Search is not available for this dataset
text
stringlengths
75
104k
def parse_innotop_mode_b(self): """ Generic parsing method for all other modes """ with open(self.infile, 'r') as infh: # Pre processing to figure out different headers max_row_quot = 0 valrow = -1 thisrowcolumns = {} data = {} while True: line1 = infh.readline() words = line1.split() # special case for -I (iostat) option # skipping all the 'thread' lines if words[1] == "thread" and self.metric_type == "INNOTOP-I": while True: line1 = infh.readline() words = line1.split() if naarad.utils.is_number(words[1]): line1 = infh.readline() else: break if words[1] == "thread" and self.metric_type == "INNOTOP-R": break # Skip next line infh.readline() last_ts = words[0].strip().replace('T', ' ') if not naarad.utils.is_number(words[1]): thisrowcolumns[max_row_quot] = words[1:] for column in words[1:]: if self.options and column not in self.options: continue data[column] = [] if self.metric_type == "INNOTOP-I": data["check_pt_age"] = [] max_row_quot += 1 else: break # infh.seek(0) # Real Processing for line in infh: l = line.strip().split(' ', 1) if len(l) <= 1: continue ts = l[0].strip().replace('T', ' ') if not ts == last_ts: last_ts = ts valrow = -1 try: words = l[1].strip().split('\t') except IndexError: logger.warn("Bad line: %s", line) continue # special case for -I (iostat) option # skipping all the 'thread' lines if words[0] == "thread" or (naarad.utils.is_number(words[0]) and "thread" in words[1]): continue if naarad.utils.is_number(words[0]): valrow += 1 quot = valrow % max_row_quot # Special case for -R, skipping all 'thread' value lines if quot >= len(thisrowcolumns): continue columns = thisrowcolumns[quot] if len(words) > len(columns): continue for i in range(len(words)): if self.options and columns[i] not in self.options: continue column = columns[i] # Converting -- to 0, seen this for buf_pool_hit_rate if words[i] == "--": words[i] = "0" ts = naarad.utils.reconcile_timezones(ts, self.timezone, self.graph_timezone) # Calculating check point age if self.metric_type == "INNOTOP-I": if column == "log_seq_no": log_seq_no = int(words[i]) elif column == "log_flushed_to": check_pt_age = log_seq_no - int(words[i]) tup = [ts, str(check_pt_age)] data["check_pt_age"].append(tup) tup = [ts, words[i]] data[column].append(tup) # Post Proc, writing the different out files for column in data: csvfile = self.get_csv(column) self.csv_files.append(csvfile) with open(csvfile, 'w') as outfh: for tup in data[column]: outfh.write(','.join(tup)) outfh.write('\n') return True
def parse_innotop_mode_m(self): """ Special parsing method for Innotop "Replication Status" results (innotop --mode M)""" with open(self.infile, 'r') as infh: # Pre processing to figure out different headers max_row_quot = 0 valrow = -1 thisrowcolumns = {} data = {} last_ts = None while True: # 2012-05-11T00:00:02 master_host slave_sql_running time_behind_master slave_catchup_rate slave_open_temp_tables relay_log_pos last_error line1 = infh.readline() words = line1.split() # Skip next line infh.readline() is_header = True for word in words: if naarad.utils.is_number(word): last_ts = words[0].strip().replace('T', ' ') is_header = False break # from this loop if len(words) > 2 and is_header: thisrowcolumns[max_row_quot] = words[2:] for column in thisrowcolumns[max_row_quot]: data[column] = [] max_row_quot += 1 else: break # from pre-processing. All headers accounted for # Real Processing if not last_ts: logger.warn("last_ts not set, looks like there is no data in file %s", self.infile) return True infh.seek(0) is_bad_line = False outfilehandlers = {} for line in infh: l = line.strip().split(' ', 1) # Blank line if len(l) <= 1: continue ts = l[0].strip().replace('T', ' ') if ts != last_ts: last_ts = ts valrow = -1 nameval = l[1].strip().split('\t', 1) try: words = nameval[1].split('\t') except IndexError: logger.warn("Bad line: %s", line) continue valrow += 1 command = nameval[0] if command not in outfilehandlers: outfilehandlers[command] = {} quot = valrow % max_row_quot columns = thisrowcolumns[quot] for i in range(len(words)): if len(words) > len(columns): logger.warn("Mismatched number of columns: %s", line) logger.warn("%d %d", len(words), len(columns)) break if words[i] in columns: logger.warn("Skipping line: %s", line) valrow -= 1 break if self.options and columns[i] not in self.options: continue if columns[i] not in outfilehandlers[command]: outfilehandlers[command][columns[i]] = open(self.get_csv_C(command, columns[i]), 'w') self.csv_files.append(self.get_csv_C(command, columns[i])) ts = naarad.utils.reconcile_timezones(ts, self.timezone, self.graph_timezone) outfilehandlers[command][columns[i]].write(ts + ',') outfilehandlers[command][columns[i]].write(words[i]) outfilehandlers[command][columns[i]].write('\n') for command in outfilehandlers: for column in outfilehandlers[command]: outfilehandlers[command][column].close() return True
def highlight_region(plt, start_x, end_x): """ Highlight a region on the chart between the specified start and end x-co-ordinates. param pyplot plt: matplotlibk pyplot which contains the charts to be highlighted param string start_x : epoch time millis param string end_x : epoch time millis """ start_x = convert_to_mdate(start_x) end_x = convert_to_mdate(end_x) plt.axvspan(start_x, end_x, color=CONSTANTS.HIGHLIGHT_COLOR, alpha=CONSTANTS.HIGHLIGHT_ALPHA)
def graph_data_on_the_same_graph(list_of_plots, output_directory, resource_path, output_filename): """ graph_data_on_the_same_graph: put a list of plots on the same graph: currently it supports CDF """ maximum_yvalue = -float('inf') minimum_yvalue = float('inf') plots = curate_plot_list(list_of_plots) plot_count = len(plots) if plot_count == 0: return False, None graph_height, graph_width, graph_title = get_graph_metadata(plots) current_plot_count = 0 fig, axis = plt.subplots() fig.set_size_inches(graph_width, graph_height) if plot_count < 2: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET) else: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET - CONSTANTS.Y_AXIS_OFFSET * (plot_count - 2)) # Generate each plot on the graph for plot in plots: current_plot_count += 1 logger.info('Processing: ' + plot.input_csv + ' [ ' + output_filename + ' ]') xval, yval = numpy.loadtxt(plot.input_csv, unpack=True, delimiter=',') axis.plot(xval, yval, linestyle='-', marker=None, color=get_current_color(current_plot_count), label=plot.plot_label) axis.legend() maximum_yvalue = max(maximum_yvalue, numpy.amax(yval) * (1.0 + CONSTANTS.ZOOM_FACTOR * current_plot_count)) minimum_yvalue = min(minimum_yvalue, numpy.amin(yval) * (1.0 - CONSTANTS.ZOOM_FACTOR * current_plot_count)) # Set properties of the plots axis.yaxis.set_ticks_position('left') axis.set_xlabel(plots[0].x_label) axis.set_ylabel(plots[0].y_label, fontsize=CONSTANTS.Y_LABEL_FONTSIZE) axis.set_ylim([minimum_yvalue, maximum_yvalue]) axis.yaxis.grid(True) axis.xaxis.grid(True) axis.set_title(graph_title) plot_file_name = os.path.join(output_directory, output_filename + ".png") fig.savefig(plot_file_name) plt.close() # Create html fragment to be used for creation of the report with open(os.path.join(output_directory, output_filename + '.div'), 'w') as div_file: div_file.write('<a name="' + os.path.basename(plot_file_name).replace(".png", "").replace(".diff", "") + '"></a><div class="col-md-12"><img src="' + resource_path + '/' + os.path.basename(plot_file_name) + '" id="' + os.path.basename(plot_file_name) + '" width="100%" height="auto"/></div><div class="col-md-12"><p align=center>' + os.path.basename(plot_file_name) + '<br/></p></div>') return True, os.path.join(output_directory, output_filename + '.div')
def _set_scores(self): """ Compute anomaly scores for the time series. """ anom_scores = {} self._compute_derivatives() derivatives_ema = utils.compute_ema(self.smoothing_factor, self.derivatives) for i, (timestamp, value) in enumerate(self.time_series_items): anom_scores[timestamp] = abs(self.derivatives[i] - derivatives_ema[i]) stdev = numpy.std(anom_scores.values()) if stdev: for timestamp in anom_scores.keys(): anom_scores[timestamp] /= stdev self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
def extract_metric_name(self, metric_name): """ Method to extract SAR metric names from the section given in the config. The SARMetric class assumes that the section name will contain the SAR types listed in self.supported_sar_types tuple :param str metric_name: Section name from the config :return: str which identifies what kind of SAR metric the section represents """ for metric_type in self.supported_sar_types: if metric_type in metric_name: return metric_type logger.error('Section [%s] does not contain a valid metric type, using type: "SAR-generic". Naarad works better ' 'if it knows the metric type. Valid SAR metric names are: %s', metric_name, self.supported_sar_types) return 'SAR-generic'
def _find_allowed_shift(self, timestamps): """ Find the maximum allowed shift steps based on max_shift_milliseconds. param list timestamps: timestamps of a time series. """ init_ts = timestamps[0] residual_timestamps = map(lambda ts: ts - init_ts, timestamps) n = len(residual_timestamps) return self._find_first_bigger(residual_timestamps, self.max_shift_milliseconds, 0, n)
def _find_first_bigger(self, timestamps, target, lower_bound, upper_bound): """ Find the first element in timestamps whose value is bigger than target. param list values: list of timestamps(epoch number). param target: target value. param lower_bound: lower bound for binary search. param upper_bound: upper bound for binary search. """ while lower_bound < upper_bound: pos = lower_bound + (upper_bound - lower_bound) / 2 if timestamps[pos] > target: upper_bound = pos else: lower_bound = pos + 1 return pos
def create_analysis(self, config): """ Create Analysis and save in Naarad from config :param config: :return: """ self._default_test_id += 1 self._analyses[self._default_test_id] = _Analysis(ts_start=None, config=config, test_id=self._default_test_id)
def signal_start(self, config, test_id=None, **kwargs): """ Initialize an analysis object and set ts_start for the analysis represented by test_id :param test_id: integer that represents the analysis :param config: config can be a ConfigParser.ConfigParser object or a string specifying local or http(s) location for config :return: test_id """ if not test_id: self._default_test_id += 1 test_id = self._default_test_id self._analyses[test_id] = _Analysis(naarad.utils.get_standardized_timestamp('now', None), config, test_id=test_id) if kwargs: if 'description' in kwargs.keys(): self._analyses[test_id].description = kwargs['description'] if 'input_directory' in kwargs.keys(): self._analyses[test_id].input_directory = kwargs['input_directory'] if 'output_directory' in kwargs.keys(): self._analyses[test_id].output_directory = kwargs['output_directory'] return test_id
def signal_stop(self, test_id=None): """ Set ts_end for the analysis represented by test_id :param test_id: integer that represents the analysis :return: test_id """ if test_id is None: test_id = self._default_test_id if self._analyses[test_id].ts_end: return CONSTANTS.OK self._analyses[test_id].ts_end = naarad.utils.get_standardized_timestamp('now', None) return CONSTANTS.OK
def get_failed_analyses(self): """ Returns a list of test_id for which naarad analysis failed :return: list of test_ids """ failed_analyses = [] for test_id in self._analyses.keys(): if self._analyses[test_id].status != CONSTANTS.OK: failed_analyses.append(test_id) return failed_analyses
def _set_sla_data(self, test_id, metrics): """ Get sla data from each metric and set it in the _Analysis object specified by test_id to make it available for retrieval :return: currently always returns CONSTANTS.OK. Maybe enhanced in future to return additional status """ for metric in metrics: self._analyses[test_id].sla_data[metric.label] = metric.sla_map return CONSTANTS.OK
def _set_stats_data(self, test_id, metrics): """ Get summary stats data from each metric and set it in the _Analysis object specified by test_id to make it available for retrieval :return: currently always returns CONSTANTS.OK. Maybe enhanced in future to return additional status """ for metric in metrics: self._analyses[test_id].stats_data[metric.label] = metric.summary_stats return CONSTANTS.OK
def _create_output_directories(self, analysis): """ Create the necessary output and resource directories for the specified analysis :param: analysis: analysis associated with a given test_id """ try: os.makedirs(analysis.output_directory) except OSError as exception: if exception.errno != errno.EEXIST: raise try: resource_directory = os.path.join(analysis.output_directory, analysis.resource_path) os.makedirs(resource_directory) except OSError as exception: if exception.errno != errno.EEXIST: raise
def _run_pre(self, analysis, run_steps): """ If Naarad is run in CLI mode, execute any pre run steps specified in the config. ts_start/ts_end are set based on workload run steps if any. :param: analysis: The analysis object being processed :param: run_steps: list of post run steps """ workload_run_steps = [] for run_step in sorted(run_steps, key=lambda step: step.run_rank): run_step.run() if run_step.run_type == CONSTANTS.RUN_TYPE_WORKLOAD: workload_run_steps.append(run_step) # Get analysis time period from workload run steps if len(workload_run_steps) > 0: analysis.ts_start, analysis.ts_end = naarad.utils.get_run_time_period(workload_run_steps) return CONSTANTS.OK
def _run_post(self, run_steps): """ If Naarad is run in CLI mode, execute any post run steps specified in the config :param: run_steps: list of post run steps """ for run_step in sorted(run_steps, key=lambda step: step.run_rank): run_step.run() return CONSTANTS.OK
def _process_args(self, analysis, args): """ When Naarad is run in CLI mode, get the CL arguments and update the analysis :param: analysis: The analysis being processed :param: args: Command Line Arguments received by naarad """ if args.exit_code: self.return_exit_code = args.exit_code if args.no_plots: self.skip_plots = args.no_plots if args.start: analysis.ts_start = naarad.utils.get_standardized_timestamp(args.start, None) if args.end: analysis.ts_end = naarad.utils.get_standardized_timestamp(args.end, None) if args.variables: analysis.variables = naarad.utils.get_variables(args) return CONSTANTS.OK
def analyze(self, input_directory, output_directory, **kwargs): """ Run all the analysis saved in self._analyses, sorted by test_id. This is useful when Naarad() is used by other programs and multiple analyses are run In naarad CLI mode, len(_analyses) == 1 :param: input_directory: location of log files :param: output_directory: root directory for analysis output :param: **kwargs: Optional keyword args :return: int: status code. """ is_api_call = True if len(self._analyses) == 0: if 'config' not in kwargs.keys(): return CONSTANTS.ERROR self.create_analysis(kwargs['config']) if 'args' in kwargs: self._process_args(self._analyses[0], kwargs['args']) is_api_call = False error_count = 0 self._input_directory = input_directory self._output_directory = output_directory for test_id in sorted(self._analyses.keys()): # Setup if not self._analyses[test_id].input_directory: self._analyses[test_id].input_directory = input_directory if not self._analyses[test_id].output_directory: if len(self._analyses) > 1: self._analyses[test_id].output_directory = os.path.join(output_directory, str(test_id)) else: self._analyses[test_id].output_directory = output_directory if('config' in kwargs.keys()) and (not self._analyses[test_id].config): self._analyses[test_id].config = kwargs['config'] self._create_output_directories(self._analyses[test_id]) # Actually run analysis self._analyses[test_id].status = self.run(self._analyses[test_id], is_api_call, **kwargs) if self._analyses[test_id].status != CONSTANTS.OK: error_count += 1 if len(self._analyses) == 1: return self._analyses[0].status elif error_count > 0: return CONSTANTS.ERROR else: return CONSTANTS.OK
def run(self, analysis, is_api_call, **kwargs): """ :param analysis: Run naarad analysis for the specified analysis object :param **kwargs: Additional keyword args can be passed in here for future enhancements :return: """ threads = [] crossplots = [] report_args = {} metrics = defaultdict() run_steps = defaultdict(list) discovery_mode = False graph_timezone = None graphing_library = None if isinstance(analysis.config, str): if not naarad.utils.is_valid_file(analysis.config): return CONSTANTS.INVALID_CONFIG config_object = ConfigParser.ConfigParser(analysis.variables) config_object.optionxform = str config_object.read(analysis.config) elif isinstance(analysis.config, ConfigParser.ConfigParser): config_object = analysis.config else: if is_api_call: return CONSTANTS.INVALID_CONFIG else: metrics['metrics'] = naarad.utils.discover_by_name(analysis.input_directory, analysis.output_directory) if len(metrics['metrics']) == 0: logger.warning('Unable to auto detect metrics in the specified input directory: %s', analysis.input_directory) return CONSTANTS.ERROR else: discovery_mode = True metrics['aggregate_metrics'] = [] if not discovery_mode: metrics, run_steps, crossplots, report_args, graph_timezone, graphing_library = self._process_naarad_config(config_object, analysis) if graphing_library is None: graphing_library = CONSTANTS.DEFAULT_GRAPHING_LIBRARY # If graphing libraries are not installed, skip static images if graphing_library not in self.available_graphing_modules.keys(): logger.error("Naarad cannot import graphing library %s on your system. Will not generate static charts", graphing_library) self.skip_plots = True if not is_api_call: self._run_pre(analysis, run_steps['pre']) for metric in metrics['metrics']: if analysis.ts_start: metric.ts_start = analysis.ts_start if analysis.ts_end: metric.ts_end = analysis.ts_end thread = threading.Thread(target=naarad.utils.parse_and_plot_single_metrics, args=(metric, graph_timezone, analysis.output_directory, analysis.input_directory, graphing_library, self.skip_plots)) thread.start() threads.append(thread) for t in threads: t.join() for metric in metrics['aggregate_metrics']: thread = threading.Thread(target=naarad.utils.parse_and_plot_single_metrics, args=(metric, graph_timezone, analysis.output_directory, analysis.input_directory, graphing_library, self.skip_plots)) thread.start() threads.append(thread) for t in threads: t.join() self._set_sla_data(analysis.test_id, metrics['metrics'] + metrics['aggregate_metrics']) self._set_stats_data(analysis.test_id, metrics['metrics'] + metrics['aggregate_metrics']) if len(crossplots) > 0 and not self.skip_plots: correlated_plots = naarad.utils.nway_plotting(crossplots, metrics['metrics'] + metrics['aggregate_metrics'], os.path.join(analysis.output_directory, analysis.resource_path), analysis.resource_path, graphing_library) else: correlated_plots = [] rpt = reporting_modules['report'](None, analysis.output_directory, os.path.join(analysis.output_directory, analysis.resource_path), analysis.resource_path, metrics['metrics'] + metrics['aggregate_metrics'], correlated_plots=correlated_plots, **report_args) rpt.generate() if not is_api_call: self._run_post(run_steps['post']) if self.return_exit_code: for metric in metrics['metrics'] + metrics['aggregate_metrics']: if metric.status == CONSTANTS.SLA_FAILED: return CONSTANTS.SLA_FAILURE return CONSTANTS.OK
def diff(self, test_id_1, test_id_2, config=None, **kwargs): """ Create a diff report using test_id_1 as a baseline :param: test_id_1: test id to be used as baseline :param: test_id_2: test id to compare against baseline :param: config file for diff (optional) :param: **kwargs: keyword arguments """ output_directory = os.path.join(self._output_directory, 'diff_' + str(test_id_1) + '_' + str(test_id_2)) if kwargs: if 'output_directory' in kwargs.keys(): output_directory = kwargs['output_directory'] diff_report = Diff([NaaradReport(self._analyses[test_id_1].output_directory, None), NaaradReport(self._analyses[test_id_2].output_directory, None)], 'diff', output_directory, os.path.join(output_directory, self._resource_path), self._resource_path) if config: naarad.utils.extract_diff_sla_from_config_file(diff_report, config) diff_report.generate() if diff_report.sla_failures > 0: return CONSTANTS.SLA_FAILURE if diff_report.status != 'OK': return CONSTANTS.ERROR return CONSTANTS.OK
def diff_reports_by_location(self, report1_location, report2_location, output_directory, config=None, **kwargs): """ Create a diff report using report1 as a baseline :param: report1_location: report to be used as baseline :param: report2_location: report to compare against baseline :param: config file for diff (optional) :param: **kwargs: keyword arguments """ if kwargs: if 'output_directory' in kwargs.keys(): output_directory = kwargs['output_directory'] diff_report = Diff([NaaradReport(report1_location, None), NaaradReport(report2_location, None)], 'diff', output_directory, os.path.join(output_directory, self._resource_path), self._resource_path) if config: naarad.utils.extract_diff_sla_from_config_file(diff_report, config) diff_report.generate() if diff_report.sla_failures > 0: return CONSTANTS.SLA_FAILURE if diff_report.status != 'OK': return CONSTANTS.ERROR return CONSTANTS.OK
def _process_naarad_config(self, config, analysis): """ Process the config file associated with a particular analysis and return metrics, run_steps and crossplots. Also sets output directory and resource_path for an anlaysis """ graph_timezone = None output_directory = analysis.output_directory resource_path = analysis.resource_path run_steps = defaultdict(list) metrics = defaultdict(list) indir_default = '' crossplots = [] report_args = {} graphing_library = None ts_start, ts_end = None, None if config.has_section('GLOBAL'): ts_start, ts_end = naarad.utils.parse_global_section(config, 'GLOBAL') if config.has_option('GLOBAL', 'user_defined_metrics'): naarad.utils.parse_user_defined_metric_classes(config, metric_classes) config.remove_section('GLOBAL') if config.has_section('REPORT'): report_args = naarad.utils.parse_report_section(config, 'REPORT') config.remove_section('REPORT') for section in config.sections(): # GRAPH section is optional if section == 'GRAPH': graphing_library, crossplots, outdir_default, indir_default, graph_timezone = \ naarad.utils.parse_graph_section(config, section, output_directory, indir_default) elif section.startswith('RUN-STEP'): run_step = naarad.utils.parse_run_step_section(config, section) if not run_step: logger.error('Ignoring section %s, could not parse it correctly', section) continue if run_step.run_order == CONSTANTS.PRE_ANALYSIS_RUN: run_steps['pre'].append(run_step) # DURING_ANALYSIS_RUN not supported yet elif run_step.run_order == CONSTANTS.DURING_ANALYSIS_RUN: run_steps['in'].append(run_step) elif run_step.run_order == CONSTANTS.POST_ANALYSIS_RUN: run_steps['post'].append(run_step) else: logger.error('Unknown RUN-STEP run_order specified') else: # section name is used to create sub-directories, so enforce it. if not naarad.utils.is_valid_metric_name(section): logger.critical('Section name %s is invalid! Only letters, digits, dot(.), dash(-), underscore(_) are allowed' % section) return CONSTANTS.CRITICAL_FAILURE if section == 'SAR-*': hostname, infile, label, ts_start, ts_end, precision, kwargs, rule_strings = \ naarad.utils.parse_basic_metric_options(config, section) sar_metrics = naarad.utils.get_all_sar_objects(metrics, infile, hostname, output_directory, label, ts_start, ts_end, None) for sar_metric in sar_metrics: if sar_metric.ts_start is None and (sar_metric.ts_end is None or sar_metric.ts_end > ts_start): sar_metric.ts_start = ts_start if sar_metric.ts_end is None and (sar_metric.ts_start is None or ts_end > sar_metric.ts_start): sar_metric.ts_end = ts_end metrics['metrics'].extend(sar_metrics) else: new_metric = naarad.utils.parse_metric_section(config, section, metric_classes, metrics['metrics'], aggregate_metric_classes, output_directory, resource_path) if new_metric.ts_start is None and (new_metric.ts_end is None or new_metric.ts_end > ts_start): new_metric.ts_start = ts_start if new_metric.ts_end is None and (new_metric.ts_start is None or ts_end > new_metric.ts_start): new_metric.ts_end = ts_end metric_type = section.split('-')[0] if metric_type in aggregate_metric_classes: metrics['aggregate_metrics'].append(new_metric) else: metrics['metrics'].append(new_metric) return metrics, run_steps, crossplots, report_args, graph_timezone, graphing_library
def parse(self): """ Parse the vmstat file :return: status of the metric parse """ file_status = True for input_file in self.infile_list: file_status = file_status and naarad.utils.is_valid_file(input_file) if not file_status: return False status = True cur_zone = None cur_submetric = None cur_value = None data = {} # stores the data of each column for input_file in self.infile_list: logger.info('Processing : %s', input_file) timestamp_format = None with open(input_file) as fh: for line in fh: words = line.replace(',', ' ').split() # [0] is day; [1] is seconds; [2...] is field names:; if len(words) < 3: continue ts = words[0] + " " + words[1] if not timestamp_format or timestamp_format == 'unknown': timestamp_format = naarad.utils.detect_timestamp_format(ts) if timestamp_format == 'unknown': continue ts = naarad.utils.get_standardized_timestamp(ts, timestamp_format) if self.ts_out_of_range(ts): continue if words[2] == 'Node': # Node 0 zone DMA cols = words[2:] cur_zone = '.'.join(cols) continue elif words[2] == 'pages': # pages free 3936 cur_submetric = words[2] + '.' + words[3] # pages.free cur_value = words[4] elif words[2] in self.processed_sub_metrics: cur_submetric = 'pages' + '.' + words[2] # pages.min cur_value = words[3] elif words[2] in self.skipped_sub_metrics: continue else: # other useful submetrics cur_submetric = words[2] cur_value = words[3] col = cur_zone + '.' + cur_submetric # prefix with 'Node.0.zone.DMA. # only process zones specified in config if cur_zone and self.zones and cur_zone not in self.zones: continue self.sub_metric_unit[col] = 'pages' # The unit of the sub metric. For /proc/zoneinfo, they are all in pages # only process sub_metrics specified in config. if self.sub_metrics and cur_submetric and cur_submetric not in self.sub_metrics: continue if col in self.column_csv_map: out_csv = self.column_csv_map[col] else: out_csv = self.get_csv(col) # column_csv_map[] is assigned in get_csv() data[out_csv] = [] data[out_csv].append(ts + "," + cur_value) # post processing, putting data in csv files; for csv in data.keys(): self.csv_files.append(csv) with open(csv, 'w') as fh: fh.write('\n'.join(sorted(data[csv]))) return status
def collect(self): """ Take a list of metrics, filter all metrics based on hostname, and metric_type For each metric, merge the corresponding csv files into one,update corresponding properties such as csv_column_map. Users can specify functions: raw, count (qps), sum (aggregated value), avg (averaged value) The timestamp granularity of aggregated submetrics is in seconds (sub-second is not supported) """ for aggr_metric in self.aggr_metrics: # e.g., SAR-device.sda.await:count,sum,avg functions_aggr = [] fields = aggr_metric.split(":") cur_metric_type = fields[0].split(".")[0] # e.g. SAR-device if len(fields) > 1: # The user has to specify the aggregate functions (i.e., :raw,count,sum,avg) func_user = ''.join(fields[1].split()) functions_aggr.extend(func_user.split(",")) else: # no user input of aggregate functions return True cur_column = '.'.join(fields[0].split('.')[1:]) # e.g. sda.await or all.percent-sys # Store data points of various aggregation functions aggr_data = {} aggr_data['raw'] = [] # Store all the raw values aggr_data['sum'] = defaultdict(float) # Store the sum values for each timestamp aggr_data['count'] = defaultdict(int) # Store the count of each timestamp (i.e. qps) for metric in self.metrics: # Loop the list to find from all metrics to merge if metric.hostname in self.aggr_hosts and \ cur_column in metric.csv_column_map.values(): file_csv = metric.get_csv(cur_column) timestamp_format = None with open(file_csv) as fh: for line in fh: aggr_data['raw'].append(line.rstrip()) words = line.split(",") ts = words[0].split('.')[0] # In case of sub-seconds; we only want the value of seconds; if not timestamp_format or timestamp_format == 'unknown': timestamp_format = naarad.utils.detect_timestamp_format(ts) if timestamp_format == 'unknown': continue ts = naarad.utils.get_standardized_timestamp(ts, timestamp_format) aggr_data['sum'][ts] += float(words[1]) aggr_data['count'][ts] += 1 # "raw" csv file if 'raw' in functions_aggr: out_csv = self.get_csv(cur_column, 'raw') self.csv_files.append(out_csv) with open(out_csv, 'w') as fh: fh.write("\n".join(sorted(aggr_data['raw']))) # "sum" csv file if 'sum' in functions_aggr: out_csv = self.get_csv(cur_column, 'sum') self.csv_files.append(out_csv) with open(out_csv, 'w') as fh: for (k, v) in sorted(aggr_data['sum'].items()): fh.write(k + "," + str(v) + '\n') # "avg" csv file if 'avg' in functions_aggr: out_csv = self.get_csv(cur_column, 'avg') self.csv_files.append(out_csv) with open(out_csv, 'w') as fh: for (k, v) in sorted(aggr_data['sum'].items()): fh.write(k + "," + str(v / aggr_data['count'][k]) + '\n') # "count" csv file (qps) if 'count' in functions_aggr: out_csv = self.get_csv(cur_column, 'count') self.csv_files.append(out_csv) with open(out_csv, 'w') as fh: for (k, v) in sorted(aggr_data['count'].items()): fh.write(k + "," + str(v) + '\n') gc.collect() return True
def get_times(self, native): """ get start time stamp, launch time duration, and nus update time duration from JSON object native :param JSON OBJECT native :return: LONG event time stamp, LONG launch time, and LONG nus update time """ start_time = 0 end_time = 0 launch_time = 0 nus_update_time = 0 for item in native: if item[CONSTANTS.LIA_TIMING_NAME] == CONSTANTS.LIA_APP_ON_CREATE and item[CONSTANTS.LIA_START] is not None: start_time = item[CONSTANTS.LIA_START][CONSTANTS.LIA_LONG] if item[CONSTANTS.LIA_TIMING_NAME] == CONSTANTS.LIA_NUS_UPDATE: if item[CONSTANTS.LIA_TIMING_VALUE] is not None: nus_update_time = item[CONSTANTS.LIA_TIMING_VALUE][CONSTANTS.LIA_LONG] if item[CONSTANTS.LIA_START] is not None: end_time = item[CONSTANTS.LIA_START][CONSTANTS.LIA_LONG] if start_time == 0 or end_time == 0: time_stamp = 0 launch_time = 0 else: time_stamp = start_time launch_time = end_time - start_time return (time_stamp, launch_time, nus_update_time)
def run(self): """Perform the Oct2Py speed analysis. Uses timeit to test the raw execution of an Octave command, Then tests progressively larger array passing. """ print('Oct2Py speed test') print('*' * 20) time.sleep(1) print('Raw speed: ') avg = timeit.timeit(self.raw_speed, number=10) / 10 print(' {0:0.01f} usec per loop'.format(avg * 1e6)) sides = [1, 10, 100, 1000] runs = [10, 10, 10, 5] for (side, nruns) in zip(sides, runs): self.array = np.reshape(np.arange(side ** 2), (-1)) print('Put {0}x{1}: '.format(side, side)) avg = timeit.timeit(self.large_array_put, number=nruns) / nruns print(' {0:0.01f} msec'.format(avg * 1e3)) print('Get {0}x{1}: '.format(side, side)) avg = timeit.timeit(self.large_array_get, number=nruns) / nruns print(' {0:0.01f} msec'.format(avg * 1e3)) self.octave.exit() print('*' * 20) print('Test complete!')
def exit(self): """Quits this octave session and cleans up. """ if self._engine: self._engine.repl.terminate() self._engine = None
def push(self, name, var, timeout=None, verbose=True): """ Put a variable or variables into the Octave session. Parameters ---------- name : str or list Name of the variable(s). var : object or list The value(s) to pass. timeout : float Time to wait for response from Octave (per line). **kwargs: Deprecated kwargs, ignored. Examples -------- >>> from oct2py import octave >>> y = [1, 2] >>> octave.push('y', y) >>> octave.pull('y') array([[ 1., 2.]]) >>> octave.push(['x', 'y'], ['spam', [1, 2, 3, 4]]) >>> octave.pull(['x', 'y']) # doctest: +SKIP [u'spam', array([[1, 2, 3, 4]])] Notes ----- Integer type arguments will be converted to floating point unless `convert_to_float=False`. """ if isinstance(name, (str, unicode)): name = [name] var = [var] for (n, v) in zip(name, var): self.feval('assignin', 'base', n, v, nout=0, timeout=timeout, verbose=verbose)
def pull(self, var, timeout=None, verbose=True): """ Retrieve a value or values from the Octave session. Parameters ---------- var : str or list Name of the variable(s) to retrieve. timeout : float, optional. Time to wait for response from Octave (per line). **kwargs: Deprecated kwargs, ignored. Returns ------- out : object Object returned by Octave. Raises ------ Oct2PyError If the variable does not exist in the Octave session. Examples -------- >>> from oct2py import octave >>> y = [1, 2] >>> octave.push('y', y) >>> octave.pull('y') array([[ 1., 2.]]) >>> octave.push(['x', 'y'], ['spam', [1, 2, 3, 4]]) >>> octave.pull(['x', 'y']) # doctest: +SKIP [u'spam', array([[1, 2, 3, 4]])] """ if isinstance(var, (str, unicode)): var = [var] outputs = [] for name in var: exist = self._exist(name) if exist == 1: outputs.append(self.feval('evalin', 'base', name, timeout=timeout, verbose=verbose)) else: outputs.append(self.get_pointer(name, timeout=timeout)) if len(outputs) == 1: return outputs[0] return outputs
def get_pointer(self, name, timeout=None): """Get a pointer to a named object in the Octave workspace. Parameters ---------- name: str The name of the object in the Octave workspace. timemout: float, optional. Time to wait for response from Octave (per line). Examples -------- >>> from oct2py import octave >>> octave.eval('foo = [1, 2];') >>> ptr = octave.get_pointer('foo') >>> ptr.value array([[ 1., 2.]]) >>> ptr.address 'foo' >>> # Can be passed as an argument >>> octave.disp(ptr) # doctest: +SKIP 1 2 >>> from oct2py import octave >>> sin = octave.get_pointer('sin') # equivalent to `octave.sin` >>> sin.address '@sin' >>> x = octave.quad(sin, 0, octave.pi()) >>> x 2.0 Notes ----- Pointers can be passed to `feval` or dynamic functions as function arguments. A pointer passed as a nested value will be passed by value instead. Raises ------ Oct2PyError If the variable does not exist in the Octave session or is of unknown type. Returns ------- A variable, object, user class, or function pointer as appropriate. """ exist = self._exist(name) isobject = self._isobject(name, exist) if exist == 0: raise Oct2PyError('"%s" is undefined' % name) elif exist == 1: return _make_variable_ptr_instance(self, name) elif isobject: return self._get_user_class(name) elif exist in [2, 3, 5]: return self._get_function_ptr(name) raise Oct2PyError('Unknown type for object "%s"' % name)
def extract_figures(self, plot_dir, remove=False): """Extract the figures in the directory to IPython display objects. Parameters ---------- plot_dir: str The plot dir where the figures were created. remove: bool, optional. Whether to remove the plot directory after saving. """ figures = self._engine.extract_figures(plot_dir, remove) return figures
def feval(self, func_path, *func_args, **kwargs): """Run a function in Octave and return the result. Parameters ---------- func_path: str Name of function to run or a path to an m-file. func_args: object, optional Args to send to the function. nout: int, optional Desired number of return arguments, defaults to 1. store_as: str, optional If given, saves the result to the given Octave variable name instead of returning it. verbose : bool, optional Log Octave output at INFO level. If False, log at DEBUG level. stream_handler: callable, optional A function that is called for each line of output from the evaluation. timeout: float, optional The timeout in seconds for the call. plot_dir: str, optional If specificed, save the session's plot figures to the plot directory instead of displaying the plot window. plot_name : str, optional Saved plots will start with `plot_name` and end with "_%%.xxx' where %% is the plot number and xxx is the `plot_format`. plot_format: str, optional The format in which to save the plot. plot_width: int, optional The plot with in pixels. plot_height: int, optional The plot height in pixels. Notes ----- The function arguments passed follow Octave calling convention, not Python. That is, all values must be passed as a comma separated list, not using `x=foo` assignment. Examples -------- >>> from oct2py import octave >>> cell = octave.feval('cell', 10, 10, 10) >>> cell.shape (10, 10, 10) >>> from oct2py import octave >>> x = octave.feval('linspace', 0, octave.pi() / 2) >>> x.shape (1, 100) >>> from oct2py import octave >>> x = octave.feval('svd', octave.hilb(3)) >>> x array([[ 1.40831893], [ 0.12232707], [ 0.00268734]]) >>> # specify three return values >>> (u, v, d) = octave.feval('svd', octave.hilb(3), nout=3) >>> u.shape (3, 3) Returns ------- The Python value(s) returned by the Octave function call. """ if not self._engine: raise Oct2PyError('Session is not open') nout = kwargs.get('nout', None) if nout is None: nout = 1 plot_dir = kwargs.get('plot_dir') settings = dict(backend='inline' if plot_dir else self.backend, format=kwargs.get('plot_format'), name=kwargs.get('plot_name'), width=kwargs.get('plot_width'), height=kwargs.get('plot_height'), resolution=kwargs.get('plot_res')) self._engine.plot_settings = settings dname = osp.dirname(func_path) fname = osp.basename(func_path) func_name, ext = osp.splitext(fname) if ext and not ext == '.m': raise TypeError('Need to give path to .m file') if func_name == 'clear': raise Oct2PyError('Cannot use `clear` command directly, use' + ' eval("clear(var1, var2)")') stream_handler = kwargs.get('stream_handler') verbose = kwargs.get('verbose', True) store_as = kwargs.get('store_as', '') timeout = kwargs.get('timeout', self.timeout) if not stream_handler: stream_handler = self.logger.info if verbose else self.logger.debug return self._feval(func_name, func_args, dname=dname, nout=nout, timeout=timeout, stream_handler=stream_handler, store_as=store_as, plot_dir=plot_dir)
def eval(self, cmds, verbose=True, timeout=None, stream_handler=None, temp_dir=None, plot_dir=None, plot_name='plot', plot_format='svg', plot_width=None, plot_height=None, plot_res=None, nout=0, **kwargs): """ Evaluate an Octave command or commands. Parameters ---------- cmds : str or list Commands(s) to pass to Octave. verbose : bool, optional Log Octave output at INFO level. If False, log at DEBUG level. stream_handler: callable, optional A function that is called for each line of output from the evaluation. timeout : float, optional Time to wait for response from Octave (per line). If not given, the instance `timeout` is used. nout : int, optional. The desired number of returned values, defaults to 0. If nout is 0, the `ans` will be returned as the return value. temp_dir: str, optional If specified, the session's MAT files will be created in the directory, otherwise a the instance `temp_dir` is used. a shared memory (tmpfs) path. plot_dir: str, optional If specificed, save the session's plot figures to the plot directory instead of displaying the plot window. plot_name : str, optional Saved plots will start with `plot_name` and end with "_%%.xxx' where %% is the plot number and xxx is the `plot_format`. plot_format: str, optional The format in which to save the plot (PNG by default). plot_width: int, optional The plot with in pixels. plot_height: int, optional The plot height in pixels. plot_res: int, optional The plot resolution in pixels per inch. **kwargs Deprectated kwargs. Examples -------- >>> from oct2py import octave >>> octave.eval('disp("hello")') # doctest: +SKIP hello >>> x = octave.eval('round(quad(@sin, 0, pi/2));') >>> x 1.0 >>> a = octave.eval('disp("hello");1;') # doctest: +SKIP hello >>> a = octave.eval('disp("hello");1;', verbose=False) >>> a 1.0 >>> from oct2py import octave >>> lines = [] >>> octave.eval('for i = 1:3; disp(i);end', \ stream_handler=lines.append) >>> lines # doctest: +SKIP [' 1', ' 2', ' 3'] Returns ------- out : object Octave "ans" variable, or None. Notes ----- The deprecated `log` kwarg will temporarily set the `logger` level to `WARN`. Using the `logger` settings directly is preferred. The deprecated `return_both` kwarg will still work, but the preferred method is to use the `stream_handler`. If `stream_handler` is given, the `return_both` kwarg will be honored but will give an empty string as the reponse. Raises ------ Oct2PyError If the command(s) fail. """ if isinstance(cmds, (str, unicode)): cmds = [cmds] prev_temp_dir = self.temp_dir self.temp_dir = temp_dir or self.temp_dir prev_log_level = self.logger.level if kwargs.get('log') is False: self.logger.setLevel(logging.WARN) for name in ['log', 'return_both']: if name not in kwargs: continue msg = 'Using deprecated `%s` kwarg, see docs on `Oct2Py.eval()`' warnings.warn(msg % name, stacklevel=2) return_both = kwargs.pop('return_both', False) lines = [] if return_both and not stream_handler: stream_handler = lines.append ans = None for cmd in cmds: resp = self.feval('evalin', 'base', cmd, nout=nout, timeout=timeout, stream_handler=stream_handler, verbose=verbose, plot_dir=plot_dir, plot_name=plot_name, plot_format=plot_format, plot_width=plot_width, plot_height=plot_height, plot_res=plot_res) if resp is not None: ans = resp self.temp_dir = prev_temp_dir self.logger.setLevel(prev_log_level) if return_both: return '\n'.join(lines), ans return ans
def restart(self): """Restart an Octave session in a clean state """ if self._engine: self._engine.repl.terminate() executable = self._executable if executable: os.environ['OCTAVE_EXECUTABLE'] = executable if 'OCTAVE_EXECUTABLE' not in os.environ and 'OCTAVE' in os.environ: os.environ['OCTAVE_EXECUTABLE'] = os.environ['OCTAVE'] self._engine = OctaveEngine(stdin_handler=self._handle_stdin, logger=self.logger) # Add local Octave scripts. self._engine.eval('addpath("%s");' % HERE.replace(osp.sep, '/'))
def _feval(self, func_name, func_args=(), dname='', nout=0, timeout=None, stream_handler=None, store_as='', plot_dir=None): """Run the given function with the given args. """ engine = self._engine if engine is None: raise Oct2PyError('Session is closed') # Set up our mat file paths. out_file = osp.join(self.temp_dir, 'writer.mat') out_file = out_file.replace(osp.sep, '/') in_file = osp.join(self.temp_dir, 'reader.mat') in_file = in_file.replace(osp.sep, '/') func_args = list(func_args) ref_indices = [] for (i, value) in enumerate(func_args): if isinstance(value, OctavePtr): ref_indices.append(i + 1) func_args[i] = value.address ref_indices = np.array(ref_indices) # Save the request data to the output file. req = dict(func_name=func_name, func_args=tuple(func_args), dname=dname or '', nout=nout, store_as=store_as or '', ref_indices=ref_indices) write_file(req, out_file, oned_as=self._oned_as, convert_to_float=self.convert_to_float) # Set up the engine and evaluate the `_pyeval()` function. engine.stream_handler = stream_handler or self.logger.info if timeout is None: timeout = self.timeout try: engine.eval('_pyeval("%s", "%s");' % (out_file, in_file), timeout=timeout) except KeyboardInterrupt as e: stream_handler(engine.repl.interrupt()) raise except TIMEOUT: stream_handler(engine.repl.interrupt()) raise Oct2PyError('Timed out, interrupting') except EOF: stream_handler(engine.repl.child.before) self.restart() raise Oct2PyError('Session died, restarting') # Read in the output. resp = read_file(in_file, self) if resp['err']: msg = self._parse_error(resp['err']) raise Oct2PyError(msg) result = resp['result'].ravel().tolist() if isinstance(result, list) and len(result) == 1: result = result[0] # Check for sentinel value. if (isinstance(result, Cell) and result.size == 1 and isinstance(result[0], string_types) and result[0] == '__no_value__'): result = None if plot_dir: self._engine.make_figures(plot_dir) return result
def _parse_error(self, err): """Create a traceback for an Octave evaluation error. """ self.logger.debug(err) stack = err.get('stack', []) if not err['message'].startswith('parse error:'): err['message'] = 'error: ' + err['message'] errmsg = 'Octave evaluation error:\n%s' % err['message'] if not isinstance(stack, StructArray): return errmsg errmsg += '\nerror: called from:' for item in stack[:-1]: errmsg += '\n %(name)s at line %(line)d' % item try: errmsg += ', column %(column)d' % item except Exception: pass return errmsg
def _get_doc(self, name): """ Get the documentation of an Octave procedure or object. Parameters ---------- name : str Function name to search for. Returns ------- out : str Documentation string. Raises ------ Oct2PyError If the procedure or object function has a syntax error. """ doc = 'No documentation for %s' % name engine = self._engine doc = engine.eval('help("%s")' % name, silent=True) if 'syntax error:' in doc.lower(): raise Oct2PyError(doc) if 'error:' in doc.lower(): doc = engine.eval('type("%s")' % name, silent=True) doc = '\n'.join(doc.splitlines()[:3]) default = self.feval.__doc__ default = ' ' + default[default.find('func_args:'):] default = '\n'.join([line[8:] for line in default.splitlines()]) doc = '\n'.join(doc.splitlines()) doc = '\n' + doc + '\n\nParameters\n----------\n' + default doc += '\n**kwargs - Deprecated keyword arguments\n\n' doc += 'Notes\n-----\n' doc += 'Keyword arguments to dynamic functions are deprecated.\n' doc += 'The `plot_*` kwargs will be ignored, but the rest will\n' doc += 'used as key - value pairs as in version 3.x.\n' doc += 'Use `set_plot_settings()` for plot settings, and use\n' doc += '`func_args` directly for key - value pairs.' return doc
def _exist(self, name): """Test whether a name exists and return the name code. Raises an error when the name does not exist. """ cmd = 'exist("%s")' % name resp = self._engine.eval(cmd, silent=True).strip() exist = int(resp.split()[-1]) if exist == 0: msg = 'Value "%s" does not exist in Octave workspace' raise Oct2PyError(msg % name) return exist
def _isobject(self, name, exist): """Test whether the name is an object.""" if exist in [2, 5]: return False cmd = 'isobject(%s)' % name resp = self._engine.eval(cmd, silent=True).strip() return resp == 'ans = 1'
def _get_function_ptr(self, name): """Get or create a function pointer of the given name.""" func = _make_function_ptr_instance self._function_ptrs.setdefault(name, func(self, name)) return self._function_ptrs[name]
def _get_user_class(self, name): """Get or create a user class of the given type.""" self._user_classes.setdefault(name, _make_user_class(self, name)) return self._user_classes[name]
def _cleanup(self): """Clean up resources used by the session. """ self.exit() workspace = osp.join(os.getcwd(), 'octave-workspace') if osp.exists(workspace): os.remove(workspace)
def demo(delay=1, interactive=True): """ Play a demo script showing most of the oct2py api features. Parameters ========== delay : float Time between each command in seconds. """ script = """ ######################### # Oct2Py demo ######################### import numpy as np from oct2py import Oct2Py oc = Oct2Py() # basic commands print(oc.abs(-1)) print(oc.upper('xyz')) # plotting oc.plot([1,2,3],'-o', 'linewidth', 2) raw_input('Press Enter to continue...') oc.close() xx = np.arange(-2*np.pi, 2*np.pi, 0.2) oc.surf(np.subtract.outer(np.sin(xx), np.cos(xx))) raw_input('Press Enter to continue...') oc.close() # getting help help(oc.svd) # single vs. multiple return values print(oc.svd(np.array([[1,2], [1,3]]))) U, S, V = oc.svd([[1,2], [1,3]], nout=3) print(U, S, V) # low level constructs oc.eval("y=ones(3,3)") print(oc.pull("y")) oc.eval("x=zeros(3,3)", verbose=True) t = oc.eval('rand(1, 2)', verbose=True) y = np.zeros((3,3)) oc.push('y', y) print(oc.pull('y')) from oct2py import Struct y = Struct() y.b = 'spam' y.c.d = 'eggs' print(y.c['d']) print(y) ######################### # Demo Complete! ######################### """ if not PY2: script = script.replace('raw_input', 'input') for line in script.strip().split('\n'): line = line.strip() if not 'input(' in line: time.sleep(delay) print(">>> {0}".format(line)) time.sleep(delay) if not interactive: if 'plot' in line or 'surf' in line or 'input(' in line: line = 'print()' exec(line)
def kill_octave(): """Kill all octave instances (cross-platform). This will restart the "octave" instance. If you have instantiated Any other Oct2Py objects, you must restart them. """ import os if os.name == 'nt': os.system('taskkill /im octave /f') else: os.system('killall -9 octave') os.system('killall -9 octave-cli') octave.restart()
def thread_check(nthreads=3): """ Start a number of threads and verify each has a unique Octave session. Parameters ========== nthreads : int Number of threads to use. Raises ====== Oct2PyError If the thread does not sucessfully demonstrate independence. """ print("Starting {0} threads at {1}".format(nthreads, datetime.datetime.now())) threads = [] for i in range(nthreads): thread = ThreadClass() thread.setDaemon(True) thread.start() threads.append(thread) for thread in threads: thread.join() print('All threads closed at {0}'.format(datetime.datetime.now()))
def run(self): """ Create a unique instance of Octave and verify namespace uniqueness. Raises ====== Oct2PyError If the thread does not sucessfully demonstrate independence """ octave = Oct2Py() # write the same variable name in each thread and read it back octave.push('name', self.getName()) name = octave.pull('name') now = datetime.datetime.now() print("{0} got '{1}' at {2}".format(self.getName(), name, now)) octave.exit() try: assert self.getName() == name except AssertionError: # pragma: no cover raise Oct2PyError('Thread collision detected') return
def read_file(path, session=None): """Read the data from the given file path. """ try: data = loadmat(path, struct_as_record=True) except UnicodeDecodeError as e: raise Oct2PyError(str(e)) out = dict() for (key, value) in data.items(): out[key] = _extract(value, session) return out
def write_file(obj, path, oned_as='row', convert_to_float=True): """Save a Python object to an Octave file on the given path. """ data = _encode(obj, convert_to_float) try: # scipy.io.savemat is not thread-save. # See https://github.com/scipy/scipy/issues/7260 with _WRITE_LOCK: savemat(path, data, appendmat=False, oned_as=oned_as, long_field_names=True) except KeyError: # pragma: no cover raise Exception('could not save mat file')
def _extract(data, session=None): """Convert the Octave values to values suitable for Python. """ # Extract each item of a list. if isinstance(data, list): return [_extract(d, session) for d in data] # Ignore leaf objects. if not isinstance(data, np.ndarray): return data # Extract user defined classes. if isinstance(data, MatlabObject): cls = session._get_user_class(data.classname) return cls.from_value(data) # Extract struct data. if data.dtype.names: # Singular struct if data.size == 1: return _create_struct(data, session) # Struct array return StructArray(data, session) # Extract cells. if data.dtype.kind == 'O': return Cell(data, session) # Compress singleton values. if data.size == 1: return data.item() # Compress empty values. if data.size == 0: if data.dtype.kind in 'US': return '' return [] # Return standard array. return data
def _create_struct(data, session): """Create a struct from session data. """ out = Struct() for name in data.dtype.names: item = data[name] # Extract values that are cells (they are doubly wrapped). if isinstance(item, np.ndarray) and item.dtype.kind == 'O': item = item.squeeze().tolist() out[name] = _extract(item, session) return out
def _encode(data, convert_to_float): """Convert the Python values to values suitable to send to Octave. """ ctf = convert_to_float # Handle variable pointer. if isinstance(data, (OctaveVariablePtr)): return _encode(data.value, ctf) # Handle a user defined object. if isinstance(data, OctaveUserClass): return _encode(OctaveUserClass.to_value(data), ctf) # Handle a function pointer. if isinstance(data, (OctaveFunctionPtr, MatlabFunction)): raise Oct2PyError('Cannot write Octave functions') # Handle matlab objects. if isinstance(data, MatlabObject): view = data.view(np.ndarray) out = MatlabObject(data, data.classname) for name in out.dtype.names: out[name] = _encode(view[name], ctf) return out # Handle pandas series and dataframes if isinstance(data, (DataFrame, Series)): return _encode(data.values, ctf) # Extract and encode values from dict-like objects. if isinstance(data, dict): out = dict() for (key, value) in data.items(): out[key] = _encode(value, ctf) return out # Send None as nan. if data is None: return np.NaN # Sets are treated like lists. if isinstance(data, set): return _encode(list(data), ctf) # Lists can be interpreted as numeric arrays or cell arrays. if isinstance(data, list): if _is_simple_numeric(data): return _encode(np.array(data), ctf) return _encode(tuple(data), ctf) # Tuples are handled as cells. if isinstance(data, tuple): obj = np.empty(len(data), dtype=object) for (i, item) in enumerate(data): obj[i] = _encode(item, ctf) return obj # Sparse data must be floating type. if isinstance(data, spmatrix): return data.astype(np.float64) # Return other data types unchanged. if not isinstance(data, np.ndarray): return data # Extract and encode data from object-like arrays. if data.dtype.kind in 'OV': out = np.empty(data.size, dtype=data.dtype) for (i, item) in enumerate(data.ravel()): if data.dtype.names: for name in data.dtype.names: out[i][name] = _encode(item[name], ctf) else: out[i] = _encode(item, ctf) return out.reshape(data.shape) # Complex 128 is the highest supported by savemat. if data.dtype.name == 'complex256': return data.astype(np.complex128) # Convert to float if applicable. if ctf and data.dtype.kind in 'ui': return data.astype(np.float64) # Return standard array. return data
def _is_simple_numeric(data): """Test if a list contains simple numeric data.""" for item in data: if isinstance(item, set): item = list(item) if isinstance(item, list): if not _is_simple_numeric(item): return False elif not isinstance(item, (int, float, complex)): return False return True
def get_log(name=None): """Return a console logger. Output may be sent to the logger using the `debug`, `info`, `warning`, `error` and `critical` methods. Parameters ---------- name : str Name of the log. References ---------- .. [1] Logging facility for Python, http://docs.python.org/library/logging.html """ if name is None: name = 'oct2py' else: name = 'oct2py.' + name log = logging.getLogger(name) log.setLevel(logging.INFO) return log
def _setup_log(): """Configure root logger. """ try: handler = logging.StreamHandler(stream=sys.stdout) except TypeError: # pragma: no cover handler = logging.StreamHandler(strm=sys.stdout) log = get_log() log.addHandler(handler) log.setLevel(logging.INFO) log.propagate = False
def _make_user_class(session, name): """Make an Octave class for a given class name""" attrs = session.eval('fieldnames(%s);' % name, nout=1).ravel().tolist() methods = session.eval('methods(%s);' % name, nout=1).ravel().tolist() ref = weakref.ref(session) doc = _DocDescriptor(ref, name) values = dict(__doc__=doc, _name=name, _ref=ref, _attrs=attrs, __module__='oct2py.dynamic') for method in methods: doc = _MethodDocDescriptor(ref, name, method) cls_name = '%s_%s' % (name, method) method_values = dict(__doc__=doc) method_cls = type(str(cls_name), (OctaveUserClassMethod,), method_values) values[method] = method_cls(ref, method, name) for attr in attrs: values[attr] = OctaveUserClassAttr(ref, attr, attr) return type(str(name), (OctaveUserClass,), values)
def from_value(cls, value): """This is how an instance is created when we read a MatlabObject from a MAT file. """ instance = OctaveUserClass.__new__(cls) instance._address = '%s_%s' % (instance._name, id(instance)) instance._ref().push(instance._address, value) return instance
def to_value(cls, instance): """Convert to a value to send to Octave.""" if not isinstance(instance, OctaveUserClass) or not instance._attrs: return dict() # Bootstrap a MatlabObject from scipy.io # From https://github.com/scipy/scipy/blob/93a0ea9e5d4aba1f661b6bb0e18f9c2d1fce436a/scipy/io/matlab/mio5.py#L435-L443 # and https://github.com/scipy/scipy/blob/93a0ea9e5d4aba1f661b6bb0e18f9c2d1fce436a/scipy/io/matlab/mio5_params.py#L224 dtype = [] values = [] for attr in instance._attrs: dtype.append((str(attr), object)) values.append(getattr(instance, attr)) struct = np.array([tuple(values)], dtype) return MatlabObject(struct, instance._name)
def to_pointer(cls, instance): """Get a pointer to the private object. """ return OctavePtr(instance._ref, instance._name, instance._address)
def document_func_view(serializer_class=None, response_serializer_class=None, filter_backends=None, permission_classes=None, authentication_classes=None, doc_format_args=list(), doc_format_kwargs=dict()): """ Decorator to make functional view documentable via drf-autodocs """ def decorator(func): if serializer_class: func.cls.serializer_class = func.view_class.serializer_class = serializer_class if response_serializer_class: func.cls.response_serializer_class = func.view_class.response_serializer_class = response_serializer_class if filter_backends: func.cls.filter_backends = func.view_class.filter_backends = filter_backends if permission_classes: func.cls.permission_classes = func.view_class.permission_classes = permission_classes if authentication_classes: func.cls.authentication_classes = func.view_class.authentication_classes = authentication_classes if doc_format_args or doc_format_kwargs: func.cls.__doc__ = func.view_class.__doc__ = getdoc(func).format(*doc_format_args, **doc_format_kwargs) return func return decorator
def format_docstring(*args, **kwargs): """ Decorator for clean docstring formatting """ def decorator(func): func.__doc__ = getdoc(func).format(*args, **kwargs) return func return decorator
def is_rarfile(filename): """Return true if file is a valid RAR file.""" mode = constants.RAR_OM_LIST_INCSPLIT archive = unrarlib.RAROpenArchiveDataEx(filename, mode=mode) try: handle = unrarlib.RAROpenArchiveEx(ctypes.byref(archive)) except unrarlib.UnrarException: return False unrarlib.RARCloseArchive(handle) return (archive.OpenResult == constants.SUCCESS)
def _read_header(self, handle): """Read current member header into a RarInfo object.""" header_data = unrarlib.RARHeaderDataEx() try: res = unrarlib.RARReadHeaderEx(handle, ctypes.byref(header_data)) rarinfo = RarInfo(header=header_data) except unrarlib.ArchiveEnd: return None except unrarlib.MissingPassword: raise RuntimeError("Archive is encrypted, password required") except unrarlib.BadPassword: raise RuntimeError("Bad password for Archive") except unrarlib.UnrarException as e: raise BadRarFile(str(e)) return rarinfo
def _process_current(self, handle, op, dest_path=None, dest_name=None): """Process current member with 'op' operation.""" unrarlib.RARProcessFileW(handle, op, dest_path, dest_name)
def _load_metadata(self, handle): """Load archive members metadata.""" rarinfo = self._read_header(handle) while rarinfo: self.filelist.append(rarinfo) self.NameToInfo[rarinfo.filename] = rarinfo self._process_current(handle, constants.RAR_SKIP) rarinfo = self._read_header(handle)
def _open(self, archive): """Open RAR archive file.""" try: handle = unrarlib.RAROpenArchiveEx(ctypes.byref(archive)) except unrarlib.UnrarException: raise BadRarFile("Invalid RAR file.") return handle
def open(self, member, pwd=None): """Return file-like object for 'member'. 'member' may be a filename or a RarInfo object. """ if isinstance(member, RarInfo): member = member.filename archive = unrarlib.RAROpenArchiveDataEx( self.filename, mode=constants.RAR_OM_EXTRACT) handle = self._open(archive) password = pwd or self.pwd if password is not None: unrarlib.RARSetPassword(handle, b(password)) # based on BrutuZ (https://github.com/matiasb/python-unrar/pull/4) # and Cubixmeister work data = _ReadIntoMemory() c_callback = unrarlib.UNRARCALLBACK(data._callback) unrarlib.RARSetCallback(handle, c_callback, 0) try: rarinfo = self._read_header(handle) while rarinfo is not None: if rarinfo.filename == member: self._process_current(handle, constants.RAR_TEST) break else: self._process_current(handle, constants.RAR_SKIP) rarinfo = self._read_header(handle) if rarinfo is None: data = None except unrarlib.MissingPassword: raise RuntimeError("File is encrypted, password required") except unrarlib.BadPassword: raise RuntimeError("Bad password for File") except unrarlib.BadDataError: if password is not None: raise RuntimeError("File CRC error or incorrect password") else: raise RuntimeError("File CRC error") except unrarlib.UnrarException as e: raise BadRarFile("Bad RAR archive data: %s" % str(e)) finally: self._close(handle) if data is None: raise KeyError('There is no item named %r in the archive' % member) # return file-like object return data.get_bytes()
def namelist(self): """Return a list of file names in the archive.""" names = [] for member in self.filelist: names.append(member.filename) return names
def getinfo(self, name): """Return the instance of RarInfo given 'name'.""" rarinfo = self.NameToInfo.get(name) if rarinfo is None: raise KeyError('There is no item named %r in the archive' % name) return rarinfo
def printdir(self): """Print a table of contents for the RAR file.""" print("%-46s %19s %12s" % ("File Name", "Modified ", "Size")) for rarinfo in self.filelist: date = "%d-%02d-%02d %02d:%02d:%02d" % rarinfo.date_time[:6] print("%-46s %s %12d" % ( rarinfo.filename, date, rarinfo.file_size))
def extract(self, member, path=None, pwd=None): """Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a RarInfo object. You can specify a different directory using `path'. """ if isinstance(member, RarInfo): member = member.filename if path is None: path = os.getcwd() self._extract_members([member], path, pwd) return os.path.join(path, member)
def extractall(self, path=None, members=None, pwd=None): """Extract all members from the archive to the current working directory. `path' specifies a different directory to extract to. `members' is optional and must be a subset of the list returned by namelist(). """ if members is None: members = self.namelist() self._extract_members(members, path, pwd)
def _extract_members(self, members, targetpath, pwd): """Extract the RarInfo objects 'members' to a physical file on the path targetpath. """ archive = unrarlib.RAROpenArchiveDataEx( self.filename, mode=constants.RAR_OM_EXTRACT) handle = self._open(archive) password = pwd or self.pwd if password is not None: unrarlib.RARSetPassword(handle, b(password)) try: rarinfo = self._read_header(handle) while rarinfo is not None: if rarinfo.filename in members: self._process_current( handle, constants.RAR_EXTRACT, targetpath) else: self._process_current(handle, constants.RAR_SKIP) rarinfo = self._read_header(handle) except unrarlib.MissingPassword: raise RuntimeError("File is encrypted, password required") except unrarlib.BadPassword: raise RuntimeError("Bad password for File") except unrarlib.BadDataError: raise RuntimeError("File CRC Error") except unrarlib.UnrarException as e: raise BadRarFile("Bad RAR archive data: %s" % str(e)) finally: self._close(handle)
def dostime_to_timetuple(dostime): """Convert a RAR archive member DOS time to a Python time tuple.""" dostime = dostime >> 16 dostime = dostime & 0xffff day = dostime & 0x1f month = (dostime >> 5) & 0xf year = 1980 + (dostime >> 9) second = 2 * (dostime & 0x1f) minute = (dostime >> 5) & 0x3f hour = dostime >> 11 return (year, month, day, hour, minute, second)
def _c_func(func, restype, argtypes, errcheck=None): """Wrap c function setting prototype.""" func.restype = restype func.argtypes = argtypes if errcheck is not None: func.errcheck = errcheck return func
def _load_savefile_header(file_h): """ Load and validate the header of a pcap file. """ try: raw_savefile_header = file_h.read(24) except UnicodeDecodeError: print("\nMake sure the input file is opened in read binary, 'rb'\n") raise InvalidEncoding("Could not read file; it might not be opened in binary mode.") # in case the capture file is not the same endianness as ours, we have to # use the correct byte order for the file header if raw_savefile_header[:4] in [struct.pack(">I", _MAGIC_NUMBER), struct.pack(">I", _MAGIC_NUMBER_NS)]: byte_order = b'big' unpacked = struct.unpack('>IhhIIII', raw_savefile_header) elif raw_savefile_header[:4] in [struct.pack("<I", _MAGIC_NUMBER), struct.pack("<I", _MAGIC_NUMBER_NS)]: byte_order = b'little' unpacked = struct.unpack('<IhhIIII', raw_savefile_header) else: raise UnknownMagicNumber("No supported Magic Number found") (magic, major, minor, tz_off, ts_acc, snaplen, ll_type) = unpacked header = __pcap_header__(magic, major, minor, tz_off, ts_acc, snaplen, ll_type, ctypes.c_char_p(byte_order), magic == _MAGIC_NUMBER_NS) if not __validate_header__(header): raise InvalidHeader("Invalid Header") else: return header
def load_savefile(input_file, layers=0, verbose=False, lazy=False): """ Parse a savefile as a pcap_savefile instance. Returns the savefile on success and None on failure. Verbose mode prints additional information about the file's processing. layers defines how many layers to descend and decode the packet. input_file should be a Python file object. """ global VERBOSE old_verbose = VERBOSE VERBOSE = verbose __TRACE__('[+] attempting to load {:s}', (input_file.name,)) header = _load_savefile_header(input_file) if __validate_header__(header): __TRACE__('[+] found valid header') if lazy: packets = _generate_packets(input_file, header, layers) __TRACE__('[+] created packet generator') else: packets = _load_packets(input_file, header, layers) __TRACE__('[+] loaded {:d} packets', (len(packets),)) sfile = pcap_savefile(header, packets) __TRACE__('[+] finished loading savefile.') else: __TRACE__('[!] invalid savefile') sfile = None VERBOSE = old_verbose return sfile
def _load_packets(file_h, header, layers=0): """ Read packets from the capture file. Expects the file handle to point to the location immediately after the header (24 bytes). """ pkts = [] hdrp = ctypes.pointer(header) while True: pkt = _read_a_packet(file_h, hdrp, layers) if pkt: pkts.append(pkt) else: break return pkts
def _generate_packets(file_h, header, layers=0): """ Read packets one by one from the capture file. Expects the file handle to point to the location immediately after the header (24 bytes). """ hdrp = ctypes.pointer(header) while True: pkt = _read_a_packet(file_h, hdrp, layers) if pkt: yield pkt else: break
def _read_a_packet(file_h, hdrp, layers=0): """ Reads the next individual packet from the capture file. Expects the file handle to be somewhere after the header, on the next per-packet header. """ raw_packet_header = file_h.read(16) if not raw_packet_header or len(raw_packet_header) != 16: return None # in case the capture file is not the same endianness as ours, we have to # use the correct byte order for the packet header if hdrp[0].byteorder == 'big': packet_header = struct.unpack('>IIII', raw_packet_header) else: packet_header = struct.unpack('<IIII', raw_packet_header) (timestamp, timestamp_us, capture_len, packet_len) = packet_header raw_packet_data = file_h.read(capture_len) if not raw_packet_data or len(raw_packet_data) != capture_len: return None if layers > 0: layers -= 1 raw_packet = linklayer.clookup(hdrp[0].ll_type)(raw_packet_data, layers=layers) else: raw_packet = raw_packet_data packet = pcap_packet(hdrp, timestamp, timestamp_us, capture_len, packet_len, raw_packet) return packet
def parse_ipv4(address): """ Given a raw IPv4 address (i.e. as an unsigned integer), return it in dotted quad notation. """ raw = struct.pack('I', address) octets = struct.unpack('BBBB', raw)[::-1] ipv4 = b'.'.join([('%d' % o).encode('ascii') for o in bytearray(octets)]) return ipv4
def strip_ip(packet): """ Remove the IP packet layer, yielding the transport layer. """ if not isinstance(packet, IP): packet = IP(packet) payload = packet.payload return payload
def strip_ethernet(packet): """ Strip the Ethernet frame from a packet. """ if not isinstance(packet, Ethernet): packet = Ethernet(packet) payload = packet.payload return payload
def load_network(self, layers=1): """ Given an Ethernet frame, determine the appropriate sub-protocol; If layers is greater than zerol determine the type of the payload and load the appropriate type of network packet. It is expected that the payload be a hexified string. The layers argument determines how many layers to descend while parsing the packet. """ if layers: ctor = payload_type(self.type)[0] if ctor: ctor = ctor payload = self.payload self.payload = ctor(payload, layers - 1) else: # if no type is found, do not touch the packet. pass
def WIFI(frame, no_rtap=False): """calls wifi packet discriminator and constructor. :frame: ctypes.Structure :no_rtap: Bool :return: packet object in success :return: int -1 on known error :return: int -2 on unknown error """ pack = None try: pack = WiHelper.get_wifi_packet(frame, no_rtap) except Exception as e: logging.exception(e) return pack
def get_wifi_packet(frame, no_rtap=False): """Discriminates Wi-Fi packet and creates packet object. :frame: ctypes.Structure :no_rtap: Bool :return: obj Wi-Fi packet """ _, packet = WiHelper._strip_rtap(frame) frame_control = struct.unpack('BB', packet[:2]) cat = (frame_control[0] >> 2) & 0b0011 s_type = frame_control[0] >> 4 if cat not in _CATEGORIES_.keys(): logging.warning("unknown category: %d" % (cat)) return Unknown(frame, no_rtap) if s_type not in _SUBTYPES_[cat].keys(): logging.warning("unknown subtype %d in %s category" % (s_type, _CATEGORIES_[cat])) return Unknown(frame, no_rtap) if cat == 0: if s_type == 4: return ProbeReq(frame, no_rtap) elif s_type == 5: return ProbeResp(frame, no_rtap) elif s_type == 8: return Beacon(frame, no_rtap) else: return Management(frame, no_rtap) elif cat == 1: if s_type == 11: return RTS(frame, no_rtap) elif s_type == 12: return CTS(frame, no_rtap) elif s_type == 9: return BACK(frame, no_rtap) else: return Control(frame, no_rtap) elif cat == 2: if s_type == 8: return QosData(frame, no_rtap, parse_amsdu=True) else: return Data(frame, no_rtap)
def _strip_rtap(frame): """strip injected radiotap header. :return: ctypes.Structure radiotap header :return: ctypes.Structure actual layer 2 Wi-Fi payload """ rtap_len = WiHelper.__get_rtap_len(frame) rtap = frame[:rtap_len] packet = frame[rtap_len:] return rtap, packet
def strip_present(payload): """strip(4 byte) radiotap.present. Those are flags that identify existence of incoming radiotap meta-data. :idx: int :return: str :return: namedtuple """ present = collections.namedtuple( 'present', ['tsft', 'flags', 'rate', 'channel', 'fhss', 'dbm_antsignal', 'dbm_antnoise', 'lock_quality', 'tx_attenuation', 'db_tx_attenuation', 'dbm_tx_power', 'antenna', 'db_antsignal', 'db_antnoise', 'rxflags', 'txflags', 'rts_retries', 'data_retries', 'xchannel', 'mcs', 'ampdu', 'vht', 'rtap_ns', 'ven_ns', 'ext']) val = struct.unpack('<L', payload)[0] bits = format(val, '032b')[::-1] present.tsft = int(bits[0]) # timer synchronization function present.flags = int(bits[1]) # flags present.rate = int(bits[2]) # rate present.channel = int(bits[3]) # channel present.fhss = int(bits[4]) # frequency hoping spread spectrum present.dbm_antsignal = int(bits[5]) # dbm antenna signal present.dbm_antnoise = int(bits[6]) # dbm antenna noinse present.lock_quality = int(bits[7]) # quality of barker code lock present.tx_attenuation = int(bits[8]) # transmitter attenuation present.db_tx_attenuation = int(bits[9]) # decibel transmit attenuation present.dbm_tx_power = int(bits[10]) # dbm transmit power present.antenna = int(bits[11]) # antenna present.db_antsignal = int(bits[12]) # db antenna signal present.db_antnoise = int(bits[13]) # db antenna noise present.rxflags = int(bits[14]) # receiver flags present.txflags = int(bits[15]) # transmitter flags present.rts_retries = int(bits[16]) # rts(request to send) retries present.data_retries = int(bits[17]) # data retries present.xchannel = int(bits[18]) # xchannel present.mcs = int(bits[19]) # modulation and coding scheme present.ampdu = int(bits[20]) # aggregated mac protocol data unit present.vht = int(bits[21]) # very high throughput present.rtap_ns = int(bits[29]) # radiotap namespace present.ven_ns = int(bits[30]) # vendor namespace present.ext = int(bits[31]) # extension return present, bits
def strip_tsft(self, idx): """strip(8 byte) radiotap.mactime :idx: int :return: int idx :return: int mactime """ idx = Radiotap.align(idx, 8) mactime, = struct.unpack_from('<Q', self._rtap, idx) return idx + 8, mactime
def strip_flags(self, idx): """strip(1 byte) radiotap.flags :idx: int :return: int idx :return: collections.namedtuple """ flags = collections.namedtuple( 'flags', ['cfp', 'preamble', 'wep', 'fragmentation', 'fcs', 'datapad', 'badfcs', 'shortgi']) val, = struct.unpack_from('<B', self._rtap, idx) bits = format(val, '08b')[::-1] flags.cfp = int(bits[0]) flags.preamble = int(bits[1]) flags.wep = int(bits[2]) flags.fragmentation = int(bits[3]) flags.fcs = int(bits[4]) flags.datapad = int(bits[5]) flags.badfcs = int(bits[6]) flags.shortgi = int(bits[7]) return idx + 1, flags
def strip_rate(self, idx): """strip(1 byte) radiotap.datarate note that, unit of this field is originally 0.5 Mbps :idx: int :return: int idx :return: double rate in terms of Mbps """ val, = struct.unpack_from('<B', self._rtap, idx) rate_unit = float(1) / 2 # Mbps return idx + 1, rate_unit * val
def strip_chan(self, idx): """strip(2 byte) radiotap.channel.flags :idx: int :return: int idx :return: collections.namedtuple """ chan = collections.namedtuple( 'chan', ['freq', 'turbo', 'cck', 'ofdm', 'two_g', 'five_g', 'passive', 'dynamic', 'gfsk', 'gsm', 'static_turbo', 'half_rate', 'quarter_rate']) idx = Radiotap.align(idx, 2) freq, flags, = struct.unpack_from('<HH', self._rtap, idx) chan.freq = freq bits = format(flags, '016b')[::-1] chan.turbo = int(bits[4]) chan.cck = int(bits[5]) chan.ofdm = int(bits[6]) chan.two_g = int(bits[7]) chan.five_g = int(bits[8]) chan.passive = int(bits[9]) chan.dynamic = int(bits[10]) chan.gfsk = int(bits[11]) chan.gsm = int(bits[12]) chan.static_turbo = int(bits[13]) chan.half_rate = int(bits[14]) chan.quarter_rate = int(bits[15]) return idx + 4, chan
def strip_fhss(self, idx): """strip (2 byte) radiotap.fhss.hopset(1 byte) and radiotap.fhss.pattern(1 byte) :idx: int :return: int idx :return: collections.namedtuple """ fhss = collections.namedtuple('fhss', ['hopset', 'pattern']) fhss.hopset, fhss.pattern, = struct.unpack_from('<bb', self._rtap, idx) return idx + 2, fhss
def strip_dbm_antsignal(self, idx): """strip(1 byte) radiotap.dbm.ant_signal :idx: int :return: int idx :return: int """ dbm_antsignal, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_antsignal
def strip_dbm_antnoise(self, idx): """strip(1 byte) radiotap.dbm_antnoise :idx: int :return: int idx :return: int """ dbm_antnoise, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_antnoise
def strip_lock_quality(self, idx): """strip(2 byte) lock quality :idx: int :return: int idx :return: int """ idx = Radiotap.align(idx, 2) lock_quality, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, lock_quality
def strip_tx_attenuation(self, idx): """strip(1 byte) tx_attenuation :idx: int :return: int idx :return: int """ idx = Radiotap.align(idx, 2) tx_attenuation, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, tx_attenuation
def strip_db_tx_attenuation(self, idx): """strip(1 byte) db_tx_attenuation :return: int idx :return: int """ idx = Radiotap.align(idx, 2) db_tx_attenuation, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, db_tx_attenuation
def strip_dbm_tx_power(self, idx): """strip(1 byte) dbm_tx_power :return: int idx :return: int """ idx = Radiotap.align(idx, 1) dbm_tx_power, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_tx_power
def strip_antenna(self, idx): """strip(1 byte) radiotap.antenna :return: int idx :return: int """ antenna, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, antenna