Search is not available for this dataset
text
stringlengths
75
104k
def complex_has_member(graph: BELGraph, complex_node: ComplexAbundance, member_node: BaseEntity) -> bool: """Does the given complex contain the member?""" return any( # TODO can't you look in the members of the complex object (if it's enumerated) v == member_node for _, v, data in graph.out_edges(complex_node, data=True) if data[RELATION] == HAS_COMPONENT )
def complex_increases_activity(graph: BELGraph, u: BaseEntity, v: BaseEntity, key: str) -> bool: """Return if the formation of a complex with u increases the activity of v.""" return ( isinstance(u, (ComplexAbundance, NamedComplexAbundance)) and complex_has_member(graph, u, v) and part_has_modifier(graph[u][v][key], OBJECT, ACTIVITY) )
def find_activations(graph: BELGraph): """Find edges that are A - A, meaning that some conditions in the edge best describe the interaction.""" for u, v, key, data in graph.edges(keys=True, data=True): if u != v: continue bel = graph.edge_to_bel(u, v, data) line = data.get(LINE) if line is None: continue # this was inferred, so need to investigate another way elif has_protein_modification_increases_activity(graph, u, v, key): print(line, '- pmod changes -', bel) find_related(graph, v, data) elif has_degradation_increases_activity(data): print(line, '- degradation changes -', bel) find_related(graph, v, data) elif has_translocation_increases_activity(data): print(line, '- translocation changes -', bel) find_related(graph, v, data) elif complex_increases_activity(graph, u, v, key): print(line, '- complex changes - ', bel) find_related(graph, v, data) elif has_same_subject_object(graph, u, v, key): print(line, '- same sub/obj -', bel) else: print(line, '- *** - ', bel)
def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = itt.tee(iterable) next(b, None) return zip(a, b)
def rank_path(graph, path, edge_ranking=None): """Takes in a path (a list of nodes in the graph) and calculates a score :param pybel.BELGraph graph: A BEL graph :param list[tuple] path: A list of nodes in the path (includes terminal nodes) :param dict edge_ranking: A dictionary of {relationship: score} :return: The score for the edge :rtype: int """ edge_ranking = default_edge_ranking if edge_ranking is None else edge_ranking return sum(max(edge_ranking[d[RELATION]] for d in graph.edge[u][v].values()) for u, v in pairwise(path))
def find_root_in_path(graph, path_nodes): """Find the 'root' of the path -> The node with the lowest out degree, if multiple: root is the one with the highest out degree among those with lowest out degree :param pybel.BELGraph graph: A BEL Graph :param list[tuple] path_nodes: A list of nodes in their order in a path :return: A pair of the graph: graph of the path and the root node :rtype: tuple[pybel.BELGraph,tuple] """ path_graph = graph.subgraph(path_nodes) # node_in_degree_tuple: list of tuples with (node,in_degree_of_node) in ascending order node_in_degree_tuple = sorted([(n, d) for n, d in path_graph.in_degree().items()], key=itemgetter(1)) # node_out_degree_tuple: ordered list of tuples with (node,in_degree_of_node) in descending order node_out_degree_tuple = sorted([(n, d) for n, d in path_graph.out_degree().items()], key=itemgetter(1), reverse=True) # In case all have the same in degree it needs to be reference before tied_root_index = 0 # Get index where the min in_degree stops (in case they are duplicates) for i in range(0, (len(node_in_degree_tuple) - 1)): if node_in_degree_tuple[i][1] < node_in_degree_tuple[i + 1][1]: tied_root_index = i break # If there are multiple nodes with minimum in_degree take the one with max out degree # (in case multiple have the same out degree pick one random) if tied_root_index != 0: root_tuple = max(node_out_degree_tuple[:tied_root_index], key=itemgetter(1)) else: root_tuple = node_in_degree_tuple[0] return path_graph, root_tuple[0]
def summarize_edge_filter(graph: BELGraph, edge_predicates: EdgePredicates) -> None: """Print a summary of the number of edges passing a given set of filters.""" passed = count_passed_edge_filter(graph, edge_predicates) print('{}/{} edges passed {}'.format( passed, graph.number_of_edges(), ( ', '.join(edge_filter.__name__ for edge_filter in edge_predicates) if isinstance(edge_predicates, Iterable) else edge_predicates.__name__ ) ))
def build_edge_data_filter(annotations: Mapping, partial_match: bool = True) -> EdgePredicate: # noqa: D202 """Build a filter that keeps edges whose data dictionaries are super-dictionaries to the given dictionary. :param annotations: The annotation query dict to match :param partial_match: Should the query values be used as partial or exact matches? Defaults to :code:`True`. """ @edge_predicate def annotation_dict_filter(data: EdgeData) -> bool: """A filter that matches edges with the given dictionary as a sub-dictionary.""" return subdict_matches(data, annotations, partial_match=partial_match) return annotation_dict_filter
def build_pmid_exclusion_filter(pmids: Strings) -> EdgePredicate: """Fail for edges with citations whose references are one of the given PubMed identifiers. :param pmids: A PubMed identifier or list of PubMed identifiers to filter against """ if isinstance(pmids, str): @edge_predicate def pmid_exclusion_filter(data: EdgeData) -> bool: """Fail for edges with PubMed citations matching the contained PubMed identifier. :return: If the edge has a PubMed citation with the contained PubMed identifier """ return has_pubmed(data) and data[CITATION][CITATION_REFERENCE] != pmids elif isinstance(pmids, Iterable): pmids = set(pmids) @edge_predicate def pmid_exclusion_filter(data: EdgeData) -> bool: """Pass for edges with PubMed citations matching one of the contained PubMed identifiers. :return: If the edge has a PubMed citation with one of the contained PubMed identifiers """ return has_pubmed(data) and data[CITATION][CITATION_REFERENCE] not in pmids else: raise TypeError return pmid_exclusion_filter
def node_has_namespace(node: BaseEntity, namespace: str) -> bool: """Pass for nodes that have the given namespace.""" ns = node.get(NAMESPACE) return ns is not None and ns == namespace
def node_has_namespaces(node: BaseEntity, namespaces: Set[str]) -> bool: """Pass for nodes that have one of the given namespaces.""" ns = node.get(NAMESPACE) return ns is not None and ns in namespaces
def build_source_namespace_filter(namespaces: Strings) -> EdgePredicate: """Pass for edges whose source nodes have the given namespace or one of the given namespaces. :param namespaces: The namespace or namespaces to filter by """ if isinstance(namespaces, str): def source_namespace_filter(_, u: BaseEntity, __, ___) -> bool: return node_has_namespace(u, namespaces) elif isinstance(namespaces, Iterable): namespaces = set(namespaces) def source_namespace_filter(_, u: BaseEntity, __, ___) -> bool: return node_has_namespaces(u, namespaces) else: raise TypeError return source_namespace_filter
def build_target_namespace_filter(namespaces: Strings) -> EdgePredicate: """Only passes for edges whose target nodes have the given namespace or one of the given namespaces :param namespaces: The namespace or namespaces to filter by """ if isinstance(namespaces, str): def target_namespace_filter(_, __, v: BaseEntity, ___) -> bool: return node_has_namespace(v, namespaces) elif isinstance(namespaces, Iterable): namespaces = set(namespaces) def target_namespace_filter(_, __, v: BaseEntity, ___) -> bool: return node_has_namespaces(v, namespaces) else: raise TypeError return target_namespace_filter
def search_node_namespace_names(graph, query, namespace): """Search for nodes with the given namespace(s) and whose names containing a given string(s). :param pybel.BELGraph graph: A BEL graph :param query: The search query :type query: str or iter[str] :param namespace: The namespace(s) to filter :type namespace: str or iter[str] :return: An iterator over nodes whose names match the search query :rtype: iter """ node_predicates = [ namespace_inclusion_builder(namespace), build_node_name_search(query) ] return filter_nodes(graph, node_predicates)
def get_cutoff(value: float, cutoff: Optional[float] = None) -> int: """Assign if a value is greater than or less than a cutoff.""" cutoff = cutoff if cutoff is not None else 0 if value > cutoff: return 1 if value < (-1 * cutoff): return - 1 return 0
def calculate_concordance_helper(graph: BELGraph, key: str, cutoff: Optional[float] = None, ) -> Tuple[int, int, int, int]: """Help calculate network-wide concordance Assumes data already annotated with given key :param graph: A BEL graph :param key: The node data dictionary key storing the logFC :param cutoff: The optional logFC cutoff for significance """ scores = defaultdict(int) for u, v, k, d in graph.edges(keys=True, data=True): c = edge_concords(graph, u, v, k, d, key, cutoff=cutoff) scores[c] += 1 return ( scores[Concordance.correct], scores[Concordance.incorrect], scores[Concordance.ambiguous], scores[Concordance.unassigned], )
def calculate_concordance(graph: BELGraph, key: str, cutoff: Optional[float] = None, use_ambiguous: bool = False) -> float: """Calculates network-wide concordance. Assumes data already annotated with given key :param graph: A BEL graph :param key: The node data dictionary key storing the logFC :param cutoff: The optional logFC cutoff for significance :param use_ambiguous: Compare to ambiguous edges as well """ correct, incorrect, ambiguous, _ = calculate_concordance_helper(graph, key, cutoff=cutoff) try: return correct / (correct + incorrect + (ambiguous if use_ambiguous else 0)) except ZeroDivisionError: return -1.0
def one_sided(value: float, distribution: List[float]) -> float: """Calculate the one-sided probability of getting a value more extreme than the distribution.""" assert distribution return sum(value < element for element in distribution) / len(distribution)
def calculate_concordance_probability(graph: BELGraph, key: str, cutoff: Optional[float] = None, permutations: Optional[int] = None, percentage: Optional[float] = None, use_ambiguous: bool = False, permute_type: str = 'shuffle_node_data', ) -> Tuple[float, List[float], float]: """Calculates a graph's concordance as well as its statistical probability. :param graph: A BEL graph :param str key: The node data dictionary key storing the logFC :param float cutoff: The optional logFC cutoff for significance :param int permutations: The number of random permutations to test. Defaults to 500 :param float percentage: The percentage of the graph's edges to maintain. Defaults to 0.9 :param bool use_ambiguous: Compare to ambiguous edges as well :returns: A triple of the concordance score, the null distribution, and the p-value. """ if permute_type == 'random_by_edges': permute_func = partial(random_by_edges, percentage=percentage) elif permute_type == 'shuffle_node_data': permute_func = partial(shuffle_node_data, key=key, percentage=percentage) elif permute_type == 'shuffle_relations': permute_func = partial(shuffle_relations, percentage=percentage) else: raise ValueError('Invalid permute_type: {}'.format(permute_type)) graph: BELGraph = graph.copy() collapse_to_genes(graph) collapse_all_variants(graph) score = calculate_concordance(graph, key, cutoff=cutoff) distribution = [] for _ in range(permutations or 500): permuted_graph = permute_func(graph) permuted_graph_scores = calculate_concordance(permuted_graph, key, cutoff=cutoff, use_ambiguous=use_ambiguous) distribution.append(permuted_graph_scores) return score, distribution, one_sided(score, distribution)
def calculate_concordance_by_annotation(graph, annotation, key, cutoff=None): """Returns the concordance scores for each stratified graph based on the given annotation :param pybel.BELGraph graph: A BEL graph :param str annotation: The annotation to group by. :param str key: The node data dictionary key storing the logFC :param float cutoff: The optional logFC cutoff for significance :rtype: dict[str,tuple] """ return { value: calculate_concordance(subgraph, key, cutoff=cutoff) for value, subgraph in get_subgraphs_by_annotation(graph, annotation).items() }
def calculate_concordance_probability_by_annotation(graph, annotation, key, cutoff=None, permutations=None, percentage=None, use_ambiguous=False): """Returns the results of concordance analysis on each subgraph, stratified by the given annotation. :param pybel.BELGraph graph: A BEL graph :param str annotation: The annotation to group by. :param str key: The node data dictionary key storing the logFC :param float cutoff: The optional logFC cutoff for significance :param int permutations: The number of random permutations to test. Defaults to 500 :param float percentage: The percentage of the graph's edges to maintain. Defaults to 0.9 :param bool use_ambiguous: Compare to ambiguous edges as well :rtype: dict[str,tuple] """ result = [ (value, calculate_concordance_probability( subgraph, key, cutoff=cutoff, permutations=permutations, percentage=percentage, use_ambiguous=use_ambiguous, )) for value, subgraph in get_subgraphs_by_annotation(graph, annotation).items() ] return dict(result)
def _get_drug_target_interactions(manager: Optional['bio2bel_drugbank.manager'] = None) -> Mapping[str, List[str]]: """Get a mapping from drugs to their list of gene.""" if manager is None: import bio2bel_drugbank manager = bio2bel_drugbank.Manager() if not manager.is_populated(): manager.populate() return manager.get_drug_to_hgnc_symbols()
def multi_run_epicom(graphs: Iterable[BELGraph], path: Union[None, str, TextIO]) -> None: """Run EpiCom analysis on many graphs.""" if isinstance(path, str): with open(path, 'w') as file: _multi_run_helper_file_wrapper(graphs, file) else: _multi_run_helper_file_wrapper(graphs, path)
def main(): """Convert the Alzheimer's and Parkinson's disease NeuroMMSig excel sheets to BEL.""" logging.basicConfig(level=logging.INFO) log.setLevel(logging.INFO) bms_base = get_bms_base() neurommsig_base = get_neurommsig_base() neurommsig_excel_dir = os.path.join(neurommsig_base, 'resources', 'excels', 'neurommsig') nift_values = get_nift_values() log.info('Starting Alzheimers') ad_path = os.path.join(neurommsig_excel_dir, 'alzheimers', 'alzheimers.xlsx') ad_df = preprocess(ad_path) with open(os.path.join(bms_base, 'aetionomy', 'alzheimers', 'neurommsigdb_ad.bel'), 'w') as ad_file: write_neurommsig_bel(ad_file, ad_df, mesh_alzheimer, nift_values) log.info('Starting Parkinsons') pd_path = os.path.join(neurommsig_excel_dir, 'parkinsons', 'parkinsons.xlsx') pd_df = preprocess(pd_path) with open(os.path.join(bms_base, 'aetionomy', 'parkinsons', 'neurommsigdb_pd.bel'), 'w') as pd_file: write_neurommsig_bel(pd_file, pd_df, mesh_parkinson, nift_values)
def remove_inconsistent_edges(graph: BELGraph) -> None: """Remove all edges between node pairs with inconsistent edges. This is the all-or-nothing approach. It would be better to do more careful investigation of the evidences during curation. """ for u, v in get_inconsistent_edges(graph): edges = [(u, v, k) for k in graph[u][v]] graph.remove_edges_from(edges)
def get_walks_exhaustive(graph, node, length): """Gets all walks under a given length starting at a given node :param networkx.Graph graph: A graph :param node: Starting node :param int length: The length of walks to get :return: A list of paths :rtype: list[tuple] """ if 0 == length: return (node,), return tuple( (node, key) + path for neighbor in graph.edge[node] for path in get_walks_exhaustive(graph, neighbor, length - 1) if node not in path for key in graph.edge[node][neighbor] )
def match_simple_metapath(graph, node, simple_metapath): """Matches a simple metapath starting at the given node :param pybel.BELGraph graph: A BEL graph :param tuple node: A BEL node :param list[str] simple_metapath: A list of BEL Functions :return: An iterable over paths from the node matching the metapath :rtype: iter[tuple] """ if 0 == len(simple_metapath): yield node, else: for neighbor in graph.edges[node]: if graph.nodes[neighbor][FUNCTION] == simple_metapath[0]: for path in match_simple_metapath(graph, neighbor, simple_metapath[1:]): if node not in path: yield (node,) + path
def build_database(manager: pybel.Manager, annotation_url: Optional[str] = None) -> None: """Build a database of scores for NeuroMMSig annotated graphs. 1. Get all networks that use the Subgraph annotation 2. run on each """ annotation_url = annotation_url or NEUROMMSIG_DEFAULT_URL annotation = manager.get_namespace_by_url(annotation_url) if annotation is None: raise RuntimeError('no graphs in database with given annotation') networks = get_networks_using_annotation(manager, annotation) dtis = ... for network in networks: graph = network.as_bel() scores = epicom_on_graph(graph, dtis) for (drug_name, subgraph_name), score in scores.items(): drug_model = get_drug_model(manager, drug_name) subgraph_model = manager.get_annotation_entry(annotation_url, subgraph_name) score_model = Score( network=network, annotation=subgraph_model, drug=drug_model, score=score ) manager.session.add(score_model) t = time.time() logger.info('committing scores') manager.session.commit() logger.info('committed scores in %.2f seconds', time.time() - t)
def calculate_average_scores_on_graph( graph: BELGraph, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, use_tqdm: bool = False, ): """Calculate the scores over all biological processes in the sub-graph. As an implementation, it simply computes the sub-graphs then calls :func:`calculate_average_scores_on_subgraphs` as described in that function's documentation. :param graph: A BEL graph with heats already on the nodes :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param use_tqdm: Should there be a progress bar for runners? :return: A dictionary of {pybel node tuple: results tuple} :rtype: dict[tuple, tuple] Suggested usage with :mod:`pandas`: >>> import pandas as pd >>> from pybel_tools.analysis.heat import calculate_average_scores_on_graph >>> graph = ... # load graph and data >>> scores = calculate_average_scores_on_graph(graph) >>> pd.DataFrame.from_items(scores.items(), orient='index', columns=RESULT_LABELS) """ subgraphs = generate_bioprocess_mechanisms(graph, key=key) scores = calculate_average_scores_on_subgraphs( subgraphs, key=key, tag=tag, default_score=default_score, runs=runs, use_tqdm=use_tqdm ) return scores
def calculate_average_scores_on_subgraphs( subgraphs: Mapping[H, BELGraph], key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, use_tqdm: bool = False, tqdm_kwargs: Optional[Mapping[str, Any]] = None, ) -> Mapping[H, Tuple[float, float, float, float, int, int]]: """Calculate the scores over precomputed candidate mechanisms. :param subgraphs: A dictionary of keys to their corresponding subgraphs :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param use_tqdm: Should there be a progress bar for runners? :return: A dictionary of keys to results tuples Example Usage: >>> import pandas as pd >>> from pybel_tools.generation import generate_bioprocess_mechanisms >>> from pybel_tools.analysis.heat import calculate_average_scores_on_subgraphs >>> # load graph and data >>> graph = ... >>> candidate_mechanisms = generate_bioprocess_mechanisms(graph) >>> scores = calculate_average_scores_on_subgraphs(candidate_mechanisms) >>> pd.DataFrame.from_items(scores.items(), orient='index', columns=RESULT_LABELS) """ results = {} log.info('calculating results for %d candidate mechanisms using %d permutations', len(subgraphs), runs) it = subgraphs.items() if use_tqdm: _tqdm_kwargs = dict(total=len(subgraphs), desc='Candidate mechanisms') if tqdm_kwargs: _tqdm_kwargs.update(tqdm_kwargs) it = tqdm(it, **_tqdm_kwargs) for node, subgraph in it: number_first_neighbors = subgraph.in_degree(node) number_first_neighbors = 0 if isinstance(number_first_neighbors, dict) else number_first_neighbors mechanism_size = subgraph.number_of_nodes() runners = workflow(subgraph, node, key=key, tag=tag, default_score=default_score, runs=runs) scores = [runner.get_final_score() for runner in runners] if 0 == len(scores): results[node] = ( None, None, None, None, number_first_neighbors, mechanism_size, ) continue scores = np.array(scores) average_score = np.average(scores) score_std = np.std(scores) med_score = np.median(scores) chi_2_stat, norm_p = stats.normaltest(scores) results[node] = ( average_score, score_std, norm_p, med_score, number_first_neighbors, mechanism_size, ) return results
def workflow( graph: BELGraph, node: BaseEntity, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, minimum_nodes: int = 1, ) -> List['Runner']: """Generate candidate mechanisms and run the heat diffusion workflow. :param graph: A BEL graph :param node: The BEL node that is the focus of this analysis :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param minimum_nodes: The minimum number of nodes a sub-graph needs to try running heat diffusion :return: A list of runners """ subgraph = generate_mechanism(graph, node, key=key) if subgraph.number_of_nodes() <= minimum_nodes: return [] runners = multirun(subgraph, node, key=key, tag=tag, default_score=default_score, runs=runs) return list(runners)
def multirun(graph: BELGraph, node: BaseEntity, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, use_tqdm: bool = False, ) -> Iterable['Runner']: """Run the heat diffusion workflow multiple times, each time yielding a :class:`Runner` object upon completion. :param graph: A BEL graph :param node: The BEL node that is the focus of this analysis :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param use_tqdm: Should there be a progress bar for runners? :return: An iterable over the runners after each iteration """ if runs is None: runs = 100 it = range(runs) if use_tqdm: it = tqdm(it, total=runs) for i in it: try: runner = Runner(graph, node, key=key, tag=tag, default_score=default_score) runner.run() yield runner except Exception: log.debug('Run %s failed for %s', i, node)
def workflow_aggregate(graph: BELGraph, node: BaseEntity, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, aggregator: Optional[Callable[[Iterable[float]], float]] = None, ) -> Optional[float]: """Get the average score over multiple runs. This function is very simple, and can be copied to do more interesting statistics over the :class:`Runner` instances. To iterate over the runners themselves, see :func:`workflow` :param graph: A BEL graph :param node: The BEL node that is the focus of this analysis :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param aggregator: A function that aggregates a list of scores. Defaults to :func:`numpy.average`. Could also use: :func:`numpy.mean`, :func:`numpy.median`, :func:`numpy.min`, :func:`numpy.max` :return: The average score for the target node """ runners = workflow(graph, node, key=key, tag=tag, default_score=default_score, runs=runs) scores = [runner.get_final_score() for runner in runners] if not scores: log.warning('Unable to run the heat diffusion workflow for %s', node) return if aggregator is None: return np.average(scores) return aggregator(scores)
def workflow_all(graph: BELGraph, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, ) -> Mapping[BaseEntity, List[Runner]]: """Run the heat diffusion workflow and get runners for every possible candidate mechanism 1. Get all biological processes 2. Get candidate mechanism induced two level back from each biological process 3. Heat diffusion workflow for each candidate mechanism for multiple runs 4. Return all runner results :param graph: A BEL graph :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :return: A dictionary of {node: list of runners} """ results = {} for node in get_nodes_by_function(graph, BIOPROCESS): results[node] = workflow(graph, node, key=key, tag=tag, default_score=default_score, runs=runs) return results
def workflow_all_aggregate(graph: BELGraph, key: Optional[str] = None, tag: Optional[str] = None, default_score: Optional[float] = None, runs: Optional[int] = None, aggregator: Optional[Callable[[Iterable[float]], float]] = None, ): """Run the heat diffusion workflow to get average score for every possible candidate mechanism. 1. Get all biological processes 2. Get candidate mechanism induced two level back from each biological process 3. Heat diffusion workflow on each candidate mechanism for multiple runs 4. Report average scores for each candidate mechanism :param graph: A BEL graph :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param tag: The key for the nodes' data dictionaries where the scores will be put. Defaults to 'score' :param default_score: The initial score for all nodes. This number can go up or down. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param aggregator: A function that aggregates a list of scores. Defaults to :func:`numpy.average`. Could also use: :func:`numpy.mean`, :func:`numpy.median`, :func:`numpy.min`, :func:`numpy.max` :return: A dictionary of {node: upstream causal subgraph} """ results = {} bioprocess_nodes = list(get_nodes_by_function(graph, BIOPROCESS)) for bioprocess_node in tqdm(bioprocess_nodes): subgraph = generate_mechanism(graph, bioprocess_node, key=key) try: results[bioprocess_node] = workflow_aggregate( graph=subgraph, node=bioprocess_node, key=key, tag=tag, default_score=default_score, runs=runs, aggregator=aggregator ) except Exception: log.exception('could not run on %', bioprocess_node) return results
def calculate_average_score_by_annotation( graph: BELGraph, annotation: str, key: Optional[str] = None, runs: Optional[int] = None, use_tqdm: bool = False, ) -> Mapping[str, float]: """For each sub-graph induced over the edges matching the annotation, calculate the average score for all of the contained biological processes Assumes you haven't done anything yet 1. Generates biological process upstream candidate mechanistic sub-graphs with :func:`generate_bioprocess_mechanisms` 2. Calculates scores for each sub-graph with :func:`calculate_average_scores_on_sub-graphs` 3. Overlays data with pbt.integration.overlay_data 4. Calculates averages with pbt.selection.group_nodes.average_node_annotation :param graph: A BEL graph :param annotation: A BEL annotation :param key: The key in the node data dictionary representing the experimental data. Defaults to :data:`pybel_tools.constants.WEIGHT`. :param runs: The number of times to run the heat diffusion workflow. Defaults to 100. :param use_tqdm: Should there be a progress bar for runners? :return: A dictionary from {str annotation value: tuple scores} Example Usage: >>> import pybel >>> from pybel_tools.integration import overlay_data >>> from pybel_tools.analysis.heat import calculate_average_score_by_annotation >>> graph = pybel.from_path(...) >>> scores = calculate_average_score_by_annotation(graph, 'subgraph') """ candidate_mechanisms = generate_bioprocess_mechanisms(graph, key=key) #: {bp tuple: list of scores} scores: Mapping[BaseEntity, Tuple] = calculate_average_scores_on_subgraphs( subgraphs=candidate_mechanisms, key=key, runs=runs, use_tqdm=use_tqdm, ) subgraph_bp: Mapping[str, List[BaseEntity]] = defaultdict(list) subgraphs: Mapping[str, BELGraph] = get_subgraphs_by_annotation(graph, annotation) for annotation_value, subgraph in subgraphs.items(): subgraph_bp[annotation_value].extend(get_nodes_by_function(subgraph, BIOPROCESS)) #: Pick the average by slicing with 0. Refer to :func:`calculate_average_score_on_subgraphs` return { annotation_value: np.average(scores[bp][0] for bp in bps) for annotation_value, bps in subgraph_bp.items() }
def iter_leaves(self) -> Iterable[BaseEntity]: """Return an iterable over all nodes that are leaves. A node is a leaf if either: - it doesn't have any predecessors, OR - all of its predecessors have a score in their data dictionaries """ for node in self.graph: if self.tag in self.graph.nodes[node]: continue if not any(self.tag not in self.graph.nodes[p] for p in self.graph.predecessors(node)): yield node
def in_out_ratio(self, node: BaseEntity) -> float: """Calculate the ratio of in-degree / out-degree of a node.""" return self.graph.in_degree(node) / float(self.graph.out_degree(node))
def unscored_nodes_iter(self) -> BaseEntity: """Iterate over all nodes without a score.""" for node, data in self.graph.nodes(data=True): if self.tag not in data: yield node
def get_random_edge(self): """This function should be run when there are no leaves, but there are still unscored nodes. It will introduce a probabilistic element to the algorithm, where some edges are disregarded randomly to eventually get a score for the network. This means that the score can be averaged over many runs for a given graph, and a better data structure will have to be later developed that doesn't destroy the graph (instead, annotates which edges have been disregarded, later) 1. get all un-scored 2. rank by in-degree 3. weighted probability over all in-edges where lower in-degree means higher probability 4. pick randomly which edge :return: A random in-edge to the lowest in/out degree ratio node. This is a 3-tuple of (node, node, key) :rtype: tuple """ nodes = [ (n, self.in_out_ratio(n)) for n in self.unscored_nodes_iter() if n != self.target_node ] node, deg = min(nodes, key=itemgetter(1)) log.log(5, 'checking %s (in/out ratio: %.3f)', node, deg) possible_edges = self.graph.in_edges(node, keys=True) log.log(5, 'possible edges: %s', possible_edges) edge_to_remove = random.choice(possible_edges) log.log(5, 'chose: %s', edge_to_remove) return edge_to_remove
def remove_random_edge(self): """Remove a random in-edge from the node with the lowest in/out degree ratio.""" u, v, k = self.get_random_edge() log.log(5, 'removing %s, %s (%s)', u, v, k) self.graph.remove_edge(u, v, k)
def remove_random_edge_until_has_leaves(self) -> None: """Remove random edges until there is at least one leaf node.""" while True: leaves = set(self.iter_leaves()) if leaves: return self.remove_random_edge()
def score_leaves(self) -> Set[BaseEntity]: """Calculate the score for all leaves. :return: The set of leaf nodes that were scored """ leaves = set(self.iter_leaves()) if not leaves: log.warning('no leaves.') return set() for leaf in leaves: self.graph.nodes[leaf][self.tag] = self.calculate_score(leaf) log.log(5, 'chomping %s', leaf) return leaves
def run_with_graph_transformation(self) -> Iterable[BELGraph]: """Calculate scores for all leaves until there are none, removes edges until there are, and repeats until all nodes have been scored. Also, yields the current graph at every step so you can make a cool animation of how the graph changes throughout the course of the algorithm :return: An iterable of BEL graphs """ yield self.get_remaining_graph() while not self.done_chomping(): while not list(self.iter_leaves()): self.remove_random_edge() yield self.get_remaining_graph() self.score_leaves() yield self.get_remaining_graph()
def done_chomping(self) -> bool: """Determines if the algorithm is complete by checking if the target node of this analysis has been scored yet. Because the algorithm removes edges when it gets stuck until it is un-stuck, it is always guaranteed to finish. :return: Is the algorithm done running? """ return self.tag in self.graph.nodes[self.target_node]
def get_final_score(self) -> float: """Return the final score for the target node. :return: The final score for the target node """ if not self.done_chomping(): raise ValueError('algorithm has not yet completed') return self.graph.nodes[self.target_node][self.tag]
def calculate_score(self, node: BaseEntity) -> float: """Calculate the new score of the given node.""" score = ( self.graph.nodes[node][self.tag] if self.tag in self.graph.nodes[node] else self.default_score ) for predecessor, _, d in self.graph.in_edges(node, data=True): if d[RELATION] in CAUSAL_INCREASE_RELATIONS: score += self.graph.nodes[predecessor][self.tag] elif d[RELATION] in CAUSAL_DECREASE_RELATIONS: score -= self.graph.nodes[predecessor][self.tag] return score
def microcanonical_statistics_dtype(spanning_cluster=True): """ Return the numpy structured array data type for sample states Helper function Parameters ---------- spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. Returns ------- ret : list of pairs of str A list of tuples of field names and data types to be used as ``dtype`` argument in numpy ndarray constructors See Also -------- http://docs.scipy.org/doc/numpy/user/basics.rec.html canonical_statistics_dtype """ fields = list() fields.extend([ ('n', 'uint32'), ('edge', 'uint32'), ]) if spanning_cluster: fields.extend([ ('has_spanning_cluster', 'bool'), ]) fields.extend([ ('max_cluster_size', 'uint32'), ('moments', '(5,)uint64'), ]) return _ndarray_dtype(fields)
def bond_sample_states( perc_graph, num_nodes, num_edges, seed, spanning_cluster=True, auxiliary_node_attributes=None, auxiliary_edge_attributes=None, spanning_sides=None, **kwargs ): ''' Generate successive sample states of the bond percolation model This is a :ref:`generator function <python:tut-generators>` to successively add one edge at a time from the graph to the percolation model. At each iteration, it calculates and returns the cluster statistics. CAUTION: it returns a reference to the internal array, not a copy. Parameters ---------- perc_graph : networkx.Graph The substrate graph on which percolation is to take place num_nodes : int Number ``N`` of sites in the graph num_edges : int Number ``M`` of bonds in the graph seed : {None, int, array_like} Random seed initializing the pseudo-random number generator. Piped through to `numpy.random.RandomState` constructor. spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. auxiliary_node_attributes : optional Return value of ``networkx.get_node_attributes(graph, 'span')`` auxiliary_edge_attributes : optional Return value of ``networkx.get_edge_attributes(graph, 'span')`` spanning_sides : list, optional List of keys (attribute values) of the two sides of the auxiliary nodes. Return value of ``list(set(auxiliary_node_attributes.values()))`` Yields ------ ret : ndarray Structured array with dtype ``dtype=[('has_spanning_cluster', 'bool'), ('max_cluster_size', 'uint32'), ('moments', 'int64', 5)]`` ret['n'] : ndarray of int The number of bonds added at the particular iteration ret['edge'] : ndarray of int The index of the edge added at the particular iteration Note that in the first step, when ``ret['n'] == 0``, this value is undefined! ret['has_spanning_cluster'] : ndarray of bool ``True`` if there is a spanning cluster, ``False`` otherwise. Only exists if `spanning_cluster` argument is set to ``True``. ret['max_cluster_size'] : int Size of the largest cluster (absolute number of sites) ret['moments'] : 1-D :py:class:`numpy.ndarray` of int Array of size ``5``. The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster size distribution, with ``k`` ranging from ``0`` to ``4``. Raises ------ ValueError If `spanning_cluster` is ``True``, but `graph` does not contain any auxiliary nodes to detect spanning clusters. See also -------- numpy.random.RandomState microcanonical_statistics_dtype Notes ----- Iterating through this generator is a single run of the Newman-Ziff algorithm. [12]_ The first iteration yields the trivial state with :math:`n = 0` occupied bonds. Spanning cluster In order to detect a spanning cluster, `graph` needs to contain auxiliary nodes and edges, cf. Reference [12]_, Figure 6. The auxiliary nodes and edges have the ``'span'`` `attribute <http://networkx.github.io/documentation/latest/tutorial/tutorial.html#node-attributes>`_. The value is either ``0`` or ``1``, distinguishing the two sides of the graph to span. Raw moments of the cluster size distribution The :math:`k`-th raw moment of the (absolute) cluster size distribution is :math:`\sum_s' s^k N_s`, where :math:`s` is the cluster size and :math:`N_s` is the number of clusters of size :math:`s`. [13]_ The primed sum :math:`\sum'` signifies that the largest cluster is excluded from the sum. [14]_ References ---------- .. [12] Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site or bond percolation. Physical Review E 64, 016706+ (2001), `doi:10.1103/physreve.64.016706 <http://dx.doi.org/10.1103/physreve.64.016706>`_. .. [13] Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, London, 1994), second edn. .. [14] Binder, K. & Heermann, D. W. Monte Carlo Simulation in Statistical Physics (Springer, Berlin, Heidelberg, 2010), `doi:10.1007/978-3-642-03163-2 <http://dx.doi.org/10.1007/978-3-642-03163-2>`_. ''' # construct random number generator rng = np.random.RandomState(seed=seed) if spanning_cluster: if len(spanning_sides) != 2: raise ValueError( 'Spanning cluster is to be detected, but auxiliary nodes ' 'of less or more than 2 types (sides) given.' ) # get a list of edges for easy access in later iterations perc_edges = perc_graph.edges() perm_edges = rng.permutation(num_edges) # initial iteration: no edges added yet (n == 0) ret = np.empty( 1, dtype=microcanonical_statistics_dtype(spanning_cluster) ) ret['n'] = 0 ret['max_cluster_size'] = 1 ret['moments'] = np.ones(5, dtype='uint64') * (num_nodes - 1) if spanning_cluster: ret['has_spanning_cluster'] = False # yield cluster statistics for n == 0 yield ret # set up disjoint set (union-find) data structure ds = nx.utils.union_find.UnionFind() if spanning_cluster: ds_spanning = nx.utils.union_find.UnionFind() # merge all auxiliary nodes for each side side_roots = dict() for side in spanning_sides: nodes = [ node for (node, node_side) in auxiliary_node_attributes.items() if node_side is side ] ds_spanning.union(*nodes) side_roots[side] = ds_spanning[nodes[0]] for (edge, edge_side) in auxiliary_edge_attributes.items(): ds_spanning.union(side_roots[edge_side], *edge) side_roots = [ ds_spanning[side_root] for side_root in side_roots.values() ] # get first node max_cluster_root = next(perc_graph.nodes_iter()) # loop over all edges (n == 1..M) for n in range(num_edges): ret['n'] += 1 # draw new edge from permutation edge_index = perm_edges[n] edge = perc_edges[edge_index] ret['edge'] = edge_index # find roots and weights roots = [ ds[node] for node in edge ] weights = [ ds.weights[root] for root in roots ] if roots[0] is not roots[1]: # not same cluster: union! ds.union(*roots) if spanning_cluster: ds_spanning.union(*roots) ret['has_spanning_cluster'] = ( ds_spanning[side_roots[0]] == ds_spanning[side_roots[1]] ) # find new root and weight root = ds[edge[0]] weight = ds.weights[root] # moments and maximum cluster size # deduct the previous sub-maximum clusters from moments for i in [0, 1]: if roots[i] is max_cluster_root: continue ret['moments'] -= weights[i] ** np.arange(5, dtype='uint64') if max_cluster_root in roots: # merged with maximum cluster max_cluster_root = root ret['max_cluster_size'] = weight else: # merged previously sub-maximum clusters if ret['max_cluster_size'] >= weight: # previously largest cluster remains largest cluster # add merged cluster to moments ret['moments'] += weight ** np.arange(5, dtype='uint64') else: # merged cluster overtook previously largest cluster # add previously largest cluster to moments max_cluster_root = root ret['moments'] += ret['max_cluster_size'] ** np.arange( 5, dtype='uint64' ) ret['max_cluster_size'] = weight yield ret
def bond_microcanonical_statistics( perc_graph, num_nodes, num_edges, seed, spanning_cluster=True, auxiliary_node_attributes=None, auxiliary_edge_attributes=None, spanning_sides=None, **kwargs ): """ Evolve a single run over all microstates (bond occupation numbers) Return the cluster statistics for each microstate Parameters ---------- perc_graph : networkx.Graph The substrate graph on which percolation is to take place num_nodes : int Number ``N`` of sites in the graph num_edges : int Number ``M`` of bonds in the graph seed : {None, int, array_like} Random seed initializing the pseudo-random number generator. Piped through to `numpy.random.RandomState` constructor. spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. auxiliary_node_attributes : optional Value of ``networkx.get_node_attributes(graph, 'span')`` auxiliary_edge_attributes : optional Value of ``networkx.get_edge_attributes(graph, 'span')`` spanning_sides : list, optional List of keys (attribute values) of the two sides of the auxiliary nodes. Return value of ``list(set(auxiliary_node_attributes.values()))`` Returns ------- ret : ndarray of size ``num_edges + 1`` Structured array with dtype ``dtype=[('has_spanning_cluster', 'bool'), ('max_cluster_size', 'uint32'), ('moments', 'uint64', 5)]`` ret['n'] : ndarray of int The number of bonds added at the particular iteration ret['edge'] : ndarray of int The index of the edge added at the particular iteration. Note that ``ret['edge'][0]`` is undefined! ret['has_spanning_cluster'] : ndarray of bool ``True`` if there is a spanning cluster, ``False`` otherwise. Only exists if `spanning_cluster` argument is set to ``True``. ret['max_cluster_size'] : int Size of the largest cluster (absolute number of sites) ret['moments'] : 2-D :py:class:`numpy.ndarray` of int Array of shape ``(num_edges + 1, 5)``. The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster size distribution, with ``k`` ranging from ``0`` to ``4``. See also -------- bond_sample_states microcanonical_statistics_dtype numpy.random.RandomState """ # initialize generator sample_states = bond_sample_states( perc_graph=perc_graph, num_nodes=num_nodes, num_edges=num_edges, seed=seed, spanning_cluster=spanning_cluster, auxiliary_node_attributes=auxiliary_node_attributes, auxiliary_edge_attributes=auxiliary_edge_attributes, spanning_sides=spanning_sides, ) # get cluster statistics over all microstates return np.fromiter( sample_states, dtype=microcanonical_statistics_dtype(spanning_cluster), count=num_edges + 1 )
def canonical_statistics_dtype(spanning_cluster=True): """ The NumPy Structured Array type for canonical statistics Helper function Parameters ---------- spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. Returns ------- ret : list of pairs of str A list of tuples of field names and data types to be used as ``dtype`` argument in numpy ndarray constructors See Also -------- http://docs.scipy.org/doc/numpy/user/basics.rec.html microcanoncial_statistics_dtype canonical_averages_dtype """ fields = list() if spanning_cluster: fields.extend([ ('percolation_probability', 'float64'), ]) fields.extend([ ('max_cluster_size', 'float64'), ('moments', '(5,)float64'), ]) return _ndarray_dtype(fields)
def bond_canonical_statistics( microcanonical_statistics, convolution_factors, **kwargs ): """ canonical cluster statistics for a single run and a single probability Parameters ---------- microcanonical_statistics : ndarray Return value of `bond_microcanonical_statistics` convolution_factors : 1-D array_like The coefficients of the convolution for the given probabilty ``p`` and for each occupation number ``n``. Returns ------- ret : ndarray of size ``1`` Structured array with dtype as returned by `canonical_statistics_dtype` ret['percolation_probability'] : ndarray of float The "percolation probability" of this run at the value of ``p``. Only exists if `microcanonical_statistics` argument has the ``has_spanning_cluster`` field. ret['max_cluster_size'] : ndarray of int Weighted size of the largest cluster (absolute number of sites) ret['moments'] : 1-D :py:class:`numpy.ndarray` of float Array of size ``5``. The ``k``-th entry is the weighted ``k``-th raw moment of the (absolute) cluster size distribution, with ``k`` ranging from ``0`` to ``4``. See Also -------- bond_microcanonical_statistics canonical_statistics_dtype """ # initialize return array spanning_cluster = ( 'has_spanning_cluster' in microcanonical_statistics.dtype.names ) ret = np.empty(1, dtype=canonical_statistics_dtype(spanning_cluster)) # compute percolation probability if spanning_cluster: ret['percolation_probability'] = np.sum( convolution_factors * microcanonical_statistics['has_spanning_cluster'] ) # convolve maximum cluster size ret['max_cluster_size'] = np.sum( convolution_factors * microcanonical_statistics['max_cluster_size'] ) # convolve moments ret['moments'] = np.sum( convolution_factors[:, np.newaxis] * microcanonical_statistics['moments'], axis=0, ) # return convolved cluster statistics return ret
def canonical_averages_dtype(spanning_cluster=True): """ The NumPy Structured Array type for canonical averages over several runs Helper function Parameters ---------- spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. Returns ------- ret : list of pairs of str A list of tuples of field names and data types to be used as ``dtype`` argument in numpy ndarray constructors See Also -------- http://docs.scipy.org/doc/numpy/user/basics.rec.html canonical_statistics_dtype finalized_canonical_averages_dtype """ fields = list() fields.extend([ ('number_of_runs', 'uint32'), ]) if spanning_cluster: fields.extend([ ('percolation_probability_mean', 'float64'), ('percolation_probability_m2', 'float64'), ]) fields.extend([ ('max_cluster_size_mean', 'float64'), ('max_cluster_size_m2', 'float64'), ('moments_mean', '(5,)float64'), ('moments_m2', '(5,)float64'), ]) return _ndarray_dtype(fields)
def bond_initialize_canonical_averages( canonical_statistics, **kwargs ): """ Initialize the canonical averages from a single-run cluster statistics Parameters ---------- canonical_statistics : 1-D structured ndarray Typically contains the canonical statistics for a range of values of the occupation probability ``p``. The dtype is the result of `canonical_statistics_dtype`. Returns ------- ret : structured ndarray The dype is the result of `canonical_averages_dtype`. ret['number_of_runs'] : 1-D ndarray of int Equals ``1`` (initial run). ret['percolation_probability_mean'] : 1-D array of float Equals ``canonical_statistics['percolation_probability']`` (if ``percolation_probability`` is present) ret['percolation_probability_m2'] : 1-D array of float Each entry is ``0.0`` ret['max_cluster_size_mean'] : 1-D array of float Equals ``canonical_statistics['max_cluster_size']`` ret['max_cluster_size_m2'] : 1-D array of float Each entry is ``0.0`` ret['moments_mean'] : 2-D array of float Equals ``canonical_statistics['moments']`` ret['moments_m2'] : 2-D array of float Each entry is ``0.0`` See Also -------- canonical_averages_dtype bond_canonical_statistics """ # initialize return array spanning_cluster = ( 'percolation_probability' in canonical_statistics.dtype.names ) # array should have the same size as the input array ret = np.empty_like( canonical_statistics, dtype=canonical_averages_dtype(spanning_cluster=spanning_cluster), ) ret['number_of_runs'] = 1 # initialize percolation probability mean and sum of squared differences if spanning_cluster: ret['percolation_probability_mean'] = ( canonical_statistics['percolation_probability'] ) ret['percolation_probability_m2'] = 0.0 # initialize maximum cluster size mean and sum of squared differences ret['max_cluster_size_mean'] = ( canonical_statistics['max_cluster_size'] ) ret['max_cluster_size_m2'] = 0.0 # initialize moments means and sums of squared differences ret['moments_mean'] = canonical_statistics['moments'] ret['moments_m2'] = 0.0 return ret
def bond_reduce(row_a, row_b): """ Reduce the canonical averages over several runs This is a "true" reducer. It is associative and commutative. This is a wrapper around `simoa.stats.online_variance`. Parameters ---------- row_a, row_b : structured ndarrays Output of this function, or initial input from `bond_initialize_canonical_averages` Returns ------- ret : structured ndarray Array is of dtype as returned by `canonical_averages_dtype` See Also -------- bond_initialize_canonical_averages canonical_averages_dtype simoa.stats.online_variance """ spanning_cluster = ( 'percolation_probability_mean' in row_a.dtype.names and 'percolation_probability_mean' in row_b.dtype.names and 'percolation_probability_m2' in row_a.dtype.names and 'percolation_probability_m2' in row_b.dtype.names ) # initialize return array ret = np.empty_like(row_a) def _reducer(key, transpose=False): mean_key = '{}_mean'.format(key) m2_key = '{}_m2'.format(key) res = simoa.stats.online_variance(*[ ( row['number_of_runs'], row[mean_key].T if transpose else row[mean_key], row[m2_key].T if transpose else row[m2_key], ) for row in [row_a, row_b] ]) ( ret[mean_key], ret[m2_key], ) = ( res[1].T, res[2].T, ) if transpose else res[1:] if spanning_cluster: _reducer('percolation_probability') _reducer('max_cluster_size') _reducer('moments', transpose=True) ret['number_of_runs'] = row_a['number_of_runs'] + row_b['number_of_runs'] return ret
def finalized_canonical_averages_dtype(spanning_cluster=True): """ The NumPy Structured Array type for finalized canonical averages over several runs Helper function Parameters ---------- spanning_cluster : bool, optional Whether to detect a spanning cluster or not. Defaults to ``True``. Returns ------- ret : list of pairs of str A list of tuples of field names and data types to be used as ``dtype`` argument in numpy ndarray constructors See Also -------- http://docs.scipy.org/doc/numpy/user/basics.rec.html canonical_averages_dtype """ fields = list() fields.extend([ ('number_of_runs', 'uint32'), ('p', 'float64'), ('alpha', 'float64'), ]) if spanning_cluster: fields.extend([ ('percolation_probability_mean', 'float64'), ('percolation_probability_std', 'float64'), ('percolation_probability_ci', '(2,)float64'), ]) fields.extend([ ('percolation_strength_mean', 'float64'), ('percolation_strength_std', 'float64'), ('percolation_strength_ci', '(2,)float64'), ('moments_mean', '(5,)float64'), ('moments_std', '(5,)float64'), ('moments_ci', '(5,2)float64'), ]) return _ndarray_dtype(fields)
def finalize_canonical_averages( number_of_nodes, ps, canonical_averages, alpha, ): """ Finalize canonical averages """ spanning_cluster = ( ( 'percolation_probability_mean' in canonical_averages.dtype.names ) and 'percolation_probability_m2' in canonical_averages.dtype.names ) # append values of p as an additional field ret = np.empty_like( canonical_averages, dtype=finalized_canonical_averages_dtype( spanning_cluster=spanning_cluster ), ) n = canonical_averages['number_of_runs'] sqrt_n = np.sqrt(canonical_averages['number_of_runs']) ret['number_of_runs'] = n ret['p'] = ps ret['alpha'] = alpha def _transform( original_key, final_key=None, normalize=False, transpose=False, ): if final_key is None: final_key = original_key keys_mean = [ '{}_mean'.format(key) for key in [original_key, final_key] ] keys_std = [ '{}_m2'.format(original_key), '{}_std'.format(final_key), ] key_ci = '{}_ci'.format(final_key) # calculate sample mean ret[keys_mean[1]] = canonical_averages[keys_mean[0]] if normalize: ret[keys_mean[1]] /= number_of_nodes # calculate sample standard deviation array = canonical_averages[keys_std[0]] result = np.sqrt( (array.T if transpose else array) / (n - 1) ) ret[keys_std[1]] = ( result.T if transpose else result ) if normalize: ret[keys_std[1]] /= number_of_nodes # calculate standard normal confidence interval array = ret[keys_std[1]] scale = (array.T if transpose else array) / sqrt_n array = ret[keys_mean[1]] mean = (array.T if transpose else array) result = scipy.stats.t.interval( 1 - alpha, df=n - 1, loc=mean, scale=scale, ) ( ret[key_ci][..., 0], ret[key_ci][..., 1] ) = ([my_array.T for my_array in result] if transpose else result) if spanning_cluster: _transform('percolation_probability') _transform('max_cluster_size', 'percolation_strength', normalize=True) _transform('moments', normalize=True, transpose=True) return ret
def compare(graph: BELGraph, annotation: str = 'Subgraph') -> Mapping[str, Mapping[str, float]]: """Compare generated mechanisms to actual ones. 1. Generates candidate mechanisms for each biological process 2. Gets sub-graphs for all NeuroMMSig signatures 3. Make tanimoto similarity comparison for all sets :return: A dictionary table comparing the canonical subgraphs to generated ones """ canonical_mechanisms = get_subgraphs_by_annotation(graph, annotation) canonical_nodes = _transform_graph_dict_to_node_dict(canonical_mechanisms) candidate_mechanisms = generate_bioprocess_mechanisms(graph) candidate_nodes = _transform_graph_dict_to_node_dict(candidate_mechanisms) results: Dict[str, Dict[str, float]] = defaultdict(dict) it = itt.product(canonical_nodes.items(), candidate_nodes.items()) for (canonical_name, canonical_graph), (candidate_bp, candidate_graph) in it: tanimoto = tanimoto_set_similarity(candidate_nodes, canonical_nodes) results[canonical_name][candidate_bp] = tanimoto return dict(results)
def summarize_node_filter(graph: BELGraph, node_filters: NodePredicates) -> None: """Print a summary of the number of nodes passing a given set of filters. :param graph: A BEL graph :param node_filters: A node filter or list/tuple of node filters """ passed = count_passed_node_filter(graph, node_filters) print('{}/{} nodes passed'.format(passed, graph.number_of_nodes()))
def node_inclusion_filter_builder(nodes: Iterable[BaseEntity]) -> NodePredicate: """Build a filter that only passes on nodes in the given list. :param nodes: An iterable of BEL nodes """ node_set = set(nodes) def inclusion_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for a node that is in the enclosed node list. :return: If the node is contained within the enclosed node list """ return node in node_set return inclusion_filter
def node_exclusion_filter_builder(nodes: Iterable[BaseEntity]) -> NodePredicate: """Build a filter that fails on nodes in the given list.""" node_set = set(nodes) def exclusion_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for a node that isn't in the enclosed node list :return: If the node isn't contained within the enclosed node list """ return node not in node_set return exclusion_filter
def function_exclusion_filter_builder(func: Strings) -> NodePredicate: """Build a filter that fails on nodes of the given function(s). :param func: A BEL Function or list/set/tuple of BEL functions """ if isinstance(func, str): def function_exclusion_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for a node that doesn't have the enclosed function. :return: If the node doesn't have the enclosed function """ return node[FUNCTION] != func return function_exclusion_filter elif isinstance(func, Iterable): functions = set(func) def functions_exclusion_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for a node that doesn't have the enclosed functions. :return: If the node doesn't have the enclosed functions """ return node[FUNCTION] not in functions return functions_exclusion_filter raise ValueError('Invalid type for argument: {}'.format(func))
def function_namespace_inclusion_builder(func: str, namespace: Strings) -> NodePredicate: """Build a filter function for matching the given BEL function with the given namespace or namespaces. :param func: A BEL function :param namespace: The namespace to search by """ if isinstance(namespace, str): def function_namespaces_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for nodes that have the enclosed function and enclosed namespace.""" if func != node[FUNCTION]: return False return NAMESPACE in node and node[NAMESPACE] == namespace elif isinstance(namespace, Iterable): namespaces = set(namespace) def function_namespaces_filter(_: BELGraph, node: BaseEntity) -> bool: """Pass only for nodes that have the enclosed function and namespace in the enclose set.""" if func != node[FUNCTION]: return False return NAMESPACE in node and node[NAMESPACE] in namespaces else: raise ValueError('Invalid type for argument: {}'.format(namespace)) return function_namespaces_filter
def data_contains_key_builder(key: str) -> NodePredicate: # noqa: D202 """Build a filter that passes only on nodes that have the given key in their data dictionary. :param key: A key for the node's data dictionary """ def data_contains_key(_: BELGraph, node: BaseEntity) -> bool: """Pass only for a node that contains the enclosed key in its data dictionary. :return: If the node contains the enclosed key in its data dictionary """ return key in node return data_contains_key
def variants_of( graph: BELGraph, node: Protein, modifications: Optional[Set[str]] = None, ) -> Set[Protein]: """Returns all variants of the given node.""" if modifications: return _get_filtered_variants_of(graph, node, modifications) return { v for u, v, key, data in graph.edges(keys=True, data=True) if ( u == node and data[RELATION] == HAS_VARIANT and pybel.struct.has_protein_modification(v) ) }
def get_variants_to_controllers( graph: BELGraph, node: Protein, modifications: Optional[Set[str]] = None, ) -> Mapping[Protein, Set[Protein]]: """Get a mapping from variants of the given node to all of its upstream controllers.""" rv = defaultdict(set) variants = variants_of(graph, node, modifications) for controller, variant, data in graph.in_edges(variants, data=True): if data[RELATION] in CAUSAL_RELATIONS: rv[variant].add(controller) return rv
def group_dict_set(iterator: Iterable[Tuple[A, B]]) -> Mapping[A, Set[B]]: """Make a dict that accumulates the values for each key in an iterator of doubles.""" d = defaultdict(set) for key, value in iterator: d[key].add(value) return dict(d)
def get_edge_relations(graph: BELGraph) -> Mapping[Tuple[BaseEntity, BaseEntity], Set[str]]: """Build a dictionary of {node pair: set of edge types}.""" return group_dict_set( ((u, v), d[RELATION]) for u, v, d in graph.edges(data=True) )
def count_unique_relations(graph: BELGraph) -> Counter: """Return a histogram of the different types of relations present in a graph. Note: this operation only counts each type of edge once for each pair of nodes """ return Counter(itt.chain.from_iterable(get_edge_relations(graph).values()))
def get_annotations_containing_keyword(graph: BELGraph, keyword: str) -> List[Mapping[str, str]]: """Get annotation/value pairs for values for whom the search string is a substring :param graph: A BEL graph :param keyword: Search for annotations whose values have this as a substring """ return [ { 'annotation': annotation, 'value': value } for annotation, value in iter_annotation_value_pairs(graph) if keyword.lower() in value.lower() ]
def count_annotation_values(graph: BELGraph, annotation: str) -> Counter: """Count in how many edges each annotation appears in a graph :param graph: A BEL graph :param annotation: The annotation to count :return: A Counter from {annotation value: frequency} """ return Counter(iter_annotation_values(graph, annotation))
def count_annotation_values_filtered(graph: BELGraph, annotation: str, source_predicate: Optional[NodePredicate] = None, target_predicate: Optional[NodePredicate] = None, ) -> Counter: """Count in how many edges each annotation appears in a graph, but filter out source nodes and target nodes. See :func:`pybel_tools.utils.keep_node` for a basic filter. :param graph: A BEL graph :param annotation: The annotation to count :param source_predicate: A predicate (graph, node) -> bool for keeping source nodes :param target_predicate: A predicate (graph, node) -> bool for keeping target nodes :return: A Counter from {annotation value: frequency} """ if source_predicate and target_predicate: return Counter( data[ANNOTATIONS][annotation] for u, v, data in graph.edges(data=True) if edge_has_annotation(data, annotation) and source_predicate(graph, u) and target_predicate(graph, v) ) elif source_predicate: return Counter( data[ANNOTATIONS][annotation] for u, v, data in graph.edges(data=True) if edge_has_annotation(data, annotation) and source_predicate(graph, u) ) elif target_predicate: return Counter( data[ANNOTATIONS][annotation] for u, v, data in graph.edges(data=True) if edge_has_annotation(data, annotation) and target_predicate(graph, u) ) else: return Counter( data[ANNOTATIONS][annotation] for u, v, data in graph.edges(data=True) if edge_has_annotation(data, annotation) )
def pair_is_consistent(graph: BELGraph, u: BaseEntity, v: BaseEntity) -> Optional[str]: """Return if the edges between the given nodes are consistent, meaning they all have the same relation. :return: If the edges aren't consistent, return false, otherwise return the relation type """ relations = {data[RELATION] for data in graph[u][v].values()} if 1 != len(relations): return return list(relations)[0]
def get_contradictory_pairs(graph: BELGraph) -> Iterable[Tuple[BaseEntity, BaseEntity]]: """Iterates over contradictory node pairs in the graph based on their causal relationships :return: An iterator over (source, target) node pairs that have contradictory causal edges """ for u, v in graph.edges(): if pair_has_contradiction(graph, u, v): yield u, v
def get_consistent_edges(graph: BELGraph) -> Iterable[Tuple[BaseEntity, BaseEntity]]: """Yield pairs of (source node, target node) for which all of their edges have the same type of relation. :return: An iterator over (source, target) node pairs corresponding to edges with many inconsistent relations """ for u, v in graph.edges(): if pair_is_consistent(graph, u, v): yield u, v
def infer_missing_two_way_edges(graph): """Add edges to the graph when a two way edge exists, and the opposite direction doesn't exist. Use: two way edges from BEL definition and/or axiomatic inverses of membership relations :param pybel.BELGraph graph: A BEL graph """ for u, v, k, d in graph.edges(data=True, keys=True): if d[RELATION] in TWO_WAY_RELATIONS: infer_missing_backwards_edge(graph, u, v, k)
def infer_missing_backwards_edge(graph, u, v, k): """Add the same edge, but in the opposite direction if not already present. :type graph: pybel.BELGraph :type u: tuple :type v: tuple :type k: int """ if u in graph[v]: for attr_dict in graph[v][u].values(): if attr_dict == graph[u][v][k]: return graph.add_edge(v, u, key=k, **graph[u][v][k])
def enrich_internal_unqualified_edges(graph, subgraph): """Add the missing unqualified edges between entities in the subgraph that are contained within the full graph. :param pybel.BELGraph graph: The full BEL graph :param pybel.BELGraph subgraph: The query BEL subgraph """ for u, v in itt.combinations(subgraph, 2): if not graph.has_edge(u, v): continue for k in graph[u][v]: if k < 0: subgraph.add_edge(u, v, key=k, **graph[u][v][k])
def boilerplate(name, contact, description, pmids, version, copyright, authors, licenses, disclaimer, output): """Build a template BEL document with the given PubMed identifiers.""" from .document_utils import write_boilerplate write_boilerplate( name=name, version=version, description=description, authors=authors, contact=contact, copyright=copyright, licenses=licenses, disclaimer=disclaimer, pmids=pmids, file=output, )
def serialize_namespaces(namespaces, connection: str, path, directory): """Parse a BEL document then serializes the given namespaces (errors and all) to the given directory.""" from .definition_utils import export_namespaces graph = from_lines(path, manager=connection) export_namespaces(namespaces, graph, directory)
def get_pmids(graph: BELGraph, output: TextIO): """Output PubMed identifiers from a graph to a stream.""" for pmid in get_pubmed_identifiers(graph): click.echo(pmid, file=output)
def getrowcount(self, window_name, object_name): """ Get count of rows in table object. @param window_name: Window name to look for, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to look for, either full name, LDTP's name convention, or a Unix glob. Or menu heirarchy @type object_name: string @return: Number of rows. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) return len(object_handle.AXRows)
def selectrow(self, window_name, object_name, row_text, partial_match=False): """ Select row @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text: Row text to select @type row_text: string @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) for cell in object_handle.AXRows: if re.match(row_text, cell.AXChildren[0].AXValue): if not cell.AXSelected: object_handle.activate() cell.AXSelected = True else: # Selected pass return 1 raise LdtpServerException(u"Unable to select row: %s" % row_text)
def multiselect(self, window_name, object_name, row_text_list, partial_match=False): """ Select multiple row @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text_list: Row list with matching text to select @type row_text: string @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) object_handle.activate() selected = False try: window = self._get_front_most_window() except (IndexError,): window = self._get_any_window() for row_text in row_text_list: selected = False for cell in object_handle.AXRows: parent_cell = cell cell = self._getfirstmatchingchild(cell, "(AXTextField|AXStaticText)") if not cell: continue if re.match(row_text, cell.AXValue): selected = True if not parent_cell.AXSelected: x, y, width, height = self._getobjectsize(parent_cell) window.clickMouseButtonLeftWithMods((x + width / 2, y + height / 2), ['<command_l>']) # Following selection doesn't work # parent_cell.AXSelected=True self.wait(0.5) else: # Selected pass break if not selected: raise LdtpServerException(u"Unable to select row: %s" % row_text) if not selected: raise LdtpServerException(u"Unable to select any row") return 1
def selectrowpartialmatch(self, window_name, object_name, row_text): """ Select row partial match @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text: Row text to select @type row_text: string @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) for cell in object_handle.AXRows: if re.search(row_text, cell.AXChildren[0].AXValue): if not cell.AXSelected: object_handle.activate() cell.AXSelected = True else: # Selected pass return 1 raise LdtpServerException(u"Unable to select row: %s" % row_text)
def selectrowindex(self, window_name, object_name, row_index): """ Select row index @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_index: Row index to select @type row_index: integer @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) count = len(object_handle.AXRows) if row_index < 0 or row_index > count: raise LdtpServerException('Row index out of range: %d' % row_index) cell = object_handle.AXRows[row_index] if not cell.AXSelected: object_handle.activate() cell.AXSelected = True else: # Selected pass return 1
def selectlastrow(self, window_name, object_name): """ Select last row @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) cell = object_handle.AXRows[-1] if not cell.AXSelected: object_handle.activate() cell.AXSelected = True else: # Selected pass return 1
def getcellvalue(self, window_name, object_name, row_index, column=0): """ Get cell value @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_index: Row index to get @type row_index: integer @param column: Column index to get, default value 0 @type column: integer @return: cell value on success. @rtype: string """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) count = len(object_handle.AXRows) if row_index < 0 or row_index > count: raise LdtpServerException('Row index out of range: %d' % row_index) cell = object_handle.AXRows[row_index] count = len(cell.AXChildren) if column < 0 or column > count: raise LdtpServerException('Column index out of range: %d' % column) obj = cell.AXChildren[column] if not re.search("AXColumn", obj.AXRole): obj = cell.AXChildren[column] return obj.AXValue
def gettablerowindex(self, window_name, object_name, row_text): """ Get table row index matching given text @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text: Row text to select @type row_text: string @return: row index matching the text on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) index = 0 for cell in object_handle.AXRows: if re.match(row_text, cell.AXChildren[0].AXValue): return index index += 1 raise LdtpServerException(u"Unable to find row: %s" % row_text)
def doubleclickrow(self, window_name, object_name, row_text): """ Double click row matching given text @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text: Row text to select @type row_text: string @return: row index matching the text on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) object_handle.activate() self.wait(1) for cell in object_handle.AXRows: cell = self._getfirstmatchingchild(cell, "(AXTextField|AXStaticText)") if not cell: continue if re.match(row_text, cell.AXValue): x, y, width, height = self._getobjectsize(cell) # Mouse double click on the object cell.doubleClickMouse((x + width / 2, y + height / 2)) return 1 raise LdtpServerException('Unable to get row text: %s' % row_text)
def doubleclickrowindex(self, window_name, object_name, row_index, col_index=0): """ Double click row matching given text @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_index: Row index to click @type row_index: integer @param col_index: Column index to click @type col_index: integer @return: row index matching the text on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: raise LdtpServerException(u"Object %s state disabled" % object_name) count = len(object_handle.AXRows) if row_index < 0 or row_index > count: raise LdtpServerException('Row index out of range: %d' % row_index) cell = object_handle.AXRows[row_index] self._grabfocus(cell) x, y, width, height = self._getobjectsize(cell) # Mouse double click on the object cell.doubleClickMouse((x + width / 2, y + height / 2)) return 1
def verifytablecell(self, window_name, object_name, row_index, column_index, row_text): """ Verify table cell value with given text @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_index: Row index to get @type row_index: integer @param column_index: Column index to get, default value 0 @type column_index: integer @param row_text: Row text to match @type string @return: 1 on success 0 on failure. @rtype: integer """ try: value = getcellvalue(window_name, object_name, row_index, column_index) if re.match(row_text, value): return 1 except LdtpServerException: pass return 0
def doesrowexist(self, window_name, object_name, row_text, partial_match=False): """ Verify table cell value with given text @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_text: Row text to match @type string @param partial_match: Find partial match strings @type boolean @return: 1 on success 0 on failure. @rtype: integer """ try: object_handle = self._get_object_handle(window_name, object_name) if not object_handle.AXEnabled: return 0 for cell in object_handle.AXRows: if not partial_match and re.match(row_text, cell.AXChildren[0].AXValue): return 1 elif partial_match and re.search(row_text, cell.AXChildren[0].AXValue): return 1 except LdtpServerException: pass return 0
def verifypartialtablecell(self, window_name, object_name, row_index, column_index, row_text): """ Verify partial table cell value @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @param row_index: Row index to get @type row_index: integer @param column_index: Column index to get, default value 0 @type column_index: integer @param row_text: Row text to match @type string @return: 1 on success 0 on failure. @rtype: integer """ try: value = getcellvalue(window_name, object_name, row_index, column_index) if re.searchmatch(row_text, value): return 1 except LdtpServerException: pass return 0
def getapplist(self): """ Get all accessibility application name that are currently running @return: list of appliction name of string type on success. @rtype: list """ app_list = [] # Update apps list, before parsing the list self._update_apps() for gui in self._running_apps: name = gui.localizedName() # default type was objc.pyobjc_unicode # convert to Unicode, else exception is thrown # TypeError: "cannot marshal <type 'objc.pyobjc_unicode'> objects" try: name = unicode(name) except NameError: name = str(name) except UnicodeEncodeError: pass app_list.append(name) # Return unique application list return list(set(app_list))
def startprocessmonitor(self, process_name, interval=2): """ Start memory and CPU monitoring, with the time interval between each process scan @param process_name: Process name, ex: firefox-bin. @type process_name: string @param interval: Time interval between each process scan @type interval: double @return: 1 on success @rtype: integer """ if process_name in self._process_stats: # Stop previously running instance # At any point, only one process name can be tracked # If an instance already exist, then stop it self._process_stats[process_name].stop() # Create an instance of process stat self._process_stats[process_name] = ProcessStats(process_name, interval) # start monitoring the process self._process_stats[process_name].start() return 1
def stopprocessmonitor(self, process_name): """ Stop memory and CPU monitoring @param process_name: Process name, ex: firefox-bin. @type process_name: string @return: 1 on success @rtype: integer """ if process_name in self._process_stats: # Stop monitoring process self._process_stats[process_name].stop() return 1
def getcpustat(self, process_name): """ get CPU stat for the give process name @param process_name: Process name, ex: firefox-bin. @type process_name: string @return: cpu stat list on success, else empty list If same process name, running multiple instance, get the stat of all the process CPU usage @rtype: list """ # Create an instance of process stat _stat_inst = ProcessStats(process_name) _stat_list = [] for p in _stat_inst.get_cpu_memory_stat(): try: _stat_list.append(p.get_cpu_percent()) except psutil.AccessDenied: pass return _stat_list
def getmemorystat(self, process_name): """ get memory stat @param process_name: Process name, ex: firefox-bin. @type process_name: string @return: memory stat list on success, else empty list If same process name, running multiple instance, get the stat of all the process memory usage @rtype: list """ # Create an instance of process stat _stat_inst = ProcessStats(process_name) _stat_list = [] for p in _stat_inst.get_cpu_memory_stat(): # Memory percent returned with 17 decimal values # ex: 0.16908645629882812, round it to 2 decimal values # as 0.03 try: _stat_list.append(round(p.get_memory_percent(), 2)) except psutil.AccessDenied: pass return _stat_list
def getobjectlist(self, window_name): """ Get list of items in given GUI. @param window_name: Window name to look for, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @return: list of items in LDTP naming convention. @rtype: list """ try: window_handle, name, app = self._get_window_handle(window_name, True) object_list = self._get_appmap(window_handle, name, True) except atomac._a11y.ErrorInvalidUIElement: # During the test, when the window closed and reopened # ErrorInvalidUIElement exception will be thrown self._windows = {} # Call the method again, after updating apps window_handle, name, app = self._get_window_handle(window_name, True) object_list = self._get_appmap(window_handle, name, True) return object_list.keys()