of bonds added at the particular iteration
ret['edge'] : ndarray of int
The index of the edge added at the particular iteration
Note that in the first step, when ``ret['n'] == 0``, this value is
undefined!
ret['has_spanning_cluster'] : ndarray of bool
``True`` if there is a spanning cluster, ``False`` otherwise.
Only exists if `spanning_cluster` argument is set to ``True``.
ret['max_cluster_size'] : int
Size of the largest cluster (absolute number of sites)
ret['moments'] : 1-D :py:class:`numpy.ndarray` of int
Array of size ``5``.
The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster
size distribution, with ``k`` ranging from ``0`` to ``4``.
Raises
------
ValueError
If `spanning_cluster` is ``True``, but `graph` does not contain any
auxiliary nodes to detect spanning clusters.
See also
--------
numpy.random.RandomState
microcanonical_statistics_dtype
Notes
-----
Iterating through this generator is a single run of the Newman-Ziff
algorithm. [12]_
The first iteration yields the trivial state with :math:`n = 0` occupied
bonds.
Spanning cluster
In order to detect a spanning cluster, `graph` needs to contain
auxiliary nodes and edges, cf. Reference [12]_, Figure 6.
The auxiliary nodes and edges have the ``'span'`` `attribute
<http://networkx.github.io/documentation/latest/tutorial/tutorial.html#node-attributes>`_.
The value is either ``0`` or ``1``, distinguishing the two sides of the
graph to span.
Raw moments of the cluster size distribution
The :math:`k`-th raw moment of the (absolute) cluster size distribution
is :math:`\sum_s' s^k N_s`, where :math:`s` is the cluster size and
:math:`N_s` is the number of clusters of size :math:`s`. [13]_
The primed sum :math:`\sum'` signifies that the largest cluster is
excluded from the sum. [14]_
References
----------
.. [12] Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
or bond percolation. Physical Review E 64, 016706+ (2001),
`doi:10.1103/physreve.64.016706 <http://dx.doi.org/10.1103/physreve.64.016706>`_.
.. [13] Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor &
Francis, London, 1994), second edn.
.. [14] Binder, K. & Heermann, D. W. Monte Carlo Simulation in Statistical
Physics (Springer, Berlin, Heidelberg, 2010),
`doi:10.1007/978-3-642-03163-2 <http://dx.doi.org/10.1007/978-3-642-03163-2>`_.
'''
# construct random number generator
rng = np.random.RandomState(seed=seed)
if spanning_cluster:
if len(spanning_sides) != 2:
raise ValueError(
'Spanning cluster is to be detected, but auxiliary nodes '
'of less or more than 2 types (sides) given.'
)
# get a list of edges for easy access in later iterations
perc_edges = perc_graph.edges()
perm_edges = rng.permutation(num_edges)
# initial iteration: no edges added yet (n == 0)
ret = np.empty(
1, dtype=microcanonical_statistics_dtype(spanning_cluster)
)
ret['n'] = 0
ret['max_cluster_size'] = 1
ret['moments'] = np.ones(5, dtype='uint64') * (num_nodes - 1)
if spanning_cluster:
ret['has_spanning_cluster'] = False
# yield cluster statistics for n == 0
yield ret
# set up disjoint set (union-find) data structure
ds = nx.utils.union_find.UnionFind()
if spanning_cluster:
ds_spanning = nx.utils.union_find.UnionFind()
# merge all auxiliary nodes for each side
side_roots = dict()
for side in spanning_sides:
nodes = [
node for (node, node_side) in auxiliary_node_attributes.items()
if node_side is side
]
ds_spanning.union(*nodes)
side_roots[side] = ds_spanning[nodes[0]]
for (edge, edge_side) in auxiliary_edge_attributes.items():
ds_spanning.union(side_roots[edge_side], *edge)
side_roots = [
ds_spanning[side_root] for side_root in side_roots.values()
]
# get first node
max_cluster_root = next(perc_graph.nodes_iter())
# loop over all edges (n == 1..M)
for n in range(num_edges):
ret['n'] += 1
# draw new edge from permutation
edge_index = perm_edges[n]
edge = perc_edges[edge_index]
ret['edge'] = edge_index
# find roots and weights
roots = [
ds[node] for node in edge
]
weights = [
ds.weights[root] for root in roots
]
if roots[0] is not roots[1]:
# not same cluster: union!
ds.union(*roots)
if spanning_cluster:
ds_spanning.union(*roots)
ret['has_spanning_cluster'] = (
ds_spanning[side_roots[0]] == ds_spanning[side_roots[1]]
)
# find new root and weight
root = ds[edge[0]]
weight = ds.weights[root]
# moments and maximum cluster size
# deduct the previous sub-maximum clusters from moments
for i in [0, 1]:
if roots[i] is max_cluster_root:
continue
ret['moments'] -= weights[i] ** np.arange(5, dtype='uint64')
if max_cluster_root in roots:
# merged with maximum cluster
max_cluster_root = root
ret['max_cluster_size'] = weight
else:
# merged previously sub-maximum clusters
if ret['max_cluster_size'] >= weight:
# previously largest cluster remains largest cluster
# add merged cluster to moments
ret['moments'] += weight ** np.arange(5, dtype='uint64')
else:
# merged cluster overtook previously largest cluster
# add previously largest cluster to moments
max_cluster_root = root
ret['moments'] += ret['max_cluster_size'] ** np.arange(
5, dtype='uint64'
)
ret['max_cluster_size'] = weight
yield ret |
def bond_microcanonical_statistics(
perc_graph, num_nodes, num_edges, seed,
spanning_cluster=True,
auxiliary_node_attributes=None, auxiliary_edge_attributes=None,
spanning_sides=None,
**kwargs
):
"""
Evolve a single run over all microstates (bond occupation numbers)
Return the cluster statistics for each microstate
Parameters
----------
perc_graph : networkx.Graph
The substrate graph on which percolation is to take place
num_nodes : int
Number ``N`` of sites in the graph
num_edges : int
Number ``M`` of bonds in the graph
seed : {None, int, array_like}
Random seed initializing the pseudo-random number generator.
Piped through to `numpy.random.RandomState` constructor.
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
auxiliary_node_attributes : optional
Value of ``networkx.get_node_attributes(graph, 'span')``
auxiliary_edge_attributes : optional
Value of ``networkx.get_edge_attributes(graph, 'span')``
spanning_sides : list, optional
List of keys (attribute values) of the two sides of the auxiliary
nodes.
Return value of ``list(set(auxiliary_node_attributes.values()))``
Returns
-------
ret : ndarray of size ``num_edges + 1``
Structured array with dtype ``dtype=[('has_spanning_cluster', 'bool'),
('max_cluster_size', 'uint32'), ('moments', 'uint64', 5)]``
ret['n'] : ndarray of int
The number of bonds added at the particular iteration
ret['edge'] : ndarray of int
The index of the edge added at the particular iteration.
Note that ``ret['edge'][0]`` is undefined!
ret['has_spanning_cluster'] : ndarray of bool
``True`` if there is a spanning cluster, ``False`` otherwise.
Only exists if `spanning_cluster` argument is set to ``True``.
ret['max_cluster_size'] : int
Size of the largest cluster (absolute number of sites)
ret['moments'] : 2-D :py:class:`numpy.ndarray` of int
Array of shape ``(num_edges + 1, 5)``.
The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster
size distribution, with ``k`` ranging from ``0`` to ``4``.
See also
--------
bond_sample_states
microcanonical_statistics_dtype
numpy.random.RandomState
"""
# initialize generator
sample_states = bond_sample_states(
perc_graph=perc_graph,
num_nodes=num_nodes,
num_edges=num_edges,
seed=seed,
spanning_cluster=spanning_cluster,
auxiliary_node_attributes=auxiliary_node_attributes,
auxiliary_edge_attributes=auxiliary_edge_attributes,
spanning_sides=spanning_sides,
)
# get cluster statistics over all microstates
return np.fromiter(
sample_states,
dtype=microcanonical_statistics_dtype(spanning_cluster),
count=num_edges + 1
) |
def canonical_statistics_dtype(spanning_cluster=True):
"""
The NumPy Structured Array type for canonical statistics
Helper function
Parameters
----------
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
Returns
-------
ret : list of pairs of str
A list of tuples of field names and data types to be used as ``dtype``
argument in numpy ndarray constructors
See Also
--------
http://docs.scipy.org/doc/numpy/user/basics.rec.html
microcanoncial_statistics_dtype
canonical_averages_dtype
"""
fields = list()
if spanning_cluster:
fields.extend([
('percolation_probability', 'float64'),
])
fields.extend([
('max_cluster_size', 'float64'),
('moments', '(5,)float64'),
])
return _ndarray_dtype(fields) |
def bond_canonical_statistics(
microcanonical_statistics,
convolution_factors,
**kwargs
):
"""
canonical cluster statistics for a single run and a single probability
Parameters
----------
microcanonical_statistics : ndarray
Return value of `bond_microcanonical_statistics`
convolution_factors : 1-D array_like
The coefficients of the convolution for the given probabilty ``p``
and for each occupation number ``n``.
Returns
-------
ret : ndarray of size ``1``
Structured array with dtype as returned by
`canonical_statistics_dtype`
ret['percolation_probability'] : ndarray of float
The "percolation probability" of this run at the value of ``p``.
Only exists if `microcanonical_statistics` argument has the
``has_spanning_cluster`` field.
ret['max_cluster_size'] : ndarray of int
Weighted size of the largest cluster (absolute number of sites)
ret['moments'] : 1-D :py:class:`numpy.ndarray` of float
Array of size ``5``.
The ``k``-th entry is the weighted ``k``-th raw moment of the
(absolute) cluster size distribution, with ``k`` ranging from ``0`` to
``4``.
See Also
--------
bond_microcanonical_statistics
canonical_statistics_dtype
"""
# initialize return array
spanning_cluster = (
'has_spanning_cluster' in microcanonical_statistics.dtype.names
)
ret = np.empty(1, dtype=canonical_statistics_dtype(spanning_cluster))
# compute percolation probability
if spanning_cluster:
ret['percolation_probability'] = np.sum(
convolution_factors *
microcanonical_statistics['has_spanning_cluster']
)
# convolve maximum cluster size
ret['max_cluster_size'] = np.sum(
convolution_factors *
microcanonical_statistics['max_cluster_size']
)
# convolve moments
ret['moments'] = np.sum(
convolution_factors[:, np.newaxis] *
microcanonical_statistics['moments'],
axis=0,
)
# return convolved cluster statistics
return ret |
def canonical_averages_dtype(spanning_cluster=True):
"""
The NumPy Structured Array type for canonical averages over several
runs
Helper function
Parameters
----------
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
Returns
-------
ret : list of pairs of str
A list of tuples of field names and data types to be used as ``dtype``
argument in numpy ndarray constructors
See Also
--------
http://docs.scipy.org/doc/numpy/user/basics.rec.html
canonical_statistics_dtype
finalized_canonical_averages_dtype
"""
fields = list()
fields.extend([
('number_of_runs', 'uint32'),
])
if spanning_cluster:
fields.extend([
('percolation_probability_mean', 'float64'),
('percolation_probability_m2', 'float64'),
])
fields.extend([
('max_cluster_size_mean', 'float64'),
('max_cluster_size_m2', 'float64'),
('moments_mean', '(5,)float64'),
('moments_m2', '(5,)float64'),
])
return _ndarray_dtype(fields) |
def bond_initialize_canonical_averages(
canonical_statistics, **kwargs
):
"""
Initialize the canonical averages from a single-run cluster statistics
Parameters
----------
canonical_statistics : 1-D structured ndarray
Typically contains the canonical statistics for a range of values
of the occupation probability ``p``.
The dtype is the result of `canonical_statistics_dtype`.
Returns
-------
ret : structured ndarray
The dype is the result of `canonical_averages_dtype`.
ret['number_of_runs'] : 1-D ndarray of int
Equals ``1`` (initial run).
ret['percolation_probability_mean'] : 1-D array of float
Equals ``canonical_statistics['percolation_probability']``
(if ``percolation_probability`` is present)
ret['percolation_probability_m2'] : 1-D array of float
Each entry is ``0.0``
ret['max_cluster_size_mean'] : 1-D array of float
Equals ``canonical_statistics['max_cluster_size']``
ret['max_cluster_size_m2'] : 1-D array of float
Each entry is ``0.0``
ret['moments_mean'] : 2-D array of float
Equals ``canonical_statistics['moments']``
ret['moments_m2'] : 2-D array of float
Each entry is ``0.0``
See Also
--------
canonical_averages_dtype
bond_canonical_statistics
"""
# initialize return array
spanning_cluster = (
'percolation_probability' in canonical_statistics.dtype.names
)
# array should have the same size as the input array
ret = np.empty_like(
canonical_statistics,
dtype=canonical_averages_dtype(spanning_cluster=spanning_cluster),
)
ret['number_of_runs'] = 1
# initialize percolation probability mean and sum of squared differences
if spanning_cluster:
ret['percolation_probability_mean'] = (
canonical_statistics['percolation_probability']
)
ret['percolation_probability_m2'] = 0.0
# initialize maximum cluster size mean and sum of squared differences
ret['max_cluster_size_mean'] = (
canonical_statistics['max_cluster_size']
)
ret['max_cluster_size_m2'] = 0.0
# initialize moments means and sums of squared differences
ret['moments_mean'] = canonical_statistics['moments']
ret['moments_m2'] = 0.0
return ret |
def bond_reduce(row_a, row_b):
"""
Reduce the canonical averages over several runs
This is a "true" reducer.
It is associative and commutative.
This is a wrapper around `simoa.stats.online_variance`.
Parameters
----------
row_a, row_b : structured ndarrays
Output of this function, or initial input from
`bond_initialize_canonical_averages`
Returns
-------
ret : structured ndarray
Array is of dtype as returned by `canonical_averages_dtype`
See Also
--------
bond_initialize_canonical_averages
canonical_averages_dtype
simoa.stats.online_variance
"""
spanning_cluster = (
'percolation_probability_mean' in row_a.dtype.names and
'percolation_probability_mean' in row_b.dtype.names and
'percolation_probability_m2' in row_a.dtype.names and
'percolation_probability_m2' in row_b.dtype.names
)
# initialize return array
ret = np.empty_like(row_a)
def _reducer(key, transpose=False):
mean_key = '{}_mean'.format(key)
m2_key = '{}_m2'.format(key)
res = simoa.stats.online_variance(*[
(
row['number_of_runs'],
row[mean_key].T if transpose else row[mean_key],
row[m2_key].T if transpose else row[m2_key],
)
for row in [row_a, row_b]
])
(
ret[mean_key],
ret[m2_key],
) = (
res[1].T,
res[2].T,
) if transpose else res[1:]
if spanning_cluster:
_reducer('percolation_probability')
_reducer('max_cluster_size')
_reducer('moments', transpose=True)
ret['number_of_runs'] = row_a['number_of_runs'] + row_b['number_of_runs']
return ret |
def finalized_canonical_averages_dtype(spanning_cluster=True):
"""
The NumPy Structured Array type for finalized canonical averages over
several runs
Helper function
Parameters
----------
spanning_cluster : bool, optional
Whether to detect a spanning cluster or not.
Defaults to ``True``.
Returns
-------
ret : list of pairs of str
A list of tuples of field names and data types to be used as ``dtype``
argument in numpy ndarray constructors
See Also
--------
http://docs.scipy.org/doc/numpy/user/basics.rec.html
canonical_averages_dtype
"""
fields = list()
fields.extend([
('number_of_runs', 'uint32'),
('p', 'float64'),
('alpha', 'float64'),
])
if spanning_cluster:
fields.extend([
('percolation_probability_mean', 'float64'),
('percolation_probability_std', 'float64'),
('percolation_probability_ci', '(2,)float64'),
])
fields.extend([
('percolation_strength_mean', 'float64'),
('percolation_strength_std', 'float64'),
('percolation_strength_ci', '(2,)float64'),
('moments_mean', '(5,)float64'),
('moments_std', '(5,)float64'),
('moments_ci', '(5,2)float64'),
])
return _ndarray_dtype(fields) |
def finalize_canonical_averages(
number_of_nodes, ps, canonical_averages, alpha,
):
"""
Finalize canonical averages
"""
spanning_cluster = (
(
'percolation_probability_mean' in
canonical_averages.dtype.names
) and
'percolation_probability_m2' in canonical_averages.dtype.names
)
# append values of p as an additional field
ret = np.empty_like(
canonical_averages,
dtype=finalized_canonical_averages_dtype(
spanning_cluster=spanning_cluster
),
)
n = canonical_averages['number_of_runs']
sqrt_n = np.sqrt(canonical_averages['number_of_runs'])
ret['number_of_runs'] = n
ret['p'] = ps
ret['alpha'] = alpha
def _transform(
original_key, final_key=None, normalize=False, transpose=False,
):
if final_key is None:
final_key = original_key
keys_mean = [
'{}_mean'.format(key)
for key in [original_key, final_key]
]
keys_std = [
'{}_m2'.format(original_key),
'{}_std'.format(final_key),
]
key_ci = '{}_ci'.format(final_key)
# calculate sample mean
ret[keys_mean[1]] = canonical_averages[keys_mean[0]]
if normalize:
ret[keys_mean[1]] /= number_of_nodes
# calculate sample standard deviation
array = canonical_averages[keys_std[0]]
result = np.sqrt(
(array.T if transpose else array) / (n - 1)
)
ret[keys_std[1]] = (
result.T if transpose else result
)
if normalize:
ret[keys_std[1]] /= number_of_nodes
# calculate standard normal confidence interval
array = ret[keys_std[1]]
scale = (array.T if transpose else array) / sqrt_n
array = ret[keys_mean[1]]
mean = (array.T if transpose else array)
result = scipy.stats.t.interval(
1 - alpha,
df=n - 1,
loc=mean,
scale=scale,
)
(
ret[key_ci][..., 0], ret[key_ci][..., 1]
) = ([my_array.T for my_array in result] if transpose else result)
if spanning_cluster:
_transform('percolation_probability')
_transform('max_cluster_size', 'percolation_strength', normalize=True)
_transform('moments', normalize=True, transpose=True)
return ret |
def compare(graph: BELGraph, annotation: str = 'Subgraph') -> Mapping[str, Mapping[str, float]]:
"""Compare generated mechanisms to actual ones.
1. Generates candidate mechanisms for each biological process
2. Gets sub-graphs for all NeuroMMSig signatures
3. Make tanimoto similarity comparison for all sets
:return: A dictionary table comparing the canonical subgraphs to generated ones
"""
canonical_mechanisms = get_subgraphs_by_annotation(graph, annotation)
canonical_nodes = _transform_graph_dict_to_node_dict(canonical_mechanisms)
candidate_mechanisms = generate_bioprocess_mechanisms(graph)
candidate_nodes = _transform_graph_dict_to_node_dict(candidate_mechanisms)
results: Dict[str, Dict[str, float]] = defaultdict(dict)
it = itt.product(canonical_nodes.items(), candidate_nodes.items())
for (canonical_name, canonical_graph), (candidate_bp, candidate_graph) in it:
tanimoto = tanimoto_set_similarity(candidate_nodes, canonical_nodes)
results[canonical_name][candidate_bp] = tanimoto
return dict(results) |
def summarize_node_filter(graph: BELGraph, node_filters: NodePredicates) -> None:
"""Print a summary of the number of nodes passing a given set of filters.
:param graph: A BEL graph
:param node_filters: A node filter or list/tuple of node filters
"""
passed = count_passed_node_filter(graph, node_filters)
print('{}/{} nodes passed'.format(passed, graph.number_of_nodes())) |
def node_inclusion_filter_builder(nodes: Iterable[BaseEntity]) -> NodePredicate:
"""Build a filter that only passes on nodes in the given list.
:param nodes: An iterable of BEL nodes
"""
node_set = set(nodes)
def inclusion_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for a node that is in the enclosed node list.
:return: If the node is contained within the enclosed node list
"""
return node in node_set
return inclusion_filter |
def node_exclusion_filter_builder(nodes: Iterable[BaseEntity]) -> NodePredicate:
"""Build a filter that fails on nodes in the given list."""
node_set = set(nodes)
def exclusion_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for a node that isn't in the enclosed node list
:return: If the node isn't contained within the enclosed node list
"""
return node not in node_set
return exclusion_filter |
def function_exclusion_filter_builder(func: Strings) -> NodePredicate:
"""Build a filter that fails on nodes of the given function(s).
:param func: A BEL Function or list/set/tuple of BEL functions
"""
if isinstance(func, str):
def function_exclusion_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for a node that doesn't have the enclosed function.
:return: If the node doesn't have the enclosed function
"""
return node[FUNCTION] != func
return function_exclusion_filter
elif isinstance(func, Iterable):
functions = set(func)
def functions_exclusion_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for a node that doesn't have the enclosed functions.
:return: If the node doesn't have the enclosed functions
"""
return node[FUNCTION] not in functions
return functions_exclusion_filter
raise ValueError('Invalid type for argument: {}'.format(func)) |
def function_namespace_inclusion_builder(func: str, namespace: Strings) -> NodePredicate:
"""Build a filter function for matching the given BEL function with the given namespace or namespaces.
:param func: A BEL function
:param namespace: The namespace to search by
"""
if isinstance(namespace, str):
def function_namespaces_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for nodes that have the enclosed function and enclosed namespace."""
if func != node[FUNCTION]:
return False
return NAMESPACE in node and node[NAMESPACE] == namespace
elif isinstance(namespace, Iterable):
namespaces = set(namespace)
def function_namespaces_filter(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for nodes that have the enclosed function and namespace in the enclose set."""
if func != node[FUNCTION]:
return False
return NAMESPACE in node and node[NAMESPACE] in namespaces
else:
raise ValueError('Invalid type for argument: {}'.format(namespace))
return function_namespaces_filter |
def data_contains_key_builder(key: str) -> NodePredicate: # noqa: D202
"""Build a filter that passes only on nodes that have the given key in their data dictionary.
:param key: A key for the node's data dictionary
"""
def data_contains_key(_: BELGraph, node: BaseEntity) -> bool:
"""Pass only for a node that contains the enclosed key in its data dictionary.
:return: If the node contains the enclosed key in its data dictionary
"""
return key in node
return data_contains_key |
def variants_of(
graph: BELGraph,
node: Protein,
modifications: Optional[Set[str]] = None,
) -> Set[Protein]:
"""Returns all variants of the given node."""
if modifications:
return _get_filtered_variants_of(graph, node, modifications)
return {
v
for u, v, key, data in graph.edges(keys=True, data=True)
if (
u == node
and data[RELATION] == HAS_VARIANT
and pybel.struct.has_protein_modification(v)
)
} |
def get_variants_to_controllers(
graph: BELGraph,
node: Protein,
modifications: Optional[Set[str]] = None,
) -> Mapping[Protein, Set[Protein]]:
"""Get a mapping from variants of the given node to all of its upstream controllers."""
rv = defaultdict(set)
variants = variants_of(graph, node, modifications)
for controller, variant, data in graph.in_edges(variants, data=True):
if data[RELATION] in CAUSAL_RELATIONS:
rv[variant].add(controller)
return rv |
def group_dict_set(iterator: Iterable[Tuple[A, B]]) -> Mapping[A, Set[B]]:
"""Make a dict that accumulates the values for each key in an iterator of doubles."""
d = defaultdict(set)
for key, value in iterator:
d[key].add(value)
return dict(d) |
def get_edge_relations(graph: BELGraph) -> Mapping[Tuple[BaseEntity, BaseEntity], Set[str]]:
"""Build a dictionary of {node pair: set of edge types}."""
return group_dict_set(
((u, v), d[RELATION])
for u, v, d in graph.edges(data=True)
) |
def count_unique_relations(graph: BELGraph) -> Counter:
"""Return a histogram of the different types of relations present in a graph.
Note: this operation only counts each type of edge once for each pair of nodes
"""
return Counter(itt.chain.from_iterable(get_edge_relations(graph).values())) |
def get_annotations_containing_keyword(graph: BELGraph, keyword: str) -> List[Mapping[str, str]]:
"""Get annotation/value pairs for values for whom the search string is a substring
:param graph: A BEL graph
:param keyword: Search for annotations whose values have this as a substring
"""
return [
{
'annotation': annotation,
'value': value
}
for annotation, value in iter_annotation_value_pairs(graph)
if keyword.lower() in value.lower()
] |
def count_annotation_values(graph: BELGraph, annotation: str) -> Counter:
"""Count in how many edges each annotation appears in a graph
:param graph: A BEL graph
:param annotation: The annotation to count
:return: A Counter from {annotation value: frequency}
"""
return Counter(iter_annotation_values(graph, annotation)) |
def count_annotation_values_filtered(graph: BELGraph,
annotation: str,
source_predicate: Optional[NodePredicate] = None,
target_predicate: Optional[NodePredicate] = None,
) -> Counter:
"""Count in how many edges each annotation appears in a graph, but filter out source nodes and target nodes.
See :func:`pybel_tools.utils.keep_node` for a basic filter.
:param graph: A BEL graph
:param annotation: The annotation to count
:param source_predicate: A predicate (graph, node) -> bool for keeping source nodes
:param target_predicate: A predicate (graph, node) -> bool for keeping target nodes
:return: A Counter from {annotation value: frequency}
"""
if source_predicate and target_predicate:
return Counter(
data[ANNOTATIONS][annotation]
for u, v, data in graph.edges(data=True)
if edge_has_annotation(data, annotation) and source_predicate(graph, u) and target_predicate(graph, v)
)
elif source_predicate:
return Counter(
data[ANNOTATIONS][annotation]
for u, v, data in graph.edges(data=True)
if edge_has_annotation(data, annotation) and source_predicate(graph, u)
)
elif target_predicate:
return Counter(
data[ANNOTATIONS][annotation]
for u, v, data in graph.edges(data=True)
if edge_has_annotation(data, annotation) and target_predicate(graph, u)
)
else:
return Counter(
data[ANNOTATIONS][annotation]
for u, v, data in graph.edges(data=True)
if edge_has_annotation(data, annotation)
) |
def pair_is_consistent(graph: BELGraph, u: BaseEntity, v: BaseEntity) -> Optional[str]:
"""Return if the edges between the given nodes are consistent, meaning they all have the same relation.
:return: If the edges aren't consistent, return false, otherwise return the relation type
"""
relations = {data[RELATION] for data in graph[u][v].values()}
if 1 != len(relations):
return
return list(relations)[0] |
def get_contradictory_pairs(graph: BELGraph) -> Iterable[Tuple[BaseEntity, BaseEntity]]:
"""Iterates over contradictory node pairs in the graph based on their causal relationships
:return: An iterator over (source, target) node pairs that have contradictory causal edges
"""
for u, v in graph.edges():
if pair_has_contradiction(graph, u, v):
yield u, v |
def get_consistent_edges(graph: BELGraph) -> Iterable[Tuple[BaseEntity, BaseEntity]]:
"""Yield pairs of (source node, target node) for which all of their edges have the same type of relation.
:return: An iterator over (source, target) node pairs corresponding to edges with many inconsistent relations
"""
for u, v in graph.edges():
if pair_is_consistent(graph, u, v):
yield u, v |
def infer_missing_two_way_edges(graph):
"""Add edges to the graph when a two way edge exists, and the opposite direction doesn't exist.
Use: two way edges from BEL definition and/or axiomatic inverses of membership relations
:param pybel.BELGraph graph: A BEL graph
"""
for u, v, k, d in graph.edges(data=True, keys=True):
if d[RELATION] in TWO_WAY_RELATIONS:
infer_missing_backwards_edge(graph, u, v, k) |
def infer_missing_backwards_edge(graph, u, v, k):
"""Add the same edge, but in the opposite direction if not already present.
:type graph: pybel.BELGraph
:type u: tuple
:type v: tuple
:type k: int
"""
if u in graph[v]:
for attr_dict in graph[v][u].values():
if attr_dict == graph[u][v][k]:
return
graph.add_edge(v, u, key=k, **graph[u][v][k]) |
def enrich_internal_unqualified_edges(graph, subgraph):
"""Add the missing unqualified edges between entities in the subgraph that are contained within the full graph.
:param pybel.BELGraph graph: The full BEL graph
:param pybel.BELGraph subgraph: The query BEL subgraph
"""
for u, v in itt.combinations(subgraph, 2):
if not graph.has_edge(u, v):
continue
for k in graph[u][v]:
if k < 0:
subgraph.add_edge(u, v, key=k, **graph[u][v][k]) |
def boilerplate(name, contact, description, pmids, version, copyright, authors, licenses, disclaimer, output):
"""Build a template BEL document with the given PubMed identifiers."""
from .document_utils import write_boilerplate
write_boilerplate(
name=name,
version=version,
description=description,
authors=authors,
contact=contact,
copyright=copyright,
licenses=licenses,
disclaimer=disclaimer,
pmids=pmids,
file=output,
) |
def serialize_namespaces(namespaces, connection: str, path, directory):
"""Parse a BEL document then serializes the given namespaces (errors and all) to the given directory."""
from .definition_utils import export_namespaces
graph = from_lines(path, manager=connection)
export_namespaces(namespaces, graph, directory) |
def get_pmids(graph: BELGraph, output: TextIO):
"""Output PubMed identifiers from a graph to a stream."""
for pmid in get_pubmed_identifiers(graph):
click.echo(pmid, file=output) |
def getrowcount(self, window_name, object_name):
"""
Get count of rows in table object.
@param window_name: Window name to look for, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to look for, either full name,
LDTP's name convention, or a Unix glob. Or menu heirarchy
@type object_name: string
@return: Number of rows.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
return len(object_handle.AXRows) |
def selectrow(self, window_name, object_name, row_text, partial_match=False):
"""
Select row
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: 1 on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
for cell in object_handle.AXRows:
if re.match(row_text,
cell.AXChildren[0].AXValue):
if not cell.AXSelected:
object_handle.activate()
cell.AXSelected = True
else:
# Selected
pass
return 1
raise LdtpServerException(u"Unable to select row: %s" % row_text) |
def multiselect(self, window_name, object_name, row_text_list, partial_match=False):
"""
Select multiple row
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text_list: Row list with matching text to select
@type row_text: string
@return: 1 on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
object_handle.activate()
selected = False
try:
window = self._get_front_most_window()
except (IndexError,):
window = self._get_any_window()
for row_text in row_text_list:
selected = False
for cell in object_handle.AXRows:
parent_cell = cell
cell = self._getfirstmatchingchild(cell, "(AXTextField|AXStaticText)")
if not cell:
continue
if re.match(row_text, cell.AXValue):
selected = True
if not parent_cell.AXSelected:
x, y, width, height = self._getobjectsize(parent_cell)
window.clickMouseButtonLeftWithMods((x + width / 2,
y + height / 2),
['<command_l>'])
# Following selection doesn't work
# parent_cell.AXSelected=True
self.wait(0.5)
else:
# Selected
pass
break
if not selected:
raise LdtpServerException(u"Unable to select row: %s" % row_text)
if not selected:
raise LdtpServerException(u"Unable to select any row")
return 1 |
def selectrowpartialmatch(self, window_name, object_name, row_text):
"""
Select row partial match
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: 1 on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
for cell in object_handle.AXRows:
if re.search(row_text,
cell.AXChildren[0].AXValue):
if not cell.AXSelected:
object_handle.activate()
cell.AXSelected = True
else:
# Selected
pass
return 1
raise LdtpServerException(u"Unable to select row: %s" % row_text) |
def selectrowindex(self, window_name, object_name, row_index):
"""
Select row index
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_index: Row index to select
@type row_index: integer
@return: 1 on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
count = len(object_handle.AXRows)
if row_index < 0 or row_index > count:
raise LdtpServerException('Row index out of range: %d' % row_index)
cell = object_handle.AXRows[row_index]
if not cell.AXSelected:
object_handle.activate()
cell.AXSelected = True
else:
# Selected
pass
return 1 |
def selectlastrow(self, window_name, object_name):
"""
Select last row
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@return: 1 on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
cell = object_handle.AXRows[-1]
if not cell.AXSelected:
object_handle.activate()
cell.AXSelected = True
else:
# Selected
pass
return 1 |
def getcellvalue(self, window_name, object_name, row_index, column=0):
"""
Get cell value
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_index: Row index to get
@type row_index: integer
@param column: Column index to get, default value 0
@type column: integer
@return: cell value on success.
@rtype: string
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
count = len(object_handle.AXRows)
if row_index < 0 or row_index > count:
raise LdtpServerException('Row index out of range: %d' % row_index)
cell = object_handle.AXRows[row_index]
count = len(cell.AXChildren)
if column < 0 or column > count:
raise LdtpServerException('Column index out of range: %d' % column)
obj = cell.AXChildren[column]
if not re.search("AXColumn", obj.AXRole):
obj = cell.AXChildren[column]
return obj.AXValue |
def gettablerowindex(self, window_name, object_name, row_text):
"""
Get table row index matching given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: row index matching the text on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
index = 0
for cell in object_handle.AXRows:
if re.match(row_text,
cell.AXChildren[0].AXValue):
return index
index += 1
raise LdtpServerException(u"Unable to find row: %s" % row_text) |
def doubleclickrow(self, window_name, object_name, row_text):
"""
Double click row matching given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: row index matching the text on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
object_handle.activate()
self.wait(1)
for cell in object_handle.AXRows:
cell = self._getfirstmatchingchild(cell, "(AXTextField|AXStaticText)")
if not cell:
continue
if re.match(row_text, cell.AXValue):
x, y, width, height = self._getobjectsize(cell)
# Mouse double click on the object
cell.doubleClickMouse((x + width / 2, y + height / 2))
return 1
raise LdtpServerException('Unable to get row text: %s' % row_text) |
def doubleclickrowindex(self, window_name, object_name, row_index, col_index=0):
"""
Double click row matching given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_index: Row index to click
@type row_index: integer
@param col_index: Column index to click
@type col_index: integer
@return: row index matching the text on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
count = len(object_handle.AXRows)
if row_index < 0 or row_index > count:
raise LdtpServerException('Row index out of range: %d' % row_index)
cell = object_handle.AXRows[row_index]
self._grabfocus(cell)
x, y, width, height = self._getobjectsize(cell)
# Mouse double click on the object
cell.doubleClickMouse((x + width / 2, y + height / 2))
return 1 |
def verifytablecell(self, window_name, object_name, row_index,
column_index, row_text):
"""
Verify table cell value with given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_index: Row index to get
@type row_index: integer
@param column_index: Column index to get, default value 0
@type column_index: integer
@param row_text: Row text to match
@type string
@return: 1 on success 0 on failure.
@rtype: integer
"""
try:
value = getcellvalue(window_name, object_name, row_index, column_index)
if re.match(row_text, value):
return 1
except LdtpServerException:
pass
return 0 |
def doesrowexist(self, window_name, object_name, row_text,
partial_match=False):
"""
Verify table cell value with given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to match
@type string
@param partial_match: Find partial match strings
@type boolean
@return: 1 on success 0 on failure.
@rtype: integer
"""
try:
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
return 0
for cell in object_handle.AXRows:
if not partial_match and re.match(row_text,
cell.AXChildren[0].AXValue):
return 1
elif partial_match and re.search(row_text,
cell.AXChildren[0].AXValue):
return 1
except LdtpServerException:
pass
return 0 |
def verifypartialtablecell(self, window_name, object_name, row_index,
column_index, row_text):
"""
Verify partial table cell value
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_index: Row index to get
@type row_index: integer
@param column_index: Column index to get, default value 0
@type column_index: integer
@param row_text: Row text to match
@type string
@return: 1 on success 0 on failure.
@rtype: integer
"""
try:
value = getcellvalue(window_name, object_name, row_index, column_index)
if re.searchmatch(row_text, value):
return 1
except LdtpServerException:
pass
return 0 |
def getapplist(self):
"""
Get all accessibility application name that are currently running
@return: list of appliction name of string type on success.
@rtype: list
"""
app_list = []
# Update apps list, before parsing the list
self._update_apps()
for gui in self._running_apps:
name = gui.localizedName()
# default type was objc.pyobjc_unicode
# convert to Unicode, else exception is thrown
# TypeError: "cannot marshal <type 'objc.pyobjc_unicode'> objects"
try:
name = unicode(name)
except NameError:
name = str(name)
except UnicodeEncodeError:
pass
app_list.append(name)
# Return unique application list
return list(set(app_list)) |
def startprocessmonitor(self, process_name, interval=2):
"""
Start memory and CPU monitoring, with the time interval between
each process scan
@param process_name: Process name, ex: firefox-bin.
@type process_name: string
@param interval: Time interval between each process scan
@type interval: double
@return: 1 on success
@rtype: integer
"""
if process_name in self._process_stats:
# Stop previously running instance
# At any point, only one process name can be tracked
# If an instance already exist, then stop it
self._process_stats[process_name].stop()
# Create an instance of process stat
self._process_stats[process_name] = ProcessStats(process_name, interval)
# start monitoring the process
self._process_stats[process_name].start()
return 1 |
def stopprocessmonitor(self, process_name):
"""
Stop memory and CPU monitoring
@param process_name: Process name, ex: firefox-bin.
@type process_name: string
@return: 1 on success
@rtype: integer
"""
if process_name in self._process_stats:
# Stop monitoring process
self._process_stats[process_name].stop()
return 1 |
def getcpustat(self, process_name):
"""
get CPU stat for the give process name
@param process_name: Process name, ex: firefox-bin.
@type process_name: string
@return: cpu stat list on success, else empty list
If same process name, running multiple instance,
get the stat of all the process CPU usage
@rtype: list
"""
# Create an instance of process stat
_stat_inst = ProcessStats(process_name)
_stat_list = []
for p in _stat_inst.get_cpu_memory_stat():
try:
_stat_list.append(p.get_cpu_percent())
except psutil.AccessDenied:
pass
return _stat_list |
def getmemorystat(self, process_name):
"""
get memory stat
@param process_name: Process name, ex: firefox-bin.
@type process_name: string
@return: memory stat list on success, else empty list
If same process name, running multiple instance,
get the stat of all the process memory usage
@rtype: list
"""
# Create an instance of process stat
_stat_inst = ProcessStats(process_name)
_stat_list = []
for p in _stat_inst.get_cpu_memory_stat():
# Memory percent returned with 17 decimal values
# ex: 0.16908645629882812, round it to 2 decimal values
# as 0.03
try:
_stat_list.append(round(p.get_memory_percent(), 2))
except psutil.AccessDenied:
pass
return _stat_list |
def getobjectlist(self, window_name):
"""
Get list of items in given GUI.
@param window_name: Window name to look for, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@return: list of items in LDTP naming convention.
@rtype: list
"""
try:
window_handle, name, app = self._get_window_handle(window_name, True)
object_list = self._get_appmap(window_handle, name, True)
except atomac._a11y.ErrorInvalidUIElement:
# During the test, when the window closed and reopened
# ErrorInvalidUIElement exception will be thrown
self._windows = {}
# Call the method again, after updating apps
window_handle, name, app = self._get_window_handle(window_name, True)
object_list = self._get_appmap(window_handle, name, True)
return object_list.keys() |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.