relative_path
stringclasses
812 values
section
stringclasses
339 values
filename
stringlengths
2
61
text
stringlengths
6
1.76M
PyTorch/LanguageModeling/BERT
BERT
optimization
# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math import torch from torch.optim import Optimizer from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ #from fused_adam_local import FusedAdam from apex.optimizers import FusedAdam from apex.multi_tensor_apply import multi_tensor_applier import amp_C from utils import is_main_process multi_tensor_l2norm = amp_C.multi_tensor_l2norm lamb_compute_update = amp_C.multi_tensor_lamb_stage1_cuda lamb_apply_update = amp_C.multi_tensor_lamb_stage2_cuda scale = amp_C.multi_tensor_scale def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return max((x - 1. )/ (warmup - 1.), 0.) def warmup_poly(x, warmup=0.002, degree=0.5): if x < warmup: return x/warmup return (1.0 - x)**degree SCHEDULES = { 'warmup_cosine':warmup_cosine, 'warmup_constant':warmup_constant, 'warmup_linear':warmup_linear, 'warmup_poly':warmup_poly, } class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm'], error_if_nonfinite=False) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 return loss
TensorFlow2/Recommendation/WideAndDeep/data/outbrain/nvtabular
nvtabular
preproc
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os os.environ["TF_MEMORY_ALLOCATION"] = "0.0" from data.outbrain.nvtabular.utils.arguments import parse_args from data.outbrain.nvtabular.utils.setup import create_config from data.outbrain.nvtabular.utils.workflow import execute_pipeline from data.outbrain.features import get_outbrain_feature_spec def is_empty(path): return not (os.path.exists(path) and (os.path.isfile(path) or os.listdir(path))) def main(): args = parse_args() config = create_config(args) if is_empty(args.metadata_path): logging.warning( "Creating parquets into {}".format(config["output_bucket_folder"]) ) execute_pipeline(config) save_feature_spec(config["output_bucket_folder"]) else: logging.warning(f"Directory exists {args.metadata_path}") logging.warning("Skipping NVTabular preprocessing") def save_feature_spec(base_directory): feature_spec = get_outbrain_feature_spec(base_directory) fspec_path = os.path.join(base_directory, 'feature_spec.yaml') feature_spec.to_yaml(output_path=fspec_path) if __name__ == "__main__": main()
TensorFlow/Classification/ConvNets/runtime
runtime
runner
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import time import multiprocessing import warnings import tensorflow as tf import numpy as np from model import resnet from utils import hooks from utils import data_utils from utils import hvd_wrapper as hvd from runtime import runner_utils import dllogger import random __all__ = [ 'Runner', ] class Runner(object): def __init__( self, # ========= Model HParams ========= # n_classes=1001, architecture='resnet50', input_format='NHWC', # NCHW or NHWC compute_format='NCHW', # NCHW or NHWC dtype=tf.float32, # tf.float32 or tf.float16 n_channels=3, height=224, width=224, distort_colors=False, model_dir=None, log_dir=None, data_dir=None, data_idx_dir=None, weight_init="fan_out", # ======= Optimization HParams ======== # use_xla=False, use_tf_amp=False, use_dali=False, use_cpu=False, gpu_memory_fraction=1.0, gpu_id=0, # ======== Debug Flags ======== # debug_verbosity=0, seed=None): if dtype not in [tf.float32, tf.float16]: raise ValueError( "Unknown dtype received: %s (allowed: `tf.float32` and `tf.float16`)" % dtype) if compute_format not in ["NHWC", 'NCHW']: raise ValueError( "Unknown `compute_format` received: %s (allowed: ['NHWC', 'NCHW'])" % compute_format) if input_format not in ["NHWC", 'NCHW']: raise ValueError( "Unknown `input_format` received: %s (allowed: ['NHWC', 'NCHW'])" % input_format) if n_channels not in [1, 3]: raise ValueError( "Unsupported number of channels: %d (allowed: 1 (grayscale) and 3 (color))" % n_channels) if seed is not None: seed = seed * 2 + hvd.rank() tf.set_random_seed(seed) np.random.seed(seed) random.seed(seed) # ============================================ # Optimsation Flags - Do not remove # ============================================ os.environ['CUDA_CACHE_DISABLE'] = '0' os.environ['HOROVOD_GPU_ALLREDUCE'] = 'NCCL' #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_GPU_THREAD_MODE'] = 'gpu_private' os.environ['TF_GPU_THREAD_COUNT'] = '2' os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1' os.environ['TF_ADJUST_HUE_FUSED'] = '1' os.environ['TF_ADJUST_SATURATION_FUSED'] = '1' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_AUTOTUNE_THRESHOLD'] = '2' os.environ['TF_DISABLE_NVTX_RANGES'] = '1' os.environ["TF_XLA_FLAGS"] = (os.environ.get( "TF_XLA_FLAGS", "") + " --tf_xla_enable_lazy_compilation=false") # ============================================ # TF-AMP Setup - Do not remove # ============================================ if dtype == tf.float16: if use_tf_amp: raise RuntimeError( "TF AMP can not be activated for FP16 precision") elif use_tf_amp: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "1" else: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "0" # ================================================= model_hparams = tf.contrib.training.HParams(width=height, height=width, n_channels=n_channels, n_classes=n_classes, dtype=dtype, input_format=input_format, compute_format=compute_format, distort_colors=distort_colors, seed=seed) num_preprocessing_threads = 10 if not use_dali else 4 run_config_performance = tf.contrib.training.HParams(num_preprocessing_threads=num_preprocessing_threads, use_tf_amp=use_tf_amp, use_xla=use_xla, use_dali=use_dali, use_cpu=use_cpu, gpu_memory_fraction=gpu_memory_fraction, gpu_id=gpu_id) run_config_additional = tf.contrib.training.HParams( model_dir=model_dir, log_dir=log_dir if hvd.rank() == 0 else None, data_dir=data_dir, data_idx_dir=data_idx_dir, num_preprocessing_threads=num_preprocessing_threads) self.run_hparams = Runner._build_hparams( model_hparams, run_config_additional, run_config_performance) model_name = architecture architecture = resnet.model_architectures[architecture] self._model = resnet.ResnetModel(model_name=model_name, n_classes=model_hparams.n_classes, layers_count=architecture["layers"], layers_depth=architecture["widths"], expansions=architecture["expansions"], input_format=model_hparams.input_format, compute_format=model_hparams.compute_format, dtype=model_hparams.dtype, weight_init=weight_init, use_dali=use_dali, use_cpu=use_cpu, cardinality=architecture['cardinality'] if 'cardinality' in architecture else 1, use_se=architecture['use_se'] if 'use_se' in architecture else False, se_ratio=architecture['se_ratio'] if 'se_ratio' in architecture else 1) self.training_logging_hook = None self.eval_logging_hook = None @staticmethod def _build_hparams(*args): hparams = tf.contrib.training.HParams() for _hparams in args: if not isinstance(_hparams, tf.contrib.training.HParams): raise ValueError( "Non valid HParams argument object detected:", _hparams) for key, val in _hparams.values().items(): try: hparams.add_hparam(name=key, value=val) except ValueError: warnings.warn( "the parameter `{}` already exists - existing value: {} and duplicated value: {}".format( key, hparams.get(key), val)) return hparams @staticmethod def _get_global_batch_size(worker_batch_size): return worker_batch_size * hvd.size() @staticmethod def _get_session_config(mode, use_xla, use_dali, use_cpu, gpu_memory_fraction, gpu_id=0): if mode not in ["train", 'validation', 'benchmark', 'inference']: raise ValueError("Unknown mode received: %s (allowed: 'train', 'validation', 'benchmark', 'inference')" % mode) config = tf.ConfigProto() if not use_cpu: # Limit available GPU memory (tune the size) if use_dali: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) config = tf.ConfigProto(gpu_options=gpu_options) config.gpu_options.allow_growth = False else: config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False config.gpu_options.visible_device_list = str(gpu_id) config.gpu_options.force_gpu_compatible = True # Force pinned memory if hvd.size() > 1: config.gpu_options.visible_device_list = str(hvd.local_rank()) config.gpu_options.force_gpu_compatible = True # Force pinned memory if use_xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 if mode == 'train': if not use_cpu: config.intra_op_parallelism_threads = 1 # Avoid pool of Eigen threads config.inter_op_parallelism_threads = max( 2, (multiprocessing.cpu_count() // max(hvd.size(), 8) - 2)) return config @staticmethod def _get_run_config(mode, model_dir, use_xla, use_dali, use_cpu, gpu_memory_fraction, gpu_id=0, seed=None): if mode not in ["train", 'validation', 'benchmark', 'inference']: raise ValueError("Unknown mode received: %s (allowed: 'train', 'validation', 'benchmark', 'inference')" % mode) config = tf.estimator.RunConfig( model_dir=model_dir, tf_random_seed=seed, save_summary_steps=100 if mode in [ 'train', 'validation'] else 1e9, # disabled in benchmark mode save_checkpoints_steps=None, save_checkpoints_secs=None, session_config=Runner._get_session_config(mode=mode, use_xla=use_xla, use_dali=use_dali, use_cpu=use_cpu, gpu_memory_fraction=gpu_memory_fraction, gpu_id=gpu_id), keep_checkpoint_max=5, keep_checkpoint_every_n_hours=1e6, # disabled log_step_count_steps=1e9, train_distribute=None, device_fn=None, protocol=None, eval_distribute=None, experimental_distribute=None) if mode == 'train': config = config.replace(save_checkpoints_steps=1000 if hvd.rank() == 0 else None, keep_checkpoint_every_n_hours=3) return config def _get_estimator(self, mode, run_params, use_xla, use_dali, gpu_memory_fraction, gpu_id=0): if mode not in ["train", 'validation', 'benchmark', 'inference']: raise ValueError("Unknown mode received: %s (allowed: 'train', 'validation', 'benchmark', 'inference')" % mode) run_config = Runner._get_run_config(mode=mode, model_dir=self.run_hparams.model_dir, use_xla=use_xla, use_dali=use_dali, use_cpu=self.run_hparams.use_cpu, gpu_memory_fraction=gpu_memory_fraction, gpu_id=gpu_id, seed=self.run_hparams.seed) return tf.estimator.Estimator(model_fn=self._model, model_dir=self.run_hparams.model_dir, config=run_config, params=run_params) def train(self, iter_unit, num_iter, run_iter, batch_size, warmup_steps=50, weight_decay=1e-4, lr_init=0.1, lr_warmup_epochs=5, momentum=0.9, log_every_n_steps=1, loss_scale=256, label_smoothing=0.0, mixup=0.0, use_cosine_lr=False, use_static_loss_scaling=False, is_benchmark=False, quantize=False, symmetric=False, quant_delay=0, finetune_checkpoint=None, use_final_conv=False, use_qdq=False): if iter_unit not in ["epoch", "batch"]: raise ValueError( '`iter_unit` value is unknown: %s (allowed: ["epoch", "batch"])' % iter_unit) if self.run_hparams.data_dir is None and not is_benchmark: raise ValueError('`data_dir` must be specified for training!') if self.run_hparams.use_tf_amp or self.run_hparams.dtype == tf.float16: if use_static_loss_scaling: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_LOSS_SCALING"] = "0" else: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_LOSS_SCALING"] = "1" else: # Make sure it hasn't been set to True on FP32 training use_static_loss_scaling = False num_gpus = hvd.size() global_batch_size = batch_size * num_gpus if self.run_hparams.data_dir is not None: filenames, num_samples, num_steps, num_epochs, num_decay_steps = runner_utils.parse_tfrecords_dataset( data_dir=self.run_hparams.data_dir, mode="train", iter_unit=iter_unit, num_iter=num_iter, global_batch_size=global_batch_size, ) steps_per_epoch = num_steps / num_epochs else: num_epochs = 1 num_steps = num_iter steps_per_epoch = num_steps num_decay_steps = num_steps num_samples = num_steps * batch_size if run_iter == -1: run_iter = num_steps else: run_iter = steps_per_epoch * run_iter if iter_unit == "epoch" else run_iter if self.run_hparams.use_dali and self.run_hparams.data_idx_dir is not None: idx_filenames = runner_utils.parse_dali_idx_dataset(data_idx_dir=self.run_hparams.data_idx_dir, mode="train") training_hooks = [] if hvd.rank() == 0: print('Starting Model Training...') print("Training Epochs", num_epochs) print("Total Steps", num_steps) print("Steps per Epoch", steps_per_epoch) print("Decay Steps", num_decay_steps) print("Weight Decay Factor", weight_decay) print("Init Learning Rate", lr_init) print("Momentum", momentum) print("Num GPUs", num_gpus) print("Per-GPU Batch Size", batch_size) if is_benchmark: self.training_logging_hook = hooks.BenchmarkLoggingHook( global_batch_size=global_batch_size, warmup_steps=warmup_steps, logging_steps=log_every_n_steps ) else: self.training_logging_hook = hooks.TrainingLoggingHook( global_batch_size=global_batch_size, num_steps=num_steps, num_samples=num_samples, num_epochs=num_epochs, steps_per_epoch=steps_per_epoch, logging_steps=log_every_n_steps, seed=self.run_hparams.seed, ) training_hooks.append(self.training_logging_hook) if hvd.size() > 1: bcast_hook = hvd.hvd_global_object.BroadcastGlobalVariablesHook(0) training_hooks.append(bcast_hook) partition_hook = hooks.TrainingPartitionHook() training_hooks.append(hooks.PrefillStagingAreasHook()) training_hooks.append(partition_hook) estimator_params = { 'batch_size': batch_size, 'steps_per_epoch': steps_per_epoch, 'num_gpus': num_gpus, 'momentum': momentum, 'lr_init': lr_init, 'lr_warmup_epochs': lr_warmup_epochs, 'weight_decay': weight_decay, 'loss_scale': loss_scale, 'apply_loss_scaling': use_static_loss_scaling, 'label_smoothing': label_smoothing, 'mixup': mixup, 'num_decay_steps': num_decay_steps, 'use_cosine_lr': use_cosine_lr, 'use_final_conv': use_final_conv, 'quantize': quantize, 'use_qdq': use_qdq, 'symmetric': symmetric, 'quant_delay': quant_delay } if finetune_checkpoint: estimator_params['finetune_checkpoint'] = finetune_checkpoint image_classifier = self._get_estimator(mode='train', run_params=estimator_params, use_xla=self.run_hparams.use_xla, use_dali=self.run_hparams.use_dali, gpu_memory_fraction=self.run_hparams.gpu_memory_fraction, gpu_id=self.run_hparams.gpu_id) def training_data_fn(): if self.run_hparams.use_dali and self.run_hparams.data_idx_dir is not None: if hvd.rank() == 0: print("Using DALI input... ") return data_utils.get_dali_input_fn(filenames=filenames, idx_filenames=idx_filenames, batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, training=True, distort_color=self.run_hparams.distort_colors, num_threads=self.run_hparams.num_preprocessing_threads, deterministic=False if self.run_hparams.seed is None else True) elif self.run_hparams.data_dir is not None: return data_utils.get_tfrecords_input_fn(filenames=filenames, batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, training=True, distort_color=self.run_hparams.distort_colors, num_threads=self.run_hparams.num_preprocessing_threads, deterministic=False if self.run_hparams.seed is None else True) else: if hvd.rank() == 0: print("Using Synthetic Data ...") return data_utils.get_synth_input_fn( batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, num_channels=self.run_hparams.n_channels, data_format=self.run_hparams.input_format, num_classes=self.run_hparams.n_classes, dtype=self.run_hparams.dtype, ) try: current_step = image_classifier.get_variable_value("global_step") except ValueError: current_step = 0 run_iter = max(0, min(run_iter, num_steps - current_step)) print("Current step:", current_step) if run_iter > 0: try: image_classifier.train( input_fn=training_data_fn, steps=run_iter, hooks=training_hooks, ) except KeyboardInterrupt: print("Keyboard interrupt") if partition_hook.signal_recieved: self.wait_after_eval = True if hvd.rank() == 0: if run_iter > 0: print('Ending Model Training ...') train_throughput = self.training_logging_hook.mean_throughput.value() dllogger.log( data={'train_throughput': train_throughput}, step=tuple()) else: print('Model already trained required number of steps. Skipped') def evaluate( self, iter_unit, num_iter, batch_size, warmup_steps=50, log_every_n_steps=1, is_benchmark=False, export_dir=None, quantize=False, symmetric=False, use_qdq=False, use_final_conv=False, ): if iter_unit not in ["epoch", "batch"]: raise ValueError( '`iter_unit` value is unknown: %s (allowed: ["epoch", "batch"])' % iter_unit) if self.run_hparams.data_dir is None and not is_benchmark: raise ValueError('`data_dir` must be specified for evaluation!') if hvd.rank() != 0: raise RuntimeError('Multi-GPU inference is not supported') estimator_params = {'quantize': quantize, 'symmetric': symmetric, 'use_qdq': use_qdq, 'use_final_conv': use_final_conv} image_classifier = self._get_estimator(mode='validation', run_params=estimator_params, use_xla=self.run_hparams.use_xla, use_dali=self.run_hparams.use_dali, gpu_memory_fraction=self.run_hparams.gpu_memory_fraction, gpu_id=self.run_hparams.gpu_id) if self.run_hparams.data_dir is not None: filenames, num_samples, num_steps, num_epochs, num_decay_steps = runner_utils.parse_tfrecords_dataset( data_dir=self.run_hparams.data_dir, mode="validation", iter_unit=iter_unit, num_iter=num_iter, global_batch_size=batch_size, ) else: num_epochs = 1 num_decay_steps = -1 num_steps = num_iter if self.run_hparams.use_dali and self.run_hparams.data_idx_dir is not None: idx_filenames = runner_utils.parse_dali_idx_dataset(data_idx_dir=self.run_hparams.data_idx_dir, mode="validation") eval_hooks = [] if hvd.rank() == 0: self.eval_logging_hook = hooks.BenchmarkLoggingHook( global_batch_size=batch_size, warmup_steps=warmup_steps, logging_steps=log_every_n_steps ) eval_hooks.append(self.eval_logging_hook) print('Starting Model Evaluation...') print("Evaluation Epochs", num_epochs) print("Evaluation Steps", num_steps) print("Decay Steps", num_decay_steps) print("Global Batch Size", batch_size) def evaluation_data_fn(): if self.run_hparams.use_dali and self.run_hparams.data_idx_dir is not None: if hvd.rank() == 0: print("Using DALI input... ") return data_utils.get_dali_input_fn(filenames=filenames, idx_filenames=idx_filenames, batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, training=False, distort_color=self.run_hparams.distort_colors, num_threads=self.run_hparams.num_preprocessing_threads, deterministic=False if self.run_hparams.seed is None else True) elif self.run_hparams.data_dir is not None: return data_utils.get_tfrecords_input_fn(filenames=filenames, batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, training=False, distort_color=self.run_hparams.distort_colors, num_threads=self.run_hparams.num_preprocessing_threads, deterministic=False if self.run_hparams.seed is None else True) else: print("Using Synthetic Data ...\n") return data_utils.get_synth_input_fn( batch_size=batch_size, height=self.run_hparams.height, width=self.run_hparams.width, num_channels=self.run_hparams.n_channels, data_format=self.run_hparams.input_format, num_classes=self.run_hparams.n_classes, dtype=self.run_hparams.dtype, ) try: eval_results = image_classifier.evaluate( input_fn=evaluation_data_fn, steps=num_steps, hooks=eval_hooks, ) eval_throughput = self.eval_logging_hook.mean_throughput.value() if len(self.eval_logging_hook.latencies) > 0: eval_latencies = np.array( self.eval_logging_hook.latencies) * 1000 eval_latencies_q = np.quantile( eval_latencies, q=[0.9, 0.95, 0.99]) eval_latencies_mean = np.mean(eval_latencies) additional_metrics = { 'eval_latency_avg': eval_latencies_mean, 'eval_latency_p90': eval_latencies_q[0], 'eval_latency_p95': eval_latencies_q[1], 'eval_latency_p99': eval_latencies_q[2], } else: additional_metrics = {} dllogger.log(data={ 'top1_accuracy': float(eval_results['top1_accuracy']), 'top5_accuracy': float(eval_results['top5_accuracy']), 'eval_throughput': eval_throughput, **additional_metrics }, step=tuple()) if export_dir is not None: dllogger.log(data={'export_dir': export_dir}, step=tuple()) input_receiver_fn = data_utils.get_serving_input_receiver_fn(batch_size=None, height=self.run_hparams.height, width=self.run_hparams.width, num_channels=self.run_hparams.n_channels, data_format=self.run_hparams.input_format, dtype=self.run_hparams.dtype) self.exported_path = image_classifier.export_savedmodel( export_dir, input_receiver_fn) except KeyboardInterrupt: print("Keyboard interrupt") print('Model evaluation finished') if hasattr(self, "wait_after_eval") and self.wait_after_eval == True: time.sleep(3600) def predict(self, to_predict, quantize=False, symmetric=False, use_qdq=False, use_final_conv=False): estimator_params = { 'quantize': quantize, 'symmetric': symmetric, 'use_qdq': use_qdq, 'use_final_conv': use_final_conv } if to_predict is not None: filenames = runner_utils.parse_inference_input(to_predict) image_classifier = self._get_estimator(mode='inference', run_params=estimator_params, use_xla=self.run_hparams.use_xla, use_dali=self.run_hparams.use_dali, gpu_memory_fraction=self.run_hparams.gpu_memory_fraction) inference_hooks = [] def inference_data_fn(): return data_utils.get_inference_input_fn(filenames=filenames, height=self.run_hparams.height, width=self.run_hparams.width, num_threads=self.run_hparams.num_preprocessing_threads) try: inference_results = image_classifier.predict(input_fn=inference_data_fn, predict_keys=None, hooks=inference_hooks, yield_single_examples=True) for result in inference_results: print(result['classes'], str( result['probabilities'][result['classes']])) except KeyboardInterrupt: print("Keyboard interrupt") print('Ending Inference ...')
TensorFlow/Detection/SSD/models/research/object_detection/builders
builders
box_predictor_builder_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for box_predictor_builder.""" import mock import tensorflow as tf from google.protobuf import text_format from object_detection.builders import box_predictor_builder from object_detection.builders import hyperparams_builder from object_detection.predictors import mask_rcnn_box_predictor from object_detection.protos import box_predictor_pb2 from object_detection.protos import hyperparams_pb2 class ConvolutionalBoxPredictorBuilderTest(tf.test.TestCase): def test_box_predictor_calls_conv_argscope_fn(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { weight: 0.0003 } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.3 } } activation: RELU_6 """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.convolutional_box_predictor.conv_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10) (conv_hyperparams_actual, is_training) = box_predictor._conv_hyperparams_fn self.assertAlmostEqual((hyperparams_proto.regularizer. l1_regularizer.weight), (conv_hyperparams_actual.regularizer.l1_regularizer. weight)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.stddev), (conv_hyperparams_actual.initializer. truncated_normal_initializer.stddev)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.mean), (conv_hyperparams_actual.initializer. truncated_normal_initializer.mean)) self.assertEqual(hyperparams_proto.activation, conv_hyperparams_actual.activation) self.assertFalse(is_training) def test_construct_non_default_conv_box_predictor(self): box_predictor_text_proto = """ convolutional_box_predictor { min_depth: 2 max_depth: 16 num_layers_before_predictor: 2 use_dropout: false dropout_keep_probability: 0.4 kernel_size: 3 box_code_size: 3 apply_sigmoid_to_scores: true class_prediction_bias_init: 4.0 use_depthwise: true } """ conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor_proto.convolutional_box_predictor.conv_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10, add_background_class=False) class_head = box_predictor._class_prediction_head self.assertEqual(box_predictor._min_depth, 2) self.assertEqual(box_predictor._max_depth, 16) self.assertEqual(box_predictor._num_layers_before_predictor, 2) self.assertFalse(class_head._use_dropout) self.assertAlmostEqual(class_head._dropout_keep_prob, 0.4) self.assertTrue(class_head._apply_sigmoid_to_scores) self.assertAlmostEqual(class_head._class_prediction_bias_init, 4.0) self.assertEqual(class_head._num_class_slots, 10) self.assertEqual(box_predictor.num_classes, 10) self.assertFalse(box_predictor._is_training) self.assertTrue(class_head._use_depthwise) def test_construct_default_conv_box_predictor(self): box_predictor_text_proto = """ convolutional_box_predictor { conv_hyperparams { regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } } }""" box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor = box_predictor_builder.build( argscope_fn=hyperparams_builder.build, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) class_head = box_predictor._class_prediction_head self.assertEqual(box_predictor._min_depth, 0) self.assertEqual(box_predictor._max_depth, 0) self.assertEqual(box_predictor._num_layers_before_predictor, 0) self.assertTrue(class_head._use_dropout) self.assertAlmostEqual(class_head._dropout_keep_prob, 0.8) self.assertFalse(class_head._apply_sigmoid_to_scores) self.assertEqual(class_head._num_class_slots, 91) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertFalse(class_head._use_depthwise) class WeightSharedConvolutionalBoxPredictorBuilderTest(tf.test.TestCase): def test_box_predictor_calls_conv_argscope_fn(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { weight: 0.0003 } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.3 } } activation: RELU_6 """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() (box_predictor_proto.weight_shared_convolutional_box_predictor .conv_hyperparams.CopyFrom(hyperparams_proto)) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10) (conv_hyperparams_actual, is_training) = box_predictor._conv_hyperparams_fn self.assertAlmostEqual((hyperparams_proto.regularizer. l1_regularizer.weight), (conv_hyperparams_actual.regularizer.l1_regularizer. weight)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.stddev), (conv_hyperparams_actual.initializer. truncated_normal_initializer.stddev)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.mean), (conv_hyperparams_actual.initializer. truncated_normal_initializer.mean)) self.assertEqual(hyperparams_proto.activation, conv_hyperparams_actual.activation) self.assertFalse(is_training) def test_construct_non_default_conv_box_predictor(self): box_predictor_text_proto = """ weight_shared_convolutional_box_predictor { depth: 2 num_layers_before_predictor: 2 kernel_size: 7 box_code_size: 3 class_prediction_bias_init: 4.0 } """ conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) (box_predictor_proto.weight_shared_convolutional_box_predictor. conv_hyperparams.CopyFrom(hyperparams_proto)) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10, add_background_class=False) class_head = box_predictor._class_prediction_head self.assertEqual(box_predictor._depth, 2) self.assertEqual(box_predictor._num_layers_before_predictor, 2) self.assertAlmostEqual(class_head._class_prediction_bias_init, 4.0) self.assertEqual(box_predictor.num_classes, 10) self.assertFalse(box_predictor._is_training) self.assertEqual(box_predictor._apply_batch_norm, False) def test_construct_non_default_depthwise_conv_box_predictor(self): box_predictor_text_proto = """ weight_shared_convolutional_box_predictor { depth: 2 num_layers_before_predictor: 2 kernel_size: 7 box_code_size: 3 class_prediction_bias_init: 4.0 use_depthwise: true } """ conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) (box_predictor_proto.weight_shared_convolutional_box_predictor. conv_hyperparams.CopyFrom(hyperparams_proto)) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10, add_background_class=False) class_head = box_predictor._class_prediction_head self.assertEqual(box_predictor._depth, 2) self.assertEqual(box_predictor._num_layers_before_predictor, 2) self.assertEqual(box_predictor._apply_batch_norm, False) self.assertEqual(box_predictor._use_depthwise, True) self.assertAlmostEqual(class_head._class_prediction_bias_init, 4.0) self.assertEqual(box_predictor.num_classes, 10) self.assertFalse(box_predictor._is_training) def test_construct_default_conv_box_predictor(self): box_predictor_text_proto = """ weight_shared_convolutional_box_predictor { conv_hyperparams { regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } } }""" box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor = box_predictor_builder.build( argscope_fn=hyperparams_builder.build, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertEqual(box_predictor._depth, 0) self.assertEqual(box_predictor._num_layers_before_predictor, 0) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._apply_batch_norm, False) def test_construct_default_conv_box_predictor_with_batch_norm(self): box_predictor_text_proto = """ weight_shared_convolutional_box_predictor { conv_hyperparams { regularizer { l1_regularizer { } } batch_norm { train: true } initializer { truncated_normal_initializer { } } } }""" box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor = box_predictor_builder.build( argscope_fn=hyperparams_builder.build, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertEqual(box_predictor._depth, 0) self.assertEqual(box_predictor._num_layers_before_predictor, 0) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._apply_batch_norm, True) class MaskRCNNBoxPredictorBuilderTest(tf.test.TestCase): def test_box_predictor_builder_calls_fc_argscope_fn(self): fc_hyperparams_text_proto = """ regularizer { l1_regularizer { weight: 0.0003 } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.3 } } activation: RELU_6 op: FC """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(fc_hyperparams_text_proto, hyperparams_proto) box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.CopyFrom( hyperparams_proto) mock_argscope_fn = mock.Mock(return_value='arg_scope') box_predictor = box_predictor_builder.build( argscope_fn=mock_argscope_fn, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10) mock_argscope_fn.assert_called_with(hyperparams_proto, False) self.assertEqual(box_predictor._box_prediction_head._fc_hyperparams_fn, 'arg_scope') self.assertEqual(box_predictor._class_prediction_head._fc_hyperparams_fn, 'arg_scope') def test_non_default_mask_rcnn_box_predictor(self): fc_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 op: FC """ box_predictor_text_proto = """ mask_rcnn_box_predictor { use_dropout: true dropout_keep_probability: 0.8 box_code_size: 3 share_box_across_classes: true } """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(fc_hyperparams_text_proto, hyperparams_proto) def mock_fc_argscope_builder(fc_hyperparams_arg, is_training): return (fc_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_fc_argscope_builder, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) box_head = box_predictor._box_prediction_head class_head = box_predictor._class_prediction_head self.assertTrue(box_head._use_dropout) self.assertTrue(class_head._use_dropout) self.assertAlmostEqual(box_head._dropout_keep_prob, 0.8) self.assertAlmostEqual(class_head._dropout_keep_prob, 0.8) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_head._box_code_size, 3) self.assertEqual(box_head._share_box_across_classes, True) def test_build_default_mask_rcnn_box_predictor(self): box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = ( hyperparams_pb2.Hyperparams.FC) box_predictor = box_predictor_builder.build( argscope_fn=mock.Mock(return_value='arg_scope'), box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) box_head = box_predictor._box_prediction_head class_head = box_predictor._class_prediction_head self.assertFalse(box_head._use_dropout) self.assertFalse(class_head._use_dropout) self.assertAlmostEqual(box_head._dropout_keep_prob, 0.5) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_head._box_code_size, 4) self.assertEqual(len(box_predictor._third_stage_heads.keys()), 0) def test_build_box_predictor_with_mask_branch(self): box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = ( hyperparams_pb2.Hyperparams.FC) box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams.op = ( hyperparams_pb2.Hyperparams.CONV) box_predictor_proto.mask_rcnn_box_predictor.predict_instance_masks = True box_predictor_proto.mask_rcnn_box_predictor.mask_prediction_conv_depth = 512 box_predictor_proto.mask_rcnn_box_predictor.mask_height = 16 box_predictor_proto.mask_rcnn_box_predictor.mask_width = 16 mock_argscope_fn = mock.Mock(return_value='arg_scope') box_predictor = box_predictor_builder.build( argscope_fn=mock_argscope_fn, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) mock_argscope_fn.assert_has_calls( [mock.call(box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams, True), mock.call(box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams, True)], any_order=True) box_head = box_predictor._box_prediction_head class_head = box_predictor._class_prediction_head third_stage_heads = box_predictor._third_stage_heads self.assertFalse(box_head._use_dropout) self.assertFalse(class_head._use_dropout) self.assertAlmostEqual(box_head._dropout_keep_prob, 0.5) self.assertAlmostEqual(class_head._dropout_keep_prob, 0.5) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_head._box_code_size, 4) self.assertTrue( mask_rcnn_box_predictor.MASK_PREDICTIONS in third_stage_heads) self.assertEqual( third_stage_heads[mask_rcnn_box_predictor.MASK_PREDICTIONS] ._mask_prediction_conv_depth, 512) def test_build_box_predictor_with_convlve_then_upsample_masks(self): box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = ( hyperparams_pb2.Hyperparams.FC) box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams.op = ( hyperparams_pb2.Hyperparams.CONV) box_predictor_proto.mask_rcnn_box_predictor.predict_instance_masks = True box_predictor_proto.mask_rcnn_box_predictor.mask_prediction_conv_depth = 512 box_predictor_proto.mask_rcnn_box_predictor.mask_height = 24 box_predictor_proto.mask_rcnn_box_predictor.mask_width = 24 box_predictor_proto.mask_rcnn_box_predictor.convolve_then_upsample_masks = ( True) mock_argscope_fn = mock.Mock(return_value='arg_scope') box_predictor = box_predictor_builder.build( argscope_fn=mock_argscope_fn, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) mock_argscope_fn.assert_has_calls( [mock.call(box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams, True), mock.call(box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams, True)], any_order=True) box_head = box_predictor._box_prediction_head class_head = box_predictor._class_prediction_head third_stage_heads = box_predictor._third_stage_heads self.assertFalse(box_head._use_dropout) self.assertFalse(class_head._use_dropout) self.assertAlmostEqual(box_head._dropout_keep_prob, 0.5) self.assertAlmostEqual(class_head._dropout_keep_prob, 0.5) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_head._box_code_size, 4) self.assertTrue( mask_rcnn_box_predictor.MASK_PREDICTIONS in third_stage_heads) self.assertEqual( third_stage_heads[mask_rcnn_box_predictor.MASK_PREDICTIONS] ._mask_prediction_conv_depth, 512) self.assertTrue(third_stage_heads[mask_rcnn_box_predictor.MASK_PREDICTIONS] ._convolve_then_upsample) class RfcnBoxPredictorBuilderTest(tf.test.TestCase): def test_box_predictor_calls_fc_argscope_fn(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { weight: 0.0003 } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.3 } } activation: RELU_6 """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.rfcn_box_predictor.conv_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=False, num_classes=10) (conv_hyperparams_actual, is_training) = box_predictor._conv_hyperparams_fn self.assertAlmostEqual((hyperparams_proto.regularizer. l1_regularizer.weight), (conv_hyperparams_actual.regularizer.l1_regularizer. weight)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.stddev), (conv_hyperparams_actual.initializer. truncated_normal_initializer.stddev)) self.assertAlmostEqual((hyperparams_proto.initializer. truncated_normal_initializer.mean), (conv_hyperparams_actual.initializer. truncated_normal_initializer.mean)) self.assertEqual(hyperparams_proto.activation, conv_hyperparams_actual.activation) self.assertFalse(is_training) def test_non_default_rfcn_box_predictor(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ box_predictor_text_proto = """ rfcn_box_predictor { num_spatial_bins_height: 4 num_spatial_bins_width: 4 depth: 4 box_code_size: 3 crop_height: 16 crop_width: 16 } """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(box_predictor_text_proto, box_predictor_proto) box_predictor_proto.rfcn_box_predictor.conv_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._box_code_size, 3) self.assertEqual(box_predictor._num_spatial_bins, [4, 4]) self.assertEqual(box_predictor._crop_size, [16, 16]) def test_default_rfcn_box_predictor(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto) def mock_conv_argscope_builder(conv_hyperparams_arg, is_training): return (conv_hyperparams_arg, is_training) box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.rfcn_box_predictor.conv_hyperparams.CopyFrom( hyperparams_proto) box_predictor = box_predictor_builder.build( argscope_fn=mock_conv_argscope_builder, box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._box_code_size, 4) self.assertEqual(box_predictor._num_spatial_bins, [3, 3]) self.assertEqual(box_predictor._crop_size, [12, 12]) if __name__ == '__main__': tf.test.main()
TensorFlow/Translation/GNMT/utils
utils
evaluation_utils
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility for evaluating various tasks, e.g., translation & summarization.""" import codecs import os import re import subprocess import tensorflow as tf from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.lib.io import file_io from tensorflow.python.training import checkpoint_management as cm def get_all_checkpoints(output_dir): """docstring.""" ckpt = cm.get_checkpoint_state(output_dir, None) res = [] if not ckpt: return None for path in ckpt.all_model_checkpoint_paths: # Look for either a V2 path or a V1 path, with priority for V2. v2_path = cm._prefix_to_checkpoint_path(path, saver_pb2.SaverDef.V2) v1_path = cm._prefix_to_checkpoint_path(path, saver_pb2.SaverDef.V1) if file_io.get_matching_files(v2_path) or file_io.get_matching_files( v1_path): res.append(path) else: tf.logging.error("Couldn't match files for checkpoint %s", path) return res
DGLPyTorch/DrugDiscovery/SE3Transformer/tests
tests
utils
# Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import dgl import torch def get_random_graph(N, num_edges_factor=18): graph = dgl.remove_self_loop(dgl.rand_graph(N, N * num_edges_factor)) return graph def assign_relative_pos(graph, coords): src, dst = graph.edges() graph.edata['rel_pos'] = coords[src] - coords[dst] return graph def get_max_diff(a, b): return (a - b).abs().max().item() def rot_z(gamma): return torch.tensor([ [torch.cos(gamma), -torch.sin(gamma), 0], [torch.sin(gamma), torch.cos(gamma), 0], [0, 0, 1] ], dtype=gamma.dtype) def rot_y(beta): return torch.tensor([ [torch.cos(beta), 0, torch.sin(beta)], [0, 1, 0], [-torch.sin(beta), 0, torch.cos(beta)] ], dtype=beta.dtype) def rot(alpha, beta, gamma): return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma)
PyTorch/Translation/Transformer/fairseq/data
data
data_utils
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # #------------------------------------------------------------------------- # # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import itertools import os import numpy as np import torch import fairseq.data.batch_C import sys from .dictionary import Dictionary def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None for filename in os.listdir(path): parts = filename.split('.') if len(parts) >= 3 and len(parts[1].split('-')) == 2: return parts[1].split('-') return src, dst def load_dictionaries(args): if args.source_lang is None or args.target_lang is None: args.source_lang, args.target_lang = infer_language_pair(args.data) if args.source_lang is None or args.target_lang is None: raise Exception('Could not infer language pair, please provide it explicitly') # load dictionaries src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.source_lang))) tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.target_lang))) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() args.src_vocab_size = len(src_dict) args.tgt_vocab_size = len(tgt_dict) args.padding_idx = src_dict.pad() print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict))) print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict))) return src_dict, tgt_dict class ShardedIterator(object): """A sharded wrapper around an iterable (padded to length).""" def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError('shard_id must be between 0 and num_shards') self._sharded_len = len(iterable) // num_shards if len(iterable) % num_shards > 0: self._sharded_len += 1 self.itr = itertools.zip_longest( range(self._sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ) def __len__(self): return self._sharded_len def __iter__(self): return self def __next__(self): return next(self.itr)[1] class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count.""" def __init__(self, iterable): self.iterable = iterable self.count = 0 self.itr = iter(self) def __len__(self): return len(self.iterable) def __iter__(self): for x in self.iterable: self.count += 1 yield x def __next__(self): return next(self.itr) def has_next(self): return self.count < len(self) def skip(self, num_to_skip): next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self def collate_tokens(values, pad_idx, eos_idx, left_pad, move_eos_to_beginning=False, pad_sequence=1): """Convert a list of 1d tensors into a padded 2d tensor.""" #size = max(v.size(0) for v in values) orig_size = max(v.size(0) for v in values) size = 0 if pad_sequence > 1: size = orig_size // pad_sequence * pad_sequence if orig_size % pad_sequence > 0: size += pad_sequence else: size = orig_size res = values[0].new(len(values), size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: assert src[-1] == eos_idx dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def collate(samples, pad_idx, eos_idx, left_pad_source=True, left_pad_target=False, pad_sequence=1): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False): return collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_sequence, ) id = torch.LongTensor([s['id'] for s in samples]) src_tokens = merge('source', left_pad=left_pad_source) # sort by descending source length src_lengths = torch.LongTensor([s['source'].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get('target', None) is not None: target = merge('target', left_pad=left_pad_target) # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( 'target', left_pad=left_pad_target, move_eos_to_beginning=True, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) target = target.index_select(0, sort_order) ntokens = sum(len(s['target']) for s in samples) else: ntokens = sum(len(s['source']) for s in samples) return { 'id': id, 'ntokens': ntokens, 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, 'prev_output_tokens': prev_output_tokens, }, 'target': target, } def get_dummy_batch(num_tokens, src_dict, tgt_dict, src_len=128, tgt_len=128, left_pad_source=True, left_pad_target=False, pad_sequence=1): bsz = num_tokens // max(src_len, tgt_len) dummy_samples = [ { 'id': i, 'source': src_dict.dummy_sentence(src_len), 'target': tgt_dict.dummy_sentence(tgt_len) if tgt_dict is not None else None, } for i in range(bsz) ] return collate( dummy_samples, pad_idx=src_dict.pad(), eos_idx=src_dict.eos(), left_pad_source=left_pad_source, left_pad_target=left_pad_target, pad_sequence=pad_sequence, ) class EpochBatchIterator(object): """Iterate over a FairseqDataset and yield batches bucketed by size. Batches may contain sequences of different lengths. This iterator can be reused across multiple epochs with the next_epoch_itr() method. Args: dataset: a FairseqDataset max_tokens: max number of tokens in each batch max_sentences: max number of sentences in each batch max_positions: max sentence length supported by the model required_batch_size_multiple: require batch size to be a multiple of N seed: seed for random number generator for reproducibility num_shards: shard the data iterator into N shards shard_id: which shard of the data iterator to return """ def __init__( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, epoch=0 ): self.dataset = dataset self.max_tokens = max_tokens if max_tokens is not None else float('Inf') self.max_sentences = max_sentences if max_sentences is not None else float('Inf') self.max_positions = max_positions self.bsz_mult = required_batch_size_multiple self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.epoch = epoch self._cur_epoch_itr = None self._next_epoch_itr = None with numpy_seed(self.seed): indices = self.dataset.ordered_indices(self.seed, self.epoch) #need integer, rather than float('Inf') values max_sentences = max_sentences if max_sentences is not None else sys.maxsize max_positions_num = 1024 max_tokens = max_tokens if max_tokens is not None else sys.maxsize #Following line is workaround due to the fact we cannot pass None object as argument tgt_sizes = self.dataset.tgt_sizes if self.dataset.tgt_sizes is not None else self.dataset.src_sizes batches = fairseq.data.batch_C.make_batches( self.dataset.src_sizes, tgt_sizes, indices, max_tokens, max_sentences, self.bsz_mult, max_positions_num) self.frozen_batches = tuple(batches) def __len__(self): return len(self.frozen_batches) def next_epoch_itr(self, shuffle=True): """Shuffle batches and return a new iterator over the dataset.""" if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: self.epoch += 1 self._cur_epoch_itr = self._get_iterator_for_epoch(self.epoch, shuffle) return self._cur_epoch_itr def end_of_epoch(self): return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): if self._cur_epoch_itr is not None: return self._cur_epoch_itr.count elif self._next_epoch_itr is not None: return self._next_epoch_itr.count return 0 def state_dict(self): return { 'epoch': self.epoch, 'iterations_in_epoch': self.iterations_in_epoch, } def load_state_dict(self, state_dict): self.epoch = state_dict['epoch'] itr_pos = state_dict.get('iterations_in_epoch', 0) if itr_pos > 0: # fast-forward epoch iterator itr = self._get_iterator_for_epoch(self.epoch, state_dict.get('shuffle', True)) if itr_pos < len(itr): self._next_epoch_itr = itr.skip(itr_pos) def _get_iterator_for_epoch(self, epoch, shuffle): if shuffle: # set seed based on the seed and epoch number so that we get # reproducible results when resuming from checkpoints with numpy_seed(self.seed + epoch): batches = list(self.frozen_batches) # copy np.random.shuffle(batches) else: batches = self.frozen_batches return CountingIterator(torch.utils.data.DataLoader( self.dataset, collate_fn=self.dataset.collater, num_workers=1, batch_sampler=ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]), )) @contextlib.contextmanager def numpy_seed(seed): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)
TensorFlow/LanguageModeling/BERT/biobert/scripts
scripts
run_biobert_finetuning_inference
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. task=${1:-"ner_bc5cdr-chem"} init_checkpoint=${2:-"/results/biobert_tf_uncased_base/model.ckpt"} bert_model=${3:-"base"} cased=${4:-"false"} precision=${5:-"fp16"} use_xla=${6:-"true"} batch_size=${7:-"16"} if [ "$cased" = "true" ] ; then DO_LOWER_CASE=0 CASING_DIR_PREFIX="cased" case_flag="--do_lower_case=False" else DO_LOWER_CASE=1 CASING_DIR_PREFIX="uncased" case_flag="--do_lower_case=True" fi if [ "$bert_model" = "large" ] ; then export BERT_DIR=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-24_H-1024_A-16 else export BERT_DIR=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-12_H-768_A-12 fi if [ "$precision" = "fp16" ] ; then echo "fp16 activated!" use_fp16="--amp" else echo "fp32/tf32 activated!" use_fp16="--noamp" fi if [ "$use_xla" = "true" ] ; then use_xla_tag="--use_xla" echo "XLA activated" else use_xla_tag="--nouse_xla" fi DATESTAMP=`date +'%y%m%d%H%M%S'` if [ "$task" = "ner_bc5cdr-chem" ] ; then printf -v TAG "tf_bert_biobert_ner_bc5cdr_chem_inference_%s_%s" "$bert_model" "$precision" DATASET_DIR=/workspace/bert/data/biobert/BC5CDR/chem OUTPUT_DIR=/results/${TAG}_${DATESTAMP} python /workspace/bert/run_ner.py \ --do_prepare=true \ --do_eval=true \ --do_predict=true \ --task_name="bc5cdr" \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint=$init_checkpoint \ --data_dir=$DATASET_DIR \ --output_dir=$OUTPUT_DIR \ --eval_batch_size=$batch_size \ --predict_batch_size=$batch_size \ --max_seq_length=128 \ $use_fp16 $use_xla_tag $case_flag elif [ "$task" = "ner_bc5cdr-disease" ] ; then printf -v TAG "tf_bert_biobert_ner_bc5cdr_disease_inference_%s_%s" "$bert_model" "$precision" DATASET_DIR=/workspace/bert/data/biobert/BC5CDR/disease OUTPUT_DIR=/results/${TAG}_${DATESTAMP} python3 /workspace/bert/run_ner.py \ --do_prepare=true \ --do_eval=true \ --do_predict=true \ --task_name="bc5cdr" \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint=$init_checkpoint \ --data_dir=$DATASET_DIR \ --output_dir=$OUTPUT_DIR \ --eval_batch_size=$batch_size \ --predict_batch_size=$batch_size \ --max_seq_length=128 \ "$use_fp16" $use_xla_tag $case_flag elif [ "$task" = "rel_chemprot" ] ; then printf -v TAG "tf_bert_biobert_rel_chemprot_inference_%s_%s_" "$bert_model" "$precision" DATASET_DIR=/workspace/bert/data/biobert/chemprot-data_treeLSTM OUTPUT_DIR=/results/${TAG}_${DATESTAMP} python3 /workspace/bert/run_re.py \ --do_prepare=true \ --do_eval=true \ --do_predict=true \ --task_name="chemprot" \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint=$init_checkpoint \ --data_dir=$DATASET_DIR \ --output_dir=$OUTPUT_DIR \ --eval_batch_size=$batch_size \ --predict_batch_size=$batch_size \ --max_seq_length=512 \ "$use_fp16" $use_xla_tag $case_flag python3 /workspace/bert/biobert/re_eval.py --task=chemprot --output_path=$OUTPUT_DIR/test_results.tsv \ --answer_path=$DATASET_DIR/test.tsv |& tee $OUTPUT_DIR/test_results.txt else echo "Benchmarking for " $task "currently not supported. Sorry!" fi
PaddlePaddle/LanguageModeling/BERT/utils
utils
collate
# Copyright (c) 2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np class Stack: """ Stacks the input data samples to construct the batch. The input samples must have the same shape/length. Args: axis (int, optional): The axis in the result data along which the input data are stacked. Default: 0. dtype (str|numpy.dtype, optional): The value type of the output. If it is set to None, the type of input data is used. Default: None. """ def __init__(self, axis=0, dtype=None): self._axis = axis self._dtype = dtype def __call__(self, data): """ Batchifies the input data by stacking. Args: data (list[numpy.ndarray]): The input data samples. It is a list. Each element is a numpy.ndarray or list. Returns: numpy.ndarray: Stacked batch data. Example: .. code-block:: python from data import Stack a = [1, 2, 3] b = [4, 5, 6] c = [7, 8, 9] result = Stack()([a, b, c]) ''' [[1, 2, 3], [4, 5, 6], [7, 8, 9]] ''' """ data = np.stack( data, axis=self._axis).astype(self._dtype) if self._dtype else np.stack( data, axis=self._axis) return data class Pad: """ Stacks the input data samples with padding. Args: pad_val (float|int, optional): The padding value. Default: 0. axis (int, optional): The axis to pad the arrays. The arrays will be padded to the largest dimension at axis. For example, assume the input arrays have shape (10, 8, 5), (6, 8, 5), (3, 8, 5) and the axis is 0. Each input will be padded into (10, 8, 5) and then stacked to form the final output, which has shape(3, 10, 8, 5). Default: 0. ret_length (bool|numpy.dtype, optional): If it is bool, indicate whether to return the valid length in the output, and the data type of returned length is int32 if True. If it is numpy.dtype, indicate the data type of returned length. Default: False. dtype (numpy.dtype, optional): The value type of the output. If it is set to None, the input data type is used. Default: None. pad_right (bool, optional): Boolean argument indicating whether the padding direction is right-side. If True, it indicates we pad to the right side, while False indicates we pad to the left side. Default: True. Example: .. code-block:: python from data import Pad # Inputs are multiple lists a = [1, 2, 3, 4] b = [5, 6, 7] c = [8, 9] Pad(pad_val=0)([a, b, c]) ''' [[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]] ''' """ def __init__(self, pad_val=0, axis=0, ret_length=None, dtype=None, pad_right=True): self._pad_val = pad_val self._axis = axis self._ret_length = ret_length self._dtype = dtype self._pad_right = pad_right def __call__(self, data): """ Batchify the input data by padding. The input can be list of numpy.ndarray. The arrays will be padded to the largest dimension at axis and then stacked to form the final output. In addition, the function will output the original dimensions at the axis if ret_length is not None. Args: data (list(numpy.ndarray)|list(list)): List of samples to pad and stack. Returns: numpy.ndarray|tuple: If `ret_length` is False, it is a numpy.ndarray \ representing the padded batch data and the shape is (N, …). \ Otherwise, it is a tuple, except for the padded batch data, the \ tuple also includes a numpy.ndarray representing all samples' \ original length shaped `(N,)`. """ arrs = [np.asarray(ele) for ele in data] original_length = [ele.shape[self._axis] for ele in arrs] max_size = max(original_length) ret_shape = list(arrs[0].shape) ret_shape[self._axis] = max_size ret_shape = (len(arrs), ) + tuple(ret_shape) ret = np.full( shape=ret_shape, fill_value=self._pad_val, dtype=arrs[0].dtype if self._dtype is None else self._dtype) for i, arr in enumerate(arrs): if arr.shape[self._axis] == max_size: ret[i] = arr else: slices = [slice(None) for _ in range(arr.ndim)] if self._pad_right: slices[self._axis] = slice(0, arr.shape[self._axis]) else: slices[self._axis] = slice( max_size - arr.shape[self._axis], max_size) if slices[self._axis].start != slices[self._axis].stop: slices = [slice(i, i + 1)] + slices ret[tuple(slices)] = arr if self._ret_length: return ret, np.asarray( original_length, dtype="int32") if self._ret_length == True else np.asarray( original_length, self._ret_length) else: return ret class Tuple: """ Wrap multiple batchify functions together. The input functions will be applied to the corresponding input fields. Each sample should be a list or tuple containing multiple fields. The i'th batchify function stored in Tuple will be applied on the i'th field. For example, when data sample is (nd_data, label), you can wrap two batchify functions using `Tuple(DataBatchify, LabelBatchify)` to batchify nd_data and label correspondingly. Args: fn (list|tuple|callable): The batchify functions to wrap. *args (tuple of callable): The additional batchify functions to wrap. Example: .. code-block:: python from data import Tuple, Pad, Stack batchify_fn = Tuple(Pad(axis=0, pad_val=0), Stack()) """ def __init__(self, fn, *args): if isinstance(fn, (list, tuple)): assert len(args) == 0, f"Input pattern not understood. The input of Tuple can be " \ f"Tuple(A, B, C) or Tuple([A, B, C]) or Tuple((A, B, C)). " \ f"Received fn={fn}, args={args}" self._fn = fn else: self._fn = (fn, ) + args for i, ele_fn in enumerate(self._fn): assert callable( ele_fn ), f"Batchify functions must be callable! type(fn[{i}]) = {str(type(ele_fn))}" def __call__(self, data): """ Batchify data samples by applying each function on the corresponding data field, and each data field is produced by stacking the field data of samples. Args: data (list): The samples to batchfy. Each sample should contain N fields. Returns: tuple: A tuple composed of results from all including batchifying functions. """ assert len(data[0]) == len(self._fn), \ f"The number of attributes in each data sample should contain" \ f" {len(self._fn)} elements" ret = [] for i, ele_fn in enumerate(self._fn): result = ele_fn([ele[i] for ele in data]) if isinstance(result, (tuple, list)): ret.extend(result) else: ret.append(result) return tuple(ret)
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2PrenetPlugin
taco2PrenetPlugin
CMakeLists
# # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # file(GLOB SRCS *.cpp *.cu) set(PLUGIN_SOURCES ${PLUGIN_SOURCES} ${SRCS}) set(PLUGIN_SOURCES ${PLUGIN_SOURCES} PARENT_SCOPE)
PyTorch/SpeechRecognition/QuartzNet/common/text/unidecoder
unidecoder
homoglyphs
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The MIT License (MIT) # # Copyright (c) 2015 Rob Dawson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on: # https://github.com/codebox/homoglyph/blob/master/raw_data/chars.txt # homoglyphs = { ' ': ['\xa0', '\u1680', '\u2000', '\u2001', '\u2002', '\u2003', '\u2004', '\u2005', '\u2006', '\u2007', '\u2008', '\u2009', '\u200a', '\u2028', '\u2029', '\u202f', '\u205f'], '!': ['ǃ', 'ⵑ', '!'], '$': ['$'], '%': ['%'], '&': ['ꝸ', '&'], "'": ['´', 'ʹ', 'ʻ', 'ʼ', 'ʽ', 'ʾ', 'ˈ', 'ˊ', 'ˋ', '˴', 'ʹ', '΄', '՚', '՝', 'י', '׳', 'ߴ', 'ߵ', 'ᑊ', 'ᛌ', '᾽', '᾿', '`', '´', '῾', '‘', '’', '‛', '′', '‵', 'ꞌ', ''', '`', '𖽑', '𖽒'], '"': ['¨', 'ʺ', '˝', 'ˮ', '״', '“', '”', '‟', '❝', '❞', '⠐', '⹂'], '(': ['❨', '❲', '〔', '﴾', '(', '['], ')': ['❩', '❳', '〕', '﴿', ')', ']'], '*': ['٭', '⁎', '∗', '*', '𐌟'], '+': ['᛭', '➕', '+', '𐊛'], ',': ['¸', '؍', '٫', '‚', 'ꓹ', ','], '-': ['˗', '۔', '‐', '‑', '‒', '–', '⁃', '−', '➖', 'Ⲻ', '﹘'], '.': ['٠', '۰', '܁', '܂', '․', 'ꓸ', '꘎', '.', '𐩐', '𝅭'], '/': ['᜵', '⁁', '⁄', '∕', '╱', '⟋', '⧸', 'Ⳇ', '⼃', '〳', 'ノ', '㇓', '丿', '/', '𝈺'], '2': ['Ƨ', 'Ϩ', 'ᒿ', 'Ꙅ', 'ꛯ', 'Ꝛ', '2', '𝟐', '𝟚', '𝟤', '𝟮', '𝟸', '\U0001fbf2'], '3': ['Ʒ', 'Ȝ', 'З', 'Ӡ', 'Ⳍ', 'Ꝫ', 'Ɜ', '3', '𑣊', '𖼻', '𝈆', '𝟑', '𝟛', '𝟥', '𝟯', '𝟹', '\U0001fbf3'], '4': ['Ꮞ', '4', '𑢯', '𝟒', '𝟜', '𝟦', '𝟰', '𝟺', '\U0001fbf4'], '5': ['Ƽ', '5', '𑢻', '𝟓', '𝟝', '𝟧', '𝟱', '𝟻', '\U0001fbf5'], '6': ['б', 'Ꮾ', 'Ⳓ', '6', '𑣕', '𝟔', '𝟞', '𝟨', '𝟲', '𝟼', '\U0001fbf6'], '7': ['7', '𐓒', '𑣆', '𝈒', '𝟕', '𝟟', '𝟩', '𝟳', '𝟽', '\U0001fbf7'], '8': ['Ȣ', 'ȣ', '৪', '੪', 'ଃ', '8', '𐌚', '𝟖', '𝟠', '𝟪', '𝟴', '𝟾', '𞣋', '\U0001fbf8'], '9': ['৭', '੧', '୨', '൭', 'Ⳋ', 'Ꝯ', '9', '𑢬', '𑣌', '𑣖', '𝟗', '𝟡', '𝟫', '𝟵', '𝟿', '\U0001fbf9'], ':': ['ː', '˸', '։', '׃', '܃', '܄', 'ः', 'ઃ', '᛬', '᠃', '᠉', '⁚', '∶', 'ꓽ', '꞉', '︰', ':'], ';': [';', ';'], '<': ['˂', 'ᐸ', 'ᚲ', '‹', '❮', '<', '𝈶'], '=': ['᐀', '⹀', '゠', '꓿', '='], '>': ['˃', 'ᐳ', '›', '❯', '>', '𖼿', '𝈷'], '?': ['Ɂ', 'ʔ', 'ॽ', 'Ꭾ', 'ꛫ', '?'], '@': ['@'], 'A': ['Α', 'А', 'Ꭺ', 'ᗅ', 'ᴀ', 'ꓮ', 'ꭺ', 'A', '𐊠', '𖽀', '𝐀', '𝐴', '𝑨', '𝒜', '𝓐', '𝔄', '𝔸', '𝕬', '𝖠', '𝗔', '𝘈', '𝘼', '𝙰', '𝚨', '𝛢', '𝜜', '𝝖', '𝞐'], 'B': ['ʙ', 'Β', 'В', 'в', 'Ᏼ', 'ᏼ', 'ᗷ', 'ᛒ', 'ℬ', 'ꓐ', 'Ꞵ', 'B', '𐊂', '𐊡', '𐌁', '𝐁', '𝐵', '𝑩', '𝓑', '𝔅', '𝔹', '𝕭', '𝖡', '𝗕', '𝘉', '𝘽', '𝙱', '𝚩', '𝛣', '𝜝', '𝝗', '𝞑'], 'C': ['Ϲ', 'С', 'Ꮯ', 'ᑕ', 'ℂ', 'ℭ', 'Ⅽ', '⊂', 'Ⲥ', '⸦', 'ꓚ', 'C', '𐊢', '𐌂', '𐐕', '𐔜', '𑣩', '𑣲', '𝐂', '𝐶', '𝑪', '𝒞', '𝓒', '𝕮', '𝖢', '𝗖', '𝘊', '𝘾', '𝙲', '🝌'], 'D': ['Ꭰ', 'ᗞ', 'ᗪ', 'ᴅ', 'ⅅ', 'Ⅾ', 'ꓓ', 'ꭰ', 'D', '𝐃', '𝐷', '𝑫', '𝒟', '𝓓', '𝔇', '𝔻', '𝕯', '𝖣', '𝗗', '𝘋', '𝘿', '𝙳'], 'E': ['Ε', 'Е', 'Ꭼ', 'ᴇ', 'ℰ', '⋿', 'ⴹ', 'ꓰ', 'ꭼ', 'E', '𐊆', '𑢦', '𑢮', '𝐄', '𝐸', '𝑬', '𝓔', '𝔈', '𝔼', '𝕰', '𝖤', '𝗘', '𝘌', '𝙀', '𝙴', '𝚬', '𝛦', '𝜠', '𝝚', '𝞔'], 'F': ['Ϝ', 'ᖴ', 'ℱ', 'ꓝ', 'Ꞙ', 'F', '𐊇', '𐊥', '𐔥', '𑢢', '𑣂', '𝈓', '𝐅', '𝐹', '𝑭', '𝓕', '𝔉', '𝔽', '𝕱', '𝖥', '𝗙', '𝘍', '𝙁', '𝙵', '𝟊'], 'G': ['ɢ', 'Ԍ', 'ԍ', 'Ꮐ', 'Ᏻ', 'ᏻ', 'ꓖ', 'ꮐ', 'G', '𝐆', '𝐺', '𝑮', '𝒢', '𝓖', '𝔊', '𝔾', '𝕲', '𝖦', '𝗚', '𝘎', '𝙂', '𝙶'], 'H': ['ʜ', 'Η', 'Н', 'н', 'Ꮋ', 'ᕼ', 'ℋ', 'ℌ', 'ℍ', 'Ⲏ', 'ꓧ', 'ꮋ', 'H', '𐋏', '𝐇', '𝐻', '𝑯', '𝓗', '𝕳', '𝖧', '𝗛', '𝘏', '𝙃', '𝙷', '𝚮', '𝛨', '𝜢', '𝝜', '𝞖'], 'J': ['Ϳ', 'Ј', 'Ꭻ', 'ᒍ', 'ᴊ', 'ꓙ', 'Ʝ', 'ꭻ', 'J', '𝐉', '𝐽', '𝑱', '𝒥', '𝓙', '𝔍', '𝕁', '𝕵', '𝖩', '𝗝', '𝘑', '𝙅', '𝙹'], 'K': ['Κ', 'К', 'Ꮶ', 'ᛕ', 'K', 'Ⲕ', 'ꓗ', 'K', '𐔘', '𝐊', '𝐾', '𝑲', '𝒦', '𝓚', '𝔎', '𝕂', '𝕶', '𝖪', '𝗞', '𝘒', '𝙆', '𝙺', '𝚱', '𝛫', '𝜥', '𝝟', '𝞙'], 'L': ['ʟ', 'Ꮮ', 'ᒪ', 'ℒ', 'Ⅼ', 'Ⳑ', 'ⳑ', 'ꓡ', 'ꮮ', 'L', '𐐛', '𐑃', '𐔦', '𑢣', '𑢲', '𖼖', '𝈪', '𝐋', '𝐿', '𝑳', '𝓛', '𝔏', '𝕃', '𝕷', '𝖫', '𝗟', '𝘓', '𝙇', '𝙻'], 'M': ['Μ', 'Ϻ', 'М', 'Ꮇ', 'ᗰ', 'ᛖ', 'ℳ', 'Ⅿ', 'Ⲙ', 'ꓟ', 'M', '𐊰', '𐌑', '𝐌', '𝑀', '𝑴', '𝓜', '𝔐', '𝕄', '𝕸', '𝖬', '𝗠', '𝘔', '𝙈', '𝙼', '𝚳', '𝛭', '𝜧', '𝝡', '𝞛'], 'N': ['ɴ', 'Ν', 'ℕ', 'Ⲛ', 'ꓠ', 'N', '𐔓', '𝐍', '𝑁', '𝑵', '𝒩', '𝓝', '𝔑', '𝕹', '𝖭', '𝗡', '𝘕', '𝙉', '𝙽', '𝚴', '𝛮', '𝜨', '𝝢', '𝞜'], 'P': ['Ρ', 'Р', 'Ꮲ', 'ᑭ', 'ᴘ', 'ᴩ', 'ℙ', 'Ⲣ', 'ꓑ', 'ꮲ', 'P', '𐊕', '𝐏', '𝑃', '𝑷', '𝒫', '𝓟', '𝔓', '𝕻', '𝖯', '𝗣', '𝘗', '𝙋', '𝙿', '𝚸', '𝛲', '𝜬', '𝝦', '𝞠'], 'Q': ['ℚ', 'ⵕ', 'Q', '𝐐', '𝑄', '𝑸', '𝒬', '𝓠', '𝔔', '𝕼', '𝖰', '𝗤', '𝘘', '𝙌', '𝚀'], 'R': ['Ʀ', 'ʀ', 'Ꭱ', 'Ꮢ', 'ᖇ', 'ᚱ', 'ℛ', 'ℜ', 'ℝ', 'ꓣ', 'ꭱ', 'ꮢ', 'R', '𐒴', '𖼵', '𝈖', '𝐑', '𝑅', '𝑹', '𝓡', '𝕽', '𝖱', '𝗥', '𝘙', '𝙍', '𝚁'], 'S': ['Ѕ', 'Տ', 'Ꮥ', 'Ꮪ', 'ꓢ', 'S', '𐊖', '𐐠', '𖼺', '𝐒', '𝑆', '𝑺', '𝒮', '𝓢', '𝔖', '𝕊', '𝕾', '𝖲', '𝗦', '𝘚', '𝙎', '𝚂'], 'T': ['Τ', 'τ', 'Т', 'т', 'Ꭲ', 'ᴛ', '⊤', '⟙', 'Ⲧ', 'ꓔ', 'ꭲ', 'T', '𐊗', '𐊱', '𐌕', '𑢼', '𖼊', '𝐓', '𝑇', '𝑻', '𝒯', '𝓣', '𝔗', '𝕋', '𝕿', '𝖳', '𝗧', '𝘛', '𝙏', '𝚃', '𝚻', '𝛕', '𝛵', '𝜏', '𝜯', '𝝉', '𝝩', '𝞃', '𝞣', '𝞽', '🝨'], 'U': ['Ս', 'ሀ', 'ᑌ', '∪', '⋃', 'ꓴ', 'U', '𐓎', '𑢸', '𖽂', '𝐔', '𝑈', '𝑼', '𝒰', '𝓤', '𝔘', '𝕌', '𝖀', '𝖴', '𝗨', '𝘜', '𝙐', '𝚄'], 'V': ['Ѵ', '٧', '۷', 'Ꮩ', 'ᐯ', 'Ⅴ', 'ⴸ', 'ꓦ', 'ꛟ', 'V', '𐔝', '𑢠', '𖼈', '𝈍', '𝐕', '𝑉', '𝑽', '𝒱', '𝓥', '𝔙', '𝕍', '𝖁', '𝖵', '𝗩', '𝘝', '𝙑', '𝚅'], 'W': ['Ԝ', 'Ꮃ', 'Ꮤ', 'ꓪ', 'W', '𑣦', '𑣯', '𝐖', '𝑊', '𝑾', '𝒲', '𝓦', '𝔚', '𝕎', '𝖂', '𝖶', '𝗪', '𝘞', '𝙒', '𝚆'], 'X': ['Χ', 'Х', '᙭', 'ᚷ', 'Ⅹ', '╳', 'Ⲭ', 'ⵝ', 'ꓫ', 'Ꭓ', 'X', '𐊐', '𐊴', '𐌗', '𐌢', '𐔧', '𑣬', '𝐗', '𝑋', '𝑿', '𝒳', '𝓧', '𝔛', '𝕏', '𝖃', '𝖷', '𝗫', '𝘟', '𝙓', '𝚇', '𝚾', '𝛸', '𝜲', '𝝬', '𝞦'], 'Y': ['Υ', 'ϒ', 'У', 'Ү', 'Ꭹ', 'Ꮍ', 'Ⲩ', 'ꓬ', 'Y', '𐊲', '𑢤', '𖽃', '𝐘', '𝑌', '𝒀', '𝒴', '𝓨', '𝔜', '𝕐', '𝖄', '𝖸', '𝗬', '𝘠', '𝙔', '𝚈', '𝚼', '𝛶', '𝜰', '𝝪', '𝞤'], 'Z': ['Ζ', 'Ꮓ', 'ℤ', 'ℨ', 'ꓜ', 'Z', '𐋵', '𑢩', '𑣥', '𝐙', '𝑍', '𝒁', '𝒵', '𝓩', '𝖅', '𝖹', '𝗭', '𝘡', '𝙕', '𝚉', '𝚭', '𝛧', '𝜡', '𝝛', '𝞕'], '\\': ['∖', '⟍', '⧵', '⧹', '⼂', '㇔', '丶', '﹨', '\', '𝈏', '𝈻'], '^': ['˄', 'ˆ'], '_': ['ߺ', '﹍', '﹎', '﹏', '_'], 'a': ['ɑ', 'α', 'а', '⍺', 'a', '𝐚', '𝑎', '𝒂', '𝒶', '𝓪', '𝔞', '𝕒', '𝖆', '𝖺', '𝗮', '𝘢', '𝙖', '𝚊', '𝛂', '𝛼', '𝜶', '𝝰', '𝞪'], 'b': ['Ƅ', 'Ь', 'Ꮟ', 'ᑲ', 'ᖯ', 'b', '𝐛', '𝑏', '𝒃', '𝒷', '𝓫', '𝔟', '𝕓', '𝖇', '𝖻', '𝗯', '𝘣', '𝙗', '𝚋'], 'c': ['ϲ', 'с', 'ᴄ', 'ⅽ', 'ⲥ', 'ꮯ', 'c', '𐐽', '𝐜', '𝑐', '𝒄', '𝒸', '𝓬', '𝔠', '𝕔', '𝖈', '𝖼', '𝗰', '𝘤', '𝙘', '𝚌'], 'd': ['ԁ', 'Ꮷ', 'ᑯ', 'ⅆ', 'ⅾ', 'ꓒ', 'd', '𝐝', '𝑑', '𝒅', '𝒹', '𝓭', '𝔡', '𝕕', '𝖉', '𝖽', '𝗱', '𝘥', '𝙙', '𝚍'], 'e': ['е', 'ҽ', '℮', 'ℯ', 'ⅇ', 'ꬲ', 'e', '𝐞', '𝑒', '𝒆', '𝓮', '𝔢', '𝕖', '𝖊', '𝖾', '𝗲', '𝘦', '𝙚', '𝚎'], 'f': ['ſ', 'ϝ', 'ք', 'ẝ', 'ꞙ', 'ꬵ', 'f', '𝐟', '𝑓', '𝒇', '𝒻', '𝓯', '𝔣', '𝕗', '𝖋', '𝖿', '𝗳', '𝘧', '𝙛', '𝚏', '𝟋'], 'g': ['ƍ', 'ɡ', 'ց', 'ᶃ', 'ℊ', 'g', '𝐠', '𝑔', '𝒈', '𝓰', '𝔤', '𝕘', '𝖌', '𝗀', '𝗴', '𝘨', '𝙜', '𝚐'], 'h': ['һ', 'հ', 'Ꮒ', 'ℎ', 'h', '𝐡', '𝒉', '𝒽', '𝓱', '𝔥', '𝕙', '𝖍', '𝗁', '𝗵', '𝘩', '𝙝', '𝚑'], 'i': ['ı', 'ɩ', 'ɪ', '˛', 'ͺ', 'ι', 'і', 'ӏ', 'Ꭵ', 'ι', 'ℹ', 'ⅈ', 'ⅰ', '⍳', 'ꙇ', 'ꭵ', 'i', '𑣃', '𝐢', '𝑖', '𝒊', '𝒾', '𝓲', '𝔦', '𝕚', '𝖎', '𝗂', '𝗶', '𝘪', '𝙞', '𝚒', '𝚤', '𝛊', '𝜄', '𝜾', '𝝸', '𝞲'], 'j': ['ϳ', 'ј', 'ⅉ', 'j', '𝐣', '𝑗', '𝒋', '𝒿', '𝓳', '𝔧', '𝕛', '𝖏', '𝗃', '𝗷', '𝘫', '𝙟', '𝚓'], 'k': ['k', '𝐤', '𝑘', '𝒌', '𝓀', '𝓴', '𝔨', '𝕜', '𝖐', '𝗄', '𝗸', '𝘬', '𝙠', '𝚔'], 'l': ['Ɩ', 'ǀ', 'Ι', 'І', 'Ӏ', '׀', 'ו', 'ן', 'ا', '١', '۱', 'ߊ', 'ᛁ', 'ℐ', 'ℑ', 'ℓ', 'Ⅰ', 'ⅼ', '∣', '⏽', 'Ⲓ', 'ⵏ', 'ꓲ', 'ﺍ', 'ﺎ', '1', 'I', 'l', '│', '𐊊', '𐌉', '𐌠', '𖼨', '𝐈', '𝐥', '𝐼', '𝑙', '𝑰', '𝒍', '𝓁', '𝓘', '𝓵', '𝔩', '𝕀', '𝕝', '𝕴', '𝖑', '𝖨', '𝗅', '𝗜', '𝗹', '𝘐', '𝘭', '𝙄', '𝙡', '𝙸', '𝚕', '𝚰', '𝛪', '𝜤', '𝝞', '𝞘', '𝟏', '𝟙', '𝟣', '𝟭', '𝟷', '𞣇', '𞸀', '𞺀', '\U0001fbf1'], 'm': ['m'], 'n': ['ո', 'ռ', 'n', '𝐧', '𝑛', '𝒏', '𝓃', '𝓷', '𝔫', '𝕟', '𝖓', '𝗇', '𝗻', '𝘯', '𝙣', '𝚗'], 'o': ['Ο', 'ο', 'σ', 'О', 'о', 'Օ', 'օ', 'ס', 'ه', '٥', 'ھ', 'ہ', 'ە', '۵', '߀', '०', '০', '੦', '૦', 'ଠ', '୦', '௦', 'ం', '౦', 'ಂ', '೦', 'ം', 'ഠ', '൦', 'ං', '๐', '໐', 'ဝ', '၀', 'ჿ', 'ዐ', 'ᴏ', 'ᴑ', 'ℴ', 'Ⲟ', 'ⲟ', 'ⵔ', '〇', 'ꓳ', 'ꬽ', 'ﮦ', 'ﮧ', 'ﮨ', 'ﮩ', 'ﮪ', 'ﮫ', 'ﮬ', 'ﮭ', 'ﻩ', 'ﻪ', 'ﻫ', 'ﻬ', '0', 'O', 'o', '𐊒', '𐊫', '𐐄', '𐐬', '𐓂', '𐓪', '𐔖', '𑓐', '𑢵', '𑣈', '𑣗', '𑣠', '𝐎', '𝐨', '𝑂', '𝑜', '𝑶', '𝒐', '𝒪', '𝓞', '𝓸', '𝔒', '𝔬', '𝕆', '𝕠', '𝕺', '𝖔', '𝖮', '𝗈', '𝗢', '𝗼', '𝘖', '𝘰', '𝙊', '𝙤', '𝙾', '𝚘', '𝚶', '𝛐', '𝛔', '𝛰', '𝜊', '𝜎', '𝜪', '𝝄', '𝝈', '𝝤', '𝝾', '𝞂', '𝞞', '𝞸', '𝞼', '𝟎', '𝟘', '𝟢', '𝟬', '𝟶', '𞸤', '𞹤', '𞺄', '\U0001fbf0'], 'p': ['ρ', 'ϱ', 'р', '⍴', 'ⲣ', 'p', '𝐩', '𝑝', '𝒑', '𝓅', '𝓹', '𝔭', '𝕡', '𝖕', '𝗉', '𝗽', '𝘱', '𝙥', '𝚙', '𝛒', '𝛠', '𝜌', '𝜚', '𝝆', '𝝔', '𝞀', '𝞎', '𝞺', '𝟈'], 'q': ['ԛ', 'գ', 'զ', 'q', '𝐪', '𝑞', '𝒒', '𝓆', '𝓺', '𝔮', '𝕢', '𝖖', '𝗊', '𝗾', '𝘲', '𝙦', '𝚚'], 'r': ['г', 'ᴦ', 'ⲅ', 'ꭇ', 'ꭈ', 'ꮁ', 'r', '𝐫', '𝑟', '𝒓', '𝓇', '𝓻', '𝔯', '𝕣', '𝖗', '𝗋', '𝗿', '𝘳', '𝙧', '𝚛'], 's': ['ƽ', 'ѕ', 'ꜱ', 'ꮪ', 's', '𐑈', '𑣁', '𝐬', '𝑠', '𝒔', '𝓈', '𝓼', '𝔰', '𝕤', '𝖘', '𝗌', '𝘀', '𝘴', '𝙨', '𝚜'], 't': ['t', '𝐭', '𝑡', '𝒕', '𝓉', '𝓽', '𝔱', '𝕥', '𝖙', '𝗍', '𝘁', '𝘵', '𝙩', '𝚝'], 'u': ['ʋ', 'υ', 'ս', 'ᴜ', 'ꞟ', 'ꭎ', 'ꭒ', 'u', '𐓶', '𑣘', '𝐮', '𝑢', '𝒖', '𝓊', '𝓾', '𝔲', '𝕦', '𝖚', '𝗎', '𝘂', '𝘶', '𝙪', '𝚞', '𝛖', '𝜐', '𝝊', '𝞄', '𝞾'], 'v': ['ν', 'ѵ', 'ט', 'ᴠ', 'ⅴ', '∨', '⋁', 'ꮩ', 'v', '𑜆', '𑣀', '𝐯', '𝑣', '𝒗', '𝓋', '𝓿', '𝔳', '𝕧', '𝖛', '𝗏', '𝘃', '𝘷', '𝙫', '𝚟', '𝛎', '𝜈', '𝝂', '𝝼', '𝞶'], 'w': ['ɯ', 'ѡ', 'ԝ', 'ա', 'ᴡ', 'ꮃ', 'w', '𑜊', '𑜎', '𑜏', '𝐰', '𝑤', '𝒘', '𝓌', '𝔀', '𝔴', '𝕨', '𝖜', '𝗐', '𝘄', '𝘸', '𝙬', '𝚠'], 'x': ['×', 'х', 'ᕁ', 'ᕽ', '᙮', 'ⅹ', '⤫', '⤬', '⨯', 'x', '𝐱', '𝑥', '𝒙', '𝓍', '𝔁', '𝔵', '𝕩', '𝖝', '𝗑', '𝘅', '𝘹', '𝙭', '𝚡'], 'y': ['ɣ', 'ʏ', 'γ', 'у', 'ү', 'ყ', 'ᶌ', 'ỿ', 'ℽ', 'ꭚ', 'y', '𑣜', '𝐲', '𝑦', '𝒚', '𝓎', '𝔂', '𝔶', '𝕪', '𝖞', '𝗒', '𝘆', '𝘺', '𝙮', '𝚢', '𝛄', '𝛾', '𝜸', '𝝲', '𝞬'], 'z': ['ᴢ', 'ꮓ', 'z', '𑣄', '𝐳', '𝑧', '𝒛', '𝓏', '𝔃', '𝔷', '𝕫', '𝖟', '𝗓', '𝘇', '𝘻', '𝙯', '𝚣'], '{': ['❴', '{', '𝄔'], '}': ['❵', '}'], '~': ['˜', '῀', '⁓', '∼'], }
CUDA-Optimized/FastSpeech/fastspeech
fastspeech
perf_infer_ljspeech
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pprint import sys import time import fire import torch from tqdm import tqdm from fastspeech import DEFAULT_DEVICE from fastspeech import hparam as hp from fastspeech.data_load import PadDataLoader from fastspeech.dataset.ljspeech_dataset import LJSpeechDataset from fastspeech.model.fastspeech import Fastspeech from fastspeech.utils.logging import tprint from fastspeech.utils.pytorch import to_cpu_numpy, to_device_async from fastspeech.infer import get_inferencer from fastspeech.inferencer.waveglow_inferencer import WaveGlowInferencer from contextlib import ExitStack import numpy as np try: from apex import amp except ImportError: ImportError('Required to install apex.') pp = pprint.PrettyPrinter(indent=4, width=1000) WARMUP_ITERS = 3 def perf_inference(hparam="infer.yaml", with_vocoder=False, n_iters=None, device=DEFAULT_DEVICE, **kwargs): """The script for estimating inference performance. By default, this script assumes to load parameters in the default config file, fastspeech/hparams/infer.yaml. Besides the flags, you can also set parameters in the config file via the command-line. For examples, --dataset_path=DATASET_PATH Path to dataset directory. --checkpoint_path=CHECKPOINT_PATH Path to checkpoint directory. The latest checkpoint will be loaded. --batch_size=BATCH_SIZE Batch size to use. Defaults to 1. Refer to fastspeech/hparams/infer.yaml to see more parameters. Args: hparam (str, optional): Path to default config file. Defaults to "infer.yaml". with_vocoder (bool, optional): Whether or not to estimate with a vocoder. Defaults to False. n_iters (int, optional): Number of batches to estimate. Defaults to None (an epoch). device (str, optional): Device to use. Defaults to "cuda" if avaiable, or "cpu". """ hp.set_hparam(hparam, kwargs) tprint("Hparams:\n{}".format(pp.pformat(hp))) tprint("Device count: {}".format(torch.cuda.device_count())) model = Fastspeech( max_seq_len=hp.max_seq_len, d_model=hp.d_model, phoneme_side_n_layer=hp.phoneme_side_n_layer, phoneme_side_head=hp.phoneme_side_head, phoneme_side_conv1d_filter_size=hp.phoneme_side_conv1d_filter_size, phoneme_side_output_size=hp.phoneme_side_output_size, mel_side_n_layer=hp.mel_side_n_layer, mel_side_head=hp.mel_side_head, mel_side_conv1d_filter_size=hp.mel_side_conv1d_filter_size, mel_side_output_size=hp.mel_side_output_size, duration_predictor_filter_size=hp.duration_predictor_filter_size, duration_predictor_kernel_size=hp.duration_predictor_kernel_size, fft_conv1d_kernel=hp.fft_conv1d_kernel, fft_conv1d_padding=hp.fft_conv1d_padding, dropout=hp.dropout, n_mels=hp.num_mels, fused_layernorm=hp.fused_layernorm ) dataset = LJSpeechDataset(root_path=hp.dataset_path, sr=hp.sr, n_fft=hp.n_fft, win_len=hp.win_len, hop_len=hp.hop_len, n_mels=hp.num_mels, mel_fmin=hp.mel_fmin, mel_fmax=hp.mel_fmax, exclude_mels=True, sort_by_length=True if hp.use_trt and hp.trt_multi_engine else False ) tprint("Dataset size: {}".format(len(dataset))) data_loader = PadDataLoader(dataset, batch_size=hp.batch_size, num_workers=hp.n_workers, shuffle=False if hp.use_trt and hp.trt_multi_engine else True, drop_last=True, ) fs_inferencer = get_inferencer(model, data_loader, device) if with_vocoder: if hp.use_trt: from fastspeech.trt.waveglow_trt_inferencer import WaveGlowTRTInferencer wb_inferencer = WaveGlowTRTInferencer(ckpt_file=hp.waveglow_path, engine_file=hp.waveglow_engine_path, use_fp16=hp.use_fp16) else: wb_inferencer = WaveGlowInferencer(ckpt_file=hp.waveglow_path, device=device, use_fp16=hp.use_fp16) with fs_inferencer, wb_inferencer if with_vocoder else ExitStack(): tprint("Perf started. Batch size={}.".format(hp.batch_size)) latencies = [] throughputs = [] n_iters = min(n_iters, len(data_loader)) if n_iters else len(data_loader) assert(n_iters > WARMUP_ITERS) for i in tqdm(range(n_iters)): start = time.time() outputs = fs_inferencer.infer() mels = outputs['mel'] mel_masks = outputs['mel_mask'] assert(mels.is_cuda) if with_vocoder: # remove padding max_len = mel_masks.sum(axis=1).max() mels = mels[..., :max_len] mel_masks = mel_masks[..., :max_len] with torch.no_grad(): wavs = wb_inferencer.infer(mels) wavs = to_cpu_numpy(wavs) else: # include time for DtoH copy to_cpu_numpy(mels) to_cpu_numpy(mel_masks) end = time.time() if i > WARMUP_ITERS-1: time_elapsed = end - start generated_samples = len(mel_masks.nonzero()) * hp.hop_len throughput = generated_samples / time_elapsed latencies.append(time_elapsed) throughputs.append(throughput) latencies.sort() avg_latency = np.mean(latencies) std_latency = np.std(latencies) latency_90 = max(latencies[:int(len(latencies)*0.90)]) if n_iters > 1 else 0 latency_95 = max(latencies[:int(len(latencies)*0.95)]) if n_iters > 1 else 0 latency_99 = max(latencies[:int(len(latencies)*0.99)]) if n_iters > 1 else 0 throughput = np.mean(throughputs) rtf = throughput / (hp.sr * hp.batch_size) tprint("Batch size\tPrecision\tAvg Latency(s)\tStd Latency(s)\tLatency 90%(s)\tLatency 95%(s)\tLatency 99%(s)\tThroughput(samples/s)\tAvg RTF\n\ {}\t{}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{}\t{:.2f}".format( hp.batch_size, "FP16" if hp.use_fp16 else "FP32", avg_latency, std_latency, latency_90, latency_95, latency_99, int(throughput), rtf)) if __name__ == '__main__': fire.Fire(perf_inference)
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2ProjectionPlugin
taco2ProjectionPlugin
CMakeLists
# # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # file(GLOB SRCS *.cpp *.cu) set(PLUGIN_SOURCES ${PLUGIN_SOURCES} ${SRCS}) set(PLUGIN_SOURCES ${PLUGIN_SOURCES} PARENT_SCOPE)
PyTorch/Detection/SSD/ssd
ssd
evaluate
# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import time import numpy as np from contextlib import redirect_stdout import io from pycocotools.cocoeval import COCOeval def evaluate(model, coco, cocoGt, encoder, inv_map, args): if args.distributed: N_gpu = torch.distributed.get_world_size() else: N_gpu = 1 model.eval() if not args.no_cuda: model.cuda() ret = [] start = time.time() # for idx, image_id in enumerate(coco.img_keys): for nbatch, (img, img_id, img_size, _, _) in enumerate(coco): print("Parsing batch: {}/{}".format(nbatch, len(coco)), end='\r') with torch.no_grad(): inp = img.cuda() with torch.cuda.amp.autocast(enabled=args.amp): # Get predictions ploc, plabel = model(inp) ploc, plabel = ploc.float(), plabel.float() # Handle the batch of predictions produced # This is slow, but consistent with old implementation. for idx in range(ploc.shape[0]): # ease-of-use for specific predictions ploc_i = ploc[idx, :, :].unsqueeze(0) plabel_i = plabel[idx, :, :].unsqueeze(0) try: result = encoder.decode_batch(ploc_i, plabel_i, 0.50, 200)[0] except Exception as e: print("Skipping idx {}, failed to decode with message {}, Skipping.".format(idx, e)) continue htot, wtot = img_size[0][idx].item(), img_size[1][idx].item() loc, label, prob = [r.cpu().numpy() for r in result] for loc_, label_, prob_ in zip(loc, label, prob): ret.append([img_id[idx], loc_[0] * wtot, \ loc_[1] * htot, (loc_[2] - loc_[0]) * wtot, (loc_[3] - loc_[1]) * htot, prob_, inv_map[label_]]) # Now we have all predictions from this rank, gather them all together # if necessary ret = np.array(ret).astype(np.float32) # Multi-GPU eval if args.distributed: # NCCL backend means we can only operate on GPU tensors ret_copy = torch.tensor(ret).cuda() # Everyone exchanges the size of their results ret_sizes = [torch.tensor(0).cuda() for _ in range(N_gpu)] torch.cuda.synchronize() torch.distributed.all_gather(ret_sizes, torch.tensor(ret_copy.shape[0]).cuda()) torch.cuda.synchronize() # Get the maximum results size, as all tensors must be the same shape for # the all_gather call we need to make max_size = 0 sizes = [] for s in ret_sizes: max_size = max(max_size, s.item()) sizes.append(s.item()) # Need to pad my output to max_size in order to use in all_gather ret_pad = torch.cat([ret_copy, torch.zeros(max_size - ret_copy.shape[0], 7, dtype=torch.float32).cuda()]) # allocate storage for results from all other processes other_ret = [torch.zeros(max_size, 7, dtype=torch.float32).cuda() for i in range(N_gpu)] # Everyone exchanges (padded) results torch.cuda.synchronize() torch.distributed.all_gather(other_ret, ret_pad) torch.cuda.synchronize() # Now need to reconstruct the _actual_ results from the padded set using slices. cat_tensors = [] for i in range(N_gpu): cat_tensors.append(other_ret[i][:sizes[i]][:]) final_results = torch.cat(cat_tensors).cpu().numpy() else: # Otherwise full results are just our results final_results = ret if args.local_rank == 0: print("") print("Predicting Ended, total time: {:.2f} s".format(time.time() - start)) cocoDt = cocoGt.loadRes(final_results, use_ext=True) E = COCOeval(cocoGt, cocoDt, iouType='bbox', use_ext=True) E.evaluate() E.accumulate() if args.local_rank == 0: E.summarize() print("Current AP: {:.5f}".format(E.stats[0])) else: # fix for cocoeval indiscriminate prints with redirect_stdout(io.StringIO()): E.summarize() # put your model in training mode back on model.train() return E.stats[0] # Average Precision (AP) @[ IoU=050:0.95 | area= all | maxDets=100 ]
TensorFlow/Detection/SSD/models/research/object_detection/metrics
metrics
tf_example_parser
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tensorflow Example proto parser for data loading. A parser to decode data containing serialized tensorflow.Example protos into materialized tensors (numpy arrays). """ import numpy as np from object_detection.core import data_parser from object_detection.core import standard_fields as fields class FloatParser(data_parser.DataToNumpyParser): """Tensorflow Example float parser.""" def __init__(self, field_name): self.field_name = field_name def parse(self, tf_example): return np.array( tf_example.features.feature[self.field_name].float_list.value, dtype=np.float).transpose() if tf_example.features.feature[ self.field_name].HasField("float_list") else None class StringParser(data_parser.DataToNumpyParser): """Tensorflow Example string parser.""" def __init__(self, field_name): self.field_name = field_name def parse(self, tf_example): return "".join(tf_example.features.feature[self.field_name] .bytes_list.value) if tf_example.features.feature[ self.field_name].HasField("bytes_list") else None class Int64Parser(data_parser.DataToNumpyParser): """Tensorflow Example int64 parser.""" def __init__(self, field_name): self.field_name = field_name def parse(self, tf_example): return np.array( tf_example.features.feature[self.field_name].int64_list.value, dtype=np.int64).transpose() if tf_example.features.feature[ self.field_name].HasField("int64_list") else None class BoundingBoxParser(data_parser.DataToNumpyParser): """Tensorflow Example bounding box parser.""" def __init__(self, xmin_field_name, ymin_field_name, xmax_field_name, ymax_field_name): self.field_names = [ ymin_field_name, xmin_field_name, ymax_field_name, xmax_field_name ] def parse(self, tf_example): result = [] parsed = True for field_name in self.field_names: result.append(tf_example.features.feature[field_name].float_list.value) parsed &= ( tf_example.features.feature[field_name].HasField("float_list")) return np.array(result).transpose() if parsed else None class TfExampleDetectionAndGTParser(data_parser.DataToNumpyParser): """Tensorflow Example proto parser.""" def __init__(self): self.items_to_handlers = { fields.DetectionResultFields.key: StringParser(fields.TfExampleFields.source_id), # Object ground truth boxes and classes. fields.InputDataFields.groundtruth_boxes: (BoundingBoxParser( fields.TfExampleFields.object_bbox_xmin, fields.TfExampleFields.object_bbox_ymin, fields.TfExampleFields.object_bbox_xmax, fields.TfExampleFields.object_bbox_ymax)), fields.InputDataFields.groundtruth_classes: ( Int64Parser(fields.TfExampleFields.object_class_label)), # Object detections. fields.DetectionResultFields.detection_boxes: (BoundingBoxParser( fields.TfExampleFields.detection_bbox_xmin, fields.TfExampleFields.detection_bbox_ymin, fields.TfExampleFields.detection_bbox_xmax, fields.TfExampleFields.detection_bbox_ymax)), fields.DetectionResultFields.detection_classes: ( Int64Parser(fields.TfExampleFields.detection_class_label)), fields.DetectionResultFields.detection_scores: ( FloatParser(fields.TfExampleFields.detection_score)), } self.optional_items_to_handlers = { fields.InputDataFields.groundtruth_difficult: Int64Parser(fields.TfExampleFields.object_difficult), fields.InputDataFields.groundtruth_group_of: Int64Parser(fields.TfExampleFields.object_group_of), fields.InputDataFields.groundtruth_image_classes: Int64Parser(fields.TfExampleFields.image_class_label), } def parse(self, tf_example): """Parses tensorflow example and returns a tensor dictionary. Args: tf_example: a tf.Example object. Returns: A dictionary of the following numpy arrays: fields.DetectionResultFields.source_id - string containing original image id. fields.InputDataFields.groundtruth_boxes - a numpy array containing groundtruth boxes. fields.InputDataFields.groundtruth_classes - a numpy array containing groundtruth classes. fields.InputDataFields.groundtruth_group_of - a numpy array containing groundtruth group of flag (optional, None if not specified). fields.InputDataFields.groundtruth_difficult - a numpy array containing groundtruth difficult flag (optional, None if not specified). fields.InputDataFields.groundtruth_image_classes - a numpy array containing groundtruth image-level labels. fields.DetectionResultFields.detection_boxes - a numpy array containing detection boxes. fields.DetectionResultFields.detection_classes - a numpy array containing detection class labels. fields.DetectionResultFields.detection_scores - a numpy array containing detection scores. Returns None if tf.Example was not parsed or non-optional fields were not found. """ results_dict = {} parsed = True for key, parser in self.items_to_handlers.items(): results_dict[key] = parser.parse(tf_example) parsed &= (results_dict[key] is not None) for key, parser in self.optional_items_to_handlers.items(): results_dict[key] = parser.parse(tf_example) return results_dict if parsed else None
PyTorch/LanguageModeling/BERT/triton/dist4l/runner
runner
start_NVIDIA-A30
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash # Install Docker . /etc/os-release && \ curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add - && \ echo "deb [arch=amd64] https://download.docker.com/linux/debian buster stable" > /etc/apt/sources.list.d/docker.list && \ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey| apt-key add - && \ curl -s -L https://nvidia.github.io/nvidia-docker/$ID$VERSION_ID/nvidia-docker.list > /etc/apt/sources.list.d/nvidia-docker.list && \ apt-get update && \ apt-get install -y docker-ce docker-ce-cli containerd.io nvidia-docker2 # Install packages pip install -r triton/runner/requirements.txt # Evaluate Runner python3 -m "triton.dist4l.runner.__main__" \ --config-path "triton/dist4l/runner/config_NVIDIA-A30.yaml" \ --device 0
PyTorch/SpeechRecognition/Jasper/common
common
optimizers
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.optim import Optimizer import math def lr_policy(step, epoch, initial_lr, optimizer, steps_per_epoch, warmup_epochs, hold_epochs, num_epochs=None, policy='linear', min_lr=1e-5, exp_gamma=None): """ learning rate decay Args: initial_lr: base learning rate step: current iteration number N: total number of iterations over which learning rate is decayed lr_steps: list of steps to apply exp_gamma """ warmup_steps = warmup_epochs * steps_per_epoch hold_steps = hold_epochs * steps_per_epoch if policy == 'legacy': assert num_epochs is not None tot_steps = num_epochs * steps_per_epoch if step < warmup_steps: a = (step + 1) / (warmup_steps + 1) elif step < warmup_steps + hold_steps: a = 1.0 else: a = (((tot_steps - step) / (tot_steps - warmup_steps - hold_steps)) ** 2) elif policy == 'exponential': assert exp_gamma is not None if step < warmup_steps: a = (step + 1) / (warmup_steps + 1) elif step < warmup_steps + hold_steps: a = 1.0 else: a = exp_gamma ** (epoch - warmup_epochs - hold_epochs) else: raise ValueError new_lr = max(a * initial_lr, min_lr) for param_group in optimizer.param_groups: param_group['lr'] = new_lr class AdamW(Optimizer): """Implements AdamW algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.data.add_(torch.mul(p.data, group['weight_decay']).addcdiv_(1, exp_avg, denom), alpha=-step_size) return loss class Novograd(Optimizer): """ Implements Novograd algorithm. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.95, 0)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) grad_averaging: gradient averaging amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) """ def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8, weight_decay=0, grad_averaging=False, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad) super(Novograd, self).__init__(params, defaults) def __setstate__(self, state): super(Novograd, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Sparse gradients are not supported.') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 norm = torch.sum(torch.pow(grad, 2)) if exp_avg_sq == 0: exp_avg_sq.copy_(norm) else: exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) grad.div_(denom) if group['weight_decay'] != 0: grad.add_(p.data, alpha=group['weight_decay']) if group['grad_averaging']: grad.mul_(1 - beta1) exp_avg.mul_(beta1).add_(grad) p.data.add_(exp_avg, alpha=-group['lr']) return loss
TensorFlow/Classification/ConvNets/model/layers
layers
dense
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf __all__ = ['dense'] def dense( inputs, units, use_bias=True, trainable=True, kernel_initializer=tf.compat.v1.variance_scaling_initializer(), bias_initializer=tf.zeros_initializer() ): net = tf.layers.dense( inputs, units=units, activation=None, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, trainable=trainable ) return net
TensorFlow/LanguageModeling/BERT
BERT
optimization_test
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import optimization import tensorflow as tf class OptimizationTest(tf.test.TestCase): def test_adam(self): with self.test_session() as sess: w = tf.get_variable( "w", shape=[3], initializer=tf.constant_initializer([0.1, -0.2, -0.1])) x = tf.constant([0.4, 0.2, -0.5]) loss = tf.reduce_mean(tf.square(x - w)) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) global_step = tf.compat.v1.train.get_or_create_global_step() optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2) train_op = optimizer.apply_gradients(zip(grads, tvars), global_step) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) for _ in range(100): sess.run(train_op) w_np = sess.run(w) self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) if __name__ == "__main__": tf.test.main()
TensorFlow/Detection/SSD/models/research/object_detection/box_coders
box_coders
square_box_coder_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.box_coder.square_box_coder.""" import tensorflow as tf from object_detection.box_coders import square_box_coder from object_detection.core import box_list class SquareBoxCoderTest(tf.test.TestCase): def test_correct_relative_codes_with_default_scale(self): boxes = [[10.0, 10.0, 20.0, 15.0], [0.2, 0.1, 0.5, 0.4]] anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]] scale_factors = None expected_rel_codes = [[-0.790569, -0.263523, -0.293893], [-0.068041, -0.272166, -0.89588]] boxes = box_list.BoxList(tf.constant(boxes)) anchors = box_list.BoxList(tf.constant(anchors)) coder = square_box_coder.SquareBoxCoder(scale_factors=scale_factors) rel_codes = coder.encode(boxes, anchors) with self.test_session() as sess: (rel_codes_out,) = sess.run([rel_codes]) self.assertAllClose(rel_codes_out, expected_rel_codes) def test_correct_relative_codes_with_non_default_scale(self): boxes = [[10.0, 10.0, 20.0, 15.0], [0.2, 0.1, 0.5, 0.4]] anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]] scale_factors = [2, 3, 4] expected_rel_codes = [[-1.581139, -0.790569, -1.175573], [-0.136083, -0.816497, -3.583519]] boxes = box_list.BoxList(tf.constant(boxes)) anchors = box_list.BoxList(tf.constant(anchors)) coder = square_box_coder.SquareBoxCoder(scale_factors=scale_factors) rel_codes = coder.encode(boxes, anchors) with self.test_session() as sess: (rel_codes_out,) = sess.run([rel_codes]) self.assertAllClose(rel_codes_out, expected_rel_codes) def test_correct_relative_codes_with_small_width(self): boxes = [[10.0, 10.0, 10.0000001, 20.0]] anchors = [[15.0, 12.0, 30.0, 18.0]] scale_factors = None expected_rel_codes = [[-1.317616, 0., -20.670586]] boxes = box_list.BoxList(tf.constant(boxes)) anchors = box_list.BoxList(tf.constant(anchors)) coder = square_box_coder.SquareBoxCoder(scale_factors=scale_factors) rel_codes = coder.encode(boxes, anchors) with self.test_session() as sess: (rel_codes_out,) = sess.run([rel_codes]) self.assertAllClose(rel_codes_out, expected_rel_codes) def test_correct_boxes_with_default_scale(self): anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]] rel_codes = [[-0.5, -0.416666, -0.405465], [-0.083333, -0.222222, -0.693147]] scale_factors = None expected_boxes = [[14.594306, 7.884875, 20.918861, 14.209432], [0.155051, 0.102989, 0.522474, 0.470412]] anchors = box_list.BoxList(tf.constant(anchors)) coder = square_box_coder.SquareBoxCoder(scale_factors=scale_factors) boxes = coder.decode(rel_codes, anchors) with self.test_session() as sess: (boxes_out,) = sess.run([boxes.get()]) self.assertAllClose(boxes_out, expected_boxes) def test_correct_boxes_with_non_default_scale(self): anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]] rel_codes = [[-1., -1.25, -1.62186], [-0.166667, -0.666667, -2.772588]] scale_factors = [2, 3, 4] expected_boxes = [[14.594306, 7.884875, 20.918861, 14.209432], [0.155051, 0.102989, 0.522474, 0.470412]] anchors = box_list.BoxList(tf.constant(anchors)) coder = square_box_coder.SquareBoxCoder(scale_factors=scale_factors) boxes = coder.decode(rel_codes, anchors) with self.test_session() as sess: (boxes_out,) = sess.run([boxes.get()]) self.assertAllClose(boxes_out, expected_boxes) if __name__ == '__main__': tf.test.main()
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt
tft_pyt
criterions
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class QuantileLoss(nn.Module): def __init__(self, config): super().__init__() self.register_buffer('q', torch.tensor(config.quantiles)) def forward(self, predictions, targets): diff = predictions - targets ql = (1-self.q)*F.relu(diff) + self.q*F.relu(-diff) losses = ql.view(-1, ql.shape[-1]).mean(0) return losses
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner
runner
preparer
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib from datetime import datetime from typing import Dict, List # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .configuration import Configuration from .downloader import download from .experiment import Experiment, Stage from .logger import LOGGER from .maintainer import Maintainer from .pipeline import Pipeline from .stages import ResultsType, TritonPerformanceOfflineStage, TritonPerformanceOnlineStage from .task import Checkpoint, Dataset, SystemInfo, Task from .triton import Triton from .utils import clean_directory class Preparer(abc.ABC): """ Runner preparer object. """ @abc.abstractmethod def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): pass class ExperimentPreparer(Preparer): """ Experiment runner preparer object. """ def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): LOGGER.info("Preparing Triton container image") triton_container_image = self._prepare_triton_container_image(config, maintainer, triton) LOGGER.info("Initialize task") task = self._initialize_task( workspace=workspace, config=config, pipeline=pipeline, triton_container_image=triton_container_image, logs_dir=logs_dir, ) LOGGER.info("Preparing directories") self._create_dirs(workspace, task) LOGGER.info("Clean previous run artifacts directories") self._clean_previous_run_artifacts(workspace, task) LOGGER.info("Downloading checkpoints") self._download_checkpoints(task) return task def _create_dirs(self, workspace: pathlib.Path, task: Task) -> None: """ Create directories used to store artifacts and final results Returns: None """ for directory in [task.results_dir, task.logs_dir, task.checkpoints_dir]: directory_path = workspace / directory directory_path.mkdir(parents=True, exist_ok=True) LOGGER.info(f"Directory {directory} created.") def _clean_previous_run_artifacts(self, workspace: pathlib.Path, task: Task) -> None: """ Clean logs from previous run Returns: None """ for directory in [ task.logs_dir, task.results_dir, ]: directory_path = workspace / directory clean_directory(directory_path) LOGGER.info(f"Location {directory} cleaned.") def _prepare_triton_container_image(self, config: Config, maintainer: Maintainer, triton: Triton) -> str: """ Prepare Triton Container Image based on provided configuration Returns: Name of container image to use in process """ if not config.triton_dockerfile: image_name = triton.container_image(config.container_version) LOGGER.info(f"Using official Triton container image: {image_name}.") return image_name if config.triton_container_image: LOGGER.info(f"Using provided Triton Container Image: {config.triton_container_image}") return config.triton_container_image normalized_model_name = config.model_name.lower().replace("_", "-") image_name = f"tritonserver-{normalized_model_name}:latest" LOGGER.info(f"Building Triton Container Image: {image_name}") maintainer.build_image( image_name=image_name, image_file_path=pathlib.Path(config.triton_dockerfile), build_args={"FROM_IMAGE": triton.container_image(container_version=config.container_version)}, ) return image_name def _download_checkpoints(self, task: Task) -> None: """ Download checkpoints """ for variant, checkpoint in task.checkpoints.items(): checkpoint_url = checkpoint.url download_path = checkpoint.path if download_path.is_dir(): LOGGER.info(f"Checkpoint {download_path.name} already downloaded.") continue if not checkpoint_url: LOGGER.warning( f"Checkpoint {variant} url is not provided." "\nIf you want to use that checkpoint please train the model locally" f"\nand copy to {download_path} directory" ) continue download(checkpoint_url, download_path) def _initialize_task( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, triton_container_image: str, logs_dir: pathlib.Path, ) -> Task: """ Initialize task object Args: workspace: Path to workspace where artifacts are stored config: Config object pipeline: Pipeline object triton_container_image: Triton Inference Server container image used for tests Returns: Task object """ datasets = {} for dataset in config.datasets: datasets[dataset.name] = Dataset(name=dataset.name) checkpoints = {} for checkpoint in config.checkpoints: download_path = workspace / Task.checkpoints_dir / checkpoint.name checkpoints[checkpoint.name] = Checkpoint(name=checkpoint.name, url=checkpoint.url, path=download_path) results_types = self._task_results_types(pipeline=pipeline) stages = dict() for stage in pipeline.stages(): stages[stage.label] = {"result_path": stage.result_path, "result_type": stage.result_type} experiments = list() for idx, configuration in enumerate(config.configurations, start=1): experiment = self._prepare_experiment( idx=idx, configuration=configuration, results_types=results_types, stages=stages, ) experiments.append(experiment) system_info = SystemInfo.from_host() task = Task( model_name=config.model_name, framework=config.framework, checkpoints=checkpoints, datasets=datasets, datasets_dir=config.datasets_dir, experiments=experiments, container_version=config.container_version, system_info=system_info, triton_container_image=triton_container_image, triton_custom_operations=config.triton_custom_operations, triton_load_model_method=config.triton_load_model_method, started_at=int(datetime.utcnow().timestamp()), logs_dir=logs_dir, ) return task def _task_results_types(self, pipeline: Pipeline) -> List[str]: """ Types of results generated as part of task Returns: List of result types """ results = list() for stage in pipeline.stages(): if TritonPerformanceOfflineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_OFFLINE) continue if TritonPerformanceOnlineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_ONLINE) continue return results def _prepare_experiment( self, idx: int, configuration: Configuration, results_types: List[str], stages: Dict, ) -> Experiment: """ Prepare experiments data Args: idx: Experiment index configuration: Configuration object results_types: Results types stored in experiment stages: Stages executed as part of experiment Returns: Experiment object """ parameters = {key.lower(): value for key, value in configuration.parameters.items()} results_mapped = dict() for result_type in results_types: results_mapped[result_type] = result_type stages_mapped = dict() for name, stage_data in stages.items(): stages_mapped[name] = Stage(name=name, **stage_data) experiment = Experiment( experiment_id=idx, parameters=parameters, stages=stages_mapped, results=results_mapped, ) return experiment
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/analyzer/graph
graph
graph
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import snap from syngen.utils.types import MetaData def safeSNAP(f): def wrapper(*args, **kwargs): graph = args[0] graph.maybe_load_snap() return f(*args, **kwargs) return wrapper class Graph(object): def __init__(self, path=None, name=None, load_eagerly=False, is_directed=False, _snap_graph=None): self.path = path self.name = name self.is_directed = is_directed self.snapGraph = _snap_graph if load_eagerly: self.maybe_load_snap() def maybe_load_snap(self): if not self.snapGraph: graph_type = snap.TNGraph if self.is_directed else snap.TUNGraph self.snapGraph = snap.LoadConnList(graph_type, self.path) @staticmethod def instantiate_from_feature_spec(feature_spec, edge_name, graph_name=None): edge_info = feature_spec.get_edge_info(edge_name) is_bipartite = edge_info[MetaData.SRC_NODE_TYPE] != edge_info[MetaData.DST_NODE_TYPE] is_directed = edge_info[MetaData.DIRECTED] graph_type = snap.TNGraph if is_directed else snap.TUNGraph struct_data = feature_spec.get_structural_data(edge_name) if is_bipartite: num_src_nodes = feature_spec.get_node_info(edge_info[MetaData.SRC_NODE_TYPE])[MetaData.COUNT] num_dst_nodes = feature_spec.get_node_info(edge_info[MetaData.DST_NODE_TYPE])[MetaData.COUNT] num_nodes = num_src_nodes + num_dst_nodes else: num_nodes = feature_spec.get_node_info(edge_info[MetaData.SRC_NODE_TYPE])[MetaData.COUNT] snap_graph = graph_type.New(num_nodes, len(struct_data)) for i in range(num_nodes): snap_graph.AddNode(i) for e in struct_data: snap_graph.AddEdge(int(e[0]), int(e[1])) return Graph(_snap_graph=snap_graph, is_directed=is_directed, name=graph_name) @safeSNAP def edge_count(self): return self.snapGraph.GetEdges() @safeSNAP def node_count(self): return self.snapGraph.GetNodes() @safeSNAP def get_edges(self): return [ (EI.GetSrcNId(), EI.GetDstNId()) for EI in self.snapGraph.Edges() ]
TensorFlow2/LanguageModeling/BERT/official/nlp/modeling/layers
layers
transformer_test
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based transformer block layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import from official.nlp.modeling.layers import transformer # This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It # guarantees forward compatibility of this code for the V2 switchover. @keras_parameterized.run_all_keras_modes class TransformerLayerTest(keras_parameterized.TestCase): def test_layer_creation(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_creation_with_mask(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_creation_with_incorrect_mask_fails(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length - 3)) with self.assertRaisesRegex(ValueError, 'When passing a mask tensor.*'): _ = test_layer([data_tensor, mask_tensor]) def test_layer_invocation(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # Create a model from the test layer. model = tf.keras.Model(data_tensor, output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) _ = model.predict(input_data) def test_layer_invocation_with_mask(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_layer_invocation_with_float16_dtype(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', dtype='float16') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input( shape=(sequence_length, width), dtype=tf.float16) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = (10 * np.random.random_sample( (batch_size, sequence_length, width))).astype(np.float16) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_transform_with_initializer(self): test_layer = transformer.Transformer( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list()) if __name__ == '__main__': tf.test.main()
PyTorch/Classification/GPUNet/triton/175ms/runner
runner
start_NVIDIA-DGX-A100-(1x-A100-80GB)
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash # Evaluate Runner python3 -m "triton.175ms.runner.__main__" \ --config-path "triton/175ms/runner/config_NVIDIA-DGX-A100-(1x-A100-80GB).yaml" \ --device 0
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/tacotron2
tacotron2
postNetBuilder
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_POSTNETBUILDER_H #define TT2I_POSTNETBUILDER_H #include "IModelImporter.h" #include "trtPtr.h" #include <string> namespace nvinfer1 { class INetworkDefinition; class IBuilder; } // namespace nvinfer1 namespace tts { class PostNetBuilder { public: /** * @brief Create a new PostNetBuilder. * * @param numChannels The number of channels for the postnet. * @param maxChunkSize The size of the input chunk. * @param numDimensions The number of dimensions internally. */ PostNetBuilder(const int numChannels, const int maxChunkSize, const int numDimensions); /** * @brief Build the ICudaEngine for the PostNet. * * @param builder The engine builder. * @param importer The model weight importer. * @param maxBatchSize The maximum batch size to support. * @param useFP16 Whether or not to allow FP16 usage in the build. * * @return The built engine. */ TRTPtr<nvinfer1::ICudaEngine> build( nvinfer1::IBuilder& builder, IModelImporter& importer, const int maxBatchSize, const bool useFP16); private: int mNumChannels; int mMaxChunkSize; int mNumDimensions; }; } // namespace tts #endif
TensorFlow/Detection/SSD/models/research/object_detection/data
data
mscoco_label_map
item { name: "/m/01g317" id: 1 display_name: "person" } item { name: "/m/0199g" id: 2 display_name: "bicycle" } item { name: "/m/0k4j" id: 3 display_name: "car" } item { name: "/m/04_sv" id: 4 display_name: "motorcycle" } item { name: "/m/05czz6l" id: 5 display_name: "airplane" } item { name: "/m/01bjv" id: 6 display_name: "bus" } item { name: "/m/07jdr" id: 7 display_name: "train" } item { name: "/m/07r04" id: 8 display_name: "truck" } item { name: "/m/019jd" id: 9 display_name: "boat" } item { name: "/m/015qff" id: 10 display_name: "traffic light" } item { name: "/m/01pns0" id: 11 display_name: "fire hydrant" } item { name: "/m/02pv19" id: 13 display_name: "stop sign" } item { name: "/m/015qbp" id: 14 display_name: "parking meter" } item { name: "/m/0cvnqh" id: 15 display_name: "bench" } item { name: "/m/015p6" id: 16 display_name: "bird" } item { name: "/m/01yrx" id: 17 display_name: "cat" } item { name: "/m/0bt9lr" id: 18 display_name: "dog" } item { name: "/m/03k3r" id: 19 display_name: "horse" } item { name: "/m/07bgp" id: 20 display_name: "sheep" } item { name: "/m/01xq0k1" id: 21 display_name: "cow" } item { name: "/m/0bwd_0j" id: 22 display_name: "elephant" } item { name: "/m/01dws" id: 23 display_name: "bear" } item { name: "/m/0898b" id: 24 display_name: "zebra" } item { name: "/m/03bk1" id: 25 display_name: "giraffe" } item { name: "/m/01940j" id: 27 display_name: "backpack" } item { name: "/m/0hnnb" id: 28 display_name: "umbrella" } item { name: "/m/080hkjn" id: 31 display_name: "handbag" } item { name: "/m/01rkbr" id: 32 display_name: "tie" } item { name: "/m/01s55n" id: 33 display_name: "suitcase" } item { name: "/m/02wmf" id: 34 display_name: "frisbee" } item { name: "/m/071p9" id: 35 display_name: "skis" } item { name: "/m/06__v" id: 36 display_name: "snowboard" } item { name: "/m/018xm" id: 37 display_name: "sports ball" } item { name: "/m/02zt3" id: 38 display_name: "kite" } item { name: "/m/03g8mr" id: 39 display_name: "baseball bat" } item { name: "/m/03grzl" id: 40 display_name: "baseball glove" } item { name: "/m/06_fw" id: 41 display_name: "skateboard" } item { name: "/m/019w40" id: 42 display_name: "surfboard" } item { name: "/m/0dv9c" id: 43 display_name: "tennis racket" } item { name: "/m/04dr76w" id: 44 display_name: "bottle" } item { name: "/m/09tvcd" id: 46 display_name: "wine glass" } item { name: "/m/08gqpm" id: 47 display_name: "cup" } item { name: "/m/0dt3t" id: 48 display_name: "fork" } item { name: "/m/04ctx" id: 49 display_name: "knife" } item { name: "/m/0cmx8" id: 50 display_name: "spoon" } item { name: "/m/04kkgm" id: 51 display_name: "bowl" } item { name: "/m/09qck" id: 52 display_name: "banana" } item { name: "/m/014j1m" id: 53 display_name: "apple" } item { name: "/m/0l515" id: 54 display_name: "sandwich" } item { name: "/m/0cyhj_" id: 55 display_name: "orange" } item { name: "/m/0hkxq" id: 56 display_name: "broccoli" } item { name: "/m/0fj52s" id: 57 display_name: "carrot" } item { name: "/m/01b9xk" id: 58 display_name: "hot dog" } item { name: "/m/0663v" id: 59 display_name: "pizza" } item { name: "/m/0jy4k" id: 60 display_name: "donut" } item { name: "/m/0fszt" id: 61 display_name: "cake" } item { name: "/m/01mzpv" id: 62 display_name: "chair" } item { name: "/m/02crq1" id: 63 display_name: "couch" } item { name: "/m/03fp41" id: 64 display_name: "potted plant" } item { name: "/m/03ssj5" id: 65 display_name: "bed" } item { name: "/m/04bcr3" id: 67 display_name: "dining table" } item { name: "/m/09g1w" id: 70 display_name: "toilet" } item { name: "/m/07c52" id: 72 display_name: "tv" } item { name: "/m/01c648" id: 73 display_name: "laptop" } item { name: "/m/020lf" id: 74 display_name: "mouse" } item { name: "/m/0qjjc" id: 75 display_name: "remote" } item { name: "/m/01m2v" id: 76 display_name: "keyboard" } item { name: "/m/050k8" id: 77 display_name: "cell phone" } item { name: "/m/0fx9l" id: 78 display_name: "microwave" } item { name: "/m/029bxz" id: 79 display_name: "oven" } item { name: "/m/01k6s3" id: 80 display_name: "toaster" } item { name: "/m/0130jx" id: 81 display_name: "sink" } item { name: "/m/040b_t" id: 82 display_name: "refrigerator" } item { name: "/m/0bt_c3" id: 84 display_name: "book" } item { name: "/m/01x3z" id: 85 display_name: "clock" } item { name: "/m/02s195" id: 86 display_name: "vase" } item { name: "/m/01lsmm" id: 87 display_name: "scissors" } item { name: "/m/0kmg4" id: 88 display_name: "teddy bear" } item { name: "/m/03wvsk" id: 89 display_name: "hair drier" } item { name: "/m/012xff" id: 90 display_name: "toothbrush" }
TensorFlow/Detection/SSD/models/research/object_detection/data
data
mscoco_minival_ids
25096 251824 35313 546011 524186 205866 511403 313916 47471 258628 233560 576017 404517 410056 178690 248980 511724 429718 163076 244111 126766 313182 191981 139992 325237 248129 214519 175438 493321 174103 563762 536795 289960 473720 515540 292118 360851 267175 532876 171613 581415 259819 441841 381682 58157 4980 473929 70626 93773 283412 36765 495020 278401 329307 192810 491784 506416 225495 553747 86442 242208 132686 385877 290248 525705 5476 486521 332512 138556 348083 284375 40018 296994 38685 432429 183407 434358 472164 530494 570693 193401 392612 98872 445766 532209 98322 285114 267725 51605 314812 91105 535506 540264 375341 449828 277659 68933 76873 217554 213592 190776 516224 474479 343599 578813 128669 546292 475365 377626 128833 427091 547227 11742 80213 462241 374574 121572 29151 13892 262394 303667 198724 7320 448492 419080 460379 483965 556516 139181 1103 308715 207507 213827 216083 445597 240275 379585 116389 138124 559051 326898 419386 503660 519460 23893 24458 518109 462982 151492 514254 2477 147165 570394 548766 250083 364341 351967 386277 328084 511299 499349 315501 234965 428562 219771 288150 136021 168619 298316 75118 189752 243857 296222 554002 533628 384596 202981 498350 391463 183991 528062 451084 7899 408534 329030 318566 22492 361285 226973 213356 417265 105622 161169 261487 167477 233370 142999 256713 305833 103579 352538 135763 392144 61181 200302 456908 286858 179850 488075 174511 194755 317822 2302 304596 172556 548275 341678 55299 134760 352936 545129 377012 141328 103757 552837 28246 125167 328745 278760 337133 403389 146825 502558 265916 428985 492041 113403 372037 306103 287574 187495 479805 336309 162043 95899 43133 464248 149115 247438 74030 130645 282841 127092 101172 536743 179642 58133 49667 170605 11347 365277 201970 292663 217219 463226 41924 281102 357816 490878 100343 525058 133503 416145 29341 415413 125527 507951 262609 240210 581781 345137 526342 268641 328777 32001 137538 39115 415958 6771 421865 64909 383601 206907 420840 370980 28452 571893 153520 185890 392991 547013 257359 279879 478614 131919 40937 22874 173375 106344 44801 205401 312870 400886 351530 344013 173500 470423 396729 402499 276585 377097 367619 518908 263866 332292 67805 152211 515025 221350 525247 78490 504342 95908 82668 256199 220270 552065 242379 84866 152281 228464 223122 67537 456968 368349 101985 14681 543551 107558 372009 99054 126540 86877 492785 482585 571564 501116 296871 20395 181518 568041 121154 56187 190018 97156 310325 393274 214574 243222 289949 452121 150508 341752 310757 24040 228551 335589 12020 529597 459884 344888 229713 51948 370929 552061 261072 120070 332067 263014 158993 451714 397327 20965 414340 574946 370266 487534 492246 264771 73702 43997 235124 301093 400048 77681 58472 331386 13783 242513 419158 59325 383033 393258 529041 249276 182775 351793 9727 334069 566771 539355 38662 423617 47559 120592 508303 462565 47916 218208 182362 562101 441442 71239 395378 522637 25603 484450 872 171483 527248 323155 240754 15032 419144 313214 250917 333430 242757 221914 283190 194297 228506 550691 172513 312192 530619 113867 323552 374115 35435 160239 62877 441873 196574 62858 557114 427612 242869 356733 304828 24880 490509 407083 457877 402788 536416 385912 544121 500389 451102 12120 483476 70987 482799 542549 49236 424258 435783 182366 438093 501824 232845 53965 223198 288933 450458 285664 196484 408930 519815 290981 398567 315792 490683 257136 75611 302498 332153 82293 416911 558608 564659 536195 370260 57904 527270 6593 145620 551650 470832 515785 251404 287331 150788 334006 266117 10039 579158 328397 468351 550400 31745 405970 16761 323515 459598 558457 570736 476939 472610 72155 112517 13659 530905 458768 43486 560893 493174 31217 262736 412204 142722 151231 480643 197245 398666 444869 110999 191724 479057 492420 170638 277329 301908 395644 537611 141887 47149 403432 34818 372495 67994 337497 478586 249815 533462 281032 289941 151911 271215 407868 360700 508582 103873 353658 369081 406403 331692 26430 105655 572630 37181 91336 484587 318284 113019 33055 25293 229324 374052 384111 213951 315195 319283 539453 17655 308974 326243 539436 417876 526940 356347 221932 73753 292648 262284 304924 558587 374858 253518 311744 539636 40924 136624 334305 365997 63355 191226 526732 367128 575198 500657 50637 17182 424792 565353 563040 383494 74458 155142 197125 223857 428241 440830 371289 437303 330449 93771 82715 499631 381257 563951 192834 528600 404273 270554 208053 188613 484760 432016 129800 91756 523097 317018 487282 444913 159500 126822 540564 105812 560756 306099 471226 123842 513219 154877 497034 283928 564003 238602 194780 462728 558640 524373 455624 3690 560367 316351 455772 223777 161517 243034 250440 239975 441008 324715 152106 246973 462805 296521 412767 530913 370165 292526 107244 217440 330204 220176 577735 197022 127451 518701 212322 204887 27696 348474 119233 282804 230040 425690 409241 296825 296353 375909 123136 573891 338256 198247 373375 151051 500084 557596 120478 44989 283380 149005 522065 626 17198 309633 524245 291589 322714 455847 248468 371948 444928 20438 481670 147195 95022 548159 553165 395324 391371 86884 561121 219737 38875 338159 377881 185472 359277 114861 378048 126226 10217 320246 15827 178236 370279 352978 408101 77615 337044 223714 20796 352445 263834 156704 377867 119402 399567 1180 257941 560675 390471 209290 258382 466339 56437 195042 384230 203214 36077 283038 38323 158770 532381 395903 375461 397857 326798 371699 369503 495626 464328 462211 397719 434089 424793 476770 531852 303538 525849 480917 419653 265063 48956 5184 279149 396727 374266 124429 36124 240213 147556 339512 577182 288599 257169 178254 393869 122314 28713 48133 540681 100974 368459 500110 73634 460982 203878 578344 443602 502012 399666 103603 22090 257529 176328 536656 408873 116881 460972 33835 460781 51223 46463 89395 407646 337453 461715 16257 426987 234889 3125 165643 517472 451435 206800 112128 331236 163306 94185 498716 532732 146509 458567 153832 105996 353398 546976 283060 247624 110048 243491 154798 543600 149962 355256 352900 203081 372203 284605 516244 190494 150301 326082 64146 402858 413538 399510 460251 94336 458721 57345 424162 423508 69356 567220 509786 37038 111535 341318 372067 358120 244909 180653 39852 438560 357041 67065 51928 171717 520430 552395 431355 528084 20913 309610 262323 573784 449485 154846 283438 430871 199578 516318 563912 348483 485613 143440 94922 168817 74457 45830 66297 514173 99186 296236 230903 452312 476444 568981 100811 237350 194724 453622 49559 270609 113701 415393 92173 137004 188795 148280 448114 575964 163155 518719 219329 214247 363927 65357 87617 552612 457817 124796 47740 560463 513968 273637 354212 95959 261061 307265 316237 191342 463272 169273 396518 93261 572733 407386 202658 446497 420852 229274 432724 34900 352533 49891 66144 146831 467484 97988 561647 301155 507421 173217 577584 451940 99927 350639 178941 485155 175948 360673 92963 361321 48739 577310 517795 93405 506458 394681 167920 16995 519573 270532 527750 563403 494608 557780 178691 8676 186927 550173 361656 575911 281315 534377 57570 340894 37624 143103 538243 425077 376545 108129 170974 7522 408906 264279 79415 344025 186797 234349 226472 123639 225177 237984 38714 223671 358247 152465 521405 453722 361111 557117 235832 309341 268469 108353 532531 357279 537280 437618 122953 7088 36693 127659 431901 57244 567565 568111 202926 504516 555685 322369 347620 110231 568982 295340 529798 300341 158160 73588 119476 387216 154994 259755 211282 433971 263588 299468 570138 123017 355106 540172 406215 8401 548844 161820 396432 495348 222407 53123 491556 108130 440617 448309 22596 346841 213829 135076 56326 233139 487418 227326 137763 383389 47882 207797 167452 112065 150703 421109 171753 158279 240800 66821 152886 163640 475466 301799 106712 470885 536370 420389 396768 281950 18903 357529 33650 168243 201004 389295 557150 185327 181256 557396 182025 61564 301928 332455 199403 18444 177452 204206 38465 215906 153103 445019 324527 299207 429281 574675 157067 241269 100850 502818 576566 296775 873 280363 355240 383445 286182 67327 422778 494855 337246 266853 47516 381991 44081 403862 381430 370798 173383 387173 22396 484066 349414 262235 492814 65238 209420 336276 453328 407286 420490 360328 158440 398534 489475 477389 297108 69750 507833 198992 99736 546444 514914 482574 54355 63478 191693 61684 412914 267408 424641 56872 318080 30290 33441 199310 337403 26731 453390 506137 188945 185950 239843 357944 290570 523637 551952 513397 357870 523517 277048 259879 186991 521943 21900 281074 187194 526723 568147 513037 177338 243831 203488 208494 188460 289943 399177 404668 160761 271143 76087 478922 440045 449432 61025 331138 227019 147577 548337 444294 458663 236837 6854 444926 484816 516641 397863 188534 64822 213453 66561 43218 514901 322844 498453 488788 391656 298994 64088 464706 193720 199017 186427 15278 350386 342335 372024 550939 35594 381382 235902 26630 213765 550001 129706 577149 353096 376891 28499 427041 314965 231163 5728 347836 184388 27476 284860 476872 301317 99546 147653 529515 311922 20777 2613 59463 430670 560744 60677 332087 296724 353321 103306 363887 76431 423058 120340 119452 6723 462327 163127 402723 489382 183181 107656 375409 355228 430762 512468 409125 270544 559113 495388 529434 38355 422025 379667 131386 183409 573536 581317 425404 350084 472 28532 329717 230220 187196 484166 97434 224595 87483 516998 314876 32610 514586 344816 394418 402330 305993 371497 315790 294908 207431 561014 26584 368671 374990 54747 47571 449424 283761 84735 522127 120473 524656 479659 131627 450959 153300 580908 207785 49115 284991 96505 278306 291655 1404 489304 557459 37740 157465 390475 119166 33871 247428 75905 20779 65035 333556 375415 383676 505243 87327 16451 287235 70190 245067 417520 229234 183786 333018 554156 198915 108021 128262 412443 242543 555050 436511 445233 207886 156397 526257 521357 413043 427189 401614 94823 351130 105945 182314 305879 526197 64409 496800 236461 138175 43816 185904 345711 72536 526737 360400 556537 426053 59044 28290 222548 434915 418623 246454 111801 12448 427133 459117 11262 169045 469996 304390 513096 322822 196371 504977 395364 243950 216218 417217 106736 58194 504101 478522 379314 30432 207027 297146 91844 176031 98287 278095 196053 343692 523137 220224 349485 376193 407067 185781 37871 336464 46331 44244 80274 170147 361106 468499 537864 467457 267343 291528 287828 555648 388284 576085 531973 350122 422253 509811 78093 410019 133090 581205 343976 9007 92478 450674 486306 503978 46378 335578 404071 225558 217923 406217 138054 575815 234990 336257 159240 399516 226408 531126 138599 61693 89861 29504 163296 477906 48419 25595 195594 97592 392555 203849 139248 245651 275755 245426 127279 521359 517623 235747 475906 11198 336101 70134 505447 218996 30080 484457 120441 575643 132703 197915 505576 90956 99741 517819 240918 150834 207306 132682 88250 213599 462584 413321 361521 496081 410583 440027 417284 397069 280498 473171 129739 279774 29370 518899 509867 85556 434930 280710 55077 348793 157756 281111 190689 281447 502854 232894 268742 199553 220808 137330 256903 116017 466416 41635 110906 340934 557501 146767 517617 487159 1561 417281 489014 292463 113533 412247 263973 515444 343561 310200 293804 225867 150320 183914 9707 89999 177842 296524 287829 68300 363654 465986 159969 313948 522779 219820 198352 12959 266727 8016 175804 497867 307892 287527 309638 205854 114119 23023 322586 383341 134198 553522 70426 329138 105367 175597 187791 17944 366611 93493 242422 41842 558840 32203 19667 124297 383726 252625 234794 498228 102906 287967 69021 51326 243896 509423 440124 122582 344325 34455 442478 23587 236904 185633 349841 44294 112568 186296 71914 3837 135486 223747 557517 385181 265313 404263 26564 516867 497096 332351 345139 444304 510877 356387 561214 311471 408789 561729 291380 174671 45710 435136 388858 361693 50811 531134 573605 340175 534988 382671 327047 348400 547137 401037 490711 499266 236370 449075 334015 107234 232315 462953 252048 186822 410168 28994 45550 453626 417957 468577 106338 391684 375143 217622 357903 347648 142182 213843 299148 352587 436676 161875 144655 304741 235017 181799 211042 335507 553731 412531 229740 437129 423830 561806 337666 52016 138057 70254 494393 73119 262425 565395 305329 489611 377080 569450 549766 332940 235302 53893 203781 38449 114870 18699 396338 449839 423613 379767 369594 375812 359219 229311 291675 224907 416885 32964 573406 17282 103375 81860 576886 461334 35672 243442 217269 445055 211112 455675 412384 88967 550643 24223 504074 9275 155546 329542 172658 331600 315492 194208 162867 324614 432017 140860 157944 406616 486079 361172 258346 494140 315384 451014 242619 413684 386187 408501 121089 343603 232538 558671 551596 32992 406647 435260 11156 40896 175382 110560 252968 189694 63154 564816 72004 164788 434583 453104 111878 268484 290768 473215 450620 32673 277479 529917 315868 562419 378347 398637 84097 120527 134193 431472 400238 86426 208830 524535 22213 516813 526044 386193 246672 386739 559252 153344 236123 246074 323615 92644 408621 323231 499940 296105 578902 150098 145015 131431 318618 68409 497928 362520 467755 112702 163219 277289 192362 497674 525439 56267 465868 407570 551608 345211 179653 55295 97315 534041 505822 411082 132375 25378 272008 536605 123511 148737 577712 493751 29587 468297 528458 491058 558976 181421 209685 147545 486964 570516 168662 19446 395997 242911 232511 317035 354527 5961 513793 124390 370123 113397 195790 252813 326919 432414 409239 458221 115667 212239 279279 375554 546622 317188 260818 286021 377111 209868 243148 132037 560624 459721 193498 22623 254164 112841 383470 62692 227940 471335 44858 213649 179898 102837 474078 44478 256197 309492 182923 421139 275695 104965 480780 449749 76513 578591 336695 247474 320490 246105 53183 485740 575823 510735 290741 37017 348708 279784 453634 567644 434192 482719 435324 544299 106896 569926 301574 492885 103462 487151 513585 219647 303685 459645 76292 188579 154883 207728 425074 310493 27221 371694 119404 399665 273556 454577 580698 267664 295769 423740 22461 22667 508443 390401 369997 524627 193349 132223 576743 130586 487741 107542 501420 520109 308156 540581 231362 86471 472930 351133 463605 575577 159842 39504 223020 63525 298627 139883 375205 303549 16838 495680 408112 394474 188044 472143 463751 31481 378139 190853 442614 172006 140270 133051 178028 495090 88455 13232 46323 346275 425905 487013 433136 514402 521906 4157 61418 567205 213351 304008 296492 506561 408120 415961 323186 480379 349199 201918 135023 456483 136173 237917 4972 99081 331569 150007 36450 93400 487461 203629 218093 487181 113935 139512 210981 358883 47419 248382 80357 462663 83097 26159 80429 283055 452676 50159 12326 29430 303264 158122 569070 52925 534876 46975 426376 170293 434417 235517 218476 445008 482774 305632 116848 557252 229270 453485 382214 54759 59171 193328 17152 238071 148531 409725 75434 65358 473057 415408 579415 48636 269606 298784 162799 356400 326854 24601 66499 340247 20992 190218 548464 122203 405306 495376 536028 5713 206831 9395 503939 194440 474253 395849 165141 204935 412621 402922 87141 570664 202622 137362 221737 78947 112129 341957 169562 164780 360216 107641 415015 444955 559102 123070 176592 309366 116461 222075 530470 214363 414487 471567 292123 370210 364243 510254 396350 141524 220310 398604 145436 392476 17482 78032 336171 130812 489743 346638 418854 139072 263860 458240 383443 337533 182334 535608 517946 489924 308117 129945 59973 538364 513458 449433 25165 335851 487688 153834 347612 349689 443688 486008 479149 442286 61108 315338 511546 506444 775 121839 291412 497626 387223 367095 557896 196118 530652 447991 215622 232160 296731 272273 473415 364705 235790 479950 141278 547903 66523 353989 121875 237735 100083 348941 288983 390083 168248 120776 489764 219135 551713 256035 309005 112493 579759 114972 458992 295768 158497 309696 363844 507966 313491 280779 327130 292901 127761 183843 456521 164475 224281 443713 72514 567383 476215 565650 17708 474471 248334 196313 164759 212453 319024 332916 35436 113139 172716 7570 161609 144534 137475 561411 45844 332027 36990 190160 421231 283210 365611 511407 400887 485071 481214 347203 153506 397403 229599 357322 76034 101189 567444 92363 526767 218811 362812 339120 579696 399269 10705 549012 410428 105623 535307 419235 119911 236604 515779 188173 66397 549119 478742 256180 128224 440539 112818 315434 97513 171970 433483 226008 83217 424548 343753 350334 479280 208808 43266 399893 444386 47687 499093 565269 465835 167486 433460 169872 299640 158466 241373 50576 161567 73560 349804 181745 352684 450357 532693 88335 256518 94926 541197 14629 276149 539439 498738 25654 291330 146465 160190 513064 75748 499007 164464 134042 422416 543315 34056 303197 394801 293071 44964 529083 414522 331180 227599 581040 382850 159898 176841 205352 540782 406591 184499 14380 350230 458175 528786 314935 111086 2191 20371 337042 558371 296907 539937 511463 574856 87864 403817 152598 169712 533227 173545 478862 19455 258433 373440 460229 525682 176857 525050 277025 156416 206784 415179 183204 210374 312868 514366 65208 376342 515792 383066 85247 119132 338007 88748 206705 495808 532164 150686 35474 207860 111165 391199 346011 537721 11390 487482 360983 400347 92795 347506 324322 371958 101280 222842 563604 210299 150616 96351 330455 273551 228749 248051 495252 372265 52664 191874 157416 446428 136681 1228 321811 93791 477867 192520 157124 40620 200541 103904 329494 60093 112573 489125 513115 322968 561619 74309 572462 248252 375376 217312 243213 79878 452218 349754 554291 434043 460373 452591 567787 504711 196007 511153 312416 296056 308849 203667 253223 331230 465545 363048 69392 301506 216198 147979 6005 381870 56983 320972 144122 210855 151480 299288 462486 103931 321079 4134 239861 540006 413805 221222 198943 450790 380597 388298 58737 246197 160726 398554 513946 222235 323851 364703 125643 169800 445662 223764 575372 489207 559474 7155 453819 402720 102355 415076 287436 35705 111076 395865 310862 570834 54728 215778 80053 35148 350488 524140 190097 36661 302110 96884 383397 245462 446958 138937 424712 561814 276964 148034 411068 357824 103257 322149 508899 580294 214386 114419 271429 168260 209835 573072 252269 31980 161308 281508 192714 247599 188948 180563 419601 233660 154804 311846 181499 5535 175082 531018 412338 166995 441411 427820 516846 287366 67959 271266 330845 74209 508167 542699 66485 453756 158412 443784 118097 265050 29074 152623 532493 292988 530384 192660 502336 472648 151657 351626 241010 115070 268356 539557 304698 251140 497158 527445 385428 179200 512394 184978 141910 36311 579457 19129 424960 181714 126216 512911 488360 379533 337551 325410 364587 468885 211107 90062 500446 105960 451951 431431 134178 164548 173826 373988 15157 3091 393557 380011 75372 37403 209995 493610 315899 353299 355040 547000 86133 58174 377326 510230 480583 158588 432529 311206 127626 239980 166340 104185 405174 507211 542782 448078 253477 542694 567308 214853 288824 283268 480757 503200 221089 112388 171539 124452 224200 206362 428754 256192 119414 351620 330050 547504 216398 94261 19916 163242 432588 143824 361103 271138 260150 313627 141086 308263 388453 153217 372794 514787 251910 351335 92683 465836 18442 404128 208476 47873 303219 201622 367489 32760 436174 401926 338419 45248 328464 312216 156282 315702 300701 345401 515350 29094 284296 466449 351057 110672 364853 10014 415828 397522 451412 433124 158277 93476 183387 109889 223326 105547 530061 256301 526778 80974 86650 45835 202154 92678 315991 423919 455044 491168 272253 146627 285349 86001 44171 162332 257328 432820 519275 380639 269436 236016 543215 346752 575970 423498 136926 195648 126634 133078 138656 490012 122388 195165 434900 533625 504167 333697 216576 538775 125072 391154 545007 150292 566717 367362 490991 356623 141271 402795 516786 39499 536716 293324 212853 276381 57124 325992 394659 452178 117674 461172 518586 497021 462345 526570 17328 202928 62566 411277 256983 49473 211206 398031 277955 531178 453959 27946 252844 30273 536933 500298 229111 7977 27642 303726 79927 110313 527691 442205 33345 365851 233236 239157 409221 400803 32947 422516 359727 215872 559454 289716 450247 57827 312298 530383 260048 35857 224222 299533 13296 325907 117869 54088 391011 340478 205344 347823 468604 78701 101414 197499 490871 89273 380343 441974 35974 486114 354398 535536 294030 7276 278742 137028 98721 372764 429802 72105 220307 116845 195406 333000 130401 264382 125458 363036 286994 531070 113801 4108 47603 130118 573924 302990 237566 21470 577926 139436 425925 36844 63602 399791 35894 347228 225617 504813 245320 466007 553931 166731 164885 19090 457262 247806 502895 167593 352491 520 26386 497348 352000 386164 32901 730 30925 333167 150361 231747 462244 504958 260738 313762 346645 486118 202998 541613 183884 230245 83172 126638 51844 421673 118625 377723 229427 371326 104345 361687 114246 397354 104137 120850 260516 389168 234555 26348 78522 409784 303024 377949 69887 546983 113736 298197 476810 137315 376321 410337 492905 119785 158167 185930 354061 106563 328452 506587 536517 480173 570688 376441 252127 247720 132554 41923 400317 170041 151938 198650 6437 49091 221820 455966 309859 300659 15850 388014 253386 65415 238228 548882 302155 93483 371869 397287 315249 360564 448410 21382 477474 144862 517515 230190 322353 231568 14940 132719 498942 182469 113720 168890 94852 246077 117535 52596 419116 522020 255338 125228 564332 106375 249534 220915 177758 293057 222430 196878 554980 375606 173081 84936 418907 562229 457616 125700 66038 239274 574110 305540 98431 167347 53345 438481 286010 5569 343606 168898 191301 236338 291394 715 520237 236954 192212 524002 471625 476029 413124 203455 483328 476417 114389 372428 369221 322654 388157 561314 264540 418680 359540 426182 521613 92248 74478 398905 554273 125909 430583 418959 503522 382999 403145 536375 352618 108193 279696 163253 439007 204536 552186 269926 372147 399921 201418 240565 471483 91619 393971 331648 385856 567440 81922 391722 372894 535997 134096 545958 239943 186929 34222 177714 277812 197111 281878 532003 557172 142890 196116 385454 322845 374987 123137 255112 111207 304819 523526 336046 42893 241273 240049 90659 271364 408008 253282 167067 354278 178317 229653 93333 163666 566920 495199 100329 218119 558864 257382 406152 206587 420339 325919 278853 555763 293200 151000 209664 79380 197177 353953 464522 392260 46144 154202 164366 206025 511236 24921 497907 393226 318138 364125 157321 492395 187857 109939 441500 144251 368581 51403 283498 43555 89356 404601 23272 425762 460682 544629 209829 322029 199247 307262 571242 124236 162393 104829 250766 563938 237399 131516 483001 21994 97958 540187 264497 384808 343187 51277 6712 566103 435384 292082 359039 165157 267972 263796 489313 392722 541924 554433 571034 146112 201934 518716 64116 294992 289586 159970 479617 269006 140465 513260 554805 6579 452696 34445 548296 372983 509656 199339 130030 128372 449454 139306 247914 99024 499134 536653 468917 412813 404338 215303 455414 413497 574988 397117 188631 378701 241867 143129 419884 412749 496954 317732 16977 398309 162363 147576 100016 209018 92660 173302 525732 449198 99734 12733 172946 168032 210988 340697 4795 534887 483553 278323 178175 190095 357542 230432 227460 334609 562121 378126 555357 325666 451859 526837 531710 297249 294839 499785 254976 527220 173057 11760 163012 215998 114420 57812 563712 513887 201859 36333 291990 338375 460621 518889 337502 133050 80172 537007 295270 335644 227852 336044 204137 82259 165675 295713 343937 442567 356002 346932 62985 180925 525381 13081 377406 159774 462643 359105 185821 390201 84168 128059 80340 481159 491902 306619 353807 390569 541562 292616 64621 439224 96288 449798 160927 496324 90778 126145 97230 572767 11570 539075 350988 3779 208135 551315 216449 169606 502 67765 281414 118594 146127 543985 124927 471394 385508 373783 501315 140974 42757 527054 202387 513056 329931 153973 510152 520812 534601 131282 386638 508538 234779 229329 396568 153568 229478 153574 356299 436694 324139 299409 212462 478155 393266 117836 190760 213605 196 444382 445211 363845 433277 521141 464786 169076 301402 4495 177258 328962 183757 452966 416059 113233 559417 280678 481398 328372 234910 30667 343062 383046 370953 258089 404229 456931 535183 300867 60507 262672 7288 81100 575395 539951 347848 437594 352005 14941 196453 528386 466939 482187 293468 494077 217285 362951 435751 411480 517315 480015 60610 353001 376442 430265 478338 303069 525344 437331 389315 8179 31981 313872 330920 515465 258905 142249 323128 389699 565012 124636 488693 376608 309424 370596 261940 39871 226984 152866 515050 116861 412876 120411 550452 565273 273791 181466 183155 293505 336113 569997 303738 331049 147030 74058 198176 23991 198841 79816 85183 261535 566756 386291 318200 569849 57429 36049 420827 519271 24391 172087 158795 133002 522198 133698 499365 79261 258860 457718 179948 421875 558073 206684 529762 456756 65773 425722 53102 294264 416730 38574 176275 404297 127494 242060 272212 189244 510861 421370 208516 206431 248457 39502 375087 130839 308730 572453 263474 544611 255708 412604 390094 578131 234463 493563 9450 381914 148999 32300 423576 569758 347253 92939 112212 13923 39472 363736 289659 269949 88349 188522 488915 129054 573823 316000 440562 408818 539302 199575 122300 340047 322816 472878 313922 228071 265648 400166 169166 10040 125245 148766 31281 172599 431067 208236 441824 175611 15148 431199 521587 50025 443139 349822 515056 27530 571970 82367 7115 424333 157601 537506 447187 115182 547597 5586 143040 31650 196336 279818 206273 403104 514248 243190 558642 548246 16848 391539 89614 284589 191314 259452 208380 209441 465463 385005 321385 223569 11727 87574 566470 210890 323598 427193 425676 401240 94021 259571 447553 456053 84693 14278 119995 234595 408696 136271 143560 357578 28071 36561 157102 293789 392251 356622 180274 48320 475779 301326 100977 413551 574010 404479 80725 552221 575441 197424 124601 215633 359546 25386 73199 334466 156572 124614 34121 460049 327623 441695 292488 476514 464018 348571 113413 125208 129690 446218 493761 383413 460390 343149 374041 525211 451263 333683 385194 107427 102872 517249 475879 575755 147787 297180 343774 112437 142240 384503 511111 51089 145408 143582 408138 162858 71850 126925 222781 314616 425609 203928 337563 223300 52644 272566 232597 374430 469075 267164 265851 28134 308889 465795 47263 233727 42 493117 124621 533378 361259 458750 429033 383289 490927 520964 174420 64425 378859 401850 281475 46508 205300 280736 110961 230679 151956 321497 73665 488736 165353 365983 556230 21465 581226 448861 3793 347335 150726 75319 2521 285894 133876 104589 346013 63516 83656 491515 326256 49942 28508 475413 270222 235839 48554 327777 111179 507171 425973 449490 205239 82375 459575 432300 91885 340922 270239 195894 121417 344831 439651 232148 391688 480793 534275 260823 469294 8688 255654 191300 383464 81594 21240 478077 517596 555953 294119 402234 459500 564280 106849 167501 98328 267411 145512 272599 50054 414156 161129 418226 11796 502090 390350 440500 240727 104406 163682 437910 143767 358901 527631 500543 28377 231097 227985 556703 421566 73201 478393 280347 15497 131969 515760 295440 462527 42147 120007 212895 425361 454143 5758 366782 213932 229848 458861 132791 476664 150365 343038 529649 180515 499810 329041 15660 419228 396295 502644 321085 245049 34193 217323 446455 528046 375573 15802 147448 407291 84000 280891 150487 510606 163025 249964 126123 233771 118507 97278 357386 23121 10580 2153 176017 371472 373289 173908 296797 334083 301107 577522 125404 278359 575032 273002 266371 108315 255633 503490 250051 143927 117407 198271 447043 329789 399991 458388 87489 228411 494634 260802 454161 446322 231079 438373 395665 244539 212427 356660 347276 183287 498374 21167 544522 418533 288493 245660 406103 406976 367313 455555 117337 384465 185697 160393 463825 276852 181462 176288 452816 102497 54277 225791 361046 197278 9857 227736 398992 55868 170914 181677 467803 560470 264599 540372 559442 201207 137227 267643 355471 245431 555669 344498 84783 193474 102411 401860 119469 448786 449990 568082 340472 307573 231828 307547 82052 15140 493612 503972 386592 473219 495557 159440 355869 311531 209733 240119 415048 296098 249482 15663 151432 263011 488539 463913 502798 174276 495613 407861 229304 146742 545039 161202 295134 162144 453317 52759 335201 222903 20333 559550 336049 346140 491223 306611 102746 455355 449921 477288 77821 289712 452663 147758 129571 490869 345961 94501 160394 432993 178796 372494 316323 383435 194940 74583 148911 518027 431827 32724 158548 227227 500330 54679 321024 471175 252074 476569 573258 337247 294373 558661 148898 563267 163112 411968 193565 455210 349344 337160 160456 255158 553678 123843 549687 381968 579471 100604 379841 357526 197263 14756 412639 210915 47204 539251 166255 490199 260363 91654 170550 187888 97362 285418 176993 292741 361901 296988 223496 493753 114907 151358 316534 472509 499802 348519 347747 58851 104790 396779 130528 2255 19624 526800 233950 505945 131207 290750 114090 196665 8708 134688 394715 115088 492196 530099 518729 291572 421457 445365 78929 415461 551796 210002 207913 344878 303893 149196 353275 122413 553361 519132 467135 431439 17089 322119 228214 35062 105689 366141 285651 60409 472671 401446 492846 21023 421952 374100 265200 506628 62298 243626 212122 350648 409921 428140 399212 388267 198921 429246 202040 570001 261346 61171 131815 455448 82696 554607 102174 386803 188421 191846 209898 380117 321064 119617 188651 132210 244299 174072 542910 378334 118405 543347 183657 581180 395289 64760 265584 29573 493720 94795 315601 416596 260106 244019 463884 579468 112085 300972 238528 382542 57672 165298 46889 289497 337180 481252 7913 432150 288161 403758 257336 565331 346589 270785 205670 231580 508580 98871 239997 554579 160057 404922 78771 380756 171199 148077 22892 145378 26967 235200 176007 90349 554377 189744 257053 270515 66508 113890 291983 558927 420916 140908 58384 438226 575776 106935 40602 468993 494810 210408 365685 483722 39430 258793 272615 51476 189919 443887 391648 422670 445135 198959 405529 459757 465489 81827 262576 408289 309237 76249 460091 512630 45959 280320 200492 404652 48475 18480 457097 65889 162256 265950 520752 299082 51500 499313 104906 35438 167647 7274 387824 242139 173166 399830 12014 510642 154053 67785 78170 514118 87998 52703 203539 534533 85926 274438 401653 458790 509262 144481 387515 246649 503207 235131 501531 62025 43286 272323 326128 561889 167529 171067 50778 301282 469719 509388 480317 379055 546428 192763 445602 420882 232790 174332 232865 292822 511145 119502 312591 110330 281353 116244 58778 428079 64902 520840 232054 473214 572574 296684 351590 217997 178761 71618 226496 285212 381195 499903 232849 468997 345559 503097 578570 396404 405223 578752 403500 188958 504498 491623 462929 525762 395550 574227 240751 169356 524694 40886 571635 487774 86220 95677 268987 502599 155270 103855 125100 241355 220214 391774 110618 154587 134483 458781 360877 465963 194595 346934 127153 188078 553869 102665 400547 33759 42779 397587 140295 151807 549136 470288 89738 328368 546934 164255 563683 399988 360951 217303 326781 546133 135399 94666 330037 569839 411070 497466 404805 417854 318442 255036 457230 346863 307438 370448 5124 152582 38118 12179 58462 308420 329456 74920 250368 186428 556073 111806 361244 80273 230964 156754 503101 75173 389404 195538 88848 286018 245481 140929 533721 268378 70048 315467 46269 372807 192403 387328 163033 481314 65306 192529 321107 112232 441216 412399 565391 220670 61471 463290 346707 67587 147624 13031 396754 278601 439426 42834 281829 376209 353148 556562 97579 217989 319530 82551 235319 431799 53892 52853 54533 88897 225093 386777 546742 273684 413900 245447 577995 16249 188414 485142 199602 89258 109679 502397 14494 13632 51674 244999 305050 455956 426795 560700 327306 410301 343803 539422 156740 527845 100582 9941 466585 61515 231895 157052 41271 148128 141172 320232 78565 539883 391300 365182 322194 116517 323496 473783 519874 440706 361587 265153 329946 342814 32258 153510 194555 309317 245006 300303 97767 218224 370170 290477 207178 456730 209480 513775 199516 581542 32524 416337 96241 506279 422893 248911 509855 355183 201220 234914 333436 68198 429074 328430 160531 467854 280688 140661 349525 267315 565543 313162 25751 232574 560358 505213 494427 160308 287335 99182 413260 558808 290839 122954 229221 192007 243189 117645 552824 366111 102056 356949 566298 97899 422545 343769 13127 179273 104486 37660 304099 517570 20207 36484 36492 155974 107257 534019 522371 222825 96183 509227 302260 95078 280918 367582 317033 347982 73209 290521 187243 425151 483723 573796 187249 144114 132992 35887 546067 426532 45626 461805 129989 541478 485489 578498 485483 144784 248224 372362 92050 423519 473118 177207 105455 276434 157767 384335 509497 338191 224010 327388 96988 43376 67867 320743 555197 104453 14439 512194 396387 252559 108953 461262 66320 97946 238065 306139 572408 577864 81004 464526 89378 193389 259049 85665 381134 412419 308947 557510 502084 288290 254609 188752 439525 13980 140513 240173 305268 38678 394050 402926 364079 159260 293034 55429 289640 291028 211120 48050 93887 361029 486026 388374 207803 540174 530630 430359 36420 120099 199764 492911 84498 200882 139843 4975 421209 259513 520324 211317 236457 419344 3867 287846 50434 26624 507235 16238 103705 497555 440060 175825 245460 308276 178535 391735 206391 201550 400945 194634 262360 554142 407574 225225 246057 498627 486172 226571 461751 459733 345869 503841 286460 45644 22861 285599 580284 569565 286778 150024 542101 484075 538153 20470 128034 544120 357109 450728 550968 326230 558809 76334 555387 47121 523978 11081 378134 116279 364884 488250 551957 322824 545564 255573 286327 355453 361933 434897 32597 226761 166482 557564 208166 232115 283520 137395 555894 103509 174284 458313 316147 344059 370701 548930 89894 373662 572095 19324 574411 45746 480122 63950 92339 201111 157053 401539 427956 339099 274651 159537 556101 323399 564337 514915 556025 66427 322357 173737 369128 420230 45176 509675 374677 272311 109797 384723 383678 453040 91080 301634 533003 40361 221605 216228 104002 161011 146123 214421 496252 264948 9759 138856 316189 145734 50411 325157 259099 516856 529668 135976 467130 367433 385598 520933 102805 30066 436696 216837 380754 350457 126974 565374 73832 214703 110501 380609 135872 140231 251816 133836 398866 230362 426815 2240 51484 546325 224093 221190 525024 238806 99908 165795 109146 537727 496571 183803 211175 433845 168692 526394 368402 256309 468972 139169 398440 171678 547341 64332 533589 483249 406000 330348 439188 572886 252829 242724 139127 404568 45809 52257 458727 334509 559665 60992 290896 503106 27972 536891 410855 31202 457882 403315 87399 395291 322141 226377 202799 420826 553034 212077 97693 266370 101656 504142 342933 87567 342060 268854 437028 20175 198625 405047 382374 338291 403975 527906 322429 545550 140043 107389 74059 315621 110138 78381 295576 494438 106335 472349 15818 162358 366484 44604 66524 118606 366873 270721 556478 350789 298628 163314 262800 459428 491725 285421 406332 498280 34535 524282 315744 226592 218294 459141 242034 114164 293733 248242 452881 441496 54358 177489 372861 349489 483941 572802 356494 193875 146570 58253 21338 6220 341933 533368 1818 428248 293026 227656 193021 326938 512966 226020 343059 249720 540106 375278 300023 126512 517135 472540 361439 132702 503294 109537 540669 332007 245266 313999 10386 225715 311567 103837 302405 248616 102654 155087 124756 379659 569272 160166 428234 422280 174425 133412 174503 216581 345063 52949 69536 216161 272728 200870 120792 193480 493923 445567 558539 51938 422706 416271 244160 437898 327352 305480 349459 522418 485219 225133 361400 546569 190015 348216 421822 457683 178683 40894 234526 465074 518725 168096 210190 139605 35195 463640 286770 141651 112022 532552 325327 227224 17272 84163 331475 126065 289309 8583 52952 189427 579693 437947 187565 215982 356424 453731 463522 372316 251797 70187 280515 556608 341635 391067 469480 476298 57917 146672 122747 394328 12209 80013 573291 278449 129659 579560 557190 227468 334782 51157 23774 9426 86582 39211 275751 131597 51250 357255 9041 346482 9647 157019 409016 273416 114414 298172 388854 275025 58079 518034 503518 146710 120632 474680 303713 259097 479630 208318 437298 173704 361831 371638 344279 230175 72507 417980 72621 163057 92894 543525 577364 263696 472732 66027 391584 197745 131019 65604 91318 535934 212646 576354 482071 160556 120129 7260 344881 447548 318193 30383 527002 34904 35677 526222 105261 401897 399452 25660 524595 384512 117543 514600 268944 112664 222340 569058 495332 192153 75591 286711 174888 577065 25508 169972 401820 425475 290700 173091 559101 122418 244124 198645 325519 276437 528276 146614 45574 417804 326420 250594 27353 310407 370103 274957 561160 167598 397166 257458 404546 148392 373396 62230 493522 563665 274240 269815 79024 527427 84674 486788 267690 443347 149304 412285 207041 412916 10764 151338 299000 17882 475510 398188 558213 70493 180779 347210 280211 58146 379022 504125 537604 464858 329573 568623 228309 454444 552775 557884 435671 168706 142257 571437 574845 387773 321008 574208 405811 375426 321887 256852 433554 517029 125870 80395 497139 490008 405279 571857 225738 514913 456239 499402 96440 487607 370999 319617 370233 60760 352703 478575 84170 134112 77689 185036 73738 547502 104782 213276 136908 436273 442149 355000 374061 249884 105711 136464 146997 76351 388487 99115 124135 24721 132931 1149 182403 386089 81691 480657 441522 60989 268000 55840 514321 577959 359638 457986 533596 60332 367082 772 535842 473541 270677 409009 259216 302318 117036 331372 231125 384486 405214 20760 579760 172995 359110 83110 410068 109916 328757 299261 19028 515660 40757 10256 442695 553097 185903 74388 425120 241326 299609 29397 328728 283881 344029 367336 27075 163628 127263 488979 460147 473050 405762 221547 131581 561187 406489 140696 452721 530466 118965 398803 218365 298738 19441 521550 120157 498687 4754 365866 70865 235156 133386 142742 221183 262391 567053 520982 121349 448779 440354 3983 578993 519691 160703 103307 300408 137106 488377 523660 318022 132578 302520 153040 408817 145227 311190 159662 202923 256775 359864 384848 336404 185303 421703 362682 464622 246590 422729 165500 42563 219216 520232 95063 265547 532686 290558 112591 448211 315281 545475 225850 232460 82740 272880 347254 122047 352151 541486 97249 200252 544782 499571 379014 303534 479909 305464 323682 181524 273855 190783 567801 119752 241503 536429 327323 128756 349868 500495 372260 315824 484986 364993 124759 300124 329319 68628 14549 121897 506595 115709 199610 230150 31717 139549 222332 534161 360393 541664 507167 286523 158660 66926 195750 80022 589 252220 47255 247014 49881 455005 232453 445722 516805 544122 541917 469356 370042 130522 502163 307866 408894 524247 52233 177861 348881 357943 295303 475389 431691 61316 143998 503483 340155 488785 133636 133567 251627 470095 34873 88815 261178 468612 127477 157960 15687 303089 572331 456708 190515 126131 239194 332074 129765 107167 478184 421833 359715 112440 331317 74492 505386 247839 534210 134503 422700 352111 98674 546219 520508 503008 461953 101913 362092 22103 359128 316666 335579 414750 297980 365652 53635 547601 97589 570515 7125 99828 321437 80671 426275 294883 212605 424293 338108 25005 6949 234291 428399 7149 343076 575287 431848 307611 293909 542511 564739 573843 356878 472864 336793 121904 161060 254004 269873 216428 77172 346517 498555 203690 348973 117704 552672 275270 208107 314016 427518 278134 53420 318777 238980 350614 467315 61233 272188 550797 125051 553965 187286 282912 102532 156076 467848 130875 531585 523470 507684 332582 438989 489209 125944 127474 371957 570349 283286 541635 547106 253630 388677 572525 542302 554537 367205 228300 443498 356432 123946 490441 211063 224542 116574 434510 33116 353136 134167 128291 542510 433963 147453 365766 374806 336600 38238 165476 535578 127788 157099 173640 114348 496722 58141 467296 235864 5154 22775 422536 136820 453438 446359 41990 422240 39267 391392 233825 308504 478250 87328 4079 127074 267709 377635 353231 185768 487897 124215 249757 341681 557552 280733 374734 281601 456420 222266 491947 432732 467157 94025 410328 428291 397639 163528 234697 557573 208363 515962 358658 373075 438995 425672 450169 216103 254638 288591 53626 43417 372252 5038 218357 120860 399349 485509 530261 477087 352302 96075 495443 133928 197175 134074 212553 448181 152000 254277 105734 75481 343662 479350 554347 71090 297426 22176 277622 469235 163041 221272 154263 89296 68411 192871 183217 258141 53058 540529 566414 560948 254535 246076 135972 420069 431023 343643 32682 515176 222635 377155 547041 513283 26017 366096 252133 138078 25685 321798 549361 14088 423048 570810 374974 447501 492544 554046 575357 420791 6019 340451 66800 565575 148055 330432 483038 455004 288765 11034 86988 347142 450559 543581 293757 556901 533032 333020 260266 22420 13948 512657 214124 231236 177149 560879 491793 35767 312878 118542 450596 423773 48653 224523 509577 462677 75405 350023 452122 42008 302555 382309 468483 368684 372580 31333 153697 124876 330023 315672 53990 136533 82815 356836 414821 268717 7333 77544 525373 371042 227048 576327 419309 239773 8119 424135 297425 222711 489909 393995 31019 539326 517612 102461 199989 483374 44952 103863 528980 441543 85381 247234 50924 483994 87456 424271 356091 534669 378831 560662 298773 257896 498274 305800 40517 183949 276840 84442 297620 298252 119088 233315 283977 345154 287649 427311 63399 4700 463611 224104 209388 431655 364190 28864 412455 283290 228541 422200 985 133596 323853 503081 130732 224675 199688 230862 21396 485390 1532 125778 235541 370478 522478 514292 384338 531707 178746 532747 62915 519491 140691 112093 358024 263687 297595 506085 102446 325768 29558 222054 466965 316254 546500 216785 194184 464390 348371 231582 208995 464339 308856 340946 214604 570586 182227 248441 89078 376310 73450 115924 308235 15994 8749 429679 37751 122040 284286 388707 248163 11320 427997 282062 237600 376751 223314 86215 12443 163255 564940 462640 522713 306303 460675 126833 26201 224757 357899 546782 96427 480944 479556 569273 520528 190690 344832 462466 270354 559776 279259 280909 227781 163798 491098 439658 416088 107375 74132 379800 511654 346687 226161 578849 544272 146149 570624 178299 126671 356380 530766 175954 158798 422095 55780 512276 560626 187329 513125 347216 306486 161840 180917 188192 421437 93120 324891 252216 488476 578347 101959 10693 170038 213586 210439 469202 381463 343248 127785 287328 538690 16382 293022 112378 435785 56092 381504 284365 406129 233119 53629 188509 191053 81056 82252 538319 38439 181948 439710 529344 434035 342958 563882 37734 364743 330986 546226 463211 62210 442724 232241 293858 119345 61953 577033 522015 381587 350107 4936 511307 228771 177811 231450 176168 84540 259408 264238 539738 255827 459382 221105 431742 204337 227741 336356 37655 167159 59352 165937 53956 378712 88462 495786 542938 566498 367228 157577 442661 62363 390689 480664 521540 414249 20571 160855 451683 156832 570045 326542 568276 568717 563311 113579 218268 546095 160661 341118 150649 462632 198972 220025 61720 430681 524011 457217 40064 285583 314493 78023 470882 298722 555597 489829 314779 367818 138503 243737 580255 444565 386677 190841 493074 234347 466988 227033 519039 351554 390585 443303 140983 81079 538005 169757 368780 457322 341804 409116 181805 284292 551358 344548 503569 336587 417055 522315 58705 148955 375530 474934 577893 28881 360772 445267 244737 355777 72811 190788 54513 243075 518551 487530 292169 69293 397303 129285 429996 109532 53802 340573 91280 535602 270908 381925 549220 488573 47131 32735 117525 279085 43961 188906 394677 395 185201 189365 127596 32712 504810 3703 182874 146981 306755 453093 520503 169808 225670 91063 348584 461802 572555 185922 131497 46736 536006 256505 214975 13445 350736 98115 50304 361180 511333 564820 429717 222500 40083 538230 349438 371250 528578 240418 302380 261758 535809 308388 578878 509451 46919 562592 499950 90374 318146 195353 355325 314515 237277 203024 238911 32039 145591 16030 135411 229350 421757 48034 183704 307292 97974 275999 448256 451915 119113 143503 494141 50124 306553 35526 255279 560908 247264 367599 192782 511324 574350 67569 204360 111907 2839 513971 245201 185240 339468 540101 539673 194425 22168 520150 301595 96006 68286 131280 356662 182441 284749 107108 49761 386718 55244 187990 248678 147721 425727 360350 310797 76765 400489 247639 279864 44699 356145 69138 445041 560598 165464 536343 7818 322831 334760 451463 348730 285967 286353 201887 166165 359 465591 519359 550444 402711 3661 132706 534983 306281 150317 15978 580029 496090 267127 210980 384015 222559 2235 255649 278168 440840 27326 202562 230268 362712 1573 107661 464515 373132 447242 547440 43613 200143 260883 250901 64693 408480 204757 319933 147471 381332 518197 27656 260257 434580 159203 568630 497441 499597 60179 574804 343254 501762 220704 524536 86946 456046 62937 49633 144305 475593 478553 574145 63648 3794 303177 1340 82835 371427 156747 448694 219567 75095 242615 492077 132776 199125 349622 195754 455548 181873 138185 338044 362797 180953 505826 69773 304834 162580 154090 519853 319687 132328 27969 52166 100547 568131 415218 348045 478159 402869 10211 26547 551692 105432 313340 182348 383419 570947 345353 226883 255784 214199 262262 283261 449708 299970 392391 245997 330410 343571 519542 37470 42144 342521 498537 10935 443860 512648 146099 98599 123932 489861 262895 184700 218587 363581 21001 481404 249356 64240 492349 199236 481064 353405 116479 132024 138768 524665 434511 326970 138784 340368 312081 366615 171942 21232 473850 93686 295574 51054 162692 174091 20070 270066 492816 20904 484500 147140 242972 420081 63563 261712 316396 49413 520787 510955 393840 142487 19817 261180 413736 230619 484614 337011 496575 4338 552545 5601 75426 568863 184227 170629 438567 505132 541353 284674 322567 182423 312051 18896 40471 321725 188850 37119 95569 187362 397133 528972 487131 174989 370325 223554 385633 103485 537574 63240 256566 86467 401092 486968 308441 280017 527464 131965 310479 125556 220160 532963 310052 107963 293841 388534 45603 368949 391825 5107 569705 231549 250108 152933 206433 358817 434006 283904 152808 539975 24629 410231 13465 502318 51961 445594 209062 38726 295420 430079 240147 561512 35795 102589 505619 565469 271772 520561 372300 178807 492805 1083 303704 125635 217521 278032 208688 335325 140435 313990 143822 320857 549230 76844 424219 463876 243199 2988 215170 30012 377738 408568 490624 404839 138316 157206 404461 122934 263346 21327 99913 67975 339676 391891 365305 337055 233834 125524 46869 32577 304744 104176 167356 210404 307989 217223 196046 454414 16356 244487 543660 197461 199681 476787 455085 307074 260547 107468 334769 29437 166837 53838 502979 82678 288860 535523 311950 237723 98656 223123 273930 58057 544334 324857 198043 535326 316505 12991 576820 43611 107839 275749 456695 78188 375786 466239 184830 537128 434513 244344 374576 69140 434247 555009 510857 220819 20598 99416 74967 533129 515577 213361 330974 548848 431557 503278 130043 402570 320554 559884 252629 364596 423484 271230 105552 143143 285751 49994 204162 80646 381393 123415 118417 30932 425412 388130 551243 468337 484893 25014 174390 463781 124647 60823 361964 425702 575110 532390 230881 84592 189997 221307 361472 32364 71918 316365 492378 234251 48504 418070 89884 562045 506552 66360 122962 262605 529939 345229 294853 344397 56091 8599 459823 175785 226128 259983 354515 379144 384995 205253 116786 441432 448810 83452 465129 506906 90616 551959 406404 157891 362090 439630 45099 61960 478430 489605 127050 579872 475798 64510 447733 33066 102848 538819 323760 200401 179765 251317 239376 83836 578092 522452 393056 278848 27787 377239 473427 83065 377005 576539 248019 473370 536369 92648 332461 437609 274800 388846 323048 193407 541898 480140 46526 26432 339738 325991 37705 528033 542922 313420 190463 531000 454907 26448 238199 476652 457147 364256 72632 430380 315448 353320 18158 91527 454252 546987 386370 38064 19763 64152 453216 55223 361860 522566 509531 438432 31164 163290 389197 333440 173464 447842 381615 99961 156126 103134 394940 165638 261706 378311 534081 373848 401642 338019 378096 289610 547421 174672 133343 191360 293751 520892 145214 167668 37456 460962 465267 292804 347529 203661 10766 27371 203845 155736 136715 463588 26640 547612 131453 184274 442456 265085 223256 129420 23019 536467 194532 127585 392637 330408 524775 31993 433924 502852 553129 559364 297343 71360 225537 271148 345499 475893 237463 5278 501243 413235 444236 541071 380088 468063 94858 225913 295614 210276 170975 205570 422375 550365 308702 484627 565031 98979 480345 579548 272673 436875 287874 16502 274917 281809 442968 289263 347766 160933 84533 266409 122199 396200 30958 504541 1591 89432 387150 306383 15260 154515 50752 166913 102644 100196 160278 349579 442536 17923 310564 62020 152004 578330 126299 527025 83494 226400 268435 445334 310391 505156 19157 44677 318171 447765 354369 527486 329939 184771 134856 467675 517133 89697 447080 70685 144938 519673 485758 454957 564851 189451 408757 192616 280734 305060 243946 99179 303971 170519 48917 549965 300245 384101 576607 186709 516341 241668 133470 134811 500825 464689 29833 343820 213429 387434 279305 444207 210777 372043 189868 572229 8495 370090 450282 277080 199158 109612 567708 245659 485129 268363 23448 5352 235597 6871 348720 94113 314613 63729 114458 215394 460460 240387 398726 135604 571728 415770 286908 138151 146272 344094 345209 241187 282768 113037 545583 219283 145873 285957 489235 157271 197458 502671 499845 334884 79084 505573 115618 561491 354202 279838 190734 134738 269450 482784 144610 52774 290659 440646 25807 442952 159215 318224 73445 211653 527960 401862 431026 488755 292278 400554 272630 382668 470298 166426 129645 28820 161227 417696 560677 283216 28978 310302 154419 230450 328289 73118 104691 15085 405574 510548 470005 102928 569249 413126 77282 96732 359020 42182 250875 106206 354929 320796 453341 237318 254834 137265 399865 292685 152252 319579 81484 16599 162257 351034 396051 502275 308278 34483 13333 320290 321579 349794 99219 200162 369470 487583 62703 251639 138246 157170 477112 283963 74860 307057 364075 295491 34757 400161 170194 120874 492817 3817 183973 135436 512989 114744 379210 201072 293785 578385 237420 7888 18224 155317 522406 441440 110482 173400 183348 552504 475660 166948 147025 443259 578792 245227 546687 474519 393284 249668 87493 151651 100306 540466 546556 212675 282942 21310 385535 7304 303409 386116 574297 514550 217133 533553 447152 578703 45392 166205 180154 25143 338802 330110 261389 343506 442726 285388 554934 421316 479912 85192 34874 487266 226173 20748 360660 574509 543364 1554 125539 566931 312889 466945 444804 257187 568587 427160 71123 563849 138589 162841 129663 107226 140686 321663 437117 179808 321718 62398 16497 468933 219841 355430 293554 293044 109516 485887 490620 579893 427135 31636 217919 432441 314396 119802 393682 201764 146193 116358 84825 208311 419774 177468 72052 142585 519598 464006 556083 412136 169361 442929 84567 549932 75560 74656 93314 393838 383018 372433 431281 556278 5513 108503 500478 148588 138713 368153 22646 303778 270758 276706 275429 492025 169111 494328 35891 70258 400528 165229 460494 269311 307658 98283 369294 319345 414578 541550 425388 129855 99477 383073 387906 293124 155873 549224 266021 52869 1584 421902 498535 277235 153013 452013 553561 138040 20820 58483 423506 569001 325153 383039 213421 38825 453283 384661 127702 238147 104893 577826 64974 240655 459153 145665 49810 65008 545385 125070 46433 143329 429174 52947 321314 253341 157365 453162 111910 339019 239575 362219 80652 247317 460286 365724 160875 372220 483389 572181 146190 580975 54761 348488 416104 468778 18833 251537 234366 510078 14723 338595 153797 513098 467138 404618 261982 545730 135846 108244 562557 180524 227370 341856 131743 255691 497878 68878 430640 441473 347664 214369 347018 225238 421762 317024 6180 172004 303101 22488 193494 199346 409627 315350 263463 190722 523292 363902 573778 437290 389812 517082 145073 37907 489763 456261 270386 508917 566823 543897 362482 130966 66632 181962 274613 135708 549746 323766 366714 353295 318813 153307 213693 293378 149446 199927 580543 331727 238488 472833 308645 424225 228746 110435 495377 240646 274491 130921 140006 4688 115241 76962 66650 47718 224991 434187 272048 11169 158222 154000 507436 443499 109937 309692 534018 22797 163339 168683 210098 246069 137954 143320 262587 414795 226938 536831 128791 459590 50514 30067 317479 378655 229968 522702 11122 515266 136600 224509 149912 97656 120747 349480 155199 528731 523807 168544 325664 229981 434410 431208 508996 63791 89225 513690 136740 224364 515424 508302 418175 465552 439907 272097 451087 396304 342273 52507 300066 380089 326248 167906 37846 262993 60090 499249 90432 74456 264660 325598 480985 245411 425644 224724 475439 246478 487438 563731 441854 522665 245915 85747 315162 108761 407521 388528 389453 298331 447791 368820 440034 305677 122208 182369 543531 151820 63650 457580 563381 320899 14869 137260 61925 376307 80367 269089 203705 274835 267321 418106 471273 74037 227855 519758 89045 321217 324203 479129 503431 368528 527718 278579 13525 291582 301837 31667 68120 14007 114158 124262 33626 53949 187585 192247 208844 212766 318671 575012 439339 364073 419624 178078 427783 302159 339368 190680 23807 288579 312720 15778 553558 571834 574376 122161 493815 472376 483432 149123 51628 264628 26609 23696 485081 441323 451679 42055 378795 86439 366493 520996 332869 18014 554523 83476 6040 421834 424392 308160 335233 249809 349098 358090 187349 61782 35498 386514 207108 578418 84447 104108 126107 211674 111909 490708 477025 206757 556205 142484 454296 464366 358254 215482 468548 82680 100909 405432 85764 94651 63973 8131 288592 257470 47597 321557 34520 134066 246701 317797 282365 78176 29577 311075 331937 190395 5802 245112 111032 140556 199127 376491 305253 300375 545903 357782 377911 74963 329336 25057 3244 252020 293474 171050 239306 189772 238090 160031 36761 445675 252716 152214 239466 55155 479829 420281 445812 118106 434576 451104 316708 438535 300322 167952 390072 487220 20247 9400 43944 35770 487351 425462 212203 9668 8981 574241 332096 535563 192944 498733 276151 550645 507037 9769 404249 236747 376416 306415 45966 191296 576875 493932 225075 536444 79920 561681 60700 99874 219437 509819 466665 579326 428739 394611 263083 379554 279391 178516 133690 77396 300137 6861 435359 314108 444152 500139 92749 89188 300233 414201 443204 211097
TensorFlow2/Segmentation/MaskRCNN/scripts
scripts
benchmark_inference
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script that simplifies running evaluation benchmark """ import argparse import os import shutil import subprocess class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawTextHelpFormatter): pass if __name__ == '__main__': # CLI flags # noinspection PyTypeChecker parser = argparse.ArgumentParser( description=( 'NVIDIA MaskRCNN TF2 evaluation benchmark' '\n\nNote: Any additional flags not specified below will be passed to main.py' ), formatter_class=lambda prog: CustomFormatter(prog, max_help_position=100) ) parser.add_argument('--batch_size', type=int, required=True, help='Batch size used during training') parser.add_argument('--amp', action='store_true', help='Enable automatic mixed precision') parser.add_argument('--no_xla', action='store_true', help='Disables XLA - accelerated linear algebra') parser.add_argument('--data_dir', type=str, metavar='DIR', default='/data', help='Input directory containing the dataset') parser.add_argument('--weights_dir', type=str, metavar='DIR', default='/weights', help='Directory containing pre-trained resnet weights') flags, remainder = parser.parse_known_args() main_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../main.py')) checkpoint_path = os.path.join(flags.weights_dir, "rn50_tf_amp_ckpt_v20.06.0/nvidia_rn50_tf_amp") # build command cmd = ( f'python {main_path}' f' infer' f' --data_dir "{flags.data_dir}"' f' --backbone_checkpoint "{checkpoint_path}"' f' --eval_samples {200 * flags.batch_size}' f' --log_warmup_steps 100' f' --log_every 10' f' --eval_batch_size {flags.batch_size}' ) if not flags.no_xla: cmd += ' --xla' if flags.amp: cmd += ' --amp' if remainder: cmd += ' ' + ' '.join(remainder) # print command line = '-' * shutil.get_terminal_size()[0] print(line, cmd, line, sep='\n', flush=True) # run model exit(subprocess.call(cmd, shell=True))
TensorFlow2/Recommendation/DLRM_and_DCNv2/deployment/deployment_toolkit
deployment_toolkit
report
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import re from typing import Dict, List from natsort import natsorted from tabulate import tabulate def sort_results(results: List): results = natsorted(results, key=lambda item: [item[key] for key in item.keys()]) return results def save_results(filename: str, data: List, formatted: bool = False): data = format_data(data=data) if formatted else data with open(filename, "a") as csvfile: fieldnames = data[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row) def format_data(data: List[Dict]) -> List[Dict]: formatted_data = list() for item in data: formatted_item = format_keys(data=item) formatted_data.append(formatted_item) return formatted_data def format_keys(data: Dict) -> Dict: keys = {format_key(key=key): value for key, value in data.items()} return keys def format_key(key: str) -> str: key = " ".join([k.capitalize() for k in re.split("_| ", key)]) return key def show_results(results: List[Dict]): headers = list(results[0].keys()) summary = map(lambda x: list(map(lambda item: item[1], x.items())), results) print(tabulate(summary, headers=headers))
TensorFlow2/Detection/Efficientdet/dataset
dataset
README
This folder provides tools for converting raw coco/pascal data to tfrecord. Download and pre-process COCO 2017 training and validation datasets for training efficientdet: ```bash bash dataset/get_coco.sh ```
PyTorch/LanguageModeling/BERT/triton/runner/maintainer
maintainer
container
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from typing import Any class Container(abc.ABC): def __init__(self, name: str): self.name = name self._container = None @abc.abstractmethod def start(self): """ Start container """ pass @abc.abstractmethod def stop(self): """ Stop container """ @abc.abstractmethod def run(self, command: str) -> Any: """ Run command inside container Args: command: command to execute Returns: Any """ pass
TensorFlow2/Detection/Efficientdet/model
model
postprocess
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Postprocessing for anchor-based detection.""" import functools from typing import List, Tuple from absl import logging import tensorflow as tf from model import nms_np from utils import model_utils from model import anchors T = tf.Tensor # a shortcut for typing check. CLASS_OFFSET = 1 def to_list(inputs): if isinstance(inputs, dict): return [inputs[k] for k in sorted(inputs.keys())] if isinstance(inputs, list): return inputs raise ValueError('Unrecognized inputs : {}'.format(inputs)) def batch_map_fn(map_fn, inputs, *args): """Apply map_fn at batch dimension.""" if isinstance(inputs[0], (list, tuple)): batch_size = len(inputs[0]) else: batch_size = inputs[0].shape.as_list()[0] if not batch_size: # handle dynamic batch size: tf.vectorized_map is faster than tf.map_fn. return tf.vectorized_map(map_fn, inputs, *args) outputs = [] for i in range(batch_size): outputs.append(map_fn([x[i] for x in inputs])) return [tf.stack(y) for y in zip(*outputs)] def clip_boxes(boxes: T, image_size: int) -> T: """Clip boxes to fit the image size.""" image_size = model_utils.parse_image_size(image_size) * 2 return tf.clip_by_value(boxes, [0], image_size) def merge_class_box_level_outputs(params, cls_outputs: List[T], box_outputs: List[T]) -> Tuple[T, T]: """Concatenates class and box of all levels into one tensor.""" cls_outputs_all, box_outputs_all = [], [] batch_size = tf.shape(cls_outputs[0])[0] for level in range(0, params['max_level'] - params['min_level'] + 1): if params['data_format'] == 'channels_first': cls_outputs[level] = tf.transpose(cls_outputs[level], [0, 2, 3, 1]) box_outputs[level] = tf.transpose(box_outputs[level], [0, 2, 3, 1]) cls_outputs_all.append( tf.reshape(cls_outputs[level], [batch_size, -1, params['num_classes']])) box_outputs_all.append(tf.reshape(box_outputs[level], [batch_size, -1, 4])) return tf.concat(cls_outputs_all, 1), tf.concat(box_outputs_all, 1) def topk_class_boxes(params, cls_outputs: T, box_outputs: T) -> Tuple[T, T, T, T]: """Pick the topk class and box outputs.""" batch_size = tf.shape(cls_outputs)[0] num_classes = params['num_classes'] max_nms_inputs = params['nms_configs'].get('max_nms_inputs', 0) if max_nms_inputs > 0: # Prune anchors and detections to only keep max_nms_inputs. # Due to some issues, top_k is currently slow in graph model. logging.info('use max_nms_inputs for pre-nms topk.') cls_outputs_reshape = tf.reshape(cls_outputs, [batch_size, -1]) _, cls_topk_indices = tf.math.top_k( cls_outputs_reshape, k=max_nms_inputs, sorted=False) indices = cls_topk_indices // num_classes classes = cls_topk_indices % num_classes cls_indices = tf.stack([indices, classes], axis=2) cls_outputs_topk = tf.gather_nd(cls_outputs, cls_indices, batch_dims=1) box_outputs_topk = tf.gather_nd( box_outputs, tf.expand_dims(indices, 2), batch_dims=1) else: logging.info('use max_reduce for pre-nms topk.') # Keep all anchors, but for each anchor, just keep the max probablity for # each class. cls_outputs_idx = tf.math.argmax(cls_outputs, axis=-1, output_type=tf.int32) num_anchors = tf.shape(cls_outputs)[1] classes = cls_outputs_idx indices = tf.tile( tf.expand_dims(tf.range(num_anchors), axis=0), [batch_size, 1]) cls_outputs_topk = tf.reduce_max(cls_outputs, -1) box_outputs_topk = box_outputs return cls_outputs_topk, box_outputs_topk, classes, indices def pre_nms(params, cls_outputs, box_outputs, topk=True): """Detection post processing before nms. It takes the multi-level class and box predictions from network, merge them into unified tensors, and compute boxes, scores, and classes. Args: params: a dict of parameters. cls_outputs: a list of tensors for classes, each tensor denotes a level of logits with shape [N, H, W, num_class * num_anchors]. box_outputs: a list of tensors for boxes, each tensor ddenotes a level of boxes with shape [N, H, W, 4 * num_anchors]. topk: if True, select topk before nms (mainly to speed up nms). Returns: A tuple of (boxes, scores, classes). """ # get boxes by apply bounding box regression to anchors. eval_anchors = anchors.Anchors(params['min_level'], params['max_level'], params['num_scales'], params['aspect_ratios'], params['anchor_scale'], params['image_size']) cls_outputs, box_outputs = merge_class_box_level_outputs( params, cls_outputs, box_outputs) if topk: # select topK purely based on scores before NMS, in order to speed up nms. cls_outputs, box_outputs, classes, indices = topk_class_boxes( params, cls_outputs, box_outputs) anchor_boxes = tf.gather(eval_anchors.boxes, indices) else: anchor_boxes = eval_anchors.boxes classes = None boxes = anchors.decode_box_outputs(box_outputs, anchor_boxes) # convert logits to scores. scores = tf.math.sigmoid(cls_outputs) return boxes, scores, classes def nms(params, boxes: T, scores: T, classes: T, padded: bool) -> Tuple[T, T, T, T]: """Non-maximum suppression. Args: params: a dict of parameters. boxes: a tensor with shape [N, 4], where N is the number of boxes. Box format is [y_min, x_min, y_max, x_max]. scores: a tensor with shape [N]. classes: a tensor with shape [N]. padded: a bool vallue indicating whether the results are padded. Returns: A tuple (boxes, scores, classes, valid_lens), where valid_lens is a scalar denoting the valid length of boxes/scores/classes outputs. """ nms_configs = params['nms_configs'] method = nms_configs['method'] max_output_size = nms_configs['max_output_size'] if method == 'hard' or not method: # hard nms. sigma = 0.0 iou_thresh = nms_configs['iou_thresh'] or 0.5 score_thresh = nms_configs['score_thresh'] or float('-inf') elif method == 'gaussian': sigma = nms_configs['sigma'] or 0.5 iou_thresh = 1.0 score_thresh = nms_configs['score_thresh'] or 0.001 else: raise ValueError('Inference has invalid nms method {}'.format(method)) # TF API's sigma is twice as the paper's value, so here we divide it by 2: # https://github.com/tensorflow/tensorflow/issues/40253. nms_top_idx, nms_scores, nms_valid_lens = tf.raw_ops.NonMaxSuppressionV5( boxes=boxes, scores=scores, max_output_size=max_output_size, iou_threshold=iou_thresh, score_threshold=score_thresh, soft_nms_sigma=(sigma / 2), pad_to_max_output_size=padded) nms_boxes = tf.gather(boxes, nms_top_idx) nms_classes = tf.cast( tf.gather(classes, nms_top_idx) + CLASS_OFFSET, tf.float32) return nms_boxes, nms_scores, nms_classes, nms_valid_lens def postprocess_combined(params, cls_outputs, box_outputs, image_scales=None): """Post processing with combined NMS. Leverage the tf combined NMS. It is fast on TensorRT, but slow on CPU/GPU. Args: params: a dict of parameters. cls_outputs: a list of tensors for classes, each tensor denotes a level of logits with shape [N, H, W, num_class * num_anchors]. box_outputs: a list of tensors for boxes, each tensor ddenotes a level of boxes with shape [N, H, W, 4 * num_anchors]. Each box format is [y_min, x_min, y_max, x_man]. image_scales: scaling factor or the final image and bounding boxes. Returns: A tuple of batch level (boxes, scores, classess, valid_len) after nms. """ cls_outputs = to_list(cls_outputs) box_outputs = to_list(box_outputs) # Don't filter any outputs because combine_nms need the raw information. boxes, scores, _ = pre_nms(params, cls_outputs, box_outputs, topk=False) max_output_size = params['nms_configs']['max_output_size'] score_thresh = params['nms_configs']['score_thresh'] or float('-inf') nms_boxes, nms_scores, nms_classes, nms_valid_len = ( tf.image.combined_non_max_suppression( tf.expand_dims(boxes, axis=2), scores, max_output_size, max_output_size, score_threshold=score_thresh, clip_boxes=False)) nms_classes += CLASS_OFFSET nms_boxes = clip_boxes(nms_boxes, params['image_size']) if image_scales is not None: scales = tf.expand_dims(tf.expand_dims(image_scales, -1), -1) nms_boxes = nms_boxes * tf.cast(scales, nms_boxes.dtype) return nms_boxes, nms_scores, nms_classes, nms_valid_len def postprocess_global(params, cls_outputs, box_outputs, image_scales=None): """Post processing with global NMS. A fast but less accurate version of NMS. The idea is to treat the scores for different classes in a unified way, and perform NMS globally for all classes. Args: params: a dict of parameters. cls_outputs: a list of tensors for classes, each tensor denotes a level of logits with shape [N, H, W, num_class * num_anchors]. box_outputs: a list of tensors for boxes, each tensor ddenotes a level of boxes with shape [N, H, W, 4 * num_anchors]. Each box format is [y_min, x_min, y_max, x_man]. image_scales: scaling factor or the final image and bounding boxes. Returns: A tuple of batch level (boxes, scores, classess, valid_len) after nms. """ cls_outputs = to_list(cls_outputs) box_outputs = to_list(box_outputs) boxes, scores, classes = pre_nms(params, cls_outputs, box_outputs) def single_batch_fn(element): return nms(params, element[0], element[1], element[2], True) nms_boxes, nms_scores, nms_classes, nms_valid_len = batch_map_fn( single_batch_fn, [boxes, scores, classes]) nms_boxes = clip_boxes(nms_boxes, params['image_size']) if image_scales is not None: scales = tf.expand_dims(tf.expand_dims(image_scales, -1), -1) nms_boxes = nms_boxes * tf.cast(scales, nms_boxes.dtype) return nms_boxes, nms_scores, nms_classes, nms_valid_len def per_class_nms(params, boxes, scores, classes, image_scales=None): """Per-class nms, a utility for postprocess_per_class. Args: params: a dict of parameters. boxes: A tensor with shape [N, K, 4], where N is batch_size, K is num_boxes. Box format is [y_min, x_min, y_max, x_max]. scores: A tensor with shape [N, K]. classes: A tensor with shape [N, K]. image_scales: scaling factor or the final image and bounding boxes. Returns: A tuple of batch level (boxes, scores, classess, valid_len) after nms. """ def single_batch_fn(element): """A mapping function for a single batch.""" boxes_i, scores_i, classes_i = element[0], element[1], element[2] nms_boxes_cls, nms_scores_cls, nms_classes_cls = [], [], [] nms_valid_len_cls = [] for cid in range(params['num_classes']): indices = tf.where(tf.equal(classes_i, cid)) if indices.shape[0] == 0: continue classes_cls = tf.gather_nd(classes_i, indices) boxes_cls = tf.gather_nd(boxes_i, indices) scores_cls = tf.gather_nd(scores_i, indices) nms_boxes, nms_scores, nms_classes, nms_valid_len = nms( params, boxes_cls, scores_cls, classes_cls, False) nms_boxes_cls.append(nms_boxes) nms_scores_cls.append(nms_scores) nms_classes_cls.append(nms_classes) nms_valid_len_cls.append(nms_valid_len) # Pad zeros and select topk. max_output_size = params['nms_configs'].get('max_output_size', 100) nms_boxes_cls = tf.pad( tf.concat(nms_boxes_cls, 0), [[0, max_output_size], [0, 0]]) nms_scores_cls = tf.pad( tf.concat(nms_scores_cls, 0), [[0, max_output_size]]) nms_classes_cls = tf.pad( tf.concat(nms_classes_cls, 0), [[0, max_output_size]]) nms_valid_len_cls = tf.stack(nms_valid_len_cls) _, indices = tf.math.top_k(nms_scores_cls, k=max_output_size, sorted=True) return tuple(( tf.gather(nms_boxes_cls, indices), tf.gather(nms_scores_cls, indices), tf.gather(nms_classes_cls, indices), tf.minimum(max_output_size, tf.reduce_sum(nms_valid_len_cls)))) # end of single_batch_fn nms_boxes, nms_scores, nms_classes, nms_valid_len = batch_map_fn( single_batch_fn, [boxes, scores, classes]) if image_scales is not None: scales = tf.expand_dims(tf.expand_dims(image_scales, -1), -1) nms_boxes = nms_boxes * tf.cast(scales, nms_boxes.dtype) return nms_boxes, nms_scores, nms_classes, nms_valid_len def postprocess_per_class(params, cls_outputs, box_outputs, image_scales=None): """Post processing with per class NMS. An accurate but relatively slow version of NMS. The idea is to perform NMS for each class, and then combine them. Args: params: a dict of parameters. cls_outputs: a list of tensors for classes, each tensor denotes a level of logits with shape [N, H, W, num_class * num_anchors]. box_outputs: a list of tensors for boxes, each tensor ddenotes a level of boxes with shape [N, H, W, 4 * num_anchors]. Each box format is [y_min, x_min, y_max, x_man]. image_scales: scaling factor or the final image and bounding boxes. Returns: A tuple of batch level (boxes, scores, classess, valid_len) after nms. """ cls_outputs = to_list(cls_outputs) box_outputs = to_list(box_outputs) boxes, scores, classes = pre_nms(params, cls_outputs, box_outputs) return per_class_nms(params, boxes, scores, classes, image_scales) def generate_detections(params, cls_outputs, box_outputs, image_scales, image_ids, flip=False): """A legacy interface for generating [id, x, y, w, h, score, class].""" _, width = model_utils.parse_image_size(params['image_size']) original_image_widths = tf.expand_dims(image_scales, -1) * width if params['nms_configs'].get('pyfunc', True): # numpy based soft-nms gives better accuracy than the tensorflow builtin # the reason why is unknown detections_bs = [] boxes, scores, classes = pre_nms(params, cls_outputs, box_outputs) for index in range(boxes.shape[0]): nms_configs = params['nms_configs'] detections = tf.numpy_function( functools.partial(nms_np.per_class_nms, nms_configs=nms_configs), [ boxes[index], scores[index], classes[index], tf.slice(image_ids, [index], [1]), tf.slice(image_scales, [index], [1]), params['num_classes'], nms_configs['max_output_size'], ], tf.float32) if flip: detections = tf.stack([ detections[:, 0], # the mirrored location of the left edge is the image width # minus the position of the right edge original_image_widths[index] - detections[:, 3], detections[:, 2], # the mirrored location of the right edge is the image width # minus the position of the left edge original_image_widths[index] - detections[:, 1], detections[:, 4], detections[:, 5], detections[:, 6], ], axis=-1) detections_bs.append(detections) return tf.stack(detections_bs, axis=0, name='detnections') nms_boxes_bs, nms_scores_bs, nms_classes_bs, _ = postprocess_per_class( params, cls_outputs, box_outputs, image_scales) image_ids_bs = tf.cast(tf.expand_dims(image_ids, -1), nms_scores_bs.dtype) if flip: detections_bs = [ image_ids_bs * tf.ones_like(nms_scores_bs), # the mirrored location of the left edge is the image width # minus the position of the right edge original_image_widths - nms_boxes_bs[:, :, 3], nms_boxes_bs[:, :, 0], # the mirrored location of the right edge is the image width # minus the position of the left edge original_image_widths - nms_boxes_bs[:, :, 1], nms_boxes_bs[:, :, 2], nms_scores_bs, nms_classes_bs, ] else: detections_bs = [ image_ids_bs * tf.ones_like(nms_scores_bs), nms_boxes_bs[:, :, 1], nms_boxes_bs[:, :, 0], nms_boxes_bs[:, :, 3], nms_boxes_bs[:, :, 2], nms_scores_bs, nms_classes_bs, ] return tf.stack(detections_bs, axis=-1, name='detnections') def transform_detections(detections): """A transforms detections in [id, x1, y1, x2, y2, score, class] form to [id, x, y, w, h, score, class].""" return tf.stack([ detections[:, :, 0], detections[:, :, 1], detections[:, :, 2], detections[:, :, 3] - detections[:, :, 1], detections[:, :, 4] - detections[:, :, 2], detections[:, :, 5], detections[:, :, 6], ], axis=-1)
PyTorch/Detection/Efficientdet/scripts/waymo
waymo
train_waymo_AMP_8xA100-80G
#!/bin/bash function get_dataloader_workers { gpus=$(nvidia-smi -i 0 --query-gpu=count --format=csv,noheader) core=$(nproc --all) workers=$((core/gpus-2)) workers=$((workers>16?16:workers)) echo ${workers} } WORKERS=$(get_dataloader_workers) ./distributed_train.sh 8 /workspace/object_detection/datasets/waymo --model efficientdet_d0 -b 8 --amp --lr 0.2 --sync-bn --opt fusedmomentum --warmup-epochs 1 --output /model --worker $WORKERS --fill-color mean --model-ema --model-ema-decay 0.999 --eval-after 24 --epochs 24 --save-checkpoint-interval 1 --smoothing 0.0 --waymo --remove-weights class_net box_net anchor --input_size 1536 --num_classes 3 --resume --freeze-layers backbone --waymo-train /workspace/object_detection/datasets/waymo/training/images --waymo-val /workspace/object_detection/datasets/waymo/validation/images --waymo-val-annotation /waymo/validation/annotations/annotations-subset.json --waymo-train-annotation /waymo/training/annotations/annotations.json --initial-checkpoint /checkpoints/model_best.pth.tar
Tools/PyTorch/TimeSeriesPredictionPlatform/conf/dataset
dataset
traffic
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _target_: data.datasets.create_datasets config: source_path: /workspace/datasets/traffic/traffic.csv dest_path: /workspace/datasets/traffic/ time_ids: 'sensor_day' train_range: - 0 - 151 valid_range: - 144 - 166 test_range: - 159 - 2000 dataset_stride: 1 scale_per_id: False encoder_length: 168 example_length: 192 MultiID: False features: - name: 'id' feature_type: 'ID' feature_embed_type: 'CATEGORICAL' cardinality: 964 - name: 'hours_from_start' feature_type: 'TIME' feature_embed_type: 'CONTINUOUS' - name: 'values' feature_type: 'TARGET' feature_embed_type: 'CONTINUOUS' scaler: _target_: sklearn.preprocessing.StandardScaler - name: 'time_on_day' feature_type: 'KNOWN' feature_embed_type: 'CONTINUOUS' scaler: _target_: sklearn.preprocessing.StandardScaler - name: 'day_of_week' feature_type: 'KNOWN' feature_embed_type: 'CATEGORICAL' cardinality: 8 - name: 'hours_from_start' feature_type: 'KNOWN' feature_embed_type: 'CONTINUOUS' scaler: _target_: sklearn.preprocessing.StandardScaler - name: 'categorical_id' feature_type: 'STATIC' feature_embed_type: 'CATEGORICAL' cardinality: 964 train_samples: 450000 valid_samples: 50000 binarized: True time_series_count: 964
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2PrenetPlugin
taco2PrenetPlugin
taco2PrenetKernel
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_PRENETKERNEL_H #define TT2I_PRENETKERNEL_H #include "cudaMemory.h" #include <vector> namespace nvinfer1 { namespace plugin { class Taco2PrenetKernel { public: /** * @brief Create a new Taco2PrenetKernel. * * @param fc1WeightsHost The weights of the first fully connected layer. * @param fc2WeightsHost The weights of the second fully connected layer. * @param inputLength The length of the input. * @param numDimension The number of dimensions of the FC layers. */ Taco2PrenetKernel(const std::vector<float>& fc1WeightsHost, const std::vector<float>& fc2WeightsHost, int inputLength, int numDimension); /** * @brief Execute this kernel. * * @param inputDevice The input on the device. * @param dropoutDevice The dropout input on the device. * @param outputDevice THe output on the device. * @param scratchDevice The scratch space on the device. * @param stream The stream to operate on. */ void execute(const float* inputDevice, const float* dropoutDevice, float* outputDevice, float* scratchDevice, cudaStream_t stream); private: int mInputLength; int mNumDimension; tts::CudaMemory<float> mWeights1Device; tts::CudaMemory<float> mWeights2Device; }; } // namespace plugin } // namespace nvinfer1 #endif
Tools/PyTorch/TimeSeriesPredictionPlatform/evaluators
evaluators
triton_evaluator
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import numpy as np import time import logging from tqdm import tqdm from .evaluation_metrics import METRICS from .evaluator import MetricEvaluator from triton.run_inference_on_triton import AsyncGRPCTritonRunner import tritonclient.http as triton_http import tritonclient.grpc as triton_grpc import xgboost as xgb import hydra class TritonEvaluator(MetricEvaluator): def __init__(self, config): self.output_selector = config.get("output_selector", None) self.metrics = [] preprocessor_state = pickle.load(open(config.preprocessor_state_path, "rb")) self.scalers = preprocessor_state["scalers"] self.save_predictions = config.get("save_predictions", False) self.example_history = [] for name in config.metrics: if name not in METRICS: raise ValueError(f"No metric of name: {name}") self.metrics.append(METRICS[name]()) self.config = config def predict(self, dataloader, model_name, server_url="localhost:8001"): LOGGER = logging.getLogger("run_inference_on_triton") runner = AsyncGRPCTritonRunner( server_url, model_name, "1", dataloader=dataloader(), verbose=False, resp_wait_s=120, max_unresponded_reqs=128, ) start = time.time() preds_full = [] labels_full = [] weights_full = [] ids_full = [] for ids, x, y_pred, y_real in tqdm(runner, unit="batch", mininterval=10): if self.save_predictions: self.example_history.append(x['target__6'][:,:self.config.encoder_length]) ids_full.append(ids) preds_full.append(y_pred['target__0']) labels_full.append(y_real['target__0'][:,:,0][:,:,np.newaxis]) weights_full.append(x['weight__9']) stop = time.time() preds_full = np.concatenate(preds_full, axis=0) labels_full = np.concatenate(labels_full, axis=0) weights_full = np.concatenate(weights_full, axis=0) if np.isnan(weights_full).any(): weights_full = np.empty([0]) ids_full = np.concatenate(ids_full, axis=0) LOGGER.info(f"\nThe inference took {stop - start:0.3f}s") if self.save_predictions: self.example_history = np.concatenate(self.example_history, axis=0) return preds_full, labels_full, ids_full, weights_full def predict_xgboost(self, dataloader, max_batch_size, server_url="localhost:8001"): grpc_client = triton_grpc.InferenceServerClient( url=server_url, verbose = False ) out = [] labels = [] ids = [] weights = [] for i, (test_step, test_label) in enumerate(dataloader): labels.append(test_label.to_numpy()) ids.append(test_step['_id_'].to_numpy()) data = test_step.to_numpy().astype('float32') weights.append([]) test_len = len(data) num_iters = int(test_len/max_batch_size) + 1 temp_out = [] for j in range(num_iters): sliced_data = data[j*max_batch_size:(j+1)*max_batch_size] dims = sliced_data.shape triton_input_grpc = triton_grpc.InferInput( 'input__0', dims, 'FP32' ) triton_input_grpc.set_data_from_numpy(sliced_data) triton_output_grpc = triton_grpc.InferRequestedOutput('output__0') request_grpc = grpc_client.infer( f'xgb_{i+1}', model_version='1', inputs=[triton_input_grpc], outputs=[triton_output_grpc] ) outt = request_grpc.as_numpy('output__0') temp_out = np.hstack((temp_out, outt)) out.append(temp_out) weights.append([]) outtemp = np.vstack(out).transpose() labels_temp = np.hstack(labels) ids_temp = np.vstack(ids).transpose() if len(outtemp.shape) == 2: outtemp = outtemp[:,:,np.newaxis] if len(labels_temp.shape) == 2: labels_temp = labels_temp[:, :, np.newaxis] if self.save_predictions: labels_ids = dataloader.data[['_id_', dataloader.target[0]]] for n, g in labels_ids.groupby("_id_"): labels_all = g[dataloader.target[0]].to_numpy().round(6) windows_labels = np.lib.stride_tricks.sliding_window_view(labels_all, dataloader.example_length) self.example_history.append(windows_labels.copy()[:, :dataloader.encoder_length]) self.example_history = np.concatenate(self.example_history, axis=0)[:, :, np.newaxis] return outtemp, labels_temp, ids_temp[:,0], np.stack(weights)
TensorFlow2/LanguageModeling/BERT/official/modeling/activations
activations
swish
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Customized Swish activation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf @tf.keras.utils.register_keras_serializable(package='Text') def simple_swish(features): """Computes the Swish activation function. The tf.nn.swish operation uses a custom gradient to reduce memory usage. Since saving custom gradients in SavedModel is currently not supported, and one would not be able to use an exported TF-Hub module for fine-tuning, we provide this wrapper that can allow to select whether to use the native TensorFlow swish operation, or whether to use a customized operation that has uses default TensorFlow gradient computation. Args: features: A `Tensor` representing preactivation values. Returns: The activation value. """ features = tf.convert_to_tensor(features) return features * tf.nn.sigmoid(features) @tf.keras.utils.register_keras_serializable(package='Text') def hard_swish(features): """Computes a hard version of the swish function. This operation can be used to reduce computational cost and improve quantization for edge devices. Args: features: A `Tensor` representing preactivation values. Returns: The activation value. """ features = tf.convert_to_tensor(features) return features * tf.nn.relu6(features + tf.constant(3.)) * (1. / 6.) @tf.keras.utils.register_keras_serializable(package='Text') def identity(features): """Computes the identity function. Useful for helping in quantization. Args: features: A `Tensor` representing preactivation values. Returns: The activation value. """ features = tf.convert_to_tensor(features) return tf.identity(features)
Tools/PyTorch/TimeSeriesPredictionPlatform/triton/deployment_toolkit
deployment_toolkit
core
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import importlib import logging import os from enum import Enum from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np LOGGER = logging.getLogger(__name__) DATALOADER_FN_NAME = "get_dataloader_fn" GET_MODEL_FN_NAME = "get_model" GET_SERVING_INPUT_RECEIVER_FN = "get_serving_input_receiver_fn" GET_ARGPARSER_FN_NAME = "update_argparser" class TensorSpec(NamedTuple): name: str dtype: str shape: Tuple class Parameter(Enum): def __lt__(self, other: "Parameter") -> bool: return self.value < other.value def __str__(self): return self.value class Accelerator(Parameter): NONE = "none" AMP = "amp" TRT = "trt" CUDA = NONE # backward compatibility class Precision(Parameter): INT8 = "int8" FP16 = "fp16" FP32 = "fp32" TF32 = "tf32" # Deprecated class Format(Parameter): TF_GRAPHDEF = "tf-graphdef" TF_SAVEDMODEL = "tf-savedmodel" TF_TRT = "tf-trt" TF_ESTIMATOR = "tf-estimator" TF_KERAS = "tf-keras" ONNX = "onnx" TRT = "trt" TS_SCRIPT = "ts-script" TS_TRACE = "ts-trace" PYT = "pyt" FASTERTRANSFORMER = "fastertransformer" class Model(NamedTuple): handle: object # TODO: precision should be removed precision: Optional[Precision] inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def load_from_file(file_path, label, target): spec = importlib.util.spec_from_file_location(name=label, location=file_path) my_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(my_module) # pytype: disable=attribute-error return getattr(my_module, target, None) class BaseLoader(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def load(self, model_path: Union[str, Path], **kwargs) -> Model: """ Loads and process model from file based on given set of args """ pass class BaseSaver(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: """ Save model to file """ pass class BaseRunner(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def init_inference(self, model: Model): raise NotImplementedError class BaseRunnerSession(abc.ABC): def __init__(self, model: Model): self._model = model @abc.abstractmethod def __enter__(self): raise NotImplementedError() @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): raise NotImplementedError() @abc.abstractmethod def __call__(self, x: Dict[str, object]): raise NotImplementedError() def _set_env_variables(self) -> Dict[str, object]: """this method not remove values; fix it if needed""" to_set = {} old_values = {k: os.environ.pop(k, None) for k in to_set} os.environ.update(to_set) return old_values def _recover_env_variables(self, old_envs: Dict[str, object]): for name, value in old_envs.items(): if value is None: del os.environ[name] else: os.environ[name] = str(value) class BaseConverter(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def convert(self, model: Model, dataloader_fn) -> Model: raise NotImplementedError() @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: return requested_model_precision class BaseMetricsCalculator(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: """ Calculates error/accuracy metrics Args: ids: List of ids identifying each sample in the batch y_pred: model output as dict where key is output name and value is output value x: model input as dict where key is input name and value is input value y_real: input ground truth as dict where key is output name and value is output value Returns: dictionary where key is metric name and value is its value """ pass @abc.abstractmethod def update( self, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ): pass @property @abc.abstractmethod def metrics(self) -> Dict[str, Any]: pass class ShapeSpec(NamedTuple): min: Tuple opt: Tuple max: Tuple class MeasurementMode(Enum): COUNT_WINDOWS = "count_windows" TIME_WINDOWS = "time_windows" class PerformanceTool(Enum): """ Available performance evaluation tools """ MODEL_ANALYZER = "model_analyzer" PERF_ANALYZER = "perf_analyzer" class BatchingMode(Enum): """ Available batching modes """ STATIC = "static" DYNAMIC = "dynamic" class EvaluationMode(Enum): """ Available evaluation modes """ OFFLINE = "offline" ONLINE = "online" class OfflineMode(Enum): SYSTEM = "system" CUDA = "cuda"
TensorFlow/Detection/SSD/models/research/object_detection/core
core
box_predictor
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Box predictor for object detectors. Box predictors are classes that take a high level image feature map as input and produce two predictions, (1) a tensor encoding box locations, and (2) a tensor encoding classes for each box. These components are passed directly to loss functions in our detection models. These modules are separated from the main model since the same few box predictor architectures are shared across many models. """ from abc import abstractmethod import tensorflow as tf BOX_ENCODINGS = 'box_encodings' CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background' MASK_PREDICTIONS = 'mask_predictions' class BoxPredictor(object): """BoxPredictor.""" def __init__(self, is_training, num_classes): """Constructor. Args: is_training: Indicates whether the BoxPredictor is in training mode. num_classes: number of classes. Note that num_classes *does not* include the background category, so if groundtruth labels take values in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the assigned classification targets can range from {0,... K}). """ self._is_training = is_training self._num_classes = num_classes @property def is_keras_model(self): return False @property def num_classes(self): return self._num_classes def predict(self, image_features, num_predictions_per_location, scope=None, **params): """Computes encoded object locations and corresponding confidences. Takes a list of high level image feature maps as input and produces a list of box encodings and a list of class scores where each element in the output lists correspond to the feature maps in the input list. Args: image_features: A list of float tensors of shape [batch_size, height_i, width_i, channels_i] containing features for a batch of images. num_predictions_per_location: A list of integers representing the number of box predictions to be made per spatial location for each feature map. scope: Variable and Op scope name. **params: Additional keyword arguments for specific implementations of BoxPredictor. Returns: A dictionary containing at least the following tensors. box_encodings: A list of float tensors. Each entry in the list corresponds to a feature map in the input `image_features` list. All tensors in the list have one of the two following shapes: a. [batch_size, num_anchors_i, q, code_size] representing the location of the objects, where q is 1 or the number of classes. b. [batch_size, num_anchors_i, code_size]. class_predictions_with_background: A list of float tensors of shape [batch_size, num_anchors_i, num_classes + 1] representing the class predictions for the proposals. Each entry in the list corresponds to a feature map in the input `image_features` list. Raises: ValueError: If length of `image_features` is not equal to length of `num_predictions_per_location`. """ if len(image_features) != len(num_predictions_per_location): raise ValueError('image_feature and num_predictions_per_location must ' 'be of same length, found: {} vs {}'. format(len(image_features), len(num_predictions_per_location))) if scope is not None: with tf.variable_scope(scope): return self._predict(image_features, num_predictions_per_location, **params) return self._predict(image_features, num_predictions_per_location, **params) # TODO(rathodv): num_predictions_per_location could be moved to constructor. # This is currently only used by ConvolutionalBoxPredictor. @abstractmethod def _predict(self, image_features, num_predictions_per_location, **params): """Implementations must override this method. Args: image_features: A list of float tensors of shape [batch_size, height_i, width_i, channels_i] containing features for a batch of images. num_predictions_per_location: A list of integers representing the number of box predictions to be made per spatial location for each feature map. **params: Additional keyword arguments for specific implementations of BoxPredictor. Returns: A dictionary containing at least the following tensors. box_encodings: A list of float tensors. Each entry in the list corresponds to a feature map in the input `image_features` list. All tensors in the list have one of the two following shapes: a. [batch_size, num_anchors_i, q, code_size] representing the location of the objects, where q is 1 or the number of classes. b. [batch_size, num_anchors_i, code_size]. class_predictions_with_background: A list of float tensors of shape [batch_size, num_anchors_i, num_classes + 1] representing the class predictions for the proposals. Each entry in the list corresponds to a feature map in the input `image_features` list. """ pass class KerasBoxPredictor(tf.keras.Model): """Keras-based BoxPredictor.""" def __init__(self, is_training, num_classes, freeze_batchnorm, inplace_batchnorm_update, name=None): """Constructor. Args: is_training: Indicates whether the BoxPredictor is in training mode. num_classes: number of classes. Note that num_classes *does not* include the background category, so if groundtruth labels take values in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the assigned classification targets can range from {0,... K}). freeze_batchnorm: Whether to freeze batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to freeze batch norm update and use pretrained batch norm params. inplace_batchnorm_update: Whether to update batch norm moving average values inplace. When this is false train op must add a control dependency on tf.graphkeys.UPDATE_OPS collection in order to update batch norm statistics. name: A string name scope to assign to the model. If `None`, Keras will auto-generate one from the class name. """ super(KerasBoxPredictor, self).__init__(name=name) self._is_training = is_training self._num_classes = num_classes self._freeze_batchnorm = freeze_batchnorm self._inplace_batchnorm_update = inplace_batchnorm_update @property def is_keras_model(self): return True @property def num_classes(self): return self._num_classes def call(self, image_features, **kwargs): """Computes encoded object locations and corresponding confidences. Takes a list of high level image feature maps as input and produces a list of box encodings and a list of class scores where each element in the output lists correspond to the feature maps in the input list. Args: image_features: A list of float tensors of shape [batch_size, height_i, width_i, channels_i] containing features for a batch of images. **kwargs: Additional keyword arguments for specific implementations of BoxPredictor. Returns: A dictionary containing at least the following tensors. box_encodings: A list of float tensors. Each entry in the list corresponds to a feature map in the input `image_features` list. All tensors in the list have one of the two following shapes: a. [batch_size, num_anchors_i, q, code_size] representing the location of the objects, where q is 1 or the number of classes. b. [batch_size, num_anchors_i, code_size]. class_predictions_with_background: A list of float tensors of shape [batch_size, num_anchors_i, num_classes + 1] representing the class predictions for the proposals. Each entry in the list corresponds to a feature map in the input `image_features` list. """ return self._predict(image_features, **kwargs) @abstractmethod def _predict(self, image_features, **kwargs): """Implementations must override this method. Args: image_features: A list of float tensors of shape [batch_size, height_i, width_i, channels_i] containing features for a batch of images. **kwargs: Additional keyword arguments for specific implementations of BoxPredictor. Returns: A dictionary containing at least the following tensors. box_encodings: A list of float tensors. Each entry in the list corresponds to a feature map in the input `image_features` list. All tensors in the list have one of the two following shapes: a. [batch_size, num_anchors_i, q, code_size] representing the location of the objects, where q is 1 or the number of classes. b. [batch_size, num_anchors_i, code_size]. class_predictions_with_background: A list of float tensors of shape [batch_size, num_anchors_i, num_classes + 1] representing the class predictions for the proposals. Each entry in the list corresponds to a feature map in the input `image_features` list. """ raise NotImplementedError
Tools/PyTorch/TimeSeriesPredictionPlatform
TimeSeriesPredictionPlatform
launch_inference
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import hydra warnings.filterwarnings("ignore") from inference.inference import run_inference @hydra.main(config_path="conf/", config_name="inference_config") def main(cfg): print(cfg) cfg.inference.config.checkpoint=cfg.checkpoint hydra.utils.call(cfg, _recursive_=False) if __name__ == "__main__": main()
TensorFlow/Detection/SSD/models/research/object_detection/models
models
faster_rcnn_mobilenet_v1_feature_extractor_test
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for faster_rcnn_mobilenet_v1_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import faster_rcnn_mobilenet_v1_feature_extractor as faster_rcnn_mobilenet_v1 class FasterRcnnMobilenetV1FeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return faster_rcnn_mobilenet_v1.FasterRCNNMobilenetV1FeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 512]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 512]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 512]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_on_very_small_images(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run( features_shape, feed_dict={preprocessed_inputs: np.random.rand(4, 32, 32, 3)}) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [3, 14, 14, 576], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [3, 7, 7, 1024]) if __name__ == '__main__': tf.test.main()
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling
modeling
matcher
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. import torch from maskrcnn_benchmark import _C class Matcher(object): """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be assigned to zero or more predicted elements. Matching is based on the MxN match_quality_matrix, that characterizes how well each (ground-truth, predicted)-pair match. For example, if the elements are boxes, the matrix may contain box IoU overlap values. The matcher returns a tensor of size N containing the index of the ground-truth element m that matches to prediction n. If there is no match, a negative value is returned. """ BELOW_LOW_THRESHOLD = -1 BETWEEN_THRESHOLDS = -2 def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False): """ Args: high_threshold (float): quality values greater than or equal to this value are candidate matches. low_threshold (float): a lower quality threshold used to stratify matches into three levels: 1) matches >= high_threshold 2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold) 3) BELOW_LOW_THRESHOLD matches in [0, low_threshold) allow_low_quality_matches (bool): if True, produce additional matches for predictions that have only low-quality match candidates. See set_low_quality_matches_ for more details. """ assert low_threshold <= high_threshold self.high_threshold = high_threshold self.low_threshold = low_threshold self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. Returns: matches (Tensor[int64]): an N tensor where N[i] is a matched gt in [0, M - 1] or a negative value indicating that prediction i could not be matched. """ if match_quality_matrix.numel() == 0: # empty targets or proposals not supported during training if match_quality_matrix.shape[0] == 0: raise ValueError( "No ground-truth boxes available for one of the images " "during training") else: raise ValueError( "No proposal boxes available for one of the images " "during training") # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction if match_quality_matrix.is_cuda: matches = _C.match_proposals(match_quality_matrix,self.allow_low_quality_matches, self.low_threshold, self.high_threshold) else: matched_vals, matches = match_quality_matrix.max(dim=0) if self.allow_low_quality_matches: all_matches = matches.clone() # Assign candidate matches with low quality to negative (unassigned) values below_low_threshold = matched_vals < self.low_threshold between_thresholds = (matched_vals >= self.low_threshold) & ( matched_vals < self.high_threshold ) matches[below_low_threshold] = Matcher.BELOW_LOW_THRESHOLD matches[between_thresholds] = Matcher.BETWEEN_THRESHOLDS if self.allow_low_quality_matches: self.set_low_quality_matches_(matches, all_matches, match_quality_matrix) return matches def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth with which it has the highest quality value. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find highest quality match available, even if it is low, including ties gt_pred_pairs_of_highest_quality = torch.nonzero( match_quality_matrix == highest_quality_foreach_gt[:, None] ) # Example gt_pred_pairs_of_highest_quality: # tensor([[ 0, 39796], # [ 1, 32055], # [ 1, 32070], # [ 2, 39190], # [ 2, 40255], # [ 3, 40390], # [ 3, 41455], # [ 4, 45470], # [ 5, 45325], # [ 5, 46390]]) # Each row is a (gt index, prediction index) # Note how gt items 1, 2, 3, and 5 each have two ties pred_inds_to_update = gt_pred_pairs_of_highest_quality[:, 1] matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
PyTorch/SpeechSynthesis/HiFiGAN/scripts
scripts
fine_tune
#!/usr/bin/env bash set -a : ${FINE_TUNE_DIR:="data/mels-fastpitch-ljs22khz"} : ${FINE_TUNE_LR_FACTOR:=3} : ${EPOCHS:=10000} # 6500 + 3500 if [ ! -d "$FINE_TUNE_DIR" ]; then echo "Finetuning spectrograms missing at $FINE_TUNE_DIR ." echo "Those need to be generated with scripts/extract_fine_tune_mels.sh" echo "Consult the README.md for details." exit 1 fi bash scripts/train_lj22khz.sh "$@"
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/triton_inference_runner
triton_inference_runner
__init__
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .runner import TritonInferenceRunner # noqa: F401
TensorFlow/Detection/SSD/models/research/object_detection/builders
builders
image_resizer_builder
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builder function for image resizing operations.""" import functools import tensorflow as tf from object_detection.core import preprocessor from object_detection.protos import image_resizer_pb2 def _tf_resize_method(resize_method): """Maps image resize method from enumeration type to TensorFlow. Args: resize_method: The resize_method attribute of keep_aspect_ratio_resizer or fixed_shape_resizer. Returns: method: The corresponding TensorFlow ResizeMethod. Raises: ValueError: if `resize_method` is of unknown type. """ dict_method = { image_resizer_pb2.BILINEAR: tf.image.ResizeMethod.BILINEAR, image_resizer_pb2.NEAREST_NEIGHBOR: tf.image.ResizeMethod.NEAREST_NEIGHBOR, image_resizer_pb2.BICUBIC: tf.image.ResizeMethod.BICUBIC, image_resizer_pb2.AREA: tf.image.ResizeMethod.AREA } if resize_method in dict_method: return dict_method[resize_method] else: raise ValueError('Unknown resize_method') def build(image_resizer_config): """Builds callable for image resizing operations. Args: image_resizer_config: image_resizer.proto object containing parameters for an image resizing operation. Returns: image_resizer_fn: Callable for image resizing. This callable always takes a rank-3 image tensor (corresponding to a single image) and returns a rank-3 image tensor, possibly with new spatial dimensions. Raises: ValueError: if `image_resizer_config` is of incorrect type. ValueError: if `image_resizer_config.image_resizer_oneof` is of expected type. ValueError: if min_dimension > max_dimension when keep_aspect_ratio_resizer is used. """ if not isinstance(image_resizer_config, image_resizer_pb2.ImageResizer): raise ValueError('image_resizer_config not of type ' 'image_resizer_pb2.ImageResizer.') image_resizer_oneof = image_resizer_config.WhichOneof('image_resizer_oneof') if image_resizer_oneof == 'keep_aspect_ratio_resizer': keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer if not (keep_aspect_ratio_config.min_dimension <= keep_aspect_ratio_config.max_dimension): raise ValueError('min_dimension > max_dimension') method = _tf_resize_method(keep_aspect_ratio_config.resize_method) per_channel_pad_value = (0, 0, 0) if keep_aspect_ratio_config.per_channel_pad_value: per_channel_pad_value = tuple(keep_aspect_ratio_config. per_channel_pad_value) image_resizer_fn = functools.partial( preprocessor.resize_to_range, min_dimension=keep_aspect_ratio_config.min_dimension, max_dimension=keep_aspect_ratio_config.max_dimension, method=method, pad_to_max_dimension=keep_aspect_ratio_config.pad_to_max_dimension, per_channel_pad_value=per_channel_pad_value) if not keep_aspect_ratio_config.convert_to_grayscale: return image_resizer_fn elif image_resizer_oneof == 'fixed_shape_resizer': fixed_shape_resizer_config = image_resizer_config.fixed_shape_resizer method = _tf_resize_method(fixed_shape_resizer_config.resize_method) image_resizer_fn = functools.partial( preprocessor.resize_image, new_height=fixed_shape_resizer_config.height, new_width=fixed_shape_resizer_config.width, method=method) if not fixed_shape_resizer_config.convert_to_grayscale: return image_resizer_fn else: raise ValueError( 'Invalid image resizer option: \'%s\'.' % image_resizer_oneof) def grayscale_image_resizer(image, masks=None): """Convert to grayscale before applying image_resizer_fn. Args: image: A 3D tensor of shape [height, width, 3] masks: (optional) rank 3 float32 tensor with shape [num_instances, height, width] containing instance masks. Returns: Note that the position of the resized_image_shape changes based on whether masks are present. resized_image: A 3D tensor of shape [new_height, new_width, 1], where the image has been resized (with bilinear interpolation) so that min(new_height, new_width) == min_dimension or max(new_height, new_width) == max_dimension. resized_masks: If masks is not None, also outputs masks. A 3D tensor of shape [num_instances, new_height, new_width]. resized_image_shape: A 1D tensor of shape [3] containing shape of the resized image. """ # image_resizer_fn returns [resized_image, resized_image_shape] if # mask==None, otherwise it returns # [resized_image, resized_mask, resized_image_shape]. In either case, we # only deal with first and last element of the returned list. retval = image_resizer_fn(image, masks) resized_image = retval[0] resized_image_shape = retval[-1] retval[0] = preprocessor.rgb_to_gray(resized_image) retval[-1] = tf.concat([resized_image_shape[:-1], [1]], 0) return retval return functools.partial(grayscale_image_resizer)
PyTorch/Classification/GPUNet/triton/05ms-D/runner
runner
config_NVIDIA-DGX-1-(1x-V100-32GB)
batching: dynamic checkpoints: - name: 0.5ms-D url: https://api.ngc.nvidia.com/v2/models/nvidia/dle/gpunet_p0_pyt_ckpt/versions/21.12.0_amp/zip configurations: - checkpoint: 0.5ms-D parameters: backend_accelerator: trt checkpoint: 0.5ms-D device_kind: gpu export_format: onnx export_precision: fp16 format: onnx max_batch_size: 64 number_of_model_instances: 2 precision: fp16 tensorrt_capture_cuda_graph: 0 torch_jit: none container_version: '21.12' datasets: - name: imagenet datasets_dir: datasets ensemble_model_name: null framework: PyTorch measurement_steps_offline: 8 measurement_steps_online: 32 model_name: GPUnet performance_tool: model_analyzer triton_container_image: nvcr.io/nvidia/tritonserver:21.12-py3 triton_custom_operations: null triton_dockerfile: null triton_load_model_method: explicit
PyTorch/Detection/Efficientdet/effdet/csrc/focal_loss
focal_loss
focal_loss_cuda
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <torch/torch.h> #include <vector> // CUDA forward declarations std::vector<at::Tensor> focal_loss_forward_cuda( const at::Tensor &cls_output, const at::Tensor &cls_targets_at_level, const at::Tensor &num_positives_sum, const int64_t num_real_classes, const float alpha, const float gamma, const float smoothing_factor); at::Tensor focal_loss_backward_cuda(const at::Tensor &grad_output, const at::Tensor &partial_grad, const at::Tensor &num_positives_sum); // C++ interface #define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) \ AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) \ CHECK_CUDA(x); \ CHECK_CONTIGUOUS(x) std::vector<at::Tensor> focal_loss_forward( const at::Tensor &cls_output, const at::Tensor &cls_targets_at_level, const at::Tensor &num_positives_sum, const int64_t num_real_classes, const float alpha, const float gamma, const float smoothing_factor) { CHECK_INPUT(cls_output); CHECK_INPUT(cls_targets_at_level); CHECK_INPUT(num_positives_sum); return focal_loss_forward_cuda(cls_output, cls_targets_at_level, num_positives_sum, num_real_classes, alpha, gamma, smoothing_factor); } at::Tensor focal_loss_backward(const at::Tensor &grad_output, const at::Tensor &partial_grad, const at::Tensor &num_positives_sum) { CHECK_INPUT(grad_output); CHECK_INPUT(partial_grad); return focal_loss_backward_cuda(grad_output, partial_grad, num_positives_sum); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &focal_loss_forward, "Focal loss calculation forward (CUDA)"); m.def("backward", &focal_loss_backward, "Focal loss calculation backward (CUDA)"); }
PyTorch/Segmentation/nnUNet/nnunet
nnunet
metrics
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torchmetrics import Metric class Dice(Metric): full_state_update = False def __init__(self, n_class, brats): super().__init__(dist_sync_on_step=False) self.n_class = n_class self.brats = brats self.add_state("steps", default=torch.zeros(1), dist_reduce_fx="sum") self.add_state("dice", default=torch.zeros((n_class,)), dist_reduce_fx="sum") self.add_state("loss", default=torch.zeros(1), dist_reduce_fx="sum") def update(self, p, y, l): self.steps += 1 self.dice += self.compute_stats_brats(p, y) if self.brats else self.compute_stats(p, y) self.loss += l def compute(self): return 100 * self.dice / self.steps, self.loss / self.steps def compute_stats_brats(self, p, y): scores = torch.zeros(self.n_class, device=p.device, dtype=torch.float32) p = (torch.sigmoid(p) > 0.5).int() y_wt, y_tc, y_et = y > 0, ((y == 1) + (y == 3)) > 0, y == 3 y = torch.stack([y_wt, y_tc, y_et], dim=1) for i in range(self.n_class): p_i, y_i = p[:, i], y[:, i] if (y_i != 1).all(): # no foreground class scores[i - 1] += 1 if (p_i != 1).all() else 0 continue tp, fn, fp = self.get_stats(p_i, y_i, 1) denom = (2 * tp + fp + fn).to(torch.float) score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(denom) else 0.0 scores[i - 1] += score_cls return scores def compute_stats(self, p, y): scores = torch.zeros(self.n_class, device=p.device, dtype=torch.float32) p = torch.argmax(p, dim=1) for i in range(1, self.n_class + 1): if (y != i).all(): # no foreground class scores[i - 1] += 1 if (p != i).all() else 0 continue tp, fn, fp = self.get_stats(p, y, i) denom = (2 * tp + fp + fn).to(torch.float) score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(denom) else 0.0 scores[i - 1] += score_cls return scores @staticmethod def get_stats(p, y, c): tp = torch.logical_and(p == c, y == c).sum() fn = torch.logical_and(p != c, y == c).sum() fp = torch.logical_and(p == c, y != c).sum() return tp, fn, fp
TensorFlow2/Recommendation/SIM/sim/utils
utils
benchmark
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import perf_counter import horovod.tensorflow as hvd import numpy as np import tensorflow as tf from horovod.tensorflow.mpi_ops import Sum class PerformanceCalculator: """ PerformanceCalculator for throughput and latency statistics. Computes the statistics over a given number of steps. Timers should be initialized by the user by calling init() at the right moment -- just before running consecutive iterations of training. Attributes: warmup_steps (int): Number of initial steps to ignore for computing results. total_steps (int): Number of steps to collect data for (excluding warmup_steps); use <= 0 for unbounded horizon. """ def __init__(self, warmup_steps=0, total_steps=0): self.warmup_steps = max(warmup_steps, 0) self.total_steps = self.warmup_steps + max(total_steps, 0) self.step = 0 self.step_start_time = None self.benchmark_start_time = None self.benchmark_after_warmup_start_time = None self.step_latencies = [] self.latency_percentiles = (90, 95, 99) self._results = {} with tf.device("/CPU:0"): self.samples = tf.Variable(0, trainable=False, dtype=tf.int64) def init(self): self.samples.assign(0) self.step_latencies = [] self._results = {} # used to represent duration of entire training self.benchmark_start_time = perf_counter() # used to represent a time interval from post-warmup until the end self.benchmark_after_warmup_start_time = perf_counter() self.step_start_time = perf_counter() @property def results(self): return self._results.copy() @property def completed(self): return bool(self._results) def get_current_benchmark_results(self): if self.benchmark_start_time is None: raise RuntimeError(f"{self.__class__.__name__} has not been initialized") if self.step <= self.warmup_steps: raise RuntimeError(f"{self.__class__.__name__} is in warmup phase") results = self._calculate_throughput() results.update(self._calculate_latency()) return results def _calculate_latency(self): latency_stats = {"latency_mean": 1000 * np.mean(self.step_latencies)} # in milliseconds for p in self.latency_percentiles: latency_stats[f"latency_p{p}"] = 1000 * np.percentile(self.step_latencies, p) return latency_stats def _calculate_throughput(self): time_elapsed = perf_counter() - self.benchmark_start_time time_elapsed_after_warmup = perf_counter() - self.benchmark_after_warmup_start_time all_samples = hvd.allreduce(self.samples, op=Sum) benchmark_throughput = all_samples.numpy() / time_elapsed_after_warmup return {"throughput": benchmark_throughput, "time": time_elapsed} def __call__(self, n_samples): self.samples.assign_add(n_samples) step_latency = perf_counter() - self.step_start_time step_throughput = n_samples * hvd.size() / step_latency self.step_latencies.append(step_latency) self.step += 1 if self.step == self.warmup_steps: self.samples.assign(0) self.step_latencies = [] self.benchmark_after_warmup_start_time = perf_counter() elif self.step == self.total_steps: self._results = self.get_current_benchmark_results() self.step_start_time = perf_counter() return step_throughput
PyTorch/Segmentation/nnUNet/scripts
scripts
inference
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from os.path import dirname from subprocess import run parser = ArgumentParser(ArgumentDefaultsHelpFormatter) parser.add_argument("--data", type=str, required=True, help="Path to data") parser.add_argument("--task", type=str, default="01", help="Path to data") parser.add_argument("--fold", type=int, required=True, choices=[0, 1, 2, 3, 4], help="Fold number") parser.add_argument("--dim", type=int, required=True, help="Dimension of UNet") parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") parser.add_argument("--batch_size", type=int, default=4, help="Batch size") parser.add_argument("--amp", action="store_true", help="Enable automatic mixed precision") parser.add_argument("--tta", action="store_true", help="Enable test time augmentation") parser.add_argument("--save_preds", action="store_true", help="Save predicted masks") if __name__ == "__main__": args = parser.parse_args() path_to_main = os.path.join(dirname(dirname(os.path.realpath(__file__))), "main.py") cmd = f"python {path_to_main} --exec_mode predict --task {args.task} --gpus 1 " cmd += f"--data {args.data} " cmd += f"--dim {args.dim} " cmd += f"--fold {args.fold} " cmd += f"--ckpt_path {args.ckpt_path} " cmd += f"--val_batch_size {args.batch_size} " cmd += "--amp " if args.amp else "" cmd += "--tta " if args.tta else "" cmd += "--save_preds " if args.save_preds else "" run(cmd, shell=True)
PyTorch/Detection/SSD/examples
examples
SSD300_A100_FP16_8GPU
# This script launches SSD300 training in FP16 on 8 GPUs using 1024 batch size (128 per GPU) # Usage ./SSD300_FP16_8GPU.sh <path to this repository> <path to dataset> <additional flags> torchrun --nproc_per_node=8 $1/main.py --backbone resnet50 --learning-rate 2.7e-3 --warmup 1200 --bs 128 --data $2 ${@:3}
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/layers
layers
_utils
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import glob import os.path import torch try: from torch.utils.cpp_extension import load as load_ext from torch.utils.cpp_extension import CUDA_HOME except ImportError: raise ImportError("The cpp layer extensions requires PyTorch 0.4 or higher") def _load_C_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) this_dir = os.path.dirname(this_dir) this_dir = os.path.join(this_dir, "csrc") main_file = glob.glob(os.path.join(this_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(this_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(this_dir, "cuda", "*.cu")) source = main_file + source_cpu extra_cflags = [] if torch.cuda.is_available() and CUDA_HOME is not None: source.extend(source_cuda) extra_cflags = ["-DWITH_CUDA"] source = [os.path.join(this_dir, s) for s in source] extra_include_paths = [this_dir] return load_ext( "torchvision", source, extra_cflags=extra_cflags, extra_include_paths=extra_include_paths, ) _C = _load_C_extensions()
TensorFlow2/LanguageModeling/BERT/official/utils/flags
flags
_conventions
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Central location for shared argparse convention definitions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import codecs import functools from absl import app as absl_app from absl import flags # This codifies help string conventions and makes it easy to update them if # necessary. Currently the only major effect is that help bodies start on the # line after flags are listed. All flag definitions should wrap the text bodies # with help wrap when calling DEFINE_*. _help_wrap = functools.partial(flags.text_wrap, length=80, indent="", firstline_indent="\n") # Pretty formatting causes issues when utf-8 is not installed on a system. def _stdout_utf8(): try: codecs.lookup("utf-8") except LookupError: return False return sys.stdout.encoding == "UTF-8" if _stdout_utf8(): help_wrap = _help_wrap else: def help_wrap(text, *args, **kwargs): return _help_wrap(text, *args, **kwargs).replace(u"\ufeff", u"") # Replace None with h to also allow -h absl_app.HelpshortFlag.SHORT_NAME = "h"
PyTorch/SpeechSynthesis/Tacotron2/notebooks
notebooks
README
# Tacotron2 and WaveGlow A jupyter notobook based on Quick Start Guide of: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2 ## Requirements Ensure you have the following components: NVIDIA Docker (https://github.com/NVIDIA/nvidia-docker) PyTorch 19.06-py3+ NGC container or newer (https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) NVIDIA Volta (https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) or Turing (https://www.nvidia.com/en-us/geforce/turing/) based GPU Before running the Jupyter notebook, please make sure you already git clone the code from the Github: ```bash git clone https://github.com/NVIDIA/DeepLearningExamples.git cd DeepLearningExamples/PyTorch/SpeechSynthesis/Tacotron2 ``` Copy the Tacotron2.ipynb file into the folder 'Tacotron2' ```bash cp notebooks/Tacotron2.ipynb . ``` ### Running the quick start guide as a Jupyter notebook To run the notebook on you local machine: ```bash jupyter notebook Tacotron2.ipynb ``` To run the notebook remotely: ```bash jupyter notebook --ip=0.0.0.0 --allow-root ``` And navigate a web browser to the IP address or hostname of the host machine at port `8888`: ``` http://[host machine]:8888 ``` Use the token listed in the output from running the `jupyter` command to log in, for example: ``` http://[host machine]:8888/?token=aae96ae9387cd28151868fee318c3b3581a2d794f3b25c6b ```
PyTorch/Recommendation/DLRM/dlrm/nn
nn
factories
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Sequence from dlrm.nn.embeddings import ( JointEmbedding, MultiTableEmbeddings, FusedJointEmbedding, JointSparseEmbedding, Embeddings ) from dlrm.nn.interactions import Interaction, CudaDotInteraction, DotInteraction, CatInteraction from dlrm.nn.mlps import AbstractMlp, CppMlp, TorchMlp from dlrm.utils.distributed import is_distributed def create_mlp(input_dim: int, sizes: Sequence[int], use_cpp_mlp: bool) -> AbstractMlp: return CppMlp(input_dim, sizes) if use_cpp_mlp else TorchMlp(input_dim, sizes) def create_embeddings( embedding_type: str, categorical_feature_sizes: Sequence[int], embedding_dim: int, device: str = "cuda", hash_indices: bool = False, fp16: bool = False ) -> Embeddings: if embedding_type == "joint": return JointEmbedding(categorical_feature_sizes, embedding_dim, device=device, hash_indices=hash_indices) elif embedding_type == "joint_fused": assert not is_distributed(), "Joint fused embedding is not supported in the distributed mode. " \ "You may want to use 'joint_sparse' option instead." return FusedJointEmbedding(categorical_feature_sizes, embedding_dim, device=device, hash_indices=hash_indices, amp_train=fp16) elif embedding_type == "joint_sparse": return JointSparseEmbedding(categorical_feature_sizes, embedding_dim, device=device, hash_indices=hash_indices) elif embedding_type == "multi_table": return MultiTableEmbeddings(categorical_feature_sizes, embedding_dim, hash_indices=hash_indices, device=device) else: raise NotImplementedError(f"unknown embedding type: {embedding_type}") def create_interaction(interaction_op: str, embedding_num: int, embedding_dim: int) -> Interaction: if interaction_op == "dot": return DotInteraction(embedding_num, embedding_dim) elif interaction_op == "cuda_dot": return CudaDotInteraction( DotInteraction(embedding_num, embedding_dim) ) elif interaction_op == "cat": return CatInteraction(embedding_num, embedding_dim) else: raise NotImplementedError(f"unknown interaction op: {interaction_op}")
PyTorch/SpeechSynthesis/Tacotron2/phrases
phrases
phrase_1_128
The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the
PyTorch/SpeechRecognition/QuartzNet/configs
configs
quartznet15x5_speedp-online-1.15_speca
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: "QuartzNet" labels: [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'"] input_val: audio_dataset: &val_dataset sample_rate: &sample_rate 16000 trim_silence: true normalize_transcripts: true filterbank_features: &val_features normalize: per_feature sample_rate: *sample_rate window_size: 0.02 window_stride: 0.01 window: hann n_filt: &n_filt 64 n_fft: 512 frame_splicing: &frame_splicing 1 dither: 0.00001 pad_align: 16 # For training we keep samples < 16.7s and apply augmentation input_train: audio_dataset: <<: *val_dataset max_duration: 16.7 ignore_offline_speed_perturbation: true speed_perturbation: min_rate: 0.85 max_rate: 1.15 filterbank_features: <<: *val_features max_duration: 16.7 spec_augment: freq_masks: 2 max_freq: 15 time_masks: 2 max_time: 55 quartznet: encoder: init: xavier_uniform in_feats: *n_filt frame_splicing: *frame_splicing activation: relu use_conv_masks: true blocks: - &Conv1 filters: 256 repeat: 1 kernel_size: [33] dilation: [1] stride: [2] dropout: 0.0 residual: false separable: true - &B1 filters: 256 repeat: 5 kernel_size: [33] dilation: [1] stride: [1] dropout: 0.0 residual: true separable: true - *B1 - *B1 - &B2 filters: 256 repeat: 5 kernel_size: [39] dilation: [1] stride: [1] dropout: 0.0 residual: true separable: true - *B2 - *B2 - &B3 filters: 512 repeat: 5 kernel_size: [51] dilation: [1] stride: [1] dropout: 0.0 residual: true separable: true - *B3 - *B3 - &B4 filters: 512 repeat: 5 kernel_size: [63] dilation: [1] stride: [1] dropout: 0.0 residual: true separable: true - *B4 - *B4 - &B5 filters: 512 repeat: 5 kernel_size: [75] dilation: [1] stride: [1] dropout: 0.0 residual: true separable: true - *B5 - *B5 - &Conv2 filters: 512 repeat: 1 kernel_size: [87] dilation: [2] stride: [1] dropout: 0.0 residual: false separable: true - &Conv3 filters: &enc_feats 1024 repeat: 1 kernel_size: [1] dilation: [1] stride: [1] dropout: 0.0 residual: false separable: false decoder: in_feats: *enc_feats init: xavier_uniform
TensorFlow/Detection/SSD/models/research/slim/datasets
datasets
imagenet_lsvrc_2015_synsets
n01440764 n01443537 n01484850 n01491361 n01494475 n01496331 n01498041 n01514668 n01514859 n01518878 n01530575 n01531178 n01532829 n01534433 n01537544 n01558993 n01560419 n01580077 n01582220 n01592084 n01601694 n01608432 n01614925 n01616318 n01622779 n01629819 n01630670 n01631663 n01632458 n01632777 n01641577 n01644373 n01644900 n01664065 n01665541 n01667114 n01667778 n01669191 n01675722 n01677366 n01682714 n01685808 n01687978 n01688243 n01689811 n01692333 n01693334 n01694178 n01695060 n01697457 n01698640 n01704323 n01728572 n01728920 n01729322 n01729977 n01734418 n01735189 n01737021 n01739381 n01740131 n01742172 n01744401 n01748264 n01749939 n01751748 n01753488 n01755581 n01756291 n01768244 n01770081 n01770393 n01773157 n01773549 n01773797 n01774384 n01774750 n01775062 n01776313 n01784675 n01795545 n01796340 n01797886 n01798484 n01806143 n01806567 n01807496 n01817953 n01818515 n01819313 n01820546 n01824575 n01828970 n01829413 n01833805 n01843065 n01843383 n01847000 n01855032 n01855672 n01860187 n01871265 n01872401 n01873310 n01877812 n01882714 n01883070 n01910747 n01914609 n01917289 n01924916 n01930112 n01943899 n01944390 n01945685 n01950731 n01955084 n01968897 n01978287 n01978455 n01980166 n01981276 n01983481 n01984695 n01985128 n01986214 n01990800 n02002556 n02002724 n02006656 n02007558 n02009229 n02009912 n02011460 n02012849 n02013706 n02017213 n02018207 n02018795 n02025239 n02027492 n02028035 n02033041 n02037110 n02051845 n02056570 n02058221 n02066245 n02071294 n02074367 n02077923 n02085620 n02085782 n02085936 n02086079 n02086240 n02086646 n02086910 n02087046 n02087394 n02088094 n02088238 n02088364 n02088466 n02088632 n02089078 n02089867 n02089973 n02090379 n02090622 n02090721 n02091032 n02091134 n02091244 n02091467 n02091635 n02091831 n02092002 n02092339 n02093256 n02093428 n02093647 n02093754 n02093859 n02093991 n02094114 n02094258 n02094433 n02095314 n02095570 n02095889 n02096051 n02096177 n02096294 n02096437 n02096585 n02097047 n02097130 n02097209 n02097298 n02097474 n02097658 n02098105 n02098286 n02098413 n02099267 n02099429 n02099601 n02099712 n02099849 n02100236 n02100583 n02100735 n02100877 n02101006 n02101388 n02101556 n02102040 n02102177 n02102318 n02102480 n02102973 n02104029 n02104365 n02105056 n02105162 n02105251 n02105412 n02105505 n02105641 n02105855 n02106030 n02106166 n02106382 n02106550 n02106662 n02107142 n02107312 n02107574 n02107683 n02107908 n02108000 n02108089 n02108422 n02108551 n02108915 n02109047 n02109525 n02109961 n02110063 n02110185 n02110341 n02110627 n02110806 n02110958 n02111129 n02111277 n02111500 n02111889 n02112018 n02112137 n02112350 n02112706 n02113023 n02113186 n02113624 n02113712 n02113799 n02113978 n02114367 n02114548 n02114712 n02114855 n02115641 n02115913 n02116738 n02117135 n02119022 n02119789 n02120079 n02120505 n02123045 n02123159 n02123394 n02123597 n02124075 n02125311 n02127052 n02128385 n02128757 n02128925 n02129165 n02129604 n02130308 n02132136 n02133161 n02134084 n02134418 n02137549 n02138441 n02165105 n02165456 n02167151 n02168699 n02169497 n02172182 n02174001 n02177972 n02190166 n02206856 n02219486 n02226429 n02229544 n02231487 n02233338 n02236044 n02256656 n02259212 n02264363 n02268443 n02268853 n02276258 n02277742 n02279972 n02280649 n02281406 n02281787 n02317335 n02319095 n02321529 n02325366 n02326432 n02328150 n02342885 n02346627 n02356798 n02361337 n02363005 n02364673 n02389026 n02391049 n02395406 n02396427 n02397096 n02398521 n02403003 n02408429 n02410509 n02412080 n02415577 n02417914 n02422106 n02422699 n02423022 n02437312 n02437616 n02441942 n02442845 n02443114 n02443484 n02444819 n02445715 n02447366 n02454379 n02457408 n02480495 n02480855 n02481823 n02483362 n02483708 n02484975 n02486261 n02486410 n02487347 n02488291 n02488702 n02489166 n02490219 n02492035 n02492660 n02493509 n02493793 n02494079 n02497673 n02500267 n02504013 n02504458 n02509815 n02510455 n02514041 n02526121 n02536864 n02606052 n02607072 n02640242 n02641379 n02643566 n02655020 n02666196 n02667093 n02669723 n02672831 n02676566 n02687172 n02690373 n02692877 n02699494 n02701002 n02704792 n02708093 n02727426 n02730930 n02747177 n02749479 n02769748 n02776631 n02777292 n02782093 n02783161 n02786058 n02787622 n02788148 n02790996 n02791124 n02791270 n02793495 n02794156 n02795169 n02797295 n02799071 n02802426 n02804414 n02804610 n02807133 n02808304 n02808440 n02814533 n02814860 n02815834 n02817516 n02823428 n02823750 n02825657 n02834397 n02835271 n02837789 n02840245 n02841315 n02843684 n02859443 n02860847 n02865351 n02869837 n02870880 n02871525 n02877765 n02879718 n02883205 n02892201 n02892767 n02894605 n02895154 n02906734 n02909870 n02910353 n02916936 n02917067 n02927161 n02930766 n02939185 n02948072 n02950826 n02951358 n02951585 n02963159 n02965783 n02966193 n02966687 n02971356 n02974003 n02977058 n02978881 n02979186 n02980441 n02981792 n02988304 n02992211 n02992529 n02999410 n03000134 n03000247 n03000684 n03014705 n03016953 n03017168 n03018349 n03026506 n03028079 n03032252 n03041632 n03042490 n03045698 n03047690 n03062245 n03063599 n03063689 n03065424 n03075370 n03085013 n03089624 n03095699 n03100240 n03109150 n03110669 n03124043 n03124170 n03125729 n03126707 n03127747 n03127925 n03131574 n03133878 n03134739 n03141823 n03146219 n03160309 n03179701 n03180011 n03187595 n03188531 n03196217 n03197337 n03201208 n03207743 n03207941 n03208938 n03216828 n03218198 n03220513 n03223299 n03240683 n03249569 n03250847 n03255030 n03259280 n03271574 n03272010 n03272562 n03290653 n03291819 n03297495 n03314780 n03325584 n03337140 n03344393 n03345487 n03347037 n03355925 n03372029 n03376595 n03379051 n03384352 n03388043 n03388183 n03388549 n03393912 n03394916 n03400231 n03404251 n03417042 n03424325 n03425413 n03443371 n03444034 n03445777 n03445924 n03447447 n03447721 n03450230 n03452741 n03457902 n03459775 n03461385 n03467068 n03476684 n03476991 n03478589 n03481172 n03482405 n03483316 n03485407 n03485794 n03492542 n03494278 n03495258 n03496892 n03498962 n03527444 n03529860 n03530642 n03532672 n03534580 n03535780 n03538406 n03544143 n03584254 n03584829 n03590841 n03594734 n03594945 n03595614 n03598930 n03599486 n03602883 n03617480 n03623198 n03627232 n03630383 n03633091 n03637318 n03642806 n03649909 n03657121 n03658185 n03661043 n03662601 n03666591 n03670208 n03673027 n03676483 n03680355 n03690938 n03691459 n03692522 n03697007 n03706229 n03709823 n03710193 n03710637 n03710721 n03717622 n03720891 n03721384 n03724870 n03729826 n03733131 n03733281 n03733805 n03742115 n03743016 n03759954 n03761084 n03763968 n03764736 n03769881 n03770439 n03770679 n03773504 n03775071 n03775546 n03776460 n03777568 n03777754 n03781244 n03782006 n03785016 n03786901 n03787032 n03788195 n03788365 n03791053 n03792782 n03792972 n03793489 n03794056 n03796401 n03803284 n03804744 n03814639 n03814906 n03825788 n03832673 n03837869 n03838899 n03840681 n03841143 n03843555 n03854065 n03857828 n03866082 n03868242 n03868863 n03871628 n03873416 n03874293 n03874599 n03876231 n03877472 n03877845 n03884397 n03887697 n03888257 n03888605 n03891251 n03891332 n03895866 n03899768 n03902125 n03903868 n03908618 n03908714 n03916031 n03920288 n03924679 n03929660 n03929855 n03930313 n03930630 n03933933 n03935335 n03937543 n03938244 n03942813 n03944341 n03947888 n03950228 n03954731 n03956157 n03958227 n03961711 n03967562 n03970156 n03976467 n03976657 n03977966 n03980874 n03982430 n03983396 n03991062 n03992509 n03995372 n03998194 n04004767 n04005630 n04008634 n04009552 n04019541 n04023962 n04026417 n04033901 n04033995 n04037443 n04039381 n04040759 n04041544 n04044716 n04049303 n04065272 n04067472 n04069434 n04070727 n04074963 n04081281 n04086273 n04090263 n04099969 n04111531 n04116512 n04118538 n04118776 n04120489 n04125021 n04127249 n04131690 n04133789 n04136333 n04141076 n04141327 n04141975 n04146614 n04147183 n04149813 n04152593 n04153751 n04154565 n04162706 n04179913 n04192698 n04200800 n04201297 n04204238 n04204347 n04208210 n04209133 n04209239 n04228054 n04229816 n04235860 n04238763 n04239074 n04243546 n04251144 n04252077 n04252225 n04254120 n04254680 n04254777 n04258138 n04259630 n04263257 n04264628 n04265275 n04266014 n04270147 n04273569 n04275548 n04277352 n04285008 n04286575 n04296562 n04310018 n04311004 n04311174 n04317175 n04325704 n04326547 n04328186 n04330267 n04332243 n04335435 n04336792 n04344873 n04346328 n04347754 n04350905 n04355338 n04355933 n04356056 n04357314 n04366367 n04367480 n04370456 n04371430 n04371774 n04372370 n04376876 n04380533 n04389033 n04392985 n04398044 n04399382 n04404412 n04409515 n04417672 n04418357 n04423845 n04428191 n04429376 n04435653 n04442312 n04443257 n04447861 n04456115 n04458633 n04461696 n04462240 n04465501 n04467665 n04476259 n04479046 n04482393 n04483307 n04485082 n04486054 n04487081 n04487394 n04493381 n04501370 n04505470 n04507155 n04509417 n04515003 n04517823 n04522168 n04523525 n04525038 n04525305 n04532106 n04532670 n04536866 n04540053 n04542943 n04548280 n04548362 n04550184 n04552348 n04553703 n04554684 n04557648 n04560804 n04562935 n04579145 n04579432 n04584207 n04589890 n04590129 n04591157 n04591713 n04592741 n04596742 n04597913 n04599235 n04604644 n04606251 n04612504 n04613696 n06359193 n06596364 n06785654 n06794110 n06874185 n07248320 n07565083 n07579787 n07583066 n07584110 n07590611 n07613480 n07614500 n07615774 n07684084 n07693725 n07695742 n07697313 n07697537 n07711569 n07714571 n07714990 n07715103 n07716358 n07716906 n07717410 n07717556 n07718472 n07718747 n07720875 n07730033 n07734744 n07742313 n07745940 n07747607 n07749582 n07753113 n07753275 n07753592 n07754684 n07760859 n07768694 n07802026 n07831146 n07836838 n07860988 n07871810 n07873807 n07875152 n07880968 n07892512 n07920052 n07930864 n07932039 n09193705 n09229709 n09246464 n09256479 n09288635 n09332890 n09399592 n09421951 n09428293 n09468604 n09472597 n09835506 n10148035 n10565667 n11879895 n11939491 n12057211 n12144580 n12267677 n12620546 n12768682 n12985857 n12998815 n13037406 n13040303 n13044778 n13052670 n13054560 n13133613 n15075141
PyTorch/LanguageModeling
LanguageModeling
README
# Language Modeling Language modeling (LM) is a natural language processing (NLP) task that determines the probability of a given sequence of words occurring in a sentence. In an era where computers, smartphones and other electronic devices increasingly need to interact with humans, language modeling has become an indispensable technique for teaching devices how to communicate in natural languages in human-like ways. But how does language modeling work? And what can you build with it? What are the different approaches, what are its potential benefits and limitations, and how might you use it in your business? In this guide, you’ll find answers to all of those questions and more. Whether you’re an experienced machine learning engineer considering implementation, a developer wanting to learn more, or a product manager looking to explore what’s possible with natural language processing and language modeling, this guide is for you. Here’s a look at what we’ll cover: - Language modeling – the basics - How does language modeling work? - Use cases and applications - Getting started ## Language modeling – the basics ### What is language modeling? "*Language modeling is the task of assigning a probability to sentences in a language. […] Besides assigning a probability to each sequence of words, the language models also assign a probability for the likelihood of a given word (or a sequence of words) to follow a sequence of words.*" Source: Page 105, [Neural Network Methods in Natural Language Processing](http://amzn.to/2wt1nzv), 2017. ### Types of language models There are primarily two types of Language Models: - Statistical Language Models: These models use traditional statistical techniques like N-grams, Hidden Markov Models (HMM), and certain linguistic rules to learn the probability distribution of words. - Neural Language Models: They use different kinds of Neural Networks to model language, and have surpassed the statistical language models in their effectiveness. "*We provide ample empirical evidence to suggest that connectionist language models are superior to standard n-gram techniques, except their high computational (training) complexity.*" Source: [Recurrent neural network based language model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf), 2010. Given the superior performance of neural language models, we include in the container two popular state-of-the-art neural language models: BERT and Transformer-XL. ### Why is language modeling important? Language modeling is fundamental in modern NLP applications. It enables machines to understand qualitative information, and enables people to communicate with machines in the natural languages that humans use to communicate with each other. Language modeling is used directly in a variety of industries, including tech, finance, healthcare, transportation, legal, military, government, and more -- actually, you probably have just interacted with a language model today, whether it be through Google search, engaging with a voice assistant, or using text autocomplete features. ## How does language modeling work? The roots of modern language modeling can be traced back to 1948, when Claude Shannon published a paper titled "A Mathematical Theory of Communication", laying the foundation for information theory and language modeling. In the paper, Shannon detailed the use of a stochastic model called the Markov chain to create a statistical model for the sequences of letters in English text. The Markov models, along with n-gram, are still among the most popular statistical language models today. However, simple statistical language models have serious drawbacks in scalability and fluency because of its sparse representation of language. Overcoming the problem by representing language units (eg. words, characters) as a non-linear, distributed combination of weights in continuous space, neural language models can learn to approximate words without being misled by rare or unknown values. Therefore, as mentioned above, we introduce two popular state-of-the-art neural language models, BERT and Transformer-XL, in Tensorflow and PyTorch. More details can be found in the [NVIDIA Deep Learning Examples Github Repository ](https://github.com/NVIDIA/DeepLearningExamples) ## Use cases and applications ### Speech Recognition Imagine speaking a phrase to the phone, expecting it to convert the speech to text. How does it know if you said "recognize speech" or "wreck a nice beach"? Language models help figure it out based on the context, enabling machines to process and make sense of speech audio. ### Spelling Correction Language-models-enabled spellcheckers can point to spelling errors and possibly suggest alternatives. ### Machine translation Imagine you are translating the Chinese sentence "我在开车" into English. Your translation system gives you several choices: - I at open car - me at open car - I at drive - me at drive - I am driving - me am driving A language model tells you which translation sounds the most natural. ## Getting started NVIDIA provides examples for Language Modeling on [Deep Learning Examples Github Repository](https://github.com/NVIDIA/DeepLearningExamples). These examples provide you with easy to consume and highly optimized scripts for both training and inferencing. The quick start guide at our GitHub repository will help you in setting up the environment using NGC Docker Images, download pre-trained models from NGC and adapt the model training and inference for your application/use-case. These models are tested and maintained by NVIDIA, leveraging mixed precision using tensor cores on our latest GPUs for faster training times while maintaining accuracy.
Kaldi/SpeechRecognition/scripts
scripts
compute_wer
#!/bin/bash model_path="/data/models/LibriSpeech" librispeech_path="/data/datasets/LibriSpeech/test_clean" result_path="/data/results" # Correctness cat $model_path/words.txt | tr '[:upper:]' '[:lower:]' > $result_path/words.txt cat $librispeech_path/$test_set/text | tr '[:upper:]' '[:lower:]' > $result_path/text oovtok=$(cat $result_path/words.txt | grep "<unk>" | awk '{print $2}') /opt/kaldi/egs/wsj/s5/utils/sym2int.pl --map-oov $oovtok -f 2- $result_path/words.txt $result_path/text > $result_path/text_ints 2> /dev/null # convert lattice to transcript /opt/kaldi/src/latbin/lattice-best-path \ "ark:gunzip -c $result_path/lat.cuda-asr.gz |"\ "ark,t:$result_path/trans.cuda-asr" 2> /dev/null # calculate wer /opt/kaldi/src/bin/compute-wer --mode=present \ "ark:$result_path/text_ints" \ "ark:$result_path/trans.cuda-asr" 2> /dev/null
PyTorch/SpeechSynthesis/HiFiGAN
HiFiGAN
train
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import os from functools import partial from itertools import islice import numpy as np import torch import torch.nn.functional as F from torch.cuda import amp from torch.cuda.amp import autocast from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import AdamW from torch.optim.lr_scheduler import ExponentialLR from apex.optimizers import FusedAdam, FusedLAMB import models from common import tb_dllogger as logger, utils, gpu_affinity from common.utils import (Checkpointer, freeze, init_distributed, print_once, reduce_tensor, unfreeze, l2_promote) from hifigan.data_function import get_data_loader, mel_spectrogram from hifigan.logging import init_logger, Metrics from hifigan.models import (MultiPeriodDiscriminator, MultiScaleDiscriminator, feature_loss, generator_loss, discriminator_loss) def parse_args(parser): parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('--log_file', type=str, default=None, help='Path to a DLLogger log file') train = parser.add_argument_group('training setup') train.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run') train.add_argument('--epochs_this_job', type=int, default=None, help='Number of epochs in partial training run') train.add_argument('--keep_milestones', type=int, nargs='+', default=[1000, 2000, 3000, 4000, 5000, 6000], help='Milestone checkpoints to keep from removing') train.add_argument('--checkpoint_interval', type=int, default=50, help='Saving checkpoints frequency (in epochs)') train.add_argument('--step_logs_interval', default=1, type=int, help='Step logs dumping frequency (in steps)') train.add_argument('--validation_interval', default=10, type=int, help='Validation frequency (in epochs)') train.add_argument('--samples_interval', default=100, type=int, help='Dumping audio samples frequency (in epochs)') train.add_argument('--resume', action='store_true', help='Resume training from the last checkpoint') train.add_argument('--checkpoint_path_gen', type=str, default=None, help='Resume training from a selected checkpoint') train.add_argument('--checkpoint_path_discrim', type=str, default=None, help='Resume training from a selected checkpoint') train.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators') train.add_argument('--amp', action='store_true', help='Enable AMP') train.add_argument('--autocast_spectrogram', action='store_true', help='Enable autocast while computing spectrograms') train.add_argument('--cuda', action='store_true', help='Run on GPU using CUDA') train.add_argument('--disable_cudnn_benchmark', action='store_true', help='Disable cudnn benchmark mode') train.add_argument('--ema_decay', type=float, default=0, help='Discounting factor for training weights EMA') train.add_argument('--grad_accumulation', type=int, default=1, help='Training steps to accumulate gradients for') train.add_argument('--num_workers', type=int, default=1, help='Data loader workers number') train.add_argument('--fine_tuning', action='store_true', help='Enable fine-tuning') train.add_argument('--input_mels_dir', type=str, default=None, help='Directory with mels for fine-tuning') train.add_argument('--benchmark_epochs_num', type=int, default=5) train.add_argument('--no_amp_grouped_conv', action='store_true', help='Disable AMP on certain convs for better perf') opt = parser.add_argument_group('optimization setup') opt.add_argument('--optimizer', type=str, default='adamw', help='Optimization algorithm') opt.add_argument('--lr_decay', type=float, default=0.9998, help='Learning rate decay') opt.add_argument('-lr', '--learning_rate', type=float, required=True, help='Learning rate') opt.add_argument('--fine_tune_lr_factor', type=float, default=1., help='Learning rate multiplier for fine-tuning') opt.add_argument('--adam_betas', type=float, nargs=2, default=(0.8, 0.99), help='Adam Beta coefficients') opt.add_argument('--grad_clip_thresh', default=1000.0, type=float, help='Clip threshold for gradients') opt.add_argument('-bs', '--batch_size', type=int, required=True, help=('Batch size per training iter. ' 'May be split into grad accumulation steps.')) opt.add_argument('--warmup_steps', type=int, default=1000, help='Number of steps for lr warmup') data = parser.add_argument_group('dataset parameters') data.add_argument('-d', '--dataset_path', default='data/LJSpeech-1.1', help='Path to dataset', type=str) data.add_argument('--training_files', type=str, required=True, nargs='+', help='Paths to training filelists.') data.add_argument('--validation_files', type=str, required=True, nargs='+', help='Paths to validation filelists.') audio = parser.add_argument_group('audio parameters') audio.add_argument('--max_wav_value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling_rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter_length', default=1024, type=int, help='Filter length') audio.add_argument('--num_mels', default=80, type=int, help='number of Mel bands') audio.add_argument('--hop_length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win_length', default=1024, type=int, help='Window length') audio.add_argument('--mel_fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel_fmax', default=8000.0, type=float, help='Maximum mel frequency') audio.add_argument('--mel_fmax_loss', default=None, type=float, help='Maximum mel frequency used for computing loss') audio.add_argument('--segment_size', default=8192, type=int, help='Training segment size') dist = parser.add_argument_group('distributed setup') dist.add_argument( '--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), help='Rank of the process for multiproc. Do not set manually.') dist.add_argument( '--world_size', type=int, default=os.getenv('WORLD_SIZE', 1), help='Number of processes for multiproc. Do not set manually.') dist.add_argument('--affinity', type=str, default='socket_unique_interleaved', choices=['socket', 'single', 'single_unique', 'socket_unique_interleaved', 'socket_unique_continuous', 'disabled'], help='type of CPU affinity') return parser def validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics): gen.eval() val_metrics.start_val() with torch.no_grad(): for i, batch in enumerate(val_loader): x, y, _, y_mel = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) y_mel = y_mel.cuda(non_blocking=True) with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): y_g_hat_mel = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax_loss) with autocast(enabled=args.amp): # val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() * 45 # NOTE: Scale by 45.0 to match train loss magnitude loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f = discriminator_loss(y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s = discriminator_loss(y_ds_hat_r, y_ds_hat_g) y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel val_metrics['loss_discrim'] = reduce_tensor( loss_disc_s + loss_disc_f, args.world_size) val_metrics['loss_gen'] = reduce_tensor(loss_gen_all, args.world_size) val_metrics['loss_mel'] = reduce_tensor(loss_mel, args.world_size) val_metrics['frames'] = x.size(0) * x.size(1) * args.world_size val_metrics.accumulate(scopes=['val']) val_metrics.finish_val() gen.train() def main(): parser = argparse.ArgumentParser(description='PyTorch HiFi-GAN Training', allow_abbrev=False) parser = models.parse_model_args('HiFi-GAN', parse_args(parser)) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') if args.affinity != 'disabled': nproc_per_node = torch.cuda.device_count() print(nproc_per_node) affinity = gpu_affinity.set_affinity( args.local_rank, nproc_per_node, args.affinity ) print(f'{args.local_rank}: thread affinity: {affinity}') # seeds, distributed init, logging, cuDNN distributed_run = args.world_size > 1 torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) if distributed_run: init_distributed(args, args.world_size, args.local_rank) metrics = Metrics(scopes=['train', 'train_avg'], benchmark_epochs=args.benchmark_epochs_num, cuda=args.cuda) val_metrics = Metrics(scopes=['val'], cuda=args.cuda) init_logger(args.output, args.log_file, args.ema_decay) logger.parameters(vars(args), tb_subset='train') l2_promote() torch.backends.cudnn.benchmark = not args.disable_cudnn_benchmark train_setup = models.get_model_train_setup('HiFi-GAN', args) gen_config = models.get_model_config('HiFi-GAN', args) gen = models.get_model('HiFi-GAN', gen_config, 'cuda') mpd = MultiPeriodDiscriminator(periods=args.mpd_periods, concat_fwd=args.concat_fwd).cuda() assert args.amp or not args.no_amp_grouped_conv, \ "--no-amp-grouped-conv is applicable only when AMP is enabled" msd = MultiScaleDiscriminator(concat_fwd=args.concat_fwd, no_amp_grouped_conv=args.no_amp_grouped_conv) msd = msd.cuda() mel_spec = partial(mel_spectrogram, n_fft=args.filter_length, num_mels=args.num_mels, sampling_rate=args.sampling_rate, hop_size=args.hop_length, win_size=args.win_length, fmin=args.mel_fmin) kw = {'lr': args.learning_rate, 'betas': args.adam_betas} proto = {'adam': FusedAdam, 'lamb': FusedLAMB, 'adamw': AdamW }[args.optimizer] optim_g = proto(gen.parameters(), **kw) optim_d = proto(itertools.chain(msd.parameters(), mpd.parameters()), **kw) scaler_g = amp.GradScaler(enabled=args.amp) scaler_d = amp.GradScaler(enabled=args.amp) # setup EMA if args.ema_decay > 0: # burried import, requires apex from common.ema_utils import (apply_multi_tensor_ema, init_multi_tensor_ema) gen_ema = models.get_model('HiFi-GAN', gen_config, 'cuda').cuda() mpd_ema = MultiPeriodDiscriminator( periods=args.mpd_periods, concat_fwd=args.concat_fwd).cuda() msd_ema = MultiScaleDiscriminator( concat_fwd=args.concat_fwd, no_amp_grouped_conv=args.no_amp_grouped_conv).cuda() else: gen_ema, mpd_ema, msd_ema = None, None, None # setup DDP if distributed_run: kw = {'device_ids': [args.local_rank], 'output_device': args.local_rank} gen = DDP(gen, **kw) msd = DDP(msd, **kw) # DDP needs nonempty model mpd = DDP(mpd, **kw) if len(args.mpd_periods) else mpd # resume from last / load a checkpoint train_state = {} checkpointer = Checkpointer(args.output, args.keep_milestones) checkpointer.maybe_load( gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, train_state, args, gen_ema=None, mpd_ema=None, msd_ema=None) iters_all = train_state.get('iters_all', 0) last_epoch = train_state['epoch'] + 1 if 'epoch' in train_state else -1 sched_g = ExponentialLR(optim_g, gamma=args.lr_decay, last_epoch=last_epoch) sched_d = ExponentialLR(optim_d, gamma=args.lr_decay, last_epoch=last_epoch) if args.fine_tuning: print_once('Doing fine-tuning') train_loader = get_data_loader(args, distributed_run, train=True) val_loader = get_data_loader(args, distributed_run, train=False, val_kwargs=dict(repeat=5, split=True)) val_samples_loader = get_data_loader(args, False, train=False, val_kwargs=dict(split=False), batch_size=1) if args.ema_decay > 0.0: gen_ema_params = init_multi_tensor_ema(gen, gen_ema) mpd_ema_params = init_multi_tensor_ema(mpd, mpd_ema) msd_ema_params = init_multi_tensor_ema(msd, msd_ema) epochs_done = 0 for epoch in range(max(1, last_epoch), args.epochs + 1): metrics.start_epoch(epoch) if distributed_run: train_loader.sampler.set_epoch(epoch) gen.train() mpd.train() msd.train() iter_ = 0 iters_num = len(train_loader) // args.grad_accumulation for step, batch in enumerate(train_loader): if step // args.grad_accumulation >= iters_num: break # only full effective batches is_first_accum_step = step % args.grad_accumulation == 0 is_last_accum_step = (step + 1) % args.grad_accumulation == 0 assert (args.grad_accumulation > 1 or (is_first_accum_step and is_last_accum_step)) if is_first_accum_step: iter_ += 1 iters_all += 1 metrics.start_iter(iter_) accum_batches = [] optim_d.zero_grad(set_to_none=True) optim_g.zero_grad(set_to_none=True) x, y, _, y_mel = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) y_mel = y_mel.cuda(non_blocking=True) accum_batches.append((x, y, y_mel)) with torch.set_grad_enabled(is_last_accum_step), \ autocast(enabled=args.amp): y_g_hat = gen(x) unfreeze(mpd) unfreeze(msd) with autocast(enabled=args.amp): # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f = discriminator_loss(y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s = discriminator_loss(y_ds_hat_r, y_ds_hat_g) loss_disc_all = loss_disc_s + loss_disc_f metrics['loss_discrim'] = reduce_tensor(loss_disc_all, args.world_size) metrics['frames'] = x.size(0) * x.size(1) * args.world_size metrics.accumulate() loss_disc_all /= args.grad_accumulation scaler_d.scale(loss_disc_all).backward() if not is_last_accum_step: continue scaler_d.step(optim_d) scaler_d.update() # generator freeze(mpd) freeze(msd) for _i, (x, y, y_mel) in enumerate(reversed(accum_batches)): if _i != 0: # first `y_g_hat` can be reused with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): y_g_hat_mel = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax_loss) # L1 mel-spectrogram Loss with autocast(enabled=args.amp): loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel metrics['loss_gen'] = reduce_tensor(loss_gen_all, args.world_size) metrics['loss_mel'] = reduce_tensor(loss_mel, args.world_size) metrics.accumulate() loss_gen_all /= args.grad_accumulation scaler_g.scale(loss_gen_all).backward() scaler_g.step(optim_g) scaler_g.update() metrics['lrate_gen'] = optim_g.param_groups[0]['lr'] metrics['lrate_discrim'] = optim_d.param_groups[0]['lr'] metrics.accumulate() if args.ema_decay > 0.0: apply_multi_tensor_ema(args.ema_decay, *gen_ema_params) apply_multi_tensor_ema(args.ema_decay, *mpd_ema_params) apply_multi_tensor_ema(args.ema_decay, *msd_ema_params) metrics.finish_iter() # done accumulating if iters_all % args.step_logs_interval == 0: logger.log((epoch, iter_, iters_num), metrics, scope='train', tb_iter=iters_all, flush_log=True) assert is_last_accum_step metrics.finish_epoch() logger.log((epoch,), metrics, scope='train_avg', flush_log=True) if epoch % args.validation_interval == 0: validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics) logger.log((epoch,), val_metrics, scope='val', tb_iter=iters_all, flush_log=True) # validation samples if epoch % args.samples_interval == 0 and args.local_rank == 0: gen.eval() with torch.no_grad(): for i, batch in enumerate(islice(val_samples_loader, 5)): x, y, _, _ = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): # args.fmax instead of args.max_for_inference y_hat_spec = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax) logger.log_samples_tb(iters_all, i, y_g_hat, y_hat_spec, args.sampling_rate) if epoch == args.samples_interval: # ground truth logger.log_samples_tb(0, i, y, x, args.sampling_rate) gen.train() train_state.update({'epoch': epoch, 'iters_all': iters_all}) # save before making sched.step() for proper loading of LR checkpointer.maybe_save( gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, epoch, train_state, args, gen_config, train_setup, gen_ema=gen_ema, mpd_ema=mpd_ema, msd_ema=msd_ema) logger.flush() sched_g.step() sched_d.step() epochs_done += 1 if (args.epochs_this_job is not None and epochs_done == args.epochs_this_job): break # finished training if epochs_done > 0: logger.log((), metrics, scope='train_benchmark', flush_log=True) if epoch % args.validation_interval != 0: # val metrics are not up-to-date validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics) logger.log((), val_metrics, scope='val', flush_log=True) else: print_once(f'Finished without training after epoch {args.epochs}.') if __name__ == '__main__': main()
PyTorch/LanguageModeling/BERT/triton/dist4l/runner
runner
config_NVIDIA-DGX-1-(1x-V100-32GB)
checkpoints: - name: dist-4l-qa url: https://api.ngc.nvidia.com/v2/models/nvidia/dle/bert_pyt_ckpt_distilled_4l_288d_qa_squad11_amp/versions/21.11.0/zip configurations: - accelerator: none accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: none accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: none accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: trt accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: trt accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: trt accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: none accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: none accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: none accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: none accelerator_precision: fp16 batch_size: - 1 - 8 - 16 batch_sizes: 1 8 16 capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: ts-trace export_precision: fp16 format: ts-trace max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 container_version: '21.10' datasets: - name: data datasets_dir: datasets framework: PyTorch model_name: BERT triton_container_image: null triton_custom_operations: null triton_dockerfile: null triton_load_model_method: explicit
PyTorch/Classification/ConvNets/resnet50v1.5/training/AMP
AMP
DGXA100_resnet50_AMP_90E
python ./multiproc.py --nproc_per_node 8 ./launch.py --model resnet50 --precision AMP --mode convergence --platform DGXA100 /imagenet --epochs 90 --mixup 0.0 --workspace ${1:-./} --raport-file raport.json
TensorFlow/Detection/SSD/models/research/object_detection/matchers
matchers
argmax_matcher_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.matchers.argmax_matcher.""" import numpy as np import tensorflow as tf from object_detection.matchers import argmax_matcher from object_detection.utils import test_case class ArgMaxMatcherTest(test_case.TestCase): def test_return_correct_matches_with_default_thresholds(self): def graph_fn(similarity_matrix): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None) match = matcher.match(similarity_matrix) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1., 1, 1, 3, 1], [2, -1, 2, 0, 4], [3, 0, -1, 0, 0]], dtype=np.float32) expected_matched_rows = np.array([2, 0, 1, 0, 1]) (res_matched_cols, res_unmatched_cols, res_match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(res_match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], [0, 1, 2, 3, 4]) self.assertFalse(np.all(res_unmatched_cols)) def test_return_correct_matches_with_empty_rows(self): def graph_fn(similarity_matrix): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None) match = matcher.match(similarity_matrix) return match.unmatched_column_indicator() similarity = 0.2 * np.ones([0, 5], dtype=np.float32) res_unmatched_cols = self.execute(graph_fn, [similarity]) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], np.arange(5)) def test_return_correct_matches_with_matched_threshold(self): def graph_fn(similarity): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.) match = matcher.match(similarity) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [2, -1, 2, 0, 4], [3, 0, -1, 0, 0]], dtype=np.float32) expected_matched_cols = np.array([0, 3, 4]) expected_matched_rows = np.array([2, 0, 1]) expected_unmatched_cols = np.array([1, 2]) (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_return_correct_matches_with_matched_and_unmatched_threshold(self): def graph_fn(similarity): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., unmatched_threshold=2.) match = matcher.match(similarity) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [2, -1, 2, 0, 4], [3, 0, -1, 0, 0]], dtype=np.float32) expected_matched_cols = np.array([0, 3, 4]) expected_matched_rows = np.array([2, 0, 1]) expected_unmatched_cols = np.array([1]) # col 2 has too high maximum val (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_return_correct_matches_negatives_lower_than_unmatched_false(self): def graph_fn(similarity): matcher = argmax_matcher.ArgMaxMatcher( matched_threshold=3., unmatched_threshold=2., negatives_lower_than_unmatched=False) match = matcher.match(similarity) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [2, -1, 2, 0, 4], [3, 0, -1, 0, 0]], dtype=np.float32) expected_matched_cols = np.array([0, 3, 4]) expected_matched_rows = np.array([2, 0, 1]) expected_unmatched_cols = np.array([2]) # col 1 has too low maximum val (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_return_correct_matches_unmatched_row_not_using_force_match(self): def graph_fn(similarity): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., unmatched_threshold=2.) match = matcher.match(similarity) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [-1, 0, -2, -2, -1], [3, 0, -1, 2, 0]], dtype=np.float32) expected_matched_cols = np.array([0, 3]) expected_matched_rows = np.array([2, 0]) expected_unmatched_cols = np.array([1, 2, 4]) (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_return_correct_matches_unmatched_row_while_using_force_match(self): def graph_fn(similarity): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., unmatched_threshold=2., force_match_for_each_row=True) match = matcher.match(similarity) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [-1, 0, -2, -2, -1], [3, 0, -1, 2, 0]], dtype=np.float32) expected_matched_cols = np.array([0, 1, 3]) expected_matched_rows = np.array([2, 1, 0]) expected_unmatched_cols = np.array([2, 4]) # col 2 has too high max val (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_return_correct_matches_using_force_match_padded_groundtruth(self): def graph_fn(similarity, valid_rows): matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., unmatched_threshold=2., force_match_for_each_row=True) match = matcher.match(similarity, valid_rows) matched_cols = match.matched_column_indicator() unmatched_cols = match.unmatched_column_indicator() match_results = match.match_results return (matched_cols, unmatched_cols, match_results) similarity = np.array([[1, 1, 1, 3, 1], [-1, 0, -2, -2, -1], [0, 0, 0, 0, 0], [3, 0, -1, 2, 0], [0, 0, 0, 0, 0]], dtype=np.float32) valid_rows = np.array([True, True, False, True, False]) expected_matched_cols = np.array([0, 1, 3]) expected_matched_rows = np.array([3, 1, 0]) expected_unmatched_cols = np.array([2, 4]) # col 2 has too high max val (res_matched_cols, res_unmatched_cols, match_results) = self.execute(graph_fn, [similarity, valid_rows]) self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], expected_unmatched_cols) def test_valid_arguments_corner_case(self): argmax_matcher.ArgMaxMatcher(matched_threshold=1, unmatched_threshold=1) def test_invalid_arguments_corner_case_negatives_lower_than_thres_false(self): with self.assertRaises(ValueError): argmax_matcher.ArgMaxMatcher(matched_threshold=1, unmatched_threshold=1, negatives_lower_than_unmatched=False) def test_invalid_arguments_no_matched_threshold(self): with self.assertRaises(ValueError): argmax_matcher.ArgMaxMatcher(matched_threshold=None, unmatched_threshold=4) def test_invalid_arguments_unmatched_thres_larger_than_matched_thres(self): with self.assertRaises(ValueError): argmax_matcher.ArgMaxMatcher(matched_threshold=1, unmatched_threshold=2) if __name__ == '__main__': tf.test.main()
PyTorch/Classification/ConvNets/se-resnext101-32x4d/training/AMP
AMP
DGXA100_se-resnext101-32x4d_AMP_250E
python ./multiproc.py --nproc_per_node 8 ./launch.py --model se-resnext101-32x4d --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
PyTorch/LanguageModeling/BERT/triton
triton
prepare_input_data
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os from pathlib import Path from tqdm import tqdm # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "0" from .deployment_toolkit.args import ArgParserGenerator # noqa: E402 module level import not at top of file from .deployment_toolkit.core import ( # noqa: E402 module level import not at top of file DATALOADER_FN_NAME, load_from_file, ) LOGGER = logging.getLogger("prepare_input_data") def _parse_and_validate_args(): parser = argparse.ArgumentParser(description="Dump local inference output of given model", allow_abbrev=False) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--input-data-dir", help="Path to dir where output files will be stored", required=True) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) args = parser.parse_args() return args def main(): args = _parse_and_validate_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") data = [] get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) LOGGER.info("Data loader initialized; Creating benchmark data") for _, x, _ in tqdm(dataloader_fn(), unit="batch", mininterval=10): for input__0, input__1, input__2 in zip(x["input__0"], x["input__1"], x["input__2"]): data.append( { "input__0": input__0.tolist(), "input__1": input__1.tolist(), "input__2": input__2.tolist(), } ) LOGGER.info("Dumping data") with open(Path(args.input_data_dir) / "data.json", "w") as fd: fd.write(json.dumps({"data": data})) LOGGER.info("Dumped") if __name__ == "__main__": main()
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/utils
utils
metric_logger
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from collections import defaultdict from collections import deque import torch class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20): self.deque = deque(maxlen=window_size) self.series = [] self.total = 0.0 self.count = 0 def update(self, value): self.deque.append(value) self.series.append(value) self.count += 1 self.total += value @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque)) return d.mean().item() @property def global_avg(self): return self.total / self.count class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {:.4f} ({:.4f})".format(name, meter.median, meter.global_avg) ) return self.delimiter.join(loss_str) def get_dict(self): loss_dict = {} for name, meter in self.meters.items(): loss_dict[name] = "{:.4f} ({:.4f})".format(meter.median, meter.global_avg) return loss_dict
TensorFlow2/Classification/ConvNets/config/efficientnet_v1
efficientnet_v1
b0_cfg
import tensorflow as tf from config.defaults import Config # NOTE: this confile file can further be overridden by user-defined params provided at the command line config = dict( path_to_impl='model.efficientnet_model_v1', #data-related model params num_classes=1000, # must be the same as data.num_classes input_channels= 3, rescale_input= 1, # binary, mean_rgb=(0.485 * 255, 0.456 * 255, 0.406 * 255), # used when rescale_input=True std_rgb=(0.229 * 255, 0.224 * 255, 0.225 * 255), # used when rescale_input=True dtype= tf.float32, #used for input image normalization/casting, # tf.float32, tf.bfloat16, tf.float16, tf.float32, tf.bfloat16, # GUIDE # width depth resolution dropout # efficientnet_v1-b0 1.0 1.0 224 0.2 # 'efficientnet_v1-b1 1.0 1.1 240 0.2 # 'efficientnet_v1-b2 1.1 1.2 260 0.3 # 'efficientnet_v1-b3 1.2 1.4 300 0.3 # 'efficientnet_v1-b4 1.4 1.8 380 0.4 # 'efficientnet_v1-b5 1.6 2.2 456 0.4 # 'efficientnet_v1-b6 1.8 2.6 528 0.5 # 'efficientnet_v1-b7 2.0 3.1 600 0.5 # 'efficientnet_v1-b8 2.2 3.6 672 0.5 # 'efficientnet_v1-l2 4.3 5.3 800 0.5 width_coefficient= 1.0, depth_coefficient= 1.0, dropout_rate= 0.2, # image resolution must be set in tr/eval/predict configs below drop_connect_rate= 0.2, stem_base_filters= 32, top_base_filters= 1280, activation= 'swish', depth_divisor= 8, min_depth= None, use_se= 1, # binary batch_norm= 'syncbn', bn_momentum= 0.99, bn_epsilon= 1e-3, weight_init= 'fan_out', blocks= ( # (input_filters, output_filters, kernel_size, num_repeat,expand_ratio, strides, se_ratio) # pylint: disable=bad-whitespace dict(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), dict(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25,id_skip=True,fused_conv=False,conv_type='depthwise'), # pylint: enable=bad-whitespace ), ) # train_config = dict(lr_decay='cosine', # # max_epochs=500, # img_size=224, # batch_size=256, # save_checkpoint_freq=5, # lr_init=0.005, # weight_decay=5e-6, # epsilon=0.001, # resume_checkpoint=1, # enable_tensorboard=0 # ) # # eval_config = dict(img_size=224, # batch_size=256) # # data_config = dict( # data_dir='/data/', # augmenter_name='autoaugment', # mixup_alpha=0.0, # # # ) # runtime_config = dict(mode='train_and_eval', # model_dir='./output/', # use_amp=1, # use_xla=1, # log_steps=100 # ) # # config = dict(model=model_config, # train=train_config, # eval=eval_config, # data=data_config, # runtime=runtime_config, # )
TensorFlow/LanguageModeling/BERT/biobert/scripts
scripts
biobert_finetune_train_benchmark
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. task=${1:-"ner_bc5cdr-chem"} num_gpu=${2:-"2"} bert_model=${3:-"base"} cased=${4:-"false"} epochs=2.0 if [ "$cased" = "true" ] ; then DO_LOWER_CASE=0 CASING_DIR_PREFIX="cased" case_flag="--do_lower_case=False" else DO_LOWER_CASE=1 CASING_DIR_PREFIX="uncased" case_flag="--do_lower_case=True" fi if [ "$bert_model" = "large" ] ; then export BERT_DIR=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-24_H-1024_A-16 else export BERT_DIR=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-12_H-768_A-12 fi if [ $num_gpu -gt 1 ] ; then mpi_command="mpirun -np $num_gpu -H localhost:$num_gpu \ --allow-run-as-root -bind-to none -map-by slot \ -x NCCL_DEBUG=INFO \ -x LD_LIBRARY_PATH \ -x PATH -mca pml ob1 -mca btl ^openib" use_hvd="--horovod" else mpi_command="" use_hvd="" fi DATESTAMP=`date +'%y%m%d%H%M%S'` printf -v TAG "tf_bert_biobert_%s_training_benchmark_%s_%s_num_gpu_%d" "$task" "$bert_model" "$CASING_DIR_PREFIX" "$num_gpu" OUTPUT_DIR=/results/${TAG}_${DATESTAMP} mkdir -p ${OUTPUT_DIR} if [ "$task" = "ner_bc5cdr-chem" ] ; then DATASET_DIR=/workspace/bert/data/biobert/BC5CDR/chem LOGFILE="${OUTPUT_DIR}/${task}_training_benchmark_bert_${bert_model}_gpu_${num_gpu}.log" echo "Training performance benchmarking for BERT $bert_model from $BERT_DIR" >> $LOGFILE echo "Precision Sequence Length Batch size Performance(sent/sec)" >> $LOGFILE for seq_length in 128 512; do for train_batch_size in 8 32 64; do for use_fp16 in "--amp" "--noamp"; do res_dir=${OUTPUT_DIR}/bert_${bert_model}_gpu_${num_gpu}_sl_${seq_length}_prec_${use_fp16}_bs_${batch_size} mkdir -p ${res_dir} tmp_file="${res_dir}/${task}_training_benchmark.log" $mpi_command python /workspace/bert/run_ner.py \ --do_prepare=true \ --do_train=true \ --do_eval=true \ --do_predict=true \ --task_name=bc5cdr \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint="$BERT_DIR/bert_model.ckpt" \ --num_train_epochs=$epochs \ --data_dir=$DATASET_DIR \ --output_dir=$res_dir \ --train_batch_size=$train_batch_size \ --max_seq_length=$seq_length \ $use_hvd $use_fp16 --use_xla $case_flag |& tee $tmp_file perf=`cat $tmp_file | grep -F 'Throughput Average (sentences/sec) =' | head -1 | awk -F'= ' '{print $2}' | awk -F' sen' '{print $1}'` echo "${use_fp16} $seq_length $train_batch_size $perf" >> $LOGFILE done done done elif [ "$task" = "ner_bc5cdr-disease" ] ; then DATASET_DIR=/workspace/bert/data/biobert/BC5CDR/disease LOGFILE="${OUTPUT_DIR}/${task}_training_benchmark_bert_${bert_model}_gpu_${num_gpu}.log" echo "Training performance benchmarking for BERT $bert_model from $BERT_DIR" >> $LOGFILE echo "Precision Sequence Length Batch size Performance(sent/sec)" >> $LOGFILE for seq_length in 128 512; do for train_batch_size in 8 32 64; do for use_fp16 in "--amp" "--noamp"; do res_dir=${OUTPUT_DIR}/bert_${bert_model}_gpu_${num_gpu}_sl_${seq_length}_prec_${use_fp16}_bs_${batch_size} mkdir -p ${res_dir} tmp_file="${res_dir}/${task}_training_benchmark.log" $mpi_command python3 /workspace/bert/run_ner.py \ --do_prepare=true \ --do_train=true \ --do_eval=true \ --do_predict=true \ --task_name="bc5cdr" \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint="$BERT_DIR/bert_model.ckpt" \ --num_train_epochs=$epochs \ --data_dir=$DATASET_DIR \ --output_dir=$res_dir \ --train_batch_size=$train_batch_size \ --max_seq_length=$seq_length \ "$use_hvd" "$use_fp16" --use_xla $case_flag |& tee $tmp_file perf=`cat $tmp_file | grep -F 'Throughput Average (sentences/sec) =' | head -1 | awk -F'= ' '{print $2}' | awk -F' sen' '{print $1}'` echo "${use_fp16} $seq_length $train_batch_size $perf" >> $LOGFILE done done done elif [ "$task" = "rel_chemprot" ] ; then DATASET_DIR=/workspace/bert/data/biobert/chemprot-data_treeLSTM LOGFILE="${OUTPUT_DIR}/${task}_training_benchmark_bert_${bert_model}_gpu_${num_gpu}.log" echo "Training performance benchmarking for BERT $bert_model from $BERT_DIR" >> $LOGFILE echo "Precision Sequence Length Batch size Performance(sent/sec)" >> $LOGFILE for seq_length in 128 512; do for train_batch_size in 8 32 64; do for use_fp16 in "--amp" "--noamp"; do res_dir=${OUTPUT_DIR}/bert_${bert_model}_gpu_${num_gpu}_sl_${seq_length}_prec_${use_fp16}_bs_${batch_size} mkdir -p ${res_dir} tmp_file="${res_dir}/${task}_training_benchmark.log" $mpi_command python3 /workspace/bert/run_re.py \ --do_prepare=true \ --do_train=true \ --do_eval=true \ --do_predict=true \ --task_name="chemprot" \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint="$BERT_DIR/bert_model.ckpt" \ --num_train_epochs=$epochs \ --data_dir=$DATASET_DIR \ --output_dir=$res_dir \ --train_batch_size=$train_batch_size \ --max_seq_length=$seq_length \ "$use_hvd" "$use_fp16" --use_xla $case_flag |& tee $tmp_file perf=`cat $tmp_file | grep -F 'Throughput Average (sentences/sec) =' | head -1 | awk -F'= ' '{print $2}' | awk -F' sen' '{print $1}'` echo "${use_fp16} $seq_length $train_batch_size $perf" >> $LOGFILE done done done else echo "Benchmarking for " $task "currently not supported. Sorry!" fi
TensorFlow/Segmentation/VNet
VNet
main
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import math import os import pickle import shutil import horovod.tensorflow as hvd import tensorflow as tf import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from hooks.profiling_hook import ProfilingHook from hooks.train_hook import TrainHook from utils.cmd_util import PARSER from utils.data_loader import MSDDataset from utils.model_fn import vnet_v2 def main(_): tf.get_logger().setLevel(logging.ERROR) hvd.init() FLAGS = PARSER.parse_args() backends = [] if hvd.rank() == 0: backends += [StdOutBackend(Verbosity.DEFAULT)] if FLAGS.log_dir: backends += [JSONStreamBackend(Verbosity.DEFAULT, FLAGS.log_dir)] DLLogger.init(backends=backends) for key in vars(FLAGS): DLLogger.log(step="PARAMETER", data={str(key): vars(FLAGS)[key]}) os.environ['CUDA_CACHE_DISABLE'] = '0' os.environ['HOROVOD_GPU_ALLREDUCE'] = 'NCCL' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_GPU_THREAD_MODE'] = 'gpu_private' os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1' os.environ['TF_ADJUST_HUE_FUSED'] = '1' os.environ['TF_ADJUST_SATURATION_FUSED'] = '1' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_AUTOTUNE_THRESHOLD'] = '2' os.environ['TF_DISABLE_NVTX_RANGES'] = '1' dataset = MSDDataset(json_path=os.path.join(FLAGS.data_dir, 'dataset.json'), dst_size=FLAGS.input_shape, seed=FLAGS.seed, interpolator=FLAGS.resize_interpolator, data_normalization=FLAGS.data_normalization, batch_size=FLAGS.batch_size, train_split=FLAGS.train_split, split_seed=FLAGS.split_seed) FLAGS.labels = dataset.labels gpu_options = tf.GPUOptions() config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) if FLAGS.use_amp: config.graph_options.rewrite_options.auto_mixed_precision = 1 run_config = tf.estimator.RunConfig( save_summary_steps=None, save_checkpoints_steps=None if FLAGS.benchmark else dataset.train_steps * FLAGS.train_epochs, save_checkpoints_secs=None, tf_random_seed=None, session_config=config, keep_checkpoint_max=1) estimator = tf.estimator.Estimator( model_fn=vnet_v2, model_dir=FLAGS.model_dir if hvd.rank() == 0 else None, config=run_config, params=FLAGS) train_hooks = [hvd.BroadcastGlobalVariablesHook(0)] if 'train' in FLAGS.exec_mode: steps = dataset.train_steps * FLAGS.train_epochs if FLAGS.benchmark: steps = FLAGS.warmup_steps * 2 if hvd.rank() == 0: train_hooks += [ProfilingHook(FLAGS.warmup_steps, FLAGS.batch_size * hvd.size(), DLLogger)] else: if hvd.rank() == 0: train_hooks += [TrainHook(FLAGS.log_every, DLLogger)] estimator.train( input_fn=lambda: dataset.train_fn(FLAGS.augment), steps=steps, hooks=train_hooks) if 'evaluate' in FLAGS.exec_mode: if hvd.rank() == 0: if FLAGS.train_split >= 1.0: raise ValueError("Missing argument: --train_split < 1.0") result = estimator.evaluate( input_fn=dataset.eval_fn, steps=dataset.eval_steps, hooks=[]) DLLogger.log(step=tuple(), data={'background_dice': str(result['background dice']), 'anterior_dice': str(result['Anterior dice']), 'posterior_dice': str(result['Posterior dice'])}) if 'predict' in FLAGS.exec_mode: count = 1 hooks = [] if hvd.rank() == 0: if FLAGS.benchmark: count = math.ceil((FLAGS.warmup_steps * 2) / dataset.test_steps) hooks += [ProfilingHook(FLAGS.warmup_steps, FLAGS.batch_size * hvd.size(), DLLogger, training=False)] predictions = estimator.predict(input_fn=lambda: dataset.test_fn(count=count), hooks=hooks) pred = [p['prediction'] for p in predictions] predict_path = os.path.join(FLAGS.model_dir, 'predictions') if os.path.exists(predict_path): shutil.rmtree(predict_path) os.makedirs(predict_path) pickle.dump(pred, open(os.path.join(predict_path, 'predictions.pkl'), 'wb')) if __name__ == '__main__': tf.compat.v1.app.run()
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/configuration
configuration
__init__
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .configuration import SynGenDatasetFeatureSpec, SynGenConfiguration
PyTorch/SpeechRecognition/Jasper/configs
configs
jasper10x5dr_speedp-offline
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: "Jasper" labels: [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'"] input_val: audio_dataset: &val_dataset sample_rate: &sample_rate 16000 trim_silence: true normalize_transcripts: true filterbank_features: &val_features normalize: per_feature sample_rate: *sample_rate window_size: 0.02 window_stride: 0.01 window: hann n_filt: &n_filt 64 n_fft: 512 frame_splicing: &frame_splicing 1 dither: 0.00001 pad_align: 16 # For training we keep samples < 16.7s and apply augmentation input_train: audio_dataset: <<: *val_dataset max_duration: 16.7 ignore_offline_speed_perturbation: false filterbank_features: <<: *val_features max_duration: 16.7 spec_augment: freq_masks: 0 max_freq: 20 time_masks: 0 max_time: 75 jasper: encoder: init: xavier_uniform in_feats: *n_filt frame_splicing: *frame_splicing activation: relu use_conv_masks: true blocks: - &Conv1 filters: 256 repeat: 1 kernel_size: [11] stride: [2] dilation: [1] dropout: 0.2 residual: false - &B1 filters: 256 repeat: 5 kernel_size: [11] stride: [1] dilation: [1] dropout: 0.2 residual: true residual_dense: true - *B1 - &B2 filters: 384 repeat: 5 kernel_size: [13] stride: [1] dilation: [1] dropout: 0.2 residual: true residual_dense: true - *B2 - &B3 filters: 512 repeat: 5 kernel_size: [17] stride: [1] dilation: [1] dropout: 0.2 residual: true residual_dense: true - *B3 - &B4 filters: 640 repeat: 5 kernel_size: [21] stride: [1] dilation: [1] dropout: 0.3 residual: true residual_dense: true - *B4 - &B5 filters: 768 repeat: 5 kernel_size: [25] stride: [1] dilation: [1] dropout: 0.3 residual: true residual_dense: true - *B5 - &Conv2 filters: 896 repeat: 1 kernel_size: [29] stride: [1] dilation: [2] dropout: 0.4 residual: false - &Conv3 filters: &enc_feats 1024 repeat: 1 kernel_size: [1] stride: [1] dilation: [1] dropout: 0.4 residual: false decoder: in_feats: *enc_feats init: xavier_uniform
TensorFlow/Segmentation/UNet_Medical
UNet_Medical
.gitignore
.idea/ .ipynb_checkpoints /_python_build *.pyc __pycache__ *.swp /results *.zip
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/import_utils
import_utils
__init__
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from .waveglow import load_waveglow
TensorFlow2/Recommendation/DLRM_and_DCNv2/dataloading
dataloading
split_tfrecords_multihot_dataset
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: Tomasz Grel ([email protected]) import tensorflow as tf import os import glob import json import numpy as np import tqdm def serialize_composite(rt): components = tf.nest.flatten(rt, expand_composites=True) tensor = tf.stack([tf.io.serialize_tensor(t) for t in components]) return tf.io.serialize_tensor(tensor) def deserialize_composite(serialized, type_spec): data = tf.io.parse_tensor(serialized, tf.string) component_specs = tf.nest.flatten(type_spec, expand_composites=True) components = [tf.io.parse_tensor(data[i], out_type=spec.dtype) for i, spec in enumerate(component_specs)] return tf.nest.pack_sequence_as(type_spec, components, expand_composites=True) def length_filename(dataset_dir): return f'{dataset_dir}/length.json' class PrebatchStreamWriter: def __init__(self, dst_dir, dtype, feature_name='data', multihot=False, batches_per_file=1): self.dst_dir = dst_dir os.makedirs(dst_dir, exist_ok=True) self.dtype = dtype self.feature_name = feature_name self.multihot = multihot self.batches_per_file = batches_per_file self.writer = None self._file_idx = -1 self._batches_saved = 0 def _new_file(self): if self.writer: self.writer.close() self._file_idx += 1 self.writer = tf.io.TFRecordWriter(os.path.join(self.dst_dir, f'data_{self._file_idx}.tfrecords')) def save(self, prebatch): if self._batches_saved % self.batches_per_file == 0: self._new_file() if self.multihot: serialized = serialize_composite(tf.cast(prebatch, self.dtype)).numpy() else: if isinstance(prebatch, tf.RaggedTensor): prebatch = prebatch.to_tensor() serialized = tf.io.serialize_tensor(tf.cast(prebatch, dtype=self.dtype)).numpy() features = tf.train.Features(feature={ self.feature_name: tf.train.Feature(bytes_list=tf.train.BytesList(value=[serialized])) }) example = tf.train.Example(features=features) self.writer.write(example.SerializeToString()) self._batches_saved += 1 def close(self): self.writer.close() def create_writer(dst_dir, dtype, feature_name='data', multihot=False, format='tfrecords', num_features=1, batches_per_file=1): if format == 'tfrecords': writer = PrebatchStreamWriter(dst_dir=dst_dir, dtype=dtype, multihot=multihot, batches_per_file=batches_per_file) metadata = dict(format=format, dtype=dtype.name, multihot=multihot, feature_name=feature_name,num_features=num_features, batches_per_file=batches_per_file) with open(os.path.join(dst_dir, 'format.json'), 'w') as f: json.dump(metadata, f) return writer else: raise ValueError(f'Unknown feature format: {format}') def create_reader(src_dir, batch_size, world_size=1, rank=0, data_parallel=True): with open(os.path.join(src_dir, 'format.json')) as f: metadata = json.load(f) if metadata['format'] == 'tfrecords': reader = SingleFeatureTFRecordsFileReader(dst_dir=src_dir, batch_size=batch_size, dtype=tf.dtypes.as_dtype(metadata['dtype']), multihot=metadata['multihot'], feature_name=metadata['feature_name'], num_features=metadata['num_features'], world_size=world_size, rank=rank, data_parallel=data_parallel) return reader else: raise ValueError(f'Unknown feature format: {metadata["format"]}') class SingleFeatureTFRecordsFileReader: def __init__(self, dst_dir, batch_size, dtype, rank=0, world_size=1, num_features=1, feature_name='data', multihot=False, data_parallel=True, parallel_calls=4): self.filenames = glob.glob(os.path.join(dst_dir, 'data_*.tfrecords')) self.feature_name = feature_name self.multihot = multihot self.batch_size = batch_size self.num_features = num_features self.dtype = dtype self.feature_description = {self.feature_name: tf.io.FixedLenFeature([], tf.string, default_value='')} self.data_parallel = data_parallel self.parallel_calls = parallel_calls self.rank = rank self.world_size = world_size if self.data_parallel: local_batch_size = int(self.batch_size / world_size) batch_sizes_per_gpu = [local_batch_size] * world_size indices = tuple(np.cumsum([0] + list(batch_sizes_per_gpu))) self.dp_begin_idx = indices[rank] self.dp_end_idx = indices[rank + 1] def __len__(self): pass def _data_parallel_split(self, x): return x[self.dp_begin_idx:self.dp_end_idx, ...] def _parse_function(self, proto): parsed = tf.io.parse_single_example(proto, self.feature_description) if self.multihot: rt_spec = tf.RaggedTensorSpec(dtype=tf.int32, shape=[self.batch_size, None], row_splits_dtype=tf.int32, ragged_rank=1) tensor = parsed[self.feature_name] tensor = deserialize_composite(serialized=tensor, type_spec=rt_spec) else: tensor = tf.io.parse_tensor(parsed[self.feature_name], out_type=self.dtype) tensor = tf.reshape(tensor, shape=[self.batch_size, self.num_features]) if self.data_parallel: tensor = self._data_parallel_split(tensor) return tensor def op(self): num_parallel_reads = 8 dataset = tf.data.TFRecordDataset(self.filenames, num_parallel_reads=num_parallel_reads) dataset = dataset.map(self._parse_function, num_parallel_calls=self.parallel_calls, deterministic=True) dataset = dataset.prefetch(buffer_size=1) dataset = dataset.repeat() return dataset class SplitTFRecordsDataset: def __init__(self, dataset_dir, feature_ids, num_numerical, batch_size, world_size, rank): self.dataset_dir = dataset_dir self.feature_ids = feature_ids self.num_numerical = num_numerical self.batch_size = batch_size self.world_size = world_size self.rank = rank self.numerical_reader = create_reader(src_dir=os.path.join(dataset_dir, 'numerical'), world_size=world_size, rank=rank, batch_size=batch_size, data_parallel=True) self.label_reader = create_reader(src_dir=os.path.join(dataset_dir, 'label'), world_size=world_size, rank=rank, data_parallel=True, batch_size=batch_size) self.categorical_readers = [] for feature_id in feature_ids: reader = create_reader(src_dir=os.path.join(dataset_dir, f'categorical_{feature_id}'), batch_size=batch_size, data_parallel=False) self.categorical_readers.append(reader) filename = length_filename(self.dataset_dir) with open(filename) as f: self.length = json.load(f) def __len__(self): return self.length def op(self): categorical_tf_datasets = tuple(d.op() for d in self.categorical_readers) features_datasets = (self.numerical_reader.op(), categorical_tf_datasets) structure_to_zip = (features_datasets, self.label_reader.op()) dataset = tf.data.Dataset.zip(structure_to_zip) return dataset @staticmethod def generate(src_train, src_test, feature_spec, dst_dir, dst_feature_spec, prebatch_size, max_batches_train, max_batches_test): local_table_sizes = feature_spec.get_categorical_sizes() names = feature_spec.get_categorical_feature_names() local_table_hotness = [feature_spec.feature_spec[name].get('hotness', 1) for name in names] os.makedirs(dst_dir, exist_ok=True) num_files = 1 feature_spec.to_yaml(output_path=os.path.join(dst_dir, dst_feature_spec)) sources = [(src_train, 'train', max_batches_train), (src_test, 'test', max_batches_test)] for src, dst_suffix, max_batches in sources: num_batches = min(len(src), max_batches) if num_batches % num_files != 0: raise ValueError('The length of the dataset must be evenly divided by the number of TFRecords files') dst_subdir = os.path.join(dst_dir, dst_suffix) numerical_writer = create_writer(dst_dir=os.path.join(dst_subdir, 'numerical'), dtype=tf.float16, num_features=feature_spec.get_number_of_numerical_features(), batches_per_file=num_batches // num_files) label_writer = create_writer(dst_dir=os.path.join(dst_subdir, 'label'), dtype=tf.int8, batches_per_file=num_batches // num_files) categorical_writers = [] for i, (hotness, cardinality) in enumerate(zip(local_table_hotness, local_table_sizes)): # TODO: possibly optimize the dtype by using cardinality here writer = create_writer(dst_dir=os.path.join(dst_subdir, f'categorical_{i}'), dtype=tf.int32, multihot=hotness > 1, batches_per_file=num_batches // num_files) categorical_writers.append(writer) with open(length_filename(dst_subdir), 'w') as f: json.dump(num_batches, f) for batch_idx, batch in tqdm.tqdm(enumerate(src.op()), total=max_batches, desc=f'Generating the {dst_suffix} data'): print('writing batch: ', batch_idx) if batch_idx == max_batches: break print(batch_idx) (numerical, categorical), label = batch if label.shape[0] != prebatch_size: raise ValueError(f'Source dataset batch size ({label.shape[0]}) ' f'different from the prebatch size ({prebatch_size}). Unsupported.') numerical_writer.save(numerical) label_writer.save(label) for writer, feature in zip(categorical_writers, categorical): writer.save(feature) numerical_writer.close() label_writer.close() for writer in categorical_writers: writer.close()
PyTorch/SpeechRecognition/wav2vec2/utils
utils
convert_librispeech
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import glob import multiprocessing import json import pandas as pd from preprocessing_utils import parallel_preprocess parser = argparse.ArgumentParser(description='Preprocess LibriSpeech.') parser.add_argument('--input_dir', type=str, required=True, help='LibriSpeech collection input dir') parser.add_argument('--dest_dir', type=str, required=True, help='Output dir') parser.add_argument('--output_json', type=str, default='./', help='name of the output json file.') parser.add_argument('-s', '--speed', type=float, nargs='*', help='Speed perturbation ratio') parser.add_argument('--target_sr', type=int, default=None, help='Target sample rate. ' 'defaults to the input sample rate') parser.add_argument('--overwrite', action='store_true', help='Overwrite file if exists') parser.add_argument('--parallel', type=int, default=multiprocessing.cpu_count(), help='Number of threads to use when processing audio files') args = parser.parse_args() args.input_dir = args.input_dir.rstrip('/') args.dest_dir = args.dest_dir.rstrip('/') def build_input_arr(input_dir): txt_files = glob.glob(os.path.join(input_dir, '**', '*.trans.txt'), recursive=True) input_data = [] for txt_file in txt_files: rel_path = os.path.relpath(txt_file, input_dir) with open(txt_file) as fp: for line in fp: fname, _, transcript = line.partition(' ') input_data.append(dict(input_relpath=os.path.dirname(rel_path), input_fname=fname+'.flac', transcript=transcript)) return input_data print("[%s] Scaning input dir..." % args.output_json) dataset = build_input_arr(input_dir=args.input_dir) print("[%s] Converting audio files..." % args.output_json) dataset = parallel_preprocess(dataset=dataset, input_dir=args.input_dir, dest_dir=args.dest_dir, target_sr=args.target_sr, speed=args.speed, overwrite=args.overwrite, parallel=args.parallel) print("[%s] Generating json..." % args.output_json) df = pd.DataFrame(dataset, dtype=object) # Save json with python. df.to_json() produces back slashed in file paths dataset = df.to_dict(orient='records') with open(args.output_json, 'w') as fp: json.dump(dataset, fp, indent=2)
PyTorch/Classification/GPUNet/triton/deployment_toolkit/triton_inference_runner
triton_inference_runner
runner
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from ..utils import TritonClientProtocol, parse_server_url from .grpc import AsyncInferenceRunner as AsyncGRPCRunner from .grpc import SyncInferenceRunner as SyncGRPCRunner from .http import AsyncInferenceRunner as AsyncHTPPRunner from .http import SyncInferenceRunner as SyncHTTPRunner class TritonInferenceRunner: async_runners = { TritonClientProtocol.GRPC: AsyncGRPCRunner, TritonClientProtocol.HTTP: AsyncHTPPRunner, } sync_runners = { TritonClientProtocol.GRPC: SyncGRPCRunner, TritonClientProtocol.HTTP: SyncHTTPRunner, } def __init__( self, server_url: str, model_name: str, model_version: str, dataloader_fn, verbose: bool = False, response_wait_time: Optional[float] = None, max_unresponded_requests: int = 128, synchronous: bool = False, ): protocol, host, port = parse_server_url(server_url) server_url = f"{host}:{port}" if synchronous: sync_runner_cls = TritonInferenceRunner.sync_runners[protocol] self._runner = sync_runner_cls( server_url, model_name, model_version, dataloader=dataloader_fn(), verbose=verbose, response_wait_time=response_wait_time, ) else: async_runner_cls = TritonInferenceRunner.async_runners[protocol] self._runner = async_runner_cls( server_url, model_name, model_version, dataloader=dataloader_fn(), verbose=verbose, response_wait_time=response_wait_time, max_unresponded_requests=max_unresponded_requests, ) def __iter__(self): return self._runner.__iter__()
PyTorch/LanguageModeling/BERT/triton/runner
runner
triton
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Framework, Paths class Triton: """ Triton Inference Server helper class """ image = "nvcr.io/nvidia/tritonserver" tag = "py3" class LOAD_MODE: """ Loading mode available in Triton """ POLL = "poll" EXPLICIT = "explicit" @staticmethod def container_image(container_version: str): """ Container image based on version Args: container_version: Version of container to be used Returns: Image name with tag """ return f"{Triton.image}:{container_version}-{Triton.tag}" @staticmethod def command( framework: str, repository_path: str, strict_mode: bool = False, poll_model: bool = False, metrics: bool = False, verbose: bool = False, ): """ Command to run Triton Inference Server inside container Args: framework: Framework used for model repository_path: Path to model repository strict_mode: Flag to use strict model config poll_model: Poll model metrics: Enable GPU metrics (disable for MIG) verbose: Use verbose mode logging Returns: """ triton_command = f"tritonserver --model-store={repository_path}" if poll_model: triton_command += " --model-control-mode=poll --repository-poll-secs 5" else: triton_command += " --model-control-mode=explicit" if not strict_mode: triton_command += " --strict-model-config=false" if not metrics: triton_command += " --allow-metrics=false --allow-gpu-metrics=false" if verbose: triton_command += " --log-verbose 1" if framework in (Framework.TensorFlow1, Framework.TensorFlow2): version = 1 if framework == Framework.TensorFlow1 else 2 triton_command += f" --backend-config=tensorflow,version={version}" return triton_command @staticmethod def library_path(framework: str): """ Obtain custom library path for framework Args: framework: Framework used for model Returns: Path to additional libraries needed by framework """ paths = { Framework.PyTorch.name: "/opt/tritonserver/backends/pytorch", Framework.TensorFlow1.name: "/opt/tritonserver/backends/tensorflow1", Framework.TensorFlow2.name: "/opt/tritonserver/backends/tensorflow2", } return paths[framework] @staticmethod def custom_library_path_remote() -> str: """ Path to custom library mounted in Triton container Returns: Path to shared library with custom operations """ return f"{Paths.LIBRARIES_PATH}/libcustomops.so" @staticmethod def custom_library_path_local(libs_dir: pathlib.Path) -> pathlib.Path: """ Path to custom library in local path Args: libs_dir: path to libraries directory Returns: Path to shared library with custom operations """ return libs_dir / "libcustomops.so"
PyTorch/SpeechSynthesis/FastPitch/triton/deployment_toolkit/bermuda
bermuda
tensorrt
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from pathlib import Path from typing import Dict, NamedTuple, Optional, Union import numpy as np # pytype: disable=import-error try: import pycuda.autoinit import pycuda.driver as cuda except (ImportError, Exception) as e: logging.getLogger(__name__).warning(f"Problems with importing pycuda package; {e}") # pytype: enable=import-error import tensorrt as trt # pytype: disable=import-error from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers LOGGER = logging.getLogger(__name__) TRT_LOGGER = trt.Logger(trt.Logger.INFO) """ documentation: https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#python_samples_section """ class TensorRTLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: model_path = Path(model_path) LOGGER.debug(f"Loading TensorRT engine from {model_path}") with model_path.open("rb") as fh, trt.Runtime(TRT_LOGGER) as runtime: engine = runtime.deserialize_cuda_engine(fh.read()) if engine is None: raise RuntimeError(f"Could not load ICudaEngine from {model_path}") inputs = {} outputs = {} for binding_idx in range(engine.num_bindings): name = engine.get_binding_name(binding_idx) is_input = engine.binding_is_input(binding_idx) dtype = engine.get_binding_dtype(binding_idx) shape = engine.get_binding_shape(binding_idx) if is_input: inputs[name] = TensorSpec(name, dtype, shape) else: outputs[name] = TensorSpec(name, dtype, shape) return Model(engine, None, inputs, outputs) class TensorRTSaver(BaseSaver): def __init__(self): pass def save(self, model: Model, model_path: Union[str, Path]) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving TensorRT engine to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) engine: "trt.ICudaEngine" = model.handle with model_path.open("wb") as fh: fh.write(engine.serialize()) class TRTBuffers(NamedTuple): x_host: Optional[Dict[str, object]] x_dev: Dict[str, object] y_pred_host: Dict[str, object] y_pred_dev: Dict[str, object] class TensorRTRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return TensorRTRunnerSession(model=model) class TensorRTRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, trt.ICudaEngine) self._model = model self._has_dynamic_shapes = None self._context = None self._engine: trt.ICudaEngine = self._model.handle self._cuda_context = pycuda.autoinit.context self._input_names = None self._output_names = None self._buffers = None def __enter__(self): self._context = self._engine.create_execution_context() self._context.__enter__() self._input_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if self._engine.binding_is_input(idx) ] self._output_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if not self._engine.binding_is_input(idx) ] # all_binding_shapes_specified is True for models without dynamic shapes # so initially this variable is False for models with dynamic shapes self._has_dynamic_shapes = not self._context.all_binding_shapes_specified return self def __exit__(self, exc_type, exc_value, traceback): self._context.__exit__(exc_type, exc_value, traceback) self._input_names = None self._output_names = None # TODO: are cuda buffers dealloc automatically? self._buffers = None def __call__(self, x): buffers = self._prepare_buffers_if_needed(x) bindings = self._update_bindings(buffers) for name in self._input_names: cuda.memcpy_htod(buffers.x_dev[name], buffers.x_host[name]) self._cuda_context.push() self._context.execute_v2(bindings=bindings) self._cuda_context.pop() for name in self._output_names: cuda.memcpy_dtoh(buffers.y_pred_host[name], buffers.y_pred_dev[name]) return buffers.y_pred_host def _update_bindings(self, buffers: TRTBuffers): bindings = [None] * self._engine.num_bindings for name in buffers.y_pred_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.y_pred_dev[name] for name in buffers.x_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.x_dev[name] return bindings def _set_dynamic_input_shapes(self, x_host): def _is_shape_dynamic(input_shape): return any([dim is None or dim == -1 for dim in input_shape]) for name in self._input_names: bindings_idx = self._engine[name] data_shape = x_host[name].shape # pytype: disable=attribute-error if self._engine.is_shape_binding(bindings_idx): input_shape = self._context.get_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_shape_input(bindings_idx, data_shape) else: input_shape = self._engine.get_binding_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_binding_shape(bindings_idx, data_shape) assert self._context.all_binding_shapes_specified and self._context.all_shape_inputs_specified def _prepare_buffers_if_needed(self, x_host: Dict[str, object]): # pytype: disable=attribute-error new_batch_size = list(x_host.values())[0].shape[0] current_batch_size = list(self._buffers.y_pred_host.values())[0].shape[0] if self._buffers else 0 # pytype: enable=attribute-error if self._has_dynamic_shapes or new_batch_size != current_batch_size: # TODO: are CUDA buffers dealloc automatically? self._set_dynamic_input_shapes(x_host) y_pred_host = {} for name in self._output_names: shape = self._context.get_binding_shape(self._engine[name]) y_pred_host[name] = np.zeros(shape, dtype=trt.nptype(self._model.outputs[name].dtype)) y_pred_dev = {name: cuda.mem_alloc(data.nbytes) for name, data in y_pred_host.items()} x_dev = { name: cuda.mem_alloc(host_input.nbytes) for name, host_input in x_host.items() if name in self._input_names # pytype: disable=attribute-error } self._buffers = TRTBuffers(None, x_dev, y_pred_host, y_pred_dev) return self._buffers._replace(x_host=x_host) if "pycuda.driver" in sys.modules: loaders.register_extension(Format.TRT.value, TensorRTLoader) runners.register_extension(Format.TRT.value, TensorRTRunner) savers.register_extension(Format.TRT.value, TensorRTSaver) else: LOGGER.warning("Do not register TensorRT extension due problems with importing pycuda.driver package.")
TensorFlow/Detection/SSD/models/research/object_detection/models
models
ssd_resnet_v1_fpn_feature_extractor
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSD Feature Pyramid Network (FPN) feature extractors based on Resnet v1. See https://arxiv.org/abs/1708.02002 for details. """ import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import resnet_v1 slim = tf.contrib.slim class _SSDResnetV1FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD FPN feature extractor based on Resnet v1 architecture.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_base_fn, resnet_scope_name, fpn_scope_name, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. resnet_base_fn: base resnet network to use. resnet_scope_name: scope name under which to construct resnet fpn_scope_name: scope name under which to construct the feature pyramid network. fpn_min_level: the highest resolution feature map to use in FPN. The valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4} respectively. fpn_max_level: the smallest resolution feature map to construct or use in FPN. FPN constructions uses features maps starting from fpn_min_level upto the fpn_max_level. In the case that there are not enough feature maps in the backbone network, additional feature maps are created by applying stride 2 convolutions until we get the desired number of fpn levels. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: On supplying invalid arguments for unused arguments. """ super(_SSDResnetV1FpnFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) if self._depth_multiplier != 1.0: raise ValueError('Only depth 1.0 is supported, found: {}'. format(self._depth_multiplier)) if self._use_explicit_padding is True: raise ValueError('Explicit padding is not a valid option.') self._resnet_base_fn = resnet_base_fn self._resnet_scope_name = resnet_scope_name self._fpn_scope_name = fpn_scope_name self._fpn_min_level = fpn_min_level self._fpn_max_level = fpn_max_level self._additional_layer_depth = additional_layer_depth def preprocess(self, resized_inputs): """SSD preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge. Note that if the number of channels is not equal to 3, the mean subtraction will be skipped and the original resized_inputs will be returned. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ if resized_inputs.shape.as_list()[3] == 3: channel_means = [123.68, 116.779, 103.939] return resized_inputs - [[channel_means]] else: return resized_inputs def _filter_features(self, image_features): # TODO(rathodv): Change resnet endpoint to strip scope prefixes instead # of munging the scope here. filtered_image_features = dict({}) for key, feature in image_features.items(): feature_name = key.split('/')[-1] if feature_name in ['block1', 'block2', 'block3', 'block4']: filtered_image_features[feature_name] = feature return filtered_image_features def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: depth multiplier is not supported. """ if self._depth_multiplier != 1.0: raise ValueError('Depth multiplier not supported.') preprocessed_inputs = shape_utils.check_min_image_dim( 129, preprocessed_inputs) with tf.variable_scope( self._resnet_scope_name, reuse=self._reuse_weights) as scope: with slim.arg_scope(resnet_v1.resnet_arg_scope()): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = self._resnet_base_fn( inputs=ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=None, global_pool=False, output_stride=None, store_non_strided_activations=True, scope=scope) image_features = self._filter_features(image_features) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights): base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append('block{}'.format(level - 1)) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=self._additional_layer_depth) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append( fpn_features['top_down_block{}'.format(level - 1)]) last_feature_map = fpn_features['top_down_block{}'.format( base_fpn_max_level - 1)] # Construct coarse features for i in range(base_fpn_max_level, self._fpn_max_level): last_feature_map = slim.conv2d( last_feature_map, num_outputs=self._additional_layer_depth, kernel_size=[3, 3], stride=2, padding='SAME', scope='bottom_up_block{}'.format(i)) feature_maps.append(last_feature_map) return feature_maps class SSDResnet50V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet50 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet50 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet50V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_50, 'resnet_v1_50', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) class SSDResnet101V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet101 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet101 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet101V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_101, 'resnet_v1_101', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) class SSDResnet152V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet152 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet152 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet152V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_152, 'resnet_v1_152', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams)
Tools/PyTorch/TimeSeriesPredictionPlatform/conf/inference
inference
native
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _target_: inference.inference.run_inference config: checkpoint: ??? batch_size: 64 precision: fp32 device: cuda
PyTorch/Recommendation/DLRM/dlrm/cuda_src
cuda_src
gather_gpu_fused
#include <iostream> #include <cuda_runtime_api.h> #include <c10/cuda/CUDAStream.h> #include <ATen/cuda/CUDAContext.h> #define CHK_CUDA(expression) \ { \ cudaError_t status = (expression); \ if (status != cudaSuccess) { \ std::cerr << "Error in file: " << __FILE__ << ", on line: " << __LINE__ << ": " << cudaGetErrorString(status) \ << std::endl; \ std::exit(EXIT_FAILURE); \ } \ } // only 4 element vectorized types are implemented - can be done for other types // load/store by "mask" vars // assignments by "val" vars template <class DTYPE> struct VecType4{}; template <> struct VecType4<__half> { typedef float2 Type; typedef struct __align__(8) { __half x; __half y; __half z; __half w; } half4; union Data { half4 val; Type mask; } data; __device__ VecType4() { data.mask = make_float2(0.0f, 0.0f); } __device__ VecType4& operator=(float4 &in) { data.val.x = __float2half(in.x); data.val.y = __float2half(in.y); data.val.z = __float2half(in.z); data.val.w = __float2half(in.w); return *this; } __device__ VecType4& operator=(half4 &in) { data.val = in; return *this; } }; template <> struct VecType4<float> { typedef float4 Type; union Data { Type val; Type mask; } data; __device__ VecType4() { data.val.x = 0.0f; data.val.y = 0.0f; data.val.z = 0.0f; data.val.w = 0.0f; } __device__ VecType4& operator=(VecType4<__half>::half4 &in) { data.val.x = __half2float(in.x); data.val.y = __half2float(in.y); data.val.z = __half2float(in.z); data.val.w = __half2float(in.w); return *this; } __device__ VecType4& operator=(float4 &in) { data.val = in; return *this; } }; // -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ // above default build params to Torch extensions requires this extensive juggling around template <typename ITYPE, typename OTYPE, typename std::enable_if<(std::is_same<ITYPE, float>::value && std::is_same<OTYPE, __half>::value), ITYPE>::type * = nullptr> __device__ __host__ __forceinline__ OTYPE fp_type_cast(ITYPE input) { return __float2half(input); } template <typename ITYPE, typename OTYPE, typename std::enable_if<(std::is_same<ITYPE, __half>::value && std::is_same<OTYPE, float>::value), ITYPE>::type * = nullptr> __device__ __host__ __forceinline__ OTYPE fp_type_cast(ITYPE input) { return __half2float(input); } template <typename ITYPE, typename OTYPE, typename std::enable_if<std::is_same<ITYPE, OTYPE>::value, ITYPE>::type * = nullptr> __device__ __host__ __forceinline__ OTYPE fp_type_cast(ITYPE input) { return input; } // this kernel assumes embedding vector_width of 128 template <typename ITYPE, typename OTYPE> __global__ void lookupEmbeddings(ITYPE *embeddingTable, int64_t *offsets, int64_t *indices, OTYPE *outLookup, int batch_size) { typedef typename VecType4<ITYPE>::Type invec4; typedef typename VecType4<OTYPE>::Type outvec4; int vector_width = 128; const int fea_count = 26; int lane_id = threadIdx.x % warpSize; int warp_id = threadIdx.x / warpSize; int num_warps = blockDim.x / warpSize; int start_idx = warp_id * fea_count + lane_id + blockIdx.x * (num_warps * fea_count); int64_t lane_offset = 0; if (lane_id < fea_count) lane_offset = offsets[lane_id]; while (1) { int64_t lookup_idx = -1; if (lane_id < fea_count && start_idx < (batch_size * fea_count)) { lookup_idx = indices[start_idx] + lane_offset; } if (__all_sync(0xffffffff, lookup_idx == -1)) break; for (int i = 0; i < fea_count; i++) { int64_t table_idx = __shfl_sync(0xffffffff, lookup_idx, i); if (table_idx != -1) { invec4 *vec_embedding_table = reinterpret_cast<invec4*>(embeddingTable); outvec4 *vec_embedding_out = reinterpret_cast<outvec4*>(outLookup); int64_t out_idx = start_idx - lane_id + i; out_idx *= vector_width; int vector_inst_width = 4; // 128 bit loads, 4-floats int64_t vec_in_idx = ((table_idx * vector_width) + (lane_id * vector_inst_width)) >> 2; int64_t vec_out_idx = (out_idx + (lane_id * vector_inst_width)) >> 2; VecType4<ITYPE> input_elements; input_elements.data.mask = vec_embedding_table[vec_in_idx]; VecType4<OTYPE> output_elements; output_elements = input_elements.data.val; vec_embedding_out[vec_out_idx] = output_elements.data.mask; } } start_idx += (gridDim.x * num_warps * fea_count); } } __global__ void indices_offset_addition(int64_t *indices, int64_t *offsets, int64_t *output_indices, int batch_size) { const int fea_count = 26; __shared__ int64_t smem_offsets[fea_count]; if (threadIdx.x < fea_count) { smem_offsets[threadIdx.x] = offsets[threadIdx.x]; } __syncthreads(); int start_idx = threadIdx.x + blockIdx.x * blockDim.x; for (int i = start_idx; i < (batch_size * fea_count); i+=(gridDim.x * blockDim.x)) { output_indices[i] = indices[i] + smem_offsets[i % fea_count]; } } template <typename ITYPE, typename OTYPE> __global__ void gradient_copy_kernel(ITYPE *input_gradient, OTYPE *output_gradient, int64_t num_elements) { typedef typename VecType4<ITYPE>::Type invec4; typedef typename VecType4<OTYPE>::Type outvec4; invec4 *vec_input_gradient = reinterpret_cast<invec4*>(input_gradient); outvec4 *vec_output_gradient = reinterpret_cast<outvec4*>(output_gradient); int64_t start_idx = threadIdx.x + blockIdx.x * blockDim.x; for (int64_t i = start_idx; i < num_elements / 4; i+= (gridDim.x * blockDim.x)) { VecType4<ITYPE> input_elements; input_elements.data.mask = vec_input_gradient[i]; VecType4<OTYPE> output_elements; output_elements = input_elements.data.val; vec_output_gradient[i] = output_elements.data.mask; } int elements_left = num_elements % 4; if (threadIdx.x == 0 && elements_left != 0) { while(elements_left) { int64_t idx = num_elements - elements_left; output_gradient[idx] = fp_type_cast<ITYPE, OTYPE>(input_gradient[idx]); elements_left--; } } } // kernels are fully instantiation type compatible float<->float , float<->Half, half<->half // but their runner functions are not instantiated for all types template <typename ITYPE, typename OTYPE> void gather_gpu_fused_fwd(ITYPE *embeddingTablePtr, int64_t *indices_offset, int64_t *lookup_indices, OTYPE *outputPtr, int batch_size) {}; template <> void gather_gpu_fused_fwd(float *embeddingTablePtr, int64_t *indices_offset, int64_t *lookup_indices, c10::Half *outputPtr, int batch_size) { auto deviceProp = at::cuda::getCurrentDeviceProperties(); dim3 block(deviceProp->maxThreadsPerBlock, 1, 1); dim3 grid((deviceProp->multiProcessorCount * deviceProp->maxThreadsPerMultiProcessor) / deviceProp->maxThreadsPerBlock, 1, 1); cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); lookupEmbeddings<float, __half><<<grid, block, 0, stream>>>(embeddingTablePtr, indices_offset, lookup_indices, (__half*)outputPtr, batch_size); CHK_CUDA(cudaGetLastError()); } template <> void gather_gpu_fused_fwd(float *embeddingTablePtr, int64_t *indices_offset, int64_t *lookup_indices, float *outputPtr, int batch_size) { auto deviceProp = at::cuda::getCurrentDeviceProperties(); dim3 block(deviceProp->maxThreadsPerBlock, 1, 1); dim3 grid((deviceProp->multiProcessorCount * deviceProp->maxThreadsPerMultiProcessor) / deviceProp->maxThreadsPerBlock, 1, 1); cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); lookupEmbeddings<float, float><<<grid, block, 0, stream>>>(embeddingTablePtr, indices_offset, lookup_indices, outputPtr, batch_size); CHK_CUDA(cudaGetLastError()); } template <> void gather_gpu_fused_fwd(c10::Half *embeddingTablePtr, int64_t *indices_offset, int64_t *lookup_indices, c10::Half *outputPtr, int batch_size) { auto deviceProp = at::cuda::getCurrentDeviceProperties(); dim3 block(deviceProp->maxThreadsPerBlock, 1, 1); dim3 grid((deviceProp->multiProcessorCount * deviceProp->maxThreadsPerMultiProcessor) / deviceProp->maxThreadsPerBlock, 1, 1); cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); lookupEmbeddings<__half, __half><<<grid, block, 0, stream>>>((__half*)embeddingTablePtr, indices_offset, lookup_indices, (__half*)outputPtr, batch_size); CHK_CUDA(cudaGetLastError()); } template <typename ITYPE, typename OTYPE> void gather_gpu_fused_bwd(ITYPE *input_gradient, int64_t *lookup_indices, int64_t *offsets, OTYPE *out_gradient, int64_t *out_indices, int batch_size, int num_features, int embed_vector_dim) {}; template <> void gather_gpu_fused_bwd(c10::Half *input_gradient, int64_t *lookup_indices, int64_t *offsets, float *out_gradient, int64_t *out_indices, int batch_size, int num_features, int embed_vector_dim) { // offset addition to indices auto deviceProp = at::cuda::getCurrentDeviceProperties(); dim3 block(deviceProp->maxThreadsPerBlock, 1, 1); dim3 grid((deviceProp->multiProcessorCount * deviceProp->maxThreadsPerMultiProcessor) / deviceProp->maxThreadsPerBlock, 1, 1); cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); // indices - offset addition kernel indices_offset_addition<<<grid, block, 0, stream>>>(lookup_indices, offsets, out_indices, batch_size); CHK_CUDA(cudaGetLastError()); gradient_copy_kernel<__half, float><<<grid, block, 0, stream>>>((__half *)input_gradient, out_gradient, (int64_t)batch_size * num_features * embed_vector_dim ); CHK_CUDA(cudaGetLastError()); } template <> void gather_gpu_fused_bwd(float *input_gradient, int64_t *lookup_indices, int64_t *offsets, float *out_gradient, int64_t *out_indices, int batch_size, int num_features, int embed_vector_dim) { // offset addition to indices auto deviceProp = at::cuda::getCurrentDeviceProperties(); dim3 block(deviceProp->maxThreadsPerBlock, 1, 1); dim3 grid((deviceProp->multiProcessorCount * deviceProp->maxThreadsPerMultiProcessor) / deviceProp->maxThreadsPerBlock, 1, 1); cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); // indices - offset addition kernel indices_offset_addition<<<grid, block, 0, stream>>>(lookup_indices, offsets, out_indices, batch_size); CHK_CUDA(cudaGetLastError()); gradient_copy_kernel<float, float><<<grid, block, 0, stream>>>(input_gradient, out_gradient, (int64_t)batch_size * num_features * embed_vector_dim ); CHK_CUDA(cudaGetLastError()); }
TensorFlow/Translation/GNMT/qa
qa
L1_joc_GNMT_inferbench_fp16
set -o nounset set -o errexit set -o pipefail cd .. cp -r /data/joc/gnmt_tf/19.08 output_dir # hack to work with pytorch dataset sed -ie 's/ src_vocab_file = hparams.vocab_prefix + "." + hparams.src/ src_vocab_file = hparams.vocab_prefix/g' nmt.py sed -ie 's/ tgt_vocab_file = hparams.vocab_prefix + "." + hparams.tgt/ tgt_vocab_file = hparams.vocab_prefix/g' nmt.py ( python nmt.py --amp --data_dir=/data/pytorch/wmt16_de_en --output_dir=output_dir --mode=infer --infer_batch_size=512 2>&1 ) | tee log.log python scripts/parse_log.py log.log | tee log.json python << END import json import numpy as np from pathlib import Path baseline = 10254 bleu_baseline = 25.1 log = json.loads(Path('log.json').read_text()) speed = np.mean(log['eval_tokens_per_sec']) bleu = log['bleu'][0] print('Eval speed :', speed) print('Baseline :', baseline) print('Bleu :', bleu) print('Bleu baseline :', bleu_baseline) if speed < baseline * 0.9: print("FAILED: speed ({}) doesn't match the baseline ({})".format(speed, baseline)) exit(1) if bleu < bleu_baseline - 0.2: print("FAILED: bleu ({}) doesn't match the baseline ({})".format(bleu, bleu_baseline)) exit(1) print('SUCCESS') END
PyTorch/Detection
Detection
README
# Object Detection A natural progression from image classification would be classification and localization of the subject of the image. We can take this idea one step further and localize objects in a given image. Simply put, object detection refers to identifying which object(s) are there in an image. ![](img/2_object-detection-figure-1.png) Source: [Joseph Redmon, Ali Farhadi, “YOLO9000:Better, Faster, Stronger”](https://arxiv.org/abs/1612.08242) ## Introduction to Object Detection In this section we will try to answer the following questions: - What is object detection? - Why is object detection important? Object Detection is about not only detecting the presence and location of objects in images and videos, but also categorizing them into everyday objects. Oftentimes, there is a confusion between Image Classification and Object Detection. Simply put, the difference between them is the same as the difference between saying “This is a cat” and pointing to a cat and saying “There is the cat”. To build autonomous systems, perception is the main challenge to be solved. Perception, in terms of autonomous systems refers to the ability of understanding the surroundings of the autonomous agent. This means that the agent needs to be able to figure out where and what objects are in its immediate vicinity. Object detection can help keep humans away from toxic environments and hazardous situations. Challenges like garbage segregation, oil rig monitoring, nightly surveillance, cargo port maintenance and other high risk applications can be aided by robots/cameras which can detect objects. Essentially, any environment that requires visual inspection or analysis and is too dangerous for humans, object detection pipelines can be used to shield from any onsite hazard. ## How does it work? While this has been a topic of research since before Deep Learning became mainstream, the best performing models today use one or more Deep Neural Networks. Many architectures have networks pretrained on a different, simpler task, like Image Classification. As one can imagine, the inputs to this task can be images or videos, and the outputs are usually a set of bounding box coordinates that enclose each of the detected objects, as well as a class label for each detected object. With advances in research and the use of GPUs, it is possible to have object detection in real time with really impressive accuracies! ![](img/2_object-detection-figure-2.png) Source: [Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, “SSD: Single Shot MultiBox Detector”](https://arxiv.org/abs/1512.02325) Single Shot Detector(SSD) is one of the state-of-the-art models for object detection and localization. It is based on a feed-forward convolutional neural network which always yields a fixed set of bounding boxes and a confidence score which represents how confident the network is about the bounding box containing an object. This is followed by a non maximum suppression step which outputs the final detections. This network can be understood as two networks stacked on top of each other. The first network is a simple convolutional neural network which “extracts important features” which is the same as the image classification networks. The second network is a multiscale feature map network built using another set of convolutional layers which are progressively smaller in size to allow detections on multiple scales. Simply put, the progressively smaller layers help detect objects of different sizes. Each layer in this set of layers outputs a number of detections and the final layer passes the output to a non maxima suppression which yields a final set of detections. This Collection contains models and containers for object detection achieving state-of-the-art accuracies, tested and maintained by Nvidia. ## Applications and Use cases ### Autonomous Vehicles Autonomous vehicles need to perceive and interact with real world objects in order to blend in with the environment. For instance a self-driving car needs to detect other vehicles, pedestrians, objects on the road, traffic signals and any and all obstacles on road and also understand the exact location of these objects. This perception information helps the agent avoid obstacles and understand how to interact with objects like traffic lights. ### Warehouses Warehouses have many conveyor belts and segregation platforms. These tasks have traditionally been handled manually. As factories and warehouses scale, manually sorting and managing inventory cannot be scaled proportionally. Object detection pipelines deployed on robots can reduce operational friction and enable easy scale up solutions for businesses. ### Surveillance Surveillance systems typically accumulate large volumes of video data which needs to be analyzed for all sorts of anomalies. Given the number of video sources even a small store has, analysing surveillance data from a large operation is a challenge. Object detection networks can help automate much of the pipeline to highlight sections where there is an object of interest. It can also be trained to identify anomalies in video streams. ### Hazardous tasks Humans work at waste processing plants, nuclear power plants, oil rigs and around heavy machinery, which tend to be extremely hazardous and dangerous which pose health risks. These tasks essentially require human presence for visual tasks and confirmations which revolve around recognizing objects and relaying locations of objects. Risky tasks like these can be completed with a help of a object detection pipeline deployed on a camera or a robot which can reduce operational risks and costs.
PyTorch/Forecasting/TFT/triton/runner
runner
config
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Dict, List, Optional, Union import yaml if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .configuration import Configuration from .core import DataObject from .triton import Triton class Checkpoint(DataObject): """ Checkpoint data placeholder """ name: str url: str def __init__(self, name: str, url: str): self.name = name self.url = url class Dataset(DataObject): """ Dataset data placeholder """ name: str def __init__(self, name: str): self.name = name class Config(DataObject): """ Configuration object for runner experiments """ def __init__( self, model_name: str, framework: str, container_version: str, configurations: List[Configuration], datasets_dir: str = "datasets", datasets: List[Dataset] = None, checkpoints: List[Checkpoint] = None, triton_dockerfile: Optional[str] = None, triton_container_image: Optional[str] = None, triton_custom_operations: Optional[str] = None, triton_load_model_method: Optional[str] = Triton.LOAD_MODE.EXPLICIT, ): """ Args: model_name: Name of model framework: Framework used to create model container_version: Version of Triton Inference Server container used for evaluation configurations: List of experiments configurations datasets_dir: Directory where datasets are stored datasets: Datasets used for conversion/export checkpoints: Checkpoints with trained model triton_load_model_method: Triton Inference Server model loading mode triton_dockerfile: Dockerfile for Triton to build custom image triton_container_image: Custom image used for Triton Server - leave empty to use default or built from Dockerfile triton_custom_operations: Path where custom operation library is stored """ self.model_name = model_name self.framework = framework self.container_version = container_version self.configurations = configurations self.datasets_dir = datasets_dir self.datasets = datasets self.checkpoints = checkpoints self.triton_load_model_method = triton_load_model_method self.triton_dockerfile = triton_dockerfile self.triton_container_image = triton_container_image self.triton_custom_operations = triton_custom_operations def to_file(self, file_path: Union[pathlib.Path, str]) -> None: """ Save config data to file Args: file_path: path to file where config data is should be stored Returns: None """ data = self.to_dict() with open(file_path, "w") as f: yaml.safe_dump(data, f) @staticmethod def from_dict(config_data: Dict): """ Create configuration object from data stored in dictionary Args: config_data: dictionary with config data Returns: Config object """ configurations = [] for configuration_data in config_data["configurations"]: configuration = Configuration(**configuration_data) configurations.append(configuration) checkpoints = [] for checkpoint_data in config_data.get("checkpoints", []): checkpoint = Checkpoint( name=checkpoint_data["name"], url=checkpoint_data["url"], ) checkpoints.append(checkpoint) datasets = [] for dataset_data in config_data.get("datasets", []): dataset = Dataset(name=dataset_data["name"]) datasets.append(dataset) return Config( model_name=config_data["model_name"], framework=config_data["framework"], container_version=config_data["container_version"], configurations=configurations, checkpoints=checkpoints, datasets=datasets, datasets_dir=config_data.get("datasets_dir"), triton_load_model_method=config_data["triton_load_model_method"], triton_dockerfile=config_data.get("triton_dockerfile"), triton_container_image=config_data.get("triton_container_image"), triton_custom_operations=config_data.get("triton_custom_operations"), ) @staticmethod def from_file(file_path: Union[pathlib.Path, str]): """ Load experiment data from file Args: file_path: path to file where experiment data is stored Returns: Experiment object """ with open(file_path, "r") as f: config_data = yaml.safe_load(f) return Config.from_dict(config_data)
PyTorch/SpeechSynthesis/Tacotron2/filelists
filelists
ljs_mel_text_val_filelist
LJSpeech-1.1/mels/LJ022-0023.pt|The overwhelming majority of people in this country know how to sift the wheat from the chaff in what they hear and what they read. LJSpeech-1.1/mels/LJ043-0030.pt|If somebody did that to me, a lousy trick like that, to take my wife away, and all the furniture, I would be mad as hell, too. LJSpeech-1.1/mels/LJ005-0201.pt|as is shown by the report of the Commissioners to inquire into the state of the municipal corporations in eighteen thirty-five. LJSpeech-1.1/mels/LJ001-0110.pt|Even the Caslon type when enlarged shows great shortcomings in this respect: LJSpeech-1.1/mels/LJ003-0345.pt|All the committee could do in this respect was to throw the responsibility on others. LJSpeech-1.1/mels/LJ007-0154.pt|These pungent and well-grounded strictures applied with still greater force to the unconvicted prisoner, the man who came to the prison innocent, and still uncontaminated, LJSpeech-1.1/mels/LJ018-0098.pt|and recognized as one of the frequenters of the bogus law-stationers. His arrest led to that of others. LJSpeech-1.1/mels/LJ047-0044.pt|Oswald was, however, willing to discuss his contacts with Soviet authorities. He denied having any involvement with Soviet intelligence agencies LJSpeech-1.1/mels/LJ031-0038.pt|The first physician to see the President at Parkland Hospital was Dr. Charles J. Carrico, a resident in general surgery. LJSpeech-1.1/mels/LJ048-0194.pt|during the morning of November twenty-two prior to the motorcade. LJSpeech-1.1/mels/LJ049-0026.pt|On occasion the Secret Service has been permitted to have an agent riding in the passenger compartment with the President. LJSpeech-1.1/mels/LJ004-0152.pt|although at Mr. Buxton's visit a new jail was in process of erection, the first step towards reform since Howard's visitation in seventeen seventy-four. LJSpeech-1.1/mels/LJ008-0278.pt|or theirs might be one of many, and it might be considered necessary to "make an example." LJSpeech-1.1/mels/LJ043-0002.pt|The Warren Commission Report. By The President's Commission on the Assassination of President Kennedy. Chapter seven. Lee Harvey Oswald: LJSpeech-1.1/mels/LJ009-0114.pt|Mr. Wakefield winds up his graphic but somewhat sensational account by describing another religious service, which may appropriately be inserted here. LJSpeech-1.1/mels/LJ028-0506.pt|A modern artist would have difficulty in doing such accurate work. LJSpeech-1.1/mels/LJ050-0168.pt|with the particular purposes of the agency involved. The Commission recognizes that this is a controversial area LJSpeech-1.1/mels/LJ039-0223.pt|Oswald's Marine training in marksmanship, his other rifle experience and his established familiarity with this particular weapon LJSpeech-1.1/mels/LJ029-0032.pt|According to O'Donnell, quote, we had a motorcade wherever we went, end quote. LJSpeech-1.1/mels/LJ031-0070.pt|Dr. Clark, who most closely observed the head wound, LJSpeech-1.1/mels/LJ034-0198.pt|Euins, who was on the southwest corner of Elm and Houston Streets testified that he could not describe the man he saw in the window. LJSpeech-1.1/mels/LJ026-0068.pt|Energy enters the plant, to a small extent, LJSpeech-1.1/mels/LJ039-0075.pt|once you know that you must put the crosshairs on the target and that is all that is necessary. LJSpeech-1.1/mels/LJ004-0096.pt|the fatal consequences whereof might be prevented if the justices of the peace were duly authorized LJSpeech-1.1/mels/LJ005-0014.pt|Speaking on a debate on prison matters, he declared that LJSpeech-1.1/mels/LJ012-0161.pt|he was reported to have fallen away to a shadow. LJSpeech-1.1/mels/LJ018-0239.pt|His disappearance gave color and substance to evil reports already in circulation that the will and conveyance above referred to LJSpeech-1.1/mels/LJ019-0257.pt|Here the tread-wheel was in use, there cellular cranks, or hard-labor machines. LJSpeech-1.1/mels/LJ028-0008.pt|you tap gently with your heel upon the shoulder of the dromedary to urge her on. LJSpeech-1.1/mels/LJ024-0083.pt|This plan of mine is no attack on the Court; LJSpeech-1.1/mels/LJ042-0129.pt|No night clubs or bowling alleys, no places of recreation except the trade union dances. I have had enough. LJSpeech-1.1/mels/LJ036-0103.pt|The police asked him whether he could pick out his passenger from the lineup. LJSpeech-1.1/mels/LJ046-0058.pt|During his Presidency, Franklin D. Roosevelt made almost four hundred journeys and traveled more than three hundred fifty thousand miles. LJSpeech-1.1/mels/LJ014-0076.pt|He was seen afterwards smoking and talking with his hosts in their back parlor, and never seen again alive. LJSpeech-1.1/mels/LJ002-0043.pt|long narrow rooms -- one thirty-six feet, six twenty-three feet, and the eighth eighteen, LJSpeech-1.1/mels/LJ009-0076.pt|We come to the sermon. LJSpeech-1.1/mels/LJ017-0131.pt|even when the high sheriff had told him there was no possibility of a reprieve, and within a few hours of execution. LJSpeech-1.1/mels/LJ046-0184.pt|but there is a system for the immediate notification of the Secret Service by the confining institution when a subject is released or escapes. LJSpeech-1.1/mels/LJ014-0263.pt|When other pleasures palled he took a theatre, and posed as a munificent patron of the dramatic art. LJSpeech-1.1/mels/LJ042-0096.pt|(old exchange rate) in addition to his factory salary of approximately equal amount LJSpeech-1.1/mels/LJ049-0050.pt|Hill had both feet on the car and was climbing aboard to assist President and Mrs. Kennedy. LJSpeech-1.1/mels/LJ019-0186.pt|seeing that since the establishment of the Central Criminal Court, Newgate received prisoners for trial from several counties, LJSpeech-1.1/mels/LJ028-0307.pt|then let twenty days pass, and at the end of that time station near the Chaldasan gates a body of four thousand. LJSpeech-1.1/mels/LJ012-0235.pt|While they were in a state of insensibility the murder was committed. LJSpeech-1.1/mels/LJ034-0053.pt|reached the same conclusion as Latona that the prints found on the cartons were those of Lee Harvey Oswald. LJSpeech-1.1/mels/LJ014-0030.pt|These were damnatory facts which well supported the prosecution. LJSpeech-1.1/mels/LJ015-0203.pt|but were the precautions too minute, the vigilance too close to be eluded or overcome? LJSpeech-1.1/mels/LJ028-0093.pt|but his scribe wrote it in the manner customary for the scribes of those days to write of their royal masters. LJSpeech-1.1/mels/LJ002-0018.pt|The inadequacy of the jail was noticed and reported upon again and again by the grand juries of the city of London, LJSpeech-1.1/mels/LJ028-0275.pt|At last, in the twentieth month, LJSpeech-1.1/mels/LJ012-0042.pt|which he kept concealed in a hiding-place with a trap-door just under his bed. LJSpeech-1.1/mels/LJ011-0096.pt|He married a lady also belonging to the Society of Friends, who brought him a large fortune, which, and his own money, he put into a city firm, LJSpeech-1.1/mels/LJ036-0077.pt|Roger D. Craig, a deputy sheriff of Dallas County, LJSpeech-1.1/mels/LJ016-0318.pt|Other officials, great lawyers, governors of prisons, and chaplains supported this view. LJSpeech-1.1/mels/LJ013-0164.pt|who came from his room ready dressed, a suspicious circumstance, as he was always late in the morning. LJSpeech-1.1/mels/LJ027-0141.pt|is closely reproduced in the life-history of existing deer. Or, in other words, LJSpeech-1.1/mels/LJ028-0335.pt|accordingly they committed to him the command of their whole army, and put the keys of their city into his hands. LJSpeech-1.1/mels/LJ031-0202.pt|Mrs. Kennedy chose the hospital in Bethesda for the autopsy because the President had served in the Navy. LJSpeech-1.1/mels/LJ021-0145.pt|From those willing to join in establishing this hoped-for period of peace, LJSpeech-1.1/mels/LJ016-0288.pt|"Müller, Müller, He's the man," till a diversion was created by the appearance of the gallows, which was received with continuous yells. LJSpeech-1.1/mels/LJ028-0081.pt|Years later, when the archaeologists could readily distinguish the false from the true, LJSpeech-1.1/mels/LJ018-0081.pt|his defense being that he had intended to commit suicide, but that, on the appearance of this officer who had wronged him, LJSpeech-1.1/mels/LJ021-0066.pt|together with a great increase in the payrolls, there has come a substantial rise in the total of industrial profits LJSpeech-1.1/mels/LJ009-0238.pt|After this the sheriffs sent for another rope, but the spectators interfered, and the man was carried back to jail. LJSpeech-1.1/mels/LJ005-0079.pt|and improve the morals of the prisoners, and shall insure the proper measure of punishment to convicted offenders. LJSpeech-1.1/mels/LJ035-0019.pt|drove to the northwest corner of Elm and Houston, and parked approximately ten feet from the traffic signal. LJSpeech-1.1/mels/LJ036-0174.pt|This is the approximate time he entered the roominghouse, according to Earlene Roberts, the housekeeper there. LJSpeech-1.1/mels/LJ046-0146.pt|The criteria in effect prior to November twenty-two, nineteen sixty-three, for determining whether to accept material for the PRS general files LJSpeech-1.1/mels/LJ017-0044.pt|and the deepest anxiety was felt that the crime, if crime there had been, should be brought home to its perpetrator. LJSpeech-1.1/mels/LJ017-0070.pt|but his sporting operations did not prosper, and he became a needy man, always driven to desperate straits for cash. LJSpeech-1.1/mels/LJ014-0020.pt|He was soon afterwards arrested on suspicion, and a search of his lodgings brought to light several garments saturated with blood; LJSpeech-1.1/mels/LJ016-0020.pt|He never reached the cistern, but fell back into the yard, injuring his legs severely. LJSpeech-1.1/mels/LJ045-0230.pt|when he was finally apprehended in the Texas Theatre. Although it is not fully corroborated by others who were present, LJSpeech-1.1/mels/LJ035-0129.pt|and she must have run down the stairs ahead of Oswald and would probably have seen or heard him. LJSpeech-1.1/mels/LJ008-0307.pt|afterwards express a wish to murder the Recorder for having kept them so long in suspense. LJSpeech-1.1/mels/LJ008-0294.pt|nearly indefinitely deferred. LJSpeech-1.1/mels/LJ047-0148.pt|On October twenty-five, LJSpeech-1.1/mels/LJ008-0111.pt|They entered a "stone cold room," and were presently joined by the prisoner. LJSpeech-1.1/mels/LJ034-0042.pt|that he could only testify with certainty that the print was less than three days old. LJSpeech-1.1/mels/LJ037-0234.pt|Mrs. Mary Brock, the wife of a mechanic who worked at the station, was there at the time and she saw a white male, LJSpeech-1.1/mels/LJ040-0002.pt|Chapter seven. Lee Harvey Oswald: Background and Possible Motives, Part one. LJSpeech-1.1/mels/LJ045-0140.pt|The arguments he used to justify his use of the alias suggest that Oswald may have come to think that the whole world was becoming involved LJSpeech-1.1/mels/LJ012-0035.pt|the number and names on watches, were carefully removed or obliterated after the goods passed out of his hands. LJSpeech-1.1/mels/LJ012-0250.pt|On the seventh July, eighteen thirty-seven, LJSpeech-1.1/mels/LJ016-0179.pt|contracted with sheriffs and conveners to work by the job. LJSpeech-1.1/mels/LJ016-0138.pt|at a distance from the prison. LJSpeech-1.1/mels/LJ027-0052.pt|These principles of homology are essential to a correct interpretation of the facts of morphology. LJSpeech-1.1/mels/LJ031-0134.pt|On one occasion Mrs. Johnson, accompanied by two Secret Service agents, left the room to see Mrs. Kennedy and Mrs. Connally. LJSpeech-1.1/mels/LJ019-0273.pt|which Sir Joshua Jebb told the committee he considered the proper elements of penal discipline. LJSpeech-1.1/mels/LJ014-0110.pt|At the first the boxes were impounded, opened, and found to contain many of O'Connor's effects. LJSpeech-1.1/mels/LJ034-0160.pt|on Brennan's subsequent certain identification of Lee Harvey Oswald as the man he saw fire the rifle. LJSpeech-1.1/mels/LJ038-0199.pt|eleven. If I am alive and taken prisoner, LJSpeech-1.1/mels/LJ014-0010.pt|yet he could not overcome the strange fascination it had for him, and remained by the side of the corpse till the stretcher came. LJSpeech-1.1/mels/LJ033-0047.pt|I noticed when I went out that the light was on, end quote, LJSpeech-1.1/mels/LJ040-0027.pt|He was never satisfied with anything. LJSpeech-1.1/mels/LJ048-0228.pt|and others who were present say that no agent was inebriated or acted improperly. LJSpeech-1.1/mels/LJ003-0111.pt|He was in consequence put out of the protection of their internal law, end quote. Their code was a subject of some curiosity. LJSpeech-1.1/mels/LJ008-0258.pt|Let me retrace my steps, and speak more in detail of the treatment of the condemned in those bloodthirsty and brutally indifferent days, LJSpeech-1.1/mels/LJ029-0022.pt|The original plan called for the President to spend only one day in the State, making whirlwind visits to Dallas, Fort Worth, San Antonio, and Houston. LJSpeech-1.1/mels/LJ004-0045.pt|Mr. Sturges Bourne, Sir James Mackintosh, Sir James Scarlett, and William Wilberforce.
PyTorch/Classification/ConvNets/scripts
scripts
rnxt_partial
FLAGS=$1 STAGE_ID=$2 STAGE_LEN=$3 python ./multiproc.py \ --nproc_per_node 8 \ ./main.py /imagenet \ -j5 -p 100 \ --data-backend pytorch \ --raport-file report_$STAGE_ID.json \ --lr 1.024 \ --batch-size 128 \ --optimizer-batch-size 1024 \ --static-loss-scale 128 \ --warmup 8 \ --arch resnext101-32x4d -c fanin \ --label-smoothing 0.1 \ --lr-schedule cosine \ --mom 0.875 \ --wd 6.103515625e-05 \ --workspace /results \ --epochs 90 \ --run-epochs $STAGE_LEN \ $FLAGS \ --resume /results/checkpoint_$( expr $STAGE_ID - 1).pth.tar \ --checkpoint checkpoint_$STAGE_ID.pth.tar
PyTorch/SpeechSynthesis/HiFiGAN/scripts
scripts
train_benchmark
#!/usr/bin/env bash export CUDNN_V8_API_ENABLED=1 # Keep the flag for older containers export TORCH_CUDNN_V8_API_ENABLED=1 set -a : ${RESUME:=false} : ${AMP:=false} : ${BATCH_SIZE:=16} : ${NUM_GPUS:=8} # 1 4 8 : ${OUTPUT_DIR:="./results/perf-train"} : ${EPOCHS:=1000000} # Prevents from saving a final checkpoint : ${EPOCHS_THIS_JOB:=50} : ${BMARK_EPOCHS_NUM:=40} : ${VAL_INTERVAL:=100000} # In num of epochs : ${SAMPLES_INTERVAL:=100000} # In num of epochs : ${CHECKPOINT_INTERVAL:=100000} # In num of epochs GRAD_ACCUMULATION=$((128 / $BATCH_SIZE / $NUM_GPUS )) LOG_FILE=$OUTPUT_DIR/perf-train_amp-${AMP}_${NUM_GPUS}x${BATCH_SIZE}x${GRAD_ACCUMULATION} LOG_FILE+=.json bash scripts/train_lj22khz.sh "$@"
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/configuration
configuration
utils
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Iterable def optional_comparison(optional, value): if optional is None: return True return optional == value def one_field_from_list_of_dicts(dicts: Iterable[Dict], field: str, res_aggregator=list): return res_aggregator(d[field] for d in dicts if field in d)
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools
dataset_tools
create_pet_tf_record
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert the Oxford pet dataset to TFRecord for object_detection. See: O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar Cats and Dogs IEEE Conference on Computer Vision and Pattern Recognition, 2012 http://www.robots.ox.ac.uk/~vgg/data/pets/ Example usage: python object_detection/dataset_tools/create_pet_tf_record.py \ --data_dir=/home/user/pet \ --output_dir=/home/user/pet/output """ import hashlib import io import logging import os import random import re import contextlib2 from lxml import etree import numpy as np import PIL.Image import tensorflow as tf from object_detection.dataset_tools import tf_record_creation_util from object_detection.utils import dataset_util from object_detection.utils import label_map_util flags = tf.app.flags flags.DEFINE_string('data_dir', '', 'Root directory to raw pet dataset.') flags.DEFINE_string('output_dir', '', 'Path to directory to output TFRecords.') flags.DEFINE_string('label_map_path', 'data/pet_label_map.pbtxt', 'Path to label map proto') flags.DEFINE_boolean('faces_only', True, 'If True, generates bounding boxes ' 'for pet faces. Otherwise generates bounding boxes (as ' 'well as segmentations for full pet bodies). Note that ' 'in the latter case, the resulting files are much larger.') flags.DEFINE_string('mask_type', 'png', 'How to represent instance ' 'segmentation masks. Options are "png" or "numerical".') flags.DEFINE_integer('num_shards', 10, 'Number of TFRecord shards') FLAGS = flags.FLAGS def get_class_name_from_filename(file_name): """Gets the class name from a file. Args: file_name: The file name to get the class name from. ie. "american_pit_bull_terrier_105.jpg" Returns: A string of the class name. """ match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I) return match.groups()[0] def dict_to_tf_example(data, mask_path, label_map_dict, image_subdirectory, ignore_difficult_instances=False, faces_only=True, mask_type='png'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) mask_path: String path to PNG encoded mask. label_map_dict: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the Pascal dataset directory holding the actual image data. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). faces_only: If True, generates bounding boxes for pet faces. Otherwise generates bounding boxes (as well as segmentations for full pet bodies). mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to smaller file sizes. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(image_subdirectory, data['filename']) with tf.gfile.GFile(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() with tf.gfile.GFile(mask_path, 'rb') as fid: encoded_mask_png = fid.read() encoded_png_io = io.BytesIO(encoded_mask_png) mask = PIL.Image.open(encoded_png_io) if mask.format != 'PNG': raise ValueError('Mask format not PNG') mask_np = np.asarray(mask) nonbackground_indices_x = np.any(mask_np != 2, axis=0) nonbackground_indices_y = np.any(mask_np != 2, axis=1) nonzero_x_indices = np.where(nonbackground_indices_x) nonzero_y_indices = np.where(nonbackground_indices_y) width = int(data['size']['width']) height = int(data['size']['height']) xmins = [] ymins = [] xmaxs = [] ymaxs = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] masks = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) if faces_only: xmin = float(obj['bndbox']['xmin']) xmax = float(obj['bndbox']['xmax']) ymin = float(obj['bndbox']['ymin']) ymax = float(obj['bndbox']['ymax']) else: xmin = float(np.min(nonzero_x_indices)) xmax = float(np.max(nonzero_x_indices)) ymin = float(np.min(nonzero_y_indices)) ymax = float(np.max(nonzero_y_indices)) xmins.append(xmin / width) ymins.append(ymin / height) xmaxs.append(xmax / width) ymaxs.append(ymax / height) class_name = get_class_name_from_filename(data['filename']) classes_text.append(class_name.encode('utf8')) classes.append(label_map_dict[class_name]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) if not faces_only: mask_remapped = (mask_np != 2).astype(np.uint8) masks.append(mask_remapped) feature_dict = { 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), } if not faces_only: if mask_type == 'numerical': mask_stack = np.stack(masks).astype(np.float32) masks_flattened = np.reshape(mask_stack, [-1]) feature_dict['image/object/mask'] = ( dataset_util.float_list_feature(masks_flattened.tolist())) elif mask_type == 'png': encoded_mask_png_list = [] for mask in masks: img = PIL.Image.fromarray(mask) output = io.BytesIO() img.save(output, format='PNG') encoded_mask_png_list.append(output.getvalue()) feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png_list)) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return example def create_tf_record(output_filename, num_shards, label_map_dict, annotations_dir, image_dir, examples, faces_only=True, mask_type='png'): """Creates a TFRecord file from examples. Args: output_filename: Path to where output file is saved. num_shards: Number of shards for output file. label_map_dict: The label map dictionary. annotations_dir: Directory where annotation files are stored. image_dir: Directory where image files are stored. examples: Examples to parse and save to tf record. faces_only: If True, generates bounding boxes for pet faces. Otherwise generates bounding boxes (as well as segmentations for full pet bodies). mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to smaller file sizes. """ with contextlib2.ExitStack() as tf_record_close_stack: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, output_filename, num_shards) for idx, example in enumerate(examples): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(examples)) xml_path = os.path.join(annotations_dir, 'xmls', example + '.xml') mask_path = os.path.join(annotations_dir, 'trimaps', example + '.png') if not os.path.exists(xml_path): logging.warning('Could not find %s, ignoring example.', xml_path) continue with tf.gfile.GFile(xml_path, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] try: tf_example = dict_to_tf_example( data, mask_path, label_map_dict, image_dir, faces_only=faces_only, mask_type=mask_type) if tf_example: shard_idx = idx % num_shards output_tfrecords[shard_idx].write(tf_example.SerializeToString()) except ValueError: logging.warning('Invalid example: %s, ignoring.', xml_path) # TODO(derekjchow): Add test for pet/PASCAL main files. def main(_): data_dir = FLAGS.data_dir label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path) logging.info('Reading from Pet dataset.') image_dir = os.path.join(data_dir, 'images') annotations_dir = os.path.join(data_dir, 'annotations') examples_path = os.path.join(annotations_dir, 'trainval.txt') examples_list = dataset_util.read_examples_list(examples_path) # Test images are not included in the downloaded data set, so we shall perform # our own split. random.seed(42) random.shuffle(examples_list) num_examples = len(examples_list) num_train = int(0.7 * num_examples) train_examples = examples_list[:num_train] val_examples = examples_list[num_train:] logging.info('%d training and %d validation examples.', len(train_examples), len(val_examples)) train_output_path = os.path.join(FLAGS.output_dir, 'pet_faces_train.record') val_output_path = os.path.join(FLAGS.output_dir, 'pet_faces_val.record') if not FLAGS.faces_only: train_output_path = os.path.join(FLAGS.output_dir, 'pets_fullbody_with_masks_train.record') val_output_path = os.path.join(FLAGS.output_dir, 'pets_fullbody_with_masks_val.record') create_tf_record( train_output_path, FLAGS.num_shards, label_map_dict, annotations_dir, image_dir, train_examples, faces_only=FLAGS.faces_only, mask_type=FLAGS.mask_type) create_tf_record( val_output_path, FLAGS.num_shards, label_map_dict, annotations_dir, image_dir, val_examples, faces_only=FLAGS.faces_only, mask_type=FLAGS.mask_type) if __name__ == '__main__': tf.app.run()
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda
bermuda
onnx
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from typing import Dict, Optional, Union import numpy as np # pytype: disable=import-error import onnx import onnx.shape_inference import onnxruntime from google.protobuf import text_format from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers from .utils import infer_precision # pytype: enable=import-error LOGGER = logging.getLogger(__name__) def _value_info2tensor_spec(value_info: onnx.ValueInfoProto): onnx_data_type_map = {"float": "float32", "double": "float64"} elem_type_name = onnx.TensorProto.DataType.Name(value_info.type.tensor_type.elem_type).lower() dtype = onnx_data_type_map.get(elem_type_name, elem_type_name) def _get_dim(dim): which = dim.WhichOneof("value") if which is not None: # which is None when dim is None dim = getattr(dim, which) return None if isinstance(dim, (str, bytes)) else dim shape = value_info.type.tensor_type.shape shape = tuple(_get_dim(d) for d in shape.dim) return TensorSpec(value_info.name, dtype=dtype, shape=shape) def _infer_graph_precision(onnx_graph: onnx.GraphProto) -> Optional[Precision]: import networkx as nx # build directed graph nx_graph = nx.DiGraph() def _get_dtype(vi): t = vi.type if hasattr(t, "tensor_type"): type_id = t.tensor_type.elem_type else: raise NotImplementedError("Not implemented yet") return TENSOR_TYPE_TO_NP_TYPE[type_id] node_output2type = {vi.name: _get_dtype(vi) for vi in onnx_graph.value_info} node_outputs2node = {output_name: node for node in onnx_graph.node for output_name in node.output} node_inputs2node = {input_name: node for node in onnx_graph.node for input_name in node.input} for node in onnx_graph.node: node_dtype = node_output2type.get("+".join(node.output), None) nx_graph.add_node( node.name, op=node.op_type, attr={a.name: a for a in node.attribute}, dtype=node_dtype, ) for input_name in node.input: prev_node = node_outputs2node.get(input_name, None) if prev_node: nx_graph.add_edge(prev_node.name, node.name) for input_node in onnx_graph.input: input_name = input_node.name nx_graph.add_node(input_name, op="input", dtype=_get_dtype(input_node)) next_node = node_inputs2node.get(input_name, None) if next_node: nx_graph.add_edge(input_name, next_node.name) for output in onnx_graph.output: output_name = output.name nx_graph.add_node(output_name, op="output", dtype=_get_dtype(output)) prev_node = node_outputs2node.get(output_name, None) if prev_node: nx_graph.add_edge(prev_node.name, output_name) else: LOGGER.warning(f"Could not find previous node for {output_name}") input_names = [n.name for n in onnx_graph.input] output_names = [n.name for n in onnx_graph.output] most_common_dtype = infer_precision(nx_graph, input_names, output_names, lambda node: node.get("dtype", None)) if most_common_dtype is not None: precision = {np.dtype("float32"): Precision.FP32, np.dtype("float16"): Precision.FP16}[most_common_dtype] else: precision = None return precision class OnnxLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() model = onnx.load(model_path) onnx.checker.check_model(model) onnx.helper.strip_doc_string(model) model = onnx.shape_inference.infer_shapes(model) # TODO: probably modification of onnx model ios causes error on optimize # from onnx.utils import polish_model # model = polish_model(model) # run checker, docs strip, optimizer and shape inference inputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.input} outputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.output} precision = _infer_graph_precision(model.graph) return Model(model, precision, inputs, outputs) class OnnxSaver(BaseSaver): def __init__(self, as_text: bool = False): self._as_text = as_text def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving ONNX model to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) onnx_model: onnx.ModelProto = model.handle if self._as_text: with model_path.open("w") as f: f.write(text_format.MessageToString(onnx_model)) else: with model_path.open("wb") as f: f.write(onnx_model.SerializeToString()) """ ExecutionProviders on onnxruntime 1.4.0 ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'MIGraphXExecutionProvider', 'NGRAPHExecutionProvider', 'OpenVINOExecutionProvider', 'DnnlExecutionProvider', 'NupharExecutionProvider', 'VitisAIExecutionProvider', 'ArmNNExecutionProvider', 'ACLExecutionProvider', 'CPUExecutionProvider'] """ def _check_providers(providers): providers = providers or [] if not isinstance(providers, (list, tuple)): providers = [providers] available_providers = onnxruntime.get_available_providers() unavailable = set(providers) - set(available_providers) if unavailable: raise RuntimeError(f"Unavailable providers {unavailable}") return providers class OnnxRunner(BaseRunner): def __init__(self, verbose_runtime_logs: bool = False): self._providers = None self._verbose_runtime_logs = verbose_runtime_logs def init_inference(self, model: Model): assert isinstance(model.handle, onnx.ModelProto) return OnnxRunnerSession( model=model, providers=self._providers, verbose_runtime_logs=self._verbose_runtime_logs ) class OnnxRunnerSession(BaseRunnerSession): def __init__(self, model: Model, providers, verbose_runtime_logs: bool = False): super().__init__(model) self._input_names = None self._output_names = None self._session = None self._providers = providers self._verbose_runtime_logs = verbose_runtime_logs self._old_env_values = {} def __enter__(self): self._old_env_values = self._set_env_variables() sess_options = onnxruntime.SessionOptions() # default session options if self._verbose_runtime_logs: sess_options.log_severity_level = 0 sess_options.log_verbosity_level = 1 LOGGER.info( f"Starting inference session for onnx model providers={self._providers} sess_options={sess_options}" ) self._input_names = list(self._model.inputs) self._output_names = list(self._model.outputs) model_payload = self._model.handle.SerializeToString() self._session = onnxruntime.InferenceSession( model_payload, providers=self._providers, sess_options=sess_options ) return self def __exit__(self, exc_type, exc_value, traceback): self._input_names = None self._output_names = None self._session = None self._recover_env_variables(self._old_env_values) def __call__(self, x: Dict[str, object]): feed_dict = {k: x[k] for k in self._input_names} y_pred = self._session.run(self._output_names, feed_dict) y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.ONNX.value, OnnxLoader) runners.register_extension(Format.ONNX.value, OnnxRunner) savers.register_extension(Format.ONNX.value, OnnxSaver)
PyTorch/Classification/GPUNet/triton/runner
runner
preparer
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib from datetime import datetime from typing import Dict, List # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .configuration import Configuration from .downloader import download from .experiment import Experiment, Stage from .logger import LOGGER from .maintainer import Maintainer from .pipeline import Pipeline from .stages import ResultsType, TritonPerformanceOfflineStage, TritonPerformanceOnlineStage from .task import Checkpoint, Dataset, SystemInfo, Task from .triton import Triton from .utils import clean_directory class Preparer(abc.ABC): """ Runner preparer object. """ @abc.abstractmethod def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): pass class ExperimentPreparer(Preparer): """ Experiment runner preparer object. """ def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): LOGGER.info("Preparing Triton container image") triton_container_image = self._prepare_triton_container_image(config, maintainer, triton) LOGGER.info("Initialize task") task = self._initialize_task( workspace=workspace, config=config, pipeline=pipeline, triton_container_image=triton_container_image, logs_dir=logs_dir, ) LOGGER.info("Preparing directories") self._create_dirs(workspace, task) LOGGER.info("Clean previous run artifacts directories") self._clean_previous_run_artifacts(workspace, task) LOGGER.info("Downloading checkpoints") self._download_checkpoints(task) return task def _create_dirs(self, workspace: pathlib.Path, task: Task) -> None: """ Create directories used to store artifacts and final results Returns: None """ for directory in [task.results_dir, task.logs_dir, task.checkpoints_dir]: directory_path = workspace / directory directory_path.mkdir(parents=True, exist_ok=True) LOGGER.info(f"Directory {directory} created.") def _clean_previous_run_artifacts(self, workspace: pathlib.Path, task: Task) -> None: """ Clean logs from previous run Returns: None """ for directory in [ task.logs_dir, task.results_dir, ]: directory_path = workspace / directory clean_directory(directory_path) LOGGER.info(f"Location {directory} cleaned.") def _prepare_triton_container_image(self, config: Config, maintainer: Maintainer, triton: Triton) -> str: """ Prepare Triton Container Image based on provided configuration Returns: Name of container image to use in process """ if not config.triton_dockerfile: image_name = triton.container_image(config.container_version) LOGGER.info(f"Using official Triton container image: {image_name}.") return image_name if config.triton_container_image: LOGGER.info(f"Using provided Triton Container Image: {config.triton_container_image}") return config.triton_container_image normalized_model_name = config.model_name.lower().replace("_", "-") image_name = f"tritonserver-{normalized_model_name}:latest" LOGGER.info(f"Building Triton Container Image: {image_name}") maintainer.build_image( image_name=image_name, image_file_path=pathlib.Path(config.triton_dockerfile), build_args={"FROM_IMAGE": triton.container_image(container_version=config.container_version)}, ) return image_name def _download_checkpoints(self, task: Task) -> None: """ Download checkpoints """ for variant, checkpoint in task.checkpoints.items(): checkpoint_url = checkpoint.url download_path = checkpoint.path if download_path.is_dir(): LOGGER.info(f"Checkpoint {download_path.name} already downloaded.") continue if not checkpoint_url: LOGGER.warning( f"Checkpoint {variant} url is not provided." "\nIf you want to use that checkpoint please train the model locally" f"\nand copy to {download_path} directory" ) continue download(checkpoint_url, download_path) def _initialize_task( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, triton_container_image: str, logs_dir: pathlib.Path, ) -> Task: """ Initialize task object Args: workspace: Path to workspace where artifacts are stored config: Config object pipeline: Pipeline object triton_container_image: Triton Inference Server container image used for tests Returns: Task object """ datasets = {} for dataset in config.datasets: datasets[dataset.name] = Dataset(name=dataset.name) checkpoints = {} for checkpoint in config.checkpoints: download_path = workspace / Task.checkpoints_dir / checkpoint.name checkpoints[checkpoint.name] = Checkpoint(name=checkpoint.name, url=checkpoint.url, path=download_path) results_types = self._task_results_types(pipeline=pipeline) stages = {} for stage in pipeline.stages(): stages[stage.label] = {"result_path": stage.result_path, "result_type": stage.result_type} experiments = [] for idx, configuration in enumerate(config.configurations, start=1): experiment = self._prepare_experiment( idx=idx, configuration=configuration, results_types=results_types, stages=stages, ) experiments.append(experiment) system_info = SystemInfo.from_host() task = Task( model_name=config.model_name, ensemble_model_name=config.ensemble_model_name, framework=config.framework, checkpoints=checkpoints, datasets=datasets, datasets_dir=config.datasets_dir, experiments=experiments, container_version=config.container_version, system_info=system_info, triton_container_image=triton_container_image, triton_custom_operations=config.triton_custom_operations, triton_load_model_method=config.triton_load_model_method, started_at=int(datetime.utcnow().timestamp()), batching=config.batching, measurement_steps_offline=config.measurement_steps_offline, measurement_steps_online=config.measurement_steps_online, ) return task def _task_results_types(self, pipeline: Pipeline) -> List[str]: """ Types of results generated as part of task Returns: List of result types """ results = [] for stage in pipeline.stages(): if TritonPerformanceOfflineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_OFFLINE) continue if TritonPerformanceOnlineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_ONLINE) continue return results def _prepare_experiment( self, idx: int, configuration: Configuration, results_types: List[str], stages: Dict, ) -> Experiment: """ Prepare experiments data Args: idx: Experiment index configuration: Configuration object results_types: Results types stored in experiment stages: Stages executed as part of experiment Returns: Experiment object """ results_mapped = {} for result_type in results_types: results_mapped[result_type] = result_type stages_mapped = {} for name, stage_data in stages.items(): stages_mapped[name] = Stage(name=name, **stage_data) experiment = Experiment( experiment_id=idx, parameters=configuration.parameters, stages=stages_mapped, results=results_mapped, checkpoint=configuration.checkpoint, ) return experiment
PyTorch/Detection/Efficientdet/effdet/layers
layers
create_conv2d
""" Create Conv2d Factory Method Hacked together by / Copyright 2020 Ross Wightman """ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2019-2022 Ross Wightman # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .mixed_conv2d import MixedConv2d from .cond_conv2d import CondConv2d from .conv2d_same import create_conv2d_pad def create_conv2d(in_channels, out_channels, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently assert 'groups' not in kwargs # MixedConv groups are defined by kernel list # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_channels, out_channels, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) groups = out_channels if depthwise else kwargs.pop('groups', 1) if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_channels, out_channels, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs) return m
TensorFlow/Translation/GNMT
GNMT
.gitignore
__pycache__ *.log /results /data .DS_Store
PyTorch/SpeechSynthesis/Tacotron2/notebooks/triton
triton
tacotron2_ts-script_config
name: "tacotron2-ts-script" platform: "pytorch_libtorch" max_batch_size: 1 input [ { name: "input__0" data_type: TYPE_INT64 dims: [-1] }, { name: "input__1" data_type: TYPE_INT64 dims: [1] reshape: { shape: [ ] } } ] output [ { name: "output__0" data_type: TYPE_FP16 dims: [80, -1] }, { name: "output__1" data_type: TYPE_INT32 dims: [1] reshape: { shape: [ ] } }, { name: "output__2" data_type: TYPE_FP16 dims: [-1, -1] } ] optimization { cuda { graphs: 1 } }
PyTorch/Classification/ConvNets/triton/deployment_toolkit
deployment_toolkit
core
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import importlib import logging import os from enum import Enum from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np LOGGER = logging.getLogger(__name__) DATALOADER_FN_NAME = "get_dataloader_fn" GET_MODEL_FN_NAME = "get_model" GET_SERVING_INPUT_RECEIVER_FN = "get_serving_input_receiver_fn" GET_ARGPARSER_FN_NAME = "update_argparser" class TensorSpec(NamedTuple): name: str dtype: str shape: Tuple class Parameter(Enum): def __lt__(self, other: "Parameter") -> bool: return self.value < other.value class Accelerator(Parameter): AMP = "amp" CUDA = "cuda" TRT = "trt" class Precision(Parameter): FP16 = "fp16" FP32 = "fp32" TF32 = "tf32" # Deprecated class Format(Parameter): TF_GRAPHDEF = "tf-graphdef" TF_SAVEDMODEL = "tf-savedmodel" TF_TRT = "tf-trt" TF_ESTIMATOR = "tf-estimator" TF_KERAS = "tf-keras" ONNX = "onnx" TRT = "trt" TS_SCRIPT = "ts-script" TS_TRACE = "ts-trace" PYT = "pyt" class Model(NamedTuple): handle: object precision: Optional[Precision] inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def load_from_file(file_path, label, target): spec = importlib.util.spec_from_file_location(name=label, location=file_path) my_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(my_module) # pytype: disable=attribute-error return getattr(my_module, target, None) class BaseLoader(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def load(self, model_path: Union[str, Path], **kwargs) -> Model: """ Loads and process model from file based on given set of args """ pass class BaseSaver(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def save(self, model: Model, model_path: Union[str, Path]) -> None: """ Save model to file """ pass class BaseRunner(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def init_inference(self, model: Model): raise NotImplementedError class BaseRunnerSession(abc.ABC): def __init__(self, model: Model): self._model = model @abc.abstractmethod def __enter__(self): raise NotImplementedError() @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): raise NotImplementedError() @abc.abstractmethod def __call__(self, x: Dict[str, object]): raise NotImplementedError() def _set_env_variables(self) -> Dict[str, object]: """this method not remove values; fix it if needed""" to_set = {} old_values = {k: os.environ.pop(k, None) for k in to_set} os.environ.update(to_set) return old_values def _recover_env_variables(self, old_envs: Dict[str, object]): for name, value in old_envs.items(): if value is None: del os.environ[name] else: os.environ[name] = str(value) class BaseConverter(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def convert(self, model: Model, dataloader_fn) -> Model: raise NotImplementedError() @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: return requested_model_precision class BaseMetricsCalculator(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: """ Calculates error/accuracy metrics Args: ids: List of ids identifying each sample in the batch y_pred: model output as dict where key is output name and value is output value x: model input as dict where key is input name and value is input value y_real: input ground truth as dict where key is output name and value is output value Returns: dictionary where key is metric name and value is its value """ pass class ShapeSpec(NamedTuple): min: Tuple opt: Tuple max: Tuple
PyTorch/Segmentation/MaskRCNN/pytorch/configs/caffe2
caffe2
e2e_faster_rcnn_X_101_32x8d_FPN_1x_caffe2
MODEL: META_ARCHITECTURE: "GeneralizedRCNN" WEIGHT: "catalog://Caffe2Detectron/COCO/36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x" BACKBONE: CONV_BODY: "R-101-FPN" OUT_CHANNELS: 256 RPN: USE_FPN: True ANCHOR_STRIDE: (4, 8, 16, 32, 64) PRE_NMS_TOP_N_TRAIN: 2000 PRE_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TEST: 1000 ROI_HEADS: USE_FPN: True ROI_BOX_HEAD: POOLER_RESOLUTION: 7 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) POOLER_SAMPLING_RATIO: 2 FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor" PREDICTOR: "FPNPredictor" RESNETS: STRIDE_IN_1X1: False NUM_GROUPS: 32 WIDTH_PER_GROUP: 8 DATASETS: TEST: ("coco_2014_minival",) DATALOADER: SIZE_DIVISIBILITY: 32
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/denoiser
denoiser
denoiserStreamingInstance
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_DENOISERSTREAMINGINSTANCE_H #define TT2I_DENOISERSTREAMINGINSTANCE_H #include "binding.h" #include "engineDriver.h" #include "timedObject.h" namespace nvinfer1 { class ICudaEngine; class IExecutionContext; } // namespace nvinfer1 namespace tts { class DenoiserStreamingInstance : public TimedObject, public EngineDriver { public: /** * @brief Tensor of shape {1 x INPUT_LENGTH} */ static constexpr const char* const INPUT_NAME = "input_denoiser"; /** * @brief Tensor of shape {1 x OUTPUT_LENGTH} */ static constexpr const char* const OUTPUT_NAME = "output_denoiser"; /** * @brief Create a new denoiser. * * @param sampleNoise The audio sample of what should be "noise" to be * removed. * @param sampleLength The number of samples in the "noise". * @param filterLength The filter length. * @param overlapLength The length of overlap between filters. * @param winLength The length of the window. */ DenoiserStreamingInstance(TRTPtr<nvinfer1::ICudaEngine>&& engine); /** * @brief Start a new session for performing streaming inference. This * method should be called before the first call to `inferNext()`. */ void startInference(); /** * @brief Perform inference on a chunk of input. * * @param batchSize The size of the batch to process. * @param inputDevice The input tensor on the device. * @param outputDevice The output tensor on the device. * @param stream The stream to operate on. */ void inferNext(const int batchSize, const float* inputDevice, float* outputDevice, cudaStream_t stream); /** * @brief Get the size of the chunk the denoiser will process. * * @return The size of the chunk. */ int getChunkSize() const { return mChunkSize; } private: Binding mBinding; TRTPtr<nvinfer1::IExecutionContext> mContext; int mChunkSize; }; } // namespace tts #endif
PyTorch/Detection/Efficientdet/scripts/docker
docker
launch
#!/bin/bash PATH_TO_COCO=$1 MOUNT_LOCATION='/datasets/data' NAME='detectron2_interactive' docker run --runtime=nvidia --cap-add=SYS_PTRACE --cap-add SYS_ADMIN --cap-add DAC_READ_SEARCH --security-opt seccomp=unconfined -v /efficientdet-pytorch:/workspace/object_detection -v /effdet/backbone_checkpoints:/backbone_checkpoints -v /effdet/checkpoints:/checkpoints -v /coco2017/:/workspace/object_detection/datasets/coco -v /waymo_2D_object_detection/raw/:/workspace/object_detection/datasets/waymo --rm --name=$NAME --shm-size=30g --ulimit memlock=-1 --ulimit stack=67108864 --ipc=host -t -i nvcr.io/nvidia/effdet:21.06-py3-stage bash