Search is not available for this dataset
text
stringlengths 75
104k
|
---|
def fit_lens_data_with_sensitivity_tracers(lens_data, tracer_normal, tracer_sensitive):
"""Fit lens data with a normal tracer and sensitivity tracer, to determine our sensitivity to a selection of \
galaxy components. This factory automatically determines the type of fit based on the properties of the galaxies \
in the tracers.
Parameters
-----------
lens_data : lens_data.LensData or lens_data.LensDataHyper
The lens-images that is fitted.
tracer_normal : ray_tracing.AbstractTracer
A tracer whose galaxies have the same model components (e.g. light profiles, mass profiles) as the \
lens data that we are fitting.
tracer_sensitive : ray_tracing.AbstractTracerNonStack
A tracer whose galaxies have the same model components (e.g. light profiles, mass profiles) as the \
lens data that we are fitting, but also addition components (e.g. mass clumps) which we measure \
how sensitive we are too.
"""
if (tracer_normal.has_light_profile and tracer_sensitive.has_light_profile) and \
(not tracer_normal.has_pixelization and not tracer_sensitive.has_pixelization):
return SensitivityProfileFit(lens_data=lens_data, tracer_normal=tracer_normal,
tracer_sensitive=tracer_sensitive)
elif (not tracer_normal.has_light_profile and not tracer_sensitive.has_light_profile) and \
(tracer_normal.has_pixelization and tracer_sensitive.has_pixelization):
return SensitivityInversionFit(lens_data=lens_data, tracer_normal=tracer_normal,
tracer_sensitive=tracer_sensitive)
else:
raise exc.FittingException('The sensitivity_fit routine did not call a SensitivityFit class - check the '
'properties of the tracers')
|
def unmasked_for_shape_and_pixel_scale(cls, shape, pixel_scale, invert=False):
"""Setup a mask where all pixels are unmasked.
Parameters
----------
shape : (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
"""
mask = np.full(tuple(map(lambda d: int(d), shape)), False)
if invert: mask = np.invert(mask)
return cls(array=mask, pixel_scale=pixel_scale)
|
def circular(cls, shape, pixel_scale, radius_arcsec, centre=(0., 0.), invert=False):
"""Setup a mask where unmasked pixels are within a circle of an input arc second radius and centre.
Parameters
----------
shape: (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
radius_arcsec : float
The radius (in arc seconds) of the circle within which pixels unmasked.
centre: (float, float)
The centre of the circle used to mask pixels.
"""
mask = mask_util.mask_circular_from_shape_pixel_scale_and_radius(shape, pixel_scale, radius_arcsec,
centre)
if invert: mask = np.invert(mask)
return cls(array=mask.astype('bool'), pixel_scale=pixel_scale)
|
def circular_annular(cls, shape, pixel_scale, inner_radius_arcsec, outer_radius_arcsec, centre=(0., 0.),
invert=False):
"""Setup a mask where unmasked pixels are within an annulus of input inner and outer arc second radii and \
centre.
Parameters
----------
shape : (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
inner_radius_arcsec : float
The radius (in arc seconds) of the inner circle outside of which pixels are unmasked.
outer_radius_arcsec : float
The radius (in arc seconds) of the outer circle within which pixels are unmasked.
centre: (float, float)
The centre of the annulus used to mask pixels.
"""
mask = mask_util.mask_circular_annular_from_shape_pixel_scale_and_radii(shape, pixel_scale, inner_radius_arcsec,
outer_radius_arcsec, centre)
if invert: mask = np.invert(mask)
return cls(array=mask.astype('bool'), pixel_scale=pixel_scale)
|
def circular_anti_annular(cls, shape, pixel_scale, inner_radius_arcsec, outer_radius_arcsec, outer_radius_2_arcsec,
centre=(0., 0.), invert=False):
"""Setup a mask where unmasked pixels are outside an annulus of input inner and outer arc second radii, but \
within a second outer radius, and at a given centre.
This mask there has two distinct unmasked regions (an inner circle and outer annulus), with an inner annulus \
of masked pixels.
Parameters
----------
shape : (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
inner_radius_arcsec : float
The radius (in arc seconds) of the inner circle inside of which pixels are unmasked.
outer_radius_arcsec : float
The radius (in arc seconds) of the outer circle within which pixels are masked and outside of which they \
are unmasked.
outer_radius_2_arcsec : float
The radius (in arc seconds) of the second outer circle within which pixels are unmasked and outside of \
which they masked.
centre: (float, float)
The centre of the anti-annulus used to mask pixels.
"""
mask = mask_util.mask_circular_anti_annular_from_shape_pixel_scale_and_radii(shape, pixel_scale, inner_radius_arcsec,
outer_radius_arcsec,
outer_radius_2_arcsec, centre)
if invert: mask = np.invert(mask)
return cls(array=mask.astype('bool'), pixel_scale=pixel_scale)
|
def elliptical(cls, shape, pixel_scale, major_axis_radius_arcsec, axis_ratio, phi, centre=(0., 0.),
invert=False):
""" Setup a mask where unmasked pixels are within an ellipse of an input arc second major-axis and centre.
Parameters
----------
shape: (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
major_axis_radius_arcsec : float
The major-axis (in arc seconds) of the ellipse within which pixels are unmasked.
axis_ratio : float
The axis-ratio of the ellipse within which pixels are unmasked.
phi : float
The rotation angle of the ellipse within which pixels are unmasked, (counter-clockwise from the positive \
x-axis).
centre: (float, float)
The centre of the ellipse used to mask pixels.
"""
mask = mask_util.mask_elliptical_from_shape_pixel_scale_and_radius(shape, pixel_scale, major_axis_radius_arcsec,
axis_ratio, phi, centre)
if invert: mask = np.invert(mask)
return cls(array=mask.astype('bool'), pixel_scale=pixel_scale)
|
def elliptical_annular(cls, shape, pixel_scale,inner_major_axis_radius_arcsec, inner_axis_ratio, inner_phi,
outer_major_axis_radius_arcsec, outer_axis_ratio, outer_phi, centre=(0.0, 0.0),
invert=False):
"""Setup a mask where unmasked pixels are within an elliptical annulus of input inner and outer arc second \
major-axis and centre.
Parameters
----------
shape: (int, int)
The (y,x) shape of the mask in units of pixels.
pixel_scale: float
The arc-second to pixel conversion factor of each pixel.
inner_major_axis_radius_arcsec : float
The major-axis (in arc seconds) of the inner ellipse within which pixels are masked.
inner_axis_ratio : float
The axis-ratio of the inner ellipse within which pixels are masked.
inner_phi : float
The rotation angle of the inner ellipse within which pixels are masked, (counter-clockwise from the \
positive x-axis).
outer_major_axis_radius_arcsec : float
The major-axis (in arc seconds) of the outer ellipse within which pixels are unmasked.
outer_axis_ratio : float
The axis-ratio of the outer ellipse within which pixels are unmasked.
outer_phi : float
The rotation angle of the outer ellipse within which pixels are unmasked, (counter-clockwise from the \
positive x-axis).
centre: (float, float)
The centre of the elliptical annuli used to mask pixels.
"""
mask = mask_util.mask_elliptical_annular_from_shape_pixel_scale_and_radius(shape, pixel_scale,
inner_major_axis_radius_arcsec, inner_axis_ratio, inner_phi,
outer_major_axis_radius_arcsec, outer_axis_ratio, outer_phi, centre)
if invert: mask = np.invert(mask)
return cls(array=mask.astype('bool'), pixel_scale=pixel_scale)
|
def map_2d_array_to_masked_1d_array(self, array_2d):
"""For a 2D array (e.g. an image, noise_map, etc.) map it to a masked 1D array of valuees using this mask.
Parameters
----------
array_2d : ndarray | None | float
The 2D array to be mapped to a masked 1D array.
"""
if array_2d is None or isinstance(array_2d, float):
return array_2d
return mapping_util.map_2d_array_to_masked_1d_array_from_array_2d_and_mask(self, array_2d)
|
def blurring_mask_for_psf_shape(self, psf_shape):
"""Compute a blurring mask, which represents all masked pixels whose light will be blurred into unmasked \
pixels via PSF convolution (see grid_stack.RegularGrid.blurring_grid_from_mask_and_psf_shape).
Parameters
----------
psf_shape : (int, int)
The shape of the psf which defines the blurring region (e.g. the shape of the PSF)
"""
if psf_shape[0] % 2 == 0 or psf_shape[1] % 2 == 0:
raise exc.MaskException("psf_size of exterior region must be odd")
blurring_mask = mask_util.mask_blurring_from_mask_and_psf_shape(self, psf_shape)
return Mask(blurring_mask, self.pixel_scale)
|
def zoom_region(self):
"""The zoomed rectangular region corresponding to the square encompassing all unmasked values.
This is used to zoom in on the region of an image that is used in an analysis for visualization."""
# Have to convert mask to bool for invert function to work.
where = np.array(np.where(np.invert(self.astype('bool'))))
y0, x0 = np.amin(where, axis=1)
y1, x1 = np.amax(where, axis=1)
return [y0, y1+1, x0, x1+1]
|
def data_vector_from_blurred_mapping_matrix_and_data(blurred_mapping_matrix, image_1d, noise_map_1d):
"""Compute the hyper vector *D* from a blurred mapping matrix *f* and the 1D image *d* and 1D noise-map *\sigma* \
(see Warren & Dye 2003).
Parameters
-----------
blurred_mapping_matrix : ndarray
The matrix representing the blurred mappings between sub-grid pixels and pixelization pixels.
image_1d : ndarray
Flattened 1D array of the observed image the inversion is fitting.
noise_map_1d : ndarray
Flattened 1D array of the noise-map used by the inversion during the fit.
"""
mapping_shape = blurred_mapping_matrix.shape
data_vector = np.zeros(mapping_shape[1])
for image_index in range(mapping_shape[0]):
for pix_index in range(mapping_shape[1]):
data_vector[pix_index] += image_1d[image_index] * \
blurred_mapping_matrix[image_index, pix_index] / (noise_map_1d[image_index] ** 2.0)
return data_vector
|
def curvature_matrix_from_blurred_mapping_matrix(blurred_mapping_matrix, noise_map_1d):
"""Compute the curvature matrix *F* from a blurred mapping matrix *f* and the 1D noise-map *\sigma* \
(see Warren & Dye 2003).
Parameters
-----------
blurred_mapping_matrix : ndarray
The matrix representing the blurred mappings between sub-grid pixels and pixelization pixels.
noise_map_1d : ndarray
Flattened 1D array of the noise-map used by the inversion during the fit.
"""
flist = np.zeros(blurred_mapping_matrix.shape[0])
iflist = np.zeros(blurred_mapping_matrix.shape[0], dtype='int')
return curvature_matrix_from_blurred_mapping_matrix_jit(blurred_mapping_matrix, noise_map_1d, flist, iflist)
|
def curvature_matrix_from_blurred_mapping_matrix_jit(blurred_mapping_matrix, noise_map_1d, flist, iflist):
"""Compute the curvature matrix *F* from a blurred mapping matrix *f* and the 1D noise-map *\sigma* \
(see Warren & Dye 2003).
Parameters
-----------
blurred_mapping_matrix : ndarray
The matrix representing the blurred mappings between sub-grid pixels and pixelization pixels.
noise_map_1d : ndarray
Flattened 1D array of the noise-map used by the inversion during the fit.
flist : ndarray
NumPy array of floats used to store mappings for efficienctly calculation.
iflist : ndarray
NumPy array of integers used to store mappings for efficienctly calculation.
"""
curvature_matrix = np.zeros((blurred_mapping_matrix.shape[1], blurred_mapping_matrix.shape[1]))
for image_index in range(blurred_mapping_matrix.shape[0]):
index = 0
for pixel_index in range(blurred_mapping_matrix.shape[1]):
if blurred_mapping_matrix[image_index, pixel_index] > 0.0:
flist[index] = blurred_mapping_matrix[image_index, pixel_index] / noise_map_1d[image_index]
iflist[index] = pixel_index
index += 1
if index > 0:
for i1 in range(index):
for j1 in range(index):
ix = iflist[i1]
iy = iflist[j1]
curvature_matrix[ix, iy] += flist[i1] * flist[j1]
for i in range(blurred_mapping_matrix.shape[1]):
for j in range(blurred_mapping_matrix.shape[1]):
curvature_matrix[i, j] = curvature_matrix[j, i]
return curvature_matrix
|
def reconstructed_data_vector_from_blurred_mapping_matrix_and_solution_vector(blurred_mapping_matrix, solution_vector):
""" Compute the reconstructed hyper vector from the blurrred mapping matrix *f* and solution vector *S*.
Parameters
-----------
blurred_mapping_matrix : ndarray
The matrix representing the blurred mappings between sub-grid pixels and pixelization pixels.
"""
reconstructed_data_vector = np.zeros(blurred_mapping_matrix.shape[0])
for i in range(blurred_mapping_matrix.shape[0]):
for j in range(solution_vector.shape[0]):
reconstructed_data_vector[i] += solution_vector[j] * blurred_mapping_matrix[i, j]
return reconstructed_data_vector
|
def regularization_term(self):
""" Compute the regularization term of an inversion. This term represents the sum of the difference in flux \
between every pair of neighboring pixels. This is computed as:
s_T * H * s = solution_vector.T * regularization_matrix * solution_vector
The term is referred to as *G_l* in Warren & Dye 2003, Nightingale & Dye 2015.
The above works include the regularization_matrix coefficient (lambda) in this calculation. In PyAutoLens, \
this is already in the regularization matrix and thus implicitly included in the matrix multiplication.
"""
return np.matmul(self.solution_vector.T, np.matmul(self.regularization_matrix, self.solution_vector))
|
def log_determinant_of_matrix_cholesky(matrix):
"""There are two terms in the inversion's Bayesian likelihood function which require the log determinant of \
a matrix. These are (Nightingale & Dye 2015, Nightingale, Dye and Massey 2018):
ln[det(F + H)] = ln[det(curvature_reg_matrix)]
ln[det(H)] = ln[det(regularization_matrix)]
The curvature_reg_matrix is positive-definite, which means the above log determinants can be computed \
efficiently (compared to using np.det) by using a Cholesky decomposition first and summing the log of each \
diagonal term.
Parameters
-----------
matrix : ndarray
The positive-definite matrix the log determinant is computed for.
"""
try:
return 2.0 * np.sum(np.log(np.diag(np.linalg.cholesky(matrix))))
except np.linalg.LinAlgError:
raise exc.InversionException()
|
def constant_light_profiles(self):
"""
Returns
-------
light_profiles: [light_profiles.LightProfile]
Light profiles with set variables
"""
return [value for value in self.__dict__.values() if galaxy.is_light_profile(value)]
|
def constant_mass_profiles(self):
"""
Returns
-------
mass_profiles: [mass_profiles.MassProfile]
Mass profiles with set variables
"""
return [value for value in self.__dict__.values() if galaxy.is_mass_profile(value)]
|
def prior_models(self):
"""
Returns
-------
prior_models: [model_mapper.PriorModel]
A list of the prior models (e.g. variable profiles) attached to this galaxy prior
"""
return [value for _, value in
filter(lambda t: isinstance(t[1], pm.PriorModel), self.__dict__.items())]
|
def profile_prior_model_dict(self):
"""
Returns
-------
profile_prior_model_dict: {str: PriorModel}
A dictionary mapping_matrix instance variable names to variable profiles.
"""
return {key: value for key, value in
filter(lambda t: isinstance(t[1], pm.PriorModel) and is_profile_class(t[1].cls),
self.__dict__.items())}
|
def constant_profile_dict(self):
"""
Returns
-------
constant_profile_dict: {str: geometry_profiles.GeometryProfile}
A dictionary mapping_matrix instance variable names to profiles with set variables.
"""
return {key: value for key, value in self.__dict__.items() if
galaxy.is_light_profile(value) or galaxy.is_mass_profile(value)}
|
def prior_class_dict(self):
"""
Returns
-------
prior_class_dict: {Prior: class}
A dictionary mapping_matrix priors to the class associated with their prior model.
"""
return {prior: cls for prior_model in self.prior_models for prior, cls in
prior_model.prior_class_dict.items()}
|
def instance_for_arguments(self, arguments):
"""
Create an instance of the associated class for a set of arguments
Parameters
----------
arguments: {Prior: value}
Dictionary mapping_matrix priors to attribute analysis_path and value pairs
Returns
-------
An instance of the class
"""
profiles = {**{key: value.instance_for_arguments(arguments)
for key, value
in self.profile_prior_model_dict.items()}, **self.constant_profile_dict}
try:
redshift = self.redshift.instance_for_arguments(arguments)
except AttributeError:
redshift = self.redshift
pixelization = self.pixelization.instance_for_arguments(arguments) \
if isinstance(self.pixelization, pm.PriorModel) \
else self.pixelization
regularization = self.regularization.instance_for_arguments(arguments) \
if isinstance(self.regularization, pm.PriorModel) \
else self.regularization
hyper_galaxy = self.hyper_galaxy.instance_for_arguments(arguments) \
if isinstance(self.hyper_galaxy, pm.PriorModel) \
else self.hyper_galaxy
return galaxy.Galaxy(redshift=redshift, pixelization=pixelization, regularization=regularization,
hyper_galaxy=hyper_galaxy, **profiles)
|
def gaussian_prior_model_for_arguments(self, arguments):
"""
Create a new galaxy prior from a set of arguments, replacing the priors of some of this galaxy prior's prior
models with new arguments.
Parameters
----------
arguments: dict
A dictionary mapping_matrix between old priors and their replacements.
Returns
-------
new_model: GalaxyModel
A model with some or all priors replaced.
"""
new_model = copy.deepcopy(self)
for key, value in filter(lambda t: isinstance(t[1], pm.PriorModel), self.__dict__.items()):
setattr(new_model, key, value.gaussian_prior_model_for_arguments(arguments))
return new_model
|
def plot_image(
image, plot_origin=True, mask=None, extract_array_from_mask=False, zoom_around_mask=False,
should_plot_border=False, positions=None, as_subplot=False,
units='arcsec', kpc_per_arcsec=None, figsize=(7, 7), aspect='square',
cmap='jet', norm='linear', norm_min=None, norm_max=None, linthresh=0.05, linscale=0.01,
cb_ticksize=10, cb_fraction=0.047, cb_pad=0.01, cb_tick_values=None, cb_tick_labels=None,
title='Image', titlesize=16, xlabelsize=16, ylabelsize=16, xyticksize=16,
mask_pointsize=10, position_pointsize=30, grid_pointsize=1,
output_path=None, output_format='show', output_filename='image'):
"""Plot the observed image of the ccd data.
Set *autolens.data.array.plotters.array_plotters* for a description of all input parameters not described below.
Parameters
-----------
image : ScaledSquarePixelArray
The image of the data.
plot_origin : True
If true, the origin of the data's coordinate system is plotted as a 'x'.
image_plane_pix_grid : ndarray or data.array.grid_stacks.PixGrid
If an adaptive pixelization whose pixels are formed by tracing pixels from the data, this plots those pixels \
over the immage.
"""
origin = get_origin(array=image, plot_origin=plot_origin)
array_plotters.plot_array(
array=image, origin=origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask,
should_plot_border=should_plot_border, positions=positions, as_subplot=as_subplot,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
title=title, titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize, position_pointsize=position_pointsize, grid_pointsize=grid_pointsize,
output_path=output_path, output_format=output_format, output_filename=output_filename)
|
def plot_ccd_subplot(
ccd_data, plot_origin=True, mask=None, extract_array_from_mask=False, zoom_around_mask=False,
should_plot_border=False, positions=None,
units='arcsec', kpc_per_arcsec=None, figsize=None, aspect='square',
cmap='jet', norm='linear', norm_min=None, norm_max=None, linthresh=0.05, linscale=0.01,
cb_ticksize=10, cb_fraction=0.047, cb_pad=0.01, cb_tick_values=None, cb_tick_labels=None,
titlesize=10, xlabelsize=10, ylabelsize=10, xyticksize=10,
mask_pointsize=10, position_pointsize=30, grid_pointsize=1,
output_path=None, output_filename='ccd_data', output_format='show'):
"""Plot the ccd data as a sub-plot of all its quantites (e.g. the data, noise_map-map, PSF, Signal-to_noise-map, \
etc).
Set *autolens.data.array.plotters.array_plotters* for a description of all innput parameters not described below.
Parameters
-----------
ccd_data : data.CCDData
The ccd data, which includes the observed data, noise_map-map, PSF, signal-to-noise_map-map, etc.
plot_origin : True
If true, the origin of the data's coordinate system is plotted as a 'x'.
image_plane_pix_grid : ndarray or data.array.grid_stacks.PixGrid
If an adaptive pixelization whose pixels are formed by tracing pixels from the data, this plots those pixels \
over the immage.
ignore_config : bool
If *False*, the config file general.ini is used to determine whether the subpot is plotted. If *True*, the \
config file is ignored.
"""
rows, columns, figsize_tool = plotter_util.get_subplot_rows_columns_figsize(number_subplots=6)
if figsize is None:
figsize = figsize_tool
plt.figure(figsize=figsize)
plt.subplot(rows, columns, 1)
plot_image(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, should_plot_border=should_plot_border, positions=positions, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize, position_pointsize=position_pointsize, grid_pointsize=grid_pointsize,
output_path=output_path, output_format=output_format)
plt.subplot(rows, columns, 2)
plot_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize,
output_path=output_path, output_format=output_format)
plt.subplot(rows, columns, 3)
plot_psf(
ccd_data=ccd_data, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
output_path=output_path, output_format=output_format)
plt.subplot(rows, columns, 4)
plot_signal_to_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize,
output_path=output_path, output_format=output_format)
plt.subplot(rows, columns, 5)
plot_absolute_signal_to_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize,
output_path=output_path, output_format=output_format)
plt.subplot(rows, columns, 6)
plot_potential_chi_squared_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, as_subplot=True,
units=units, kpc_per_arcsec=kpc_per_arcsec, figsize=figsize, aspect=aspect,
cmap=cmap, norm=norm, norm_min=norm_min, norm_max=norm_max, linthresh=linthresh, linscale=linscale,
cb_ticksize=cb_ticksize, cb_fraction=cb_fraction, cb_pad=cb_pad,
cb_tick_values=cb_tick_values, cb_tick_labels=cb_tick_labels,
titlesize=titlesize, xlabelsize=xlabelsize, ylabelsize=ylabelsize, xyticksize=xyticksize,
mask_pointsize=mask_pointsize,
output_path=output_path, output_format=output_format)
plotter_util.output_subplot_array(output_path=output_path, output_filename=output_filename,
output_format=output_format)
plt.close()
|
def plot_ccd_individual(
ccd_data, plot_origin=True, mask=None, extract_array_from_mask=False, zoom_around_mask=False, positions=None,
should_plot_image=False,
should_plot_noise_map=False,
should_plot_psf=False,
should_plot_signal_to_noise_map=False,
should_plot_absolute_signal_to_noise_map=False,
should_plot_potential_chi_squared_map=False,
units='arcsec',
output_path=None, output_format='png'):
"""Plot each attribute of the ccd data as individual figures one by one (e.g. the data, noise_map-map, PSF, \
Signal-to_noise-map, etc).
Set *autolens.data.array.plotters.array_plotters* for a description of all innput parameters not described below.
Parameters
-----------
ccd_data : data.CCDData
The ccd data, which includes the observed data, noise_map-map, PSF, signal-to-noise_map-map, etc.
plot_origin : True
If true, the origin of the data's coordinate system is plotted as a 'x'.
"""
if should_plot_image:
plot_image(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask, positions=positions,
units=units,
output_path=output_path, output_format=output_format)
if should_plot_noise_map:
plot_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask,
units=units,
output_path=output_path, output_format=output_format)
if should_plot_psf:
plot_psf(
ccd_data=ccd_data, plot_origin=plot_origin,
output_path=output_path, output_format=output_format)
if should_plot_signal_to_noise_map:
plot_signal_to_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask,
units=units,
output_path=output_path, output_format=output_format)
if should_plot_absolute_signal_to_noise_map:
plot_absolute_signal_to_noise_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask,
units=units,
output_path=output_path, output_format=output_format)
if should_plot_potential_chi_squared_map:
plot_potential_chi_squared_map(
ccd_data=ccd_data, plot_origin=plot_origin, mask=mask, extract_array_from_mask=extract_array_from_mask,
zoom_around_mask=zoom_around_mask,
units=units,
output_path=output_path, output_format=output_format)
|
def norm_and_check(source_tree, requested):
"""Normalise and check a backend path.
Ensure that the requested backend path is specified as a relative path,
and resolves to a location under the given source tree.
Return an absolute version of the requested path.
"""
if os.path.isabs(requested):
raise ValueError("paths must be relative")
abs_source = os.path.abspath(source_tree)
abs_requested = os.path.normpath(os.path.join(abs_source, requested))
# We have to use commonprefix for Python 2.7 compatibility. So we
# normalise case to avoid problems because commonprefix is a character
# based comparison :-(
norm_source = os.path.normcase(abs_source)
norm_requested = os.path.normcase(abs_requested)
if os.path.commonprefix([norm_source, norm_requested]) != norm_source:
raise ValueError("paths must be inside source tree")
return abs_requested
|
def contained_in(filename, directory):
"""Test if a file is located within the given directory."""
filename = os.path.normcase(os.path.abspath(filename))
directory = os.path.normcase(os.path.abspath(directory))
return os.path.commonprefix([filename, directory]) == directory
|
def _build_backend():
"""Find and load the build backend"""
# Add in-tree backend directories to the front of sys.path.
backend_path = os.environ.get('PEP517_BACKEND_PATH')
if backend_path:
extra_pathitems = backend_path.split(os.pathsep)
sys.path[:0] = extra_pathitems
ep = os.environ['PEP517_BUILD_BACKEND']
mod_path, _, obj_path = ep.partition(':')
try:
obj = import_module(mod_path)
except ImportError:
raise BackendUnavailable(traceback.format_exc())
if backend_path:
if not any(
contained_in(obj.__file__, path)
for path in extra_pathitems
):
raise BackendInvalid("Backend was not loaded from backend-path")
if obj_path:
for path_part in obj_path.split('.'):
obj = getattr(obj, path_part)
return obj
|
def build_sdist(sdist_directory, config_settings):
"""Invoke the mandatory build_sdist hook."""
backend = _build_backend()
try:
return backend.build_sdist(sdist_directory, config_settings)
except getattr(backend, 'UnsupportedOperation', _DummyException):
raise GotUnsupportedOperation(traceback.format_exc())
|
def log_error(self, e):
"""
Print errors. Stop travis-ci from leaking api keys
:param e: The error
:return: None
"""
if not environ.get('CI'):
self.log_function(e)
if hasattr(e, 'response') and hasattr(e.response, 'text'):
self.log_function(e.response.text)
|
def _sleep(self, seconds):
"""
Sleep between requests, but don't force asynchronous code to wait
:param seconds: The number of seconds to sleep
:return: None
"""
for _ in range(int(seconds)):
if not self.force_stop:
sleep(1)
|
def get(self, *args, **kwargs):
"""
An interface for get requests that handles errors more gracefully to
prevent data loss
"""
try:
req_func = self.session.get if self.session else requests.get
req = req_func(*args, **kwargs)
req.raise_for_status()
self.failed_last = False
return req
except requests.exceptions.RequestException as e:
self.log_error(e)
for i in range(1, self.num_retries):
sleep_time = self.retry_rate * i
self.log_function("Retrying in %s seconds" % sleep_time)
self._sleep(sleep_time)
try:
req = requests.get(*args, **kwargs)
req.raise_for_status()
self.log_function("New request successful")
return req
except requests.exceptions.RequestException:
self.log_function("New request failed")
# Allows for the api to ignore one potentially bad request
if not self.failed_last:
self.failed_last = True
raise ApiError(e)
else:
raise FatalApiError(e)
|
def node_edge(self, node, edge, fields=None, params=None):
"""
:param node:
:param edge:
:param fields:
:param params:
:return:
"""
if fields:
fields = ",".join(fields)
parameters = {"fields": fields,
"access_token": self.key}
parameters = self.merge_params(parameters, params)
return self.api_call('%s/%s' % (node, edge), parameters)
|
def post(self, post_id, fields=None, **params):
"""
:param post_id:
:param fields:
:param params:
:return:
"""
if fields:
fields = ",".join(fields)
parameters = {"fields": fields,
"access_token": self.key}
parameters = self.merge_params(parameters, params)
return self.api_call('%s' % post_id, parameters)
|
def page_posts(self, page_id, after='', post_type="posts",
include_hidden=False, fields=None, **params):
"""
:param page_id:
:param after:
:param post_type: Can be 'posts', 'feed', 'tagged', 'promotable_posts'
:param include_hidden:
:param fields:
:param params:
:return:
"""
if fields:
fields = ",".join(fields)
parameters = {"access_token": self.key,
"after": after,
"fields": fields,
"include_hidden": include_hidden}
parameters = self.merge_params(parameters, params)
return self.api_call('%s/%s' % (page_id, post_type), parameters)
|
def post_comments(self, post_id, after='', order="chronological",
filter="stream", fields=None, **params):
"""
:param post_id:
:param after:
:param order: Can be 'ranked', 'chronological', 'reverse_chronological'
:param filter: Can be 'stream', 'toplevel'
:param fields: Can be 'id', 'application', 'attachment', 'can_comment',
'can_remove', 'can_hide', 'can_like', 'can_reply_privately', 'comments',
'comment_count', 'created_time', 'from', 'likes', 'like_count',
'live_broadcast_timestamp', 'message', 'message_tags', 'object',
'parent', 'private_reply_conversation', 'user_likes'
:param params:
:return:
"""
if fields:
fields = ",".join(fields)
parameters = {"access_token": self.key,
"after": after,
"order": order,
"fields": fields,
"filter": filter}
parameters = self.merge_params(parameters, params)
return self.api_call('%s/comments' % post_id, parameters)
|
def flatten(dictionary, parent_key=False, separator='.'):
"""
Turn a nested dictionary into a flattened dictionary
:param dictionary: The dictionary to flatten
:param parent_key: The string to prepend to dictionary's keys
:param separator: The string used to separate flattened keys
:return: A flattened dictionary
"""
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
|
def fill_gaps(list_dicts):
"""
Fill gaps in a list of dictionaries. Add empty keys to dictionaries in
the list that don't contain other entries' keys
:param list_dicts: A list of dictionaries
:return: A list of field names, a list of dictionaries with identical keys
"""
field_names = [] # != set bc. preserving order is better for output
for datum in list_dicts:
for key in datum.keys():
if key not in field_names:
field_names.append(key)
for datum in list_dicts:
for key in field_names:
if key not in datum:
datum[key] = ''
return list(field_names), list_dicts
|
def to_csv(data, field_names=None, filename='data.csv',
overwrite=True,
write_headers=True, append=False, flat=True,
primary_fields=None, sort_fields=True):
"""
DEPRECATED Write a list of dicts to a csv file
:param data: List of dicts
:param field_names: The list column names
:param filename: The name of the file
:param overwrite: Overwrite the file if exists
:param write_headers: Write the headers to the csv file
:param append: Write new rows if the file exists
:param flat: Flatten the dictionary before saving
:param primary_fields: The first columns of the csv file
:param sort_fields: Sort the field names alphabetically
:return: None
"""
# Don't overwrite if not specified
if not overwrite and path.isfile(filename):
raise FileExistsError('The file already exists')
# Replace file if append not specified
write_type = 'w' if not append else 'a'
# Flatten if flat is specified, or there are no predefined field names
if flat or not field_names:
data = [flatten(datum) for datum in data]
# Fill in gaps between dicts with empty string
if not field_names:
field_names, data = fill_gaps(data)
# Sort fields if specified
if sort_fields:
field_names.sort()
# If there are primary fields, move the field names to the front and sort
# based on first field
if primary_fields:
for key in primary_fields[::-1]:
field_names.insert(0, field_names.pop(field_names.index(key)))
data = sorted(data, key=lambda k: k[field_names[0]], reverse=True)
# Write the file
with open(filename, write_type, encoding='utf-8') as f:
writer = csv.DictWriter(f, fieldnames=field_names, lineterminator='\n')
if not append or write_headers:
writer.writeheader()
# Write rows containing fields in field names
for datum in data:
for key in list(datum.keys()):
if key not in field_names:
del datum[key]
elif type(datum[key]) is str:
datum[key] = datum[key].strip()
datum[key] = str(datum[key])
writer.writerow(datum)
|
def to_json(data, filename='data.json', indent=4):
"""
Write an object to a json file
:param data: The object
:param filename: The name of the file
:param indent: The indentation of the file
:return: None
"""
with open(filename, 'w') as f:
f.write(json.dumps(data, indent=indent))
|
def save_file(filename, source, folder="Downloads"):
"""
Download and save a file at path
:param filename: The name of the file
:param source: The location of the resource online
:param folder: The directory the file will be saved in
:return: None
"""
r = requests.get(source, stream=True)
if r.status_code == 200:
if not path.isdir(folder):
makedirs(folder, exist_ok=True)
with open("%s/%s" % (folder, filename), 'wb') as f:
for chunk in r:
f.write(chunk)
|
def convert_frames_to_video(tar_file_path, output_path="output.mp4", framerate=60, overwrite=False):
"""
Try to convert a tar file containing a sequence of frames saved by the
meshcat viewer into a single video file.
This relies on having `ffmpeg` installed on your system.
"""
output_path = os.path.abspath(output_path)
if os.path.isfile(output_path) and not overwrite:
raise ValueError("The output path {:s} already exists. To overwrite that file, you can pass overwrite=True to this function.".format(output_path))
with tempfile.TemporaryDirectory() as tmp_dir:
with tarfile.open(tar_file_path) as tar:
tar.extractall(tmp_dir)
args = ["ffmpeg",
"-r", str(framerate),
"-i", r"%07d.png",
"-vcodec", "libx264",
"-preset", "slow",
"-crf", "18"]
if overwrite:
args.append("-y")
args.append(output_path)
try:
subprocess.check_call(args, cwd=tmp_dir)
except subprocess.CalledProcessError as e:
print("""
Could not call `ffmpeg` to convert your frames into a video.
If you want to convert the frames manually, you can extract the
.tar archive into a directory, cd to that directory, and run:
ffmpeg -r 60 -i %07d.png \\\n\t -vcodec libx264 \\\n\t -preset slow \\\n\t -crf 18 \\\n\t output.mp4
""")
raise
print("Saved output as {:s}".format(output_path))
return output_path
|
def toJSON(self):
"""Get a json dict of the attributes of this object."""
return {"id": self.id,
"compile": self.compile,
"position": self.position,
"version": self.version}
|
def from_string(cls, content, position=1, file_id=None):
"""
Convenience method to create a file from a string.
This file object's metadata will have the id 'inlined_input'.
Inputs
------
content -- the content of the file (a string).
position -- (default 1) rank among all files of the model while parsing
see FileMetadata
file_id -- (default 'inlined_input') the file_id that will be used by
kappa.
"""
if file_id is None:
file_id = 'inlined_input'
return cls(FileMetadata(file_id, position), content)
|
def from_file(cls, fpath, position=1, file_id=None):
"""
Convience method to create a kappa file object from a file on disk
Inputs
------
fpath -- path to the file on disk
position -- (default 1) rank among all files of the model while parsing
see FileMetadata
file_id -- (default = fpath) the file_id that will be used by kappa.
"""
if file_id is None:
file_id = fpath
with open(fpath) as f:
code = f.read()
file_content = str(code)
file_metadata = FileMetadata(file_id, position)
return cls(file_metadata, file_content)
|
def _fix_docs(this_abc, child_class):
"""Make api method docs inheritted.
Specifically, insepect.getdoc will return values inheritted from this
abc for standardized api methods.
"""
# After python 3.5, this is basically handled automatically
if sys.version_info >= (3, 5):
return child_class
if not issubclass(child_class, this_abc):
raise KappaError('Cannot fix docs of class that is not decendent.')
# This method is modified from solution given in
# https://stackoverflow.com/a/8101598/8863865
for name, child_func in vars(child_class).items():
if callable(child_func) and not child_func.__doc__:
if name in this_abc.__abstractmethods__:
parent_func = getattr(this_abc, name)
child_func.__doc__ = parent_func.__doc__
return child_class
|
def add_model_string(self, model_str, position=1, file_id=None):
"""Add a kappa model given in a string to the project."""
if file_id is None:
file_id = self.make_unique_id('inlined_input')
ret_data = self.file_create(File.from_string(model_str, position,
file_id))
return ret_data
|
def add_model_file(self, model_fpath, position=1, file_id=None):
"""Add a kappa model from a file at given path to the project."""
if file_id is None:
file_id = self.make_unique_id('file_input')
ret_data = self.file_create(File.from_file(model_fpath, position,
file_id))
return ret_data
|
def set_default_sim_param(self, *args, **kwargs):
"""Set the simulation default simulation parameters.
You can pass one of two things in as input:
- a kappa_common.SimulationParameter instance
- the arguments and keyword argument to create such an instance.
The parameters you specify will be used by default in simulations run
by this client.
"""
if len(args) is 1 and isinstance(args[0], SimulationParameter):
self.__default_param = args[0]
else:
self.__default_param = SimulationParameter(*args, **kwargs)
return
|
def get_is_sim_running(self):
"""Check if the current simulation is running."""
sim_info = self.simulation_info()
try:
progress_info = sim_info['simulation_info_progress']
ret = progress_info['simulation_progress_is_running']
except KeyError: # Simulation has not been created.
ret = False
return ret
|
def wait_for_simulation_stop(self, timeout=None):
"""Block until the simulation is done or timeout seconds exceeded.
If the simulation stops before timeout, siminfo is returned.
"""
start = datetime.now()
while self.get_is_sim_running():
sleep(0.5)
if timeout is not None:
if (datetime.now() - start).seconds >= timeout:
ret = None
break
else:
ret = self.simulation_info()
return ret
|
def available_devices():
"""
Display available input and output audio devices along with their
port indices.
:return: Dictionary whose keys are the device index, the number of inputs and outputs, and their names.
:rtype: dict
"""
devices = {}
pA = pyaudio.PyAudio()
device_string = str()
for k in range(pA.get_device_count()):
dev = pA.get_device_info_by_index(k)
devices[k] = {'name': dev['name'], 'inputs': dev['maxInputChannels'], 'outputs': dev['maxOutputChannels']}
device_string += 'Index %d device name = %s, inputs = %d, outputs = %d\n' % \
(k,dev['name'],dev['maxInputChannels'],dev['maxOutputChannels'])
logger.debug(device_string)
return devices
|
def in_out_check(self):
"""
Checks the input and output to see if they are valid
"""
devices = available_devices()
if not self.in_idx in devices:
raise OSError("Input device is unavailable")
in_check = devices[self.in_idx]
if not self.out_idx in devices:
raise OSError("Output device is unavailable")
out_check = devices[self.out_idx]
if((in_check['inputs'] == 0) and (out_check['outputs']==0)):
raise StandardError('Invalid input and output devices')
elif(in_check['inputs'] == 0):
raise ValueError('Selected input device has no inputs')
elif(out_check['outputs'] == 0):
raise ValueError('Selected output device has no outputs')
return True
|
def interactive_stream(self,Tsec = 2, numChan = 1):
"""
Stream audio with start and stop radio buttons
Interactive stream is designed for streaming audio through this object using
a callback function. This stream is threaded, so it can be used with ipywidgets.
Click on the "Start Streaming" button to start streaming and click on "Stop Streaming"
button to stop streaming.
Parameters
----------
Tsec : stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite
mode. When in infinite mode, the "Stop Streaming" radio button or Tsec.stop() can be
used to stop the stream.
numChan : number of channels. Use 1 for mono and 2 for stereo.
"""
self.Tsec = Tsec
self.numChan = numChan
self.interactiveFG = 1
self.play = interactive(self.interaction,Stream = ToggleButtons(
options=['Start Streaming', 'Stop Streaming'],
description = ' ',
value = 'Stop Streaming') )
display(self.play)
|
def thread_stream(self,Tsec = 2,numChan = 1):
"""
Stream audio in a thread using callback. The stream is threaded, so widgets can be
used simultaneously during stream.
Parameters
----------
Tsec : stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite
mode. When in infinite mode, Tsec.stop() can be used to stop the stream.
numChan : number of channels. Use 1 for mono and 2 for stereo.
"""
def stream_thread(time,channel):
self.stream(Tsec=time,numChan = channel)
# Thread the streaming function
t = Thread(target=stream_thread, args=(Tsec,numChan,))
# Start the stream
t.start()
|
def stream(self,Tsec = 2,numChan = 1):
"""
Stream audio using callback
Parameters
----------
Tsec : stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite
mode. When in infinite mode, Tsec.stop() can be used to stop the stream.
numChan : number of channels. Use 1 for mono and 2 for stereo.
"""
self.Tsec = Tsec
self.numChan = numChan
self.N_samples = int(self.fs*Tsec)
self.data_capture = []
self.data_capture_left = []
self.data_capture_right = []
self.capture_sample_count = 0
self.DSP_tic = []
self.DSP_toc = []
self.start_time = time.time()
self.stop_stream = False
# open stream using callback (3)
stream = self.p.open(format=pyaudio.paInt16,
channels=numChan,
rate=self.fs,
input=True,
output=True,
input_device_index = self.in_idx,
output_device_index = self.out_idx,
frames_per_buffer = self.frame_length,
stream_callback=self.stream_callback)
# start the stream (4)
stream.start_stream()
# infinite mode
if(Tsec == 0):
while stream.is_active():
if self.stop_stream:
stream.stop_stream()
time.sleep(self.sleep_time)
else:
# wait for stream to finish (5)
while stream.is_active():
if self.capture_sample_count >= self.N_samples:
stream.stop_stream()
if self.stop_stream:
stream.stop_stream()
time.sleep(self.sleep_time)
# stop stream (6)
stream.stop_stream()
stream.close()
# close PyAudio (7)
self.p.terminate()
self.stream_data = True
# print('Audio input/output streaming session complete!')
if(self.interactiveFG):
# Move radio button back to 'Stop Streaming'
self.play.children[0].value = 'Stop Streaming'
else:
if(self.print_when_done == 1):
print('Completed')
|
def DSP_capture_add_samples(self,new_data):
"""
Append new samples to the data_capture array and increment the sample counter
If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0
then new values are not appended to the data_capture array.
"""
self.capture_sample_count += len(new_data)
if self.Tcapture > 0:
self.data_capture = np.hstack((self.data_capture,new_data))
if (self.Tcapture > 0) and (len(self.data_capture) > self.Ncapture):
self.data_capture = self.data_capture[-self.Ncapture:]
|
def DSP_capture_add_samples_stereo(self,new_data_left,new_data_right):
"""
Append new samples to the data_capture_left array and the data_capture_right
array and increment the sample counter. If length reaches Tcapture, then the
newest samples will be kept. If Tcapture = 0 then new values are not appended
to the data_capture array.
"""
self.capture_sample_count = self.capture_sample_count + len(new_data_left) + len(new_data_right)
if self.Tcapture > 0:
self.data_capture_left = np.hstack((self.data_capture_left,new_data_left))
self.data_capture_right = np.hstack((self.data_capture_right,new_data_right))
if (len(self.data_capture_left) > self.Ncapture):
self.data_capture_left = self.data_capture_left[-self.Ncapture:]
if (len(self.data_capture_right) > self.Ncapture):
self.data_capture_right = self.data_capture_right[-self.Ncapture:]
|
def DSP_callback_tic(self):
"""
Add new tic time to the DSP_tic list. Will not be called if
Tcapture = 0.
"""
if self.Tcapture > 0:
self.DSP_tic.append(time.time()-self.start_time)
|
def DSP_callback_toc(self):
"""
Add new toc time to the DSP_toc list. Will not be called if
Tcapture = 0.
"""
if self.Tcapture > 0:
self.DSP_toc.append(time.time()-self.start_time)
|
def stream_stats(self):
"""
Display basic statistics of callback execution: ideal period
between callbacks, average measured period between callbacks,
and average time spent in the callback.
"""
Tp = self.frame_length/float(self.fs)*1000
print('Delay (latency) in Entering the Callback the First Time = %6.2f (ms)' \
% (self.DSP_tic[0]*1000,))
print('Ideal Callback period = %1.2f (ms)' % Tp)
Tmp_mean = np.mean(np.diff(np.array(self.DSP_tic))[1:]*1000)
print('Average Callback Period = %1.2f (ms)' % Tmp_mean)
Tprocess_mean = np.mean(np.array(self.DSP_toc)-np.array(self.DSP_tic))*1000
print('Average Callback process time = %1.2f (ms)' % Tprocess_mean)
|
def cb_active_plot(self,start_ms,stop_ms,line_color='b'):
"""
Plot timing information of time spent in the callback. This is similar
to what a logic analyzer provides when probing an interrupt.
cb_active_plot( start_ms,stop_ms,line_color='b')
"""
# Find bounding k values that contain the [start_ms,stop_ms]
k_min_idx = np.nonzero(np.ravel(np.array(self.DSP_tic)*1000 < start_ms))[0]
if len(k_min_idx) < 1:
k_min = 0
else:
k_min = k_min_idx[-1]
k_max_idx = np.nonzero(np.ravel(np.array(self.DSP_tic)*1000 > stop_ms))[0]
if len(k_min_idx) < 1:
k_max= len(self.DSP_tic)
else:
k_max = k_max_idx[0]
for k in range(k_min,k_max):
if k == 0:
plt.plot([0,self.DSP_tic[k]*1000,self.DSP_tic[k]*1000,
self.DSP_toc[k]*1000,self.DSP_toc[k]*1000],
[0,0,1,1,0],'b')
else:
plt.plot([self.DSP_toc[k-1]*1000,self.DSP_tic[k]*1000,self.DSP_tic[k]*1000,
self.DSP_toc[k]*1000,self.DSP_toc[k]*1000],[0,0,1,1,0],'b')
plt.plot([self.DSP_toc[k_max-1]*1000,stop_ms],[0,0],'b')
plt.xlim([start_ms,stop_ms])
plt.title(r'Time Spent in the callback')
plt.ylabel(r'Timing')
plt.xlabel(r'Time (ms)')
plt.grid();
|
def get_LR(self,in_data):
"""
Splits incoming packed stereo data into separate left and right channels
and returns an array of left samples and an array of right samples
Parameters
----------
in_data : input data from the streaming object in the callback function.
Returns
-------
left_in : array of incoming left channel samples
right_in : array of incoming right channel samples
"""
for i in range(0,self.frame_length*2):
if i % 2:
self.right_in[(int)(i/2)] = in_data[i]
else:
self.left_in[(int)(i/2)] = in_data[i]
return self.left_in, self.right_in
|
def pack_LR(self,left_out,right_out):
"""
Packs separate left and right channel data into one array to output
and returns the output.
Parameters
----------
left_out : left channel array of samples going to output
right_out : right channel array of samples going to output
Returns
-------
out : packed left and right channel array of samples
"""
for i in range(0,self.frame_length*2):
if i % 2:
self.out[i] = right_out[(int)(i/2)]
else:
self.out[i] = left_out[(int)(i/2)]
return self.out
|
def IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop,
fs = 1.00, ftype = 'butter'):
"""
Design an IIR lowpass filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.
Parameters
----------
f_pass : Passband critical frequency in Hz
f_stop : Stopband critical frequency in Hz
Ripple_pass : Filter gain in dB at f_pass
Atten_stop : Filter attenuation in dB at f_stop
fs : Sampling rate in Hz
ftype : Analog prototype from 'butter' 'cheby1', 'cheby2',
'ellip', and 'bessel'
Returns
-------
b : ndarray of the numerator coefficients
a : ndarray of the denominator coefficients
sos : 2D ndarray of second-order section coefficients
Notes
-----
Additionally a text string telling the user the filter order is
written to the console, e.g., IIR cheby1 order = 8.
Examples
--------
>>> fs = 48000
>>> f_pass = 5000
>>> f_stop = 8000
>>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')
Mark Wickert October 2016
"""
b,a = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs,
Ripple_pass, Atten_stop,
ftype = ftype, output='ba')
sos = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs,
Ripple_pass, Atten_stop,
ftype = ftype, output='sos')
tag = 'IIR ' + ftype + ' order'
print('%s = %d.' % (tag,len(a)-1))
return b, a, sos
|
def IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop,
fs = 1.00, ftype = 'butter'):
"""
Design an IIR bandstop filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.
Mark Wickert October 2016
"""
b,a = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs],
[2*float(f_stop1)/fs, 2*float(f_stop2)/fs],
Ripple_pass, Atten_stop,
ftype = ftype, output='ba')
sos = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs],
[2*float(f_stop1)/fs, 2*float(f_stop2)/fs],
Ripple_pass, Atten_stop,
ftype =ftype, output='sos')
tag = 'IIR ' + ftype + ' order'
print('%s = %d.' % (tag,len(a)-1))
return b, a, sos
|
def freqz_resp_list(b,a=np.array([1]),mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):
"""
A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib
freq_resp(self,mode = 'dB',Npts = 1024)
A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib
freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))
b = ndarray of numerator coefficients
a = ndarray of denominator coefficents
mode = display mode: 'dB' magnitude, 'phase' in radians, or
'groupdelay_s' in samples and 'groupdelay_t' in sec,
all versus frequency in Hz
Npts = number of points to plot; default is 1024
fsize = figure size; defult is (6,4) inches
Mark Wickert, January 2015
"""
if type(b) == list:
# We have a list of filters
N_filt = len(b)
f = np.arange(0,Npts)/(2.0*Npts)
for n in range(N_filt):
w,H = signal.freqz(b[n],a[n],2*np.pi*f)
if n == 0:
plt.figure(figsize=fsize)
if mode.lower() == 'db':
plt.plot(f*fs,20*np.log10(np.abs(H)))
if n == N_filt-1:
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain (dB)')
plt.title('Frequency Response - Magnitude')
elif mode.lower() == 'phase':
plt.plot(f*fs,np.angle(H))
if n == N_filt-1:
plt.xlabel('Frequency (Hz)')
plt.ylabel('Phase (rad)')
plt.title('Frequency Response - Phase')
elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'):
"""
Notes
-----
Since this calculation involves finding the derivative of the
phase response, care must be taken at phase wrapping points
and when the phase jumps by +/-pi, which occurs when the
amplitude response changes sign. Since the amplitude response
is zero when the sign changes, the jumps do not alter the group
delay results.
"""
theta = np.unwrap(np.angle(H))
# Since theta for an FIR filter is likely to have many pi phase
# jumps too, we unwrap a second time 2*theta and divide by 2
theta2 = np.unwrap(2*theta)/2.
theta_dif = np.diff(theta2)
f_diff = np.diff(f)
Tg = -np.diff(theta2)/np.diff(w)
# For gain almost zero set groupdelay = 0
idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0]
Tg[idx] = np.zeros(len(idx))
max_Tg = np.max(Tg)
#print(max_Tg)
if mode.lower() == 'groupdelay_t':
max_Tg /= fs
plt.plot(f[:-1]*fs,Tg/fs)
plt.ylim([0,1.2*max_Tg])
else:
plt.plot(f[:-1]*fs,Tg)
plt.ylim([0,1.2*max_Tg])
if n == N_filt-1:
plt.xlabel('Frequency (Hz)')
if mode.lower() == 'groupdelay_t':
plt.ylabel('Group Delay (s)')
else:
plt.ylabel('Group Delay (samples)')
plt.title('Frequency Response - Group Delay')
else:
s1 = 'Error, mode must be "dB", "phase, '
s2 = '"groupdelay_s", or "groupdelay_t"'
print(s1 + s2)
|
def freqz_cas(sos,w):
"""
Cascade frequency response
Mark Wickert October 2016
"""
Ns,Mcol = sos.shape
w,Hcas = signal.freqz(sos[0,:3],sos[0,3:],w)
for k in range(1,Ns):
w,Htemp = signal.freqz(sos[k,:3],sos[k,3:],w)
Hcas *= Htemp
return w, Hcas
|
def unique_cpx_roots(rlist,tol = 0.001):
"""
The average of the root values is used when multiplicity
is greater than one.
Mark Wickert October 2016
"""
uniq = [rlist[0]]
mult = [1]
for k in range(1,len(rlist)):
N_uniq = len(uniq)
for m in range(N_uniq):
if abs(rlist[k]-uniq[m]) <= tol:
mult[m] += 1
uniq[m] = (uniq[m]*(mult[m]-1) + rlist[k])/float(mult[m])
break
uniq = np.hstack((uniq,rlist[k]))
mult = np.hstack((mult,[1]))
return np.array(uniq), np.array(mult)
|
def sos_zplane(sos,auto_scale=True,size=2,tol = 0.001):
"""
Create an z-plane pole-zero plot.
Create an z-plane pole-zero plot using the numerator
and denominator z-domain system function coefficient
ndarrays b and a respectively. Assume descending powers of z.
Parameters
----------
sos : ndarray of the sos coefficients
auto_scale : bool (default True)
size : plot radius maximum when scale = False
Returns
-------
(M,N) : tuple of zero and pole counts + plot window
Notes
-----
This function tries to identify repeated poles and zeros and will
place the multiplicity number above and to the right of the pole or zero.
The difficulty is setting the tolerance for this detection. Currently it
is set at 1e-3 via the function signal.unique_roots.
Examples
--------
>>> # Here the plot is generated using auto_scale
>>> sos_zplane(sos)
>>> # Here the plot is generated using manual scaling
>>> sos_zplane(sos,False,1.5)
"""
Ns,Mcol = sos.shape
# Extract roots from sos num and den removing z = 0
# roots due to first-order sections
N_roots = []
for k in range(Ns):
N_roots_tmp = np.roots(sos[k,:3])
if N_roots_tmp[1] == 0.:
N_roots = np.hstack((N_roots,N_roots_tmp[0]))
else:
N_roots = np.hstack((N_roots,N_roots_tmp))
D_roots = []
for k in range(Ns):
D_roots_tmp = np.roots(sos[k,3:])
if D_roots_tmp[1] == 0.:
D_roots = np.hstack((D_roots,D_roots_tmp[0]))
else:
D_roots = np.hstack((D_roots,D_roots_tmp))
# Plot labels if multiplicity greater than 1
x_scale = 1.5*size
y_scale = 1.5*size
x_off = 0.02
y_off = 0.01
M = len(N_roots)
N = len(D_roots)
if auto_scale:
if M > 0 and N > 0:
size = max(np.max(np.abs(N_roots)),np.max(np.abs(D_roots)))+.1
elif M > 0:
size = max(np.max(np.abs(N_roots)),1.0)+.1
elif N > 0:
size = max(1.0,np.max(np.abs(D_roots)))+.1
else:
size = 1.1
plt.figure(figsize=(5,5))
plt.axis('equal')
r = np.linspace(0,2*np.pi,200)
plt.plot(np.cos(r),np.sin(r),'r--')
plt.plot([-size,size],[0,0],'k-.')
plt.plot([0,0],[-size,size],'k-.')
if M > 0:
#N_roots = np.roots(b)
N_uniq, N_mult=unique_cpx_roots(N_roots,tol=tol)
plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8)
idx_N_mult = np.nonzero(np.ravel(N_mult>1))[0]
for k in range(len(idx_N_mult)):
x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale
y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale
plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]),
ha='center',va='bottom',fontsize=10)
if N > 0:
#D_roots = np.roots(a)
D_uniq, D_mult=unique_cpx_roots(D_roots,tol=tol)
plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8)
idx_D_mult = np.nonzero(np.ravel(D_mult>1))[0]
for k in range(len(idx_D_mult)):
x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale
y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale
plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]),
ha='center',va='bottom',fontsize=10)
if M - N < 0:
plt.plot(0.0,0.0,'bo',mfc='None',ms=8)
elif M - N > 0:
plt.plot(0.0,0.0,'kx',ms=8)
if abs(M - N) > 1:
plt.text(x_off*x_scale,y_off*y_scale,str(abs(M-N)),
ha='center',va='bottom',fontsize=10)
plt.xlabel('Real Part')
plt.ylabel('Imaginary Part')
plt.title('Pole-Zero Plot')
#plt.grid()
plt.axis([-size,size,-size,size])
return M,N
|
def firwin_bpf(N_taps, f1, f2, fs = 1.0, pass_zero=False):
"""
Design a windowed FIR bandpass filter in terms of passband
critical frequencies f1 < f2 in Hz relative to sampling rate
fs in Hz. The number of taps must be provided.
Mark Wickert October 2016
"""
return signal.firwin(N_taps,2*(f1,f2)/fs,pass_zero=pass_zero)
|
def firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, N_bump=0):
"""
Design an FIR lowpass filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.
Note: the passband ripple cannot be set independent of the
stopband attenuation.
Mark Wickert October 2016
"""
wc = 2*np.pi*(f_pass + f_stop)/2/fs
delta_w = 2*np.pi*(f_stop - f_pass)/fs
# Find the filter order
M = np.ceil((d_stop - 8)/(2.285*delta_w))
# Adjust filter order up or down as needed
M += N_bump
N_taps = M + 1
# Obtain the Kaiser window
beta = signal.kaiser_beta(d_stop)
w_k = signal.kaiser(N_taps,beta)
n = np.arange(N_taps)
b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k
b_k /= np.sum(b_k)
print('Kaiser Win filter taps = %d.' % N_taps)
return b_k
|
def firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop,
fs = 1.0, N_bump=0):
"""
Design an FIR bandpass filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the
desired stopband attenuation d_stop in dB for both stopbands,
all relative to a sampling rate of fs Hz.
Note: the passband ripple cannot be set independent of the
stopband attenuation.
Mark Wickert October 2016
"""
# Design BPF starting from simple LPF equivalent
# The upper and lower stopbands are assumed to have
# the same attenuation level. The LPF equivalent critical
# frequencies:
f_pass = (f_pass2 - f_pass1)/2
f_stop = (f_stop2 - f_stop1)/2
# Continue to design equivalent LPF
wc = 2*np.pi*(f_pass + f_stop)/2/fs
delta_w = 2*np.pi*(f_stop - f_pass)/fs
# Find the filter order
M = np.ceil((d_stop - 8)/(2.285*delta_w))
# Adjust filter order up or down as needed
M += N_bump
N_taps = M + 1
# Obtain the Kaiser window
beta = signal.kaiser_beta(d_stop)
w_k = signal.kaiser(N_taps,beta)
n = np.arange(N_taps)
b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k
b_k /= np.sum(b_k)
# Transform LPF to BPF
f0 = (f_pass2 + f_pass1)/2
w0 = 2*np.pi*f0/fs
n = np.arange(len(b_k))
b_k_bp = 2*b_k*np.cos(w0*(n-M/2))
print('Kaiser Win filter taps = %d.' % N_taps)
return b_k_bp
|
def lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB, fsamp = 1):
"""
Optimal FIR (equal ripple) Lowpass Order Determination
Text reference: Ifeachor, Digital Signal Processing a Practical Approach,
second edition, Prentice Hall, 2002.
Journal paper reference: Herriman et al., Practical Design Rules for Optimum
Finite Imulse Response Digitl Filters, Bell Syst. Tech. J., vol 52, pp.
769-799, July-Aug., 1973.IEEE, 1973.
"""
dpass = 1 - 10**(-dpass_dB/20)
dstop = 10**(-dstop_dB/20)
Df = (f_stop - f_pass)/fsamp
a1 = 5.309e-3
a2 = 7.114e-2
a3 = -4.761e-1
a4 = -2.66e-3
a5 = -5.941e-1
a6 = -4.278e-1
Dinf = np.log10(dstop)*(a1*np.log10(dpass)**2 + a2*np.log10(dpass) + a3) \
+ (a4*np.log10(dpass)**2 + a5*np.log10(dpass) + a6)
f = 11.01217 + 0.51244*(np.log10(dpass) - np.log10(dstop))
N = Dinf/Df - f*Df + 1
ff = 2*np.array([0, f_pass, f_stop, fsamp/2])/fsamp
aa = np.array([1, 1, 0, 0])
wts = np.array([1.0, dpass/dstop])
return int(N), ff, aa, wts
|
def bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp = 1):
"""
Optimal FIR (equal ripple) Bandpass Order Determination
Text reference: Ifeachor, Digital Signal Processing a Practical Approach,
second edition, Prentice Hall, 2002.
Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum
FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp.
204-206, April,1979.
"""
dpass = 1 - 10**(-dpass_dB/20)
dstop = 10**(-dstop_dB/20)
Df1 = (f_pass1 - f_stop1)/fsamp
Df2 = (f_stop2 - f_pass2)/fsamp
b1 = 0.01201
b2 = 0.09664
b3 = -0.51325
b4 = 0.00203
b5 = -0.5705
b6 = -0.44314
Df = min(Df1, Df2)
Cinf = np.log10(dstop)*(b1*np.log10(dpass)**2 + b2*np.log10(dpass) + b3) \
+ (b4*np.log10(dpass)**2 + b5*np.log10(dpass) + b6)
g = -14.6*np.log10(dpass/dstop) - 16.9
N = Cinf/Df + g*Df + 1
ff = 2*np.array([0, f_stop1, f_pass1, f_pass2, f_stop2, fsamp/2])/fsamp
aa = np.array([0, 0, 1, 1, 0, 0])
wts = np.array([dpass/dstop, 1, dpass/dstop])
return int(N), ff, aa, wts
|
def fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0, N_bump=5):
"""
Design an FIR lowpass filter using remez with order
determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple
d_pass dB and stopband attenuation d_stop dB all
relative to a sampling rate of fs Hz.
Mark Wickert October 2016, updated October 2018
"""
n, ff, aa, wts = lowpass_order(f_pass, f_stop, d_pass, d_stop, fsamp=fs)
# Bump up the order by N_bump to bring down the final d_pass & d_stop
N_taps = n
N_taps += N_bump
b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2)
print('Remez filter taps = %d.' % N_taps)
return b
|
def fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs = 1.0, N_bump=5):
"""
Design an FIR highpass filter using remez with order
determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple
d_pass dB and stopband attenuation d_stop dB all
relative to a sampling rate of fs Hz.
Mark Wickert October 2016, updated October 2018
"""
# Transform HPF critical frequencies to lowpass equivalent
f_pass_eq = fs/2. - f_pass
f_stop_eq = fs/2. - f_stop
# Design LPF equivalent
n, ff, aa, wts = lowpass_order(f_pass_eq, f_stop_eq, d_pass, d_stop, fsamp=fs)
# Bump up the order by N_bump to bring down the final d_pass & d_stop
N_taps = n
N_taps += N_bump
b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2)
# Transform LPF equivalent to HPF
n = np.arange(len(b))
b *= (-1)**n
print('Remez filter taps = %d.' % N_taps)
return b
|
def fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop,
fs = 1.0, N_bump=5):
"""
Design an FIR bandpass filter using remez with order
determination. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the
desired passband ripple d_pass dB and stopband attenuation
d_stop dB all relative to a sampling rate of fs Hz.
Mark Wickert October 2016, updated October 2018
"""
n, ff, aa, wts = bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2,
d_pass, d_stop, fsamp=fs)
# Bump up the order by N_bump to bring down the final d_pass & d_stop
N_taps = n
N_taps += N_bump
b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2)
print('Remez filter taps = %d.' % N_taps)
return b
|
def fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop,
fs = 1.0, N_bump=5):
"""
Design an FIR bandstop filter using remez with order
determination. The filter order is determined based on
f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the
desired passband ripple d_pass dB and stopband attenuation
d_stop dB all relative to a sampling rate of fs Hz.
Mark Wickert October 2016, updated October 2018
"""
n, ff, aa, wts = bandstop_order(f_pass1, f_stop1, f_stop2, f_pass2,
d_pass, d_stop, fsamp=fs)
# Bump up the order by N_bump to bring down the final d_pass & d_stop
# Initially make sure the number of taps is even so N_bump needs to be odd
if np.mod(n,2) != 0:
n += 1
N_taps = n
N_taps += N_bump
b = signal.remez(N_taps, ff, aa[0::2], wts, Hz=2,
maxiter = 25, grid_density = 16)
print('N_bump must be odd to maintain odd filter length')
print('Remez filter taps = %d.' % N_taps)
return b
|
def CIC(M, K):
"""
A functional form implementation of a cascade of integrator comb (CIC) filters.
Parameters
----------
M : Effective number of taps per section (typically the decimation factor).
K : The number of CIC sections cascaded (larger K gives the filter a wider image rejection bandwidth).
Returns
-------
b : FIR filter coefficients for a simple direct form implementation using the filter() function.
Notes
-----
Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC filter
requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR requiring
real coefficient multiplies via filter().
Mark Wickert July 2013
"""
if K == 1:
b = np.ones(M)
else:
h = np.ones(M)
b = h
for i in range(1, K):
b = signal.convolve(b, h) # cascade by convolving impulse responses
# Make filter have unity gain at DC
return b / np.sum(b)
|
def ten_band_eq_filt(x,GdB,Q=3.5):
"""
Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB.
The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and
stopping at 16 kHz. The Q of each filter is 3.5, but can be changed. The sampling rate
is assumed to be 44.1 kHz.
Parameters
----------
x : ndarray of the input signal samples
GdB : ndarray containing ten octave band gain values [G0dB,...,G9dB]
Q : Quality factor vector for each of the NB peaking filters
Returns
-------
y : ndarray of output signal samples
Examples
--------
>>> # Test with white noise
>>> w = randn(100000)
>>> y = ten_band_eq_filt(x,GdB)
>>> psd(y,2**10,44.1)
"""
fs = 44100.0 # Hz
NB = len(GdB)
if not NB == 10:
raise ValueError("GdB length not equal to ten")
Fc = 31.25*2**np.arange(NB)
B = np.zeros((NB,3))
A = np.zeros((NB,3))
# Create matrix of cascade coefficients
for k in range(NB):
[b,a] = peaking(GdB[k],Fc[k],Q)
B[k,:] = b
A[k,:] = a
# Pass signal x through the cascade of ten filters
y = np.zeros(len(x))
for k in range(NB):
if k == 0:
y = signal.lfilter(B[k,:],A[k,:],x)
else:
y = signal.lfilter(B[k,:],A[k,:],y)
return y
|
def ten_band_eq_resp(GdB,Q=3.5):
"""
Create a frequency response magnitude plot in dB of a ten band equalizer
using a semilogplot (semilogx()) type plot
Parameters
----------
GdB : Gain vector for 10 peaking filters [G0,...,G9]
Q : Quality factor for each peaking filter (default 3.5)
Returns
-------
Nothing : two plots are created
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0])
>>> plt.show()
"""
fs = 44100.0 # Hz
NB = len(GdB)
if not NB == 10:
raise ValueError("GdB length not equal to ten")
Fc = 31.25*2**np.arange(NB)
B = np.zeros((NB,3));
A = np.zeros((NB,3));
# Create matrix of cascade coefficients
for k in range(NB):
b,a = peaking(GdB[k],Fc[k],Q,fs)
B[k,:] = b
A[k,:] = a
# Create the cascade frequency response
F = np.logspace(1,np.log10(20e3),1000)
H = np.ones(len(F))*np.complex(1.0,0.0)
for k in range(NB):
w,Htemp = signal.freqz(B[k,:],A[k,:],2*np.pi*F/fs)
H *= Htemp
plt.figure(figsize=(6,4))
plt.subplot(211)
plt.semilogx(F,20*np.log10(abs(H)))
plt.axis([10, fs/2, -12, 12])
plt.grid()
plt.title('Ten-Band Equalizer Frequency Response')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain (dB)')
plt.subplot(212)
plt.stem(np.arange(NB),GdB,'b','bs')
#plt.bar(np.arange(NB)-.1,GdB,0.2)
plt.axis([0, NB-1, -12, 12])
plt.xlabel('Equalizer Band Number')
plt.ylabel('Gain Set (dB)')
plt.grid()
|
def peaking(GdB, fc, Q=3.5, fs=44100.):
"""
A second-order peaking filter having GdB gain at fc and approximately
and 0 dB otherwise.
The filter coefficients returns correspond to a biquadratic system function
containing five parameters.
Parameters
----------
GdB : Lowpass gain in dB
fc : Center frequency in Hz
Q : Filter Q which is inversely proportional to bandwidth
fs : Sampling frquency in Hz
Returns
-------
b : ndarray containing the numerator filter coefficients
a : ndarray containing the denominator filter coefficients
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import peaking
>>> from scipy import signal
>>> b,a = peaking(2.0,500)
>>> f = np.logspace(1,5,400)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()
>>> b,a = peaking(-5.0,500,4)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
"""
mu = 10**(GdB/20.)
kq = 4/(1 + mu)*np.tan(2*np.pi*fc/fs/(2*Q))
Cpk = (1 + kq *mu)/(1 + kq)
b1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq*mu)
b2 = (1 - kq*mu)/(1 + kq*mu)
a1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq)
a2 = (1 - kq)/(1 + kq)
b = Cpk*np.array([1, b1, b2])
a = np.array([1, a1, a2])
return b,a
|
def ex6_2(n):
"""
Generate a triangle pulse as described in Example 6-2
of Chapter 6.
You need to supply an index array n that covers at least [-2, 5].
The function returns the hard-coded signal of the example.
Parameters
----------
n : time index ndarray covering at least -2 to +5.
Returns
-------
x : ndarray of signal samples in x
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(-5,8)
>>> x = ss.ex6_2(n)
>>> plt.stem(n,x) # creates a stem plot of x vs n
"""
x = np.zeros(len(n))
for k, nn in enumerate(n):
if nn >= -2 and nn <= 5:
x[k] = 8 - nn
return x
|
def position_CD(Ka,out_type = 'fb_exact'):
"""
CD sled position control case study of Chapter 18.
The function returns the closed-loop and open-loop
system function for a CD/DVD sled position control
system. The loop amplifier gain is the only variable
that may be changed. The returned system function can
however be changed.
Parameters
----------
Ka : loop amplifier gain, start with 50.
out_type : 'open_loop' for open loop system function
out_type : 'fb_approx' for closed-loop approximation
out_type : 'fb_exact' for closed-loop exact
Returns
-------
b : numerator coefficient ndarray
a : denominator coefficient ndarray
Notes
-----
With the exception of the loop amplifier gain, all
other parameters are hard-coded from Case Study example.
Examples
--------
>>> b,a = position_CD(Ka,'fb_approx')
>>> b,a = position_CD(Ka,'fb_exact')
"""
rs = 10/(2*np.pi)
# Load b and a ndarrays with the coefficients
if out_type.lower() == 'open_loop':
b = np.array([Ka*4000*rs])
a = np.array([1,1275,31250,0])
elif out_type.lower() == 'fb_approx':
b = np.array([3.2*Ka*rs])
a = np.array([1, 25, 3.2*Ka*rs])
elif out_type.lower() == 'fb_exact':
b = np.array([4000*Ka*rs])
a = np.array([1, 1250+25, 25*1250, 4000*Ka*rs])
else:
raise ValueError('out_type must be: open_loop, fb_approx, or fc_exact')
return b, a
|
def cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H'):
"""
Cruise control with PI controller and hill disturbance.
This function returns various system function configurations
for a the cruise control Case Study example found in
the supplementary article. The plant model is obtained by the
linearizing the equations of motion and the controller contains a
proportional and integral gain term set via the closed-loop parameters
natuarl frequency wn (rad/s) and damping zeta.
Parameters
----------
wn : closed-loop natural frequency in rad/s, nominally 0.1
zeta : closed-loop damping factor, nominally 1.0
T : vehicle time constant, nominally 10 s
vcruise : cruise velocity set point, nominally 75 mph
vmax : maximum vehicle velocity, nominally 120 mph
tf_mode : 'H', 'HE', 'HVW', or 'HED' controls the system function returned by the function
'H' : closed-loop system function V(s)/R(s)
'HE' : closed-loop system function E(s)/R(s)
'HVW' : closed-loop system function V(s)/W(s)
'HED' : closed-loop system function E(s)/D(s), where D is the hill disturbance input
Returns
-------
b : numerator coefficient ndarray
a : denominator coefficient ndarray
Examples
--------
>>> # return the closed-loop system function output/input velocity
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H')
>>> # return the closed-loop system function loop error/hill disturbance
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED')
"""
tau = T/2.*vmax/vcruise
g = 9.8
g *= 3*60**2/5280. # m/s to mph conversion
Kp = T*(2*zeta*wn-1/tau)/vmax
Ki = T*wn**2./vmax
K = Kp*vmax/T
print('wn = ', np.sqrt(K/(Kp/Ki)))
print('zeta = ', (K + 1/tau)/(2*wn))
a = np.array([1, 2*zeta*wn, wn**2])
if tf_mode == 'H':
b = np.array([K, wn**2])
elif tf_mode == 'HE':
b = np.array([1, 2*zeta*wn-K, 0.])
elif tf_mode == 'HVW':
b = np.array([ 1, wn**2/K+1/tau, wn**2/(K*tau)])
b *= Kp
elif tf_mode == 'HED':
b = np.array([g, 0])
else:
raise ValueError('tf_mode must be: H, HE, HVU, or HED')
return b, a
|
def splane(b,a,auto_scale=True,size=[-1,1,-1,1]):
"""
Create an s-plane pole-zero plot.
As input the function uses the numerator and denominator
s-domain system function coefficient ndarrays b and a respectively.
Assumed to be stored in descending powers of s.
Parameters
----------
b : numerator coefficient ndarray.
a : denominator coefficient ndarray.
auto_scale : True
size : [xmin,xmax,ymin,ymax] plot scaling when scale = False
Returns
-------
(M,N) : tuple of zero and pole counts + plot window
Notes
-----
This function tries to identify repeated poles and zeros and will
place the multiplicity number above and to the right of the pole or zero.
The difficulty is setting the tolerance for this detection. Currently it
is set at 1e-3 via the function signal.unique_roots.
Examples
--------
>>> # Here the plot is generated using auto_scale
>>> splane(b,a)
>>> # Here the plot is generated using manual scaling
>>> splane(b,a,False,[-10,1,-10,10])
"""
M = len(b) - 1
N = len(a) - 1
plt.figure(figsize=(5,5))
#plt.axis('equal')
N_roots = np.array([0.0])
if M > 0:
N_roots = np.roots(b)
D_roots = np.array([0.0])
if N > 0:
D_roots = np.roots(a)
if auto_scale:
size[0] = min(np.min(np.real(N_roots)),np.min(np.real(D_roots)))-0.5
size[1] = max(np.max(np.real(N_roots)),np.max(np.real(D_roots)))+0.5
size[1] = max(size[1],0.5)
size[2] = min(np.min(np.imag(N_roots)),np.min(np.imag(D_roots)))-0.5
size[3] = max(np.max(np.imag(N_roots)),np.max(np.imag(D_roots)))+0.5
plt.plot([size[0],size[1]],[0,0],'k--')
plt.plot([0,0],[size[2],size[3]],'r--')
# Plot labels if multiplicity greater than 1
x_scale = size[1]-size[0]
y_scale = size[3]-size[2]
x_off = 0.03
y_off = 0.01
if M > 0:
#N_roots = np.roots(b)
N_uniq, N_mult=signal.unique_roots(N_roots,tol=1e-3, rtype='avg')
plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8)
idx_N_mult = np.nonzero(np.ravel(N_mult>1))[0]
for k in range(len(idx_N_mult)):
x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale
y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale
plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]),ha='center',va='bottom',fontsize=10)
if N > 0:
#D_roots = np.roots(a)
D_uniq, D_mult=signal.unique_roots(D_roots,tol=1e-3, rtype='avg')
plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8)
idx_D_mult = np.nonzero(np.ravel(D_mult>1))[0]
for k in range(len(idx_D_mult)):
x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale
y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale
plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]),ha='center',va='bottom',fontsize=10)
plt.xlabel('Real Part')
plt.ylabel('Imaginary Part')
plt.title('Pole-Zero Plot')
#plt.grid()
plt.axis(np.array(size))
return M,N
|
def OS_filter(x,h,N,mode=0):
"""
Overlap and save transform domain FIR filtering.
This function implements the classical overlap and save method of
transform domain filtering using a length P FIR filter.
Parameters
----------
x : input signal to be filtered as an ndarray
h : FIR filter coefficients as an ndarray of length P
N : FFT size > P, typically a power of two
mode : 0 or 1, when 1 returns a diagnostic matrix
Returns
-------
y : the filtered output as an ndarray
y_mat : an ndarray whose rows are the individual overlap outputs.
Notes
-----
y_mat is used for diagnostics and to gain understanding of the algorithm.
Examples
--------
>>> n = arange(0,100)
>>> x = cos(2*pi*0.05*n)
>>> b = ones(10)
>>> y = OS_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OS_filter(x,h,N,1)
"""
P = len(h)
# zero pad start of x so first frame can recover first true samples of x
x = np.hstack((np.zeros(P-1),x))
L = N - P + 1
Nx = len(x)
Nframe = int(np.ceil(Nx/float(L)))
# zero pad end of x to full number of frames needed
x = np.hstack((x,np.zeros(Nframe*L-Nx)))
y = np.zeros(int(Nframe*N))
# create an instrumentation matrix to observe the overlap and save behavior
y_mat = np.zeros((Nframe,int(Nframe*N)))
H = fft.fft(h,N)
# begin the filtering operation
for k in range(Nframe):
xk = x[k*L:k*L+N]
Xk = fft.fft(xk,N)
Yk = H*Xk
yk = np.real(fft.ifft(Yk)) # imag part should be zero
y[k*L+P-1:k*L+N] = yk[P-1:]
y_mat[k,k*L:k*L+N] = yk
if mode == 1:
return y[P-1:Nx], y_mat[:,P-1:Nx]
else:
return y[P-1:Nx]
|
def lp_samp(fb,fs,fmax,N,shape='tri',fsize=(6,4)):
"""
Lowpass sampling theorem plotting function.
Display the spectrum of a sampled signal after setting the bandwidth,
sampling frequency, maximum display frequency, and spectral shape.
Parameters
----------
fb : spectrum lowpass bandwidth in Hz
fs : sampling frequency in Hz
fmax : plot over [-fmax,fmax]
shape : 'tri' or 'line'
N : number of translates, N positive and N negative
fsize : the size of the figure window, default (6,4)
Returns
-------
Nothing : A plot window opens containing the spectrum plot
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import lp_samp
No aliasing as bandwidth 10 Hz < 25/2; fs > fb.
>>> lp_samp(10,25,50,10)
>>> plt.show()
Now aliasing as bandwidth 15 Hz > 25/2; fs < fb.
>>> lp_samp(15,25,50,10)
"""
plt.figure(figsize=fsize)
# define the plot interval
f = np.arange(-fmax,fmax+fmax/200.,fmax/200.)
A = 1.0
line_ampl = A/2.*np.array([0, 1])
# plot the lowpass spectrum in black
shapes = ['tri', 'line']
if shape.lower() not in shapes:
raise ValueError('shape must be tri or line')
if shape.lower() == 'tri':
plt.plot(f,lp_tri(f,fb))
# overlay positive and negative frequency translates
for n in range(N):
plt.plot(f, lp_tri(f - (n + 1) * fs, fb), '--r')
plt.plot(f, lp_tri(f + (n + 1) * fs, fb), '--g')
elif shape.lower() == 'line':
plt.plot([fb, fb],line_ampl,'b', linewidth=2)
plt.plot([-fb, -fb],line_ampl,'b', linewidth=2)
# overlay positive and negative frequency translates
for n in range(N):
plt.plot([fb+(n+1)*fs, fb+(n+1)*fs],line_ampl,'--r', linewidth=2)
plt.plot([-fb+(n+1)*fs, -fb+(n+1)*fs],line_ampl,'--r', linewidth=2)
plt.plot([fb-(n+1)*fs, fb-(n+1)*fs],line_ampl,'--g', linewidth=2)
plt.plot([-fb-(n+1)*fs, -fb-(n+1)*fs],line_ampl,'--g', linewidth=2)
plt.ylabel('Spectrum Magnitude')
plt.xlabel('Frequency in Hz')
plt.axis([-fmax,fmax,0,1])
plt.grid()
|
def lp_tri(f, fb):
"""
Triangle spectral shape function used by :func:`lp_samp`.
Parameters
----------
f : ndarray containing frequency samples
fb : the bandwidth as a float constant
Returns
-------
x : ndarray of spectrum samples for a single triangle shape
Notes
-----
This is a support function for the lowpass spectrum plotting function
:func:`lp_samp`.
Examples
--------
>>> x = lp_tri(f, fb)
"""
x = np.zeros(len(f))
for k in range(len(f)):
if abs(f[k]) <= fb:
x[k] = 1 - abs(f[k])/float(fb)
return x
|
def sinusoidAWGN(x,SNRdB):
"""
Add white Gaussian noise to a single real sinusoid.
Input a single sinusoid to this function and it returns a noisy
sinusoid at a specific SNR value in dB. Sinusoid power is calculated
using np.var.
Parameters
----------
x : Input signal as ndarray consisting of a single sinusoid
SNRdB : SNR in dB for output sinusoid
Returns
-------
y : Noisy sinusoid return vector
Examples
--------
>>> # set the SNR to 10 dB
>>> n = arange(0,10000)
>>> x = cos(2*pi*0.04*n)
>>> y = sinusoidAWGN(x,10.0)
"""
# Estimate signal power
x_pwr = np.var(x)
# Create noise vector
noise = np.sqrt(x_pwr/10**(SNRdB/10.))*np.random.randn(len(x));
return x + noise
|
def discrim(x):
"""
function disdata = discrim(x)
where x is an angle modulated signal in complex baseband form.
Mark Wickert
"""
X=np.real(x) # X is the real part of the received signal
Y=np.imag(x) # Y is the imaginary part of the received signal
b=np.array([1, -1]) # filter coefficients for discrete derivative
a=np.array([1, 0]) # filter coefficients for discrete derivative
derY=signal.lfilter(b,a,Y) # derivative of Y,
derX=signal.lfilter(b,a,X) # " X,
disdata=(X*derY-Y*derX)/(X**2+Y**2)
return disdata
|
def mono_FM(x,fs=2.4e6,file_name='test.wav'):
"""
Decimate complex baseband input by 10
Design 1st decimation lowpass filter (f_c = 200 KHz)
"""
b = signal.firwin(64,2*200e3/float(fs))
# Filter and decimate (should be polyphase)
y = signal.lfilter(b,1,x)
z = ss.downsample(y,10)
# Apply complex baseband discriminator
z_bb = discrim(z)
# Design 2nd decimation lowpass filter (fc = 12 KHz)
bb = signal.firwin(64,2*12e3/(float(fs)/10))
# Filter and decimate
zz_bb = signal.lfilter(bb,1,z_bb)
# Decimate by 5
z_out = ss.downsample(zz_bb,5)
# Save to wave file
ss.to_wav(file_name, 48000, z_out/2)
print('Done!')
return z_bb, z_out
|
def stereo_FM(x,fs=2.4e6,file_name='test.wav'):
"""
Stereo demod from complex baseband at sampling rate fs.
Assume fs is 2400 ksps
Mark Wickert July 2017
"""
N1 = 10
b = signal.firwin(64,2*200e3/float(fs))
# Filter and decimate (should be polyphase)
y = signal.lfilter(b,1,x)
z = ss.downsample(y,N1)
# Apply complex baseband discriminator
z_bb = discrim(z)
# Work with the (3) stereo multiplex signals:
# Begin by designing a lowpass filter for L+R and DSP demoded (L-R)
# (fc = 12 KHz)
b12 = signal.firwin(128,2*12e3/(float(fs)/N1))
# The L + R term is at baseband, we just lowpass filter to remove
# other terms above 12 kHz.
y_lpr = signal.lfilter(b12,1,z_bb)
b19 = signal.firwin(128,2*1e3*np.array([19-5,19+5])/(float(fs)/N1),
pass_zero=False);
z_bb19 = signal.lfilter(b19,1,z_bb)
# Lock PLL to 19 kHz pilot
# A type 2 loop with bandwidth Bn = 10 Hz and damping zeta = 0.707
# The VCO quiescent frequency is set to 19000 Hz.
theta, phi_error = pilot_PLL(z_bb19,19000,fs/N1,2,10,0.707)
# Coherently demodulate the L - R subcarrier at 38 kHz.
# theta is the PLL output phase at 19 kHz, so to double multiply
# by 2 and wrap with cos() or sin().
# First bandpass filter
b38 = signal.firwin(128,2*1e3*np.array([38-5,38+5])/(float(fs)/N1),
pass_zero=False);
x_lmr = signal.lfilter(b38,1,z_bb)
# Coherently demodulate using the PLL output phase
x_lmr = 2*np.sqrt(2)*np.cos(2*theta)*x_lmr
# Lowpass at 12 kHz to recover the desired DSB demod term
y_lmr = signal.lfilter(b12,1,x_lmr)
# Matrix the y_lmr and y_lpr for form right and left channels:
y_left = y_lpr + y_lmr
y_right = y_lpr - y_lmr
# Decimate by N2 (nominally 5)
N2 = 5
fs2 = float(fs)/(N1*N2) # (nominally 48 ksps)
y_left_DN2 = ss.downsample(y_left,N2)
y_right_DN2 = ss.downsample(y_right,N2)
# Deemphasize with 75 us time constant to 'undo' the preemphasis
# applied at the transmitter in broadcast FM.
# A 1-pole digital lowpass works well here.
a_de = np.exp(-2.1*1e3*2*np.pi/fs2)
z_left = signal.lfilter([1-a_de],[1, -a_de],y_left_DN2)
z_right = signal.lfilter([1-a_de],[1, -a_de],y_right_DN2)
# Place left and righ channels as side-by-side columns in a 2D array
z_out = np.hstack((np.array([z_left]).T,(np.array([z_right]).T)))
ss.to_wav(file_name, 48000, z_out/2)
print('Done!')
#return z_bb, z_out
return z_bb, theta, y_lpr, y_lmr, z_out
|
def pilot_PLL(xr,fq,fs,loop_type,Bn,zeta):
"""
theta, phi_error = pilot_PLL(xr,fq,fs,loop_type,Bn,zeta)
Mark Wickert, April 2014
"""
T = 1/float(fs)
# Set the VCO gain in Hz/V
Kv = 1.0
# Design a lowpass filter to remove the double freq term
Norder = 5
b_lp,a_lp = signal.butter(Norder,2*(fq/2.)/float(fs))
fstate = np.zeros(Norder) # LPF state vector
Kv = 2*np.pi*Kv # convert Kv in Hz/v to rad/s/v
if loop_type == 1:
# First-order loop parameters
fn = Bn
Kt = 2*np.pi*fn # loop natural frequency in rad/s
elif loop_type == 2:
# Second-order loop parameters
fn = 1/(2*np.pi)*2*Bn/(zeta + 1/(4*zeta)) # given Bn in Hz
Kt = 4*np.pi*zeta*fn # loop natural frequency in rad/s
a = np.pi*fn/zeta
else:
print('Loop type must be 1 or 2')
# Initialize integration approximation filters
filt_in_last = 0
filt_out_last = 0
vco_in_last = 0
vco_out = 0
vco_out_last = 0
# Initialize working and final output vectors
n = np.arange(0,len(xr))
theta = np.zeros(len(xr))
ev = np.zeros(len(xr))
phi_error = np.zeros(len(xr))
# Normalize total power in an attemp to make the 19kHz sinusoid
# component have amplitude ~1.
#xr = xr/(2/3*std(xr));
# Begin the simulation loop
for kk in range(len(n)):
# Sinusoidal phase detector (simple multiplier)
phi_error[kk] = 2*xr[kk]*np.sin(vco_out)
# LPF to remove double frequency term
phi_error[kk],fstate = signal.lfilter(b_lp,a_lp,np.array([phi_error[kk]]),zi=fstate)
pd_out = phi_error[kk]
#pd_out = 0
# Loop gain
gain_out = Kt/Kv*pd_out # apply VCO gain at VCO
# Loop filter
if loop_type == 2:
filt_in = a*gain_out
filt_out = filt_out_last + T/2.*(filt_in + filt_in_last)
filt_in_last = filt_in
filt_out_last = filt_out
filt_out = filt_out + gain_out
else:
filt_out = gain_out
# VCO
vco_in = filt_out + fq/(Kv/(2*np.pi)) # bias to quiescent freq.
vco_out = vco_out_last + T/2.*(vco_in + vco_in_last)
vco_in_last = vco_in
vco_out_last = vco_out
vco_out = Kv*vco_out # apply Kv
# Measured loop signals
ev[kk] = filt_out
theta[kk] = np.mod(vco_out,2*np.pi); # The vco phase mod 2pi
return theta,phi_error
|
def sccs_bit_sync(y,Ns):
"""
rx_symb_d,clk,track = sccs_bit_sync(y,Ns)
//////////////////////////////////////////////////////
Symbol synchronization algorithm using SCCS
//////////////////////////////////////////////////////
y = baseband NRZ data waveform
Ns = nominal number of samples per symbol
Reworked from ECE 5675 Project
Translated from m-code version
Mark Wickert April 2014
"""
# decimated symbol sequence for SEP
rx_symb_d = np.zeros(int(np.fix(len(y)/Ns)))
track = np.zeros(int(np.fix(len(y)/Ns)))
bit_count = -1
y_abs = np.zeros(len(y))
clk = np.zeros(len(y))
k = Ns+1 #initial 1-of-Ns symbol synch clock phase
# Sample-by-sample processing required
for i in range(len(y)):
#y_abs(i) = abs(round(real(y(i))))
if i >= Ns: # do not process first Ns samples
# Collect timing decision unit (TDU) samples
y_abs[i] = np.abs(np.sum(y[i-Ns+1:i+1]))
# Update sampling instant and take a sample
# For causality reason the early sample is 'i',
# the on-time or prompt sample is 'i-1', and
# the late sample is 'i-2'.
if (k == 0):
# Load the samples into the 3x1 TDU register w_hat.
# w_hat[1] = late, w_hat[2] = on-time; w_hat[3] = early.
w_hat = y_abs[i-2:i+1]
bit_count += 1
if w_hat[1] != 0:
if w_hat[0] < w_hat[2]:
k = Ns-1
clk[i-2] = 1
rx_symb_d[bit_count] = y[i-2-int(np.round(Ns/2))-1]
elif w_hat[0] > w_hat[2]:
k = Ns+1
clk[i] = 1
rx_symb_d[bit_count] = y[i-int(np.round(Ns/2))-1]
else:
k = Ns
clk[i-1] = 1
rx_symb_d[bit_count] = y[i-1-int(np.round(Ns/2))-1]
else:
k = Ns
clk[i-1] = 1
rx_symb_d[bit_count] = y[i-1-int(np.round(Ns/2))]
track[bit_count] = np.mod(i,Ns)
k -= 1
# Trim the final output to bit_count
rx_symb_d = rx_symb_d[:bit_count]
return rx_symb_d, clk, track
|
def fsk_BEP(rx_data,m,flip):
"""
fsk_BEP(rx_data,m,flip)
Estimate the BEP of the data bits recovered
by the RTL-SDR Based FSK Receiver.
The reference m-sequence generated in Python
was found to produce sequences running in the opposite
direction relative to the m-sequences generated by the
mbed. To allow error detection the reference m-sequence
is flipped.
Mark Wickert April 2014
"""
Nbits = len(rx_data)
c = dc.m_seq(m)
if flip == 1:
# Flip the sequence to compenstate for mbed code difference
# First make it a 1xN array
c.shape = (1,len(c))
c = np.fliplr(c).flatten()
L = int(np.ceil(Nbits/float(len(c))))
tx_data = np.dot(c.reshape(len(c),1),np.ones((1,L)))
tx_data = tx_data.T.reshape((1,len(c)*L)).flatten()
tx_data = tx_data[:Nbits]
# Convert to +1/-1 bits
tx_data = 2*tx_data - 1
Bit_count,Bit_errors = dc.BPSK_BEP(rx_data,tx_data)
print('len rx_data = %d, len tx_data = %d' % (len(rx_data),len(tx_data)))
Pe = Bit_errors/float(Bit_count)
print('/////////////////////////////////////')
print('Bit Errors: %d' % Bit_errors)
print('Bits Total: %d' % Bit_count)
print(' BEP: %2.2e' % Pe)
print('/////////////////////////////////////')
|
def complex2wav(filename,rate,x):
"""
Save a complex signal vector to a wav file for compact binary
storage of 16-bit signal samples. The wav left and right channels
are used to save real (I) and imaginary (Q) values. The rate is
just a convent way of documenting the original signal sample rate.
complex2wav(filename,rate,x)
Mark Wickert April 2014
"""
x_wav = np.hstack((np.array([x.real]).T,np.array([x.imag]).T))
ss.to_wav(filename, rate, x_wav)
print('Saved as binary wav file with (I,Q)<=>(L,R)')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.