Search is not available for this dataset
text
stringlengths
75
104k
def write_temporal_network(gtfs, output_filename, start_time_ut=None, end_time_ut=None): """ Parameters ---------- gtfs : gtfspy.GTFS output_filename : str path to the directory where to store the extracts start_time_ut: int | None start time of the extract in unixtime (seconds after epoch) end_time_ut: int | None end time of the extract in unixtime (seconds after epoch) """ util.makedirs(os.path.dirname(os.path.abspath(output_filename))) pandas_data_frame = temporal_network(gtfs, start_time_ut=start_time_ut, end_time_ut=end_time_ut) pandas_data_frame.to_csv(output_filename, encoding='utf-8', index=False)
def _write_stop_to_stop_network_edges(net, file_name, data=True, fmt=None): """ Write out a network Parameters ---------- net: networkx.DiGraph base_name: str path to the filename (without extension) data: bool, optional whether or not to write out any edge data present fmt: str, optional If "csv" write out the network in csv format. """ if fmt is None: fmt = "edg" if fmt == "edg": if data: networkx.write_edgelist(net, file_name, data=True) else: networkx.write_edgelist(net, file_name) elif fmt == "csv": with open(file_name, 'w') as f: # writing out the header edge_iter = net.edges_iter(data=True) _, _, edg_data = next(edge_iter) edg_data_keys = list(sorted(edg_data.keys())) header = ";".join(["from_stop_I", "to_stop_I"] + edg_data_keys) f.write(header) for from_node_I, to_node_I, data in net.edges_iter(data=True): f.write("\n") values = [str(from_node_I), str(to_node_I)] data_values = [] for key in edg_data_keys: if key == "route_I_counts": route_I_counts_string = str(data[key]).replace(" ", "")[1:-1] data_values.append(route_I_counts_string) else: data_values.append(str(data[key])) all_values = values + data_values f.write(";".join(all_values))
def write_gtfs(gtfs, output): """ Write out the database according to the GTFS format. Parameters ---------- gtfs: gtfspy.GTFS output: str Path where to put the GTFS files if output ends with ".zip" a ZIP-file is created instead. Returns ------- None """ output = os.path.abspath(output) uuid_str = "tmp_" + str(uuid.uuid1()) if output[-4:] == '.zip': zip = True out_basepath = os.path.dirname(os.path.abspath(output)) if not os.path.exists(out_basepath): raise IOError(out_basepath + " does not exist, cannot write gtfs as a zip") tmp_dir = os.path.join(out_basepath, str(uuid_str)) # zip_file_na,e = ../out_basedir + ".zip else: zip = False out_basepath = output tmp_dir = os.path.join(out_basepath + "_" + str(uuid_str)) os.makedirs(tmp_dir, exist_ok=True) gtfs_table_to_writer = { "agency": _write_gtfs_agencies, "calendar": _write_gtfs_calendar, "calendar_dates": _write_gtfs_calendar_dates, # fare attributes and fare_rules omitted (seldomly used) "feed_info": _write_gtfs_feed_info, # "frequencies": not written, as they are incorporated into trips and routes, # Frequencies table is expanded into other tables on initial import. -> Thus frequencies.txt is not created "routes": _write_gtfs_routes, "shapes": _write_gtfs_shapes, "stops": _write_gtfs_stops, "stop_times": _write_gtfs_stop_times, "transfers": _write_gtfs_transfers, "trips": _write_gtfs_trips, } for table, writer in gtfs_table_to_writer.items(): fname_to_write = os.path.join(tmp_dir, table + '.txt') print(fname_to_write) writer(gtfs, open(os.path.join(tmp_dir, table + '.txt'), 'w')) if zip: shutil.make_archive(output[:-4], 'zip', tmp_dir) shutil.rmtree(tmp_dir) else: print("moving " + str(tmp_dir) + " to " + out_basepath) os.rename(tmp_dir, out_basepath)
def _remove_I_columns(df): """ Remove columns ending with I from a pandas.DataFrame Parameters ---------- df: dataFrame Returns ------- None """ all_columns = list(filter(lambda el: el[-2:] == "_I", df.columns)) for column in all_columns: del df[column]
def _scan_footpaths_to_departure_stop(self, connection_dep_stop, connection_dep_time, arrival_time_target): """ A helper method for scanning the footpaths. Updates self._stop_profiles accordingly""" for _, neighbor, data in self._walk_network.edges_iter(nbunch=[connection_dep_stop], data=True): d_walk = data['d_walk'] neighbor_dep_time = connection_dep_time - d_walk / self._walk_speed pt = LabelTimeSimple(departure_time=neighbor_dep_time, arrival_time_target=arrival_time_target) self._stop_profiles[neighbor].update_pareto_optimal_tuples(pt)
def plot_route_network_from_gtfs(g, ax=None, spatial_bounds=None, map_alpha=0.8, scalebar=True, legend=True, return_smopy_map=False, map_style=None): """ Parameters ---------- g: A gtfspy.gtfs.GTFS object Where to get the data from? ax: matplotlib.Axes object, optional If None, a new figure and an axis is created spatial_bounds: dict, optional with str keys: lon_min, lon_max, lat_min, lat_max return_smopy_map: bool, optional defaulting to false Returns ------- ax: matplotlib.axes.Axes """ assert(isinstance(g, GTFS)) route_shapes = g.get_all_route_shapes() if spatial_bounds is None: spatial_bounds = get_spatial_bounds(g, as_dict=True) if ax is not None: bbox = ax.get_window_extent().transformed(ax.figure.dpi_scale_trans.inverted()) width, height = bbox.width, bbox.height spatial_bounds = _expand_spatial_bounds_to_fit_axes(spatial_bounds, width, height) return plot_as_routes(route_shapes, ax=ax, spatial_bounds=spatial_bounds, map_alpha=map_alpha, plot_scalebar=scalebar, legend=legend, return_smopy_map=return_smopy_map, map_style=map_style)
def plot_as_routes(route_shapes, ax=None, spatial_bounds=None, map_alpha=0.8, plot_scalebar=True, legend=True, return_smopy_map=False, line_width_attribute=None, line_width_scale=1.0, map_style=None): """ Parameters ---------- route_shapes: list of dicts that should have the following keys name, type, agency, lats, lons with types list, list, str, list, list ax: axis object spatial_bounds: dict map_alpha: plot_scalebar: bool legend: return_smopy_map: line_width_attribute: line_width_scale: Returns ------- ax: matplotlib.axes object """ lon_min = spatial_bounds['lon_min'] lon_max = spatial_bounds['lon_max'] lat_min = spatial_bounds['lat_min'] lat_max = spatial_bounds['lat_max'] if ax is None: fig = plt.figure() ax = fig.add_subplot(111) smopy_map = get_smopy_map(lon_min, lon_max, lat_min, lat_max, map_style=map_style) ax = smopy_map.show_mpl(figsize=None, ax=ax, alpha=map_alpha) bound_pixel_xs, bound_pixel_ys = smopy_map.to_pixels(numpy.array([lat_min, lat_max]), numpy.array([lon_min, lon_max])) route_types_to_lines = {} for shape in route_shapes: route_type = ROUTE_TYPE_CONVERSION[shape['type']] lats = numpy.array(shape['lats']) lons = numpy.array(shape['lons']) if line_width_attribute: line_width = line_width_scale * shape[line_width_attribute] else: line_width = 1 xs, ys = smopy_map.to_pixels(lats, lons) line, = ax.plot(xs, ys, linewidth=line_width, color=ROUTE_TYPE_TO_COLOR[route_type], zorder=ROUTE_TYPE_TO_ZORDER[route_type]) route_types_to_lines[route_type] = line if legend: lines = list(route_types_to_lines.values()) labels = [ROUTE_TYPE_TO_SHORT_DESCRIPTION[route_type] for route_type in route_types_to_lines.keys()] ax.legend(lines, labels, loc="upper left") if plot_scalebar: _add_scale_bar(ax, lat_max, lon_min, lon_max, bound_pixel_xs.max() - bound_pixel_xs.min()) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim(bound_pixel_xs.min(), bound_pixel_xs.max()) ax.set_ylim(bound_pixel_ys.max(), bound_pixel_ys.min()) if return_smopy_map: return ax, smopy_map else: return ax
def _expand_spatial_bounds_to_fit_axes(bounds, ax_width, ax_height): """ Parameters ---------- bounds: dict ax_width: float ax_height: float Returns ------- spatial_bounds """ b = bounds height_meters = util.wgs84_distance(b['lat_min'], b['lon_min'], b['lat_max'], b['lon_min']) width_meters = util.wgs84_distance(b['lat_min'], b['lon_min'], b['lat_min'], b['lon_max']) x_per_y_meters = width_meters / height_meters x_per_y_axes = ax_width / ax_height if x_per_y_axes > x_per_y_meters: # x-axis # axis x_axis has slack -> the spatial longitude bounds need to be extended width_meters_new = (height_meters * x_per_y_axes) d_lon_new = ((b['lon_max'] - b['lon_min']) / width_meters) * width_meters_new mean_lon = (b['lon_min'] + b['lon_max'])/2. lon_min = mean_lon - d_lon_new / 2. lon_max = mean_lon + d_lon_new / 2. spatial_bounds = { "lon_min": lon_min, "lon_max": lon_max, "lat_min": b['lat_min'], "lat_max": b['lat_max'] } else: # axis y_axis has slack -> the spatial latitude bounds need to be extended height_meters_new = (width_meters / x_per_y_axes) d_lat_new = ((b['lat_max'] - b['lat_min']) / height_meters) * height_meters_new mean_lat = (b['lat_min'] + b['lat_max']) / 2. lat_min = mean_lat - d_lat_new / 2. lat_max = mean_lat + d_lat_new / 2. spatial_bounds = { "lon_min": b['lon_min'], "lon_max": b['lon_max'], "lat_min": lat_min, "lat_max": lat_max } return spatial_bounds
def plot_all_stops(g, ax=None, scalebar=False): """ Parameters ---------- g: A gtfspy.gtfs.GTFS object ax: matplotlib.Axes object, optional If None, a new figure and an axis is created, otherwise results are plotted on the axis. scalebar: bool, optional Whether to include a scalebar to the plot. Returns ------- ax: matplotlib.Axes """ assert(isinstance(g, GTFS)) lon_min, lon_max, lat_min, lat_max = get_spatial_bounds(g) smopy_map = get_smopy_map(lon_min, lon_max, lat_min, lat_max) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax = smopy_map.show_mpl(figsize=None, ax=ax, alpha=0.8) stops = g.stops() lats = numpy.array(stops['lat']) lons = numpy.array(stops['lon']) xs, ys = smopy_map.to_pixels(lats, lons) ax.scatter(xs, ys, color="red", s=10) ax.set_xlim(min(xs), max(xs)) ax.set_ylim(max(ys), min(ys)) return ax
def set_process_timezone(TZ): """ Parameters ---------- TZ: string """ try: prev_timezone = os.environ['TZ'] except KeyError: prev_timezone = None os.environ['TZ'] = TZ time.tzset() # Cause C-library functions to notice the update. return prev_timezone
def wgs84_distance(lat1, lon1, lat2, lon2): """Distance (in meters) between two points in WGS84 coord system.""" dLat = math.radians(lat2 - lat1) dLon = math.radians(lon2 - lon1) a = (math.sin(dLat / 2) * math.sin(dLat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dLon / 2) * math.sin(dLon / 2)) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = EARTH_RADIUS * c return d
def create_file(fname=None, fname_tmp=None, tmpdir=None, save_tmpfile=False, keepext=False): """Context manager for making files with possibility of failure. If you are creating a file, it is possible that the code will fail and leave a corrupt intermediate file. This is especially damaging if this is used as automatic input to another process. This context manager helps by creating a temporary filename, your code runs and creates that temporary file, and then if no exceptions are raised, the context manager will move the temporary file to the original filename you intended to open. Parameters ---------- fname : str Target filename, this file will be created if all goes well fname_tmp : str If given, this is used as the temporary filename. tmpdir : str or bool If given, put temporary files in this directory. If `True`, then find a good tmpdir that is not on local filesystem. save_tmpfile : bool If true, the temporary file is not deleteted if an exception is raised. keepext : bool, default False If true, have tmpfile have same extension as final file. Returns (as context manager value) ---------------------------------- fname_tmp: str Temporary filename to be used. Same as `fname_tmp` if given as an argument. Raises ------ Re-raises any except occuring during the context block. """ # Do nothing if requesting sqlite memory DB. if fname == ':memory:': yield fname return if fname_tmp is None: # no tmpfile name given - compute some basic info basename = os.path.basename(fname) root, ext = os.path.splitext(basename) dir_ = this_dir = os.path.dirname(fname) # Remove filename extension, in case this matters for # automatic things itself. if not keepext: root = root + ext ext = '' if tmpdir: # we should use a different temporary directory if tmpdir is True: # Find a directory ourself, searching some common # places. for dir__ in possible_tmpdirs: if os.access(dir__, os.F_OK): dir_ = dir__ break # Make the actual tmpfile, with our chosen tmpdir, directory, # extension. Set it to not delete automatically, since on # success we will move it to elsewhere. tmpfile = tempfile.NamedTemporaryFile( prefix='tmp-' + root + '-', suffix=ext, dir=dir_, delete=False) fname_tmp = tmpfile.name try: yield fname_tmp except Exception as e: if save_tmpfile: print("Temporary file is '%s'" % fname_tmp) else: os.unlink(fname_tmp) raise # Move the file back to the original location. try: os.rename(fname_tmp, fname) # We have to manually set permissions. tempfile does not use # umask, for obvious reasons. os.chmod(fname, 0o777 & ~current_umask) # 'Invalid cross-device link' - you can't rename files across # filesystems. So, we have to fallback to moving it. But, we # want to move it using tmpfiles also, so that the final file # appearing is atomic. We use... tmpfiles. except OSError as e: # New temporary file in same directory tmpfile2 = tempfile.NamedTemporaryFile( prefix='tmp-' + root + '-', suffix=ext, dir=this_dir, delete=False) # Copy contents over shutil.copy(fname_tmp, tmpfile2.name) # Rename new tmpfile, unlink old one on other filesystem. os.rename(tmpfile2.name, fname) os.chmod(fname, 0o666 & ~current_umask) os.unlink(fname_tmp)
def execute(cur, *args): """Utility function to print sqlite queries before executing. Use instead of cur.execute(). First argument is cursor. cur.execute(stmt) becomes util.execute(cur, stmt) """ stmt = args[0] if len(args) > 1: stmt = stmt.replace('%', '%%').replace('?', '%r') print(stmt % (args[1])) return cur.execute(*args)
def str_time_to_day_seconds(time): """ Converts time strings to integer seconds :param time: %H:%M:%S string :return: integer seconds """ t = str(time).split(':') seconds = int(t[0]) * 3600 + int(t[1]) * 60 + int(t[2]) return seconds
def makedirs(path): """ Create directories if they do not exist, otherwise do nothing. Return path for convenience """ if not os.path.isdir(path): os.makedirs(path) return path
def source_csv_to_pandas(path, table, read_csv_args=None): """ Parameters ---------- path: str path to directory or zipfile table: str name of table read_csv_args: string arguments passed to the read_csv function Returns ------- df: pandas:DataFrame """ if '.txt' not in table: table += '.txt' if isinstance(path, dict): data_obj = path[table] f = data_obj.split("\n") else: if os.path.isdir(path): f = open(os.path.join(path, table)) else: z = zipfile.ZipFile(path) for path in z.namelist(): if table in path: table = path break try: f = zip_open(z, table) except KeyError as e: return pd.DataFrame() if read_csv_args: df = pd.read_csv(**read_csv_args) else: df = pd.read_csv(f) return df
def write_shapefile(data, shapefile_path): from numpy import int64 """ :param data: list of dicts where dictionary contains the keys lons and lats :param shapefile_path: path where shapefile is saved :return: """ w = shp.Writer(shp.POLYLINE) # shapeType=3) fields = [] encode_strings = [] # This makes sure every geom has all the attributes w.autoBalance = 1 # Create all attribute fields except for lats and lons. In addition the field names are saved for the # datastoring phase. Encode_strings stores .encode methods as strings for all fields that are strings if not fields: for key, value in data[0].items(): if key != u'lats' and key != u'lons': fields.append(key) if type(value) == float: w.field(key.encode('ascii'), fieldType='N', size=11, decimal=3) print("float", type(value)) elif type(value) == int or type(value) == int64: print("int", type(value)) # encode_strings.append(".encode('ascii')") w.field(key.encode('ascii'), fieldType='N', size=6, decimal=0) else: print("other type", type(value)) w.field(key.encode('ascii')) for dict_item in data: line = [] lineparts = [] records = [] records_string = '' for lat, lon in zip(dict_item[u'lats'], dict_item[u'lons']): line.append([float(lon), float(lat)]) lineparts.append(line) w.line(parts=lineparts) # The shapefile records command is built up as strings to allow a differing number of columns for field in fields: if records_string: records_string += ", dict_item['" + field + "']" else: records_string += "dict_item['" + field + "']" method_string = "w.record(" + records_string + ")" # w.record(dict_item['name'], dict_item['agency'], dict_item['agency_name'], dict_item['type'], dict_item['lons']) print(method_string) eval(method_string) w.save(shapefile_path)
def draw_net_using_node_coords(net): """ Plot a networkx.Graph by using the lat and lon attributes of nodes. Parameters ---------- net : networkx.Graph Returns ------- fig : matplotlib.figure the figure object where the network is plotted """ import matplotlib.pyplot as plt fig = plt.figure() node_coords = {} for node, data in net.nodes(data=True): node_coords[node] = (data['lon'], data['lat']) ax = fig.add_subplot(111) networkx.draw(net, pos=node_coords, ax=ax, node_size=50) return fig
def difference_of_pandas_dfs(df_self, df_other, col_names=None): """ Returns a dataframe with all of df_other that are not in df_self, when considering the columns specified in col_names :param df_self: pandas Dataframe :param df_other: pandas Dataframe :param col_names: list of column names :return: """ df = pd.concat([df_self, df_other]) df = df.reset_index(drop=True) df_gpby = df.groupby(col_names) idx = [x[0] for x in list(df_gpby.groups.values()) if len(x) == 1] df_sym_diff = df.reindex(idx) df_diff = pd.concat([df_other, df_sym_diff]) df_diff = df_diff.reset_index(drop=True) df_gpby = df_diff.groupby(col_names) idx = [x[0] for x in list(df_gpby.groups.values()) if len(x) == 2] df_diff = df_diff.reindex(idx) return df_diff
def _finalize_profiles(self): """ Deal with the first walks by joining profiles to other stops within walking distance. """ for stop, stop_profile in self._stop_profiles.items(): assert (isinstance(stop_profile, NodeProfileMultiObjective)) neighbor_label_bags = [] walk_durations_to_neighbors = [] departure_arrival_stop_pairs = [] if stop_profile.get_walk_to_target_duration() != 0 and stop in self._walk_network.node: neighbors = networkx.all_neighbors(self._walk_network, stop) for neighbor in neighbors: neighbor_profile = self._stop_profiles[neighbor] assert (isinstance(neighbor_profile, NodeProfileMultiObjective)) neighbor_real_connection_labels = neighbor_profile.get_labels_for_real_connections() neighbor_label_bags.append(neighbor_real_connection_labels) walk_durations_to_neighbors.append(int(self._walk_network.get_edge_data(stop, neighbor)["d_walk"] / self._walk_speed)) departure_arrival_stop_pairs.append((stop, neighbor)) stop_profile.finalize(neighbor_label_bags, walk_durations_to_neighbors, departure_arrival_stop_pairs)
def import_gtfs(gtfs_sources, output, preserve_connection=False, print_progress=True, location_name=None, **kwargs): """Import a GTFS database gtfs_sources: str, dict, list Paths to the gtfs zip file or to the directory containing the GTFS data. Alternatively, a dict can be provide that maps gtfs filenames (like 'stops.txt' and 'agencies.txt') to their string presentations. output: str or sqlite3.Connection path to the new database to be created, or an existing sqlite3 connection preserve_connection: bool, optional Whether to close the connection in the end, or not. print_progress: bool, optional Whether to print progress output location_name: str, optional set the location of this database """ if isinstance(output, sqlite3.Connection): conn = output else: # if os.path.isfile(output): # raise RuntimeError('File already exists') conn = sqlite3.connect(output) if not isinstance(gtfs_sources, list): gtfs_sources = [gtfs_sources] cur = conn.cursor() time_import_start = time.time() # These are a bit unsafe, but make importing much faster, # especially on scratch. cur.execute('PRAGMA page_size = 4096;') cur.execute('PRAGMA mmap_size = 1073741824;') cur.execute('PRAGMA cache_size = -2000000;') cur.execute('PRAGMA temp_store=2;') # Changes of isolation level are python3.6 workarounds - # eventually will probably be fixed and this can be removed. conn.isolation_level = None # change to autocommit mode (former default) cur.execute('PRAGMA journal_mode = OFF;') #cur.execute('PRAGMA journal_mode = WAL;') cur.execute('PRAGMA synchronous = OFF;') conn.isolation_level = '' # change back to python default. # end python3.6 workaround # Do the actual importing. loaders = [L(gtfssource=gtfs_sources, print_progress=print_progress, **kwargs) for L in Loaders] for loader in loaders: loader.assert_exists_if_required() # Do initial import. This consists of making tables, raw insert # of the CSVs, and then indexing. for loader in loaders: loader.import_(conn) # Do any operations that require all tables present. for Loader in loaders: Loader.post_import_round2(conn) # Make any views for Loader in loaders: Loader.make_views(conn) # Make any views for F in postprocessors: F(conn) # Set up same basic metadata. from gtfspy import gtfs as mod_gtfs G = mod_gtfs.GTFS(output) G.meta['gen_time_ut'] = time.time() G.meta['gen_time'] = time.ctime() G.meta['import_seconds'] = time.time() - time_import_start G.meta['download_date'] = '' G.meta['location_name'] = '' G.meta['n_gtfs_sources'] = len(gtfs_sources) # Extract things from GTFS download_date_strs = [] for i, source in enumerate(gtfs_sources): if len(gtfs_sources) == 1: prefix = "" else: prefix = "feed_" + str(i) + "_" if isinstance(source, string_types): G.meta[prefix + 'original_gtfs'] = decode_six(source) if source else None # Extract GTFS date. Last date pattern in filename. filename_date_list = re.findall(r'\d{4}-\d{2}-\d{2}', source) if filename_date_list: date_str = filename_date_list[-1] G.meta[prefix + 'download_date'] = date_str download_date_strs.append(date_str) if location_name: G.meta['location_name'] = location_name else: location_name_list = re.findall(r'/([^/]+)/\d{4}-\d{2}-\d{2}', source) if location_name_list: G.meta[prefix + 'location_name'] = location_name_list[-1] else: try: G.meta[prefix + 'location_name'] = source.split("/")[-4] except: G.meta[prefix + 'location_name'] = source if G.meta['download_date'] == "": unique_download_dates = list(set(download_date_strs)) if len(unique_download_dates) == 1: G.meta['download_date'] = unique_download_dates[0] G.meta['timezone'] = cur.execute('SELECT timezone FROM agencies LIMIT 1').fetchone()[0] stats.update_stats(G) del G if print_progress: print("Vacuuming...") # Next 3 lines are python 3.6 work-arounds again. conn.isolation_level = None # former default of autocommit mode cur.execute('VACUUM;') conn.isolation_level = '' # back to python default # end python3.6 workaround if print_progress: print("Analyzing...") cur.execute('ANALYZE') if not (preserve_connection is True): conn.close()
def validate_day_start_ut(conn): """This validates the day_start_ut of the days table.""" G = GTFS(conn) cur = conn.execute('SELECT date, day_start_ut FROM days') for date, day_start_ut in cur: #print date, day_start_ut assert day_start_ut == G.get_day_start_ut(date)
def main_make_views(gtfs_fname): """Re-create all views. """ print("creating views") conn = GTFS(fname_or_conn=gtfs_fname).conn for L in Loaders: L(None).make_views(conn) conn.commit()
def _validate_table_row_counts(self): """ Imports source .txt files, checks row counts and then compares the rowcounts with the gtfsobject :return: """ for db_table_name in DB_TABLE_NAME_TO_SOURCE_FILE.keys(): table_name_source_file = DB_TABLE_NAME_TO_SOURCE_FILE[db_table_name] row_warning_str = DB_TABLE_NAME_TO_ROWS_MISSING_WARNING[db_table_name] # Row count in GTFS object: database_row_count = self.gtfs.get_row_count(db_table_name) # Row counts in source files: source_row_count = 0 for gtfs_source in self.gtfs_sources: frequencies_in_source = source_csv_to_pandas(gtfs_source, 'frequencies.txt') try: if table_name_source_file == 'trips' and not frequencies_in_source.empty: source_row_count += self._frequency_generated_trips_rows(gtfs_source) elif table_name_source_file == 'stop_times' and not frequencies_in_source.empty: source_row_count += self._compute_number_of_frequency_generated_stop_times(gtfs_source) else: df = source_csv_to_pandas(gtfs_source, table_name_source_file) source_row_count += len(df.index) except IOError as e: if hasattr(e, "filename") and db_table_name in e.filename: pass else: raise e if source_row_count == database_row_count and self.verbose: print("Row counts match for " + table_name_source_file + " between the source and database (" + str(database_row_count) + ")") else: difference = database_row_count - source_row_count ('Row counts do not match for ' + str(table_name_source_file) + ': (source=' + str(source_row_count) + ', database=' + str(database_row_count) + ")") if table_name_source_file == "calendar" and difference > 0: query = "SELECT count(*) FROM (SELECT * FROM calendar ORDER BY service_I DESC LIMIT " \ + str(int(difference)) + \ ") WHERE start_date=end_date AND m=0 AND t=0 AND w=0 AND th=0 AND f=0 AND s=0 AND su=0" number_of_entries_added_by_calendar_dates_loader = self.gtfs.execute_custom_query(query).fetchone()[ 0] if number_of_entries_added_by_calendar_dates_loader == difference and self.verbose: print(" But don't worry, the extra entries seem to just dummy entries due to calendar_dates") else: if self.verbose: print(" Reason for this is unknown.") self.warnings_container.add_warning(row_warning_str, self.location, difference) else: self.warnings_container.add_warning(row_warning_str, self.location, difference)
def _validate_no_null_values(self): """ Loads the tables from the gtfs object and counts the number of rows that have null values in fields that should not be null. Stores the number of null rows in warnings_container """ for table in DB_TABLE_NAMES: null_not_ok_warning = "Null values in must-have columns in table {table}".format(table=table) null_warn_warning = "Null values in good-to-have columns in table {table}".format(table=table) null_not_ok_fields = DB_TABLE_NAME_TO_FIELDS_WHERE_NULL_NOT_OK[table] null_warn_fields = DB_TABLE_NAME_TO_FIELDS_WHERE_NULL_OK_BUT_WARN[table] # CW, TODO: make this validation source by source df = self.gtfs.get_table(table) for warning, fields in zip([null_not_ok_warning, null_warn_warning], [null_not_ok_fields, null_warn_fields]): null_unwanted_df = df[fields] rows_having_null = null_unwanted_df.isnull().any(1) if sum(rows_having_null) > 0: rows_having_unwanted_null = df[rows_having_null.values] self.warnings_container.add_warning(warning, rows_having_unwanted_null, len(rows_having_unwanted_null))
def _validate_danglers(self): """ Checks for rows that are not referenced in the the tables that should be linked stops <> stop_times using stop_I stop_times <> trips <> days, using trip_I trips <> routes, using route_I :return: """ for query, warning in zip(DANGLER_QUERIES, DANGLER_WARNINGS): dangler_count = self.gtfs.execute_custom_query(query).fetchone()[0] if dangler_count > 0: if self.verbose: print(str(dangler_count) + " " + warning) self.warnings_container.add_warning(warning, self.location, count=dangler_count)
def _frequency_generated_trips_rows(self, gtfs_soure_path, return_df_freq=False): """ This function calculates the equivalent rowcounts for trips when taking into account the generated rows in the gtfs object Parameters ---------- gtfs_soure_path: path to the source file param txt: txt file in question :return: sum of all trips """ df_freq = source_csv_to_pandas(gtfs_soure_path, 'frequencies') df_trips = source_csv_to_pandas(gtfs_soure_path, "trips") df_freq['n_trips'] = df_freq.apply(lambda row: len(range(str_time_to_day_seconds(row['start_time']), str_time_to_day_seconds(row['end_time']), row['headway_secs'])), axis=1) df_trips_freq = pd.merge(df_freq, df_trips, how='outer', on='trip_id') n_freq_generated_trips = int(df_trips_freq['n_trips'].fillna(1).sum(axis=0)) if return_df_freq: return df_trips_freq else: return n_freq_generated_trips
def _compute_number_of_frequency_generated_stop_times(self, gtfs_source_path): """ Parameters ---------- Same as for "_frequency_generated_trips_rows" but for stop times table gtfs_source_path: table_name: Return ------ """ df_freq = self._frequency_generated_trips_rows(gtfs_source_path, return_df_freq=True) df_stop_times = source_csv_to_pandas(gtfs_source_path, "stop_times") df_stop_freq = pd.merge(df_freq, df_stop_times, how='outer', on='trip_id') return int(df_stop_freq['n_trips'].fillna(1).sum(axis=0))
def update_pareto_optimal_tuples(self, new_label): """ Parameters ---------- new_label: LabelTime Returns ------- updated: bool """ assert (isinstance(new_label, LabelTime)) if self._labels: assert (new_label.departure_time <= self._labels[-1].departure_time) best_later_departing_arrival_time = self._labels[-1].arrival_time_target else: best_later_departing_arrival_time = float('inf') walk_to_target_arrival_time = new_label.departure_time + self._walk_to_target_duration best_arrival_time = min(walk_to_target_arrival_time, best_later_departing_arrival_time, new_label.arrival_time_target) # this should be changed to get constant time insertions / additions # (with time-indexing) if (new_label.arrival_time_target < walk_to_target_arrival_time and new_label.arrival_time_target < best_later_departing_arrival_time): self._labels.append(LabelTime(new_label.departure_time, best_arrival_time)) return True else: return False
def print_coords(rows, prefix=''): """Print coordinates within a sequence. This is only used for debugging. Printed in a form that can be pasted into Python for visualization.""" lat = [row['lat'] for row in rows] lon = [row['lon'] for row in rows] print('COORDS'+'-' * 5) print("%slat, %slon = %r, %r" % (prefix, prefix, lat, lon)) print('-'*5)
def find_segments(stops, shape): """Find corresponding shape points for a list of stops and create shape break points. Parameters ---------- stops: stop-sequence (list) List of stop points shape: list of shape points shape-sequence of shape points Returns ------- break_points: list[int] stops[i] corresponds to shape[break_points[i]]. This list can be used to partition the shape points into segments between one stop and the next. badness: float Lower indicates better fit to the shape. This is the sum of distances (in meters) between every each stop and its closest shape point. This is not needed in normal use, but in the cases where you must determine the best-fitting shape for a stop-sequence, use this. """ if not shape: return [], 0 break_points = [] last_i = 0 cumul_d = 0 badness = 0 d_last_stop = float('inf') lstlat, lstlon = None, None break_shape_points = [] for stop in stops: stlat, stlon = stop['lat'], stop['lon'] best_d = float('inf') # print stop if badness > 500 and badness > 30 * len(break_points): return [], badness for i in range(last_i, len(shape)): d = wgs84_distance(stlat, stlon, shape[i]['lat'], shape[i]['lon']) if lstlat: d_last_stop = wgs84_distance(lstlat, lstlon, shape[i]['lat'], shape[i]['lon']) # If we are getting closer to next stop, record this as # the best stop so far.continue if d < best_d: best_d = d best_i = i # print best_d, i, last_i, len(shape) cumul_d += d # We have to be very careful about our stop condition. # This is trial and error, basically. if (d_last_stop < d) or (d > 500) or (i < best_i + 100): continue # We have decided our best stop, stop looking and continue # the outer loop. else: badness += best_d break_points.append(best_i) last_i = best_i lstlat, lstlon = stlat, stlon break_shape_points.append(shape[best_i]) break else: # Executed if we did *not* break the inner loop badness += best_d break_points.append(best_i) last_i = best_i lstlat, lstlon = stlat, stlon break_shape_points.append(shape[best_i]) pass # print "Badness:", badness # print_coords(stops, 'stop') # print_coords(shape, 'shape') # print_coords(break_shape_points, 'break') return break_points, badness
def find_best_segments(cur, stops, shape_ids, route_id=None, breakpoints_cache=None): """Finds the best shape_id for a stop-sequence. This is used in cases like when you have GPS data with a route name, but you don't know the route direction. It tries shapes going both directions and returns the shape that best matches. Could be used in other cases as well. Parameters ---------- cur : sqlite3.Cursor database cursor stops : list shape_ids : list of shape_id:s route_id : route_id to search for stops breakpoints_cache : dict If given, use this to cache results from this function. """ cache_key = None if breakpoints_cache is not None: # Calculate a cache key for this sequence. If shape_id and # all stop_Is are the same, then we assume that it is the same # route and re-use existing breakpoints. cache_key = (route_id, tuple(x['stop_I'] for x in stops)) if cache_key in breakpoints_cache: print('found in cache') return breakpoints_cache[cache_key] if route_id is not None: cur.execute('''SELECT DISTINCT shape_id FROM routes LEFT JOIN trips USING (route_I) WHERE route_id=?''', (route_id,)) data = cur.fetchall() # If not data, then route_id didn't match anything, or there # were no shapes defined. We have to exit in this case. if not data: print("No data for route_id=%s" % route_id) return [], None, None, None # shape_ids = zip(*data)[0] # print 'find_best_segments:', shape_ids results = [] for shape_id in shape_ids: shape = get_shape_points(cur, shape_id) breakpoints, badness = find_segments(stops, shape) results.append([badness, breakpoints, shape, shape_id]) if len(stops) > 5 and badness < 5*(len(stops)): break best = np.argmin(zip(*results)[0]) # print 'best', best badness = results[best][0] breakpoints = results[best][1] shape = results[best][2] shape_id = results[best][3] if breakpoints_cache is not None: print("storing in cache", cache_key[0], hash(cache_key[1:])) breakpoints_cache[cache_key] = breakpoints, badness, shape, shape_id return breakpoints, badness, shape, shape_id
def return_segments(shape, break_points): """Break a shape into segments between stops using break_points. This function can use the `break_points` outputs from `find_segments`, and cuts the shape-sequence into pieces corresponding to each stop. """ # print 'xxx' # print stops # print shape # print break_points # assert len(stops) == len(break_points) segs = [] bp = 0 # not used bp2 = 0 for i in range(len(break_points)-1): bp = break_points[i] if break_points[i] is not None else bp2 bp2 = break_points[i+1] if break_points[i+1] is not None else bp segs.append(shape[bp:bp2+1]) segs.append([]) return segs
def gen_cumulative_distances(stops): """ Add a 'd' key for distances to a stop/shape-sequence. This takes a shape-sequence or stop-sequence, and adds an extra 'd' key that is cumulative, geographic distances between each point. This uses `wgs84_distance` from the util module. The distances are in meters. Distances are rounded to the nearest integer, because otherwise JSON size increases greatly. Parameters ---------- stops: list elements are dicts with 'lat' and 'lon' keys and the function adds the 'd' key ('d' stands for distance) to the dictionaries """ stops[0]['d'] = 0.0 for i in range(1, len(stops)): stops[i]['d'] = stops[i-1]['d'] + wgs84_distance( stops[i-1]['lat'], stops[i-1]['lon'], stops[i]['lat'], stops[i]['lon'], ) for stop in stops: stop['d'] = int(stop['d'])
def get_shape_points(cur, shape_id): """ Given a shape_id, return its shape-sequence. Parameters ---------- cur: sqlite3.Cursor cursor to a GTFS database shape_id: str id of the route Returns ------- shape_points: list elements are dictionaries containing the 'seq', 'lat', and 'lon' of the shape """ cur.execute('''SELECT seq, lat, lon, d FROM shapes where shape_id=? ORDER BY seq''', (shape_id,)) shape_points = [dict(seq=row[0], lat=row[1], lon=row[2], d=row[3]) for row in cur] return shape_points
def get_shape_points2(cur, shape_id): """ Given a shape_id, return its shape-sequence (as a dict of lists). get_shape_points function returns them as a list of dicts Parameters ---------- cur: sqlite3.Cursor cursor to a GTFS database shape_id: str id of the route Returns ------- shape_points: dict of lists dict contains keys 'seq', 'lat', 'lon', and 'd'(istance) of the shape """ cur.execute('''SELECT seq, lat, lon, d FROM shapes where shape_id=? ORDER BY seq''', (shape_id,)) shape_points = {'seqs': [], 'lats': [], 'lons': [], 'd': []} for row in cur: shape_points['seqs'].append(row[0]) shape_points['lats'].append(row[1]) shape_points['lons'].append(row[2]) shape_points['d'].append(row[3]) return shape_points
def get_route_shape_segments(cur, route_id): """ Given a route_id, return its stop-sequence. Parameters ---------- cur: sqlite3.Cursor cursor to a GTFS database route_id: str id of the route Returns ------- shape_points: list elements are dictionaries containing the 'seq', 'lat', and 'lon' of the shape """ cur.execute('''SELECT seq, lat, lon FROM ( SELECT shape_id FROM route LEFT JOIN trips USING (route_I) WHERE route_id=? limit 1 ) JOIN shapes USING (shape_id) ORDER BY seq''', (route_id,)) shape_points = [dict(seq=row[0], lat=row[1], lon=row[2]) for row in cur] return shape_points
def get_shape_between_stops(cur, trip_I, seq_stop1=None, seq_stop2=None, shape_breaks=None): """ Given a trip_I (shortened id), return shape points between two stops (seq_stop1 and seq_stop2). Trip_I is used for matching obtaining the full shape of one trip (route). From the resulting shape we then obtain only shape points between stop_seq1 and stop_seq2 trip_I---(trips)--->shape_id trip_I, seq_stop1----(stop_times)---> shape_break1 trip_I, seq_stop2----(stop_times)---> shape_break2 shapes_id+shape_break1+shape_break2 --(shapes)--> result Parameters ---------- cur : sqlite3.Cursor cursor to sqlite3 DB containing GTFS trip_I : int transformed trip_id (i.e. a new column that is created when GTFS is imported to a DB) seq_stop1: int a positive inger describing the index of the point of the shape that corresponds to the first stop seq_stop2: int a positive inger describing the index of the point of the shape that corresponds to the second stop shape_breaks: ?? Returns ------- shapedict: dict Dictionary containing the latitudes and longitudes: lats=shapedict['lat'] lons=shapedict['lon'] """ assert (seq_stop1 and seq_stop2) or shape_breaks if not shape_breaks: shape_breaks = [] for seq_stop in [seq_stop1, seq_stop2]: query = """SELECT shape_break FROM stop_times WHERE trip_I=%d AND seq=%d """ % (trip_I, seq_stop) for row in cur.execute(query): shape_breaks.append(row[0]) assert len(shape_breaks) == 2 query = """SELECT seq, lat, lon FROM (SELECT shape_id FROM trips WHERE trip_I=%d) JOIN shapes USING (shape_id) WHERE seq>=%d AND seq <= %d; """ % (trip_I, shape_breaks[0], shape_breaks[1]) shapedict = {'lat': [], 'lon': [], 'seq': []} for row in cur.execute(query): shapedict['seq'].append(row[0]) shapedict['lat'].append(row[1]) shapedict['lon'].append(row[2]) return shapedict
def get_trip_points(cur, route_id, offset=0, tripid_glob=''): """Get all scheduled stops on a particular route_id. Given a route_id, return the trip-stop-list with latitude/longitudes. This is a bit more tricky than it seems, because we have to go from table route->trips->stop_times. This functions finds an arbitrary trip (in trip table) with this route ID and, and then returns all stop points for that trip. Parameters ---------- cur : sqlite3.Cursor cursor to sqlite3 DB containing GTFS route_id : string or any route_id to get stop points of offset : int LIMIT offset if you don't want the first trip returned. tripid_glob : string If given, allows you to limit tripids which can be selected. Mainly useful in debugging. Returns ------- stop-list List of stops in stop-seq format. """ extra_where = '' if tripid_glob: extra_where = "AND trip_id GLOB '%s'" % tripid_glob cur.execute('SELECT seq, lat, lon ' 'FROM (select trip_I from route ' ' LEFT JOIN trips USING (route_I) ' ' WHERE route_id=? %s limit 1 offset ? ) ' 'JOIN stop_times USING (trip_I) ' 'LEFT JOIN stop USING (stop_id) ' 'ORDER BY seq' % extra_where, (route_id, offset)) stop_points = [dict(seq=row[0], lat=row[1], lon=row[2]) for row in cur] return stop_points
def interpolate_shape_times(shape_distances, shape_breaks, stop_times): """ Interpolate passage times for shape points. Parameters ---------- shape_distances: list list of cumulative distances along the shape shape_breaks: list list of shape_breaks stop_times: list list of stop_times Returns ------- shape_times: list of ints (seconds) / numpy array interpolated shape passage times The values of stop times before the first shape-break are given the first stopping time, and the any shape points after the last break point are given the value of the last shape point. """ shape_times = np.zeros(len(shape_distances)) shape_times[:shape_breaks[0]] = stop_times[0] for i in range(len(shape_breaks)-1): cur_break = shape_breaks[i] cur_time = stop_times[i] next_break = shape_breaks[i+1] next_time = stop_times[i+1] if cur_break == next_break: shape_times[cur_break] = stop_times[i] else: cur_distances = shape_distances[cur_break:next_break+1] norm_distances = ((np.array(cur_distances)-float(cur_distances[0])) / float(cur_distances[-1] - cur_distances[0])) times = (1.-norm_distances)*cur_time+norm_distances*next_time shape_times[cur_break:next_break] = times[:-1] # deal final ones separately: shape_times[shape_breaks[-1]:] = stop_times[-1] return list(shape_times)
def update_pareto_optimal_tuples(self, new_pareto_tuple): """ # this function should be optimized Parameters ---------- new_pareto_tuple: LabelTimeSimple Returns ------- added: bool whether new_pareto_tuple was added to the set of pareto-optimal tuples """ if new_pareto_tuple.duration() > self._walk_to_target_duration: direct_walk_label = self._label_class.direct_walk_label(new_pareto_tuple.departure_time, self._walk_to_target_duration) if not direct_walk_label.dominates(new_pareto_tuple): raise direct_walk_label = self._label_class.direct_walk_label(new_pareto_tuple.departure_time, self._walk_to_target_duration) if direct_walk_label.dominates(new_pareto_tuple): return False if self._new_paretotuple_is_dominated_by_old_tuples(new_pareto_tuple): return False else: self._remove_old_tuples_dominated_by_new_and_insert_new_paretotuple(new_pareto_tuple) return True
def evaluate_earliest_arrival_time_at_target(self, dep_time, transfer_margin): """ Get the earliest arrival time at the target, given a departure time. Parameters ---------- dep_time : float, int time in unix seconds transfer_margin: float, int transfer margin in seconds Returns ------- arrival_time : float Arrival time in the given time unit (seconds after unix epoch). """ minimum = dep_time + self._walk_to_target_duration dep_time_plus_transfer_margin = dep_time + transfer_margin for label in self._labels: if label.departure_time >= dep_time_plus_transfer_margin and label.arrival_time_target < minimum: minimum = label.arrival_time_target return float(minimum)
def _run(self): """ Run the actual simulation. """ if self._has_run: raise RuntimeError("This spreader instance has already been run: " "create a new Spreader object for a new run.") i = 1 while self.event_heap.size() > 0 and len(self._uninfected_stops) > 0: event = self.event_heap.pop_next_event() this_stop = self._stop_I_to_spreading_stop[event.from_stop_I] if event.arr_time_ut > self.start_time_ut + self.max_duration_ut: break if this_stop.can_infect(event): target_stop = self._stop_I_to_spreading_stop[event.to_stop_I] already_visited = target_stop.has_been_visited() target_stop.visit(event) if not already_visited: self._uninfected_stops.remove(event.to_stop_I) print(i, self.event_heap.size()) transfer_distances = self.gtfs.get_straight_line_transfer_distances(event.to_stop_I) self.event_heap.add_walk_events_to_heap(transfer_distances, event, self.start_time_ut, self.walk_speed, self._uninfected_stops, self.max_duration_ut) i += 1 self._has_run = True
def add_walk_distances_to_db_python(gtfs, osm_path, cutoff_distance_m=1000): """ Computes the walk paths between stops, and updates these to the gtfs database. Parameters ---------- gtfs: gtfspy.GTFS or str A GTFS object or a string representation. osm_path: str path to the OpenStreetMap file cutoff_distance_m: number maximum allowed distance in meters Returns ------- None See Also -------- gtfspy.calc_transfers compute_walk_paths_java """ if isinstance(gtfs, str): gtfs = GTFS(gtfs) assert (isinstance(gtfs, GTFS)) print("Reading in walk network") walk_network = create_walk_network_from_osm(osm_path) print("Matching stops to the OSM network") stop_I_to_nearest_osm_node, stop_I_to_nearest_osm_node_distance = match_stops_to_nodes(gtfs, walk_network) transfers = gtfs.get_straight_line_transfer_distances() from_I_to_to_stop_Is = {stop_I: set() for stop_I in stop_I_to_nearest_osm_node} for transfer_tuple in transfers.itertuples(): from_I = transfer_tuple.from_stop_I to_I = transfer_tuple.to_stop_I from_I_to_to_stop_Is[from_I].add(to_I) print("Computing walking distances") for from_I, to_stop_Is in from_I_to_to_stop_Is.items(): from_node = stop_I_to_nearest_osm_node[from_I] from_dist = stop_I_to_nearest_osm_node_distance[from_I] shortest_paths = networkx.single_source_dijkstra_path_length(walk_network, from_node, cutoff=cutoff_distance_m - from_dist, weight="distance") for to_I in to_stop_Is: to_distance = stop_I_to_nearest_osm_node_distance[to_I] to_node = stop_I_to_nearest_osm_node[to_I] osm_distance = shortest_paths.get(to_node, float('inf')) total_distance = from_dist + osm_distance + to_distance from_stop_I_transfers = transfers[transfers['from_stop_I'] == from_I] straigth_distance = from_stop_I_transfers[from_stop_I_transfers["to_stop_I"] == to_I]["d"].values[0] assert (straigth_distance < total_distance + 2) # allow for a maximum of 2 meters in calculations if total_distance <= cutoff_distance_m: gtfs.conn.execute("UPDATE stop_distances " "SET d_walk = " + str(int(total_distance)) + " WHERE from_stop_I=" + str(from_I) + " AND to_stop_I=" + str(to_I)) gtfs.conn.commit()
def match_stops_to_nodes(gtfs, walk_network): """ Parameters ---------- gtfs : a GTFS object walk_network : networkx.Graph Returns ------- stop_I_to_node: dict maps stop_I to closest walk_network node stop_I_to_dist: dict maps stop_I to the distance to the closest walk_network node """ network_nodes = walk_network.nodes(data="true") stop_Is = set(gtfs.get_straight_line_transfer_distances()['from_stop_I']) stops_df = gtfs.stops() geo_index = GeoGridIndex(precision=6) for net_node, data in network_nodes: geo_index.add_point(GeoPoint(data['lat'], data['lon'], ref=net_node)) stop_I_to_node = {} stop_I_to_dist = {} for stop_I in stop_Is: stop_lat = float(stops_df[stops_df.stop_I == stop_I].lat) stop_lon = float(stops_df[stops_df.stop_I == stop_I].lon) geo_point = GeoPoint(stop_lat, stop_lon) min_dist = float('inf') min_dist_node = None search_distances_m = [0.100, 0.500] for search_distance_m in search_distances_m: for point, distance in geo_index.get_nearest_points(geo_point, search_distance_m, "km"): if distance < min_dist: min_dist = distance * 1000 min_dist_node = point.ref if min_dist_node is not None: break if min_dist_node is None: warn("No OSM node found for stop: " + str(stops_df[stops_df.stop_I == stop_I])) stop_I_to_node[stop_I] = min_dist_node stop_I_to_dist[stop_I] = min_dist return stop_I_to_node, stop_I_to_dist
def walk_transfer_stop_to_stop_network(gtfs, max_link_distance=None): """ Construct the walk network. If OpenStreetMap-based walking distances have been computed, then those are used as the distance. Otherwise, the great circle distances ("d") is used. Parameters ---------- gtfs: gtfspy.GTFS max_link_distance: int, optional If given, all walking transfers with great circle distance longer than this limit (expressed in meters) will be omitted. Returns ------- net: networkx.DiGraph edges have attributes d: straight-line distance between stops d_walk: distance along the road/tracks/.. """ if max_link_distance is None: max_link_distance = 1000 net = networkx.Graph() _add_stops_to_net(net, gtfs.get_table("stops")) stop_distances = gtfs.get_table("stop_distances") if stop_distances["d_walk"][0] is None: osm_distances_available = False warn("Warning: OpenStreetMap-based walking distances have not been computed, using euclidean distances instead." "Ignore this warning if running unit tests.") else: osm_distances_available = True for stop_distance_tuple in stop_distances.itertuples(): from_node = stop_distance_tuple.from_stop_I to_node = stop_distance_tuple.to_stop_I if osm_distances_available: if stop_distance_tuple.d_walk > max_link_distance or isnan(stop_distance_tuple.d_walk): continue data = {'d': stop_distance_tuple.d, 'd_walk': stop_distance_tuple.d_walk} else: if stop_distance_tuple.d > max_link_distance: continue data = {'d': stop_distance_tuple.d} net.add_edge(from_node, to_node, data) return net
def stop_to_stop_network_for_route_type(gtfs, route_type, link_attributes=None, start_time_ut=None, end_time_ut=None): """ Get a stop-to-stop network describing a single mode of travel. Parameters ---------- gtfs : gtfspy.GTFS route_type : int See gtfspy.route_types.TRANSIT_ROUTE_TYPES for the list of possible types. link_attributes: list[str], optional defaulting to use the following link attributes: "n_vehicles" : Number of vehicles passed "duration_min" : minimum travel time between stops "duration_max" : maximum travel time between stops "duration_median" : median travel time between stops "duration_avg" : average travel time between stops "d" : distance along straight line (wgs84_distance) "distance_shape" : minimum distance along shape "capacity_estimate" : approximate capacity passed through the stop "route_I_counts" : dict from route_I to counts start_time_ut: int start time of the time span (in unix time) end_time_ut: int end time of the time span (in unix time) Returns ------- net: networkx.DiGraph A directed graph Directed graph """ if link_attributes is None: link_attributes = DEFAULT_STOP_TO_STOP_LINK_ATTRIBUTES assert(route_type in route_types.TRANSIT_ROUTE_TYPES) stops_dataframe = gtfs.get_stops_for_route_type(route_type) net = networkx.DiGraph() _add_stops_to_net(net, stops_dataframe) events_df = gtfs.get_transit_events(start_time_ut=start_time_ut, end_time_ut=end_time_ut, route_type=route_type) if len(net.nodes()) < 2: assert events_df.shape[0] == 0 # group events by links, and loop over them (i.e. each link): link_event_groups = events_df.groupby(['from_stop_I', 'to_stop_I'], sort=False) for key, link_events in link_event_groups: from_stop_I, to_stop_I = key assert isinstance(link_events, pd.DataFrame) # 'dep_time_ut' 'arr_time_ut' 'shape_id' 'route_type' 'trip_I' 'duration' 'from_seq' 'to_seq' if link_attributes is None: net.add_edge(from_stop_I, to_stop_I) else: link_data = {} if "duration_min" in link_attributes: link_data['duration_min'] = float(link_events['duration'].min()) if "duration_max" in link_attributes: link_data['duration_max'] = float(link_events['duration'].max()) if "duration_median" in link_attributes: link_data['duration_median'] = float(link_events['duration'].median()) if "duration_avg" in link_attributes: link_data['duration_avg'] = float(link_events['duration'].mean()) # statistics on numbers of vehicles: if "n_vehicles" in link_attributes: link_data['n_vehicles'] = int(link_events.shape[0]) if "capacity_estimate" in link_attributes: link_data['capacity_estimate'] = route_types.ROUTE_TYPE_TO_APPROXIMATE_CAPACITY[route_type] \ * int(link_events.shape[0]) if "d" in link_attributes: from_lat = net.node[from_stop_I]['lat'] from_lon = net.node[from_stop_I]['lon'] to_lat = net.node[to_stop_I]['lat'] to_lon = net.node[to_stop_I]['lon'] distance = wgs84_distance(from_lat, from_lon, to_lat, to_lon) link_data['d'] = int(distance) if "distance_shape" in link_attributes: assert "shape_id" in link_events.columns.values found = None for i, shape_id in enumerate(link_events["shape_id"].values): if shape_id is not None: found = i break if found is None: link_data["distance_shape"] = None else: link_event = link_events.iloc[found] distance = gtfs.get_shape_distance_between_stops( link_event["trip_I"], int(link_event["from_seq"]), int(link_event["to_seq"]) ) link_data['distance_shape'] = distance if "route_I_counts" in link_attributes: link_data["route_I_counts"] = link_events.groupby("route_I").size().to_dict() net.add_edge(from_stop_I, to_stop_I, attr_dict=link_data) return net
def stop_to_stop_networks_by_type(gtfs): """ Compute stop-to-stop networks for all travel modes (route_types). Parameters ---------- gtfs: gtfspy.GTFS Returns ------- dict: dict[int, networkx.DiGraph] keys should be one of route_types.ALL_ROUTE_TYPES (i.e. GTFS route_types) """ route_type_to_network = dict() for route_type in route_types.ALL_ROUTE_TYPES: if route_type == route_types.WALK: net = walk_transfer_stop_to_stop_network(gtfs) else: net = stop_to_stop_network_for_route_type(gtfs, route_type) route_type_to_network[route_type] = net assert len(route_type_to_network) == len(route_types.ALL_ROUTE_TYPES) return route_type_to_network
def combined_stop_to_stop_transit_network(gtfs, start_time_ut=None, end_time_ut=None): """ Compute stop-to-stop networks for all travel modes and combine them into a single network. The modes of transport are encoded to a single network. The network consists of multiple links corresponding to each travel mode. Walk mode is not included. Parameters ---------- gtfs: gtfspy.GTFS Returns ------- net: networkx.MultiDiGraph keys should be one of route_types.TRANSIT_ROUTE_TYPES (i.e. GTFS route_types) """ multi_di_graph = networkx.MultiDiGraph() for route_type in route_types.TRANSIT_ROUTE_TYPES: graph = stop_to_stop_network_for_route_type(gtfs, route_type, start_time_ut=start_time_ut, end_time_ut=end_time_ut) for from_node, to_node, data in graph.edges(data=True): data['route_type'] = route_type multi_di_graph.add_edges_from(graph.edges(data=True)) multi_di_graph.add_nodes_from(graph.nodes(data=True)) return multi_di_graph
def _add_stops_to_net(net, stops): """ Add nodes to the network from the pandas dataframe describing (a part of the) stops table in the GTFS database. Parameters ---------- net: networkx.Graph stops: pandas.DataFrame """ for stop in stops.itertuples(): data = { "lat": stop.lat, "lon": stop.lon, "name": stop.name } net.add_node(stop.stop_I, data)
def temporal_network(gtfs, start_time_ut=None, end_time_ut=None, route_type=None): """ Compute the temporal network of the data, and return it as a pandas.DataFrame Parameters ---------- gtfs : gtfspy.GTFS start_time_ut: int | None start time of the time span (in unix time) end_time_ut: int | None end time of the time span (in unix time) route_type: int | None Specifies which mode of public transport are included, or whether all modes should be included. The int should be one of the standard GTFS route_types: (see also gtfspy.route_types.TRANSIT_ROUTE_TYPES ) If route_type is not specified, all modes are included. Returns ------- events_df: pandas.DataFrame Columns: departure_stop, arrival_stop, departure_time_ut, arrival_time_ut, route_type, route_I, trip_I """ events_df = gtfs.get_transit_events(start_time_ut=start_time_ut, end_time_ut=end_time_ut, route_type=route_type) events_df.drop('to_seq', 1, inplace=True) events_df.drop('shape_id', 1, inplace=True) events_df.drop('duration', 1, inplace=True) events_df.drop('route_id', 1, inplace=True) events_df.rename( columns={ 'from_seq': "seq" }, inplace=True ) return events_df
def route_to_route_network(gtfs, walking_threshold, start_time, end_time): """ Creates networkx graph where the nodes are bus routes and a edge indicates that there is a possibility to transfer between the routes :param gtfs: :param walking_threshold: :param start_time: :param end_time: :return: """ graph = networkx.Graph() routes = gtfs.get_table("routes") for i in routes.itertuples(): graph.add_node(i.route_id, attr_dict={"type": i.type, "color": route_types.ROUTE_TYPE_TO_COLOR[i.type]}) query = """SELECT stop1.route_id AS route_id1, stop1.type, stop2.route_id AS route_id2, stop2.type FROM (SELECT * FROM stop_distances WHERE d_walk < %s) sd, (SELECT * FROM stop_times, trips, routes WHERE stop_times.trip_I=trips.trip_I AND trips.route_I=routes.route_I AND stop_times.dep_time_ds > %s AND stop_times.dep_time_ds < %s) stop1, (SELECT * FROM stop_times, trips, routes WHERE stop_times.trip_I=trips.trip_I AND trips.route_I=routes.route_I AND stop_times.dep_time_ds > %s AND stop_times.dep_time_ds < %s) stop2 WHERE sd.from_stop_I = stop1.stop_I AND sd.to_stop_I = stop2.stop_I AND stop1.route_id != stop2.route_id GROUP BY stop1.route_id, stop2.route_id""" % (walking_threshold, start_time, end_time, start_time, end_time) df = gtfs.execute_custom_query_pandas(query) for items in df.itertuples(): graph.add_edge(items.route_id1, items.route_id2) graph.remove_nodes_from(networkx.isolates(graph)) return graph
def mean_temporal_distance(self): """ Get mean temporal distance (in seconds) to the target. Returns ------- mean_temporal_distance : float """ total_width = self.end_time_dep - self.start_time_dep total_area = sum([block.area() for block in self._profile_blocks]) return total_area / total_width
def plot_temporal_distance_cdf(self): """ Plot the temporal distance cumulative density function. Returns ------- fig: matplotlib.Figure """ xvalues, cdf = self.profile_block_analyzer._temporal_distance_cdf() fig = plt.figure() ax = fig.add_subplot(111) xvalues = numpy.array(xvalues) / 60.0 ax.plot(xvalues, cdf, "-k") ax.fill_between(xvalues, cdf, color="red", alpha=0.2) ax.set_ylabel("CDF(t)") ax.set_xlabel("Temporal distance t (min)") return fig
def plot_temporal_distance_pdf(self, use_minutes=True, color="green", ax=None): """ Plot the temporal distance probability density function. Returns ------- fig: matplotlib.Figure """ from matplotlib import pyplot as plt plt.rc('text', usetex=True) temporal_distance_split_points_ordered, densities, delta_peaks = self._temporal_distance_pdf() xs = [] for i, x in enumerate(temporal_distance_split_points_ordered): xs.append(x) xs.append(x) xs = numpy.array(xs) ys = [0] for y in densities: ys.append(y) ys.append(y) ys.append(0) ys = numpy.array(ys) # convert data to minutes: xlabel = "Temporal distance (s)" ylabel = "Probability density (t)" if use_minutes: xs /= 60.0 ys *= 60.0 xlabel = "Temporal distance (min)" delta_peaks = {peak / 60.0: mass for peak, mass in delta_peaks.items()} if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(xs, ys, "k-") ax.fill_between(xs, ys, color="green", alpha=0.2) if delta_peaks: peak_height = max(ys) * 1.4 max_x = max(xs) min_x = min(xs) now_max_x = max(xs) + 0.3 * (max_x - min_x) now_min_x = min_x - 0.1 * (max_x - min_x) text_x_offset = 0.1 * (now_max_x - max_x) for loc, mass in delta_peaks.items(): ax.plot([loc, loc], [0, peak_height], color="green", lw=5) ax.text(loc + text_x_offset, peak_height * 0.99, "$P(\\mathrm{walk}) = %.2f$" % (mass), color="green") ax.set_xlim(now_min_x, now_max_x) tot_delta_peak_mass = sum(delta_peaks.values()) transit_text_x = (min_x + max_x) / 2 transit_text_y = min(ys[ys > 0]) / 2. ax.text(transit_text_x, transit_text_y, "$P(mathrm{PT}) = %.2f$" % (1 - tot_delta_peak_mass), color="green", va="center", ha="center") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_ylim(bottom=0) return ax.figure
def plot_temporal_distance_pdf_horizontal(self, use_minutes=True, color="green", ax=None, duration_divider=60.0, legend_font_size=None, legend_loc=None): """ Plot the temporal distance probability density function. Returns ------- fig: matplotlib.Figure """ from matplotlib import pyplot as plt plt.rc('text', usetex=True) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) temporal_distance_split_points_ordered, densities, delta_peaks = self._temporal_distance_pdf() xs = [] for i, x in enumerate(temporal_distance_split_points_ordered): xs.append(x) xs.append(x) xs = numpy.array(xs) ys = [0] for y in densities: ys.append(y) ys.append(y) ys.append(0) ys = numpy.array(ys) # convert data to minutes: xlabel = "Temporal distance (s)" ylabel = "Probability density $P(\\tau)$" if use_minutes: xs /= duration_divider ys *= duration_divider xlabel = "Temporal distance (min)" delta_peaks = {peak / 60.0: mass for peak, mass in delta_peaks.items()} if delta_peaks: peak_height = max(ys) * 1.4 max_x = max(xs) min_x = min(xs) now_max_x = max(xs) + 0.3 * (max_x - min_x) now_min_x = min_x - 0.1 * (max_x - min_x) text_x_offset = 0.1 * (now_max_x - max_x) for loc, mass in delta_peaks.items(): text = "$P(\\mathrm{walk}) = " + ("%.2f$" % (mass)) ax.plot([0, peak_height], [loc, loc], color=color, lw=5, label=text) ax.plot(ys, xs, "k-") if delta_peaks: tot_delta_peak_mass = sum(delta_peaks.values()) fill_label = "$P(\\mathrm{PT}) = %.2f$" % (1-tot_delta_peak_mass) else: fill_label = None ax.fill_betweenx(xs, ys, color=color, alpha=0.2, label=fill_label) ax.set_ylabel(xlabel) ax.set_xlabel(ylabel) ax.set_xlim(left=0, right=max(ys) * 1.2) if delta_peaks: if legend_font_size is None: legend_font_size = 12 if legend_loc is None: legend_loc = "best" ax.legend(loc=legend_loc, prop={'size': legend_font_size}) if True: line_tyles = ["-.", "--", "-"][::-1] to_plot_funcs = [self.max_temporal_distance, self.mean_temporal_distance, self.min_temporal_distance] xmin, xmax = ax.get_xlim() for to_plot_func, ls in zip(to_plot_funcs, line_tyles): y = to_plot_func() / duration_divider assert y < float('inf') # factor of 10 just to be safe that the lines cover the whole region. ax.plot([xmin, xmax*10], [y, y], color="black", ls=ls, lw=1) return ax.figure
def plot_temporal_distance_profile(self, timezone=None, color="black", alpha=0.15, ax=None, lw=2, label="", plot_tdist_stats=False, plot_trip_stats=False, format_string="%Y-%m-%d %H:%M:%S", plot_journeys=False, duration_divider=60.0, fill_color="green", journey_letters=None, return_letters=False): """ Parameters ---------- timezone: str color: color format_string: str, None if None, the original values are used plot_journeys: bool, optional if True, small dots are plotted at the departure times """ if ax is None: fig = plt.figure() ax = fig.add_subplot(111) if timezone is None: warnings.warn("Warning: No timezone specified, defaulting to UTC") timezone = pytz.timezone("Etc/UTC") def _ut_to_unloc_datetime(ut): dt = datetime.datetime.fromtimestamp(ut, timezone) return dt.replace(tzinfo=None) if format_string: x_axis_formatter = md.DateFormatter(format_string) ax.xaxis.set_major_formatter(x_axis_formatter) else: _ut_to_unloc_datetime = lambda x: x ax.set_xlim( _ut_to_unloc_datetime(self.start_time_dep), _ut_to_unloc_datetime(self.end_time_dep) ) if plot_tdist_stats: line_tyles = ["-.", "--", "-"][::-1] # to_plot_labels = ["maximum temporal distance", "mean temporal distance", "minimum temporal distance"] to_plot_labels = ["$\\tau_\\mathrm{max} \\;$ = ", "$\\tau_\\mathrm{mean}$ = ", "$\\tau_\\mathrm{min} \\:\\:$ = "] to_plot_funcs = [self.max_temporal_distance, self.mean_temporal_distance, self.min_temporal_distance] xmin, xmax = ax.get_xlim() for to_plot_label, to_plot_func, ls in zip(to_plot_labels, to_plot_funcs, line_tyles): y = to_plot_func() / duration_divider assert y < float('inf'), to_plot_label to_plot_label = to_plot_label + "%.1f min" % (y) ax.plot([xmin, xmax], [y, y], color="black", ls=ls, lw=1, label=to_plot_label) if plot_trip_stats: assert (not plot_tdist_stats) line_tyles = ["-", "-.", "--"] to_plot_labels = ["min journey duration", "max journey duration", "mean journey duration"] to_plot_funcs = [self.min_trip_duration, self.max_trip_duration, self.mean_trip_duration] xmin, xmax = ax.get_xlim() for to_plot_label, to_plot_func, ls in zip(to_plot_labels, to_plot_funcs, line_tyles): y = to_plot_func() / duration_divider if not numpy.math.isnan(y): ax.plot([xmin, xmax], [y, y], color="red", ls=ls, lw=2) txt = to_plot_label + "\n = %.1f min" % y ax.text(xmax + 0.01 * (xmax - xmin), y, txt, color="red", va="center", ha="left") old_xmax = xmax xmax += (xmax - xmin) * 0.3 ymin, ymax = ax.get_ylim() ax.fill_between([old_xmax, xmax], ymin, ymax, color="gray", alpha=0.1) ax.set_xlim(xmin, xmax) # plot the actual profile vertical_lines, slopes = self.profile_block_analyzer.get_vlines_and_slopes_for_plotting() for i, line in enumerate(slopes): xs = [_ut_to_unloc_datetime(x) for x in line['x']] if i is 0: label = u"profile" else: label = None ax.plot(xs, numpy.array(line['y']) / duration_divider, "-", color=color, lw=lw, label=label) for line in vertical_lines: xs = [_ut_to_unloc_datetime(x) for x in line['x']] ax.plot(xs, numpy.array(line['y']) / duration_divider, ":", color=color) # , lw=lw) assert (isinstance(ax, plt.Axes)) if plot_journeys: xs = [_ut_to_unloc_datetime(x) for x in self.trip_departure_times] ys = self.trip_durations ax.plot(xs, numpy.array(ys) / duration_divider, "o", color="black", ms=8, label="journeys") if journey_letters is None: journey_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def cycle_journey_letters(journey_letters): # cycle('ABCD') --> A B C D A B C D A B C D ... saved = [] for element in journey_letters: yield element saved.append(element) count = 1 while saved: for element in saved: yield element + str(count) count += 1 journey_letters_iterator = cycle_journey_letters(journey_letters) time_letters = {int(time): letter for letter, time in zip(journey_letters_iterator, self.trip_departure_times)} for x, y, letter in zip(xs, ys, journey_letters_iterator): walking = - self._walk_time_to_target / 30 if numpy.isfinite(self._walk_time_to_target) else 0 ax.text(x + datetime.timedelta(seconds=(self.end_time_dep - self.start_time_dep) / 60), (y + walking) / duration_divider, letter, va="top", ha="left") fill_between_x = [] fill_between_y = [] for line in slopes: xs = [_ut_to_unloc_datetime(x) for x in line['x']] fill_between_x.extend(xs) fill_between_y.extend(numpy.array(line["y"]) / duration_divider) ax.fill_between(fill_between_x, y1=fill_between_y, color=fill_color, alpha=alpha, label=label) ax.set_ylim(bottom=0) ax.set_ylim(ax.get_ylim()[0], ax.get_ylim()[1] * 1.05) if rcParams['text.usetex']: ax.set_xlabel(r"Departure time $t_{\mathrm{dep}}$") else: ax.set_xlabel("Departure time") ax.set_ylabel(r"Temporal distance $\tau$ (min)") if plot_journeys and return_letters: return ax, time_letters else: return ax
def add_leg(self, leg): """ Parameters ---------- leg: Connection """ assert(isinstance(leg, Connection)) if not self.legs: self.departure_time = leg.departure_time self.arrival_time = leg.arrival_time if leg.trip_id and (not self.legs or (leg.trip_id != self.legs[-1].trip_id)): self.n_boardings += 1 self.arrival_time = leg.arrival_time self.legs.append(leg)
def get_transfer_stop_pairs(self): """ Get stop pairs through which transfers take place Returns ------- transfer_stop_pairs: list """ transfer_stop_pairs = [] previous_arrival_stop = None current_trip_id = None for leg in self.legs: if leg.trip_id is not None and leg.trip_id != current_trip_id and previous_arrival_stop is not None: transfer_stop_pair = (previous_arrival_stop, leg.departure_stop) transfer_stop_pairs.append(transfer_stop_pair) previous_arrival_stop = leg.arrival_stop current_trip_id = leg.trip_id return transfer_stop_pairs
def _truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): """ Truncates a colormap to use. Code originall from http://stackoverflow.com/questions/18926031/how-to-extract-a-subset-of-a-colormap-as-a-new-colormap-in-matplotlib """ new_cmap = LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(numpy.linspace(minval, maxval, n)) ) return new_cmap
def get_time_profile_analyzer(self, max_n_boardings=None): """ Parameters ---------- max_n_boardings: int The maximum number of boardings allowed for the labels used to construct the "temporal distance profile" Returns ------- analyzer: NodeProfileAnalyzerTime """ if max_n_boardings is None: max_n_boardings = self.max_trip_n_boardings() # compute only if not yet computed if not max_n_boardings in self._n_boardings_to_simple_time_analyzers: if max_n_boardings == 0: valids = [] else: candidate_labels = [LabelTimeSimple(label.departure_time, label.arrival_time_target) for label in self._node_profile_final_labels if ((self.start_time_dep <= label.departure_time) and label.n_boardings <= max_n_boardings)] valids = compute_pareto_front(candidate_labels) valids.sort(key=lambda label: -label.departure_time) profile = NodeProfileSimple(self._walk_to_target_duration) for valid in valids: profile.update_pareto_optimal_tuples(valid) npat = NodeProfileAnalyzerTime.from_profile(profile, self.start_time_dep, self.end_time_dep) self._n_boardings_to_simple_time_analyzers[max_n_boardings] = npat return self._n_boardings_to_simple_time_analyzers[max_n_boardings]
def median_temporal_distances(self, min_n_boardings=None, max_n_boardings=None): """ Returns ------- mean_temporal_distances: list list indices encode the number of vehicle legs each element in the list tells gets the mean temporal distance """ if min_n_boardings is None: min_n_boardings = 0 if max_n_boardings is None: max_n_boardings = self.max_trip_n_boardings() if max_n_boardings is None: max_n_boardings = 0 median_temporal_distances = [float('inf') for _ in range(min_n_boardings, max_n_boardings + 1)] for n_boardings in range(min_n_boardings, max_n_boardings + 1): simple_analyzer = self.get_time_profile_analyzer(n_boardings) median_temporal_distances[n_boardings] = simple_analyzer.median_temporal_distance() return median_temporal_distances
def from_directory_as_inmemory_db(cls, gtfs_directory): """ Instantiate a GTFS object by computing Parameters ---------- gtfs_directory: str path to the directory for importing the database """ # this import is here to avoid circular imports (which turned out to be a problem) from gtfspy.import_gtfs import import_gtfs conn = sqlite3.connect(":memory:") import_gtfs(gtfs_directory, conn, preserve_connection=True, print_progress=False) return cls(conn)
def get_main_database_path(self): """ Should return the path to the database Returns ------- path : unicode path to the database, empty string for in-memory databases """ cur = self.conn.cursor() cur.execute("PRAGMA database_list") rows = cur.fetchall() for row in rows: if row[1] == str("main"): return row[2]
def get_shape_distance_between_stops(self, trip_I, from_stop_seq, to_stop_seq): """ Get the distance along a shape between stops Parameters ---------- trip_I : int trip_ID along which we travel from_stop_seq : int the sequence number of the 'origin' stop to_stop_seq : int the sequence number of the 'destination' stop Returns ------- distance : float, None If the shape calculation succeeded, return a float, otherwise return None (i.e. in the case where the shapes table is empty) """ query_template = "SELECT shape_break FROM stop_times WHERE trip_I={trip_I} AND seq={seq} " stop_seqs = [from_stop_seq, to_stop_seq] shape_breaks = [] for seq in stop_seqs: q = query_template.format(seq=seq, trip_I=trip_I) shape_breaks.append(self.conn.execute(q).fetchone()) query_template = "SELECT max(d) - min(d) " \ "FROM shapes JOIN trips ON(trips.shape_id=shapes.shape_id) " \ "WHERE trip_I={trip_I} AND shapes.seq>={from_stop_seq} AND shapes.seq<={to_stop_seq};" distance_query = query_template.format(trip_I=trip_I, from_stop_seq=from_stop_seq, to_stop_seq=to_stop_seq) return self.conn.execute(distance_query).fetchone()[0]
def get_directly_accessible_stops_within_distance(self, stop, distance): """ Returns stops that are accessible without transfer from the stops that are within a specific walking distance :param stop: int :param distance: int :return: """ query = """SELECT stop.* FROM (SELECT st2.* FROM (SELECT * FROM stop_distances WHERE from_stop_I = %s) sd, (SELECT * FROM stop_times) st1, (SELECT * FROM stop_times) st2 WHERE sd.d < %s AND sd.to_stop_I = st1.stop_I AND st1.trip_I = st2.trip_I GROUP BY st2.stop_I) sq, (SELECT * FROM stops) stop WHERE sq.stop_I = stop.stop_I""" % (stop, distance) return pd.read_sql_query(query, self.conn)
def get_timezone_name(self): """ Get name of the GTFS timezone Returns ------- timezone_name : str name of the time zone, e.g. "Europe/Helsinki" """ tz_name = self.conn.execute('SELECT timezone FROM agencies LIMIT 1').fetchone() if tz_name is None: raise ValueError("This database does not have a timezone defined.") return tz_name[0]
def get_timezone_string(self, dt=None): """ Return the timezone of the GTFS database object as a string. The assumed time when the timezone (difference) is computed is the download date of the file. This might not be optimal in all cases. So this function should return values like: "+0200" or "-1100" Parameters ---------- dt : datetime.datetime, optional The (unlocalized) date when the timezone should be computed. Defaults first to download_date, and then to the runtime date. Returns ------- timezone_string : str """ if dt is None: download_date = self.meta.get('download_date') if download_date: dt = datetime.datetime.strptime(download_date, '%Y-%m-%d') else: dt = datetime.datetime.today() loc_dt = self._timezone.localize(dt) # get the timezone timezone_string = loc_dt.strftime("%z") return timezone_string
def unlocalized_datetime_to_ut_seconds(self, unlocalized_datetime): """ Convert datetime (in GTFS timezone) to unixtime Parameters ---------- unlocalized_datetime : datetime.datetime (tz coerced to GTFS timezone, should NOT be UTC.) Returns ------- output : int (unixtime) """ loc_dt = self._timezone.localize(unlocalized_datetime) unixtime_seconds = calendar.timegm(loc_dt.utctimetuple()) return unixtime_seconds
def get_day_start_ut(self, date): """ Get day start time (as specified by GTFS) as unix time in seconds Parameters ---------- date : str | unicode | datetime.datetime something describing the date Returns ------- day_start_ut : int start time of the day in unixtime """ if isinstance(date, string_types): date = datetime.datetime.strptime(date, '%Y-%m-%d') date_noon = datetime.datetime(date.year, date.month, date.day, 12, 0, 0) ut_noon = self.unlocalized_datetime_to_ut_seconds(date_noon) return ut_noon - 12 * 60 * 60
def get_trip_trajectories_within_timespan(self, start, end, use_shapes=True, filter_name=None): """ Get complete trip data for visualizing public transport operation based on gtfs. Parameters ---------- start: number Earliest position data to return (in unix time) end: number Latest position data to return (in unix time) use_shapes: bool, optional Whether or not shapes should be included filter_name: str Pick only routes having this name. Returns ------- trips: dict trips['trips'] is a list whose each element (e.g. el = trips['trips'][0]) is a dict with the following properties: el['lats'] -- list of latitudes el['lons'] -- list of longitudes el['times'] -- list of passage_times el['route_type'] -- type of vehicle as specified by GTFS el['name'] -- name of the route """ trips = [] trip_df = self.get_tripIs_active_in_range(start, end) print("gtfs_viz.py: fetched " + str(len(trip_df)) + " trip ids") shape_cache = {} # loop over all trips: for row in trip_df.itertuples(): trip_I = row.trip_I day_start_ut = row.day_start_ut shape_id = row.shape_id trip = {} name, route_type = self.get_route_name_and_type_of_tripI(trip_I) trip['route_type'] = int(route_type) trip['name'] = str(name) if filter_name and (name != filter_name): continue stop_lats = [] stop_lons = [] stop_dep_times = [] shape_breaks = [] stop_seqs = [] # get stop_data and store it: stop_time_df = self.get_trip_stop_time_data(trip_I, day_start_ut) for stop_row in stop_time_df.itertuples(): stop_lats.append(float(stop_row.lat)) stop_lons.append(float(stop_row.lon)) stop_dep_times.append(float(stop_row.dep_time_ut)) try: stop_seqs.append(int(stop_row.seq)) except TypeError: stop_seqs.append(None) if use_shapes: try: shape_breaks.append(int(stop_row.shape_break)) except (TypeError, ValueError): shape_breaks.append(None) if use_shapes: # get shape data (from cache, if possible) if shape_id not in shape_cache: shape_cache[shape_id] = shapes.get_shape_points2(self.conn.cursor(), shape_id) shape_data = shape_cache[shape_id] # noinspection PyBroadException try: trip['times'] = shapes.interpolate_shape_times(shape_data['d'], shape_breaks, stop_dep_times) trip['lats'] = shape_data['lats'] trip['lons'] = shape_data['lons'] start_break = shape_breaks[0] end_break = shape_breaks[-1] trip['times'] = trip['times'][start_break:end_break + 1] trip['lats'] = trip['lats'][start_break:end_break + 1] trip['lons'] = trip['lons'][start_break:end_break + 1] except: # In case interpolation fails: trip['times'] = stop_dep_times trip['lats'] = stop_lats trip['lons'] = stop_lons else: trip['times'] = stop_dep_times trip['lats'] = stop_lats trip['lons'] = stop_lons trips.append(trip) return {"trips": trips}
def get_stop_count_data(self, start_ut, end_ut): """ Get stop count data. Parameters ---------- start_ut : int start time in unixtime end_ut : int end time in unixtime Returns ------- stopData : pandas.DataFrame each row in the stopData dataFrame is a dictionary with the following elements stop_I, count, lat, lon, name with data types (int, int, float, float, str) """ # TODO! this function could perhaps be made a single sql query now with the new tables? trips_df = self.get_tripIs_active_in_range(start_ut, end_ut) # stop_I -> count, lat, lon, name stop_counts = Counter() # loop over all trips: for row in trips_df.itertuples(): # get stop_data and store it: stops_seq = self.get_trip_stop_time_data(row.trip_I, row.day_start_ut) for stop_time_row in stops_seq.itertuples(index=False): if (stop_time_row.dep_time_ut >= start_ut) and (stop_time_row.dep_time_ut <= end_ut): stop_counts[stop_time_row.stop_I] += 1 all_stop_data = self.stops() counts = [stop_counts[stop_I] for stop_I in all_stop_data["stop_I"].values] all_stop_data.loc[:, "count"] = pd.Series(counts, index=all_stop_data.index) return all_stop_data
def get_segment_count_data(self, start, end, use_shapes=True): """ Get segment data including PTN vehicle counts per segment that are fully _contained_ within the interval (start, end) Parameters ---------- start : int start time of the simulation in unix time end : int end time of the simulation in unix time use_shapes : bool, optional whether to include shapes (if available) Returns ------- seg_data : list each element in the list is a dict containing keys: "trip_I", "lats", "lons", "shape_id", "stop_seqs", "shape_breaks" """ cur = self.conn.cursor() # get all possible trip_ids that take place between start and end trips_df = self.get_tripIs_active_in_range(start, end) # stop_I -> count, lat, lon, name segment_counts = Counter() seg_to_info = {} # tripI_to_seq = "inverted segToShapeData" tripI_to_seq = defaultdict(list) # loop over all trips: for row in trips_df.itertuples(): # get stop_data and store it: stops_df = self.get_trip_stop_time_data(row.trip_I, row.day_start_ut) for i in range(len(stops_df) - 1): (stop_I, dep_time_ut, s_lat, s_lon, s_seq, shape_break) = stops_df.iloc[i] (stop_I_n, dep_time_ut_n, s_lat_n, s_lon_n, s_seq_n, shape_break_n) = stops_df.iloc[i + 1] # test if _contained_ in the interval # overlap would read: # (dep_time_ut <= end) and (start <= dep_time_ut_n) if (dep_time_ut >= start) and (dep_time_ut_n <= end): seg = (stop_I, stop_I_n) segment_counts[seg] += 1 if seg not in seg_to_info: seg_to_info[seg] = { u"trip_I": row.trip_I, u"lats": [s_lat, s_lat_n], u"lons": [s_lon, s_lon_n], u"shape_id": row.shape_id, u"stop_seqs": [s_seq, s_seq_n], u"shape_breaks": [shape_break, shape_break_n] } tripI_to_seq[row.trip_I].append(seg) stop_names = {} for (stop_I, stop_J) in segment_counts.keys(): for s in [stop_I, stop_J]: if s not in stop_names: stop_names[s] = self.stop(s)[u'name'].values[0] seg_data = [] for seg, count in segment_counts.items(): segInfo = seg_to_info[seg] shape_breaks = segInfo[u"shape_breaks"] seg_el = {} if use_shapes and shape_breaks and shape_breaks[0] and shape_breaks[1]: shape = shapes.get_shape_between_stops( cur, segInfo[u'trip_I'], shape_breaks=shape_breaks ) seg_el[u'lats'] = segInfo[u'lats'][:1] + shape[u'lat'] + segInfo[u'lats'][1:] seg_el[u'lons'] = segInfo[u'lons'][:1] + shape[u'lon'] + segInfo[u'lons'][1:] else: seg_el[u'lats'] = segInfo[u'lats'] seg_el[u'lons'] = segInfo[u'lons'] seg_el[u'name'] = stop_names[seg[0]] + u"-" + stop_names[seg[1]] seg_el[u'count'] = count seg_data.append(seg_el) return seg_data
def get_all_route_shapes(self, use_shapes=True): """ Get the shapes of all routes. Parameters ---------- use_shapes : bool, optional by default True (i.e. use shapes as the name of the function indicates) if False (fall back to lats and longitudes) Returns ------- routeShapes: list of dicts that should have the following keys name, type, agency, lats, lons with types list, list, str, list, list """ cur = self.conn.cursor() # all shape_id:s corresponding to a route_I: # query = "SELECT DISTINCT name, shape_id, trips.route_I, route_type # FROM trips LEFT JOIN routes USING(route_I)" # data1 = pd.read_sql_query(query, self.conn) # one (arbitrary) shape_id per route_I ("one direction") -> less than half of the routes query = "SELECT routes.name as name, shape_id, route_I, trip_I, routes.type, " \ " agency_id, agencies.name as agency_name, max(end_time_ds-start_time_ds) as trip_duration " \ "FROM trips " \ "LEFT JOIN routes " \ "USING(route_I) " \ "LEFT JOIN agencies " \ "USING(agency_I) " \ "GROUP BY routes.route_I" data = pd.read_sql_query(query, self.conn) routeShapes = [] for i, row in enumerate(data.itertuples()): datum = {"name": str(row.name), "type": int(row.type), "route_I": row.route_I, "agency": str(row.agency_id), "agency_name": str(row.agency_name)} # this function should be made also non-shape friendly (at this point) if use_shapes and row.shape_id: shape = shapes.get_shape_points2(cur, row.shape_id) lats = shape['lats'] lons = shape['lons'] else: stop_shape = self.get_trip_stop_coordinates(row.trip_I) lats = list(stop_shape['lat']) lons = list(stop_shape['lon']) datum['lats'] = [float(lat) for lat in lats] datum['lons'] = [float(lon) for lon in lons] routeShapes.append(datum) return routeShapes
def get_tripIs_active_in_range(self, start, end): """ Obtain from the (standard) GTFS database, list of trip_IDs (and other trip_related info) that are active between given 'start' and 'end' times. The start time of a trip is determined by the departure time at the last stop of the trip. The end time of a trip is determined by the arrival time at the last stop of the trip. Parameters ---------- start, end : int the start and end of the time interval in unix time seconds Returns ------- active_trips : pandas.DataFrame with columns trip_I, day_start_ut, start_time_ut, end_time_ut, shape_id """ to_select = "trip_I, day_start_ut, start_time_ut, end_time_ut, shape_id " query = "SELECT " + to_select + \ "FROM day_trips " \ "WHERE " \ "(end_time_ut > {start_ut} AND start_time_ut < {end_ut})".format(start_ut=start, end_ut=end) return pd.read_sql_query(query, self.conn)
def get_trip_counts_per_day(self): """ Get trip counts per day between the start and end day of the feed. Returns ------- trip_counts : pandas.DataFrame Has columns "date_str" (dtype str) "trip_counts" (dtype int) """ query = "SELECT date, count(*) AS number_of_trips FROM day_trips GROUP BY date" # this yields the actual data trip_counts_per_day = pd.read_sql_query(query, self.conn, index_col="date") # the rest is simply code for filling out "gaps" in the time span # (necessary for some visualizations) max_day = trip_counts_per_day.index.max() min_day = trip_counts_per_day.index.min() min_date = datetime.datetime.strptime(min_day, '%Y-%m-%d') max_date = datetime.datetime.strptime(max_day, '%Y-%m-%d') num_days = (max_date - min_date).days dates = [min_date + datetime.timedelta(days=x) for x in range(num_days + 1)] trip_counts = [] date_strings = [] for date in dates: date_string = date.strftime("%Y-%m-%d") date_strings.append(date_string) try: value = trip_counts_per_day.loc[date_string, 'number_of_trips'] except KeyError: # set value to 0 if dsut is not present, i.e. when no trips # take place on that day value = 0 trip_counts.append(value) # check that all date_strings are included (move this to tests?) for date_string in trip_counts_per_day.index: assert date_string in date_strings data = {"date": dates, "date_str": date_strings, "trip_counts": trip_counts} return pd.DataFrame(data)
def get_suitable_date_for_daily_extract(self, date=None, ut=False): """ Parameters ---------- date : str ut : bool Whether to return the date as a string or as a an int (seconds after epoch). Returns ------- Selects suitable date for daily extract Iterates trough the available dates forward and backward from the download date accepting the first day that has at least 90 percent of the number of trips of the maximum date. The condition can be changed to something else. If the download date is out of range, the process will look through the dates from first to last. """ daily_trips = self.get_trip_counts_per_day() max_daily_trips = daily_trips[u'trip_counts'].max(axis=0) if date in daily_trips[u'date_str']: start_index = daily_trips[daily_trips[u'date_str'] == date].index.tolist()[0] daily_trips[u'old_index'] = daily_trips.index daily_trips[u'date_dist'] = abs(start_index - daily_trips.index) daily_trips = daily_trips.sort_values(by=[u'date_dist', u'old_index']).reindex() for row in daily_trips.itertuples(): if row.trip_counts >= 0.9 * max_daily_trips: if ut: return self.get_day_start_ut(row.date_str) else: return row.date_str
def get_weekly_extract_start_date(self, ut=False, weekdays_at_least_of_max=0.9, verbose=False, download_date_override=None): """ Find a suitable weekly extract start date (monday). The goal is to obtain as 'usual' week as possible. The weekdays of the weekly extract week should contain at least 0.9 of the total maximum of trips. Parameters ---------- ut: return unixtime? weekdays_at_least_of_max: float download_date_override: str, semi-optional Download-date in format %Y-%m-%d, weeks close to this. Overrides the (possibly) recorded downloaded date in the database Returns ------- date: int or str Raises ------ error: RuntimeError If no download date could be found. """ daily_trip_counts = self.get_trip_counts_per_day() if isinstance(download_date_override, str): search_start_date = datetime.datetime.strptime(download_date_override, "%Y-%m-%d") elif isinstance(download_date_override, datetime.datetime): search_start_date = download_date_override else: assert download_date_override is None download_date_str = self.meta['download_date'] if download_date_str == "": warnings.warn("Download date is not speficied in the database. " "Download date used in GTFS." + self.get_weekly_extract_start_date.__name__ + "() defaults to the smallest date when any operations take place.") search_start_date = daily_trip_counts['date'].min() else: search_start_date = datetime.datetime.strptime(download_date_str, "%Y-%m-%d") feed_min_date = daily_trip_counts['date'].min() feed_max_date = daily_trip_counts['date'].max() assert (feed_max_date - feed_min_date >= datetime.timedelta(days=7)), \ "Dataset is not long enough for providing week long extracts" # get first a valid monday where the search for the week can be started: next_monday_from_search_start_date = search_start_date + timedelta(days=(7 - search_start_date.weekday())) if not (feed_min_date <= next_monday_from_search_start_date <= feed_max_date): warnings.warn("The next monday after the (possibly user) specified download date is not present in the database." "Resorting to first monday after the beginning of operations instead.") next_monday_from_search_start_date = feed_min_date + timedelta(days=(7 - feed_min_date.weekday())) max_trip_count = daily_trip_counts['trip_counts'].quantile(0.95) # Take 95th percentile to omit special days, if any exist. threshold = weekdays_at_least_of_max * max_trip_count threshold_fulfilling_days = daily_trip_counts['trip_counts'] > threshold # look forward first # get the index of the trip: search_start_monday_index = daily_trip_counts[daily_trip_counts['date'] == next_monday_from_search_start_date].index[0] # get starting point while_loop_monday_index = search_start_monday_index while len(daily_trip_counts.index) >= while_loop_monday_index + 7: if all(threshold_fulfilling_days[while_loop_monday_index:while_loop_monday_index + 5]): row = daily_trip_counts.iloc[while_loop_monday_index] if ut: return self.get_day_start_ut(row.date_str) else: return row['date'] while_loop_monday_index += 7 while_loop_monday_index = search_start_monday_index - 7 # then backwards while while_loop_monday_index >= 0: if all(threshold_fulfilling_days[while_loop_monday_index:while_loop_monday_index + 5]): row = daily_trip_counts.iloc[while_loop_monday_index] if ut: return self.get_day_start_ut(row.date_str) else: return row['date'] while_loop_monday_index -= 7 raise RuntimeError("No suitable weekly extract start date could be determined!")
def get_spreading_trips(self, start_time_ut, lat, lon, max_duration_ut=4 * 3600, min_transfer_time=30, use_shapes=False): """ Starting from a specific point and time, get complete single source shortest path spreading dynamics as trips, or "events". Parameters ---------- start_time_ut: number Start time of the spreading. lat: float latitude of the spreading seed location lon: float longitude of the spreading seed location max_duration_ut: int maximum duration of the spreading process (in seconds) min_transfer_time : int minimum transfer time in seconds use_shapes : bool whether to include shapes Returns ------- trips: dict trips['trips'] is a list whose each element (e.g. el = trips['trips'][0]) is a dict with the following properties: el['lats'] : list of latitudes el['lons'] : list of longitudes el['times'] : list of passage_times el['route_type'] : type of vehicle as specified by GTFS, or -1 if walking el['name'] : name of the route """ from gtfspy.spreading.spreader import Spreader spreader = Spreader(self, start_time_ut, lat, lon, max_duration_ut, min_transfer_time, use_shapes) return spreader.spread()
def get_closest_stop(self, lat, lon): """ Get closest stop to a given location. Parameters ---------- lat: float latitude coordinate of the location lon: float longitude coordinate of the location Returns ------- stop_I: int the index of the stop in the database """ cur = self.conn.cursor() min_dist = float("inf") min_stop_I = None rows = cur.execute("SELECT stop_I, lat, lon FROM stops") for stop_I, lat_s, lon_s in rows: dist_now = wgs84_distance(lat, lon, lat_s, lon_s) if dist_now < min_dist: min_dist = dist_now min_stop_I = stop_I return min_stop_I
def get_route_name_and_type_of_tripI(self, trip_I): """ Get route short name and type Parameters ---------- trip_I: int short trip index created when creating the database Returns ------- name: str short name of the route, eg. 195N type: int route_type according to the GTFS standard """ cur = self.conn.cursor() results = cur.execute("SELECT name, type FROM routes JOIN trips USING(route_I) WHERE trip_I={trip_I}" .format(trip_I=trip_I)) name, rtype = results.fetchone() return u"%s" % str(name), int(rtype)
def get_route_name_and_type(self, route_I): """ Get route short name and type Parameters ---------- route_I: int route index (database specific) Returns ------- name: str short name of the route, eg. 195N type: int route_type according to the GTFS standard """ cur = self.conn.cursor() results = cur.execute("SELECT name, type FROM routes WHERE route_I=(?)", (route_I,)) name, rtype = results.fetchone() return name, int(rtype)
def get_trip_stop_coordinates(self, trip_I): """ Get coordinates for a given trip_I Parameters ---------- trip_I : int the integer id of the trip Returns ------- stop_coords : pandas.DataFrame with columns "lats" and "lons" """ query = """SELECT lat, lon FROM stop_times JOIN stops USING(stop_I) WHERE trip_I={trip_I} ORDER BY stop_times.seq""".format(trip_I=trip_I) stop_coords = pd.read_sql(query, self.conn) return stop_coords
def get_trip_stop_time_data(self, trip_I, day_start_ut): """ Obtain from the (standard) GTFS database, trip stop data (departure time in ut, lat, lon, seq, shape_break) as a pandas DataFrame Some filtering could be applied here, if only e.g. departure times corresponding within some time interval should be considered. Parameters ---------- trip_I : int integer index of the trip day_start_ut : int the start time of the day in unix time (seconds) Returns ------- df: pandas.DataFrame df has the following columns 'departure_time_ut, lat, lon, seq, shape_break' """ to_select = "stop_I, " + str(day_start_ut) + "+dep_time_ds AS dep_time_ut, lat, lon, seq, shape_break" str_to_run = "SELECT " + to_select + """ FROM stop_times JOIN stops USING(stop_I) WHERE (trip_I ={trip_I}) ORDER BY seq """ str_to_run = str_to_run.format(trip_I=trip_I) return pd.read_sql_query(str_to_run, self.conn)
def get_events_by_tripI_and_dsut(self, trip_I, day_start_ut, start_ut=None, end_ut=None): """ Get trip data as a list of events (i.e. dicts). Parameters ---------- trip_I : int shorthand index of the trip. day_start_ut : int the start time of the day in unix time (seconds) start_ut : int, optional consider only events that start after this time If not specified, this filtering is not applied. end_ut : int, optional Consider only events that end before this time If not specified, this filtering is not applied. Returns ------- events: list of dicts each element contains the following data: from_stop: int (stop_I) to_stop: int (stop_I) dep_time_ut: int (in unix time) arr_time_ut: int (in unix time) """ # for checking input: assert day_start_ut <= start_ut assert day_start_ut <= end_ut assert start_ut <= end_ut events = [] # check that trip takes place on that day: if not self.tripI_takes_place_on_dsut(trip_I, day_start_ut): return events query = """SELECT stop_I, arr_time_ds+?, dep_time_ds+? FROM stop_times JOIN stops USING(stop_I) WHERE (trip_I = ?) """ params = [day_start_ut, day_start_ut, trip_I] if start_ut: query += "AND (dep_time_ds > ?-?)" params += [start_ut, day_start_ut] if end_ut: query += "AND (arr_time_ds < ?-?)" params += [end_ut, day_start_ut] query += "ORDER BY arr_time_ds" cur = self.conn.cursor() rows = cur.execute(query, params) stop_data = list(rows) for i in range(len(stop_data) - 1): event = { "from_stop": stop_data[i][0], "to_stop": stop_data[i + 1][0], "dep_time_ut": stop_data[i][2], "arr_time_ut": stop_data[i + 1][1] } events.append(event) return events
def tripI_takes_place_on_dsut(self, trip_I, day_start_ut): """ Check that a trip takes place during a day Parameters ---------- trip_I : int index of the trip in the gtfs data base day_start_ut : int the starting time of the day in unix time (seconds) Returns ------- takes_place: bool boolean value describing whether the trip takes place during the given day or not """ query = "SELECT * FROM days WHERE trip_I=? AND day_start_ut=?" params = (trip_I, day_start_ut) cur = self.conn.cursor() rows = list(cur.execute(query, params)) if len(rows) == 0: return False else: assert len(rows) == 1, 'On a day, a trip_I should be present at most once' return True
def day_start_ut(self, ut): """ Convert unixtime to unixtime on GTFS start-of-day. GTFS defines the start of a day as "noon minus 12 hours" to solve most DST-related problems. This means that on DST-changing days, the day start isn't midnight. This function isn't idempotent. Running it twice on the "move clocks backwards" day will result in being one day too early. Parameters ---------- ut: int Unixtime Returns ------- ut: int Unixtime corresponding to start of day """ # set timezone to the one of gtfs old_tz = self.set_current_process_time_zone() ut = time.mktime(time.localtime(ut)[:3] + (12, 00, 0, 0, 0, -1)) - 43200 set_process_timezone(old_tz) return ut
def increment_day_start_ut(self, day_start_ut, n_days=1): """Increment the GTFS-definition of "day start". Parameters ---------- day_start_ut : int unixtime of the previous start of day. If this time is between 12:00 or greater, there *will* be bugs. To solve this, run the input through day_start_ut first. n_days: int number of days to increment """ old_tz = self.set_current_process_time_zone() day0 = time.localtime(day_start_ut + 43200) # time of noon dayN = time.mktime(day0[:2] + # YYYY, MM (day0[2] + n_days,) + # DD (12, 00, 0, 0, 0, -1)) - 43200 # HHMM, etc. Minus 12 hours. set_process_timezone(old_tz) return dayN
def _get_possible_day_starts(self, start_ut, end_ut, max_time_overnight=None): """ Get all possible day start times between start_ut and end_ut Currently this function is used only by get_tripIs_within_range_by_dsut Parameters ---------- start_ut : list<int> start time in unix time end_ut : list<int> end time in unix time max_time_overnight : list<int> the maximum length of time that a trip can take place on during the next day (i.e. after midnight run times like 25:35) Returns ------- day_start_times_ut : list list of ints (unix times in seconds) for returning all possible day start times start_times_ds : list list of ints (unix times in seconds) stating the valid start time in day seconds end_times_ds : list list of ints (unix times in seconds) stating the valid end times in day_seconds """ if max_time_overnight is None: # 7 hours: max_time_overnight = 7 * 60 * 60 # sanity checks for the timezone parameter # assert timezone < 14 # assert timezone > -14 # tz_seconds = int(timezone*3600) assert start_ut < end_ut start_day_ut = self.day_start_ut(start_ut) # start_day_ds = int(start_ut+tz_seconds) % seconds_in_a_day #??? needed? start_day_ds = start_ut - start_day_ut # assert (start_day_ut+tz_seconds) % seconds_in_a_day == 0 end_day_ut = self.day_start_ut(end_ut) # end_day_ds = int(end_ut+tz_seconds) % seconds_in_a_day #??? needed? # end_day_ds = end_ut - end_day_ut # assert (end_day_ut+tz_seconds) % seconds_in_a_day == 0 # If we are early enough in a day that we might have trips from # the previous day still running, decrement the start day. if start_day_ds < max_time_overnight: start_day_ut = self.increment_day_start_ut(start_day_ut, n_days=-1) # day_start_times_ut = range(start_day_ut, end_day_ut+seconds_in_a_day, seconds_in_a_day) # Create a list of all possible day start times. This is roughly # range(day_start_ut, day_end_ut+1day, 1day). day_start_times_ut = [start_day_ut] while day_start_times_ut[-1] < end_day_ut: day_start_times_ut.append(self.increment_day_start_ut(day_start_times_ut[-1])) start_times_ds = [] end_times_ds = [] # For every possible day start: for dsut in day_start_times_ut: # start day_seconds starts at either zero, or time - daystart day_start_ut = max(0, start_ut - dsut) start_times_ds.append(day_start_ut) # end day_seconds is time-day_start day_end_ut = end_ut - dsut end_times_ds.append(day_end_ut) # Return three tuples which can be zip:ped together. return day_start_times_ut, start_times_ds, end_times_ds
def get_tripIs_within_range_by_dsut(self, start_time_ut, end_time_ut): """ Obtain a list of trip_Is that take place during a time interval. The trip needs to be only partially overlapping with the given time interval. The grouping by dsut (day_start_ut) is required as same trip_I could take place on multiple days. Parameters ---------- start_time_ut : int start of the time interval in unix time (seconds) end_time_ut: int end of the time interval in unix time (seconds) Returns ------- trip_I_dict: dict keys: day_start_times to list of integers (trip_Is) """ cur = self.conn.cursor() assert start_time_ut <= end_time_ut dst_ut, st_ds, et_ds = \ self._get_possible_day_starts(start_time_ut, end_time_ut, 7) # noinspection PyTypeChecker assert len(dst_ut) >= 0 trip_I_dict = {} for day_start_ut, start_ds, end_ds in \ zip(dst_ut, st_ds, et_ds): query = """ SELECT distinct(trip_I) FROM days JOIN trips USING(trip_I) WHERE (days.day_start_ut == ?) AND ( (trips.start_time_ds <= ?) AND (trips.end_time_ds >= ?) ) """ params = (day_start_ut, end_ds, start_ds) trip_Is = [el[0] for el in cur.execute(query, params)] if len(trip_Is) > 0: trip_I_dict[day_start_ut] = trip_Is return trip_I_dict
def stop(self, stop_I): """ Get all stop data as a pandas DataFrame for all stops, or an individual stop' Parameters ---------- stop_I : int stop index Returns ------- stop: pandas.DataFrame """ return pd.read_sql_query("SELECT * FROM stops WHERE stop_I={stop_I}".format(stop_I=stop_I), self.conn)
def get_stops_for_route_type(self, route_type): """ Parameters ---------- route_type: int Returns ------- stops: pandas.DataFrame """ if route_type is WALK: return self.stops() else: return pd.read_sql_query("SELECT DISTINCT stops.* " "FROM stops JOIN stop_times ON stops.stop_I == stop_times.stop_I " " JOIN trips ON stop_times.trip_I = trips.trip_I" " JOIN routes ON trips.route_I == routes.route_I " "WHERE routes.type=(?)", self.conn, params=(route_type,))
def generate_routable_transit_events(self, start_time_ut=None, end_time_ut=None, route_type=None): """ Generates events that take place during a time interval [start_time_ut, end_time_ut]. Each event needs to be only partially overlap the given time interval. Does not include walking events. This is just a quick and dirty implementation to get a way of quickly get a method for generating events compatible with the routing algorithm Parameters ---------- start_time_ut: int end_time_ut: int route_type: ? Yields ------ event: namedtuple containing: dep_time_ut: int arr_time_ut: int from_stop_I: int to_stop_I: int trip_I : int route_type : int seq: int """ from gtfspy.networks import temporal_network df = temporal_network(self, start_time_ut=start_time_ut, end_time_ut=end_time_ut, route_type=route_type) df.sort_values("dep_time_ut", ascending=False, inplace=True) for row in df.itertuples(): yield row
def get_transit_events(self, start_time_ut=None, end_time_ut=None, route_type=None): """ Obtain a list of events that take place during a time interval. Each event needs to be only partially overlap the given time interval. Does not include walking events. Parameters ---------- start_time_ut : int start of the time interval in unix time (seconds) end_time_ut: int end of the time interval in unix time (seconds) route_type: int consider only events for this route_type Returns ------- events: pandas.DataFrame with the following columns and types dep_time_ut: int arr_time_ut: int from_stop_I: int to_stop_I: int trip_I : int shape_id : int route_type : int See also -------- get_transit_events_in_time_span : an older version of the same thing """ table_name = self._get_day_trips_table_name() event_query = "SELECT stop_I, seq, trip_I, route_I, routes.route_id AS route_id, routes.type AS route_type, " \ "shape_id, day_start_ut+dep_time_ds AS dep_time_ut, day_start_ut+arr_time_ds AS arr_time_ut " \ "FROM " + table_name + " " \ "JOIN trips USING(trip_I) " \ "JOIN routes USING(route_I) " \ "JOIN stop_times USING(trip_I)" where_clauses = [] if end_time_ut: where_clauses.append(table_name + ".start_time_ut< {end_time_ut}".format(end_time_ut=end_time_ut)) where_clauses.append("dep_time_ut <={end_time_ut}".format(end_time_ut=end_time_ut)) if start_time_ut: where_clauses.append(table_name + ".end_time_ut > {start_time_ut}".format(start_time_ut=start_time_ut)) where_clauses.append("arr_time_ut >={start_time_ut}".format(start_time_ut=start_time_ut)) if route_type is not None: assert route_type in ALL_ROUTE_TYPES where_clauses.append("routes.type={route_type}".format(route_type=route_type)) if len(where_clauses) > 0: event_query += " WHERE " for i, where_clause in enumerate(where_clauses): if i is not 0: event_query += " AND " event_query += where_clause # ordering is required for later stages event_query += " ORDER BY trip_I, day_start_ut+dep_time_ds;" events_result = pd.read_sql_query(event_query, self.conn) # 'filter' results so that only real "events" are taken into account from_indices = numpy.nonzero( (events_result['trip_I'][:-1].values == events_result['trip_I'][1:].values) * (events_result['seq'][:-1].values < events_result['seq'][1:].values) )[0] to_indices = from_indices + 1 # these should have same trip_ids assert (events_result['trip_I'][from_indices].values == events_result['trip_I'][to_indices].values).all() trip_Is = events_result['trip_I'][from_indices] from_stops = events_result['stop_I'][from_indices] to_stops = events_result['stop_I'][to_indices] shape_ids = events_result['shape_id'][from_indices] dep_times = events_result['dep_time_ut'][from_indices] arr_times = events_result['arr_time_ut'][to_indices] route_types = events_result['route_type'][from_indices] route_ids = events_result['route_id'][from_indices] route_Is = events_result['route_I'][from_indices] durations = arr_times.values - dep_times.values assert (durations >= 0).all() from_seqs = events_result['seq'][from_indices] to_seqs = events_result['seq'][to_indices] data_tuples = zip(from_stops, to_stops, dep_times, arr_times, shape_ids, route_types, route_ids, trip_Is, durations, from_seqs, to_seqs, route_Is) columns = ["from_stop_I", "to_stop_I", "dep_time_ut", "arr_time_ut", "shape_id", "route_type", "route_id", "trip_I", "duration", "from_seq", "to_seq", "route_I"] df = pd.DataFrame.from_records(data_tuples, columns=columns) return df
def get_route_difference_with_other_db(self, other_gtfs, start_time, end_time, uniqueness_threshold=None, uniqueness_ratio=None): """ Compares the routes based on stops in the schedule with the routes in another db and returns the ones without match. Uniqueness thresholds or ratio can be used to allow small differences :param uniqueness_threshold: :param uniqueness_ratio: :return: """ from gtfspy.stats import frequencies_by_generated_route this_df = frequencies_by_generated_route(self, start_time, end_time) other_df = frequencies_by_generated_route(other_gtfs, start_time, end_time) this_routes = {x: set(x.split(',')) for x in this_df["route"]} other_routes = {x: set(x.split(',')) for x in other_df["route"]} # this_df["route_set"] = this_df.apply(lambda x: set(x.route.split(',')), axis=1) # other_df["route_set"] = other_df.apply(lambda x: set(x.route.split(',')), axis=1) this_uniques = list(this_routes.keys()) other_uniques = list(other_routes.keys()) print("initial routes A:", len(this_uniques)) print("initial routes B:", len(other_uniques)) for i_key, i in this_routes.items(): for j_key, j in other_routes.items(): union = i | j intersection = i & j symmetric_difference = i ^ j if uniqueness_ratio: if len(intersection) / len(union) >= uniqueness_ratio: try: this_uniques.remove(i_key) this_df = this_df[this_df["route"] != i_key] except ValueError: pass try: other_uniques.remove(j_key) other_df = other_df[other_df["route"] != j_key] except ValueError: pass print("unique routes A", len(this_df)) print("unique routes B", len(other_df)) return this_df, other_df
def get_straight_line_transfer_distances(self, stop_I=None): """ Get (straight line) distances to stations that can be transferred to. Parameters ---------- stop_I : int, optional If not specified return all possible transfer distances Returns ------- distances: pandas.DataFrame each row has the following items from_stop_I: int to_stop_I: int d: float or int #distance in meters """ if stop_I is not None: query = u""" SELECT from_stop_I, to_stop_I, d FROM stop_distances WHERE from_stop_I=? """ params = (u"{stop_I}".format(stop_I=stop_I),) else: query = """ SELECT from_stop_I, to_stop_I, d FROM stop_distances """ params = None stop_data_df = pd.read_sql_query(query, self.conn, params=params) return stop_data_df
def get_day_start_ut_span(self): """ Return the first and last day_start_ut Returns ------- first_day_start_ut: int last_day_start_ut: int """ cur = self.conn.cursor() first_day_start_ut, last_day_start_ut = \ cur.execute("SELECT min(day_start_ut), max(day_start_ut) FROM days;").fetchone() return first_day_start_ut, last_day_start_ut
def homogenize_stops_table_with_other_db(self, source): """ This function takes an external database, looks of common stops and adds the missing stops to both databases. In addition the stop_pair_I column is added. This id links the stops between these two sources. :param source: directory of external database :return: """ cur = self.conn.cursor() self.attach_gtfs_database(source) query_inner_join = """SELECT t1.* FROM stops t1 INNER JOIN other.stops t2 ON t1.stop_id=t2.stop_id AND find_distance(t1.lon, t1.lat, t2.lon, t2.lat) <= 50""" df_inner_join = self.execute_custom_query_pandas(query_inner_join) print("number of common stops: ", len(df_inner_join.index)) df_not_in_other = self.execute_custom_query_pandas("SELECT * FROM stops EXCEPT " + query_inner_join) print("number of stops missing in second feed: ", len(df_not_in_other.index)) df_not_in_self = self.execute_custom_query_pandas("SELECT * FROM other.stops EXCEPT " + query_inner_join.replace("t1.*", "t2.*")) print("number of stops missing in first feed: ", len(df_not_in_self.index)) try: self.execute_custom_query("""ALTER TABLE stops ADD COLUMN stop_pair_I INT """) self.execute_custom_query("""ALTER TABLE other.stops ADD COLUMN stop_pair_I INT """) except sqlite3.OperationalError: pass stop_id_stub = "added_stop_" counter = 0 rows_to_update_self = [] rows_to_update_other = [] rows_to_add_to_self = [] rows_to_add_to_other = [] for items in df_inner_join.itertuples(index=False): rows_to_update_self.append((counter, items[1])) rows_to_update_other.append((counter, items[1])) counter += 1 for items in df_not_in_other.itertuples(index=False): rows_to_update_self.append((counter, items[1])) rows_to_add_to_other.append((stop_id_stub + str(counter),) + tuple(items[x] for x in [2, 3, 4, 5, 6, 8, 9]) + (counter,)) counter += 1 for items in df_not_in_self.itertuples(index=False): rows_to_update_other.append((counter, items[1])) rows_to_add_to_self.append((stop_id_stub + str(counter),) + tuple(items[x] for x in [2, 3, 4, 5, 6, 8, 9]) + (counter,)) counter += 1 query_add_row = """INSERT INTO stops( stop_id, code, name, desc, lat, lon, location_type, wheelchair_boarding, stop_pair_I) VALUES (%s) """ % (", ".join(["?" for x in range(9)])) query_update_row = """UPDATE stops SET stop_pair_I=? WHERE stop_id=?""" print("adding rows to databases") cur.executemany(query_add_row, rows_to_add_to_self) cur.executemany(query_update_row, rows_to_update_self) cur.executemany(query_add_row.replace("stops", "other.stops"), rows_to_add_to_other) cur.executemany(query_update_row.replace("stops", "other.stops"), rows_to_update_other) self.conn.commit() print("finished")
def read_data_as_dataframe(self, travel_impedance_measure, from_stop_I=None, to_stop_I=None, statistic=None): """ Recover pre-computed travel_impedance between od-pairs from the database. Returns ------- values: number | Pandas DataFrame """ to_select = [] where_clauses = [] to_select.append("from_stop_I") to_select.append("to_stop_I") if from_stop_I is not None: where_clauses.append("from_stop_I=" + str(int(from_stop_I))) if to_stop_I is not None: where_clauses.append("to_stop_I=" + str(int(to_stop_I))) where_clause = "" if len(where_clauses) > 0: where_clause = " WHERE " + " AND ".join(where_clauses) if not statistic: to_select.extend(["min", "mean", "median", "max"]) else: to_select.append(statistic) to_select_clause = ",".join(to_select) if not to_select_clause: to_select_clause = "*" sql = "SELECT " + to_select_clause + " FROM " + travel_impedance_measure + where_clause + ";" df = pd.read_sql(sql, self.conn) return df
def insert_data(self, travel_impedance_measure_name, data): """ Parameters ---------- travel_impedance_measure_name: str data: list[dict] Each list element must contain keys: "from_stop_I", "to_stop_I", "min", "max", "median" and "mean" """ f = float data_tuple = [(int(x["from_stop_I"]), int(x["to_stop_I"]), f(x["min"]), f(x["max"]), f(x["median"]), f(x["mean"])) for x in data] insert_stmt = '''INSERT OR REPLACE INTO ''' + travel_impedance_measure_name + ''' ( from_stop_I, to_stop_I, min, max, median, mean) VALUES (?, ?, ?, ?, ?, ?) ''' self.conn.executemany(insert_stmt, data_tuple) self.conn.commit()