Search is not available for this dataset
text
stringlengths
75
104k
async def run_tasks(self): """ Run the tasks attached to the instance """ tasks = self.get_tasks() self._gathered_tasks = asyncio.gather(*tasks, loop=self.loop) try: await self._gathered_tasks except CancelledError: pass
async def close(self): """ properly close the client """ tasks = self._get_close_tasks() if tasks: await asyncio.wait(tasks) self._session = None
async def _get_twitter_configuration(self): """ create a ``twitter_configuration`` attribute with the response of the endpoint https://api.twitter.com/1.1/help/configuration.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.help.configuration.get()
async def _get_user(self): """ create a ``user`` attribute with the response of the endpoint https://api.twitter.com/1.1/account/verify_credentials.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.account.verify_credentials.get()
async def _chunked_upload(self, media, media_size, path=None, media_type=None, media_category=None, chunk_size=2**20, **params): """ upload media in chunks Parameters ---------- media : file object a file object of the media media_size : int size of the media path : str, optional filename of the media media_type : str, optional mime type of the media media_category : str, optional twitter media category, must be used with ``media_type`` chunk_size : int, optional size of a chunk in bytes params : dict, optional additional parameters of the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(media, bytes): media = io.BytesIO(media) chunk = media.read(chunk_size) is_coro = asyncio.iscoroutine(chunk) if is_coro: chunk = await chunk if media_type is None: media_metadata = await utils.get_media_metadata(chunk, path) media_type, media_category = media_metadata elif media_category is None: media_category = utils.get_category(media_type) response = await self.upload.media.upload.post( command="INIT", total_bytes=media_size, media_type=media_type, media_category=media_category, **params ) media_id = response['media_id'] i = 0 while chunk: if is_coro: req = self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk, _ = await asyncio.gather(media.read(chunk_size), req) else: await self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk = media.read(chunk_size) i += 1 status = await self.upload.media.upload.post(command="FINALIZE", media_id=media_id) if 'processing_info' in status: while status['processing_info'].get('state') != "succeeded": processing_info = status['processing_info'] if processing_info.get('state') == "failed": error = processing_info.get('error', {}) message = error.get('message', str(status)) raise exceptions.MediaProcessingError(data=status, message=message, **params) delay = processing_info['check_after_secs'] await asyncio.sleep(delay) status = await self.upload.media.upload.get( command="STATUS", media_id=media_id, **params ) return response
async def upload_media(self, file_, media_type=None, media_category=None, chunked=None, size_limit=None, **params): """ upload a media on twitter Parameters ---------- file_ : str or pathlib.Path or file Path to the file or file object media_type : str, optional mime type of the media media_category : str, optional Twitter's media category of the media, must be used with ``media_type`` chunked : bool, optional If True, force the use of the chunked upload for the media size_limit : int, optional If set, the media will be sent using a multipart upload if its size is over ``size_limit`` bytes params : dict parameters used when making the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(file_, str): url = urlparse(file_) if url.scheme.startswith('http'): media = await self._session.get(file_) else: path = urlparse(file_).path.strip(" \"'") media = await utils.execute(open(path, 'rb')) elif hasattr(file_, 'read') or isinstance(file_, bytes): media = file_ else: raise TypeError("upload_media input must be a file object or a " "filename or binary data or an aiohttp request") media_size = await utils.get_size(media) if chunked is not None: size_test = False else: size_test = await self._size_test(media_size, size_limit) if isinstance(media, aiohttp.ClientResponse): # send the content of the response media = media.content if chunked or (size_test and chunked is None): args = media, media_size, file_, media_type, media_category response = await self._chunked_upload(*args, **params) else: response = await self.upload.media.upload.post(media=media, **params) if not hasattr(file_, 'read') and not getattr(media, 'closed', True): media.close() return response
def split_stdout_lines(stdout): """ Given the standard output from NetMHC/NetMHCpan/NetMHCcons tools, drop all {comments, lines of hyphens, empty lines} and split the remaining lines by whitespace. """ # all the NetMHC formats use lines full of dashes before any actual # binding results seen_dash = False for l in stdout.split("\n"): l = l.strip() # wait for a line like '----------' before trying to parse entries # have to include multiple dashes here since NetMHC 4.0 sometimes # gives negative positions in its "peptide" input mode if l.startswith("---"): seen_dash = True continue if not seen_dash: continue # ignore empty lines and comments if not l or l.startswith("#"): continue # beginning of headers in NetMHC if any(l.startswith(word) for word in NETMHC_TOKENS): continue yield l.split()
def clean_fields(fields, ignored_value_indices, transforms): """ Sometimes, NetMHC* has fields that are only populated sometimes, which results in different count/indexing of the fields when that happens. We handle this by looking for particular strings at particular indices, and deleting them. Warning: this may result in unexpected behavior sometimes. For example, we ignore "SB" and "WB" for NetMHC 3.x output; which also means that any line with a key called SB or WB will be ignored. Also, sometimes NetMHC* will have fields that we want to modify in some consistent way, e.g. NetMHCpan3 has 1-based offsets and all other predictors have 0-based offsets (and we rely on 0-based offsets). We handle this using a map from field index to transform function. """ cleaned_fields = [] for i, field in enumerate(fields): if field in ignored_value_indices: ignored_index = ignored_value_indices[field] # Is the value we want to ignore at the index where we'd ignore it? if ignored_index == i: continue # transform this field if the index is in transforms, otherwise leave alone cleaned_field = transforms[i](field) if i in transforms else field cleaned_fields.append(cleaned_field) return cleaned_fields
def parse_stdout( stdout, prediction_method_name, sequence_key_mapping, key_index, offset_index, peptide_index, allele_index, ic50_index, rank_index, log_ic50_index, ignored_value_indices={}, transforms={}): """ Generic function for parsing any NetMHC* output, given expected indices of values of interest. Parameters ---------- ignored_value_indices : dict Map from values to the positions we'll ignore them at. See clean_fields. transforms : dict Map from field index to a transform function to be applied to values in that field. See clean_fields. Returns BindingPredictionCollection """ binding_predictions = [] for fields in split_stdout_lines(stdout): fields = clean_fields(fields, ignored_value_indices, transforms) offset = int(fields[offset_index]) peptide = str(fields[peptide_index]) allele = str(fields[allele_index]) ic50 = float(fields[ic50_index]) rank = float(fields[rank_index]) if rank_index else 0.0 log_ic50 = float(fields[log_ic50_index]) key = str(fields[key_index]) if sequence_key_mapping: original_key = sequence_key_mapping[key] else: # if sequence_key_mapping isn't provided then let's assume it's the # identity function original_key = key binding_predictions.append(BindingPrediction( source_sequence_name=original_key, offset=offset, peptide=peptide, allele=normalize_allele_name(allele), affinity=ic50, percentile_rank=rank, log_affinity=log_ic50, prediction_method_name=prediction_method_name)) return binding_predictions
def parse_netmhc3_stdout( stdout, prediction_method_name="netmhc3", sequence_key_mapping=None): """ Parse the output format for NetMHC 3.x, which looks like: ---------------------------------------------------------------------------------------------------- pos peptide logscore affinity(nM) Bind Level Protein Name Allele ---------------------------------------------------------------------------------------------------- 0 SIINKFELL 0.437 441 WB A1 HLA-A02:01 -------------------------------------------------------------------------------------------------- 0 SIINKFFFQ 0.206 5411 A2 HLA-A02:01 1 IINKFFFQQ 0.128 12544 A2 HLA-A02:01 2 INKFFFQQQ 0.046 30406 A2 HLA-A02:01 3 NKFFFQQQQ 0.050 29197 A2 HLA-A02:01 -------------------------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=4, offset_index=0, peptide_index=1, allele_index=5, ic50_index=3, rank_index=None, log_ic50_index=2, ignored_value_indices={"WB": 4, "SB": 4})
def parse_netmhc4_stdout( stdout, prediction_method_name="netmhc4", sequence_key_mapping=None): """ # Peptide length 9 # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- pos HLA peptide Core Offset I_pos I_len D_pos D_len iCore Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 0 HLA-A0201 TMDKSELVQ TMDKSELVQ 0 0 0 0 0 TMDKSELVQ 143B_BOVIN_P293 0.051 28676.59 43.00 1 HLA-A0201 MDKSELVQK MDKSELVQK 0 0 0 0 0 MDKSELVQK 143B_BOVIN_P293 0.030 36155.15 70.00 2 HLA-A0201 DKSELVQKA DKSELVQKA 0 0 0 0 0 DKSELVQKA 143B_BOVIN_P293 0.030 36188.42 70.00 3 HLA-A0201 KSELVQKAK KSELVQKAK 0 0 0 0 0 KSELVQKAK 143B_BOVIN_P293 0.032 35203.22 65.00 4 HLA-A0201 SELVQKAKL SELVQKAKL 0 0 0 0 0 SELVQKAKL 143B_BOVIN_P293 0.031 35670.99 65.00 5 HLA-A0201 ELVQKAKLA ELVQKAKLA 0 0 0 0 0 ELVQKAKLA 143B_BOVIN_P293 0.080 21113.07 29.00 6 HLA-A0201 LVQKAKLAE LVQKAKLAE 0 0 0 0 0 LVQKAKLAE 143B_BOVIN_P293 0.027 37257.56 75.00 7 HLA-A0201 VQKAKLAEQ VQKAKLAEQ 0 0 0 0 0 VQKAKLAEQ 143B_BOVIN_P293 0.040 32404.62 55.00 219 HLA-A0201 QLLRDNLTL QLLRDNLTL 0 0 0 0 0 QLLRDNLTL 143B_BOVIN_P293 0.527 167.10 1.50 <= WB ----------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11)
def parse_netmhcpan28_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Affinity Threshold for Strong binding peptides 50.000', # Affinity Threshold for Weak binding peptides 500.000', # Rank Threshold for Strong binding peptides 0.500', # Rank Threshold for Weak binding peptides 2.000', ---------------------------------------------------------------------------- pos HLA peptide Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ---------------------------------------------------------------------------- 0 HLA-A*02:03 QQQQQYFPE id0 0.024 38534.25 50.00 1 HLA-A*02:03 QQQQYFPEI id0 0.278 2461.53 15.00 2 HLA-A*02:03 QQQYFPEIT id0 0.078 21511.53 50.00 3 HLA-A*02:03 QQYFPEITH id0 0.041 32176.84 50.00 4 HLA-A*02:03 QYFPEITHI id0 0.085 19847.09 32.00 5 HLA-A*02:03 YFPEITHII id0 0.231 4123.85 15.00 6 HLA-A*02:03 FPEITHIII id0 0.060 26134.28 50.00 7 HLA-A*02:03 PEITHIIIA id0 0.034 34524.63 50.00 8 HLA-A*02:03 EITHIIIAS id0 0.076 21974.48 50.00 9 HLA-A*02:03 ITHIIIASS id0 0.170 7934.26 32.00 10 HLA-A*02:03 THIIIASSS id0 0.040 32361.18 50.00 11 HLA-A*02:03 HIIIASSSL id0 0.515 189.74 4.00 <= WB """ check_stdout_error(stdout, "NetMHCpan-2.8") return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=3, offset_index=0, peptide_index=2, allele_index=1, ic50_index=5, rank_index=6, log_ic50_index=4)
def parse_netmhcpan3_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-B*18:01 MFCQLAKT MFCQLAKT- 0 0 0 8 1 MFCQLAKT sequence0_0 0.02864 36676.0 45.00 2 HLA-B*18:01 FCQLAKTY F-CQLAKTY 0 0 0 1 1 FCQLAKTY sequence0_0 0.07993 21056.5 13.00 """ # the offset specified in "pos" (at index 0) is 1-based instead of 0-based. we adjust it to be # 0-based, as in all the other netmhc predictors supported by this library. transforms = { 0: lambda x: int(x) - 1, } return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11, transforms=transforms)
def parse_netmhcpan4_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # NetMHCpan version 4.0 # Tmpdir made /var/folders/jc/fyrvcrcs3sb8g4mkdg6nl_t80000gp/T//netMHCpanuH3SvY # Input is in PEPTIDE format # Make binding affinity predictions HLA-A02:01 : Distance to training data 0.000 (using nearest neighbor HLA-A02:01) # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-A*02:01 SIINFEKL SIINF-EKL 0 0 0 5 1 SIINFEKL PEPLIST 0.1141340 14543.1 18.9860 ----------------------------------------------------------------------------------- Protein PEPLIST. Allele HLA-A*02:01. Number of high binders 0. Number of weak binders 0. Number of peptides 1 """ # Output format is compatible with netmhcpan3, but netmhcpan 4.0 must be # called with the -BA flag, so it gives affinity predictions, not mass-spec # elution likelihoods. return parse_netmhcpan3_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping)
def _parse_iedb_response(response): """Take the binding predictions returned by IEDB's web API and parse them into a DataFrame Expect response to look like: allele seq_num start end length peptide ic50 percentile_rank HLA-A*01:01 1 2 10 9 LYNTVATLY 2145.70 3.7 HLA-A*01:01 1 5 13 9 TVATLYCVH 2216.49 3.9 HLA-A*01:01 1 7 15 9 ATLYCVHQR 2635.42 5.1 HLA-A*01:01 1 4 12 9 NTVATLYCV 6829.04 20 HLA-A*01:01 1 1 9 9 SLYNTVATL 8032.38 24 HLA-A*01:01 1 8 16 9 TLYCVHQRI 8853.90 26 HLA-A*01:01 1 3 11 9 YNTVATLYC 9865.62 29 HLA-A*01:01 1 6 14 9 VATLYCVHQ 27575.71 58 HLA-A*01:01 1 10 18 9 YCVHQRIDV 48929.64 74 HLA-A*01:01 1 9 17 9 LYCVHQRID 50000.00 75 """ if len(response) == 0: raise ValueError("Empty response from IEDB!") df = pd.read_csv(io.BytesIO(response), delim_whitespace=True, header=0) # pylint doesn't realize that df is a DataFrame, so tell is assert type(df) == pd.DataFrame df = pd.DataFrame(df) if len(df) == 0: raise ValueError( "No binding predictions in response from IEDB: %s" % (response,)) required_columns = [ "allele", "peptide", "ic50", "start", "end", ] for column in required_columns: if column not in df.columns: raise ValueError( "Response from IEDB is missing '%s' column: %s. Full " "response:\n%s" % ( column, df.ix[0], response)) # since IEDB has allowed multiple column names for percentile rank, # we're defensively normalizing all of them to just 'rank' df = df.rename(columns={ "percentile_rank": "rank", "percentile rank": "rank"}) return df
def _query_iedb(request_values, url): """ Call into IEDB's web API for MHC binding prediction using request dictionary with fields: - "method" - "length" - "sequence_text" - "allele" Parse the response into a DataFrame. """ data = urlencode(request_values) req = Request(url, data.encode("ascii")) response = urlopen(req).read() return _parse_iedb_response(response)
def predict_subsequences(self, sequence_dict, peptide_lengths=None): """Given a dictionary mapping unique keys to amino acid sequences, run MHC binding predictions on all candidate epitopes extracted from sequences and return a EpitopeCollection. Parameters ---------- fasta_dictionary : dict or string Mapping of protein identifiers to protein amino acid sequences. If string then converted to dictionary. """ sequence_dict = check_sequence_dictionary(sequence_dict) peptide_lengths = self._check_peptide_lengths(peptide_lengths) # take each mutated sequence in the dataframe # and general MHC binding scores for all k-mer substrings binding_predictions = [] expected_peptides = set([]) normalized_alleles = [] for key, amino_acid_sequence in sequence_dict.items(): for l in peptide_lengths: for i in range(len(amino_acid_sequence) - l + 1): expected_peptides.add(amino_acid_sequence[i:i + l]) self._check_peptide_inputs(expected_peptides) for allele in self.alleles: # IEDB MHCII predictor expects DRA1 to be omitted. allele = normalize_allele_name(allele, omit_dra1=True) normalized_alleles.append(allele) request = self._get_iedb_request_params( amino_acid_sequence, allele) logger.info( "Calling IEDB (%s) with request %s", self.url, request) response_df = _query_iedb(request, self.url) for _, row in response_df.iterrows(): binding_predictions.append( BindingPrediction( source_sequence_name=key, offset=row['start'] - 1, allele=row['allele'], peptide=row['peptide'], affinity=row['ic50'], percentile_rank=row['rank'], prediction_method_name="iedb-" + self.prediction_method)) self._check_results( binding_predictions, alleles=normalized_alleles, peptides=expected_peptides) return BindingPredictionCollection(binding_predictions)
def get_args(func, skip=0): """ Hackish way to get the arguments of a function Parameters ---------- func : callable Function to get the arguments from skip : int, optional Arguments to skip, defaults to 0 set it to 1 to skip the ``self`` argument of a method. Returns ------- tuple Function's arguments """ code = getattr(func, '__code__', None) if code is None: code = func.__call__.__code__ return code.co_varnames[skip:code.co_argcount]
def log_error(msg=None, exc_info=None, logger=None, **kwargs): """ log an exception and its traceback on the logger defined Parameters ---------- msg : str, optional A message to add to the error exc_info : tuple Information about the current exception logger : logging.Logger logger to use """ if logger is None: logger = _logger if not exc_info: exc_info = sys.exc_info() if msg is None: msg = "" exc_class, exc_msg, _ = exc_info if all(info is not None for info in exc_info): logger.error(msg, exc_info=exc_info)
async def get_media_metadata(data, path=None): """ Get all the file's metadata and read any kind of file object Parameters ---------- data : bytes first bytes of the file (the mimetype shoudl be guessed from the file headers path : str, optional path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if isinstance(data, bytes): media_type = await get_type(data, path) else: raise TypeError("get_metadata input must be a bytes") media_category = get_category(media_type) _logger.info("media_type: %s, media_category: %s" % (media_type, media_category)) return media_type, media_category
async def get_size(media): """ Get the size of a file Parameters ---------- media : file object The file object of the media Returns ------- int The size of the file """ if hasattr(media, 'seek'): await execute(media.seek(0, os.SEEK_END)) size = await execute(media.tell()) await execute(media.seek(0)) elif hasattr(media, 'headers'): size = int(media.headers['Content-Length']) elif isinstance(media, bytes): size = len(media) else: raise TypeError("Can't get size of media of type:", type(media).__name__) _logger.info("media size: %dB" % size) return size
async def get_type(media, path=None): """ Parameters ---------- media : file object A file object of the image path : str, optional The path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if magic: if not media: raise TypeError("Media data is empty") _logger.debug("guessing mimetype using magic") media_type = mime.from_buffer(media[:1024]) else: media_type = None if path: _logger.debug("guessing mimetype using built-in module") media_type = mime.guess_type(path)[0] if media_type is None: msg = ("Could not guess the mimetype of the media.\n" "Please consider installing python-magic\n" "(pip3 install peony-twitter[magic])") raise RuntimeError(msg) return media_type
def set_debug(): """ activates error messages, useful during development """ logging.basicConfig(level=logging.WARNING) peony.logger.setLevel(logging.DEBUG)
def clone_with_updates(self, **kwargs): """Returns new BindingPrediction with updated fields""" fields_dict = self.to_dict() fields_dict.update(kwargs) return BindingPrediction(**fields_dict)
def NetMHCpan( alleles, program_name="netMHCpan", process_limit=-1, default_peptide_lengths=[9], extra_flags=[]): """ This function wraps NetMHCpan28 and NetMHCpan3 to automatically detect which class to use, with the help of the miraculous and strange '--version' netmhcpan argument. """ # convert to str since Python3 returns a `bytes` object. # The '_MHCTOOLS_VERSION_SNIFFING' here is meaningless, but it is necessary # to call `netmhcpan --version` with some argument, otherwise it hangs. with open(os.devnull, 'w') as devnull: output = check_output([ program_name, "--version", "_MHCTOOLS_VERSION_SNIFFING"], stderr=devnull) output_str = output.decode("ascii", "ignore") common_kwargs = { "alleles": alleles, "default_peptide_lengths": default_peptide_lengths, "program_name": program_name, "process_limit": process_limit, "extra_flags": extra_flags, } if "NetMHCpan version 2.8" in output_str: return NetMHCpan28(**common_kwargs) elif "NetMHCpan version 3.0" in output_str: return NetMHCpan3(**common_kwargs) elif "NetMHCpan version 4.0" in output_str: return NetMHCpan4(**common_kwargs) else: raise RuntimeError( "This software expects NetMHCpan version 2.8, 3.0, or 4.0")
def get_data(self, response): """ Get the data from the response """ if self._response_list: return response elif self._response_key is None: if hasattr(response, "items"): for key, data in response.items(): if (hasattr(data, "__getitem__") and not hasattr(data, "items") and len(data) > 0 and 'id' in data[0]): self._response_key = key return data else: self._response_list = True return response else: return response[self._response_key] raise NoDataFound(response=response, url=self.request.get_url())
async def call_on_response(self, data): """ Try to fill the gaps and strip last tweet from the response if its id is that of the first tweet of the last response Parameters ---------- data : list The response data """ since_id = self.kwargs.get(self.param, 0) + 1 if self.fill_gaps: if data[-1]['id'] != since_id: max_id = data[-1]['id'] - 1 responses = with_max_id(self.request(**self.kwargs, max_id=max_id)) async for tweets in responses: data.extend(tweets) if data[-1]['id'] == self.last_id: data = data[:-1] if not data and not self.force: raise StopAsyncIteration await self.set_param(data)
async def get_oauth_token(consumer_key, consumer_secret, callback_uri="oob"): """ Get a temporary oauth token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str, optional Callback uri, defaults to 'oob' Returns ------- dict Temporary tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, api_version="", suffix="") response = await client.api.oauth.request_token.post( _suffix="", oauth_callback=callback_uri ) return parse_token(response)
async def get_oauth_verifier(oauth_token): """ Open authorize page in a browser, print the url if it didn't work Arguments --------- oauth_token : str The oauth token received in :func:`get_oauth_token` Returns ------- str The PIN entered by the user """ url = "https://api.twitter.com/oauth/authorize?oauth_token=" + oauth_token try: browser = webbrowser.open(url) await asyncio.sleep(2) if not browser: raise RuntimeError except RuntimeError: print("could not open a browser\ngo here to enter your PIN: " + url) verifier = input("\nEnter your PIN: ") return verifier
async def get_access_token(consumer_key, consumer_secret, oauth_token, oauth_token_secret, oauth_verifier, **kwargs): """ get the access token of the user Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_token : str OAuth token from :func:`get_oauth_token` oauth_token_secret : str OAuth token secret from :func:`get_oauth_token` oauth_verifier : str OAuth verifier from :func:`get_oauth_verifier` Returns ------- dict Access tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=oauth_token, access_token_secret=oauth_token_secret, api_version="", suffix="") response = await client.api.oauth.access_token.get( _suffix="", oauth_verifier=oauth_verifier ) return parse_token(response)
async def async_oauth_dance(consumer_key, consumer_secret, callback_uri="oob"): """ OAuth dance to get the user's access token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str Callback uri, defaults to 'oob' Returns ------- dict Access tokens """ token = await get_oauth_token(consumer_key, consumer_secret, callback_uri) oauth_verifier = await get_oauth_verifier(token['oauth_token']) token = await get_access_token( consumer_key, consumer_secret, oauth_verifier=oauth_verifier, **token ) token = dict( consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=token['oauth_token'], access_token_secret=token['oauth_token_secret'] ) return token
def parse_token(response): """ parse the responses containing the tokens Parameters ---------- response : str The response containing the tokens Returns ------- dict The parsed tokens """ items = response.split("&") items = [item.split("=") for item in items] return {key: value for key, value in items}
def oauth_dance(consumer_key, consumer_secret, oauth_callback="oob", loop=None): """ OAuth dance to get the user's access token It calls async_oauth_dance and create event loop of not given Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_callback : str Callback uri, defaults to 'oob' loop : event loop asyncio event loop Returns ------- dict Access tokens """ loop = asyncio.get_event_loop() if loop is None else loop coro = async_oauth_dance(consumer_key, consumer_secret, oauth_callback) return loop.run_until_complete(coro)
def oauth2_dance(consumer_key, consumer_secret, loop=None): """ oauth2 dance Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret loop : event loop, optional event loop to use Returns ------- str Bearer token """ loop = asyncio.get_event_loop() if loop is None else loop client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, auth=oauth.OAuth2Headers) loop.run_until_complete(client.headers.sign()) return client.headers.token
def predict(self, sequences): """ Return netChop predictions for each position in each sequence. Parameters ----------- sequences : list of string Amino acid sequences to predict cleavage for Returns ----------- list of list of float The i'th list corresponds to the i'th sequence. Each list gives the cleavage probability for each position in the sequence. """ with tempfile.NamedTemporaryFile(suffix=".fsa", mode="w") as input_fd: for (i, sequence) in enumerate(sequences): input_fd.write("> %d\n" % i) input_fd.write(sequence) input_fd.write("\n") input_fd.flush() try: output = subprocess.check_output(["netChop", input_fd.name]) except subprocess.CalledProcessError as e: logging.error("Error calling netChop: %s:\n%s" % (e, e.output)) raise parsed = self.parse_netchop(output) assert len(parsed) == len(sequences), \ "Expected %d results but got %d" % ( len(sequences), len(parsed)) assert [len(x) for x in parsed] == [len(x) for x in sequences] return parsed
def parse_netchop(netchop_output): """ Parse netChop stdout. """ line_iterator = iter(netchop_output.decode().split("\n")) scores = [] for line in line_iterator: if "pos" in line and 'AA' in line and 'score' in line: scores.append([]) if "----" not in next(line_iterator): raise ValueError("Dashes expected") line = next(line_iterator) while '-------' not in line: score = float(line.split()[3]) scores[-1].append(score) line = next(line_iterator) return scores
def to_dataframe( self, columns=BindingPrediction.fields + ("length",)): """ Converts collection of BindingPrediction objects to DataFrame """ return pd.DataFrame.from_records( [tuple([getattr(x, name) for name in columns]) for x in self], columns=columns)
def NetMHC(alleles, default_peptide_lengths=[9], program_name="netMHC"): """ This function wraps NetMHC3 and NetMHC4 to automatically detect which class to use. Currently based on running the '-h' command and looking for discriminating substrings between the versions. """ # run NetMHC's help command and parse discriminating substrings out of # the resulting str output with open(os.devnull, 'w') as devnull: help_output = check_output([program_name, "-h"], stderr=devnull) help_output_str = help_output.decode("ascii", "ignore") substring_to_netmhc_class = { "-listMHC": NetMHC4, "--Alleles": NetMHC3, } successes = [] for substring, netmhc_class in substring_to_netmhc_class.items(): if substring in help_output_str: successes.append(netmhc_class) if len(successes) > 1: raise SystemError("Command %s is valid for multiple NetMHC versions. " "This is likely an mhctools bug." % program_name) if len(successes) == 0: raise SystemError("Command %s is not a valid way of calling any NetMHC software." % program_name) netmhc_class = successes[0] return netmhc_class( alleles=alleles, default_peptide_lengths=default_peptide_lengths, program_name=program_name)
def predict_peptides(self, peptides): """ Predict MHC affinity for peptides. """ # importing locally to avoid slowing down CLI applications which # don't use MHCflurry from mhcflurry.encodable_sequences import EncodableSequences binding_predictions = [] encodable_sequences = EncodableSequences.create(peptides) for allele in self.alleles: predictions_df = self.predictor.predict_to_dataframe( encodable_sequences, allele=allele) for (_, row) in predictions_df.iterrows(): binding_prediction = BindingPrediction( allele=allele, peptide=row.peptide, affinity=row.prediction, percentile_rank=( row.prediction_percentile if 'prediction_percentile' in row else nan), prediction_method_name="mhcflurry" ) binding_predictions.append(binding_prediction) return BindingPredictionCollection(binding_predictions)
def seq_to_str(obj, sep=","): """ Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation. """ if isinstance(obj, string_classes): return obj elif isinstance(obj, (list, tuple)): return sep.join([str(x) for x in obj]) else: return str(obj)
def convert(img, formats): """ Convert the image to all the formats specified Parameters ---------- img : PIL.Image.Image The image to convert formats : list List of all the formats to use Returns ------- io.BytesIO A file object containing the converted image """ media = None min_size = 0 for kwargs in formats: f = io.BytesIO() if img.mode == "RGBA" and kwargs['format'] != "PNG": # convert to RGB if picture is too large as a png # this implies that the png format is the first in `formats` if min_size < 5 * 1024**2: continue else: img.convert('RGB') img.save(f, **kwargs) size = f.tell() if media is None or size < min_size: if media is not None: media.close() media = f min_size = size else: f.close() return media
def optimize_media(file_, max_size, formats): """ Optimize an image Resize the picture to the ``max_size``, defaulting to the large photo size of Twitter in :meth:`PeonyClient.upload_media` when used with the ``optimize_media`` argument. Parameters ---------- file_ : file object the file object of an image max_size : :obj:`tuple` or :obj:`list` of :obj:`int` a tuple in the format (width, height) which is maximum size of the picture returned by this function formats : :obj`list` or :obj:`tuple` of :obj:`dict` a list of all the formats to convert the picture to Returns ------- file The smallest file created in this function """ if not PIL: msg = ("Pillow must be installed to optimize a media\n" "$ pip3 install Pillow") raise RuntimeError(msg) img = PIL.Image.open(file_) # resize the picture (defaults to the 'large' photo size of Twitter # in peony.PeonyClient.upload_media) ratio = max(hw / max_hw for hw, max_hw in zip(img.size, max_size)) if ratio > 1: size = tuple(int(hw // ratio) for hw in img.size) img = img.resize(size, PIL.Image.ANTIALIAS) media = convert(img, formats) # do not close a file opened by the user # only close if a filename was given if not hasattr(file_, 'read'): img.close() return media
def create_input_peptides_files( peptides, max_peptides_per_file=None, group_by_length=False): """ Creates one or more files containing one peptide per line, returns names of files. """ if group_by_length: peptide_lengths = {len(p) for p in peptides} peptide_groups = {l: [] for l in peptide_lengths} for p in peptides: peptide_groups[len(p)].append(p) else: peptide_groups = {"": peptides} file_names = [] for key, group in peptide_groups.items(): n_peptides = len(group) if not max_peptides_per_file: max_peptides_per_file = n_peptides input_file = None for i, p in enumerate(group): if i % max_peptides_per_file == 0: if input_file is not None: file_names.append(input_file.name) input_file.close() input_file = make_writable_tempfile( prefix_number=i // max_peptides_per_file, prefix_name=key, suffix=".txt") input_file.write("%s\n" % p) if input_file is not None: file_names.append(input_file.name) input_file.close() return file_names
def _check_peptide_lengths(self, peptide_lengths=None): """ If peptide lengths not specified, then try using the default lengths associated with this predictor object. If those aren't a valid non-empty sequence of integers, then raise an exception. Otherwise return the peptide lengths. """ if not peptide_lengths: peptide_lengths = self.default_peptide_lengths if not peptide_lengths: raise ValueError( ("Must either provide 'peptide_lengths' argument " "or set 'default_peptide_lengths")) if isinstance(peptide_lengths, int): peptide_lengths = [peptide_lengths] require_iterable_of(peptide_lengths, int) for peptide_length in peptide_lengths: if (self.min_peptide_length is not None and peptide_length < self.min_peptide_length): raise ValueError( "Invalid peptide length %d, shorter than min %d" % ( peptide_length, self.min_peptide_length)) elif (self.max_peptide_length is not None and peptide_length > self.max_peptide_length): raise ValueError( "Invalid peptide length %d, longer than max %d" % ( peptide_length, self.max_peptide_length)) return peptide_lengths
def _check_peptide_inputs(self, peptides): """ Check peptide sequences to make sure they are valid for this predictor. """ require_iterable_of(peptides, string_types) check_X = not self.allow_X_in_peptides check_lower = not self.allow_lowercase_in_peptides check_min_length = self.min_peptide_length is not None min_length = self.min_peptide_length check_max_length = self.max_peptide_length is not None max_length = self.max_peptide_length for p in peptides: if not p.isalpha(): raise ValueError("Invalid characters in peptide '%s'" % p) elif check_X and "X" in p: raise ValueError("Invalid character 'X' in peptide '%s'" % p) elif check_lower and not p.isupper(): raise ValueError("Invalid lowercase letters in peptide '%s'" % p) elif check_min_length and len(p) < min_length: raise ValueError( "Peptide '%s' too short (%d chars), must be at least %d" % ( p, len(p), min_length)) elif check_max_length and len(p) > max_length: raise ValueError( "Peptide '%s' too long (%d chars), must be at least %d" % ( p, len(p), max_length))
def predict_subsequences( self, sequence_dict, peptide_lengths=None): """ Given a dictionary mapping sequence names to amino acid strings, and an optional list of peptide lengths, returns a BindingPredictionCollection. """ if isinstance(sequence_dict, string_types): sequence_dict = {"seq": sequence_dict} elif isinstance(sequence_dict, (list, tuple)): sequence_dict = {seq: seq for seq in sequence_dict} peptide_lengths = self._check_peptide_lengths(peptide_lengths) # convert long protein sequences to set of peptides and # associated sequence name / offsets that each peptide may have come # from peptide_set = set([]) peptide_to_name_offset_pairs = defaultdict(list) for name, sequence in sequence_dict.items(): for peptide_length in peptide_lengths: for i in range(len(sequence) - peptide_length + 1): peptide = sequence[i:i + peptide_length] peptide_set.add(peptide) peptide_to_name_offset_pairs[peptide].append((name, i)) peptide_list = sorted(peptide_set) binding_predictions = self.predict_peptides(peptide_list) # create BindingPrediction objects with sequence name and offset results = [] for binding_prediction in binding_predictions: for name, offset in peptide_to_name_offset_pairs[ binding_prediction.peptide]: results.append(binding_prediction.clone_with_updates( source_sequence_name=name, offset=offset)) self._check_results( results, peptides=peptide_set, alleles=self.alleles) return BindingPredictionCollection(results)
def _check_hla_alleles( alleles, valid_alleles=None): """ Given a list of HLA alleles and an optional list of valid HLA alleles, return a set of alleles that we will pass into the MHC binding predictor. """ require_iterable_of(alleles, string_types, "HLA alleles") # Don't run the MHC predictor twice for homozygous alleles, # only run it for unique alleles alleles = { normalize_allele_name(allele.strip().upper()) for allele in alleles } if valid_alleles: # For some reason netMHCpan drops the '*' in names, so # 'HLA-A*03:01' becomes 'HLA-A03:01' missing_alleles = [ allele for allele in alleles if allele not in valid_alleles ] if len(missing_alleles) > 0: raise UnsupportedAllele( "Unsupported HLA alleles: %s" % missing_alleles) return list(alleles)
async def _connect(self): """ Connect to the stream Returns ------- asyncio.coroutine The streaming response """ logger.debug("connecting to the stream") await self.client.setup if self.session is None: self.session = self.client._session kwargs = await self.client.headers.prepare_request(**self.kwargs) request = self.client.error_handler(self.session.request) return await request(timeout=0, **kwargs)
async def connect(self): """ Create the connection Returns ------- self Raises ------ exception.PeonyException On a response status in 4xx that are not status 420 or 429 Also on statuses in 1xx or 3xx since this should not be the status received here """ with async_timeout.timeout(self.timeout): self.response = await self._connect() if self.response.status in range(200, 300): self._error_timeout = 0 self.state = NORMAL elif self.response.status == 500: self.state = DISCONNECTION elif self.response.status in range(501, 600): self.state = RECONNECTION elif self.response.status in (420, 429): self.state = ENHANCE_YOUR_CALM else: logger.debug("raising error during stream connection") raise await exceptions.throw(self.response, loads=self.client._loads, url=self.kwargs['url']) logger.debug("stream state: %d" % self.state)
async def init_restart(self, error=None): """ Restart the stream on error Parameters ---------- error : bool, optional Whether to print the error or not """ if error: utils.log_error(logger=logger) if self.state == DISCONNECTION: if self._error_timeout < MAX_DISCONNECTION_TIMEOUT: self._error_timeout += DISCONNECTION_TIMEOUT logger.info("The stream was disconnected, will reconnect in %ss" % self._error_timeout) elif self.state == RECONNECTION: if self._error_timeout < RECONNECTION_TIMEOUT: self._error_timeout = RECONNECTION_TIMEOUT elif self._error_timeout < MAX_RECONNECTION_TIMEOUT: self._error_timeout *= 2 logger.info("Could not connect to the stream, reconnection in %ss" % self._error_timeout) elif self.state == ENHANCE_YOUR_CALM: if self._error_timeout < ENHANCE_YOUR_CALM_TIMEOUT: self._error_timeout = ENHANCE_YOUR_CALM_TIMEOUT else: self._error_timeout *= 2 logger.warning("Enhance Your Calm response received from Twitter. " "If you didn't restart your program frenetically " "then there is probably something wrong with it. " "Make sure you are not opening too many connections" " to the endpoint you are currently using by " "checking out Twitter's Streaming API " "documentation: " "https://dev.twitter.com/streaming/overview\n" "The stream will restart in %ss." % self._error_timeout) elif self.state == EOF: pass # no timeout else: raise RuntimeError("Incorrect state: %d" % self.state) self._reconnecting = True return {'reconnecting_in': self._error_timeout, 'error': error}
async def restart_stream(self): """ Restart the stream on error """ await self.response.release() await asyncio.sleep(self._error_timeout) await self.connect() logger.info("Reconnected to the stream") self._reconnecting = False return {'stream_restart': True}
def with_prefix(self, prefix, strict=False): """ decorator to handle commands with prefixes Parameters ---------- prefix : str the prefix of the command strict : bool, optional If set to True the command must be at the beginning of the message. Defaults to False. Returns ------- function a decorator that returns an :class:`EventHandler` instance """ def decorated(func): return EventHandler(func=func, event=self.event, prefix=prefix, strict=strict) return decorated
def envelope(self): """ returns an :class:`Event` that can be used for site streams """ def enveloped_event(data): return 'for_user' in data and self._func(data.get('message')) return self.__class__(enveloped_event, self.__name__)
async def set_tz(self): """ set the environment timezone to the timezone set in your twitter settings """ settings = await self.api.account.settings.get() tz = settings.time_zone.tzinfo_name os.environ['TZ'] = tz time.tzset()
def run_command(args, **kwargs): """ Given a list whose first element is a command name, followed by arguments, execute it and show timing info. """ assert len(args) > 0 start_time = time.time() process = AsyncProcess(args, **kwargs) process.wait() elapsed_time = time.time() - start_time logger.info("%s took %0.4f seconds", args[0], elapsed_time)
def run_multiple_commands_redirect_stdout( multiple_args_dict, print_commands=True, process_limit=-1, polling_freq=0.5, **kwargs): """ Run multiple shell commands in parallel, write each of their stdout output to files associated with each command. Parameters ---------- multiple_args_dict : dict A dictionary whose keys are files and values are args list. Run each args list as a subprocess and write stdout to the corresponding file. print_commands : bool Print shell commands before running them. process_limit : int Limit the number of concurrent processes to this number. 0 if there is no limit, -1 to use max number of processors polling_freq : int Number of seconds between checking for done processes, if we have a process limit """ assert len(multiple_args_dict) > 0 assert all(len(args) > 0 for args in multiple_args_dict.values()) assert all(hasattr(f, 'name') for f in multiple_args_dict.keys()) if process_limit < 0: logger.debug("Using %d processes" % cpu_count()) process_limit = cpu_count() start_time = time.time() processes = Queue(maxsize=process_limit) def add_to_queue(process): process.start() if print_commands: handler = logging.FileHandler(process.redirect_stdout_file.name) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.debug(" ".join(process.args)) logger.removeHandler(handler) processes.put(process) for f, args in multiple_args_dict.items(): p = AsyncProcess( args, redirect_stdout_file=f, **kwargs) if not processes.full(): add_to_queue(p) else: while processes.full(): # Are there any done processes? to_remove = [] for possibly_done in processes.queue: if possibly_done.poll() is not None: possibly_done.wait() to_remove.append(possibly_done) # Remove them from the queue and stop checking if to_remove: for process_to_remove in to_remove: processes.queue.remove(process_to_remove) break # Check again in a second if there weren't time.sleep(polling_freq) add_to_queue(p) # Wait for all the rest of the processes while not processes.empty(): processes.get().wait() elapsed_time = time.time() - start_time logger.info( "Ran %d commands in %0.4f seconds", len(multiple_args_dict), elapsed_time)
def _determine_supported_alleles(command, supported_allele_flag): """ Try asking the commandline predictor (e.g. netMHCpan) which alleles it supports. """ try: # convert to str since Python3 returns a `bytes` object supported_alleles_output = check_output([ command, supported_allele_flag ]) supported_alleles_str = supported_alleles_output.decode("ascii", "ignore") assert len(supported_alleles_str) > 0, \ '%s returned empty allele list' % command supported_alleles = set([]) for line in supported_alleles_str.split("\n"): line = line.strip() if not line.startswith('#') and len(line) > 0: try: # We need to normalize these alleles (the output of the predictor # when it lists its supported alleles) so that they are comparable with # our own alleles. supported_alleles.add(normalize_allele_name(line)) except AlleleParseError as error: logger.info("Skipping allele %s: %s", line, error) continue if len(supported_alleles) == 0: raise ValueError("Unable to determine supported alleles") return supported_alleles except Exception as e: logger.exception(e) raise SystemError("Failed to run %s %s. Possibly an incorrect executable version?" % ( command, supported_allele_flag))
def loads(json_data, encoding="utf-8", **kwargs): """ Custom loads function with an object_hook and automatic decoding Parameters ---------- json_data : str The JSON data to decode *args Positional arguments, passed to :func:`json.loads` encoding : :obj:`str`, optional The encoding of the bytestring **kwargs Keyword arguments passed to :func:`json.loads` Returns ------- :obj:`dict` or :obj:`list` Decoded json data """ if isinstance(json_data, bytes): json_data = json_data.decode(encoding) return json.loads(json_data, object_hook=JSONData, **kwargs)
async def read(response, loads=loads, encoding=None): """ read the data of the response Parameters ---------- response : aiohttp.ClientResponse response loads : callable json loads function encoding : :obj:`str`, optional character encoding of the response, if set to None aiohttp should guess the right encoding Returns ------- :obj:`bytes`, :obj:`str`, :obj:`dict` or :obj:`list` the data returned depends on the response """ ctype = response.headers.get('Content-Type', "").lower() try: if "application/json" in ctype: logger.info("decoding data as json") return await response.json(encoding=encoding, loads=loads) if "text" in ctype: logger.info("decoding data as text") return await response.text(encoding=encoding) except (UnicodeDecodeError, json.JSONDecodeError) as exc: data = await response.read() raise exceptions.PeonyDecodeError(response=response, data=data, exception=exc) return await response.read()
def doc(func): """ Find the message shown when someone calls the help command Parameters ---------- func : function the function Returns ------- str The help message for this command """ stripped_chars = " \t" if hasattr(func, '__doc__'): docstring = func.__doc__.lstrip(" \n\t") if "\n" in docstring: i = docstring.index("\n") return docstring[:i].rstrip(stripped_chars) elif docstring: return docstring.rstrip(stripped_chars) return ""
def permission_check(data, command_permissions, command=None, permissions=None): """ Check the permissions of the user requesting a command Parameters ---------- data : dict message data command_permissions : dict permissions of the command, contains all the roles as key and users with these permissions as values command : function the command that is run permissions : tuple or list a list of permissions for the command Returns ------- bool True if the user has the right permissions, False otherwise """ if permissions: pass elif command: if hasattr(command, 'permissions'): permissions = command.permissions else: return True # true if no permission is required else: msg = "{name} must be called with command or permissions argument" raise RuntimeError(msg.format(name="_permission_check")) return any(data['sender']['id'] in command_permissions[permission] for permission in permissions if permission in command_permissions)
def main(args_list=None): """ Script to make pMHC binding predictions from amino acid sequences. Usage example: mhctools --sequence SFFPIQQQQQAAALLLI \ --sequence SILQQQAQAQQAQAASSSC \ --extract-subsequences \ --mhc-predictor netmhc \ --mhc-alleles HLA-A0201 H2-Db \ --mhc-predictor netmhc \ --output-csv epitope.csv """ args = parse_args(args_list) binding_predictions = run_predictor(args) df = binding_predictions.to_dataframe() logger.info('\n%s', df) if args.output_csv: df.to_csv(args.output_csv, index=False) print("Wrote: %s" % args.output_csv)
def _prepare_drb_allele_name(self, parsed_beta_allele): """ Assume that we're dealing with a human DRB allele which NetMHCIIpan treats differently because there is little population diversity in the DR-alpha gene """ if "DRB" not in parsed_beta_allele.gene: raise ValueError("Unexpected allele %s" % parsed_beta_allele) return "%s_%s%s" % ( parsed_beta_allele.gene, parsed_beta_allele.allele_family, parsed_beta_allele.allele_code)
def prepare_allele_name(self, allele_name): """ netMHCIIpan has some unique requirements for allele formats, expecting the following forms: - DRB1_0101 (for non-alpha/beta pairs) - HLA-DQA10501-DQB10636 (for alpha and beta pairs) Other than human class II alleles, the only other alleles that netMHCIIpan accepts are the following mouse alleles: - H-2-IAb - H-2-IAd """ parsed_alleles = parse_classi_or_classii_allele_name(allele_name) if len(parsed_alleles) == 1: allele = parsed_alleles[0] if allele.species == "H-2": return "%s-%s%s" % ( allele.species, allele.gene, allele.allele_code) return self._prepare_drb_allele_name(allele) else: alpha, beta = parsed_alleles if "DRA" in alpha.gene: return self._prepare_drb_allele_name(beta) return "HLA-%s%s%s-%s%s%s" % ( alpha.gene, alpha.allele_family, alpha.allele_code, beta.gene, beta.allele_family, beta.allele_code)
def get_error(data): """ return the error if there is a corresponding exception """ if isinstance(data, dict): if 'errors' in data: error = data['errors'][0] else: error = data.get('error', None) if isinstance(error, dict): if error.get('code') in errors: return error
async def throw(response, loads=None, encoding=None, **kwargs): """ Get the response data if possible and raise an exception """ if loads is None: loads = data_processing.loads data = await data_processing.read(response, loads=loads, encoding=encoding) error = get_error(data) if error is not None: exception = errors[error['code']] raise exception(response=response, error=error, data=data, **kwargs) if response.status in statuses: exception = statuses[response.status] raise exception(response=response, data=data, **kwargs) # raise PeonyException if no specific exception was found raise PeonyException(response=response, data=data, **kwargs)
def code(self, code): """ Decorator to associate a code to an exception """ def decorator(exception): self[code] = exception return exception return decorator
async def prepare_request(self, method, url, headers=None, skip_params=False, proxy=None, **kwargs): """ prepare all the arguments for the request Parameters ---------- method : str HTTP method used by the request url : str The url to request headers : dict, optional Additionnal headers proxy : str proxy of the request skip_params : bool Don't use the parameters to sign the request Returns ------- dict Parameters of the request correctly formatted """ if method.lower() == "post": key = 'data' else: key = 'params' if key in kwargs and not skip_params: request_params = {key: kwargs.pop(key)} else: request_params = {} request_params.update(dict(method=method.upper(), url=url)) coro = self.sign(**request_params, skip_params=skip_params, headers=headers) request_params['headers'] = await utils.execute(coro) request_params['proxy'] = proxy kwargs.update(request_params) return kwargs
def _user_headers(self, headers=None): """ Make sure the user doesn't override the Authorization header """ h = self.copy() if headers is not None: keys = set(headers.keys()) if h.get('Authorization', False): keys -= {'Authorization'} for key in keys: h[key] = headers[key] return h
def process_keys(func): """ Raise error for keys that are not strings and add the prefix if it is missing """ @wraps(func) def decorated(self, k, *args): if not isinstance(k, str): msg = "%s: key must be a string" % self.__class__.__name__ raise ValueError(msg) if not k.startswith(self.prefix): k = self.prefix + k return func(self, k, *args) return decorated
def _get(self, text): """ Analyze the text to get the right function Parameters ---------- text : str The text that could call a function """ if self.strict: match = self.prog.match(text) if match: cmd = match.group() if cmd in self: return cmd else: words = self.prog.findall(text) for word in words: if word in self: return word
async def run(self, *args, data): """ run the function you want """ cmd = self._get(data.text) try: if cmd is not None: command = self[cmd](*args, data=data) return await peony.utils.execute(command) except: fmt = "Error occurred while running function {cmd}:" peony.utils.log_error(fmt.format(cmd=cmd))
def get_cartesian(r, theta): """ Given a radius and theta, return the cartesian (x, y) coordinates. """ x = r*np.sin(theta) y = r*np.cos(theta) return x, y
def simplified_edges(self): """ A generator for getting all of the edges without consuming extra memory. """ for group, edgelist in self.edges.items(): for u, v, d in edgelist: yield (u, v)
def initialize_major_angle(self): """ Computes the major angle: 2pi radians / number of groups. """ num_groups = len(self.nodes.keys()) self.major_angle = 2 * np.pi / num_groups
def initialize_minor_angle(self): """ Computes the minor angle: 2pi radians / 3 * number of groups. """ num_groups = len(self.nodes.keys()) self.minor_angle = 2 * np.pi / (6 * num_groups)
def plot_radius(self): """ Computes the plot radius: maximum of length of each list of nodes. """ plot_rad = 0 for group, nodelist in self.nodes.items(): proposed_radius = len(nodelist) * self.scale if proposed_radius > plot_rad: plot_rad = proposed_radius return plot_rad + self.internal_radius
def has_edge_within_group(self, group): """ Checks whether there are within-group edges or not. """ assert group in self.nodes.keys(),\ "{0} not one of the group of nodes".format(group) nodelist = self.nodes[group] for n1, n2 in self.simplified_edges(): if n1 in nodelist and n2 in nodelist: return True
def plot_axis(self, rs, theta): """ Renders the axis. """ xs, ys = get_cartesian(rs, theta) self.ax.plot(xs, ys, 'black', alpha=0.3)
def plot_nodes(self, nodelist, theta, group): """ Plots nodes to screen. """ for i, node in enumerate(nodelist): r = self.internal_radius + i * self.scale x, y = get_cartesian(r, theta) circle = plt.Circle(xy=(x, y), radius=self.dot_radius, color=self.node_colormap[group], linewidth=0) self.ax.add_patch(circle)
def group_theta(self, group): """ Computes the theta along which a group's nodes are aligned. """ for i, g in enumerate(self.nodes.keys()): if g == group: break return i * self.major_angle
def add_axes_and_nodes(self): """ Adds the axes (i.e. 2 or 3 axes, not to be confused with matplotlib axes) and the nodes that belong to each axis. """ for i, (group, nodelist) in enumerate(self.nodes.items()): theta = self.group_theta(group) if self.has_edge_within_group(group): theta = theta - self.minor_angle self.plot_nodes(nodelist, theta, group) theta = theta + 2 * self.minor_angle self.plot_nodes(nodelist, theta, group) else: self.plot_nodes(nodelist, theta, group)
def find_node_group_membership(self, node): """ Identifies the group for which a node belongs to. """ for group, nodelist in self.nodes.items(): if node in nodelist: return group
def get_idx(self, node): """ Finds the index of the node in the sorted list. """ group = self.find_node_group_membership(node) return self.nodes[group].index(node)
def node_radius(self, node): """ Computes the radial position of the node. """ return self.get_idx(node) * self.scale + self.internal_radius
def node_theta(self, node): """ Convenience function to find the node's theta angle. """ group = self.find_node_group_membership(node) return self.group_theta(group)
def draw_edge(self, n1, n2, d, group): """ Renders the given edge (n1, n2) to the plot. """ start_radius = self.node_radius(n1) start_theta = self.node_theta(n1) end_radius = self.node_radius(n2) end_theta = self.node_theta(n2) start_theta, end_theta = self.correct_angles(start_theta, end_theta) start_theta, end_theta = self.adjust_angles(n1, start_theta, n2, end_theta) middle1_radius = np.min([start_radius, end_radius]) middle2_radius = np.max([start_radius, end_radius]) if start_radius > end_radius: middle1_radius, middle2_radius = middle2_radius, middle1_radius middle1_theta = np.mean([start_theta, end_theta]) middle2_theta = np.mean([start_theta, end_theta]) startx, starty = get_cartesian(start_radius, start_theta) middle1x, middle1y = get_cartesian(middle1_radius, middle1_theta) middle2x, middle2y = get_cartesian(middle2_radius, middle2_theta) # middlex, middley = get_cartesian(middle_radius, middle_theta) endx, endy = get_cartesian(end_radius, end_theta) verts = [(startx, starty), (middle1x, middle1y), (middle2x, middle2y), (endx, endy)] codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] path = Path(verts, codes) if self.edge_colormap is None: edgecolor = 'black' else: edgecolor = self.edge_colormap[group] patch = patches.PathPatch(path, lw=self.linewidth, facecolor='none', edgecolor=edgecolor, alpha=0.3) self.ax.add_patch(patch)
def add_edges(self): """ Draws all of the edges in the graph. """ for group, edgelist in self.edges.items(): for (u, v, d) in edgelist: self.draw_edge(u, v, d, group)
def draw(self): """ The master function that is called that draws everything. """ self.ax.set_xlim(-self.plot_radius(), self.plot_radius()) self.ax.set_ylim(-self.plot_radius(), self.plot_radius()) self.add_axes_and_nodes() self.add_edges() self.ax.axis('off')
def adjust_angles(self, start_node, start_angle, end_node, end_angle): """ This function adjusts the start and end angles to correct for duplicated axes. """ start_group = self.find_node_group_membership(start_node) end_group = self.find_node_group_membership(end_node) if start_group == 0 and end_group == len(self.nodes.keys())-1: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) elif start_group == len(self.nodes.keys())-1 and end_group == 0: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) elif start_group < end_group: if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) elif end_group < start_group: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) return start_angle, end_angle
def correct_angles(self, start_angle, end_angle): """ This function corrects for the following problems in the edges: """ # Edges going the anti-clockwise direction involves angle = 0. if start_angle == 0 and (end_angle - start_angle > np.pi): start_angle = np.pi * 2 if end_angle == 0 and (end_angle - start_angle < -np.pi): end_angle = np.pi * 2 # Case when start_angle == end_angle: if start_angle == end_angle: start_angle = start_angle - self.minor_angle end_angle = end_angle + self.minor_angle return start_angle, end_angle
def mods_genre(self): """ Guesses an appropriate MODS XML genre type. """ type2genre = { 'conference': 'conference publication', 'book chapter': 'bibliography', 'unpublished': 'article' } tp = str(self.type).lower() return type2genre.get(tp, tp)
def _produce_author_lists(self): """ Parse authors string to create lists of authors. """ # post-process author names self.authors = self.authors.replace(', and ', ', ') self.authors = self.authors.replace(',and ', ', ') self.authors = self.authors.replace(' and ', ', ') self.authors = self.authors.replace(';', ',') # list of authors self.authors_list = [author.strip() for author in self.authors.split(',')] # simplified representation of author names self.authors_list_simple = [] # author names represented as a tuple of given and family name self.authors_list_split = [] # tests if title already ends with a punctuation mark self.title_ends_with_punct = self.title[-1] in ['.', '!', '?'] \ if len(self.title) > 0 else False suffixes = ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', "Jr.", "Sr."] prefixes = ['Dr.'] prepositions = ['van', 'von', 'der', 'de', 'den'] # further post-process author names for i, author in enumerate(self.authors_list): if author == '': continue names = author.split(' ') # check if last string contains initials if (len(names[-1]) <= 3) \ and names[-1] not in suffixes \ and all(c in ascii_uppercase for c in names[-1]): # turn "Gauss CF" into "C. F. Gauss" names = [c + '.' for c in names[-1]] + names[:-1] # number of suffixes num_suffixes = 0 for name in names[::-1]: if name in suffixes: num_suffixes += 1 else: break # abbreviate names for j, name in enumerate(names[:-1 - num_suffixes]): # don't try to abbreviate these if j == 0 and name in prefixes: continue if j > 0 and name in prepositions: continue if (len(name) > 2) or (len(name) and (name[-1] != '.')): k = name.find('-') if 0 < k + 1 < len(name): # take care of dash names[j] = name[0] + '.-' + name[k + 1] + '.' else: names[j] = name[0] + '.' if len(names): self.authors_list[i] = ' '.join(names) # create simplified/normalized representation of author name if len(names) > 1: for name in names[0].split('-'): name_simple = self.simplify_name(' '.join([name, names[-1]])) self.authors_list_simple.append(name_simple) else: self.authors_list_simple.append(self.simplify_name(names[0])) # number of prepositions num_prepositions = 0 for name in names: if name in prepositions: num_prepositions += 1 # splitting point sp = 1 + num_suffixes + num_prepositions self.authors_list_split.append( (' '.join(names[:-sp]), ' '.join(names[-sp:]))) # list of authors in BibTex format self.authors_bibtex = ' and '.join(self.authors_list) # overwrite authors string if len(self.authors_list) > 2: self.authors = ', and '.join([ ', '.join(self.authors_list[:-1]), self.authors_list[-1]]) elif len(self.authors_list) > 1: self.authors = ' and '.join(self.authors_list) else: self.authors = self.authors_list[0]
def get_publications(context, template='publications/publications.html'): """ Get all publications. """ types = Type.objects.filter(hidden=False) publications = Publication.objects.select_related() publications = publications.filter(external=False, type__in=types) publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template(template, context['request'], {'publications': publications})
def get_publication(context, id): """ Get a single publication. """ pbl = Publication.objects.filter(pk=int(id)) if len(pbl) < 1: return '' pbl[0].links = pbl[0].customlink_set.all() pbl[0].files = pbl[0].customfile_set.all() return render_template( 'publications/publication.html', context['request'], {'publication': pbl[0]})
def get_publication_list(context, list, template='publications/publications.html'): """ Get a publication list. """ list = List.objects.filter(list__iexact=list) if not list: return '' list = list[0] publications = list.publication_set.all() publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template( template, context['request'], {'list': list, 'publications': publications})
def tex_parse(string): """ Renders some basic TeX math to HTML. """ string = string.replace('{', '').replace('}', '') def tex_replace(match): return \ sub(r'\^(\w)', r'<sup>\1</sup>', sub(r'\^\{(.*?)\}', r'<sup>\1</sup>', sub(r'\_(\w)', r'<sub>\1</sub>', sub(r'\_\{(.*?)\}', r'<sub>\1</sub>', sub(r'\\(' + GREEK_LETTERS + ')', r'&\1;', match.group(1)))))) return mark_safe(sub(r'\$([^\$]*)\$', tex_replace, escape(string)))
def parse(string): """ Takes a string in BibTex format and returns a list of BibTex entries, where each entry is a dictionary containing the entries' key-value pairs. @type string: string @param string: bibliography in BibTex format @rtype: list @return: a list of dictionaries representing a bibliography """ # bibliography bib = [] # make sure we are dealing with unicode strings if not isinstance(string, six.text_type): string = string.decode('utf-8') # replace special characters for key, value in special_chars: string = string.replace(key, value) string = re.sub(r'\\[cuHvs]{?([a-zA-Z])}?', r'\1', string) # split into BibTex entries entries = re.findall( r'(?u)@(\w+)[ \t]?{[ \t]*([^,\s]*)[ \t]*,?\s*((?:[^=,\s]+\s*\=\s*(?:"[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,}]*),?\s*?)+)\s*}', string) for entry in entries: # parse entry pairs = re.findall(r'(?u)([^=,\s]+)\s*\=\s*("[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,]*)', entry[2]) # add to bibliography bib.append({'type': entry[0].lower(), 'key': entry[1]}) for key, value in pairs: # post-process key and value key = key.lower() if value and value[0] == '"' and value[-1] == '"': value = value[1:-1] if value and value[0] == '{' and value[-1] == '}': value = value[1:-1] if key not in ['booktitle', 'title']: value = value.replace('}', '').replace('{', '') else: if value.startswith('{') and value.endswith('}'): value = value[1:] value = value[:-1] value = value.strip() value = re.sub(r'\s+', ' ', value) # store pair in bibliography bib[-1][key] = value return bib
def swap(self, qs): """ Swap the positions of this object with a reference object. """ try: replacement = qs[0] except IndexError: # already first/last return if not self._valid_ordering_reference(replacement): raise ValueError( "%r can only be swapped with instances of %r which %s equals %r." % ( self, self.__class__, self.order_with_respect_to, self._get_order_with_respect_to() ) ) self.order, replacement.order = replacement.order, self.order self.save() replacement.save()
def up(self): """ Move this object up one position. """ self.swap(self.get_ordering_queryset().filter(order__lt=self.order).order_by('-order'))