Search is not available for this dataset
text
stringlengths 75
104k
|
---|
async def run_tasks(self):
""" Run the tasks attached to the instance """
tasks = self.get_tasks()
self._gathered_tasks = asyncio.gather(*tasks, loop=self.loop)
try:
await self._gathered_tasks
except CancelledError:
pass
|
async def close(self):
""" properly close the client """
tasks = self._get_close_tasks()
if tasks:
await asyncio.wait(tasks)
self._session = None
|
async def _get_twitter_configuration(self):
"""
create a ``twitter_configuration`` attribute with the response
of the endpoint
https://api.twitter.com/1.1/help/configuration.json
"""
api = self['api', general.twitter_api_version,
".json", general.twitter_base_api_url]
return await api.help.configuration.get()
|
async def _get_user(self):
"""
create a ``user`` attribute with the response of the endpoint
https://api.twitter.com/1.1/account/verify_credentials.json
"""
api = self['api', general.twitter_api_version,
".json", general.twitter_base_api_url]
return await api.account.verify_credentials.get()
|
async def _chunked_upload(self, media, media_size,
path=None,
media_type=None,
media_category=None,
chunk_size=2**20,
**params):
"""
upload media in chunks
Parameters
----------
media : file object
a file object of the media
media_size : int
size of the media
path : str, optional
filename of the media
media_type : str, optional
mime type of the media
media_category : str, optional
twitter media category, must be used with ``media_type``
chunk_size : int, optional
size of a chunk in bytes
params : dict, optional
additional parameters of the request
Returns
-------
.data_processing.PeonyResponse
Response of the request
"""
if isinstance(media, bytes):
media = io.BytesIO(media)
chunk = media.read(chunk_size)
is_coro = asyncio.iscoroutine(chunk)
if is_coro:
chunk = await chunk
if media_type is None:
media_metadata = await utils.get_media_metadata(chunk, path)
media_type, media_category = media_metadata
elif media_category is None:
media_category = utils.get_category(media_type)
response = await self.upload.media.upload.post(
command="INIT",
total_bytes=media_size,
media_type=media_type,
media_category=media_category,
**params
)
media_id = response['media_id']
i = 0
while chunk:
if is_coro:
req = self.upload.media.upload.post(command="APPEND",
media_id=media_id,
media=chunk,
segment_index=i)
chunk, _ = await asyncio.gather(media.read(chunk_size), req)
else:
await self.upload.media.upload.post(command="APPEND",
media_id=media_id,
media=chunk,
segment_index=i)
chunk = media.read(chunk_size)
i += 1
status = await self.upload.media.upload.post(command="FINALIZE",
media_id=media_id)
if 'processing_info' in status:
while status['processing_info'].get('state') != "succeeded":
processing_info = status['processing_info']
if processing_info.get('state') == "failed":
error = processing_info.get('error', {})
message = error.get('message', str(status))
raise exceptions.MediaProcessingError(data=status,
message=message,
**params)
delay = processing_info['check_after_secs']
await asyncio.sleep(delay)
status = await self.upload.media.upload.get(
command="STATUS",
media_id=media_id,
**params
)
return response
|
async def upload_media(self, file_,
media_type=None,
media_category=None,
chunked=None,
size_limit=None,
**params):
"""
upload a media on twitter
Parameters
----------
file_ : str or pathlib.Path or file
Path to the file or file object
media_type : str, optional
mime type of the media
media_category : str, optional
Twitter's media category of the media, must be used with
``media_type``
chunked : bool, optional
If True, force the use of the chunked upload for the media
size_limit : int, optional
If set, the media will be sent using a multipart upload if
its size is over ``size_limit`` bytes
params : dict
parameters used when making the request
Returns
-------
.data_processing.PeonyResponse
Response of the request
"""
if isinstance(file_, str):
url = urlparse(file_)
if url.scheme.startswith('http'):
media = await self._session.get(file_)
else:
path = urlparse(file_).path.strip(" \"'")
media = await utils.execute(open(path, 'rb'))
elif hasattr(file_, 'read') or isinstance(file_, bytes):
media = file_
else:
raise TypeError("upload_media input must be a file object or a "
"filename or binary data or an aiohttp request")
media_size = await utils.get_size(media)
if chunked is not None:
size_test = False
else:
size_test = await self._size_test(media_size, size_limit)
if isinstance(media, aiohttp.ClientResponse):
# send the content of the response
media = media.content
if chunked or (size_test and chunked is None):
args = media, media_size, file_, media_type, media_category
response = await self._chunked_upload(*args, **params)
else:
response = await self.upload.media.upload.post(media=media,
**params)
if not hasattr(file_, 'read') and not getattr(media, 'closed', True):
media.close()
return response
|
def split_stdout_lines(stdout):
"""
Given the standard output from NetMHC/NetMHCpan/NetMHCcons tools,
drop all {comments, lines of hyphens, empty lines} and split the
remaining lines by whitespace.
"""
# all the NetMHC formats use lines full of dashes before any actual
# binding results
seen_dash = False
for l in stdout.split("\n"):
l = l.strip()
# wait for a line like '----------' before trying to parse entries
# have to include multiple dashes here since NetMHC 4.0 sometimes
# gives negative positions in its "peptide" input mode
if l.startswith("---"):
seen_dash = True
continue
if not seen_dash:
continue
# ignore empty lines and comments
if not l or l.startswith("#"):
continue
# beginning of headers in NetMHC
if any(l.startswith(word) for word in NETMHC_TOKENS):
continue
yield l.split()
|
def clean_fields(fields, ignored_value_indices, transforms):
"""
Sometimes, NetMHC* has fields that are only populated sometimes, which results
in different count/indexing of the fields when that happens.
We handle this by looking for particular strings at particular indices, and
deleting them.
Warning: this may result in unexpected behavior sometimes. For example, we
ignore "SB" and "WB" for NetMHC 3.x output; which also means that any line
with a key called SB or WB will be ignored.
Also, sometimes NetMHC* will have fields that we want to modify in some
consistent way, e.g. NetMHCpan3 has 1-based offsets and all other predictors
have 0-based offsets (and we rely on 0-based offsets). We handle this using
a map from field index to transform function.
"""
cleaned_fields = []
for i, field in enumerate(fields):
if field in ignored_value_indices:
ignored_index = ignored_value_indices[field]
# Is the value we want to ignore at the index where we'd ignore it?
if ignored_index == i:
continue
# transform this field if the index is in transforms, otherwise leave alone
cleaned_field = transforms[i](field) if i in transforms else field
cleaned_fields.append(cleaned_field)
return cleaned_fields
|
def parse_stdout(
stdout,
prediction_method_name,
sequence_key_mapping,
key_index,
offset_index,
peptide_index,
allele_index,
ic50_index,
rank_index,
log_ic50_index,
ignored_value_indices={},
transforms={}):
"""
Generic function for parsing any NetMHC* output, given expected indices
of values of interest.
Parameters
----------
ignored_value_indices : dict
Map from values to the positions we'll ignore them at. See clean_fields.
transforms : dict
Map from field index to a transform function to be applied to values in
that field. See clean_fields.
Returns BindingPredictionCollection
"""
binding_predictions = []
for fields in split_stdout_lines(stdout):
fields = clean_fields(fields, ignored_value_indices, transforms)
offset = int(fields[offset_index])
peptide = str(fields[peptide_index])
allele = str(fields[allele_index])
ic50 = float(fields[ic50_index])
rank = float(fields[rank_index]) if rank_index else 0.0
log_ic50 = float(fields[log_ic50_index])
key = str(fields[key_index])
if sequence_key_mapping:
original_key = sequence_key_mapping[key]
else:
# if sequence_key_mapping isn't provided then let's assume it's the
# identity function
original_key = key
binding_predictions.append(BindingPrediction(
source_sequence_name=original_key,
offset=offset,
peptide=peptide,
allele=normalize_allele_name(allele),
affinity=ic50,
percentile_rank=rank,
log_affinity=log_ic50,
prediction_method_name=prediction_method_name))
return binding_predictions
|
def parse_netmhc3_stdout(
stdout,
prediction_method_name="netmhc3",
sequence_key_mapping=None):
"""
Parse the output format for NetMHC 3.x, which looks like:
----------------------------------------------------------------------------------------------------
pos peptide logscore affinity(nM) Bind Level Protein Name Allele
----------------------------------------------------------------------------------------------------
0 SIINKFELL 0.437 441 WB A1 HLA-A02:01
--------------------------------------------------------------------------------------------------
0 SIINKFFFQ 0.206 5411 A2 HLA-A02:01
1 IINKFFFQQ 0.128 12544 A2 HLA-A02:01
2 INKFFFQQQ 0.046 30406 A2 HLA-A02:01
3 NKFFFQQQQ 0.050 29197 A2 HLA-A02:01
--------------------------------------------------------------------------------------------------
"""
return parse_stdout(
stdout=stdout,
prediction_method_name=prediction_method_name,
sequence_key_mapping=sequence_key_mapping,
key_index=4,
offset_index=0,
peptide_index=1,
allele_index=5,
ic50_index=3,
rank_index=None,
log_ic50_index=2,
ignored_value_indices={"WB": 4, "SB": 4})
|
def parse_netmhc4_stdout(
stdout,
prediction_method_name="netmhc4",
sequence_key_mapping=None):
"""
# Peptide length 9
# Rank Threshold for Strong binding peptides 0.500
# Rank Threshold for Weak binding peptides 2.000
-----------------------------------------------------------------------------------
pos HLA peptide Core Offset I_pos I_len D_pos D_len iCore Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel
-----------------------------------------------------------------------------------
0 HLA-A0201 TMDKSELVQ TMDKSELVQ 0 0 0 0 0 TMDKSELVQ 143B_BOVIN_P293 0.051 28676.59 43.00
1 HLA-A0201 MDKSELVQK MDKSELVQK 0 0 0 0 0 MDKSELVQK 143B_BOVIN_P293 0.030 36155.15 70.00
2 HLA-A0201 DKSELVQKA DKSELVQKA 0 0 0 0 0 DKSELVQKA 143B_BOVIN_P293 0.030 36188.42 70.00
3 HLA-A0201 KSELVQKAK KSELVQKAK 0 0 0 0 0 KSELVQKAK 143B_BOVIN_P293 0.032 35203.22 65.00
4 HLA-A0201 SELVQKAKL SELVQKAKL 0 0 0 0 0 SELVQKAKL 143B_BOVIN_P293 0.031 35670.99 65.00
5 HLA-A0201 ELVQKAKLA ELVQKAKLA 0 0 0 0 0 ELVQKAKLA 143B_BOVIN_P293 0.080 21113.07 29.00
6 HLA-A0201 LVQKAKLAE LVQKAKLAE 0 0 0 0 0 LVQKAKLAE 143B_BOVIN_P293 0.027 37257.56 75.00
7 HLA-A0201 VQKAKLAEQ VQKAKLAEQ 0 0 0 0 0 VQKAKLAEQ 143B_BOVIN_P293 0.040 32404.62 55.00
219 HLA-A0201 QLLRDNLTL QLLRDNLTL 0 0 0 0 0 QLLRDNLTL 143B_BOVIN_P293 0.527 167.10 1.50 <= WB
-----------------------------------------------------------------------------------
"""
return parse_stdout(
stdout=stdout,
prediction_method_name=prediction_method_name,
sequence_key_mapping=sequence_key_mapping,
key_index=10,
offset_index=0,
peptide_index=2,
allele_index=1,
ic50_index=12,
rank_index=13,
log_ic50_index=11)
|
def parse_netmhcpan28_stdout(
stdout,
prediction_method_name="netmhcpan",
sequence_key_mapping=None):
"""
# Affinity Threshold for Strong binding peptides 50.000',
# Affinity Threshold for Weak binding peptides 500.000',
# Rank Threshold for Strong binding peptides 0.500',
# Rank Threshold for Weak binding peptides 2.000',
----------------------------------------------------------------------------
pos HLA peptide Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel
----------------------------------------------------------------------------
0 HLA-A*02:03 QQQQQYFPE id0 0.024 38534.25 50.00
1 HLA-A*02:03 QQQQYFPEI id0 0.278 2461.53 15.00
2 HLA-A*02:03 QQQYFPEIT id0 0.078 21511.53 50.00
3 HLA-A*02:03 QQYFPEITH id0 0.041 32176.84 50.00
4 HLA-A*02:03 QYFPEITHI id0 0.085 19847.09 32.00
5 HLA-A*02:03 YFPEITHII id0 0.231 4123.85 15.00
6 HLA-A*02:03 FPEITHIII id0 0.060 26134.28 50.00
7 HLA-A*02:03 PEITHIIIA id0 0.034 34524.63 50.00
8 HLA-A*02:03 EITHIIIAS id0 0.076 21974.48 50.00
9 HLA-A*02:03 ITHIIIASS id0 0.170 7934.26 32.00
10 HLA-A*02:03 THIIIASSS id0 0.040 32361.18 50.00
11 HLA-A*02:03 HIIIASSSL id0 0.515 189.74 4.00 <= WB
"""
check_stdout_error(stdout, "NetMHCpan-2.8")
return parse_stdout(
stdout=stdout,
prediction_method_name=prediction_method_name,
sequence_key_mapping=sequence_key_mapping,
key_index=3,
offset_index=0,
peptide_index=2,
allele_index=1,
ic50_index=5,
rank_index=6,
log_ic50_index=4)
|
def parse_netmhcpan3_stdout(
stdout,
prediction_method_name="netmhcpan",
sequence_key_mapping=None):
"""
# Rank Threshold for Strong binding peptides 0.500
# Rank Threshold for Weak binding peptides 2.000
-----------------------------------------------------------------------------------
Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel
-----------------------------------------------------------------------------------
1 HLA-B*18:01 MFCQLAKT MFCQLAKT- 0 0 0 8 1 MFCQLAKT sequence0_0 0.02864 36676.0 45.00
2 HLA-B*18:01 FCQLAKTY F-CQLAKTY 0 0 0 1 1 FCQLAKTY sequence0_0 0.07993 21056.5 13.00
"""
# the offset specified in "pos" (at index 0) is 1-based instead of 0-based. we adjust it to be
# 0-based, as in all the other netmhc predictors supported by this library.
transforms = {
0: lambda x: int(x) - 1,
}
return parse_stdout(
stdout=stdout,
prediction_method_name=prediction_method_name,
sequence_key_mapping=sequence_key_mapping,
key_index=10,
offset_index=0,
peptide_index=2,
allele_index=1,
ic50_index=12,
rank_index=13,
log_ic50_index=11,
transforms=transforms)
|
def parse_netmhcpan4_stdout(
stdout,
prediction_method_name="netmhcpan",
sequence_key_mapping=None):
"""
# NetMHCpan version 4.0
# Tmpdir made /var/folders/jc/fyrvcrcs3sb8g4mkdg6nl_t80000gp/T//netMHCpanuH3SvY
# Input is in PEPTIDE format
# Make binding affinity predictions
HLA-A02:01 : Distance to training data 0.000 (using nearest neighbor HLA-A02:01)
# Rank Threshold for Strong binding peptides 0.500
# Rank Threshold for Weak binding peptides 2.000
-----------------------------------------------------------------------------------
Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel
-----------------------------------------------------------------------------------
1 HLA-A*02:01 SIINFEKL SIINF-EKL 0 0 0 5 1 SIINFEKL PEPLIST 0.1141340 14543.1 18.9860
-----------------------------------------------------------------------------------
Protein PEPLIST. Allele HLA-A*02:01. Number of high binders 0. Number of weak binders 0. Number of peptides 1
"""
# Output format is compatible with netmhcpan3, but netmhcpan 4.0 must be
# called with the -BA flag, so it gives affinity predictions, not mass-spec
# elution likelihoods.
return parse_netmhcpan3_stdout(
stdout=stdout,
prediction_method_name=prediction_method_name,
sequence_key_mapping=sequence_key_mapping)
|
def _parse_iedb_response(response):
"""Take the binding predictions returned by IEDB's web API
and parse them into a DataFrame
Expect response to look like:
allele seq_num start end length peptide ic50 percentile_rank
HLA-A*01:01 1 2 10 9 LYNTVATLY 2145.70 3.7
HLA-A*01:01 1 5 13 9 TVATLYCVH 2216.49 3.9
HLA-A*01:01 1 7 15 9 ATLYCVHQR 2635.42 5.1
HLA-A*01:01 1 4 12 9 NTVATLYCV 6829.04 20
HLA-A*01:01 1 1 9 9 SLYNTVATL 8032.38 24
HLA-A*01:01 1 8 16 9 TLYCVHQRI 8853.90 26
HLA-A*01:01 1 3 11 9 YNTVATLYC 9865.62 29
HLA-A*01:01 1 6 14 9 VATLYCVHQ 27575.71 58
HLA-A*01:01 1 10 18 9 YCVHQRIDV 48929.64 74
HLA-A*01:01 1 9 17 9 LYCVHQRID 50000.00 75
"""
if len(response) == 0:
raise ValueError("Empty response from IEDB!")
df = pd.read_csv(io.BytesIO(response), delim_whitespace=True, header=0)
# pylint doesn't realize that df is a DataFrame, so tell is
assert type(df) == pd.DataFrame
df = pd.DataFrame(df)
if len(df) == 0:
raise ValueError(
"No binding predictions in response from IEDB: %s" % (response,))
required_columns = [
"allele",
"peptide",
"ic50",
"start",
"end",
]
for column in required_columns:
if column not in df.columns:
raise ValueError(
"Response from IEDB is missing '%s' column: %s. Full "
"response:\n%s" % (
column,
df.ix[0],
response))
# since IEDB has allowed multiple column names for percentile rank,
# we're defensively normalizing all of them to just 'rank'
df = df.rename(columns={
"percentile_rank": "rank",
"percentile rank": "rank"})
return df
|
def _query_iedb(request_values, url):
"""
Call into IEDB's web API for MHC binding prediction using request dictionary
with fields:
- "method"
- "length"
- "sequence_text"
- "allele"
Parse the response into a DataFrame.
"""
data = urlencode(request_values)
req = Request(url, data.encode("ascii"))
response = urlopen(req).read()
return _parse_iedb_response(response)
|
def predict_subsequences(self, sequence_dict, peptide_lengths=None):
"""Given a dictionary mapping unique keys to amino acid sequences,
run MHC binding predictions on all candidate epitopes extracted from
sequences and return a EpitopeCollection.
Parameters
----------
fasta_dictionary : dict or string
Mapping of protein identifiers to protein amino acid sequences.
If string then converted to dictionary.
"""
sequence_dict = check_sequence_dictionary(sequence_dict)
peptide_lengths = self._check_peptide_lengths(peptide_lengths)
# take each mutated sequence in the dataframe
# and general MHC binding scores for all k-mer substrings
binding_predictions = []
expected_peptides = set([])
normalized_alleles = []
for key, amino_acid_sequence in sequence_dict.items():
for l in peptide_lengths:
for i in range(len(amino_acid_sequence) - l + 1):
expected_peptides.add(amino_acid_sequence[i:i + l])
self._check_peptide_inputs(expected_peptides)
for allele in self.alleles:
# IEDB MHCII predictor expects DRA1 to be omitted.
allele = normalize_allele_name(allele, omit_dra1=True)
normalized_alleles.append(allele)
request = self._get_iedb_request_params(
amino_acid_sequence, allele)
logger.info(
"Calling IEDB (%s) with request %s",
self.url,
request)
response_df = _query_iedb(request, self.url)
for _, row in response_df.iterrows():
binding_predictions.append(
BindingPrediction(
source_sequence_name=key,
offset=row['start'] - 1,
allele=row['allele'],
peptide=row['peptide'],
affinity=row['ic50'],
percentile_rank=row['rank'],
prediction_method_name="iedb-" + self.prediction_method))
self._check_results(
binding_predictions,
alleles=normalized_alleles,
peptides=expected_peptides)
return BindingPredictionCollection(binding_predictions)
|
def get_args(func, skip=0):
"""
Hackish way to get the arguments of a function
Parameters
----------
func : callable
Function to get the arguments from
skip : int, optional
Arguments to skip, defaults to 0 set it to 1 to skip the
``self`` argument of a method.
Returns
-------
tuple
Function's arguments
"""
code = getattr(func, '__code__', None)
if code is None:
code = func.__call__.__code__
return code.co_varnames[skip:code.co_argcount]
|
def log_error(msg=None, exc_info=None, logger=None, **kwargs):
"""
log an exception and its traceback on the logger defined
Parameters
----------
msg : str, optional
A message to add to the error
exc_info : tuple
Information about the current exception
logger : logging.Logger
logger to use
"""
if logger is None:
logger = _logger
if not exc_info:
exc_info = sys.exc_info()
if msg is None:
msg = ""
exc_class, exc_msg, _ = exc_info
if all(info is not None for info in exc_info):
logger.error(msg, exc_info=exc_info)
|
async def get_media_metadata(data, path=None):
"""
Get all the file's metadata and read any kind of file object
Parameters
----------
data : bytes
first bytes of the file (the mimetype shoudl be guessed from the
file headers
path : str, optional
path to the file
Returns
-------
str
The mimetype of the media
str
The category of the media on Twitter
"""
if isinstance(data, bytes):
media_type = await get_type(data, path)
else:
raise TypeError("get_metadata input must be a bytes")
media_category = get_category(media_type)
_logger.info("media_type: %s, media_category: %s" % (media_type,
media_category))
return media_type, media_category
|
async def get_size(media):
"""
Get the size of a file
Parameters
----------
media : file object
The file object of the media
Returns
-------
int
The size of the file
"""
if hasattr(media, 'seek'):
await execute(media.seek(0, os.SEEK_END))
size = await execute(media.tell())
await execute(media.seek(0))
elif hasattr(media, 'headers'):
size = int(media.headers['Content-Length'])
elif isinstance(media, bytes):
size = len(media)
else:
raise TypeError("Can't get size of media of type:",
type(media).__name__)
_logger.info("media size: %dB" % size)
return size
|
async def get_type(media, path=None):
"""
Parameters
----------
media : file object
A file object of the image
path : str, optional
The path to the file
Returns
-------
str
The mimetype of the media
str
The category of the media on Twitter
"""
if magic:
if not media:
raise TypeError("Media data is empty")
_logger.debug("guessing mimetype using magic")
media_type = mime.from_buffer(media[:1024])
else:
media_type = None
if path:
_logger.debug("guessing mimetype using built-in module")
media_type = mime.guess_type(path)[0]
if media_type is None:
msg = ("Could not guess the mimetype of the media.\n"
"Please consider installing python-magic\n"
"(pip3 install peony-twitter[magic])")
raise RuntimeError(msg)
return media_type
|
def set_debug():
""" activates error messages, useful during development """
logging.basicConfig(level=logging.WARNING)
peony.logger.setLevel(logging.DEBUG)
|
def clone_with_updates(self, **kwargs):
"""Returns new BindingPrediction with updated fields"""
fields_dict = self.to_dict()
fields_dict.update(kwargs)
return BindingPrediction(**fields_dict)
|
def NetMHCpan(
alleles,
program_name="netMHCpan",
process_limit=-1,
default_peptide_lengths=[9],
extra_flags=[]):
"""
This function wraps NetMHCpan28 and NetMHCpan3 to automatically detect which class
to use, with the help of the miraculous and strange '--version' netmhcpan argument.
"""
# convert to str since Python3 returns a `bytes` object.
# The '_MHCTOOLS_VERSION_SNIFFING' here is meaningless, but it is necessary
# to call `netmhcpan --version` with some argument, otherwise it hangs.
with open(os.devnull, 'w') as devnull:
output = check_output([
program_name, "--version", "_MHCTOOLS_VERSION_SNIFFING"],
stderr=devnull)
output_str = output.decode("ascii", "ignore")
common_kwargs = {
"alleles": alleles,
"default_peptide_lengths": default_peptide_lengths,
"program_name": program_name,
"process_limit": process_limit,
"extra_flags": extra_flags,
}
if "NetMHCpan version 2.8" in output_str:
return NetMHCpan28(**common_kwargs)
elif "NetMHCpan version 3.0" in output_str:
return NetMHCpan3(**common_kwargs)
elif "NetMHCpan version 4.0" in output_str:
return NetMHCpan4(**common_kwargs)
else:
raise RuntimeError(
"This software expects NetMHCpan version 2.8, 3.0, or 4.0")
|
def get_data(self, response):
""" Get the data from the response """
if self._response_list:
return response
elif self._response_key is None:
if hasattr(response, "items"):
for key, data in response.items():
if (hasattr(data, "__getitem__")
and not hasattr(data, "items")
and len(data) > 0
and 'id' in data[0]):
self._response_key = key
return data
else:
self._response_list = True
return response
else:
return response[self._response_key]
raise NoDataFound(response=response, url=self.request.get_url())
|
async def call_on_response(self, data):
"""
Try to fill the gaps and strip last tweet from the response
if its id is that of the first tweet of the last response
Parameters
----------
data : list
The response data
"""
since_id = self.kwargs.get(self.param, 0) + 1
if self.fill_gaps:
if data[-1]['id'] != since_id:
max_id = data[-1]['id'] - 1
responses = with_max_id(self.request(**self.kwargs,
max_id=max_id))
async for tweets in responses:
data.extend(tweets)
if data[-1]['id'] == self.last_id:
data = data[:-1]
if not data and not self.force:
raise StopAsyncIteration
await self.set_param(data)
|
async def get_oauth_token(consumer_key, consumer_secret, callback_uri="oob"):
"""
Get a temporary oauth token
Parameters
----------
consumer_key : str
Your consumer key
consumer_secret : str
Your consumer secret
callback_uri : str, optional
Callback uri, defaults to 'oob'
Returns
-------
dict
Temporary tokens
"""
client = BasePeonyClient(consumer_key=consumer_key,
consumer_secret=consumer_secret,
api_version="",
suffix="")
response = await client.api.oauth.request_token.post(
_suffix="",
oauth_callback=callback_uri
)
return parse_token(response)
|
async def get_oauth_verifier(oauth_token):
"""
Open authorize page in a browser,
print the url if it didn't work
Arguments
---------
oauth_token : str
The oauth token received in :func:`get_oauth_token`
Returns
-------
str
The PIN entered by the user
"""
url = "https://api.twitter.com/oauth/authorize?oauth_token=" + oauth_token
try:
browser = webbrowser.open(url)
await asyncio.sleep(2)
if not browser:
raise RuntimeError
except RuntimeError:
print("could not open a browser\ngo here to enter your PIN: " + url)
verifier = input("\nEnter your PIN: ")
return verifier
|
async def get_access_token(consumer_key, consumer_secret,
oauth_token, oauth_token_secret,
oauth_verifier, **kwargs):
"""
get the access token of the user
Parameters
----------
consumer_key : str
Your consumer key
consumer_secret : str
Your consumer secret
oauth_token : str
OAuth token from :func:`get_oauth_token`
oauth_token_secret : str
OAuth token secret from :func:`get_oauth_token`
oauth_verifier : str
OAuth verifier from :func:`get_oauth_verifier`
Returns
-------
dict
Access tokens
"""
client = BasePeonyClient(consumer_key=consumer_key,
consumer_secret=consumer_secret,
access_token=oauth_token,
access_token_secret=oauth_token_secret,
api_version="",
suffix="")
response = await client.api.oauth.access_token.get(
_suffix="",
oauth_verifier=oauth_verifier
)
return parse_token(response)
|
async def async_oauth_dance(consumer_key, consumer_secret, callback_uri="oob"):
"""
OAuth dance to get the user's access token
Parameters
----------
consumer_key : str
Your consumer key
consumer_secret : str
Your consumer secret
callback_uri : str
Callback uri, defaults to 'oob'
Returns
-------
dict
Access tokens
"""
token = await get_oauth_token(consumer_key, consumer_secret, callback_uri)
oauth_verifier = await get_oauth_verifier(token['oauth_token'])
token = await get_access_token(
consumer_key,
consumer_secret,
oauth_verifier=oauth_verifier,
**token
)
token = dict(
consumer_key=consumer_key,
consumer_secret=consumer_secret,
access_token=token['oauth_token'],
access_token_secret=token['oauth_token_secret']
)
return token
|
def parse_token(response):
"""
parse the responses containing the tokens
Parameters
----------
response : str
The response containing the tokens
Returns
-------
dict
The parsed tokens
"""
items = response.split("&")
items = [item.split("=") for item in items]
return {key: value for key, value in items}
|
def oauth_dance(consumer_key, consumer_secret,
oauth_callback="oob", loop=None):
"""
OAuth dance to get the user's access token
It calls async_oauth_dance and create event loop of not given
Parameters
----------
consumer_key : str
Your consumer key
consumer_secret : str
Your consumer secret
oauth_callback : str
Callback uri, defaults to 'oob'
loop : event loop
asyncio event loop
Returns
-------
dict
Access tokens
"""
loop = asyncio.get_event_loop() if loop is None else loop
coro = async_oauth_dance(consumer_key, consumer_secret, oauth_callback)
return loop.run_until_complete(coro)
|
def oauth2_dance(consumer_key, consumer_secret, loop=None):
"""
oauth2 dance
Parameters
----------
consumer_key : str
Your consumer key
consumer_secret : str
Your consumer secret
loop : event loop, optional
event loop to use
Returns
-------
str
Bearer token
"""
loop = asyncio.get_event_loop() if loop is None else loop
client = BasePeonyClient(consumer_key=consumer_key,
consumer_secret=consumer_secret,
auth=oauth.OAuth2Headers)
loop.run_until_complete(client.headers.sign())
return client.headers.token
|
def predict(self, sequences):
"""
Return netChop predictions for each position in each sequence.
Parameters
-----------
sequences : list of string
Amino acid sequences to predict cleavage for
Returns
-----------
list of list of float
The i'th list corresponds to the i'th sequence. Each list gives
the cleavage probability for each position in the sequence.
"""
with tempfile.NamedTemporaryFile(suffix=".fsa", mode="w") as input_fd:
for (i, sequence) in enumerate(sequences):
input_fd.write("> %d\n" % i)
input_fd.write(sequence)
input_fd.write("\n")
input_fd.flush()
try:
output = subprocess.check_output(["netChop", input_fd.name])
except subprocess.CalledProcessError as e:
logging.error("Error calling netChop: %s:\n%s" % (e, e.output))
raise
parsed = self.parse_netchop(output)
assert len(parsed) == len(sequences), \
"Expected %d results but got %d" % (
len(sequences), len(parsed))
assert [len(x) for x in parsed] == [len(x) for x in sequences]
return parsed
|
def parse_netchop(netchop_output):
"""
Parse netChop stdout.
"""
line_iterator = iter(netchop_output.decode().split("\n"))
scores = []
for line in line_iterator:
if "pos" in line and 'AA' in line and 'score' in line:
scores.append([])
if "----" not in next(line_iterator):
raise ValueError("Dashes expected")
line = next(line_iterator)
while '-------' not in line:
score = float(line.split()[3])
scores[-1].append(score)
line = next(line_iterator)
return scores
|
def to_dataframe(
self,
columns=BindingPrediction.fields + ("length",)):
"""
Converts collection of BindingPrediction objects to DataFrame
"""
return pd.DataFrame.from_records(
[tuple([getattr(x, name) for name in columns]) for x in self],
columns=columns)
|
def NetMHC(alleles,
default_peptide_lengths=[9],
program_name="netMHC"):
"""
This function wraps NetMHC3 and NetMHC4 to automatically detect which class
to use. Currently based on running the '-h' command and looking for
discriminating substrings between the versions.
"""
# run NetMHC's help command and parse discriminating substrings out of
# the resulting str output
with open(os.devnull, 'w') as devnull:
help_output = check_output([program_name, "-h"], stderr=devnull)
help_output_str = help_output.decode("ascii", "ignore")
substring_to_netmhc_class = {
"-listMHC": NetMHC4,
"--Alleles": NetMHC3,
}
successes = []
for substring, netmhc_class in substring_to_netmhc_class.items():
if substring in help_output_str:
successes.append(netmhc_class)
if len(successes) > 1:
raise SystemError("Command %s is valid for multiple NetMHC versions. "
"This is likely an mhctools bug." % program_name)
if len(successes) == 0:
raise SystemError("Command %s is not a valid way of calling any NetMHC software."
% program_name)
netmhc_class = successes[0]
return netmhc_class(
alleles=alleles,
default_peptide_lengths=default_peptide_lengths,
program_name=program_name)
|
def predict_peptides(self, peptides):
"""
Predict MHC affinity for peptides.
"""
# importing locally to avoid slowing down CLI applications which
# don't use MHCflurry
from mhcflurry.encodable_sequences import EncodableSequences
binding_predictions = []
encodable_sequences = EncodableSequences.create(peptides)
for allele in self.alleles:
predictions_df = self.predictor.predict_to_dataframe(
encodable_sequences, allele=allele)
for (_, row) in predictions_df.iterrows():
binding_prediction = BindingPrediction(
allele=allele,
peptide=row.peptide,
affinity=row.prediction,
percentile_rank=(
row.prediction_percentile
if 'prediction_percentile' in row else nan),
prediction_method_name="mhcflurry"
)
binding_predictions.append(binding_prediction)
return BindingPredictionCollection(binding_predictions)
|
def seq_to_str(obj, sep=","):
"""
Given a sequence convert it to a comma separated string.
If, however, the argument is a single object, return its string
representation.
"""
if isinstance(obj, string_classes):
return obj
elif isinstance(obj, (list, tuple)):
return sep.join([str(x) for x in obj])
else:
return str(obj)
|
def convert(img, formats):
"""
Convert the image to all the formats specified
Parameters
----------
img : PIL.Image.Image
The image to convert
formats : list
List of all the formats to use
Returns
-------
io.BytesIO
A file object containing the converted image
"""
media = None
min_size = 0
for kwargs in formats:
f = io.BytesIO()
if img.mode == "RGBA" and kwargs['format'] != "PNG":
# convert to RGB if picture is too large as a png
# this implies that the png format is the first in `formats`
if min_size < 5 * 1024**2:
continue
else:
img.convert('RGB')
img.save(f, **kwargs)
size = f.tell()
if media is None or size < min_size:
if media is not None:
media.close()
media = f
min_size = size
else:
f.close()
return media
|
def optimize_media(file_, max_size, formats):
"""
Optimize an image
Resize the picture to the ``max_size``, defaulting to the large
photo size of Twitter in :meth:`PeonyClient.upload_media` when
used with the ``optimize_media`` argument.
Parameters
----------
file_ : file object
the file object of an image
max_size : :obj:`tuple` or :obj:`list` of :obj:`int`
a tuple in the format (width, height) which is maximum size of
the picture returned by this function
formats : :obj`list` or :obj:`tuple` of :obj:`dict`
a list of all the formats to convert the picture to
Returns
-------
file
The smallest file created in this function
"""
if not PIL:
msg = ("Pillow must be installed to optimize a media\n"
"$ pip3 install Pillow")
raise RuntimeError(msg)
img = PIL.Image.open(file_)
# resize the picture (defaults to the 'large' photo size of Twitter
# in peony.PeonyClient.upload_media)
ratio = max(hw / max_hw for hw, max_hw in zip(img.size, max_size))
if ratio > 1:
size = tuple(int(hw // ratio) for hw in img.size)
img = img.resize(size, PIL.Image.ANTIALIAS)
media = convert(img, formats)
# do not close a file opened by the user
# only close if a filename was given
if not hasattr(file_, 'read'):
img.close()
return media
|
def create_input_peptides_files(
peptides,
max_peptides_per_file=None,
group_by_length=False):
"""
Creates one or more files containing one peptide per line,
returns names of files.
"""
if group_by_length:
peptide_lengths = {len(p) for p in peptides}
peptide_groups = {l: [] for l in peptide_lengths}
for p in peptides:
peptide_groups[len(p)].append(p)
else:
peptide_groups = {"": peptides}
file_names = []
for key, group in peptide_groups.items():
n_peptides = len(group)
if not max_peptides_per_file:
max_peptides_per_file = n_peptides
input_file = None
for i, p in enumerate(group):
if i % max_peptides_per_file == 0:
if input_file is not None:
file_names.append(input_file.name)
input_file.close()
input_file = make_writable_tempfile(
prefix_number=i // max_peptides_per_file,
prefix_name=key,
suffix=".txt")
input_file.write("%s\n" % p)
if input_file is not None:
file_names.append(input_file.name)
input_file.close()
return file_names
|
def _check_peptide_lengths(self, peptide_lengths=None):
"""
If peptide lengths not specified, then try using the default
lengths associated with this predictor object. If those aren't
a valid non-empty sequence of integers, then raise an exception.
Otherwise return the peptide lengths.
"""
if not peptide_lengths:
peptide_lengths = self.default_peptide_lengths
if not peptide_lengths:
raise ValueError(
("Must either provide 'peptide_lengths' argument "
"or set 'default_peptide_lengths"))
if isinstance(peptide_lengths, int):
peptide_lengths = [peptide_lengths]
require_iterable_of(peptide_lengths, int)
for peptide_length in peptide_lengths:
if (self.min_peptide_length is not None and
peptide_length < self.min_peptide_length):
raise ValueError(
"Invalid peptide length %d, shorter than min %d" % (
peptide_length,
self.min_peptide_length))
elif (self.max_peptide_length is not None and
peptide_length > self.max_peptide_length):
raise ValueError(
"Invalid peptide length %d, longer than max %d" % (
peptide_length,
self.max_peptide_length))
return peptide_lengths
|
def _check_peptide_inputs(self, peptides):
"""
Check peptide sequences to make sure they are valid for this predictor.
"""
require_iterable_of(peptides, string_types)
check_X = not self.allow_X_in_peptides
check_lower = not self.allow_lowercase_in_peptides
check_min_length = self.min_peptide_length is not None
min_length = self.min_peptide_length
check_max_length = self.max_peptide_length is not None
max_length = self.max_peptide_length
for p in peptides:
if not p.isalpha():
raise ValueError("Invalid characters in peptide '%s'" % p)
elif check_X and "X" in p:
raise ValueError("Invalid character 'X' in peptide '%s'" % p)
elif check_lower and not p.isupper():
raise ValueError("Invalid lowercase letters in peptide '%s'" % p)
elif check_min_length and len(p) < min_length:
raise ValueError(
"Peptide '%s' too short (%d chars), must be at least %d" % (
p, len(p), min_length))
elif check_max_length and len(p) > max_length:
raise ValueError(
"Peptide '%s' too long (%d chars), must be at least %d" % (
p, len(p), max_length))
|
def predict_subsequences(
self,
sequence_dict,
peptide_lengths=None):
"""
Given a dictionary mapping sequence names to amino acid strings,
and an optional list of peptide lengths, returns a
BindingPredictionCollection.
"""
if isinstance(sequence_dict, string_types):
sequence_dict = {"seq": sequence_dict}
elif isinstance(sequence_dict, (list, tuple)):
sequence_dict = {seq: seq for seq in sequence_dict}
peptide_lengths = self._check_peptide_lengths(peptide_lengths)
# convert long protein sequences to set of peptides and
# associated sequence name / offsets that each peptide may have come
# from
peptide_set = set([])
peptide_to_name_offset_pairs = defaultdict(list)
for name, sequence in sequence_dict.items():
for peptide_length in peptide_lengths:
for i in range(len(sequence) - peptide_length + 1):
peptide = sequence[i:i + peptide_length]
peptide_set.add(peptide)
peptide_to_name_offset_pairs[peptide].append((name, i))
peptide_list = sorted(peptide_set)
binding_predictions = self.predict_peptides(peptide_list)
# create BindingPrediction objects with sequence name and offset
results = []
for binding_prediction in binding_predictions:
for name, offset in peptide_to_name_offset_pairs[
binding_prediction.peptide]:
results.append(binding_prediction.clone_with_updates(
source_sequence_name=name,
offset=offset))
self._check_results(
results,
peptides=peptide_set,
alleles=self.alleles)
return BindingPredictionCollection(results)
|
def _check_hla_alleles(
alleles,
valid_alleles=None):
"""
Given a list of HLA alleles and an optional list of valid
HLA alleles, return a set of alleles that we will pass into
the MHC binding predictor.
"""
require_iterable_of(alleles, string_types, "HLA alleles")
# Don't run the MHC predictor twice for homozygous alleles,
# only run it for unique alleles
alleles = {
normalize_allele_name(allele.strip().upper())
for allele in alleles
}
if valid_alleles:
# For some reason netMHCpan drops the '*' in names, so
# 'HLA-A*03:01' becomes 'HLA-A03:01'
missing_alleles = [
allele
for allele in alleles
if allele not in valid_alleles
]
if len(missing_alleles) > 0:
raise UnsupportedAllele(
"Unsupported HLA alleles: %s" % missing_alleles)
return list(alleles)
|
async def _connect(self):
"""
Connect to the stream
Returns
-------
asyncio.coroutine
The streaming response
"""
logger.debug("connecting to the stream")
await self.client.setup
if self.session is None:
self.session = self.client._session
kwargs = await self.client.headers.prepare_request(**self.kwargs)
request = self.client.error_handler(self.session.request)
return await request(timeout=0, **kwargs)
|
async def connect(self):
"""
Create the connection
Returns
-------
self
Raises
------
exception.PeonyException
On a response status in 4xx that are not status 420 or 429
Also on statuses in 1xx or 3xx since this should not be the status
received here
"""
with async_timeout.timeout(self.timeout):
self.response = await self._connect()
if self.response.status in range(200, 300):
self._error_timeout = 0
self.state = NORMAL
elif self.response.status == 500:
self.state = DISCONNECTION
elif self.response.status in range(501, 600):
self.state = RECONNECTION
elif self.response.status in (420, 429):
self.state = ENHANCE_YOUR_CALM
else:
logger.debug("raising error during stream connection")
raise await exceptions.throw(self.response,
loads=self.client._loads,
url=self.kwargs['url'])
logger.debug("stream state: %d" % self.state)
|
async def init_restart(self, error=None):
"""
Restart the stream on error
Parameters
----------
error : bool, optional
Whether to print the error or not
"""
if error:
utils.log_error(logger=logger)
if self.state == DISCONNECTION:
if self._error_timeout < MAX_DISCONNECTION_TIMEOUT:
self._error_timeout += DISCONNECTION_TIMEOUT
logger.info("The stream was disconnected, will reconnect in %ss"
% self._error_timeout)
elif self.state == RECONNECTION:
if self._error_timeout < RECONNECTION_TIMEOUT:
self._error_timeout = RECONNECTION_TIMEOUT
elif self._error_timeout < MAX_RECONNECTION_TIMEOUT:
self._error_timeout *= 2
logger.info("Could not connect to the stream, reconnection in %ss"
% self._error_timeout)
elif self.state == ENHANCE_YOUR_CALM:
if self._error_timeout < ENHANCE_YOUR_CALM_TIMEOUT:
self._error_timeout = ENHANCE_YOUR_CALM_TIMEOUT
else:
self._error_timeout *= 2
logger.warning("Enhance Your Calm response received from Twitter. "
"If you didn't restart your program frenetically "
"then there is probably something wrong with it. "
"Make sure you are not opening too many connections"
" to the endpoint you are currently using by "
"checking out Twitter's Streaming API "
"documentation: "
"https://dev.twitter.com/streaming/overview\n"
"The stream will restart in %ss."
% self._error_timeout)
elif self.state == EOF:
pass # no timeout
else:
raise RuntimeError("Incorrect state: %d" % self.state)
self._reconnecting = True
return {'reconnecting_in': self._error_timeout, 'error': error}
|
async def restart_stream(self):
"""
Restart the stream on error
"""
await self.response.release()
await asyncio.sleep(self._error_timeout)
await self.connect()
logger.info("Reconnected to the stream")
self._reconnecting = False
return {'stream_restart': True}
|
def with_prefix(self, prefix, strict=False):
"""
decorator to handle commands with prefixes
Parameters
----------
prefix : str
the prefix of the command
strict : bool, optional
If set to True the command must be at the beginning
of the message. Defaults to False.
Returns
-------
function
a decorator that returns an :class:`EventHandler` instance
"""
def decorated(func):
return EventHandler(func=func, event=self.event,
prefix=prefix, strict=strict)
return decorated
|
def envelope(self):
""" returns an :class:`Event` that can be used for site streams """
def enveloped_event(data):
return 'for_user' in data and self._func(data.get('message'))
return self.__class__(enveloped_event, self.__name__)
|
async def set_tz(self):
"""
set the environment timezone to the timezone
set in your twitter settings
"""
settings = await self.api.account.settings.get()
tz = settings.time_zone.tzinfo_name
os.environ['TZ'] = tz
time.tzset()
|
def run_command(args, **kwargs):
"""
Given a list whose first element is a command name, followed by arguments,
execute it and show timing info.
"""
assert len(args) > 0
start_time = time.time()
process = AsyncProcess(args, **kwargs)
process.wait()
elapsed_time = time.time() - start_time
logger.info("%s took %0.4f seconds", args[0], elapsed_time)
|
def run_multiple_commands_redirect_stdout(
multiple_args_dict,
print_commands=True,
process_limit=-1,
polling_freq=0.5,
**kwargs):
"""
Run multiple shell commands in parallel, write each of their
stdout output to files associated with each command.
Parameters
----------
multiple_args_dict : dict
A dictionary whose keys are files and values are args list.
Run each args list as a subprocess and write stdout to the
corresponding file.
print_commands : bool
Print shell commands before running them.
process_limit : int
Limit the number of concurrent processes to this number. 0
if there is no limit, -1 to use max number of processors
polling_freq : int
Number of seconds between checking for done processes, if
we have a process limit
"""
assert len(multiple_args_dict) > 0
assert all(len(args) > 0 for args in multiple_args_dict.values())
assert all(hasattr(f, 'name') for f in multiple_args_dict.keys())
if process_limit < 0:
logger.debug("Using %d processes" % cpu_count())
process_limit = cpu_count()
start_time = time.time()
processes = Queue(maxsize=process_limit)
def add_to_queue(process):
process.start()
if print_commands:
handler = logging.FileHandler(process.redirect_stdout_file.name)
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
logger.debug(" ".join(process.args))
logger.removeHandler(handler)
processes.put(process)
for f, args in multiple_args_dict.items():
p = AsyncProcess(
args,
redirect_stdout_file=f,
**kwargs)
if not processes.full():
add_to_queue(p)
else:
while processes.full():
# Are there any done processes?
to_remove = []
for possibly_done in processes.queue:
if possibly_done.poll() is not None:
possibly_done.wait()
to_remove.append(possibly_done)
# Remove them from the queue and stop checking
if to_remove:
for process_to_remove in to_remove:
processes.queue.remove(process_to_remove)
break
# Check again in a second if there weren't
time.sleep(polling_freq)
add_to_queue(p)
# Wait for all the rest of the processes
while not processes.empty():
processes.get().wait()
elapsed_time = time.time() - start_time
logger.info(
"Ran %d commands in %0.4f seconds",
len(multiple_args_dict),
elapsed_time)
|
def _determine_supported_alleles(command, supported_allele_flag):
"""
Try asking the commandline predictor (e.g. netMHCpan)
which alleles it supports.
"""
try:
# convert to str since Python3 returns a `bytes` object
supported_alleles_output = check_output([
command, supported_allele_flag
])
supported_alleles_str = supported_alleles_output.decode("ascii", "ignore")
assert len(supported_alleles_str) > 0, \
'%s returned empty allele list' % command
supported_alleles = set([])
for line in supported_alleles_str.split("\n"):
line = line.strip()
if not line.startswith('#') and len(line) > 0:
try:
# We need to normalize these alleles (the output of the predictor
# when it lists its supported alleles) so that they are comparable with
# our own alleles.
supported_alleles.add(normalize_allele_name(line))
except AlleleParseError as error:
logger.info("Skipping allele %s: %s", line, error)
continue
if len(supported_alleles) == 0:
raise ValueError("Unable to determine supported alleles")
return supported_alleles
except Exception as e:
logger.exception(e)
raise SystemError("Failed to run %s %s. Possibly an incorrect executable version?" % (
command,
supported_allele_flag))
|
def loads(json_data, encoding="utf-8", **kwargs):
"""
Custom loads function with an object_hook and automatic decoding
Parameters
----------
json_data : str
The JSON data to decode
*args
Positional arguments, passed to :func:`json.loads`
encoding : :obj:`str`, optional
The encoding of the bytestring
**kwargs
Keyword arguments passed to :func:`json.loads`
Returns
-------
:obj:`dict` or :obj:`list`
Decoded json data
"""
if isinstance(json_data, bytes):
json_data = json_data.decode(encoding)
return json.loads(json_data, object_hook=JSONData, **kwargs)
|
async def read(response, loads=loads, encoding=None):
"""
read the data of the response
Parameters
----------
response : aiohttp.ClientResponse
response
loads : callable
json loads function
encoding : :obj:`str`, optional
character encoding of the response, if set to None
aiohttp should guess the right encoding
Returns
-------
:obj:`bytes`, :obj:`str`, :obj:`dict` or :obj:`list`
the data returned depends on the response
"""
ctype = response.headers.get('Content-Type', "").lower()
try:
if "application/json" in ctype:
logger.info("decoding data as json")
return await response.json(encoding=encoding, loads=loads)
if "text" in ctype:
logger.info("decoding data as text")
return await response.text(encoding=encoding)
except (UnicodeDecodeError, json.JSONDecodeError) as exc:
data = await response.read()
raise exceptions.PeonyDecodeError(response=response,
data=data,
exception=exc)
return await response.read()
|
def doc(func):
"""
Find the message shown when someone calls the help command
Parameters
----------
func : function
the function
Returns
-------
str
The help message for this command
"""
stripped_chars = " \t"
if hasattr(func, '__doc__'):
docstring = func.__doc__.lstrip(" \n\t")
if "\n" in docstring:
i = docstring.index("\n")
return docstring[:i].rstrip(stripped_chars)
elif docstring:
return docstring.rstrip(stripped_chars)
return ""
|
def permission_check(data, command_permissions,
command=None, permissions=None):
"""
Check the permissions of the user requesting a command
Parameters
----------
data : dict
message data
command_permissions : dict
permissions of the command, contains all the roles as key and users
with these permissions as values
command : function
the command that is run
permissions : tuple or list
a list of permissions for the command
Returns
-------
bool
True if the user has the right permissions, False otherwise
"""
if permissions:
pass
elif command:
if hasattr(command, 'permissions'):
permissions = command.permissions
else:
return True # true if no permission is required
else:
msg = "{name} must be called with command or permissions argument"
raise RuntimeError(msg.format(name="_permission_check"))
return any(data['sender']['id'] in command_permissions[permission]
for permission in permissions
if permission in command_permissions)
|
def main(args_list=None):
"""
Script to make pMHC binding predictions from amino acid sequences.
Usage example:
mhctools
--sequence SFFPIQQQQQAAALLLI \
--sequence SILQQQAQAQQAQAASSSC \
--extract-subsequences \
--mhc-predictor netmhc \
--mhc-alleles HLA-A0201 H2-Db \
--mhc-predictor netmhc \
--output-csv epitope.csv
"""
args = parse_args(args_list)
binding_predictions = run_predictor(args)
df = binding_predictions.to_dataframe()
logger.info('\n%s', df)
if args.output_csv:
df.to_csv(args.output_csv, index=False)
print("Wrote: %s" % args.output_csv)
|
def _prepare_drb_allele_name(self, parsed_beta_allele):
"""
Assume that we're dealing with a human DRB allele
which NetMHCIIpan treats differently because there is
little population diversity in the DR-alpha gene
"""
if "DRB" not in parsed_beta_allele.gene:
raise ValueError("Unexpected allele %s" % parsed_beta_allele)
return "%s_%s%s" % (
parsed_beta_allele.gene,
parsed_beta_allele.allele_family,
parsed_beta_allele.allele_code)
|
def prepare_allele_name(self, allele_name):
"""
netMHCIIpan has some unique requirements for allele formats,
expecting the following forms:
- DRB1_0101 (for non-alpha/beta pairs)
- HLA-DQA10501-DQB10636 (for alpha and beta pairs)
Other than human class II alleles, the only other alleles that
netMHCIIpan accepts are the following mouse alleles:
- H-2-IAb
- H-2-IAd
"""
parsed_alleles = parse_classi_or_classii_allele_name(allele_name)
if len(parsed_alleles) == 1:
allele = parsed_alleles[0]
if allele.species == "H-2":
return "%s-%s%s" % (
allele.species,
allele.gene,
allele.allele_code)
return self._prepare_drb_allele_name(allele)
else:
alpha, beta = parsed_alleles
if "DRA" in alpha.gene:
return self._prepare_drb_allele_name(beta)
return "HLA-%s%s%s-%s%s%s" % (
alpha.gene,
alpha.allele_family,
alpha.allele_code,
beta.gene,
beta.allele_family,
beta.allele_code)
|
def get_error(data):
""" return the error if there is a corresponding exception """
if isinstance(data, dict):
if 'errors' in data:
error = data['errors'][0]
else:
error = data.get('error', None)
if isinstance(error, dict):
if error.get('code') in errors:
return error
|
async def throw(response, loads=None, encoding=None, **kwargs):
""" Get the response data if possible and raise an exception """
if loads is None:
loads = data_processing.loads
data = await data_processing.read(response, loads=loads,
encoding=encoding)
error = get_error(data)
if error is not None:
exception = errors[error['code']]
raise exception(response=response, error=error, data=data, **kwargs)
if response.status in statuses:
exception = statuses[response.status]
raise exception(response=response, data=data, **kwargs)
# raise PeonyException if no specific exception was found
raise PeonyException(response=response, data=data, **kwargs)
|
def code(self, code):
""" Decorator to associate a code to an exception """
def decorator(exception):
self[code] = exception
return exception
return decorator
|
async def prepare_request(self, method, url,
headers=None,
skip_params=False,
proxy=None,
**kwargs):
"""
prepare all the arguments for the request
Parameters
----------
method : str
HTTP method used by the request
url : str
The url to request
headers : dict, optional
Additionnal headers
proxy : str
proxy of the request
skip_params : bool
Don't use the parameters to sign the request
Returns
-------
dict
Parameters of the request correctly formatted
"""
if method.lower() == "post":
key = 'data'
else:
key = 'params'
if key in kwargs and not skip_params:
request_params = {key: kwargs.pop(key)}
else:
request_params = {}
request_params.update(dict(method=method.upper(), url=url))
coro = self.sign(**request_params, skip_params=skip_params,
headers=headers)
request_params['headers'] = await utils.execute(coro)
request_params['proxy'] = proxy
kwargs.update(request_params)
return kwargs
|
def _user_headers(self, headers=None):
""" Make sure the user doesn't override the Authorization header """
h = self.copy()
if headers is not None:
keys = set(headers.keys())
if h.get('Authorization', False):
keys -= {'Authorization'}
for key in keys:
h[key] = headers[key]
return h
|
def process_keys(func):
"""
Raise error for keys that are not strings
and add the prefix if it is missing
"""
@wraps(func)
def decorated(self, k, *args):
if not isinstance(k, str):
msg = "%s: key must be a string" % self.__class__.__name__
raise ValueError(msg)
if not k.startswith(self.prefix):
k = self.prefix + k
return func(self, k, *args)
return decorated
|
def _get(self, text):
"""
Analyze the text to get the right function
Parameters
----------
text : str
The text that could call a function
"""
if self.strict:
match = self.prog.match(text)
if match:
cmd = match.group()
if cmd in self:
return cmd
else:
words = self.prog.findall(text)
for word in words:
if word in self:
return word
|
async def run(self, *args, data):
""" run the function you want """
cmd = self._get(data.text)
try:
if cmd is not None:
command = self[cmd](*args, data=data)
return await peony.utils.execute(command)
except:
fmt = "Error occurred while running function {cmd}:"
peony.utils.log_error(fmt.format(cmd=cmd))
|
def get_cartesian(r, theta):
"""
Given a radius and theta, return the cartesian (x, y) coordinates.
"""
x = r*np.sin(theta)
y = r*np.cos(theta)
return x, y
|
def simplified_edges(self):
"""
A generator for getting all of the edges without consuming extra
memory.
"""
for group, edgelist in self.edges.items():
for u, v, d in edgelist:
yield (u, v)
|
def initialize_major_angle(self):
"""
Computes the major angle: 2pi radians / number of groups.
"""
num_groups = len(self.nodes.keys())
self.major_angle = 2 * np.pi / num_groups
|
def initialize_minor_angle(self):
"""
Computes the minor angle: 2pi radians / 3 * number of groups.
"""
num_groups = len(self.nodes.keys())
self.minor_angle = 2 * np.pi / (6 * num_groups)
|
def plot_radius(self):
"""
Computes the plot radius: maximum of length of each list of nodes.
"""
plot_rad = 0
for group, nodelist in self.nodes.items():
proposed_radius = len(nodelist) * self.scale
if proposed_radius > plot_rad:
plot_rad = proposed_radius
return plot_rad + self.internal_radius
|
def has_edge_within_group(self, group):
"""
Checks whether there are within-group edges or not.
"""
assert group in self.nodes.keys(),\
"{0} not one of the group of nodes".format(group)
nodelist = self.nodes[group]
for n1, n2 in self.simplified_edges():
if n1 in nodelist and n2 in nodelist:
return True
|
def plot_axis(self, rs, theta):
"""
Renders the axis.
"""
xs, ys = get_cartesian(rs, theta)
self.ax.plot(xs, ys, 'black', alpha=0.3)
|
def plot_nodes(self, nodelist, theta, group):
"""
Plots nodes to screen.
"""
for i, node in enumerate(nodelist):
r = self.internal_radius + i * self.scale
x, y = get_cartesian(r, theta)
circle = plt.Circle(xy=(x, y), radius=self.dot_radius,
color=self.node_colormap[group], linewidth=0)
self.ax.add_patch(circle)
|
def group_theta(self, group):
"""
Computes the theta along which a group's nodes are aligned.
"""
for i, g in enumerate(self.nodes.keys()):
if g == group:
break
return i * self.major_angle
|
def add_axes_and_nodes(self):
"""
Adds the axes (i.e. 2 or 3 axes, not to be confused with matplotlib
axes) and the nodes that belong to each axis.
"""
for i, (group, nodelist) in enumerate(self.nodes.items()):
theta = self.group_theta(group)
if self.has_edge_within_group(group):
theta = theta - self.minor_angle
self.plot_nodes(nodelist, theta, group)
theta = theta + 2 * self.minor_angle
self.plot_nodes(nodelist, theta, group)
else:
self.plot_nodes(nodelist, theta, group)
|
def find_node_group_membership(self, node):
"""
Identifies the group for which a node belongs to.
"""
for group, nodelist in self.nodes.items():
if node in nodelist:
return group
|
def get_idx(self, node):
"""
Finds the index of the node in the sorted list.
"""
group = self.find_node_group_membership(node)
return self.nodes[group].index(node)
|
def node_radius(self, node):
"""
Computes the radial position of the node.
"""
return self.get_idx(node) * self.scale + self.internal_radius
|
def node_theta(self, node):
"""
Convenience function to find the node's theta angle.
"""
group = self.find_node_group_membership(node)
return self.group_theta(group)
|
def draw_edge(self, n1, n2, d, group):
"""
Renders the given edge (n1, n2) to the plot.
"""
start_radius = self.node_radius(n1)
start_theta = self.node_theta(n1)
end_radius = self.node_radius(n2)
end_theta = self.node_theta(n2)
start_theta, end_theta = self.correct_angles(start_theta, end_theta)
start_theta, end_theta = self.adjust_angles(n1, start_theta, n2,
end_theta)
middle1_radius = np.min([start_radius, end_radius])
middle2_radius = np.max([start_radius, end_radius])
if start_radius > end_radius:
middle1_radius, middle2_radius = middle2_radius, middle1_radius
middle1_theta = np.mean([start_theta, end_theta])
middle2_theta = np.mean([start_theta, end_theta])
startx, starty = get_cartesian(start_radius, start_theta)
middle1x, middle1y = get_cartesian(middle1_radius, middle1_theta)
middle2x, middle2y = get_cartesian(middle2_radius, middle2_theta)
# middlex, middley = get_cartesian(middle_radius, middle_theta)
endx, endy = get_cartesian(end_radius, end_theta)
verts = [(startx, starty),
(middle1x, middle1y),
(middle2x, middle2y),
(endx, endy)]
codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
path = Path(verts, codes)
if self.edge_colormap is None:
edgecolor = 'black'
else:
edgecolor = self.edge_colormap[group]
patch = patches.PathPatch(path, lw=self.linewidth, facecolor='none',
edgecolor=edgecolor, alpha=0.3)
self.ax.add_patch(patch)
|
def add_edges(self):
"""
Draws all of the edges in the graph.
"""
for group, edgelist in self.edges.items():
for (u, v, d) in edgelist:
self.draw_edge(u, v, d, group)
|
def draw(self):
"""
The master function that is called that draws everything.
"""
self.ax.set_xlim(-self.plot_radius(), self.plot_radius())
self.ax.set_ylim(-self.plot_radius(), self.plot_radius())
self.add_axes_and_nodes()
self.add_edges()
self.ax.axis('off')
|
def adjust_angles(self, start_node, start_angle, end_node, end_angle):
"""
This function adjusts the start and end angles to correct for
duplicated axes.
"""
start_group = self.find_node_group_membership(start_node)
end_group = self.find_node_group_membership(end_node)
if start_group == 0 and end_group == len(self.nodes.keys())-1:
if self.has_edge_within_group(start_group):
start_angle = correct_negative_angle(start_angle -
self.minor_angle)
if self.has_edge_within_group(end_group):
end_angle = correct_negative_angle(end_angle +
self.minor_angle)
elif start_group == len(self.nodes.keys())-1 and end_group == 0:
if self.has_edge_within_group(start_group):
start_angle = correct_negative_angle(start_angle +
self.minor_angle)
if self.has_edge_within_group(end_group):
end_angle = correct_negative_angle(end_angle -
self.minor_angle)
elif start_group < end_group:
if self.has_edge_within_group(end_group):
end_angle = correct_negative_angle(end_angle -
self.minor_angle)
if self.has_edge_within_group(start_group):
start_angle = correct_negative_angle(start_angle +
self.minor_angle)
elif end_group < start_group:
if self.has_edge_within_group(start_group):
start_angle = correct_negative_angle(start_angle -
self.minor_angle)
if self.has_edge_within_group(end_group):
end_angle = correct_negative_angle(end_angle +
self.minor_angle)
return start_angle, end_angle
|
def correct_angles(self, start_angle, end_angle):
"""
This function corrects for the following problems in the edges:
"""
# Edges going the anti-clockwise direction involves angle = 0.
if start_angle == 0 and (end_angle - start_angle > np.pi):
start_angle = np.pi * 2
if end_angle == 0 and (end_angle - start_angle < -np.pi):
end_angle = np.pi * 2
# Case when start_angle == end_angle:
if start_angle == end_angle:
start_angle = start_angle - self.minor_angle
end_angle = end_angle + self.minor_angle
return start_angle, end_angle
|
def mods_genre(self):
"""
Guesses an appropriate MODS XML genre type.
"""
type2genre = {
'conference': 'conference publication',
'book chapter': 'bibliography',
'unpublished': 'article'
}
tp = str(self.type).lower()
return type2genre.get(tp, tp)
|
def _produce_author_lists(self):
"""
Parse authors string to create lists of authors.
"""
# post-process author names
self.authors = self.authors.replace(', and ', ', ')
self.authors = self.authors.replace(',and ', ', ')
self.authors = self.authors.replace(' and ', ', ')
self.authors = self.authors.replace(';', ',')
# list of authors
self.authors_list = [author.strip() for author in self.authors.split(',')]
# simplified representation of author names
self.authors_list_simple = []
# author names represented as a tuple of given and family name
self.authors_list_split = []
# tests if title already ends with a punctuation mark
self.title_ends_with_punct = self.title[-1] in ['.', '!', '?'] \
if len(self.title) > 0 else False
suffixes = ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', "Jr.", "Sr."]
prefixes = ['Dr.']
prepositions = ['van', 'von', 'der', 'de', 'den']
# further post-process author names
for i, author in enumerate(self.authors_list):
if author == '':
continue
names = author.split(' ')
# check if last string contains initials
if (len(names[-1]) <= 3) \
and names[-1] not in suffixes \
and all(c in ascii_uppercase for c in names[-1]):
# turn "Gauss CF" into "C. F. Gauss"
names = [c + '.' for c in names[-1]] + names[:-1]
# number of suffixes
num_suffixes = 0
for name in names[::-1]:
if name in suffixes:
num_suffixes += 1
else:
break
# abbreviate names
for j, name in enumerate(names[:-1 - num_suffixes]):
# don't try to abbreviate these
if j == 0 and name in prefixes:
continue
if j > 0 and name in prepositions:
continue
if (len(name) > 2) or (len(name) and (name[-1] != '.')):
k = name.find('-')
if 0 < k + 1 < len(name):
# take care of dash
names[j] = name[0] + '.-' + name[k + 1] + '.'
else:
names[j] = name[0] + '.'
if len(names):
self.authors_list[i] = ' '.join(names)
# create simplified/normalized representation of author name
if len(names) > 1:
for name in names[0].split('-'):
name_simple = self.simplify_name(' '.join([name, names[-1]]))
self.authors_list_simple.append(name_simple)
else:
self.authors_list_simple.append(self.simplify_name(names[0]))
# number of prepositions
num_prepositions = 0
for name in names:
if name in prepositions:
num_prepositions += 1
# splitting point
sp = 1 + num_suffixes + num_prepositions
self.authors_list_split.append(
(' '.join(names[:-sp]), ' '.join(names[-sp:])))
# list of authors in BibTex format
self.authors_bibtex = ' and '.join(self.authors_list)
# overwrite authors string
if len(self.authors_list) > 2:
self.authors = ', and '.join([
', '.join(self.authors_list[:-1]),
self.authors_list[-1]])
elif len(self.authors_list) > 1:
self.authors = ' and '.join(self.authors_list)
else:
self.authors = self.authors_list[0]
|
def get_publications(context, template='publications/publications.html'):
"""
Get all publications.
"""
types = Type.objects.filter(hidden=False)
publications = Publication.objects.select_related()
publications = publications.filter(external=False, type__in=types)
publications = publications.order_by('-year', '-month', '-id')
if not publications:
return ''
# load custom links and files
populate(publications)
return render_template(template, context['request'], {'publications': publications})
|
def get_publication(context, id):
"""
Get a single publication.
"""
pbl = Publication.objects.filter(pk=int(id))
if len(pbl) < 1:
return ''
pbl[0].links = pbl[0].customlink_set.all()
pbl[0].files = pbl[0].customfile_set.all()
return render_template(
'publications/publication.html', context['request'], {'publication': pbl[0]})
|
def get_publication_list(context, list, template='publications/publications.html'):
"""
Get a publication list.
"""
list = List.objects.filter(list__iexact=list)
if not list:
return ''
list = list[0]
publications = list.publication_set.all()
publications = publications.order_by('-year', '-month', '-id')
if not publications:
return ''
# load custom links and files
populate(publications)
return render_template(
template, context['request'], {'list': list, 'publications': publications})
|
def tex_parse(string):
"""
Renders some basic TeX math to HTML.
"""
string = string.replace('{', '').replace('}', '')
def tex_replace(match):
return \
sub(r'\^(\w)', r'<sup>\1</sup>',
sub(r'\^\{(.*?)\}', r'<sup>\1</sup>',
sub(r'\_(\w)', r'<sub>\1</sub>',
sub(r'\_\{(.*?)\}', r'<sub>\1</sub>',
sub(r'\\(' + GREEK_LETTERS + ')', r'&\1;', match.group(1))))))
return mark_safe(sub(r'\$([^\$]*)\$', tex_replace, escape(string)))
|
def parse(string):
"""
Takes a string in BibTex format and returns a list of BibTex entries, where
each entry is a dictionary containing the entries' key-value pairs.
@type string: string
@param string: bibliography in BibTex format
@rtype: list
@return: a list of dictionaries representing a bibliography
"""
# bibliography
bib = []
# make sure we are dealing with unicode strings
if not isinstance(string, six.text_type):
string = string.decode('utf-8')
# replace special characters
for key, value in special_chars:
string = string.replace(key, value)
string = re.sub(r'\\[cuHvs]{?([a-zA-Z])}?', r'\1', string)
# split into BibTex entries
entries = re.findall(
r'(?u)@(\w+)[ \t]?{[ \t]*([^,\s]*)[ \t]*,?\s*((?:[^=,\s]+\s*\=\s*(?:"[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,}]*),?\s*?)+)\s*}',
string)
for entry in entries:
# parse entry
pairs = re.findall(r'(?u)([^=,\s]+)\s*\=\s*("[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,]*)', entry[2])
# add to bibliography
bib.append({'type': entry[0].lower(), 'key': entry[1]})
for key, value in pairs:
# post-process key and value
key = key.lower()
if value and value[0] == '"' and value[-1] == '"':
value = value[1:-1]
if value and value[0] == '{' and value[-1] == '}':
value = value[1:-1]
if key not in ['booktitle', 'title']:
value = value.replace('}', '').replace('{', '')
else:
if value.startswith('{') and value.endswith('}'):
value = value[1:]
value = value[:-1]
value = value.strip()
value = re.sub(r'\s+', ' ', value)
# store pair in bibliography
bib[-1][key] = value
return bib
|
def swap(self, qs):
"""
Swap the positions of this object with a reference object.
"""
try:
replacement = qs[0]
except IndexError:
# already first/last
return
if not self._valid_ordering_reference(replacement):
raise ValueError(
"%r can only be swapped with instances of %r which %s equals %r." % (
self, self.__class__, self.order_with_respect_to,
self._get_order_with_respect_to()
)
)
self.order, replacement.order = replacement.order, self.order
self.save()
replacement.save()
|
def up(self):
"""
Move this object up one position.
"""
self.swap(self.get_ordering_queryset().filter(order__lt=self.order).order_by('-order'))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.