relative_path
stringclasses
812 values
section
stringclasses
339 values
filename
stringlengths
2
61
text
stringlengths
6
1.76M
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/library
library
__init__
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
PyTorch/LanguageModeling/BERT/triton/dist4l/runner
runner
config_NVIDIA-A30
checkpoints: - name: dist-4l-qa url: https://api.ngc.nvidia.com/v2/models/nvidia/dle/bert_pyt_ckpt_distilled_4l_288d_qa_squad11_amp/versions/21.11.0/zip configurations: - accelerator: none accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: none accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: none accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: trt accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: trt accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: trt accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: onnx max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: none accelerator_precision: fp16 batch_size: - 1 batch_sizes: '1' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 1 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: '1' - accelerator: none accelerator_precision: fp16 batch_size: - 16 batch_sizes: '16' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 - accelerator: none accelerator_precision: fp16 batch_size: - 8 batch_sizes: '8' capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: onnx export_precision: fp16 format: trt max_batch_size: 8 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 4 8 - accelerator: none accelerator_precision: fp16 batch_size: - 1 - 8 - 16 batch_sizes: 1 8 16 capture_cuda_graph: 0 checkpoint_variant: dist-4l-qa export_format: ts-trace export_precision: fp16 format: ts-trace max_batch_size: 16 max_seq_length: 384 precision: fp16 triton_gpu_engine_count: 1 triton_max_queue_delay: 1 triton_preferred_batch_sizes: 8 16 container_version: '21.10' datasets: - name: data datasets_dir: datasets framework: PyTorch model_name: BERT triton_container_image: null triton_custom_operations: null triton_dockerfile: null triton_load_model_method: explicit
TensorFlow2/Detection/Efficientdet/scripts/docker
docker
build
#!/bin/bash docker build --rm -t effdet_tf2 . -f Dockerfile
CUDA-Optimized/FastSpeech/fastspeech/model
model
__init__
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/util
util
engineDriver
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_ENGINEDRIVER_H #define TT2I_ENGINEDRIVER_H #include "trtPtr.h" #include "NvInfer.h" namespace tts { /** * @brief This class acts a parent for classes depending on TRT engines. */ class EngineDriver { public: /** * @brief Create a new EngineDriver class. * * @param engine The engine to wrap. */ EngineDriver(TRTPtr<nvinfer1::ICudaEngine> engine); /** * @brief Virtual destructor. */ virtual ~EngineDriver() = default; /** * @brief Get the wrapped engine in a non-mutable state. * * @return The engine. */ const nvinfer1::ICudaEngine& getEngine() const; /** * @brief Get the wrapped engine in a mutable state. * * @return The engine. */ nvinfer1::ICudaEngine& getEngine(); /** * @brief Get the maximum batch size supported by the wrapped engine. * * @return The maximum batch size. */ int getMaxBatchSize() const; private: TRTPtr<nvinfer1::ICudaEngine> mEngine; }; } // namespace tts #endif
PyTorch/Detection/Efficientdet/scripts/D0
D0
train-benchmark_AMP_A100-80G
#!/bin/bash function get_dataloader_workers { gpus=$(nvidia-smi -i 0 --query-gpu=count --format=csv,noheader) core=$(nproc --all) workers=$((core/gpus-2)) workers=$((workers>16?16:workers)) echo ${workers} } WORKERS=$(get_dataloader_workers) ./distributed_train.sh ${NUM_PROC:-8} /workspace/object_detection/datasets/coco --model efficientdet_d0 -b 150 --lr 1.63 --amp --opt fusedmomentum --warmup-epochs 50 --lr-noise 0.4 0.9 --output /model --worker ${WORKERS} --fill-color mean --model-ema --model-ema-decay 0.999 --eval-after 200 --epochs 5 --resume --smoothing 0.0 --pretrained-backbone-path /backbone_checkpoints/jocbackbone_statedict_B0.pth --memory-format nchw --sync-bn --fused-focal-loss --seed 12711 --benchmark-steps 500 --benchmark
PyTorch/LanguageModeling/BERT/distillation/utils
utils
utils
# coding=utf-8 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed as dist import random import numpy as np from pathlib import Path def unwrap_ddp(model): if isinstance(model, torch.nn.parallel.distributed.DistributedDataParallel): return model.module return model def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def is_main_process(): return get_rank() == 0 def barrier(): if dist.is_available() and dist.is_initialized(): dist.barrier() def format_step(step): if isinstance(step, str): return step s = "" if len(step) > 0: s += "Training Epoch: {} ".format(step[0]) if len(step) > 1: s += "Training Iteration: {} ".format(step[1]) if len(step) > 2: s += "Validation Iteration: {} ".format(step[2]) return s def mkdir(path): Path(path).mkdir(parents=True, exist_ok=True) def mkdir_by_main_process(path): if is_main_process(): mkdir(path) barrier() def set_seed(seed, n_gpu): random.seed(seed + get_rank()) np.random.seed(seed + get_rank()) torch.manual_seed(seed + get_rank()) if n_gpu > 0: torch.cuda.manual_seed_all(seed + get_rank())
TensorFlow/Classification/ConvNets/triton/deployment_toolkit
deployment_toolkit
core
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import importlib import logging import os from enum import Enum from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np LOGGER = logging.getLogger(__name__) DATALOADER_FN_NAME = "get_dataloader_fn" GET_MODEL_FN_NAME = "get_model" GET_SERVING_INPUT_RECEIVER_FN = "get_serving_input_receiver_fn" GET_ARGPARSER_FN_NAME = "update_argparser" class TensorSpec(NamedTuple): name: str dtype: str shape: Tuple class Parameter(Enum): def __lt__(self, other: "Parameter") -> bool: return self.value < other.value def __str__(self): return self.value class Accelerator(Parameter): AMP = "amp" NONE = "none" TRT = "trt" class Precision(Parameter): FP16 = "fp16" FP32 = "fp32" TF32 = "tf32" # Deprecated class Format(Parameter): TF_GRAPHDEF = "tf-graphdef" TF_SAVEDMODEL = "tf-savedmodel" TF_TRT = "tf-trt" TF_ESTIMATOR = "tf-estimator" TF_KERAS = "tf-keras" ONNX = "onnx" TRT = "trt" TS_SCRIPT = "ts-script" TS_TRACE = "ts-trace" PYT = "pyt" class Model(NamedTuple): handle: object precision: Optional[Precision] inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def load_from_file(file_path, label, target): spec = importlib.util.spec_from_file_location(name=label, location=file_path) my_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(my_module) # pytype: disable=attribute-error return getattr(my_module, target, None) class BaseLoader(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def load(self, model_path: Union[str, Path], **kwargs) -> Model: """ Loads and process model from file based on given set of args """ pass class BaseSaver(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def save(self, model: Model, model_path: Union[str, Path]) -> None: """ Save model to file """ pass class BaseRunner(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def init_inference(self, model: Model): raise NotImplementedError class BaseRunnerSession(abc.ABC): def __init__(self, model: Model): self._model = model @abc.abstractmethod def __enter__(self): raise NotImplementedError() @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): raise NotImplementedError() @abc.abstractmethod def __call__(self, x: Dict[str, object]): raise NotImplementedError() def _set_env_variables(self) -> Dict[str, object]: """this method not remove values; fix it if needed""" to_set = {} old_values = {k: os.environ.pop(k, None) for k in to_set} os.environ.update(to_set) return old_values def _recover_env_variables(self, old_envs: Dict[str, object]): for name, value in old_envs.items(): if value is None: del os.environ[name] else: os.environ[name] = str(value) class BaseConverter(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def convert(self, model: Model, dataloader_fn) -> Model: raise NotImplementedError() @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: return requested_model_precision class BaseMetricsCalculator(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: """ Calculates error/accuracy metrics Args: ids: List of ids identifying each sample in the batch y_pred: model output as dict where key is output name and value is output value x: model input as dict where key is input name and value is input value y_real: input ground truth as dict where key is output name and value is output value Returns: dictionary where key is metric name and value is its value """ pass @abc.abstractmethod def update( self, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ): pass @property @abc.abstractmethod def metrics(self) -> Dict[str, Any]: pass class ShapeSpec(NamedTuple): min: Tuple opt: Tuple max: Tuple
TensorFlow/Detection
Detection
README
# Object Detection A natural progression from image classification would be classification and localization of the subject of the image. We can take this idea one step further and localize objects in a given image. Simply put, object detection refers to identifying which object(s) are there in an image. ![](img/2_object-detection-figure-1.png) Source: [Joseph Redmon, Ali Farhadi, “YOLO9000:Better, Faster, Stronger”](https://arxiv.org/abs/1612.08242) ## Introduction to Object Detection In this section we will try to answer the following questions: - What is object detection? - Why is object detection important? Object Detection is about not only detecting the presence and location of objects in images and videos, but also categorizing them into everyday objects. Oftentimes, there is a confusion between Image Classification and Object Detection. Simply put, the difference between them is the same as the difference between saying “This is a cat” and pointing to a cat and saying “There is the cat”. To build autonomous systems, perception is the main challenge to be solved. Perception, in terms of autonomous systems refers to the ability of understanding the surroundings of the autonomous agent. This means that the agent needs to be able to figure out where and what objects are in its immediate vicinity. Object detection can help keep humans away from toxic environments and hazardous situations. Challenges like garbage segregation, oil rig monitoring, nightly surveillance, cargo port maintenance and other high risk applications can be aided by robots/cameras which can detect objects. Essentially, any environment that requires visual inspection or analysis and is too dangerous for humans, object detection pipelines can be used to shield from any onsite hazard. ## How does it work? While this has been a topic of research since before Deep Learning became mainstream, the best performing models today use one or more Deep Neural Networks. Many architectures have networks pretrained on a different, simpler task, like Image Classification. As one can imagine, the inputs to this task can be images or videos, and the outputs are usually a set of bounding box coordinates that enclose each of the detected objects, as well as a class label for each detected object. With advances in research and the use of GPUs, it is possible to have object detection in real time with really impressive accuracies! ![](img/2_object-detection-figure-2.png) Source: [Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, “SSD: Single Shot MultiBox Detector”](https://arxiv.org/abs/1512.02325) Single Shot Detector(SSD) is one of the state-of-the-art models for object detection and localization. It is based on a feed-forward convolutional neural network which always yields a fixed set of bounding boxes and a confidence score which represents how confident the network is about the bounding box containing an object. This is followed by a non maximum suppression step which outputs the final detections. This network can be understood as two networks stacked on top of each other. The first network is a simple convolutional neural network which “extracts important features” which is the same as the image classification networks. The second network is a multiscale feature map network built using another set of convolutional layers which are progressively smaller in size to allow detections on multiple scales. Simply put, the progressively smaller layers help detect objects of different sizes. Each layer in this set of layers outputs a number of detections and the final layer passes the output to a non maxima suppression which yields a final set of detections. This Collection contains models and containers for object detection achieving state-of-the-art accuracies, tested and maintained by Nvidia. ## Applications and Use cases ### Autonomous Vehicles Autonomous vehicles need to perceive and interact with real world objects in order to blend in with the environment. For instance a self-driving car needs to detect other vehicles, pedestrians, objects on the road, traffic signals and any and all obstacles on road and also understand the exact location of these objects. This perception information helps the agent avoid obstacles and understand how to interact with objects like traffic lights. ### Warehouses Warehouses have many conveyor belts and segregation platforms. These tasks have traditionally been handled manually. As factories and warehouses scale, manually sorting and managing inventory cannot be scaled proportionally. Object detection pipelines deployed on robots can reduce operational friction and enable easy scale up solutions for businesses. ### Surveillance Surveillance systems typically accumulate large volumes of video data which needs to be analyzed for all sorts of anomalies. Given the number of video sources even a small store has, analysing surveillance data from a large operation is a challenge. Object detection networks can help automate much of the pipeline to highlight sections where there is an object of interest. It can also be trained to identify anomalies in video streams. ### Hazardous tasks Humans work at waste processing plants, nuclear power plants, oil rigs and around heavy machinery, which tend to be extremely hazardous and dangerous which pose health risks. These tasks essentially require human presence for visual tasks and confirmations which revolve around recognizing objects and relaying locations of objects. Risky tasks like these can be completed with a help of a object detection pipeline deployed on a camera or a robot which can reduce operational risks and costs.
TensorFlow2/Recommendation/DLRM_and_DCNv2/tensorflow-dot-based-interact/tensorflow_dot_based_interact/cc/kernels/cuda_kernels
cuda_kernels
dot_based_interact_fp32
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime_api.h> #include <device_launch_parameters.h> #include <mma.h> #include <cuda_fp16.hpp> #include <math.h> #include <fstream> #include <iomanip> #include <iostream> #include <vector> #include "dot_based_interact_shared_utils.cuh" template <uint THREADBLOCK_SIZE> __launch_bounds__(THREADBLOCK_SIZE) __global__ void dotBasedInteractF32FwdKernelNonAligned(const float *__restrict input, float *__restrict output, uint batch_size, uint num_rows, uint num_cols, uint input_size, uint output_size, uint interaction_output_size) { extern __shared__ float smem_f32_fwd[]; float *smem_in = &smem_f32_fwd[0]; uint input_batch_offset = blockIdx.x * input_size; const float *gmem_in = &input[input_batch_offset]; uint output_batch_offset = blockIdx.x * output_size; float *gmem_out_bottom_mlp = &output[output_batch_offset]; float *gmem_out_interaction = &output[output_batch_offset + num_cols]; // Load the input - one sample per block for (uint idx = threadIdx.x; idx < input_size; idx += blockDim.x) { smem_in[idx] = gmem_in[idx]; } __syncthreads(); // Copy bottom MLP output to output for (uint idx = threadIdx.x; idx < num_cols; idx += blockDim.x) { gmem_out_bottom_mlp[idx] = smem_in[idx]; } for (uint idx = threadIdx.x; idx < (interaction_output_size); idx += blockDim.x) { uint elems_per_row = 1; uint index = idx; while (index >= elems_per_row) { index -= elems_per_row; elems_per_row++; } uint target_row = elems_per_row; uint target_col = index; float sum = 0; for (uint i = 0; i < num_cols; i++) { float tmp1 = smem_in[target_row * num_cols + i]; float tmp2 = smem_in[target_col * num_cols + i]; sum = fmaf(tmp1, tmp2, sum); } gmem_out_interaction[idx] = sum; } // Zero out the padding uint zeroout_index = num_cols + interaction_output_size + threadIdx.x; if(zeroout_index < output_size){ gmem_out_bottom_mlp[zeroout_index] = 0; } } template <uint THREADBLOCK_SIZE> __launch_bounds__(THREADBLOCK_SIZE) __global__ void dotBasedInteractF32FwdKernel(const float *__restrict input, float *__restrict output, uint batch_size, uint num_rows, uint num_cols, uint input_size, uint output_size, uint interaction_output_size) { extern __shared__ float smem_f32_fwd[]; float *smem_in = &smem_f32_fwd[0]; uint input_batch_offset = blockIdx.x * input_size; const float *gmem_in = &input[input_batch_offset]; uint output_batch_offset = blockIdx.x * output_size; float *gmem_out_bottom_mlp = &output[output_batch_offset]; float *gmem_out_interaction = &output[output_batch_offset + num_cols]; // Load the input - one sample per block uint input_size_float4 = input_size >> 2; for (uint idx = threadIdx.x; idx < input_size_float4; idx += blockDim.x) { ((float4 *)smem_in)[idx] = ((float4 *)gmem_in)[idx]; } __syncthreads(); // Copy bottom MLP output to output uint btm_mlp_out_size_float4 = num_cols >> 2; for (uint idx = threadIdx.x; idx < btm_mlp_out_size_float4; idx += blockDim.x) { ((float4 *)gmem_out_bottom_mlp)[idx] = ((float4 *)smem_in)[idx]; } for (uint idx = threadIdx.x; idx < (interaction_output_size); idx += blockDim.x) { uint elems_per_row = 1; uint index = idx; while (index >= elems_per_row) { index -= elems_per_row; elems_per_row++; } uint target_row = elems_per_row; uint target_col = index; float4 sum; sum.x = 0; sum.y = 0; sum.z = 0; sum.w = 0; uint num_cols_float4 = num_cols >> 2; for (uint i = 0; i < num_cols_float4; i++) { float4 tmp1 = ((float4 *)smem_in)[target_row * num_cols_float4 + i]; float4 tmp2 = ((float4 *)smem_in)[target_col * num_cols_float4 + i]; sum.x = fmaf(tmp1.x, tmp2.x, sum.x); sum.y = fmaf(tmp1.y, tmp2.y, sum.y); sum.z = fmaf(tmp1.z, tmp2.z, sum.z); sum.w = fmaf(tmp1.w, tmp2.w, sum.w); } gmem_out_interaction[idx] = sum.x + sum.y + sum.z + sum.w; } // Zero out the padding uint zeroout_index = num_cols + interaction_output_size + threadIdx.x; if(zeroout_index < output_size){ gmem_out_bottom_mlp[zeroout_index] = 0; } } template <uint THREADBLOCK_SIZE> __launch_bounds__(THREADBLOCK_SIZE) __global__ void dotBasedInteractF32BwdKernelNonAligned(const float *__restrict input, const float *__restrict upstream_grad, float *__restrict grad, float *__restrict bottom_mlp_grad, uint batch_size, uint num_rows, uint num_cols, uint input_size, uint ugrad_size, uint interaction_ugrad_size) { extern __shared__ float smem_f32_bwd[]; float *smem_in = &smem_f32_bwd[0]; float *smem_interaction_ugrad = &smem_f32_bwd[input_size]; // Input uint input_batch_offset = blockIdx.x * input_size; const float *gmem_in = &input[input_batch_offset]; // Gradient const uint &grad_batch_offset = input_batch_offset; float *gmem_mlp_grad = &bottom_mlp_grad[blockIdx.x * num_cols]; float *gmem_interaction_grad = &grad[grad_batch_offset]; // Upstream Gradient uint upstream_grad_batch_offset = blockIdx.x * ugrad_size; const float *gmem_mlp_ugrad = &upstream_grad[upstream_grad_batch_offset]; const float *gmem_interaction_ugrad = &upstream_grad[upstream_grad_batch_offset + num_cols]; // input -> shared memory for (uint idx = threadIdx.x; idx < input_size; idx += blockDim.x) { smem_in[idx] = gmem_in[idx]; } // Interaction Upstream Grad -> Shared Memory for (uint idx = threadIdx.x; idx < interaction_ugrad_size; idx += blockDim.x) { smem_interaction_ugrad[idx] = gmem_interaction_ugrad[idx]; } __syncthreads(); // Copy the upstream gradient w.r.t to mlp to it's corresponding memory location. for (uint idx = threadIdx.x; idx < num_cols; idx += blockDim.x) { gmem_mlp_grad[idx] = gmem_mlp_ugrad[idx]; } for (uint idx = threadIdx.x; idx < num_cols; idx += blockDim.x) { size_t grad_idx = idx; for (uint row_idx = 0; row_idx < num_rows; row_idx++) { float sum = 0; size_t upstream_grad_offset = (row_idx * (row_idx - 1)) >> 1; for (int k = 0; k < row_idx; k++) { sum = fmaf(smem_in[k * num_cols + idx], smem_interaction_ugrad[upstream_grad_offset + k], sum); } for (int k = row_idx + 1; k < num_rows; k++) { upstream_grad_offset = (k * (k - 1)) >> 1; // TODO: this can become a sum sum = fmaf(smem_in[k * num_cols + idx], smem_interaction_ugrad[upstream_grad_offset + row_idx], sum); } gmem_interaction_grad[grad_idx] = sum; grad_idx += num_cols; } } } template <uint THREADBLOCK_SIZE> __launch_bounds__(THREADBLOCK_SIZE) __global__ void dotBasedInteractF32BwdKernel(const float *__restrict input, const float *__restrict upstream_grad, float *__restrict grad, float *__restrict bottom_mlp_grad, uint batch_size, uint num_rows, uint num_cols, uint input_size, uint ugrad_size, uint interaction_ugrad_size) { extern __shared__ float smem_f32_bwd[]; float *smem_in = &smem_f32_bwd[0]; float *smem_interaction_ugrad = &smem_f32_bwd[input_size]; // Input uint input_batch_offset = blockIdx.x * input_size; const float *gmem_in = &input[input_batch_offset]; // Gradient const uint &grad_batch_offset = input_batch_offset; float *gmem_mlp_grad = &bottom_mlp_grad[blockIdx.x * num_cols]; float *gmem_interaction_grad = &grad[grad_batch_offset]; // Upstream Gradient uint upstream_grad_batch_offset = blockIdx.x * ugrad_size; const float *gmem_mlp_ugrad = &upstream_grad[upstream_grad_batch_offset]; const float *gmem_interaction_ugrad = &upstream_grad[upstream_grad_batch_offset + num_cols]; // input -> shared memory uint input_size_float4 = input_size >> 2; for (uint idx = threadIdx.x; idx < input_size_float4; idx += blockDim.x) { ((float4 *)smem_in)[idx] = ((float4 *)gmem_in)[idx]; } // Interaction Upstream Grad -> Shared Memory uint upstream_grad_size_float4 = interaction_ugrad_size >> 2; for (uint idx = threadIdx.x; idx < upstream_grad_size_float4; idx += blockDim.x) { ((float4 *)smem_interaction_ugrad)[idx] = ((float4 *)gmem_interaction_ugrad)[idx]; } uint vectorized_load_offset = (upstream_grad_size_float4 << 2); for (uint idx = vectorized_load_offset + threadIdx.x; idx < interaction_ugrad_size; idx += blockDim.x) { smem_interaction_ugrad[idx] = gmem_interaction_ugrad[idx]; } __syncthreads(); // Copy the upstream gradient w.r.t to mlp to it's corresponding memory location. for (uint idx = threadIdx.x; idx < (num_cols >> 2); idx += blockDim.x) { ((float4 *)gmem_mlp_grad)[idx] = ((float4 *)gmem_mlp_ugrad)[idx]; } for (uint idx = threadIdx.x; idx < num_cols; idx += blockDim.x) { size_t grad_idx = idx; for (uint row_idx = 0; row_idx < num_rows; row_idx++) { float sum = 0; size_t upstream_grad_offset = (row_idx * (row_idx - 1)) >> 1; for (int k = 0; k < row_idx; k++) { sum = fmaf(smem_in[k * num_cols + idx], smem_interaction_ugrad[upstream_grad_offset + k], sum); } for (int k = row_idx + 1; k < num_rows; k++) { upstream_grad_offset = (k * (k - 1)) >> 1; // TODO: this can become a sum sum = fmaf(smem_in[k * num_cols + idx], smem_interaction_ugrad[upstream_grad_offset + row_idx], sum); } gmem_interaction_grad[grad_idx] = sum; grad_idx += num_cols; } } }
TensorFlow/Segmentation/UNet_Industrial/scripts
scripts
UNet_EVAL_XLA
#!/usr/bin/env bash # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches UNet evaluation in FP32 on 1 GPUs using 16 batch size # Usage ./UNet_FP32_EVAL_XLA.sh <path to result repository> <path to dataset> <dagm classID (1-10)> BASEDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" export TF_CPP_MIN_LOG_LEVEL=3 python "${BASEDIR}/../main.py" \ --unet_variant='tinyUNet' \ --activation_fn='relu' \ --exec_mode='evaluate' \ --iter_unit='epoch' \ --num_iter=1 \ --batch_size=16 \ --warmup_step=10 \ --results_dir="${1}" \ --data_dir="${2}" \ --dataset_name='DAGM2007' \ --dataset_classID="${3}" \ --data_format='NCHW' \ --use_auto_loss_scaling \ --noamp \ --xla \ --learning_rate=1e-4 \ --learning_rate_decay_factor=0.8 \ --learning_rate_decay_steps=500 \ --rmsprop_decay=0.9 \ --rmsprop_momentum=0.8 \ --loss_fn_name='adaptive_loss' \ --weight_decay=1e-5 \ --weight_init_method='he_uniform' \ --augment_data \ --display_every=50 \ --debug_verbosity=0
TensorFlow/Detection/SSD/examples
examples
SSD320_FP32_8GPU_BENCHMARK
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. CKPT_DIR=${1:-"/results/SSD320_FP32_8GPU"} PIPELINE_CONFIG_PATH=${2:-"/workdir/models/research/configs"}"/ssd320_bench.config" GPUS=8 TENSOR_OPS=0 export TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32=${TENSOR_OPS} export TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=${TENSOR_OPS} export TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=${TENSOR_OPS} TRAIN_LOG=$(mpirun --allow-run-as-root \ -np $GPUS \ -H localhost:$GPUS \ -bind-to none \ -map-by slot \ -x NCCL_DEBUG=INFO \ -x LD_LIBRARY_PATH \ -x PATH \ -mca pml ob1 \ -mca btl ^openib \ python -u ./object_detection/model_main.py \ --pipeline_config_path=${PIPELINE_CONFIG_PATH} \ --model_dir=${CKPT_DIR} \ --alsologtostder \ "${@:3}" 2>&1) PERF=$(echo "$TRAIN_LOG" | sed -n 's|.*global_step/sec: \(\S\+\).*|\1|p' | python -c "import sys; x = sys.stdin.readlines(); x = [float(a) for a in x[int(len(x)*3/4):]]; print(32*$GPUS*sum(x)/len(x), 'img/s')") mkdir -p $CKPT_DIR echo "$GPUS GPUs single precision training performance: $PERF" | tee $CKPT_DIR/train_log echo "$TRAIN_LOG" >> $CKPT_DIR/train_log
Tools/DGLPyTorch/SyntheticGraphGeneration/demos/performance
performance
tabular_generator
#!/usr/bin/env python # coding: utf-8 # Copyright 2023 NVIDIA Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Tabular data generation performance demo # ## Overview # # In this notebbok we compare the performance (throughput) of tabular data generators presented in the SynGen tool. # # Available generators: # # 1. [KDE (Kernel Density Estimation)](#1) # 1. [Uniform](#2) # 1. [Gaussian](#3) # 1. [Random](#4) # ### Imports # In[1]: # preprocessing from syngen.preprocessing.datasets import IEEEPreprocessing # generators from syngen.generator.tabular import ( KDEGenerator, UniformGenerator, GaussianGenerator, RandomMVGenerator, ) # Others import time import pandas as pd from collections import defaultdict from syngen.utils.types import MetaData # ### Helper function # In[2]: def measure_throughput(generator, n=10, samples = 100000, gpu=False): times = [] for _ in range(n): start = time.perf_counter() generator.sample(samples, gpu=gpu) elapsed = time.perf_counter() - start times.append(elapsed) return int((samples * n) / sum(times)) # ### Load tabular features # In[3]: data_path = '/workspace/data/ieee-fraud' preprocessed_path = '/workspace/data/ieee_preprocessed' # In[4]: preprocessing = IEEEPreprocessing(source_path=data_path, destination_path=preprocessed_path) # In[5]: feature_spec_original = preprocessing.transform(use_cache=True) # In[6]: original_tabular_data, categorical_features = feature_spec_original.get_tabular_data(MetaData.EDGES, 'user-product', return_cat_feats=True) # In[7]: results_dict = defaultdict(dict) # <a id="1"></a> # ## KDE (Kernel Density Estimation) Generator # # In[8]: kde_generator = KDEGenerator() kde_generator.fit(original_tabular_data, categorical_columns=categorical_features) results_dict['kde-cpu'] = measure_throughput(kde_generator, gpu=False) results_dict['kde-gpu'] = measure_throughput(kde_generator, gpu=True) print(f"avg throughput: {results_dict['kde-cpu']}, {results_dict['kde-gpu']}") # <a id="2"></a> # ## Uniform Generator # In[9]: uniform_generator = UniformGenerator() uniform_generator.fit(original_tabular_data, categorical_columns=categorical_features) results_dict['uniform-cpu'] = measure_throughput(uniform_generator, gpu=False) results_dict['uniform-gpu'] = measure_throughput(uniform_generator, gpu=True) print(f"avg throughput: {results_dict['uniform-cpu']}, {results_dict['uniform-gpu']}") # <a id="3"></a> # ## Gaussian Generator # In[10]: gaussian_generator = GaussianGenerator() gaussian_generator.fit(original_tabular_data, categorical_columns=categorical_features) results_dict['gaussian-cpu'] = measure_throughput(gaussian_generator, gpu=False) results_dict['gaussian-gpu'] = measure_throughput(gaussian_generator, gpu=True) print(f"avg throughput: {results_dict['gaussian-cpu']}, {results_dict['gaussian-gpu']}") # <a id="4"></a> # ## Random Generator # In[11]: random_generator = RandomMVGenerator() random_generator.fit(original_tabular_data, categorical_columns=categorical_features) results_dict['random-cpu'] = measure_throughput(random_generator, gpu=False) results_dict['random-gpu'] = measure_throughput(random_generator, gpu=True) print(f"avg throughput: {results_dict['random-cpu']}, {results_dict['random-gpu']}") # ## Results # In[12]: pd.DataFrame(results_dict, index=['ieee']) # In[ ]:
TensorFlow2/Segmentation/Contrib/UNet3P
UNet3P
requirements
hydra-core opencv-python jupyter matplotlib tqdm nibabel numba
PyTorch/Classification/ConvNets/triton/deployment_toolkit/library
library
pyt
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from collections import Counter from pathlib import Path from typing import Dict, Iterable, NamedTuple, Optional, Union import torch # pytype: disable=import-error import yaml from ..core import ( GET_MODEL_FN_NAME, BaseConverter, BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec, load_from_file, ) from ..extensions import converters, loaders, runners, savers from .utils import get_dynamic_axes, get_input_shapes, get_shapes_with_dynamic_axes LOGGER = logging.getLogger(__name__) class InputOutputSpec(NamedTuple): inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def get_sample_input(dataloader, device): for batch in dataloader: _, x, _ = batch break if isinstance(x, dict): sample_input = list(x.values()) elif isinstance(x, list): sample_input = x else: raise TypeError("The first element (x) of batch returned by dataloader must be a list or a dict") for idx, s in enumerate(sample_input): sample_input[idx] = torch.from_numpy(s).to(device) return tuple(sample_input) def get_model_device(torch_model): if next(torch_model.parameters()).is_cuda: return "cuda" else: return "cpu" def infer_model_precision(model): counter = Counter() for param in model.parameters(): counter[param.dtype] += 1 if counter[torch.float16] > 0: return Precision.FP16 else: return Precision.FP32 def _get_tensor_dtypes(dataloader, precision): def _get_dtypes(t): dtypes = {} for k, v in t.items(): dtype = str(v.dtype) if dtype == "float64": dtype = "float32" if precision == Precision.FP16 and dtype == "float32": dtype = "float16" dtypes[k] = dtype return dtypes input_dtypes = {} output_dtypes = {} for batch in dataloader: _, x, y = batch input_dtypes = _get_dtypes(x) output_dtypes = _get_dtypes(y) break return input_dtypes, output_dtypes ### TODO assumption: floating point input ### type has same precision as the model def _get_io_spec(model, dataloader_fn): precision = model.precision dataloader = dataloader_fn() input_dtypes, output_dtypes = _get_tensor_dtypes(dataloader, precision) input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader) inputs = { name: TensorSpec(name=name, dtype=input_dtypes[name], shape=tuple(input_shapes[name])) for name in model.inputs } outputs = { name: TensorSpec(name=name, dtype=output_dtypes[name], shape=tuple(output_shapes[name])) for name in model.outputs } return InputOutputSpec(inputs, outputs) class PyTorchModelLoader(BaseLoader): required_fn_name_for_signature_parsing: Optional[str] = GET_MODEL_FN_NAME def __init__(self, **kwargs): self._model_args = kwargs def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() get_model = load_from_file(model_path, "model", GET_MODEL_FN_NAME) model, tensor_infos = get_model(**self._model_args) io_spec = InputOutputSpec(tensor_infos["inputs"], tensor_infos["outputs"]) precision = infer_model_precision(model) return Model(handle=model, precision=precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptLoader(BaseLoader): def __init__(self, tensor_names_path: str = None, **kwargs): self._model_args = kwargs self._io_spec = None if tensor_names_path is not None: with Path(tensor_names_path).open("r") as fh: tensor_infos = yaml.load(fh, Loader=yaml.SafeLoader) self._io_spec = InputOutputSpec(tensor_infos["inputs"], tensor_infos["outputs"]) def load(self, model_path: Union[str, Path], **_) -> Model: if not isinstance(model_path, Path): model_path = Path(model_path) model = torch.jit.load(model_path.as_posix()) precision = infer_model_precision(model) io_spec = self._io_spec if not io_spec: yaml_path = model_path.parent / f"{model_path.stem}.yaml" if not yaml_path.is_file(): raise ValueError( f"If `--tensor-names-path is not provided, " f"TorchScript model loader expects file {yaml_path} with tensor information." ) with yaml_path.open("r") as fh: tensor_info = yaml.load(fh, Loader=yaml.SafeLoader) io_spec = InputOutputSpec(tensor_info["inputs"], tensor_info["outputs"]) return Model(handle=model, precision=precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptTraceConverter(BaseConverter): def __init__(self): pass def convert(self, model: Model, dataloader_fn) -> Model: device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) converted_model = torch.jit.trace_module(model.handle, {"forward": dummy_input}) io_spec = _get_io_spec(model, dataloader_fn) return Model(converted_model, precision=model.precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class TorchScriptScriptConverter(BaseConverter): def __init__(self): pass def convert(self, model: Model, dataloader_fn) -> Model: converted_model = torch.jit.script(model.handle) io_spec = _get_io_spec(model, dataloader_fn) return Model(converted_model, precision=model.precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class PYT2ONNXConverter(BaseConverter): def __init__(self, onnx_opset: int = None): self._onnx_opset = onnx_opset def convert(self, model: Model, dataloader_fn) -> Model: import tempfile import onnx # pytype: disable=import-error assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Converter aborted." dynamic_axes = get_dynamic_axes(dataloader_fn()) device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) with tempfile.TemporaryDirectory() as tmpdirname: export_path = os.path.join(tmpdirname, "model.onnx") with torch.no_grad(): torch.onnx.export( model.handle, dummy_input, export_path, do_constant_folding=True, input_names=list(model.inputs), output_names=list(model.outputs), dynamic_axes=dynamic_axes, opset_version=self._onnx_opset, enable_onnx_checker=True, ) onnx_model = onnx.load(export_path) onnx.checker.check_model(onnx_model) onnx.helper.strip_doc_string(onnx_model) onnx_model = onnx.shape_inference.infer_shapes(onnx_model) return Model( handle=onnx_model, precision=model.precision, inputs=model.inputs, outputs=model.outputs, ) class PYT2TensorRTConverter(BaseConverter): def __init__(self, max_batch_size: int, max_workspace_size: int, onnx_opset: int, precision: str): self._max_batch_size = max_batch_size self._max_workspace_size = max_workspace_size self._onnx_opset = onnx_opset self._precision = Precision(precision) def convert(self, model: Model, dataloader_fn) -> Model: from .onnx import _infer_graph_precision from .onnx2trt_conv import onnx2trt pyt2onnx_converter = PYT2ONNXConverter(self._onnx_opset) onnx_model = pyt2onnx_converter.convert(model, dataloader_fn).handle precision = _infer_graph_precision(onnx_model.graph) input_shapes = get_input_shapes(dataloader_fn(), self._max_batch_size) cuda_engine = onnx2trt( onnx_model, shapes=input_shapes, max_workspace_size=self._max_workspace_size, max_batch_size=self._max_batch_size, model_precision=self._precision.value, ) return Model( handle=cuda_engine, precision=model.precision, inputs=model.inputs, outputs=model.outputs, ) @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: # TensorRT requires source models to be in FP32 precision return Precision.FP32 class TorchScriptSaver(BaseSaver): def save(self, model: Model, model_path: Union[str, Path]) -> None: if not isinstance(model_path, Path): model_path = Path(model_path) if isinstance(model.handle, torch.jit.ScriptModule): torch.jit.save(model.handle, model_path.as_posix()) else: print("The model must be of type 'torch.jit.ScriptModule'. Saving aborted.") assert False # temporary error handling def _format_tensor_spec(tensor_spec): # wrapping shape with list and whole tensor_spec with dict() is required for correct yaml dump tensor_spec = tensor_spec._replace(shape=list(tensor_spec.shape)) tensor_spec = dict(tensor_spec._asdict()) return tensor_spec # store TensorSpecs from inputs and outputs in a yaml file tensor_specs = { "inputs": {k: _format_tensor_spec(v) for k, v in model.inputs.items()}, "outputs": {k: _format_tensor_spec(v) for k, v in model.outputs.items()}, } yaml_path = model_path.parent / f"{model_path.stem}.yaml" with Path(yaml_path).open("w") as fh: yaml.dump(tensor_specs, fh, indent=4) class PyTorchRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return PyTorchRunnerSession(model=model) class PyTorchRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Runner aborted." self._model = model self._output_names = None def __enter__(self): self._output_names = list(self._model.outputs) return self def __exit__(self, exc_type, exc_value, traceback): self._output_names = None self._model = None def __call__(self, x: Dict[str, object]): with torch.no_grad(): feed_list = [torch.from_numpy(v).cuda() for k, v in x.items()] y_pred = self._model.handle(*feed_list) if isinstance(y_pred, torch.Tensor): y_pred = (y_pred,) y_pred = [t.cpu().numpy() for t in y_pred] y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.PYT.value, PyTorchModelLoader) loaders.register_extension(Format.TS_TRACE.value, TorchScriptLoader) loaders.register_extension(Format.TS_SCRIPT.value, TorchScriptLoader) converters.register_extension(f"{Format.PYT.value}--{Format.TS_SCRIPT.value}", TorchScriptScriptConverter) converters.register_extension(f"{Format.PYT.value}--{Format.TS_TRACE.value}", TorchScriptTraceConverter) converters.register_extension(f"{Format.PYT.value}--{Format.ONNX.value}", PYT2ONNXConverter) converters.register_extension(f"{Format.PYT.value}--{Format.TRT.value}", PYT2TensorRTConverter) savers.register_extension(Format.TS_SCRIPT.value, TorchScriptSaver) savers.register_extension(Format.TS_TRACE.value, TorchScriptSaver) runners.register_extension(Format.PYT.value, PyTorchRunner) runners.register_extension(Format.TS_SCRIPT.value, PyTorchRunner) runners.register_extension(Format.TS_TRACE.value, PyTorchRunner)
CUDA-Optimized/FastSpeech/fastspeech/utils
utils
__init__
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
TensorFlow/Detection/SSD/models/research/object_detection/core
core
preprocessor_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.preprocessor.""" import numpy as np import six import tensorflow as tf from object_detection.core import preprocessor from object_detection.core import preprocessor_cache from object_detection.core import standard_fields as fields if six.PY2: import mock # pylint: disable=g-import-not-at-top else: from unittest import mock # pylint: disable=g-import-not-at-top class PreprocessorTest(tf.test.TestCase): def createColorfulTestImage(self): ch255 = tf.fill([1, 100, 200, 1], tf.constant(255, dtype=tf.uint8)) ch128 = tf.fill([1, 100, 200, 1], tf.constant(128, dtype=tf.uint8)) ch0 = tf.fill([1, 100, 200, 1], tf.constant(0, dtype=tf.uint8)) imr = tf.concat([ch255, ch0, ch0], 3) img = tf.concat([ch255, ch255, ch0], 3) imb = tf.concat([ch255, ch0, ch255], 3) imw = tf.concat([ch128, ch128, ch128], 3) imu = tf.concat([imr, img], 2) imd = tf.concat([imb, imw], 2) im = tf.concat([imu, imd], 1) return im def createTestImages(self): images_r = tf.constant([[[128, 128, 128, 128], [0, 0, 128, 128], [0, 128, 128, 128], [192, 192, 128, 128]]], dtype=tf.uint8) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[0, 0, 128, 128], [0, 0, 128, 128], [0, 128, 192, 192], [192, 192, 128, 192]]], dtype=tf.uint8) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[128, 128, 192, 0], [0, 0, 128, 192], [0, 128, 128, 0], [192, 192, 192, 128]]], dtype=tf.uint8) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def createEmptyTestBoxes(self): boxes = tf.constant([[]], dtype=tf.float32) return boxes def createTestBoxes(self): boxes = tf.constant( [[0.0, 0.25, 0.75, 1.0], [0.25, 0.5, 0.75, 1.0]], dtype=tf.float32) return boxes def createTestGroundtruthWeights(self): return tf.constant([1.0, 0.5], dtype=tf.float32) def createTestMasks(self): mask = np.array([ [[255.0, 0.0, 0.0], [255.0, 0.0, 0.0], [255.0, 0.0, 0.0]], [[255.0, 255.0, 0.0], [255.0, 255.0, 0.0], [255.0, 255.0, 0.0]]]) return tf.constant(mask, dtype=tf.float32) def createTestKeypoints(self): keypoints = np.array([ [[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]], [[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]], ]) return tf.constant(keypoints, dtype=tf.float32) def createTestKeypointsInsideCrop(self): keypoints = np.array([ [[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]], [[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]], ]) return tf.constant(keypoints, dtype=tf.float32) def createTestKeypointsOutsideCrop(self): keypoints = np.array([ [[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]], [[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]], ]) return tf.constant(keypoints, dtype=tf.float32) def createKeypointFlipPermutation(self): return np.array([0, 2, 1], dtype=np.int32) def createTestLabels(self): labels = tf.constant([1, 2], dtype=tf.int32) return labels def createTestBoxesOutOfImage(self): boxes = tf.constant( [[-0.1, 0.25, 0.75, 1], [0.25, 0.5, 0.75, 1.1]], dtype=tf.float32) return boxes def createTestMultiClassScores(self): return tf.constant([[1.0, 0.0], [0.5, 0.5]], dtype=tf.float32) def expectedImagesAfterNormalization(self): images_r = tf.constant([[[0, 0, 0, 0], [-1, -1, 0, 0], [-1, 0, 0, 0], [0.5, 0.5, 0, 0]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[-1, -1, 0, 0], [-1, -1, 0, 0], [-1, 0, 0.5, 0.5], [0.5, 0.5, 0, 0.5]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[0, 0, 0.5, -1], [-1, -1, 0, 0.5], [-1, 0, 0, -1], [0.5, 0.5, 0.5, 0]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedMaxImageAfterColorScale(self): images_r = tf.constant([[[0.1, 0.1, 0.1, 0.1], [-0.9, -0.9, 0.1, 0.1], [-0.9, 0.1, 0.1, 0.1], [0.6, 0.6, 0.1, 0.1]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[-0.9, -0.9, 0.1, 0.1], [-0.9, -0.9, 0.1, 0.1], [-0.9, 0.1, 0.6, 0.6], [0.6, 0.6, 0.1, 0.6]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[0.1, 0.1, 0.6, -0.9], [-0.9, -0.9, 0.1, 0.6], [-0.9, 0.1, 0.1, -0.9], [0.6, 0.6, 0.6, 0.1]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedMinImageAfterColorScale(self): images_r = tf.constant([[[-0.1, -0.1, -0.1, -0.1], [-1, -1, -0.1, -0.1], [-1, -0.1, -0.1, -0.1], [0.4, 0.4, -0.1, -0.1]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[-1, -1, -0.1, -0.1], [-1, -1, -0.1, -0.1], [-1, -0.1, 0.4, 0.4], [0.4, 0.4, -0.1, 0.4]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[-0.1, -0.1, 0.4, -1], [-1, -1, -0.1, 0.4], [-1, -0.1, -0.1, -1], [0.4, 0.4, 0.4, -0.1]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedImagesAfterLeftRightFlip(self): images_r = tf.constant([[[0, 0, 0, 0], [0, 0, -1, -1], [0, 0, 0, -1], [0, 0, 0.5, 0.5]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[0, 0, -1, -1], [0, 0, -1, -1], [0.5, 0.5, 0, -1], [0.5, 0, 0.5, 0.5]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[-1, 0.5, 0, 0], [0.5, 0, -1, -1], [-1, 0, 0, -1], [0, 0.5, 0.5, 0.5]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedImagesAfterUpDownFlip(self): images_r = tf.constant([[[0.5, 0.5, 0, 0], [-1, 0, 0, 0], [-1, -1, 0, 0], [0, 0, 0, 0]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[0.5, 0.5, 0, 0.5], [-1, 0, 0.5, 0.5], [-1, -1, 0, 0], [-1, -1, 0, 0]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[0.5, 0.5, 0.5, 0], [-1, 0, 0, -1], [-1, -1, 0, 0.5], [0, 0, 0.5, -1]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedImagesAfterRot90(self): images_r = tf.constant([[[0, 0, 0, 0], [0, 0, 0, 0], [0, -1, 0, 0.5], [0, -1, -1, 0.5]]], dtype=tf.float32) images_r = tf.expand_dims(images_r, 3) images_g = tf.constant([[[0, 0, 0.5, 0.5], [0, 0, 0.5, 0], [-1, -1, 0, 0.5], [-1, -1, -1, 0.5]]], dtype=tf.float32) images_g = tf.expand_dims(images_g, 3) images_b = tf.constant([[[-1, 0.5, -1, 0], [0.5, 0, 0, 0.5], [0, -1, 0, 0.5], [0, -1, -1, 0.5]]], dtype=tf.float32) images_b = tf.expand_dims(images_b, 3) images = tf.concat([images_r, images_g, images_b], 3) return images def expectedBoxesAfterLeftRightFlip(self): boxes = tf.constant([[0.0, 0.0, 0.75, 0.75], [0.25, 0.0, 0.75, 0.5]], dtype=tf.float32) return boxes def expectedBoxesAfterUpDownFlip(self): boxes = tf.constant([[0.25, 0.25, 1.0, 1.0], [0.25, 0.5, 0.75, 1.0]], dtype=tf.float32) return boxes def expectedBoxesAfterRot90(self): boxes = tf.constant( [[0.0, 0.0, 0.75, 0.75], [0.0, 0.25, 0.5, 0.75]], dtype=tf.float32) return boxes def expectedMasksAfterLeftRightFlip(self): mask = np.array([ [[0.0, 0.0, 255.0], [0.0, 0.0, 255.0], [0.0, 0.0, 255.0]], [[0.0, 255.0, 255.0], [0.0, 255.0, 255.0], [0.0, 255.0, 255.0]]]) return tf.constant(mask, dtype=tf.float32) def expectedMasksAfterUpDownFlip(self): mask = np.array([ [[255.0, 0.0, 0.0], [255.0, 0.0, 0.0], [255.0, 0.0, 0.0]], [[255.0, 255.0, 0.0], [255.0, 255.0, 0.0], [255.0, 255.0, 0.0]]]) return tf.constant(mask, dtype=tf.float32) def expectedMasksAfterRot90(self): mask = np.array([ [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [255.0, 255.0, 255.0]], [[0.0, 0.0, 0.0], [255.0, 255.0, 255.0], [255.0, 255.0, 255.0]]]) return tf.constant(mask, dtype=tf.float32) def expectedLabelScoresAfterThresholding(self): return tf.constant([1.0], dtype=tf.float32) def expectedBoxesAfterThresholding(self): return tf.constant([[0.0, 0.25, 0.75, 1.0]], dtype=tf.float32) def expectedLabelsAfterThresholding(self): return tf.constant([1], dtype=tf.float32) def expectedMultiClassScoresAfterThresholding(self): return tf.constant([[1.0, 0.0]], dtype=tf.float32) def expectedMasksAfterThresholding(self): mask = np.array([ [[255.0, 0.0, 0.0], [255.0, 0.0, 0.0], [255.0, 0.0, 0.0]]]) return tf.constant(mask, dtype=tf.float32) def expectedKeypointsAfterThresholding(self): keypoints = np.array([ [[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]] ]) return tf.constant(keypoints, dtype=tf.float32) def expectedLabelScoresAfterThresholdingWithMissingScore(self): return tf.constant([np.nan], dtype=tf.float32) def expectedBoxesAfterThresholdingWithMissingScore(self): return tf.constant([[0.25, 0.5, 0.75, 1]], dtype=tf.float32) def expectedLabelsAfterThresholdingWithMissingScore(self): return tf.constant([2], dtype=tf.float32) def testRgbToGrayscale(self): images = self.createTestImages() grayscale_images = preprocessor._rgb_to_grayscale(images) expected_images = tf.image.rgb_to_grayscale(images) with self.test_session() as sess: (grayscale_images, expected_images) = sess.run( [grayscale_images, expected_images]) self.assertAllEqual(expected_images, grayscale_images) def testNormalizeImage(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 256, 'target_minval': -1, 'target_maxval': 1 })] images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] images_expected = self.expectedImagesAfterNormalization() with self.test_session() as sess: (images_, images_expected_) = sess.run( [images, images_expected]) images_shape_ = images_.shape images_expected_shape_ = images_expected_.shape expected_shape = [1, 4, 4, 3] self.assertAllEqual(images_expected_shape_, images_shape_) self.assertAllEqual(images_shape_, expected_shape) self.assertAllClose(images_, images_expected_) def testRetainBoxesAboveThreshold(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() (retained_boxes, retained_labels, retained_weights) = preprocessor.retain_boxes_above_threshold( boxes, labels, weights, threshold=0.6) with self.test_session() as sess: (retained_boxes_, retained_labels_, retained_weights_, expected_retained_boxes_, expected_retained_labels_, expected_retained_weights_) = sess.run([ retained_boxes, retained_labels, retained_weights, self.expectedBoxesAfterThresholding(), self.expectedLabelsAfterThresholding(), self.expectedLabelScoresAfterThresholding()]) self.assertAllClose( retained_boxes_, expected_retained_boxes_) self.assertAllClose( retained_labels_, expected_retained_labels_) self.assertAllClose( retained_weights_, expected_retained_weights_) def testRetainBoxesAboveThresholdWithMultiClassScores(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() multiclass_scores = self.createTestMultiClassScores() (_, _, _, retained_multiclass_scores) = preprocessor.retain_boxes_above_threshold( boxes, labels, weights, multiclass_scores=multiclass_scores, threshold=0.6) with self.test_session() as sess: (retained_multiclass_scores_, expected_retained_multiclass_scores_) = sess.run([ retained_multiclass_scores, self.expectedMultiClassScoresAfterThresholding() ]) self.assertAllClose(retained_multiclass_scores_, expected_retained_multiclass_scores_) def testRetainBoxesAboveThresholdWithMasks(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() masks = self.createTestMasks() _, _, _, retained_masks = preprocessor.retain_boxes_above_threshold( boxes, labels, weights, masks, threshold=0.6) with self.test_session() as sess: retained_masks_, expected_retained_masks_ = sess.run([ retained_masks, self.expectedMasksAfterThresholding()]) self.assertAllClose( retained_masks_, expected_retained_masks_) def testRetainBoxesAboveThresholdWithKeypoints(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypoints() (_, _, _, retained_keypoints) = preprocessor.retain_boxes_above_threshold( boxes, labels, weights, keypoints=keypoints, threshold=0.6) with self.test_session() as sess: (retained_keypoints_, expected_retained_keypoints_) = sess.run([ retained_keypoints, self.expectedKeypointsAfterThresholding()]) self.assertAllClose( retained_keypoints_, expected_retained_keypoints_) def testFlipBoxesLeftRight(self): boxes = self.createTestBoxes() flipped_boxes = preprocessor._flip_boxes_left_right(boxes) expected_boxes = self.expectedBoxesAfterLeftRightFlip() with self.test_session() as sess: flipped_boxes, expected_boxes = sess.run([flipped_boxes, expected_boxes]) self.assertAllEqual(flipped_boxes.flatten(), expected_boxes.flatten()) def testFlipBoxesUpDown(self): boxes = self.createTestBoxes() flipped_boxes = preprocessor._flip_boxes_up_down(boxes) expected_boxes = self.expectedBoxesAfterUpDownFlip() with self.test_session() as sess: flipped_boxes, expected_boxes = sess.run([flipped_boxes, expected_boxes]) self.assertAllEqual(flipped_boxes.flatten(), expected_boxes.flatten()) def testRot90Boxes(self): boxes = self.createTestBoxes() rotated_boxes = preprocessor._rot90_boxes(boxes) expected_boxes = self.expectedBoxesAfterRot90() with self.test_session() as sess: rotated_boxes, expected_boxes = sess.run([rotated_boxes, expected_boxes]) self.assertAllEqual(rotated_boxes.flatten(), expected_boxes.flatten()) def testFlipMasksLeftRight(self): test_mask = self.createTestMasks() flipped_mask = preprocessor._flip_masks_left_right(test_mask) expected_mask = self.expectedMasksAfterLeftRightFlip() with self.test_session() as sess: flipped_mask, expected_mask = sess.run([flipped_mask, expected_mask]) self.assertAllEqual(flipped_mask.flatten(), expected_mask.flatten()) def testFlipMasksUpDown(self): test_mask = self.createTestMasks() flipped_mask = preprocessor._flip_masks_up_down(test_mask) expected_mask = self.expectedMasksAfterUpDownFlip() with self.test_session() as sess: flipped_mask, expected_mask = sess.run([flipped_mask, expected_mask]) self.assertAllEqual(flipped_mask.flatten(), expected_mask.flatten()) def testRot90Masks(self): test_mask = self.createTestMasks() rotated_mask = preprocessor._rot90_masks(test_mask) expected_mask = self.expectedMasksAfterRot90() with self.test_session() as sess: rotated_mask, expected_mask = sess.run([rotated_mask, expected_mask]) self.assertAllEqual(rotated_mask.flatten(), expected_mask.flatten()) def _testPreprocessorCache(self, preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False, num_runs=4): cache = preprocessor_cache.PreprocessorCache() images = self.createTestImages() boxes = self.createTestBoxes() weights = self.createTestGroundtruthWeights() classes = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=test_masks, include_keypoints=test_keypoints) out = [] for i in range(num_runs): tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_weights: weights } num_outputs = 1 if test_boxes: tensor_dict[fields.InputDataFields.groundtruth_boxes] = boxes tensor_dict[fields.InputDataFields.groundtruth_classes] = classes num_outputs += 1 if test_masks: tensor_dict[fields.InputDataFields.groundtruth_instance_masks] = masks num_outputs += 1 if test_keypoints: tensor_dict[fields.InputDataFields.groundtruth_keypoints] = keypoints num_outputs += 1 out.append(preprocessor.preprocess( tensor_dict, preprocess_options, preprocessor_arg_map, cache)) with self.test_session() as sess: to_run = [] for i in range(num_runs): to_run.append(out[i][fields.InputDataFields.image]) if test_boxes: to_run.append(out[i][fields.InputDataFields.groundtruth_boxes]) if test_masks: to_run.append( out[i][fields.InputDataFields.groundtruth_instance_masks]) if test_keypoints: to_run.append(out[i][fields.InputDataFields.groundtruth_keypoints]) out_array = sess.run(to_run) for i in range(num_outputs, len(out_array)): self.assertAllClose(out_array[i], out_array[i - num_outputs]) def testRandomHorizontalFlip(self): preprocess_options = [(preprocessor.random_horizontal_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterLeftRightFlip() boxes_expected1 = self.expectedBoxesAfterLeftRightFlip() images_expected2 = images boxes_expected2 = boxes tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] boxes_diff1 = tf.squared_difference(boxes, boxes_expected1) boxes_diff2 = tf.squared_difference(boxes, boxes_expected2) boxes_diff = tf.multiply(boxes_diff1, boxes_diff2) boxes_diff_expected = tf.zeros_like(boxes_diff) images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_diff_, boxes_diff_expected_) = sess.run([images_diff, images_diff_expected, boxes_diff, boxes_diff_expected]) self.assertAllClose(boxes_diff_, boxes_diff_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomHorizontalFlipWithEmptyBoxes(self): preprocess_options = [(preprocessor.random_horizontal_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterLeftRightFlip() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomHorizontalFlipWithCache(self): keypoint_flip_permutation = self.createKeypointFlipPermutation() preprocess_options = [ (preprocessor.random_horizontal_flip, {'keypoint_flip_permutation': keypoint_flip_permutation})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRunRandomHorizontalFlipWithMaskAndKeypoints(self): preprocess_options = [(preprocessor.random_horizontal_flip, {})] image_height = 3 image_width = 3 images = tf.random_uniform([1, image_height, image_width, 3]) boxes = self.createTestBoxes() masks = self.createTestMasks() keypoints = self.createTestKeypoints() keypoint_flip_permutation = self.createKeypointFlipPermutation() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocess_options = [ (preprocessor.random_horizontal_flip, {'keypoint_flip_permutation': keypoint_flip_permutation})] preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) tensor_dict = preprocessor.preprocess( tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map) boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks] keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: boxes, masks, keypoints = sess.run([boxes, masks, keypoints]) self.assertTrue(boxes is not None) self.assertTrue(masks is not None) self.assertTrue(keypoints is not None) def testRandomVerticalFlip(self): preprocess_options = [(preprocessor.random_vertical_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterUpDownFlip() boxes_expected1 = self.expectedBoxesAfterUpDownFlip() images_expected2 = images boxes_expected2 = boxes tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] boxes_diff1 = tf.squared_difference(boxes, boxes_expected1) boxes_diff2 = tf.squared_difference(boxes, boxes_expected2) boxes_diff = tf.multiply(boxes_diff1, boxes_diff2) boxes_diff_expected = tf.zeros_like(boxes_diff) images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_diff_, boxes_diff_expected_) = sess.run([images_diff, images_diff_expected, boxes_diff, boxes_diff_expected]) self.assertAllClose(boxes_diff_, boxes_diff_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomVerticalFlipWithEmptyBoxes(self): preprocess_options = [(preprocessor.random_vertical_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterUpDownFlip() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomVerticalFlipWithCache(self): keypoint_flip_permutation = self.createKeypointFlipPermutation() preprocess_options = [ (preprocessor.random_vertical_flip, {'keypoint_flip_permutation': keypoint_flip_permutation})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRunRandomVerticalFlipWithMaskAndKeypoints(self): preprocess_options = [(preprocessor.random_vertical_flip, {})] image_height = 3 image_width = 3 images = tf.random_uniform([1, image_height, image_width, 3]) boxes = self.createTestBoxes() masks = self.createTestMasks() keypoints = self.createTestKeypoints() keypoint_flip_permutation = self.createKeypointFlipPermutation() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocess_options = [ (preprocessor.random_vertical_flip, {'keypoint_flip_permutation': keypoint_flip_permutation})] preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) tensor_dict = preprocessor.preprocess( tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map) boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks] keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: boxes, masks, keypoints = sess.run([boxes, masks, keypoints]) self.assertTrue(boxes is not None) self.assertTrue(masks is not None) self.assertTrue(keypoints is not None) def testRandomRotation90(self): preprocess_options = [(preprocessor.random_rotation90, {})] images = self.expectedImagesAfterNormalization() boxes = self.createTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterRot90() boxes_expected1 = self.expectedBoxesAfterRot90() images_expected2 = images boxes_expected2 = boxes tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] boxes_diff1 = tf.squared_difference(boxes, boxes_expected1) boxes_diff2 = tf.squared_difference(boxes, boxes_expected2) boxes_diff = tf.multiply(boxes_diff1, boxes_diff2) boxes_diff_expected = tf.zeros_like(boxes_diff) images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_diff_, boxes_diff_expected_) = sess.run([images_diff, images_diff_expected, boxes_diff, boxes_diff_expected]) self.assertAllClose(boxes_diff_, boxes_diff_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomRotation90WithEmptyBoxes(self): preprocess_options = [(preprocessor.random_rotation90, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterRot90() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_) def testRandomRotation90WithCache(self): preprocess_options = [(preprocessor.random_rotation90, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRunRandomRotation90WithMaskAndKeypoints(self): preprocess_options = [(preprocessor.random_rotation90, {})] image_height = 3 image_width = 3 images = tf.random_uniform([1, image_height, image_width, 3]) boxes = self.createTestBoxes() masks = self.createTestMasks() keypoints = self.createTestKeypoints() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) tensor_dict = preprocessor.preprocess( tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map) boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks] keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: boxes, masks, keypoints = sess.run([boxes, masks, keypoints]) self.assertTrue(boxes is not None) self.assertTrue(masks is not None) self.assertTrue(keypoints is not None) def testRandomPixelValueScale(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_pixel_value_scale, {})) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_min = tf.to_float(images) * 0.9 / 255.0 images_max = tf.to_float(images) * 1.1 / 255.0 images = tensor_dict[fields.InputDataFields.image] values_greater = tf.greater_equal(images, images_min) values_less = tf.less_equal(images, images_max) values_true = tf.fill([1, 4, 4, 3], True) with self.test_session() as sess: (values_greater_, values_less_, values_true_) = sess.run( [values_greater, values_less, values_true]) self.assertAllClose(values_greater_, values_true_) self.assertAllClose(values_less_, values_true_) def testRandomPixelValueScaleWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_pixel_value_scale, {})) self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False) def testRandomImageScale(self): preprocess_options = [(preprocessor.random_image_scale, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_scaled = tensor_dict[fields.InputDataFields.image] images_original_shape = tf.shape(images_original) images_scaled_shape = tf.shape(images_scaled) with self.test_session() as sess: (images_original_shape_, images_scaled_shape_) = sess.run( [images_original_shape, images_scaled_shape]) self.assertTrue( images_original_shape_[1] * 0.5 <= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[1] * 2.0 >= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[2] * 0.5 <= images_scaled_shape_[2]) self.assertTrue( images_original_shape_[2] * 2.0 >= images_scaled_shape_[2]) def testRandomImageScaleWithCache(self): preprocess_options = [(preprocessor.random_image_scale, {})] self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_) def testRandomRGBtoGrayWithCache(self): preprocess_options = [( preprocessor.random_rgb_to_gray, {'probability': 0.5})] self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomAdjustBrightness(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_brightness, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_bright = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_bright_shape = tf.shape(images_bright) with self.test_session() as sess: (image_original_shape_, image_bright_shape_) = sess.run( [image_original_shape, image_bright_shape]) self.assertAllEqual(image_original_shape_, image_bright_shape_) def testRandomAdjustBrightnessWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_adjust_brightness, {})) self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomAdjustContrast(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_contrast, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_contrast = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_contrast_shape = tf.shape(images_contrast) with self.test_session() as sess: (image_original_shape_, image_contrast_shape_) = sess.run( [image_original_shape, image_contrast_shape]) self.assertAllEqual(image_original_shape_, image_contrast_shape_) def testRandomAdjustContrastWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_adjust_contrast, {})) self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomAdjustHue(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_hue, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_hue = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_hue_shape = tf.shape(images_hue) with self.test_session() as sess: (image_original_shape_, image_hue_shape_) = sess.run( [image_original_shape, image_hue_shape]) self.assertAllEqual(image_original_shape_, image_hue_shape_) def testRandomAdjustHueWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_adjust_hue, {})) self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomDistortColor(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_distort_color, {})) images_original = self.createTestImages() images_original_shape = tf.shape(images_original) tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_distorted_color = tensor_dict[fields.InputDataFields.image] images_distorted_color_shape = tf.shape(images_distorted_color) with self.test_session() as sess: (images_original_shape_, images_distorted_color_shape_) = sess.run( [images_original_shape, images_distorted_color_shape]) self.assertAllEqual(images_original_shape_, images_distorted_color_shape_) def testRandomDistortColorWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_distort_color, {})) self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False) def testRandomJitterBoxes(self): preprocessing_options = [] preprocessing_options.append((preprocessor.random_jitter_boxes, {})) boxes = self.createTestBoxes() boxes_shape = tf.shape(boxes) tensor_dict = {fields.InputDataFields.groundtruth_boxes: boxes} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] distorted_boxes_shape = tf.shape(distorted_boxes) with self.test_session() as sess: (boxes_shape_, distorted_boxes_shape_) = sess.run( [boxes_shape, distorted_boxes_shape]) self.assertAllEqual(boxes_shape_, distorted_boxes_shape_) def testRandomCropImage(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_crop_image, {})) images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) self.assertEqual(3, distorted_images.get_shape()[3]) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testRandomCropImageWithCache(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {'probability': 0.5}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False) def testRandomCropImageGrayscale(self): preprocessing_options = [(preprocessor.rgb_to_gray, {}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) self.assertEqual(1, distorted_images.get_shape()[3]) with self.test_session() as sess: session_results = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = session_results self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testRandomCropImageWithBoxOutOfImage(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_crop_image, {})) images = self.createTestImages() boxes = self.createTestBoxesOutOfImage() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testRandomCropImageWithRandomCoefOne(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights } tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_crop_image, { 'random_coef': 1.0 })] distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_weights = distorted_tensor_dict[ fields.InputDataFields.groundtruth_weights] boxes_shape = tf.shape(boxes) distorted_boxes_shape = tf.shape(distorted_boxes) images_shape = tf.shape(images) distorted_images_shape = tf.shape(distorted_images) with self.test_session() as sess: (boxes_shape_, distorted_boxes_shape_, images_shape_, distorted_images_shape_, images_, distorted_images_, boxes_, distorted_boxes_, labels_, distorted_labels_, weights_, distorted_weights_) = sess.run( [boxes_shape, distorted_boxes_shape, images_shape, distorted_images_shape, images, distorted_images, boxes, distorted_boxes, labels, distorted_labels, weights, distorted_weights]) self.assertAllEqual(boxes_shape_, distorted_boxes_shape_) self.assertAllEqual(images_shape_, distorted_images_shape_) self.assertAllClose(images_, distorted_images_) self.assertAllClose(boxes_, distorted_boxes_) self.assertAllEqual(labels_, distorted_labels_) self.assertAllEqual(weights_, distorted_weights_) def testRandomCropWithMockSampleDistortedBoundingBox(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })] images = self.createColorfulTestImage() boxes = tf.constant([[0.1, 0.1, 0.8, 0.3], [0.2, 0.4, 0.75, 0.75], [0.3, 0.1, 0.4, 0.7]], dtype=tf.float32) labels = tf.constant([1, 7, 11], dtype=tf.int32) weights = tf.constant([1.0, 0.5, 0.6], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_crop_image, {})] with mock.patch.object( tf.image, 'sample_distorted_bounding_box') as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = (tf.constant( [6, 143, 0], dtype=tf.int32), tf.constant( [190, 237, -1], dtype=tf.int32), tf.constant( [[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_weights = distorted_tensor_dict[ fields.InputDataFields.groundtruth_weights] expected_boxes = tf.constant([[0.178947, 0.07173, 0.75789469, 0.66244733], [0.28421, 0.0, 0.38947365, 0.57805908]], dtype=tf.float32) expected_labels = tf.constant([7, 11], dtype=tf.int32) expected_weights = tf.constant([0.5, 0.6], dtype=tf.float32) with self.test_session() as sess: (distorted_boxes_, distorted_labels_, distorted_weights_, expected_boxes_, expected_labels_, expected_weights_) = sess.run( [distorted_boxes, distorted_labels, distorted_weights, expected_boxes, expected_labels, expected_weights]) self.assertAllClose(distorted_boxes_, expected_boxes_) self.assertAllEqual(distorted_labels_, expected_labels_) self.assertAllEqual(distorted_weights_, expected_weights_) def testRandomCropWithoutClipBoxes(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })] images = self.createColorfulTestImage() boxes = tf.constant([[0.1, 0.1, 0.8, 0.3], [0.2, 0.4, 0.75, 0.75], [0.3, 0.1, 0.4, 0.7]], dtype=tf.float32) keypoints = tf.constant([ [[0.1, 0.1], [0.8, 0.3]], [[0.2, 0.4], [0.75, 0.75]], [[0.3, 0.1], [0.4, 0.7]], ], dtype=tf.float32) labels = tf.constant([1, 7, 11], dtype=tf.int32) weights = tf.constant([1.0, 0.5, 0.6], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_keypoints: keypoints, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) preprocessing_options = [(preprocessor.random_crop_image, { 'clip_boxes': False, })] with mock.patch.object( tf.image, 'sample_distorted_bounding_box') as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = (tf.constant( [6, 143, 0], dtype=tf.int32), tf.constant( [190, 237, -1], dtype=tf.int32), tf.constant( [[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_keypoints = distorted_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_weights = distorted_tensor_dict[ fields.InputDataFields.groundtruth_weights] expected_boxes = tf.constant( [[0.178947, 0.07173, 0.75789469, 0.66244733], [0.28421, -0.434599, 0.38947365, 0.57805908]], dtype=tf.float32) expected_keypoints = tf.constant( [[[0.178947, 0.07173], [0.75789469, 0.66244733]], [[0.28421, -0.434599], [0.38947365, 0.57805908]]], dtype=tf.float32) expected_labels = tf.constant([7, 11], dtype=tf.int32) expected_weights = tf.constant([0.5, 0.6], dtype=tf.float32) with self.test_session() as sess: (distorted_boxes_, distorted_keypoints_, distorted_labels_, distorted_weights_, expected_boxes_, expected_keypoints_, expected_labels_, expected_weights_) = sess.run( [distorted_boxes, distorted_keypoints, distorted_labels, distorted_weights, expected_boxes, expected_keypoints, expected_labels, expected_weights]) self.assertAllClose(distorted_boxes_, expected_boxes_) self.assertAllClose(distorted_keypoints_, expected_keypoints_) self.assertAllEqual(distorted_labels_, expected_labels_) self.assertAllEqual(distorted_weights_, expected_weights_) def testRandomCropImageWithMultiClassScores(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_crop_image, {})) images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() multiclass_scores = self.createTestMultiClassScores() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.multiclass_scores: multiclass_scores } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_multiclass_scores = distorted_tensor_dict[ fields.InputDataFields.multiclass_scores] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) multiclass_scores_rank = tf.rank(multiclass_scores) distorted_multiclass_scores_rank = tf.rank(distorted_multiclass_scores) with self.test_session() as sess: (boxes_rank_, distorted_boxes_, distorted_boxes_rank_, images_rank_, distorted_images_rank_, multiclass_scores_rank_, distorted_multiclass_scores_rank_, distorted_multiclass_scores_) = sess.run([ boxes_rank, distorted_boxes, distorted_boxes_rank, images_rank, distorted_images_rank, multiclass_scores_rank, distorted_multiclass_scores_rank, distorted_multiclass_scores ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) self.assertAllEqual(multiclass_scores_rank_, distorted_multiclass_scores_rank_) self.assertAllEqual(distorted_boxes_.shape[0], distorted_multiclass_scores_.shape[0]) def testStrictRandomCropImageWithGroundtruthWeights(self): image = self.createColorfulTestImage()[0] boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) new_image, new_boxes, new_labels, new_groundtruth_weights = ( preprocessor._strict_random_crop_image( image, boxes, labels, weights)) with self.test_session() as sess: new_image, new_boxes, new_labels, new_groundtruth_weights = ( sess.run( [new_image, new_boxes, new_labels, new_groundtruth_weights]) ) expected_boxes = np.array( [[0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0]], dtype=np.float32) self.assertAllEqual(new_image.shape, [190, 237, 3]) self.assertAllEqual(new_groundtruth_weights, [1.0, 0.5]) self.assertAllClose( new_boxes.flatten(), expected_boxes.flatten()) def testStrictRandomCropImageWithMasks(self): image = self.createColorfulTestImage()[0] boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) new_image, new_boxes, new_labels, new_weights, new_masks = ( preprocessor._strict_random_crop_image( image, boxes, labels, weights, masks=masks)) with self.test_session() as sess: new_image, new_boxes, new_labels, new_weights, new_masks = sess.run( [new_image, new_boxes, new_labels, new_weights, new_masks]) expected_boxes = np.array( [[0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0]], dtype=np.float32) self.assertAllEqual(new_image.shape, [190, 237, 3]) self.assertAllEqual(new_masks.shape, [2, 190, 237]) self.assertAllClose( new_boxes.flatten(), expected_boxes.flatten()) def testStrictRandomCropImageWithKeypoints(self): image = self.createColorfulTestImage()[0] boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypoints() with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) new_image, new_boxes, new_labels, new_weights, new_keypoints = ( preprocessor._strict_random_crop_image( image, boxes, labels, weights, keypoints=keypoints)) with self.test_session() as sess: new_image, new_boxes, new_labels, new_weights, new_keypoints = sess.run( [new_image, new_boxes, new_labels, new_weights, new_keypoints]) expected_boxes = np.array([ [0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0],], dtype=np.float32) expected_keypoints = np.array([ [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], [[0.38947368, 0.07173], [0.49473682, 0.24050637], [0.60000002, 0.40928277]] ], dtype=np.float32) self.assertAllEqual(new_image.shape, [190, 237, 3]) self.assertAllClose( new_boxes.flatten(), expected_boxes.flatten()) self.assertAllClose( new_keypoints.flatten(), expected_keypoints.flatten()) def testRunRandomCropImageWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_instance_masks: masks, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_crop_image, {})] with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run( [distorted_image, distorted_boxes, distorted_labels, distorted_masks]) expected_boxes = np.array([ [0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0], ], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 190, 237, 3]) self.assertAllEqual(distorted_masks_.shape, [2, 190, 237]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose( distorted_boxes_.flatten(), expected_boxes.flatten()) def testRunRandomCropImageWithKeypointsInsideCrop(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypointsInsideCrop() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_keypoints: keypoints, fields.InputDataFields.groundtruth_weights: weights } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) preprocessing_options = [(preprocessor.random_crop_image, {})] with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_keypoints = distorted_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_keypoints_) = sess.run( [distorted_image, distorted_boxes, distorted_labels, distorted_keypoints]) expected_boxes = np.array([ [0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0], ], dtype=np.float32) expected_keypoints = np.array([ [[0.38947368, 0.07173], [0.49473682, 0.24050637], [0.60000002, 0.40928277]], [[0.38947368, 0.07173], [0.49473682, 0.24050637], [0.60000002, 0.40928277]] ]) self.assertAllEqual(distorted_image_.shape, [1, 190, 237, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose( distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllClose( distorted_keypoints_.flatten(), expected_keypoints.flatten()) def testRunRandomCropImageWithKeypointsOutsideCrop(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypointsOutsideCrop() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) preprocessing_options = [(preprocessor.random_crop_image, {})] with mock.patch.object( tf.image, 'sample_distorted_bounding_box' ) as mock_sample_distorted_bounding_box: mock_sample_distorted_bounding_box.return_value = ( tf.constant([6, 143, 0], dtype=tf.int32), tf.constant([190, 237, -1], dtype=tf.int32), tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32)) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_keypoints = distorted_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_keypoints_) = sess.run( [distorted_image, distorted_boxes, distorted_labels, distorted_keypoints]) expected_boxes = np.array([ [0.0, 0.0, 0.75789469, 1.0], [0.23157893, 0.24050637, 0.75789469, 1.0], ], dtype=np.float32) expected_keypoints = np.array([ [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], ]) self.assertAllEqual(distorted_image_.shape, [1, 190, 237, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose( distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllClose( distorted_keypoints_.flatten(), expected_keypoints.flatten()) def testRunRetainBoxesAboveThreshold(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } preprocessing_options = [ (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6}) ] preprocessor_arg_map = preprocessor.get_default_func_arg_map() retained_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) retained_boxes = retained_tensor_dict[ fields.InputDataFields.groundtruth_boxes] retained_labels = retained_tensor_dict[ fields.InputDataFields.groundtruth_classes] retained_weights = retained_tensor_dict[ fields.InputDataFields.groundtruth_weights] with self.test_session() as sess: (retained_boxes_, retained_labels_, retained_weights_, expected_retained_boxes_, expected_retained_labels_, expected_retained_weights_) = sess.run( [retained_boxes, retained_labels, retained_weights, self.expectedBoxesAfterThresholding(), self.expectedLabelsAfterThresholding(), self.expectedLabelScoresAfterThresholding()]) self.assertAllClose(retained_boxes_, expected_retained_boxes_) self.assertAllClose(retained_labels_, expected_retained_labels_) self.assertAllClose( retained_weights_, expected_retained_weights_) def testRunRetainBoxesAboveThresholdWithMasks(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() masks = self.createTestMasks() tensor_dict = { fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_label_weights=True, include_instance_masks=True) preprocessing_options = [ (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6}) ] retained_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) retained_masks = retained_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (retained_masks_, expected_masks_) = sess.run( [retained_masks, self.expectedMasksAfterThresholding()]) self.assertAllClose(retained_masks_, expected_masks_) def testRunRetainBoxesAboveThresholdWithKeypoints(self): boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypoints() tensor_dict = { fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) preprocessing_options = [ (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6}) ] retained_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) retained_keypoints = retained_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: (retained_keypoints_, expected_keypoints_) = sess.run( [retained_keypoints, self.expectedKeypointsAfterThresholding()]) self.assertAllClose(retained_keypoints_, expected_keypoints_) def testRandomCropToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_crop_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False) def testRunRandomCropToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_crop_to_aspect_ratio, {})] with mock.patch.object(preprocessor, '_random_integer') as mock_random_integer: mock_random_integer.return_value = tf.constant(0, dtype=tf.int32) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array([0.0, 0.5, 0.75, 1.0], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 200, 200, 3]) self.assertAllEqual(distorted_labels_, [1]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [1, 200, 200]) def testRunRandomCropToAspectRatioWithKeypoints(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() keypoints = self.createTestKeypoints() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) preprocessing_options = [(preprocessor.random_crop_to_aspect_ratio, {})] with mock.patch.object(preprocessor, '_random_integer') as mock_random_integer: mock_random_integer.return_value = tf.constant(0, dtype=tf.int32) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_keypoints = distorted_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_keypoints_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_keypoints ]) expected_boxes = np.array([0.0, 0.5, 0.75, 1.0], dtype=np.float32) expected_keypoints = np.array( [[0.1, 0.2], [0.2, 0.4], [0.3, 0.6]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 200, 200, 3]) self.assertAllEqual(distorted_labels_, [1]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllClose(distorted_keypoints_.flatten(), expected_keypoints.flatten()) def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] with self.test_session() as sess: distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([ distorted_image, distorted_boxes, distorted_labels]) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400]) def testRunRandomPadToAspectRatioWithKeypoints(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() keypoints = self.createTestKeypoints() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_keypoints: keypoints } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_keypoints=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_keypoints = distorted_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_keypoints_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_keypoints ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) expected_keypoints = np.array([ [[0.05, 0.1], [0.1, 0.2], [0.15, 0.3]], [[0.2, 0.4], [0.25, 0.5], [0.3, 0.6]], ], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllClose(distorted_keypoints_.flatten(), expected_keypoints.flatten()) def testRandomPadImageWithCache(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1,}), (preprocessor.random_pad_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRandomPadImage(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_image, {})] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_, boxes_, padded_boxes_) = sess.run( [boxes_shape, padded_boxes_shape, images_shape, padded_images_shape, boxes, padded_boxes]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertTrue((images_shape_[1] >= padded_images_shape_[1] * 0.5).all) self.assertTrue((images_shape_[2] >= padded_images_shape_[2] * 0.5).all) self.assertTrue((images_shape_[1] <= padded_images_shape_[1]).all) self.assertTrue((images_shape_[2] <= padded_images_shape_[2]).all) self.assertTrue(np.all((boxes_[:, 2] - boxes_[:, 0]) >= ( padded_boxes_[:, 2] - padded_boxes_[:, 0]))) self.assertTrue(np.all((boxes_[:, 3] - boxes_[:, 1]) >= ( padded_boxes_[:, 3] - padded_boxes_[:, 1]))) def testRandomCropPadImageWithCache(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1,}), (preprocessor.random_crop_pad_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRandomCropPadImageWithRandomCoefOne(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_crop_pad_image, { 'random_coef': 1.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_, boxes_, padded_boxes_) = sess.run( [boxes_shape, padded_boxes_shape, images_shape, padded_images_shape, boxes, padded_boxes]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertTrue((images_shape_[1] >= padded_images_shape_[1] * 0.5).all) self.assertTrue((images_shape_[2] >= padded_images_shape_[2] * 0.5).all) self.assertTrue((images_shape_[1] <= padded_images_shape_[1]).all) self.assertTrue((images_shape_[2] <= padded_images_shape_[2]).all) self.assertTrue(np.all((boxes_[:, 2] - boxes_[:, 0]) >= ( padded_boxes_[:, 2] - padded_boxes_[:, 0]))) self.assertTrue(np.all((boxes_[:, 3] - boxes_[:, 1]) >= ( padded_boxes_[:, 3] - padded_boxes_[:, 1]))) def testRandomCropToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_crop_to_aspect_ratio, { 'aspect_ratio': 2.0 })] cropped_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) cropped_images = cropped_tensor_dict[fields.InputDataFields.image] cropped_boxes = cropped_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) cropped_boxes_shape = tf.shape(cropped_boxes) images_shape = tf.shape(images) cropped_images_shape = tf.shape(cropped_images) with self.test_session() as sess: (boxes_shape_, cropped_boxes_shape_, images_shape_, cropped_images_shape_) = sess.run([ boxes_shape, cropped_boxes_shape, images_shape, cropped_images_shape ]) self.assertAllEqual(boxes_shape_, cropped_boxes_shape_) self.assertEqual(images_shape_[1], cropped_images_shape_[1] * 2) self.assertEqual(images_shape_[2], cropped_images_shape_[2]) def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2]) def testRandomBlackPatchesWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_black_patches, { 'size_to_image_ratio': 0.5 })) self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRandomBlackPatches(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_black_patches, { 'size_to_image_ratio': 0.5 })) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} blacked_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) blacked_images = blacked_tensor_dict[fields.InputDataFields.image] images_shape = tf.shape(images) blacked_images_shape = tf.shape(blacked_images) with self.test_session() as sess: (images_shape_, blacked_images_shape_) = sess.run( [images_shape, blacked_images_shape]) self.assertAllEqual(images_shape_, blacked_images_shape_) def testRandomResizeMethodWithCache(self): preprocess_options = [] preprocess_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocess_options.append((preprocessor.random_resize_method, { 'target_size': (75, 150) })) self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True) def testRandomResizeMethod(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_resize_method, { 'target_size': (75, 150) })) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} resized_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) resized_images = resized_tensor_dict[fields.InputDataFields.image] resized_images_shape = tf.shape(resized_images) expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32) with self.test_session() as sess: (expected_images_shape_, resized_images_shape_) = sess.run( [expected_images_shape, resized_images_shape]) self.assertAllEqual(expected_images_shape_, resized_images_shape_) def testResizeImageWithMasks(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] height = 50 width = 100 expected_image_shape_list = [[50, 100, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 50, 100], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_image( in_image, in_masks, new_height=height, new_width=width) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape]) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeImageWithMasksTensorInputHeightAndWidth(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] height = tf.constant(50, dtype=tf.int32) width = tf.constant(100, dtype=tf.int32) expected_image_shape_list = [[50, 100, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 50, 100], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_image( in_image, in_masks, new_height=height, new_width=width) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape]) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeImageWithNoInstanceMask(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[0, 60, 40], [0, 15, 30]] height = 50 width = 100 expected_image_shape_list = [[50, 100, 3], [50, 100, 3]] expected_masks_shape_list = [[0, 50, 100], [0, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_image( in_image, in_masks, new_height=height, new_width=width) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape]) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToRangePreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_image.get_shape().as_list(), expected_shape) def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape) def testResizeToRangeWithPadToMaxDimensionReturnsCorrectShapes(self): in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[100, 100, 3], [100, 100, 3], [100, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True) self.assertAllEqual(out_image.shape.as_list(), expected_shape) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run( out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape) def testResizeToRangeWithPadToMaxDimensionReturnsCorrectTensor(self): in_image_np = np.array([[[0, 1, 2]]], np.float32) ex_image_np = np.array( [[[0, 1, 2], [123.68, 116.779, 103.939]], [[123.68, 116.779, 103.939], [123.68, 116.779, 103.939]]], np.float32) min_dim = 1 max_dim = 2 in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True, per_channel_pad_value=(123.68, 116.779, 103.939)) with self.test_session() as sess: out_image_np = sess.run(out_image, feed_dict={in_image: in_image_np}) self.assertAllClose(ex_image_np, out_image_np) def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape) def testResizeToRangeWithMasksAndPadToMaxDimension(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[100, 100, 3], [100, 100, 3]] expected_masks_shape_list = [[15, 100, 100], [10, 100, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip( in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) in_masks = tf.placeholder(tf.float32, shape=(None, None, None)) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape], feed_dict={ in_image: np.random.randn(*in_image_shape), in_masks: np.random.randn(*in_masks_shape) }) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToRangeWithMasksAndDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) in_masks = tf.placeholder(tf.float32, shape=(None, None, None)) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape], feed_dict={ in_image: np.random.randn(*in_image_shape), in_masks: np.random.randn(*in_masks_shape) }) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToRangeWithInstanceMasksTensorOfSizeZero(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[0, 60, 40], [0, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape]) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToRange4DImageTensor(self): image = tf.random_uniform([1, 200, 300, 3]) with self.assertRaises(ValueError): preprocessor.resize_to_range(image, 500, 600) def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape) def testResizeToMinDimensionTensorShapes(self): in_image_shape_list = [[60, 55, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 55], [10, 15, 30]] min_dim = 50 expected_image_shape_list = [[60, 55, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 60, 55], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) in_masks = tf.placeholder(tf.float32, shape=(None, None, None)) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_min_dimension( in_image, in_masks, min_dimension=min_dim) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape], feed_dict={ in_image: np.random.randn(*in_image_shape), in_masks: np.random.randn(*in_masks_shape) }) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[0, 60, 40], [0, 15, 30]] min_dim = 50 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_min_dimension( in_image, in_masks, min_dimension=min_dim) out_image_shape = tf.shape(out_image) out_masks_shape = tf.shape(out_masks) with self.test_session() as sess: out_image_shape, out_masks_shape = sess.run( [out_image_shape, out_masks_shape]) self.assertAllEqual(out_image_shape, expected_image_shape) self.assertAllEqual(out_masks_shape, expected_mask_shape) def testResizeToMinDimensionRaisesErrorOn4DImage(self): image = tf.random_uniform([1, 200, 300, 3]) with self.assertRaises(ValueError): preprocessor.resize_to_min_dimension(image, 500) def testScaleBoxesToPixelCoordinates(self): """Tests box scaling, checking scaled values.""" in_shape = [60, 40, 3] in_boxes = [[0.1, 0.2, 0.4, 0.6], [0.5, 0.3, 0.9, 0.7]] expected_boxes = [[6., 8., 24., 24.], [30., 12., 54., 28.]] in_image = tf.random_uniform(in_shape) in_boxes = tf.constant(in_boxes) _, out_boxes = preprocessor.scale_boxes_to_pixel_coordinates( in_image, boxes=in_boxes) with self.test_session() as sess: out_boxes = sess.run(out_boxes) self.assertAllClose(out_boxes, expected_boxes) def testScaleBoxesToPixelCoordinatesWithKeypoints(self): """Tests box and keypoint scaling, checking scaled values.""" in_shape = [60, 40, 3] in_boxes = self.createTestBoxes() in_keypoints = self.createTestKeypoints() expected_boxes = [[0., 10., 45., 40.], [15., 20., 45., 40.]] expected_keypoints = [ [[6., 4.], [12., 8.], [18., 12.]], [[24., 16.], [30., 20.], [36., 24.]], ] in_image = tf.random_uniform(in_shape) _, out_boxes, out_keypoints = preprocessor.scale_boxes_to_pixel_coordinates( in_image, boxes=in_boxes, keypoints=in_keypoints) with self.test_session() as sess: out_boxes_, out_keypoints_ = sess.run([out_boxes, out_keypoints]) self.assertAllClose(out_boxes_, expected_boxes) self.assertAllClose(out_keypoints_, expected_keypoints) def testSubtractChannelMean(self): """Tests whether channel means have been subtracted.""" with self.test_session(): image = tf.zeros((240, 320, 3)) means = [1, 2, 3] actual = preprocessor.subtract_channel_mean(image, means=means) actual = actual.eval() self.assertTrue((actual[:, :, 0] == -1).all()) self.assertTrue((actual[:, :, 1] == -2).all()) self.assertTrue((actual[:, :, 2] == -3).all()) def testOneHotEncoding(self): """Tests one hot encoding of multiclass labels.""" with self.test_session(): labels = tf.constant([1, 4, 2], dtype=tf.int32) one_hot = preprocessor.one_hot_encoding(labels, num_classes=5) one_hot = one_hot.eval() self.assertAllEqual([0, 1, 1, 0, 1], one_hot) def testSSDRandomCropWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False) def testSSDRandomCrop(self): preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop, {})] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testSSDRandomCropWithMultiClassScores(self): preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop, {})] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() multiclass_scores = self.createTestMultiClassScores() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.multiclass_scores: multiclass_scores, fields.InputDataFields.groundtruth_weights: weights, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_multiclass_scores=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_multiclass_scores = distorted_tensor_dict[ fields.InputDataFields.multiclass_scores] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) multiclass_scores_rank = tf.rank(multiclass_scores) distorted_multiclass_scores_rank = tf.rank(distorted_multiclass_scores) with self.test_session() as sess: (boxes_rank_, distorted_boxes_, distorted_boxes_rank_, images_rank_, distorted_images_rank_, multiclass_scores_rank_, distorted_multiclass_scores_, distorted_multiclass_scores_rank_) = sess.run([ boxes_rank, distorted_boxes, distorted_boxes_rank, images_rank, distorted_images_rank, multiclass_scores_rank, distorted_multiclass_scores, distorted_multiclass_scores_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) self.assertAllEqual(multiclass_scores_rank_, distorted_multiclass_scores_rank_) self.assertAllEqual(distorted_boxes_.shape[0], distorted_multiclass_scores_.shape[0]) def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False) def _testSSDRandomCropFixedAspectRatio(self, include_multiclass_scores, include_instance_masks, include_keypoints): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights } if include_multiclass_scores: multiclass_scores = self.createTestMultiClassScores() tensor_dict[fields.InputDataFields.multiclass_scores] = ( multiclass_scores) if include_instance_masks: masks = self.createTestMasks() tensor_dict[fields.InputDataFields.groundtruth_instance_masks] = masks if include_keypoints: keypoints = self.createTestKeypoints() tensor_dict[fields.InputDataFields.groundtruth_keypoints] = keypoints preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_multiclass_scores=include_multiclass_scores, include_instance_masks=include_instance_masks, include_keypoints=include_keypoints) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_) def testSSDRandomCropFixedAspectRatio(self): self._testSSDRandomCropFixedAspectRatio(include_multiclass_scores=False, include_instance_masks=False, include_keypoints=False) def testSSDRandomCropFixedAspectRatioWithMultiClassScores(self): self._testSSDRandomCropFixedAspectRatio(include_multiclass_scores=True, include_instance_masks=False, include_keypoints=False) def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): self._testSSDRandomCropFixedAspectRatio(include_multiclass_scores=False, include_instance_masks=True, include_keypoints=True) def testSSDRandomCropFixedAspectRatioWithLabelScoresMasksAndKeypoints(self): self._testSSDRandomCropFixedAspectRatio(include_multiclass_scores=False, include_instance_masks=True, include_keypoints=True) def testConvertClassLogitsToSoftmax(self): multiclass_scores = tf.constant( [[1.0, 0.0], [0.5, 0.5], [1000, 1]], dtype=tf.float32) temperature = 2.0 converted_multiclass_scores = ( preprocessor.convert_class_logits_to_softmax( multiclass_scores=multiclass_scores, temperature=temperature)) expected_converted_multiclass_scores = [[[0.62245935, 0.37754068], [0.5, 0.5], [1, 0]]] with self.test_session() as sess: (converted_multiclass_scores_) = sess.run([converted_multiclass_scores]) self.assertAllClose(converted_multiclass_scores_, expected_converted_multiclass_scores) if __name__ == '__main__': tf.test.main()
PyTorch/Detection/Efficientdet/data
data
dataset
""" COCO dataset (quick and dirty) Hacked together by Ross Wightman """ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch.utils.data as data import os import torch import numpy as np from PIL import Image from pycocotools.coco import COCO from effdet.anchors import Anchors, AnchorLabeler class CocoDetection(data.Dataset): """`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: root (string): Root directory where images are downloaded to. ann_file (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` """ def __init__(self, root, ann_file, config, transform=None): super(CocoDetection, self).__init__() if isinstance(root, (str, bytes)): root = os.path.expanduser(root) self.root = root self.transform = transform self.yxyx = True # expected for TF model, most PT are xyxy self.include_masks = False self.include_bboxes_ignore = False self.has_annotations = 'image_info' not in ann_file self.coco = None self.cat_ids = [] self.cat_to_label = dict() self.img_ids = [] self.img_ids_invalid = [] self.img_infos = [] self._load_annotations(ann_file) self.anchors = Anchors( config.min_level, config.max_level, config.num_scales, config.aspect_ratios, config.anchor_scale, config.image_size) self.anchor_labeler = AnchorLabeler(self.anchors, config.num_classes, match_threshold=0.5) def _load_annotations(self, ann_file): assert self.coco is None self.coco = COCO(ann_file) self.cat_ids = self.coco.getCatIds() img_ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) for img_id in sorted(self.coco.imgs.keys()): info = self.coco.loadImgs([img_id])[0] valid_annotation = not self.has_annotations or img_id in img_ids_with_ann if valid_annotation and min(info['width'], info['height']) >= 32: self.img_ids.append(img_id) self.img_infos.append(info) else: self.img_ids_invalid.append(img_id) def _parse_img_ann(self, img_id, img_info): ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) bboxes = [] bboxes_ignore = [] cls = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if self.include_masks and ann['area'] <= 0: continue if w < 1 or h < 1: continue # To subtract 1 or not, TF doesn't appear to do this so will keep it out for now. if self.yxyx: #bbox = [y1, x1, y1 + h - 1, x1 + w - 1] bbox = [y1, x1, y1 + h, x1 + w] else: #bbox = [x1, y1, x1 + w - 1, y1 + h - 1] bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): if self.include_bboxes_ignore: bboxes_ignore.append(bbox) else: bboxes.append(bbox) cls.append(self.cat_to_label[ann['category_id']] if self.cat_to_label else ann['category_id']) if bboxes: bboxes = np.array(bboxes, dtype=np.float32) cls = np.array(cls, dtype=np.int64) else: bboxes = np.zeros((0, 4), dtype=np.float32) cls = np.array([], dtype=np.int64) if self.include_bboxes_ignore: if bboxes_ignore: bboxes_ignore = np.array(bboxes_ignore, dtype=np.float32) else: bboxes_ignore = np.zeros((0, 4), dtype=np.float32) ann = dict(img_id=img_id, bbox=bboxes, cls=cls, img_size=(img_info['width'], img_info['height'])) if self.include_bboxes_ignore: ann['bbox_ignore'] = bboxes_ignore return ann def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, annotations (target)). """ img_id = self.img_ids[index] img_info = self.img_infos[index] if self.has_annotations: ann = self._parse_img_ann(img_id, img_info) else: ann = dict(img_id=img_id, img_size=(img_info['width'], img_info['height'])) path = img_info['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') if self.transform is not None: img, ann = self.transform(img, ann) cls_targets, box_targets, num_positives = self.anchor_labeler.label_anchors( ann['bbox'], ann['cls']) ann.pop('bbox') ann.pop('cls') ann['num_positives'] = num_positives ann.update(cls_targets) ann.update(box_targets) return img, ann def __len__(self): return len(self.img_ids)
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt
tft_pyt
utils
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time class PerformanceMeter(): def __init__(self): self.reset() def reset(self): self.avg = 0 self.count = 0 self.total_time = 0 self.last_update_time = time.time() self.intervals = [] def update(self, n, exclude_from_total=False): delta = time.time() - self.last_update_time self.intervals.append(delta) if not exclude_from_total: self.total_time += delta self.count += n self.avg = self.count / self.total_time self.last_update_time = time.time() return n/delta def reset_current_lap(self): self.last_update_time = time.time() def p(self, i): assert i <= 100 idx = int(len(self.intervals) * i / 100) return sorted(self.intervals)[idx]
PyTorch/SpeechSynthesis/FastPitch/phrases
phrases
phrase_4_256
The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
TensorFlow/LanguageModeling/BERT/triton/scripts
scripts
run_perf_client
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. MODEL_NAME=${1:-"bert"} MODEL_VERSION=${2:-1} BATCH_SIZE=${3:-1} MAX_LATENCY=${4:-100} MAX_CLIENT_THREADS=${5:-10} MAX_CONCURRENCY=${6:-50} SERVER_HOSTNAME=${7:-"localhost"} if [[ $SERVER_HOSTNAME == *":"* ]]; then echo "ERROR! Do not include the port when passing the Server Hostname. These scripts require that the TRITON HTTP endpoint is on Port 8000 and the gRPC endpoint is on Port 8001. Exiting..." exit 1 fi if [ "$SERVER_HOSTNAME" = "localhost" ] then if [ ! "$(docker inspect -f "{{.State.Running}}" triton_server_cont)" = "true" ] ; then echo "Launching TRITON server" bash triton/scripts/launch_server.sh SERVER_LAUNCHED=true function cleanup_server { echo "Killing TRITON server" docker kill triton_server_cont } # Ensure we cleanup the server on exit # trap "exit" INT TERM trap cleanup_server EXIT fi fi # Wait until server is up. curl on the health of the server and sleep until its ready bash triton/scripts/wait_for_triton_server.sh $SERVER_HOSTNAME TIMESTAMP=$(date "+%y%m%d_%H%M") bash scripts/docker/launch.sh mkdir -p /results/perf_client/${MODEL_NAME} OUTPUT_FILE_CSV="/results/perf_client/${MODEL_NAME}/results_${TIMESTAMP}.csv" ARGS="\ --max-threads ${MAX_CLIENT_THREADS} \ -m ${MODEL_NAME} \ -x ${MODEL_VERSION} \ -p 200000 \ -d \ -v -z \ -i gRPC \ -u ${SERVER_HOSTNAME}:8001 \ -b ${BATCH_SIZE} \ -l ${MAX_LATENCY} \ -c ${MAX_CONCURRENCY} \ -f ${OUTPUT_FILE_CSV}" echo "Using args: $(echo "$ARGS" | sed -e 's/ -/\n-/g')" bash scripts/docker/launch.sh perf_client $ARGS
PyTorch/SpeechSynthesis/Tacotron2/phrases
phrases
phrase_8_64
She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great She sells seashells by the seashore, shells she sells are great
TensorFlow2/Recommendation/WideAndDeep/tests/feature_specs
feature_specs
less_onehot
channel_spec: label: - clicked map: [] multihot_categorical: - topic_id_list - entity_id_list - category_id_list numerical: - document_id_document_id_promo_sim_categories - document_id_document_id_promo_sim_topics - document_id_document_id_promo_sim_entities - document_id_promo_ctr - publisher_id_promo_ctr - source_id_promo_ctr - document_id_promo_count - publish_time_days_since_published - ad_id_ctr - advertiser_id_ctr - campaign_id_ctr - ad_id_count - publish_time_promo_days_since_published onehot_categorical: - document_id - platform - document_id_promo - source_id - geo_location - geo_location_country - geo_location_state - publisher_id - source_id_promo - publisher_id_promo feature_spec: ad_id_count: {} ad_id_ctr: {} advertiser_id_ctr: {} campaign_id_ctr: {} category_id_list: cardinality: 100 max_hotness: 3 clicked: {} document_id: cardinality: 300000 document_id_document_id_promo_sim_categories: {} document_id_document_id_promo_sim_entities: {} document_id_document_id_promo_sim_topics: {} document_id_promo: cardinality: 100000 document_id_promo_count: {} document_id_promo_ctr: {} entity_id_list: cardinality: 10000 max_hotness: 3 geo_location: cardinality: 2500 geo_location_country: cardinality: 300 geo_location_state: cardinality: 2000 platform: cardinality: 4 publish_time_days_since_published: {} publish_time_promo_days_since_published: {} publisher_id: cardinality: 1000 publisher_id_promo: cardinality: 1000 publisher_id_promo_ctr: {} source_id: cardinality: 4000 source_id_promo: cardinality: 4000 source_id_promo_ctr: {} topic_id_list: cardinality: 350 max_hotness: 3 metadata: {} source_spec: test: - features: - clicked - document_id - platform - document_id_promo - source_id - geo_location - geo_location_country - geo_location_state - publisher_id - source_id_promo - publisher_id_promo - topic_id_list - entity_id_list - category_id_list - document_id_document_id_promo_sim_categories - document_id_document_id_promo_sim_topics - document_id_document_id_promo_sim_entities - document_id_promo_ctr - publisher_id_promo_ctr - source_id_promo_ctr - document_id_promo_count - publish_time_days_since_published - ad_id_ctr - advertiser_id_ctr - campaign_id_ctr - ad_id_count - publish_time_promo_days_since_published files: - valid.csv type: csv train: - features: - clicked - document_id - platform - document_id_promo - source_id - geo_location - geo_location_country - geo_location_state - publisher_id - source_id_promo - publisher_id_promo - topic_id_list - entity_id_list - category_id_list - document_id_document_id_promo_sim_categories - document_id_document_id_promo_sim_topics - document_id_document_id_promo_sim_entities - document_id_promo_ctr - publisher_id_promo_ctr - source_id_promo_ctr - document_id_promo_count - publish_time_days_since_published - ad_id_ctr - advertiser_id_ctr - campaign_id_ctr - ad_id_count - publish_time_promo_days_since_published files: - train.csv type: csv
PyTorch/LanguageModeling/BERT/triton/dist4l/runner
runner
prepare_datasets
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env bash mkdir -p datasets/data/squad/v1.1 wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O datasets/data/squad/v1.1/train-v1.1.json wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -O datasets/data/squad/v1.1/dev-v1.1.json wget https://worksheets.codalab.org/rest/bundles/0xbcd57bee090b421c982906709c8c27e1/contents/blob/ -O datasets/data/squad/v1.1/evaluate-v1.1.py
TensorFlow/Detection/SSD/models/research/slim/nets
nets
mobilenet_v1_eval
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Validate mobilenet_v1 with options for quantization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow as tf from datasets import dataset_factory from nets import mobilenet_v1 from preprocessing import preprocessing_factory slim = tf.contrib.slim flags = tf.app.flags flags.DEFINE_string('master', '', 'Session master') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('num_classes', 1001, 'Number of classes to distinguish') flags.DEFINE_integer('num_examples', 50000, 'Number of examples to evaluate') flags.DEFINE_integer('image_size', 224, 'Input image resolution') flags.DEFINE_float('depth_multiplier', 1.0, 'Depth multiplier for mobilenet') flags.DEFINE_bool('quantize', False, 'Quantize training') flags.DEFINE_string('checkpoint_dir', '', 'The directory for checkpoints') flags.DEFINE_string('eval_dir', '', 'Directory for writing eval event logs') flags.DEFINE_string('dataset_dir', '', 'Location of dataset') FLAGS = flags.FLAGS def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch( tensors=[image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) return images, labels def metrics(logits, labels): """Specify the metrics for eval. Args: logits: Logits output from the graph. labels: Ground truth labels for inputs. Returns: Eval Op for the graph. """ labels = tf.squeeze(labels) names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'Accuracy': tf.metrics.accuracy(tf.argmax(logits, 1), labels), 'Recall_5': tf.metrics.recall_at_k(labels, logits, 5), }) for name, value in names_to_values.iteritems(): slim.summaries.add_scalar_summary( value, name, prefix='eval', print_summary=True) return names_to_updates.values() def build_model(): """Build the mobilenet_v1 model for evaluation. Returns: g: graph with rewrites after insertion of quantization ops and batch norm folding. eval_ops: eval ops for inference. variables_to_restore: List of variables to restore from checkpoint. """ g = tf.Graph() with g.as_default(): inputs, labels = imagenet_input(is_training=False) scope = mobilenet_v1.mobilenet_v1_arg_scope( is_training=False, weight_decay=0.0) with slim.arg_scope(scope): logits, _ = mobilenet_v1.mobilenet_v1( inputs, is_training=False, depth_multiplier=FLAGS.depth_multiplier, num_classes=FLAGS.num_classes) if FLAGS.quantize: tf.contrib.quantize.create_eval_graph() eval_ops = metrics(logits, labels) return g, eval_ops def eval_model(): """Evaluates mobilenet_v1.""" g, eval_ops = build_model() with g.as_default(): num_batches = math.ceil(FLAGS.num_examples / float(FLAGS.batch_size)) slim.evaluation.evaluate_once( FLAGS.master, FLAGS.checkpoint_dir, logdir=FLAGS.eval_dir, num_evals=num_batches, eval_op=eval_ops) def main(unused_arg): eval_model() if __name__ == '__main__': tf.app.run(main)
TensorFlow/Recommendation/WideAndDeep/preproc
preproc
preproc4
#!/usr/bin/env python # coding: utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import datetime import numpy as np import pandas as pd import pyspark.sql.functions as F import tensorflow as tf import trainer from pyspark import TaskContext from pyspark.context import SparkContext, SparkConf from pyspark.sql.functions import col, udf from pyspark.sql.session import SparkSession from pyspark.sql.types import ArrayType, DoubleType from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.tf_metadata import metadata_io from trainer.features import LABEL_COLUMN, DISPLAY_ID_COLUMN, IS_LEAK_COLUMN, DISPLAY_ID_AND_IS_LEAK_ENCODED_COLUMN, \ CATEGORICAL_COLUMNS, DOC_CATEGORICAL_MULTIVALUED_COLUMNS, BOOL_COLUMNS, INT_COLUMNS, FLOAT_COLUMNS, \ FLOAT_COLUMNS_LOG_BIN_TRANSFORM, FLOAT_COLUMNS_SIMPLE_BIN_TRANSFORM evaluation = True evaluation_verbose = False OUTPUT_BUCKET_FOLDER = "/outbrain/preprocessed/" DATA_BUCKET_FOLDER = "/outbrain/orig/" SPARK_TEMP_FOLDER = "/outbrain/spark-temp/" LOCAL_DATA_TFRECORDS_DIR = "/outbrain/tfrecords" TEST_SET_MODE = False TENSORFLOW_HADOOP = "preproc/data/tensorflow-hadoop-1.5.0.jar" conf = SparkConf().setMaster('local[*]').set('spark.executor.memory', '40g').set('spark.driver.memory', '200g').set( "spark.local.dir", SPARK_TEMP_FOLDER) conf.set("spark.jars", TENSORFLOW_HADOOP) conf.set("spark.sql.files.maxPartitionBytes", 805306368) sc = SparkContext(conf=conf) spark = SparkSession(sc) parser = argparse.ArgumentParser() parser.add_argument( '--prebatch_size', help='Prebatch size in created tfrecords', type=int, default=4096) parser.add_argument( '--submission', action='store_true', default=False ) args = parser.parse_args() batch_size = args.prebatch_size # # Feature Vector export bool_feature_names = ['event_weekend', 'user_has_already_viewed_doc'] int_feature_names = ['user_views', 'ad_views', 'doc_views', 'doc_event_days_since_published', 'doc_event_hour', 'doc_ad_days_since_published', ] float_feature_names = [ 'pop_ad_id', 'pop_ad_id_conf', 'pop_ad_id_conf_multipl', 'pop_document_id', 'pop_document_id_conf', 'pop_document_id_conf_multipl', 'pop_publisher_id', 'pop_publisher_id_conf', 'pop_publisher_id_conf_multipl', 'pop_advertiser_id', 'pop_advertiser_id_conf', 'pop_advertiser_id_conf_multipl', 'pop_campain_id', 'pop_campain_id_conf', 'pop_campain_id_conf_multipl', 'pop_doc_event_doc_ad', 'pop_doc_event_doc_ad_conf', 'pop_doc_event_doc_ad_conf_multipl', 'pop_source_id', 'pop_source_id_conf', 'pop_source_id_conf_multipl', 'pop_source_id_country', 'pop_source_id_country_conf', 'pop_source_id_country_conf_multipl', 'pop_entity_id', 'pop_entity_id_conf', 'pop_entity_id_conf_multipl', 'pop_entity_id_country', 'pop_entity_id_country_conf', 'pop_entity_id_country_conf_multipl', 'pop_topic_id', 'pop_topic_id_conf', 'pop_topic_id_conf_multipl', 'pop_topic_id_country', 'pop_topic_id_country_conf', 'pop_topic_id_country_conf_multipl', 'pop_category_id', 'pop_category_id_conf', 'pop_category_id_conf_multipl', 'pop_category_id_country', 'pop_category_id_country_conf', 'pop_category_id_country_conf_multipl', 'user_doc_ad_sim_categories', 'user_doc_ad_sim_categories_conf', 'user_doc_ad_sim_categories_conf_multipl', 'user_doc_ad_sim_topics', 'user_doc_ad_sim_topics_conf', 'user_doc_ad_sim_topics_conf_multipl', 'user_doc_ad_sim_entities', 'user_doc_ad_sim_entities_conf', 'user_doc_ad_sim_entities_conf_multipl', 'doc_event_doc_ad_sim_categories', 'doc_event_doc_ad_sim_categories_conf', 'doc_event_doc_ad_sim_categories_conf_multipl', 'doc_event_doc_ad_sim_topics', 'doc_event_doc_ad_sim_topics_conf', 'doc_event_doc_ad_sim_topics_conf_multipl', 'doc_event_doc_ad_sim_entities', 'doc_event_doc_ad_sim_entities_conf', 'doc_event_doc_ad_sim_entities_conf_multipl' ] # ### Configuring feature vector category_feature_names_integral = ['ad_advertiser', 'doc_ad_category_id_1', 'doc_ad_category_id_2', 'doc_ad_category_id_3', 'doc_ad_topic_id_1', 'doc_ad_topic_id_2', 'doc_ad_topic_id_3', 'doc_ad_entity_id_1', 'doc_ad_entity_id_2', 'doc_ad_entity_id_3', 'doc_ad_entity_id_4', 'doc_ad_entity_id_5', 'doc_ad_entity_id_6', 'doc_ad_publisher_id', 'doc_ad_source_id', 'doc_event_category_id_1', 'doc_event_category_id_2', 'doc_event_category_id_3', 'doc_event_topic_id_1', 'doc_event_topic_id_2', 'doc_event_topic_id_3', 'doc_event_entity_id_1', 'doc_event_entity_id_2', 'doc_event_entity_id_3', 'doc_event_entity_id_4', 'doc_event_entity_id_5', 'doc_event_entity_id_6', 'doc_event_publisher_id', 'doc_event_source_id', 'event_country', 'event_country_state', 'event_geo_location', 'event_hour', 'event_platform', 'traffic_source'] feature_vector_labels_integral = bool_feature_names \ + int_feature_names \ + float_feature_names \ + category_feature_names_integral if args.submission: train_feature_vector_gcs_folder_name = 'train_feature_vectors_integral' else: train_feature_vector_gcs_folder_name = 'train_feature_vectors_integral_eval' # ## Exporting integral feature vectors to CSV train_feature_vectors_exported_df = spark.read.parquet(OUTPUT_BUCKET_FOLDER + train_feature_vector_gcs_folder_name) train_feature_vectors_exported_df.take(3) integral_headers = ['label', 'display_id', 'ad_id', 'doc_id', 'doc_event_id', 'is_leak'] + feature_vector_labels_integral CSV_ORDERED_COLUMNS = ['label', 'display_id', 'ad_id', 'doc_id', 'doc_event_id', 'is_leak', 'event_weekend', 'user_has_already_viewed_doc', 'user_views', 'ad_views', 'doc_views', 'doc_event_days_since_published', 'doc_event_hour', 'doc_ad_days_since_published', 'pop_ad_id', 'pop_ad_id_conf', 'pop_ad_id_conf_multipl', 'pop_document_id', 'pop_document_id_conf', 'pop_document_id_conf_multipl', 'pop_publisher_id', 'pop_publisher_id_conf', 'pop_publisher_id_conf_multipl', 'pop_advertiser_id', 'pop_advertiser_id_conf', 'pop_advertiser_id_conf_multipl', 'pop_campain_id', 'pop_campain_id_conf', 'pop_campain_id_conf_multipl', 'pop_doc_event_doc_ad', 'pop_doc_event_doc_ad_conf', 'pop_doc_event_doc_ad_conf_multipl', 'pop_source_id', 'pop_source_id_conf', 'pop_source_id_conf_multipl', 'pop_source_id_country', 'pop_source_id_country_conf', 'pop_source_id_country_conf_multipl', 'pop_entity_id', 'pop_entity_id_conf', 'pop_entity_id_conf_multipl', 'pop_entity_id_country', 'pop_entity_id_country_conf', 'pop_entity_id_country_conf_multipl', 'pop_topic_id', 'pop_topic_id_conf', 'pop_topic_id_conf_multipl', 'pop_topic_id_country', 'pop_topic_id_country_conf', 'pop_topic_id_country_conf_multipl', 'pop_category_id', 'pop_category_id_conf', 'pop_category_id_conf_multipl', 'pop_category_id_country', 'pop_category_id_country_conf', 'pop_category_id_country_conf_multipl', 'user_doc_ad_sim_categories', 'user_doc_ad_sim_categories_conf', 'user_doc_ad_sim_categories_conf_multipl', 'user_doc_ad_sim_topics', 'user_doc_ad_sim_topics_conf', 'user_doc_ad_sim_topics_conf_multipl', 'user_doc_ad_sim_entities', 'user_doc_ad_sim_entities_conf', 'user_doc_ad_sim_entities_conf_multipl', 'doc_event_doc_ad_sim_categories', 'doc_event_doc_ad_sim_categories_conf', 'doc_event_doc_ad_sim_categories_conf_multipl', 'doc_event_doc_ad_sim_topics', 'doc_event_doc_ad_sim_topics_conf', 'doc_event_doc_ad_sim_topics_conf_multipl', 'doc_event_doc_ad_sim_entities', 'doc_event_doc_ad_sim_entities_conf', 'doc_event_doc_ad_sim_entities_conf_multipl', 'ad_advertiser', 'doc_ad_category_id_1', 'doc_ad_category_id_2', 'doc_ad_category_id_3', 'doc_ad_topic_id_1', 'doc_ad_topic_id_2', 'doc_ad_topic_id_3', 'doc_ad_entity_id_1', 'doc_ad_entity_id_2', 'doc_ad_entity_id_3', 'doc_ad_entity_id_4', 'doc_ad_entity_id_5', 'doc_ad_entity_id_6', 'doc_ad_publisher_id', 'doc_ad_source_id', 'doc_event_category_id_1', 'doc_event_category_id_2', 'doc_event_category_id_3', 'doc_event_topic_id_1', 'doc_event_topic_id_2', 'doc_event_topic_id_3', 'doc_event_entity_id_1', 'doc_event_entity_id_2', 'doc_event_entity_id_3', 'doc_event_entity_id_4', 'doc_event_entity_id_5', 'doc_event_entity_id_6', 'doc_event_publisher_id', 'doc_event_source_id', 'event_country', 'event_country_state', 'event_geo_location', 'event_hour', 'event_platform', 'traffic_source'] FEAT_CSV_ORDERED_COLUMNS = ['event_weekend', 'user_has_already_viewed_doc', 'user_views', 'ad_views', 'doc_views', 'doc_event_days_since_published', 'doc_event_hour', 'doc_ad_days_since_published', 'pop_ad_id', 'pop_ad_id_conf', 'pop_ad_id_conf_multipl', 'pop_document_id', 'pop_document_id_conf', 'pop_document_id_conf_multipl', 'pop_publisher_id', 'pop_publisher_id_conf', 'pop_publisher_id_conf_multipl', 'pop_advertiser_id', 'pop_advertiser_id_conf', 'pop_advertiser_id_conf_multipl', 'pop_campain_id', 'pop_campain_id_conf', 'pop_campain_id_conf_multipl', 'pop_doc_event_doc_ad', 'pop_doc_event_doc_ad_conf', 'pop_doc_event_doc_ad_conf_multipl', 'pop_source_id', 'pop_source_id_conf', 'pop_source_id_conf_multipl', 'pop_source_id_country', 'pop_source_id_country_conf', 'pop_source_id_country_conf_multipl', 'pop_entity_id', 'pop_entity_id_conf', 'pop_entity_id_conf_multipl', 'pop_entity_id_country', 'pop_entity_id_country_conf', 'pop_entity_id_country_conf_multipl', 'pop_topic_id', 'pop_topic_id_conf', 'pop_topic_id_conf_multipl', 'pop_topic_id_country', 'pop_topic_id_country_conf', 'pop_topic_id_country_conf_multipl', 'pop_category_id', 'pop_category_id_conf', 'pop_category_id_conf_multipl', 'pop_category_id_country', 'pop_category_id_country_conf', 'pop_category_id_country_conf_multipl', 'user_doc_ad_sim_categories', 'user_doc_ad_sim_categories_conf', 'user_doc_ad_sim_categories_conf_multipl', 'user_doc_ad_sim_topics', 'user_doc_ad_sim_topics_conf', 'user_doc_ad_sim_topics_conf_multipl', 'user_doc_ad_sim_entities', 'user_doc_ad_sim_entities_conf', 'user_doc_ad_sim_entities_conf_multipl', 'doc_event_doc_ad_sim_categories', 'doc_event_doc_ad_sim_categories_conf', 'doc_event_doc_ad_sim_categories_conf_multipl', 'doc_event_doc_ad_sim_topics', 'doc_event_doc_ad_sim_topics_conf', 'doc_event_doc_ad_sim_topics_conf_multipl', 'doc_event_doc_ad_sim_entities', 'doc_event_doc_ad_sim_entities_conf', 'doc_event_doc_ad_sim_entities_conf_multipl', 'ad_advertiser', 'doc_ad_category_id_1', 'doc_ad_category_id_2', 'doc_ad_category_id_3', 'doc_ad_topic_id_1', 'doc_ad_topic_id_2', 'doc_ad_topic_id_3', 'doc_ad_entity_id_1', 'doc_ad_entity_id_2', 'doc_ad_entity_id_3', 'doc_ad_entity_id_4', 'doc_ad_entity_id_5', 'doc_ad_entity_id_6', 'doc_ad_publisher_id', 'doc_ad_source_id', 'doc_event_category_id_1', 'doc_event_category_id_2', 'doc_event_category_id_3', 'doc_event_topic_id_1', 'doc_event_topic_id_2', 'doc_event_topic_id_3', 'doc_event_entity_id_1', 'doc_event_entity_id_2', 'doc_event_entity_id_3', 'doc_event_entity_id_4', 'doc_event_entity_id_5', 'doc_event_entity_id_6', 'doc_event_publisher_id', 'doc_event_source_id', 'event_country', 'event_country_state', 'event_geo_location', 'event_hour', 'event_platform', 'traffic_source'] def to_array(col): def to_array_(v): return v.toArray().tolist() # Important: asNondeterministic requires Spark 2.3 or later # It can be safely removed i.e. # return udf(to_array_, ArrayType(DoubleType()))(col) # but at the cost of decreased performance return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col) CONVERT_TO_INT = ['doc_ad_category_id_1', 'doc_ad_category_id_2', 'doc_ad_category_id_3', 'doc_ad_topic_id_1', 'doc_ad_topic_id_2', 'doc_ad_topic_id_3', 'doc_ad_entity_id_1', 'doc_ad_entity_id_2', 'doc_ad_entity_id_3', 'doc_ad_entity_id_4', 'doc_ad_entity_id_5', 'doc_ad_entity_id_6', 'doc_ad_source_id', 'doc_event_category_id_1', 'doc_event_category_id_2', 'doc_event_category_id_3', 'doc_event_topic_id_1', 'doc_event_topic_id_2', 'doc_event_topic_id_3', 'doc_event_entity_id_1', 'doc_event_entity_id_2', 'doc_event_entity_id_3', 'doc_event_entity_id_4', 'doc_event_entity_id_5', 'doc_event_entity_id_6'] def format_number(element, name): if name in BOOL_COLUMNS + CATEGORICAL_COLUMNS: return element.cast("int") elif name in CONVERT_TO_INT: return element.cast("int") else: return element def to_array_with_none(col): def to_array_with_none_(v): tmp = np.full((v.size,), fill_value=None, dtype=np.float64) tmp[v.indices] = v.values return tmp.tolist() # Important: asNondeterministic requires Spark 2.3 or later # It can be safely removed i.e. # return udf(to_array_, ArrayType(DoubleType()))(col) # but at the cost of decreased performance return udf(to_array_with_none_, ArrayType(DoubleType())).asNondeterministic()(col) @udf def count_value(x): from collections import Counter tmp = Counter(x).most_common(2) if not tmp or np.isnan(tmp[0][0]): return 0 return float(tmp[0][0]) def replace_with_most_frequent(most_value): return udf(lambda x: most_value if not x or np.isnan(x) else x) train_feature_vectors_integral_csv_rdd_df = train_feature_vectors_exported_df.select('label', 'display_id', 'ad_id', 'document_id', 'document_id_event', 'feature_vector').withColumn( 'is_leak', F.lit(-1)).withColumn("featvec", to_array("feature_vector")).select( ['label'] + ['display_id'] + ['ad_id'] + ['document_id'] + ['document_id_event'] + ['is_leak'] + [ format_number(element, FEAT_CSV_ORDERED_COLUMNS[index]).alias(FEAT_CSV_ORDERED_COLUMNS[index]) for index, element in enumerate([col("featvec")[i] for i in range(len(feature_vector_labels_integral))])]).replace( float('nan'), 0) if args.submission: test_validation_feature_vector_gcs_folder_name = 'test_feature_vectors_integral' else: test_validation_feature_vector_gcs_folder_name = 'validation_feature_vectors_integral' # ## Exporting integral feature vectors test_validation_feature_vectors_exported_df = spark.read.parquet( OUTPUT_BUCKET_FOLDER + test_validation_feature_vector_gcs_folder_name) test_validation_feature_vectors_exported_df.take(3) test_validation_feature_vectors_integral_csv_rdd_df = test_validation_feature_vectors_exported_df.select( 'label', 'display_id', 'ad_id', 'document_id', 'document_id_event', 'is_leak', 'feature_vector').withColumn("featvec", to_array("feature_vector")).select( ['label'] + ['display_id'] + ['ad_id'] + ['document_id'] + ['document_id_event'] + ['is_leak'] + [ format_number(element, FEAT_CSV_ORDERED_COLUMNS[index]).alias(FEAT_CSV_ORDERED_COLUMNS[index]) for index, element in enumerate([col("featvec")[i] for i in range(len(feature_vector_labels_integral))])]).replace( float('nan'), 0) def make_spec(output_dir, batch_size=None): fixed_shape = [batch_size, 1] if batch_size is not None else [] spec = {} spec[LABEL_COLUMN] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) spec[DISPLAY_ID_COLUMN] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) spec[IS_LEAK_COLUMN] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) spec[DISPLAY_ID_AND_IS_LEAK_ENCODED_COLUMN] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) for name in BOOL_COLUMNS: spec[name] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) for name in FLOAT_COLUMNS_LOG_BIN_TRANSFORM + FLOAT_COLUMNS_SIMPLE_BIN_TRANSFORM: spec[name] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.float32, default_value=None) for name in FLOAT_COLUMNS_SIMPLE_BIN_TRANSFORM: spec[name + '_binned'] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) for name in FLOAT_COLUMNS_LOG_BIN_TRANSFORM: spec[name + '_binned'] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) spec[name + '_log_01scaled'] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.float32, default_value=None) for name in INT_COLUMNS: spec[name + '_log_int'] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) spec[name + '_log_01scaled'] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.float32, default_value=None) for name in BOOL_COLUMNS + CATEGORICAL_COLUMNS: spec[name] = tf.FixedLenFeature(shape=fixed_shape, dtype=tf.int64, default_value=None) for multi_category in DOC_CATEGORICAL_MULTIVALUED_COLUMNS: shape = fixed_shape[:-1] + [len(DOC_CATEGORICAL_MULTIVALUED_COLUMNS[multi_category])] spec[multi_category] = tf.FixedLenFeature(shape=shape, dtype=tf.int64) metadata = dataset_metadata.DatasetMetadata(dataset_schema.from_feature_spec(spec)) metadata_io.write_metadata(metadata, output_dir) # write out tfrecords meta make_spec(LOCAL_DATA_TFRECORDS_DIR + '/transformed_metadata', batch_size=batch_size) def log2_1p(x): return np.log1p(x) / np.log(2.0) # calculate min and max stats for the given dataframes all in one go def compute_min_max_logs(df): print(str(datetime.datetime.now()) + '\tComputing min and max') min_logs = {} max_logs = {} float_expr = [] for name in trainer.features.FLOAT_COLUMNS_LOG_BIN_TRANSFORM + trainer.features.INT_COLUMNS: float_expr.append(F.min(name)) float_expr.append(F.max(name)) floatDf = all_df.agg(*float_expr).collect() for name in trainer.features.FLOAT_COLUMNS_LOG_BIN_TRANSFORM: minAgg = floatDf[0]["min(" + name + ")"] maxAgg = floatDf[0]["max(" + name + ")"] min_logs[name + '_log_01scaled'] = log2_1p(minAgg * 1000) max_logs[name + '_log_01scaled'] = log2_1p(maxAgg * 1000) for name in trainer.features.INT_COLUMNS: minAgg = floatDf[0]["min(" + name + ")"] maxAgg = floatDf[0]["max(" + name + ")"] min_logs[name + '_log_01scaled'] = log2_1p(minAgg) max_logs[name + '_log_01scaled'] = log2_1p(maxAgg) return min_logs, max_logs all_df = test_validation_feature_vectors_integral_csv_rdd_df.union(train_feature_vectors_integral_csv_rdd_df) min_logs, max_logs = compute_min_max_logs(all_df) if args.submission: train_output_string = '/sub_train' eval_output_string = '/test' else: train_output_string = '/train' eval_output_string = '/eval' path = LOCAL_DATA_TFRECORDS_DIR def create_tf_example_spark(df, min_logs, max_logs): result = {} result[LABEL_COLUMN] = tf.train.Feature(int64_list=tf.train.Int64List(value=df[LABEL_COLUMN].to_list())) result[DISPLAY_ID_COLUMN] = tf.train.Feature(int64_list=tf.train.Int64List(value=df[DISPLAY_ID_COLUMN].to_list())) result[IS_LEAK_COLUMN] = tf.train.Feature(int64_list=tf.train.Int64List(value=df[IS_LEAK_COLUMN].to_list())) encoded_value = df[DISPLAY_ID_COLUMN].multiply(10).add(df[IS_LEAK_COLUMN].clip(lower=0)).to_list() result[DISPLAY_ID_AND_IS_LEAK_ENCODED_COLUMN] = tf.train.Feature(int64_list=tf.train.Int64List(value=encoded_value)) for name in FLOAT_COLUMNS: value = df[name].to_list() result[name] = tf.train.Feature(float_list=tf.train.FloatList(value=value)) for name in FLOAT_COLUMNS_SIMPLE_BIN_TRANSFORM: value = df[name].multiply(10).astype('int64').to_list() result[name + '_binned'] = tf.train.Feature(int64_list=tf.train.Int64List(value=value)) for name in FLOAT_COLUMNS_LOG_BIN_TRANSFORM: value_prelim = df[name].multiply(1000).apply(np.log1p).multiply(1. / np.log(2.0)) value = value_prelim.astype('int64').to_list() result[name + '_binned'] = tf.train.Feature(int64_list=tf.train.Int64List(value=value)) nn = name + '_log_01scaled' value = value_prelim.add(-min_logs[nn]).multiply(1. / (max_logs[nn] - min_logs[nn])).to_list() result[nn] = tf.train.Feature(float_list=tf.train.FloatList(value=value)) for name in INT_COLUMNS: value_prelim = df[name].apply(np.log1p).multiply(1. / np.log(2.0)) value = value_prelim.astype('int64').to_list() result[name + '_log_int'] = tf.train.Feature(int64_list=tf.train.Int64List(value=value)) nn = name + '_log_01scaled' value = value_prelim.add(-min_logs[nn]).multiply(1. / (max_logs[nn] - min_logs[nn])).to_list() result[nn] = tf.train.Feature(float_list=tf.train.FloatList(value=value)) for name in BOOL_COLUMNS + CATEGORICAL_COLUMNS: value = df[name].fillna(0).astype('int64').to_list() result[name] = tf.train.Feature(int64_list=tf.train.Int64List(value=value)) for multi_category in DOC_CATEGORICAL_MULTIVALUED_COLUMNS: values = [] for category in DOC_CATEGORICAL_MULTIVALUED_COLUMNS[multi_category]: values = values + [df[category].to_numpy()] # need to transpose the series so they will be parsed correctly by the FixedLenFeature # we can pass in a single series here; they'll be reshaped to [batch_size, num_values] # when parsed from the TFRecord value = np.stack(values, axis=1).flatten().tolist() result[multi_category] = tf.train.Feature(int64_list=tf.train.Int64List(value=value)) tf_example = tf.train.Example(features=tf.train.Features(feature=result)) return tf_example def _transform_to_tfrecords(rdds): csv = pd.DataFrame(list(rdds), columns=CSV_ORDERED_COLUMNS) num_rows = len(csv.index) examples = [] for start_ind in range(0, num_rows, batch_size if batch_size is not None else 1): # for each batch if start_ind + batch_size - 1 > num_rows: # if we'd run out of rows csv_slice = csv.iloc[start_ind:] # drop the remainder print("last Example has: ", len(csv_slice)) examples.append((create_tf_example_spark(csv_slice, min_logs, max_logs), len(csv_slice))) return examples else: csv_slice = csv.iloc[start_ind:start_ind + (batch_size if batch_size is not None else 1)] examples.append((create_tf_example_spark(csv_slice, min_logs, max_logs), batch_size)) return examples max_partition_num = 30 def _transform_to_slices(rdds): taskcontext = TaskContext.get() partitionid = taskcontext.partitionId() csv = pd.DataFrame(list(rdds), columns=CSV_ORDERED_COLUMNS) num_rows = len(csv.index) print("working with partition: ", partitionid, max_partition_num, num_rows) examples = [] for start_ind in range(0, num_rows, batch_size if batch_size is not None else 1): # for each batch if start_ind + batch_size - 1 > num_rows: # if we'd run out of rows csv_slice = csv.iloc[start_ind:] print("last Example has: ", len(csv_slice), partitionid) examples.append((csv_slice, len(csv_slice))) return examples else: csv_slice = csv.iloc[start_ind:start_ind + (batch_size if batch_size is not None else 1)] examples.append((csv_slice, len(csv_slice))) return examples def _transform_to_tfrecords_from_slices(rdds): examples = [] for slice in rdds: if len(slice[0]) != batch_size: print("slice size is not correct, dropping: ", len(slice[0])) else: examples.append( (bytearray((create_tf_example_spark(slice[0], min_logs, max_logs)).SerializeToString()), None)) return examples def _transform_to_tfrecords_from_reslice(rdds): examples = [] all_dataframes = pd.DataFrame([]) for slice in rdds: all_dataframes = all_dataframes.append(slice[0]) num_rows = len(all_dataframes.index) examples = [] for start_ind in range(0, num_rows, batch_size if batch_size is not None else 1): # for each batch if start_ind + batch_size - 1 > num_rows: # if we'd run out of rows csv_slice = all_dataframes.iloc[start_ind:] if TEST_SET_MODE: remain_len = batch_size - len(csv_slice) (m, n) = divmod(remain_len, len(csv_slice)) print("remainder: ", len(csv_slice), remain_len, m, n) if m: for i in range(m): csv_slice = csv_slice.append(csv_slice) csv_slice = csv_slice.append(csv_slice.iloc[:n]) print("after fill remainder: ", len(csv_slice)) examples.append( (bytearray((create_tf_example_spark(csv_slice, min_logs, max_logs)).SerializeToString()), None)) return examples # drop the remainder print("dropping remainder: ", len(csv_slice)) return examples else: csv_slice = all_dataframes.iloc[start_ind:start_ind + (batch_size if batch_size is not None else 1)] examples.append( (bytearray((create_tf_example_spark(csv_slice, min_logs, max_logs)).SerializeToString()), None)) return examples TEST_SET_MODE = False train_features = train_feature_vectors_integral_csv_rdd_df.coalesce(30).rdd.mapPartitions(_transform_to_slices) cached_train_features = train_features.cache() cached_train_features.count() train_full = cached_train_features.filter(lambda x: x[1] == batch_size) # split out slies where we don't have a full batch so that we can reslice them so we only drop mininal rows train_not_full = cached_train_features.filter(lambda x: x[1] < batch_size) train_examples_full = train_full.mapPartitions(_transform_to_tfrecords_from_slices) train_left = train_not_full.coalesce(1).mapPartitions(_transform_to_tfrecords_from_reslice) all_train = train_examples_full.union(train_left) TEST_SET_MODE = True valid_features = test_validation_feature_vectors_integral_csv_rdd_df.coalesce(30).rdd.mapPartitions( _transform_to_slices) cached_valid_features = valid_features.cache() cached_valid_features.count() valid_full = cached_valid_features.filter(lambda x: x[1] == batch_size) valid_not_full = cached_valid_features.filter(lambda x: x[1] < batch_size) valid_examples_full = valid_full.mapPartitions(_transform_to_tfrecords_from_slices) valid_left = valid_not_full.coalesce(1).mapPartitions(_transform_to_tfrecords_from_reslice) all_valid = valid_examples_full.union(valid_left) all_train.saveAsNewAPIHadoopFile(LOCAL_DATA_TFRECORDS_DIR + train_output_string, "org.tensorflow.hadoop.io.TFRecordFileOutputFormat", keyClass="org.apache.hadoop.io.BytesWritable", valueClass="org.apache.hadoop.io.NullWritable") all_valid.saveAsNewAPIHadoopFile(LOCAL_DATA_TFRECORDS_DIR + eval_output_string, "org.tensorflow.hadoop.io.TFRecordFileOutputFormat", keyClass="org.apache.hadoop.io.BytesWritable", valueClass="org.apache.hadoop.io.NullWritable") spark.stop()
PyTorch/SpeechRecognition/Jasper/triton/scripts/docker
docker
build_triton_client
#!/bin/bash # ensure the TRTIS submodule is added and build the clients SCRIPT_DIR=$(cd $(dirname $0); pwd) PROJECT_DIR=${SCRIPT_DIR}/../../../ docker pull nvcr.io/nvidia/tritonserver:20.10-py3-clientsdk git submodule update --init --recursive docker build . --rm -f ${PROJECT_DIR}/triton/Dockerfile -t jasper:triton
TensorFlow/Segmentation/VNet/model
model
layers
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf def normalization_layer(inputs, name, mode): if name == 'batchnorm': return tf.layers.batch_normalization(inputs=inputs, axis=-1, training=(mode == tf.estimator.ModeKeys.TRAIN), trainable=True, virtual_batch_size=None) elif name == 'none': return inputs else: raise ValueError('Invalid normalization layer') def activation_layer(x, activation): if activation == 'relu': return tf.nn.relu(x) elif activation == 'none': return x else: raise ValueError("Unkown activation {}".format(activation)) def convolution_layer(inputs, filters, kernel_size, stride, normalization, activation, mode): x = tf.layers.conv3d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=stride, activation=None, padding='same', data_format='channels_last', use_bias=True, kernel_initializer=tf.glorot_uniform_initializer(), bias_initializer=tf.zeros_initializer(), bias_regularizer=None) x = normalization_layer(x, normalization, mode) return activation_layer(x, activation) def downsample_layer(inputs, pooling, normalization, activation, mode): if pooling == 'conv_pool': return convolution_layer(inputs=inputs, filters=inputs.get_shape()[-1] * 2, kernel_size=2, stride=2, normalization=normalization, activation=activation, mode=mode) else: raise ValueError('Invalid downsampling method: {}'.format(pooling)) def upsample_layer(inputs, filters, upsampling, normalization, activation, mode): if upsampling == 'transposed_conv': x = tf.layers.conv3d_transpose(inputs=inputs, filters=filters, kernel_size=2, strides=2, activation=None, padding='same', data_format='channels_last', use_bias=True, kernel_initializer=tf.glorot_uniform_initializer(), bias_initializer=tf.zeros_initializer(), bias_regularizer=None) x = normalization_layer(x, normalization, mode) return activation_layer(x, activation) else: raise ValueError('Unsupported upsampling: {}'.format(upsampling)) def residual_block(input_0, input_1, kernel_size, depth, normalization, activation, mode): with tf.name_scope('residual_block'): x = input_0 if input_1 is not None: x = tf.concat([input_0, input_1], axis=-1) inputs = x n_input_channels = inputs.get_shape()[-1] for i in range(depth): x = convolution_layer(inputs=x, filters=n_input_channels, kernel_size=kernel_size, stride=1, normalization=normalization, activation=activation, mode=mode) return x + inputs def input_block(inputs, filters, kernel_size, normalization, activation, mode): with tf.name_scope('conversion_block'): x = inputs return convolution_layer(inputs=inputs, filters=filters, kernel_size=kernel_size, stride=1, normalization=normalization, activation=activation, mode=mode) + x def downsample_block(inputs, depth, kernel_size, pooling, normalization, activation, mode): with tf.name_scope('downsample_block'): x = downsample_layer(inputs, pooling=pooling, normalization=normalization, activation=activation, mode=mode) return residual_block(input_0=x, input_1=None, depth=depth, kernel_size=kernel_size, normalization=normalization, activation=activation, mode=mode) def upsample_block(inputs, residual_inputs, depth, kernel_size, upsampling, normalization, activation, mode): with tf.name_scope('upsample_block'): x = upsample_layer(inputs, filters=residual_inputs.get_shape()[-1], upsampling=upsampling, normalization=normalization, activation=activation, mode=mode) return residual_block(input_0=x, input_1=residual_inputs, depth=depth, kernel_size=kernel_size, normalization=normalization, activation=activation, mode=mode) def output_block(inputs, residual_inputs, n_classes, kernel_size, upsampling, normalization, activation, mode): with tf.name_scope('output_block'): x = upsample_layer(inputs, filters=residual_inputs.get_shape()[-1], upsampling=upsampling, normalization=normalization, activation=activation, mode=mode) return convolution_layer(inputs=x, filters=n_classes, kernel_size=kernel_size, stride=1, mode=mode, activation='none', normalization='none')
TensorFlow2/Recommendation/WideAndDeep/triton
triton
requirements
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. model_navigator[tf] @ git+https://github.com/triton-inference-server/[email protected]#egg=model_navigator natsort>=7.0.0 networkx==2.5 numpy onnx>=1.8.0,<1.9.0 onnxruntime-gpu==1.8.1 pycuda>=2019.1.2 PyYAML>=5.2 tabulate>=0.8.7 tf2onnx>=1.9.0,<1.10.0 tqdm>=4.44.1
TensorFlow2/Detection/Efficientdet/scripts/docker
docker
interactive
#!/bin/bash docker run --runtime=nvidia \ -v $BACKBONE_CKPT:/workspace/checkpoints/efficientnet-b0-joc \ -v $CKPT:/workspace/checkpoints/efficientdet-tf2 \ -v ${DATA:-/mnt/nvdl/datasets/coco_master/coco2017_tfrecords}:/workspace/coco \ --rm --name=${name:-interactive} \ --shm-size=30g --ulimit memlock=-1 --ulimit stack=67108864 \ --ipc=host -p 0.0.0.0:${PORT:-6007}:${PORT:-6007} -t -i \ ${DOCKER:-effdet_tf2:latest} bash
TensorFlow/LanguageModeling/BERT/utils
utils
dllogger_class
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dllogger import Logger, StdOutBackend, JSONStreamBackend, Verbosity import numpy class dllogger_class(): def format_step(self, step): if isinstance(step, str): return step elif isinstance(step, int): return "Iteration: {} ".format(step) elif len(step) > 0: return "Iteration: {} ".format(step[0]) else: return "" def __init__(self, log_path="bert_dllog.json"): self.logger = Logger([ StdOutBackend(Verbosity.DEFAULT, step_format=self.format_step), JSONStreamBackend(Verbosity.VERBOSE, log_path), ]) self.logger.metadata("mlm_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("nsp_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("avg_loss_step", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("total_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("f1", {"unit": None, "format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("precision", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("recall", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("mcc", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("exact_match", {"unit": None, "format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata( "throughput_train", {"unit": "sequences/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "TRAIN"}, ) self.logger.metadata( "throughput_inf", {"unit": "sequences/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "VAL"}, )
TensorFlow/Classification/ConvNets/triton
triton
dataloader
import logging from pathlib import Path import numpy as np from PIL import Image from rn50_model import HEIGHT, WIDTH LOGGER = logging.getLogger(__name__) def get_dataloader_fn( *, data_dir: str, batch_size: int = 1, width: int = WIDTH, height: int = HEIGHT, images_num: int = None ): image_extensions = [".gif", ".png", ".jpeg", ".jpg"] image_paths = sorted([p for p in Path(data_dir).rglob("*") if p.suffix.lower() in image_extensions]) if images_num is not None: image_paths = image_paths[:images_num] LOGGER.info( f"Creating PIL dataloader on data_dir={data_dir} #images={len(image_paths)} " f"image_size=({width}, {height}) batch_size={batch_size}" ) def _dataloader_fn(): batch = [] for image_path in image_paths: img = Image.open(image_path.as_posix()).convert('RGB') img = img.resize((width, height)) img = np.array(img).astype(np.float32) true_class = np.array([int(image_path.parent.name)]) assert tuple(img.shape) == (height, width, 3) img = img[np.newaxis, ...] batch.append((img, image_path.as_posix(), true_class)) if len(batch) >= batch_size: ids = [image_path for _, image_path, *_ in batch] x = { "input": np.concatenate([img for img, *_ in batch]), } y_real = {"classes": np.concatenate([class_ for *_, class_ in batch])} batch = [] yield ids, x, y_real return _dataloader_fn
PyTorch/LanguageModeling/BART/scripts/docker
docker
launch
#!/bin/bash # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== CMD=${1:-/bin/bash} NV_VISIBLE_DEVICES=${2:-"all"} docker run --gpus $NV_VISIBLE_DEVICES -it --rm --ipc=host \ -v ${PWD}:/workspace/bart bart_pyt $CMD
TensorFlow/Detection/SSD/models/research/object_detection/utils
utils
np_box_ops
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for [N, 4] numpy arrays representing bounding boxes. Example box operations that are supported: * Areas: compute bounding box areas * IOU: pairwise intersection-over-union scores """ import numpy as np def area(boxes): """Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas """ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def intersection(boxes1, boxes2): """Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area """ [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1) [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2)) all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2)) intersect_heights = np.maximum( np.zeros(all_pairs_max_ymin.shape), all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2)) all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2)) intersect_widths = np.maximum( np.zeros(all_pairs_max_xmin.shape), all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths def iou(boxes1, boxes2): """Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ intersect = intersection(boxes1, boxes2) area1 = area(boxes1) area2 = area(boxes2) union = np.expand_dims(area1, axis=1) + np.expand_dims( area2, axis=0) - intersect return intersect / union def ioa(boxes1, boxes2): """Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two boxes box1 and box2 is defined as their intersection area over box2's area. Note that ioa is not symmetric, that is, IOA(box1, box2) != IOA(box2, box1). Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. """ intersect = intersection(boxes1, boxes2) areas = np.expand_dims(area(boxes2), axis=0) return intersect / areas
PaddlePaddle/LanguageModeling/BERT
BERT
squad_dataset
# Copyright (c) 2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import paddle from tokenizer import _is_whitespace def create_squad_data_holder(): input_ids = paddle.static.data( name="input_ids", shape=[-1, -1], dtype="int64") segment_ids = paddle.static.data( name="segment_ids", shape=[-1, -1], dtype="int64") start_positions = paddle.static.data( name="start_positions", shape=[-1, 1], dtype="int64") end_positions = paddle.static.data( name="end_positions", shape=[-1, 1], dtype="int64") unique_id = paddle.static.data( name="unique_id", shape=[-1, 1], dtype="int64") return input_ids, segment_ids, start_positions, end_positions, unique_id class SquadExample: """ A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible class InputFeatures: """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible class SQuAD(paddle.io.Dataset): def __init__(self, tokenizer, mode='train', version_2_with_negative=False, path=None, doc_stride=128, max_query_length=64, max_seq_length=512): self.version_2_with_negative = version_2_with_negative self.path = path self.tokenizer = tokenizer self.doc_stride = doc_stride self.max_query_length = max_query_length self.max_seq_length = max_seq_length self._transform_func = None if mode == 'train': self.is_training = True else: self.is_training = False self._read() self.features = self.convert_examples_to_features( self.examples, tokenizer=self.tokenizer, doc_stride=self.doc_stride, max_query_length=self.max_query_length, max_seq_length=self.max_seq_length) def convert_examples_to_features(self, examples, tokenizer, max_seq_length, doc_stride, max_query_length): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if self.is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if self.is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = self._improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[ split_token_index] is_max_context = self._check_is_max_context( doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = input_ids + [ tokenizer.vocab[tokenizer.pad_token] for _ in range(self.max_seq_length - len(input_ids)) ] segment_ids = segment_ids + [ tokenizer.vocab[tokenizer.pad_token] for _ in range(self.max_seq_length - len(segment_ids)) ] input_mask = [1] * len(input_ids) start_position = None end_position = None if self.is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if self.is_training and example.is_impossible: start_position = 0 end_position = 0 features.append( InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible)) unique_id += 1 return features def _improve_answer_span(self, doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(self, doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _read(self): with open(self.path, "r", encoding="utf8") as reader: input_data = json.load(reader)["data"] examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if _is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if self.is_training: if self.version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer." ) if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] try: end_position = char_to_word_offset[ answer_offset + answer_length - 1] except: continue else: start_position = -1 end_position = -1 orig_answer_text = "" else: if self.version_2_with_negative: is_impossible = qa["is_impossible"] orig_answer_text = [] if not is_impossible and 'answers' in qa.keys(): answers = qa["answers"] for answer in answers: orig_answer_text.append(answer["text"]) else: start_position = -1 end_position = -1 example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) self.examples = examples def __len__(self): return len(self.features) def __getitem__(self, idx): feature = self.features[idx] if self.is_training: return feature.input_ids, feature.segment_ids, feature.unique_id, feature.start_position, feature.end_position else: return feature.input_ids, feature.segment_ids, feature.unique_id
TensorFlow2/Recommendation/WideAndDeep/triton/runner/maintainer/docker/containers
containers
__init__
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .triton_server_container import TritonServerContainer # noqa: F401
TensorFlow2/Classification/ConvNets/model/blocks
blocks
mb_conv_block
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from typing import Any, Dict, Optional, Text, Tuple from model.layers import get_activation from model.blocks import conv2d_block __all__ = ['mb_conv_block'] def mb_conv_block(inputs: tf.Tensor, block: dict, config: dict, prefix: Text = None): """Mobile Inverted Residual Bottleneck. Args: inputs: the Keras input to the block block: BlockConfig, arguments to create a Block config: ModelConfig, a set of model parameters prefix: prefix for naming all layers Returns: the output of the block """ use_se = config.mparams.use_se if 'use_se' in config.mparams else block['se_ratio'] is not None activation = get_activation(config.mparams.activation) drop_connect_rate = config.mparams.drop_connect_rate data_format = tf.keras.backend.image_data_format() use_depthwise = block['conv_type'] != 'no_depthwise' prefix = prefix or '' filters = block['input_filters'] * block['expand_ratio'] x = inputs if block['fused_conv']: # If we use fused mbconv, skip expansion and use regular conv. x = conv2d_block(x, filters, config, kernel_size=block['kernel_size'], strides=block['strides'], activation=activation, name=prefix + 'fused') else: if block['expand_ratio'] != 1: # Expansion phase kernel_size = (1, 1) if use_depthwise else (3, 3) x = conv2d_block(x, filters, config, kernel_size=kernel_size, activation=activation, name=prefix + 'expand') # Depthwise Convolution if use_depthwise: x = conv2d_block(x, conv_filters=None, config=config, kernel_size=block['kernel_size'], strides=block['strides'], activation=activation, depthwise=True, name=prefix + 'depthwise') # Squeeze and Excitation phase if use_se: assert block['se_ratio'] is not None assert 0 < block['se_ratio'] <= 1 num_reduced_filters = max(1, int( block['input_filters'] * block['se_ratio'] )) if data_format == 'channels_first': se_shape = (filters, 1, 1) else: se_shape = (1, 1, filters) se = tf.keras.layers.GlobalAveragePooling2D(name=prefix + 'se_squeeze')(x) se = tf.keras.layers.Reshape(se_shape, name=prefix + 'se_reshape')(se) se = conv2d_block(se, num_reduced_filters, config, use_bias=True, use_batch_norm=False, activation=activation, name=prefix + 'se_reduce') se = conv2d_block(se, filters, config, use_bias=True, use_batch_norm=False, activation='sigmoid', name=prefix + 'se_expand') x = tf.keras.layers.multiply([x, se], name=prefix + 'se_excite') # Output phase x = conv2d_block(x, block['output_filters'], config, activation=None, name=prefix + 'project') # Add identity so that quantization-aware training can insert quantization # ops correctly. x = tf.keras.layers.Activation(get_activation('identity'), name=prefix + 'id')(x) if (block['id_skip'] and all(s == 1 for s in block['strides']) and block['input_filters'] == block['output_filters']): if drop_connect_rate and drop_connect_rate > 0: # Apply dropconnect # The only difference between dropout and dropconnect in TF is scaling by # drop_connect_rate during training. See: # https://github.com/keras-team/keras/pull/9898#issuecomment-380577612 x = tf.keras.layers.Dropout(drop_connect_rate, noise_shape=(None, 1, 1, 1), name=prefix + 'drop')(x) x = tf.keras.layers.add([x, inputs], name=prefix + 'add') return x
PyTorch/Classification/ConvNets/resnext101-32x4d/training/AMP
AMP
DGXA100_resnext101-32x4d_AMP_250E
python ./multiproc.py --nproc_per_node 8 ./launch.py --model resnext101-32x4d --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
PyTorch/Classification/GPUNet/triton/deployment_toolkit/triton_performance_runner
triton_performance_runner
runner
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # method from PEP-366 to support relative import in executed modules import logging import pathlib from typing import List, Optional if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ..core import EvaluationMode, MeasurementMode, OfflineMode, PerformanceTool from .model_analyzer import ModelAnalyzerRunner from .perf_analyzer import PerfAnalyzerRunner, PerfAnalyzerWarmupRunner LOGGER = logging.getLogger("triton_performance_runner") class TritonPerformanceRunner: def __init__( self, server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], concurrency: List[int], measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, output_shared_memory_size: int, performance_tool: PerformanceTool, model_repository: str, result_path: pathlib.Path, warmup: bool, timeout: Optional[int], verbose: bool, ): self._warmup_runner = None if warmup: LOGGER.info("Running warmup before the main test") self._warmup_runner = PerfAnalyzerWarmupRunner( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, concurrency=concurrency, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, timeout=timeout, ) if performance_tool == PerformanceTool.MODEL_ANALYZER: LOGGER.info("Using Model Analyzer for performance evaluation") self._runner = ModelAnalyzerRunner( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, concurrency=concurrency, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, model_repository=model_repository, result_path=result_path, timeout=timeout, verbose=verbose, ) elif performance_tool == PerformanceTool.PERF_ANALYZER: LOGGER.info("Using Perf Analyzer for performance evaluation") self._runner = PerfAnalyzerRunner( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, concurrency=concurrency, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, result_path=result_path, timeout=timeout, verbose=verbose, ) else: raise ValueError(f"Unsupported performance tool {performance_tool}") def run(self): if self._warmup_runner: self._warmup_runner.run() self._runner.run()
TensorFlow2/Recommendation/WideAndDeep/triton/runner
runner
triton
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Framework, Paths class Triton: """ Triton Inference Server helper class """ image = "nvcr.io/nvidia/tritonserver" tag = "py3" class LOAD_MODE: """ Loading mode available in Triton """ POLL = "poll" EXPLICIT = "explicit" @staticmethod def container_image(container_version: str): """ Container image based on version Args: container_version: Version of container to be used Returns: Image name with tag """ return f"{Triton.image}:{container_version}-{Triton.tag}" @staticmethod def command( framework: str, repository_path: str, strict_mode: bool = False, poll_model: bool = False, metrics: bool = False, verbose: bool = False, ): """ Command to run Triton Inference Server inside container Args: framework: Framework used for model repository_path: Path to model repository strict_mode: Flag to use strict model config poll_model: Poll model metrics: Enable GPU metrics (disable for MIG) verbose: Use verbose mode logging Returns: """ triton_command = f"tritonserver --model-store={repository_path}" if poll_model: triton_command += " --model-control-mode=poll --repository-poll-secs 5" else: triton_command += " --model-control-mode=explicit" if not strict_mode: triton_command += " --strict-model-config=false" if not metrics: triton_command += " --allow-metrics=false --allow-gpu-metrics=false" if verbose: triton_command += " --log-verbose 1" if framework in (Framework.TensorFlow1, Framework.TensorFlow2): version = 1 if framework == Framework.TensorFlow1 else 2 triton_command += f" --backend-config=tensorflow,version={version}" return triton_command @staticmethod def library_path(framework: str): """ Obtain custom library path for framework Args: framework: Framework used for model Returns: Path to additional libraries needed by framework """ paths = { Framework.PyTorch.name: "/opt/tritonserver/backends/pytorch", Framework.TensorFlow1.name: "/opt/tritonserver/backends/tensorflow1", Framework.TensorFlow2.name: "/opt/tritonserver/backends/tensorflow2", } return paths[framework] @staticmethod def custom_library_path_remote() -> str: """ Path to custom library mounted in Triton container Returns: Path to shared library with custom operations """ return f"{Paths.LIBRARIES_PATH}/libcustomops.so" @staticmethod def custom_library_path_local(libs_dir: pathlib.Path) -> pathlib.Path: """ Path to custom library in local path Args: libs_dir: path to libraries directory Returns: Path to shared library with custom operations """ return libs_dir / "libcustomops.so"
TensorFlow/Classification/ConvNets/triton/scripts/docker
docker
triton_inference_server
#!/usr/bin/env bash # Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES:=all} docker run --rm -d \ -p 8000:8000 \ -p 8001:8001 \ -p 8002:8002 \ --runtime=nvidia \ -e NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES} \ -v ${MODEL_REPOSITORY_PATH}:${MODEL_REPOSITORY_PATH} \ --shm-size=1g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ nvcr.io/nvidia/tritonserver:20.12-py3 tritonserver \ --model-store=${MODEL_REPOSITORY_PATH} \ --strict-model-config=false \ --exit-on-error=true \ --model-control-mode=explicit
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/model-config/tacotron2waveglow
tacotron2waveglow
mapping
# sequence-number symbol 0 _ 1 - 2 ! 3 ' 4 ( 5 ) 6 , 7 . 8 : 9 ; 10 ? 11 38 A 39 B 40 C 41 D 42 E 43 F 44 G 45 H 46 I 47 J 48 K 49 L 50 M 51 N 52 O 53 P 54 Q 55 R 56 S 57 T 58 U 59 V 60 W 61 X 62 Y 63 Z 38 a 39 b 40 c 41 d 42 e 43 f 44 g 45 h 46 i 47 j 48 k 49 l 50 m 51 n 52 o 53 p 54 q 55 r 56 s 57 t 58 u 59 v 60 w 61 x 62 y 63 z 64 @AA 65 @AA0 66 @AA1 67 @AA2 68 @AE 69 @AE0 70 @AE1 71 @AE2 72 @AH 73 @AH0 74 @AH1 75 @AH2 76 @AO 77 @AO0 78 @AO1 79 @AO2 80 @AW 81 @AW0 82 @AW1 83 @AW2 84 @AY 85 @AY0 86 @AY1 87 @AY2 88 @B 89 @CH 90 @D 91 @DH 92 @EH 93 @EH0 94 @EH1 95 @EH2 96 @ER 97 @ER0 98 @ER1 99 @ER2 100 @EY 101 @EY0 102 @EY1 103 @EY2 104 @F 105 @G 106 @HH 107 @IH 108 @IH0 109 @IH1 110 @IH2 111 @IY 112 @IY0 113 @IY1 114 @IY2 115 @JH 116 @K 117 @L 118 @M 119 @N 120 @NG 121 @OW 122 @OW0 123 @OW1 124 @OW2 125 @OY 126 @OY0 127 @OY1 128 @OY2 129 @P 130 @R 131 @S 132 @SH 133 @T 134 @TH 135 @UH 136 @UH0 137 @UH1 138 @UH2 139 @UW 140 @UW0 141 @UW1 142 @UW2 143 @V 144 @W 145 @Y 146 @Z 147 @ZH
TensorFlow/Segmentation/UNet_Industrial/datasets
datasets
core
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== import os from abc import ABC, abstractmethod import math import tensorflow as tf __all__ = ["BaseDataset"] class BaseDataset(ABC): authorized_normalization_methods = [None, "zero_centered", "zero_one"] def __init__(self, data_dir): self.data_dir = data_dir if not os.path.exists(data_dir): raise FileNotFoundError("The dataset directory `%s` does not exist." % data_dir) @staticmethod def _count_steps(iter_unit, num_samples, num_iter, global_batch_size): if iter_unit not in ["batch", "epoch"]: raise ValueError("Invalid `iter_unit` value: %s" % iter_unit) if iter_unit == 'epoch': num_steps = (num_samples // global_batch_size) * num_iter num_epochs = num_iter else: num_steps = num_iter num_epochs = math.ceil(num_steps / (num_samples // global_batch_size)) return num_steps, num_epochs @abstractmethod def dataset_name(self): raise NotImplementedError @abstractmethod def get_dataset_runtime_specs(self, training, iter_unit, num_iter, global_batch_size): # return filenames, num_samples, num_steps, num_epochs raise NotImplementedError @abstractmethod def dataset_fn( self, batch_size, training, input_shape, mask_shape, num_threads, use_gpu_prefetch, normalize_data_method, only_defective_images, augment_data, seed=None ): if normalize_data_method not in BaseDataset.authorized_normalization_methods: raise ValueError( 'Unknown `normalize_data_method`: %s - Authorized: %s' % (normalize_data_method, BaseDataset.authorized_normalization_methods) ) def synth_dataset_fn( self, batch_size, training, input_shape, mask_shape, num_threads, use_gpu_prefetch, normalize_data_method, only_defective_images, augment_data, seed=None ): if normalize_data_method not in BaseDataset.authorized_normalization_methods: raise ValueError( 'Unknown `normalize_data_method`: %s - Authorized: %s' % (normalize_data_method, BaseDataset.authorized_normalization_methods) ) input_shape = [batch_size] + list(input_shape) mask_shape = [batch_size] + list(mask_shape) # Convert the inputs to a Dataset if normalize_data_method is None: mean_val = 127.5 elif normalize_data_method == "zero_centered": mean_val = 0 else: mean_val = 0.5 inputs = tf.truncated_normal( input_shape, dtype=tf.float32, mean=mean_val, stddev=1, seed=seed, name='synth_inputs' ) masks = tf.truncated_normal(mask_shape, dtype=tf.float32, mean=0.01, stddev=0.1, seed=seed, name='synth_masks') labels = tf.random_uniform([batch_size], minval=0, maxval=1, dtype=tf.int32, name='synthetic_labels') dataset = tf.data.Dataset.from_tensors(((inputs, masks), labels)) dataset = dataset.cache() dataset = dataset.repeat() dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE) if use_gpu_prefetch: dataset.apply(tf.data.experimental.prefetch_to_device(device="/gpu:0", buffer_size=batch_size * 8)) return dataset
TensorFlow2/LanguageModeling/ELECTRA/scripts
scripts
benchmark_squad
#!/usr/bin/env bash # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. mode=${1:-"train"} num_gpu=${2:-"8"} batch_size=${3:-"16"} infer_batch_size=${4:-"$batch_size"} precision=${5:-"amp"} SQUAD_VERSION=${6:-"1.1"} squad_dir=${7:-"/workspace/electra/data/download/squad/v$SQUAD_VERSION"} OUT_DIR=${8:-"results/"} init_checkpoint=${9:-"None"} cache_dir=${10:-"$squad_dir"} bash scripts/run_squad.sh google/electra-base-discriminator 1 $batch_size $infer_batch_size 8e-4 $precision $num_gpu $RANDOM $SQUAD_VERSION $squad_dir $OUT_DIR $init_checkpoint $mode interactive $cache_dir 200
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools
dataset_tools
create_pascal_tf_record_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for create_pascal_tf_record.py.""" import os import numpy as np import PIL.Image import tensorflow as tf from object_detection.dataset_tools import create_pascal_tf_record class CreatePascalTFRecordTest(tf.test.TestCase): def _assertProtoEqual(self, proto_field, expectation): """Helper function to assert if a proto field equals some value. Args: proto_field: The protobuf field to compare. expectation: The expected value of the protobuf field. """ proto_list = [p for p in proto_field] self.assertListEqual(proto_list, expectation) def test_dict_to_tf_example(self): image_file_name = 'tmp_image.jpg' image_data = np.random.rand(256, 256, 3) save_path = os.path.join(self.get_temp_dir(), image_file_name) image = PIL.Image.fromarray(image_data, 'RGB') image.save(save_path) data = { 'folder': '', 'filename': image_file_name, 'size': { 'height': 256, 'width': 256, }, 'object': [ { 'difficult': 1, 'bndbox': { 'xmin': 64, 'ymin': 64, 'xmax': 192, 'ymax': 192, }, 'name': 'person', 'truncated': 0, 'pose': '', }, ], } label_map_dict = { 'background': 0, 'person': 1, 'notperson': 2, } example = create_pascal_tf_record.dict_to_tf_example( data, self.get_temp_dir(), label_map_dict, image_subdirectory='') self._assertProtoEqual( example.features.feature['image/height'].int64_list.value, [256]) self._assertProtoEqual( example.features.feature['image/width'].int64_list.value, [256]) self._assertProtoEqual( example.features.feature['image/filename'].bytes_list.value, [image_file_name]) self._assertProtoEqual( example.features.feature['image/source_id'].bytes_list.value, [image_file_name]) self._assertProtoEqual( example.features.feature['image/format'].bytes_list.value, ['jpeg']) self._assertProtoEqual( example.features.feature['image/object/bbox/xmin'].float_list.value, [0.25]) self._assertProtoEqual( example.features.feature['image/object/bbox/ymin'].float_list.value, [0.25]) self._assertProtoEqual( example.features.feature['image/object/bbox/xmax'].float_list.value, [0.75]) self._assertProtoEqual( example.features.feature['image/object/bbox/ymax'].float_list.value, [0.75]) self._assertProtoEqual( example.features.feature['image/object/class/text'].bytes_list.value, ['person']) self._assertProtoEqual( example.features.feature['image/object/class/label'].int64_list.value, [1]) self._assertProtoEqual( example.features.feature['image/object/difficult'].int64_list.value, [1]) self._assertProtoEqual( example.features.feature['image/object/truncated'].int64_list.value, [0]) self._assertProtoEqual( example.features.feature['image/object/view'].bytes_list.value, ['']) if __name__ == '__main__': tf.test.main()
TensorFlow/Detection/SSD/models/research/slim/nets
nets
inception_v4_test
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.inception_v4.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import inception class InceptionTest(tf.test.TestCase): def testBuildLogits(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits')) self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue(predictions.op.name.startswith( 'InceptionV4/Logits/Predictions')) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 299, 299 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(net.op.name.startswith('InceptionV4/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points) def testBuildWithoutAuxLogits(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, endpoints = inception.inception_v4(inputs, num_classes, create_aux_logits=False) self.assertFalse('AuxLogits' in endpoints) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testAllEndPointsShapes(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = inception.inception_v4(inputs, num_classes) endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32], 'Conv2d_2a_3x3': [batch_size, 147, 147, 32], 'Conv2d_2b_3x3': [batch_size, 147, 147, 64], 'Mixed_3a': [batch_size, 73, 73, 160], 'Mixed_4a': [batch_size, 71, 71, 192], 'Mixed_5a': [batch_size, 35, 35, 384], # 4 x Inception-A blocks 'Mixed_5b': [batch_size, 35, 35, 384], 'Mixed_5c': [batch_size, 35, 35, 384], 'Mixed_5d': [batch_size, 35, 35, 384], 'Mixed_5e': [batch_size, 35, 35, 384], # Reduction-A block 'Mixed_6a': [batch_size, 17, 17, 1024], # 7 x Inception-B blocks 'Mixed_6b': [batch_size, 17, 17, 1024], 'Mixed_6c': [batch_size, 17, 17, 1024], 'Mixed_6d': [batch_size, 17, 17, 1024], 'Mixed_6e': [batch_size, 17, 17, 1024], 'Mixed_6f': [batch_size, 17, 17, 1024], 'Mixed_6g': [batch_size, 17, 17, 1024], 'Mixed_6h': [batch_size, 17, 17, 1024], # Reduction-A block 'Mixed_7a': [batch_size, 8, 8, 1536], # 3 x Inception-C blocks 'Mixed_7b': [batch_size, 8, 8, 1536], 'Mixed_7c': [batch_size, 8, 8, 1536], 'Mixed_7d': [batch_size, 8, 8, 1536], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'global_pool': [batch_size, 1, 1, 1536], 'PreLogitsFlatten': [batch_size, 1536], 'Logits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testBuildBaseNetwork(self): batch_size = 5 height, width = 299, 299 inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v4_base(inputs) self.assertTrue(net.op.name.startswith( 'InceptionV4/Mixed_7d')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536]) expected_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] self.assertItemsEqual(end_points.keys(), expected_endpoints) for name, op in end_points.items(): self.assertTrue(op.name.startswith('InceptionV4/' + name)) def testBuildOnlyUpToFinalEndpoint(self): batch_size = 5 height, width = 299, 299 all_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] for index, endpoint in enumerate(all_endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception.inception_v4_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'InceptionV4/' + endpoint)) self.assertItemsEqual(all_endpoints[:index+1], end_points.keys()) def testVariablesSetDevice(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): inception.inception_v4(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): inception.inception_v4(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0') def testHalfSizeImages(self): batch_size = 5 height, width = 150, 150 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 3, 3, 1536]) def testGlobalPool(self): batch_size = 1 height, width = 350, 400 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 9, 11, 1536]) def testGlobalPoolUnknownImageShape(self): batch_size = 1 height, width = 350, 400 num_classes = 1000 with self.test_session() as sess: inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3)) logits, end_points = inception.inception_v4( inputs, num_classes, create_aux_logits=False) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] images = tf.random_uniform((batch_size, height, width, 3)) sess.run(tf.global_variables_initializer()) logits_out, pre_pool_out = sess.run([logits, pre_pool], {inputs: images.eval()}) self.assertTupleEqual(logits_out.shape, (batch_size, num_classes)) self.assertTupleEqual(pre_pool_out.shape, (batch_size, 9, 11, 1536)) def testUnknownBatchSize(self): batch_size = 1 height, width = 299, 299 num_classes = 1000 with self.test_session() as sess: inputs = tf.placeholder(tf.float32, (None, height, width, 3)) logits, _ = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = tf.random_uniform((batch_size, height, width, 3)) sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 299, 299 num_classes = 1000 with self.test_session() as sess: eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = inception.inception_v4(eval_inputs, num_classes, is_training=False) predictions = tf.argmax(logits, 1) sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 with self.test_session() as sess: train_inputs = tf.random_uniform((train_batch_size, height, width, 3)) inception.inception_v4(train_inputs, num_classes) eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception.inception_v4(eval_inputs, num_classes, is_training=False, reuse=True) predictions = tf.argmax(logits, 1) sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testNoBatchNormScaleByDefault(self): height, width = 299, 299 num_classes = 1000 inputs = tf.placeholder(tf.float32, (1, height, width, 3)) with tf.contrib.slim.arg_scope(inception.inception_v4_arg_scope()): inception.inception_v4(inputs, num_classes, is_training=False) self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), []) def testBatchNormScale(self): height, width = 299, 299 num_classes = 1000 inputs = tf.placeholder(tf.float32, (1, height, width, 3)) with tf.contrib.slim.arg_scope( inception.inception_v4_arg_scope(batch_norm_scale=True)): inception.inception_v4(inputs, num_classes, is_training=False) gamma_names = set( v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$')) self.assertGreater(len(gamma_names), 0) for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'): self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names) if __name__ == '__main__': tf.test.main()
TensorFlow/Detection/SSD/models/research/object_detection/models
models
embedded_ssd_mobilenet_v1_feature_extractor
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Embedded-friendly SSDFeatureExtractor for MobilenetV1 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from nets import mobilenet_v1 slim = tf.contrib.slim class EmbeddedSSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """Embedded-friendly SSD Feature Extractor using MobilenetV1 features. This feature extractor is similar to SSD MobileNetV1 feature extractor, and it fixes input resolution to be 256x256, reduces the number of feature maps used for box prediction and ensures convolution kernel to be no larger than input tensor in spatial dimensions. This feature extractor requires support of the following ops if used in embedded devices: - Conv - DepthwiseConv - Relu6 All conv/depthwiseconv use SAME padding, and no additional spatial padding is needed. """ def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """MobileNetV1 Feature Extractor for Embedded-friendly SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. For EmbeddedSSD it must be set to 1. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: upon invalid `pad_to_multiple` values. """ if pad_to_multiple != 1: raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` ' 'of 1.') super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: if image height or width are not 256 pixels. """ image_shape = preprocessed_inputs.get_shape() image_shape.assert_has_rank(4) image_height = image_shape[1].value image_width = image_shape[2].value if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256), tf.equal(tf.shape(preprocessed_inputs)[2], 256)), ['image size must be 256 in both height and width.']) with tf.control_dependencies([shape_assert]): preprocessed_inputs = tf.identity(preprocessed_inputs) elif image_height != 256 or image_width != 256: raise ValueError('image size must be = 256 in both height and width;' ' image dim = %d,%d' % (image_height, image_width)) feature_map_layout = { 'from_layer': [ 'Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '' ], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
JAX/LanguageModeling/T5X
T5X
README
T5X is a framework for training, evaluation, and inference of sequence models (starting with language). It is based on [JAX](https://github.com/google/jax) and [Flax](https://github.com/google/flax). To learn more, see the [T5X Paper](https://arxiv.org/abs/2203.17189). # T5X on GPUs Please refer to [Rosetta T5X](https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/t5x), NVIDIA's project that enables seamless training of LLMs, CV models and multimodal models in JAX, for information about running models and experiments on GPUs in T5X.
PyTorch/Classification/ConvNets/triton
triton
run_offline_performance_test_on_triton
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" For models with variable-sized inputs you must provide the --input-shape argument so that perf_analyzer knows what shape tensors to use. For example, for a model that has an input called IMAGE that has shape [ 3, N, M ], where N and M are variable-size dimensions, to tell perf_analyzer to send batch-size 4 requests of shape [ 3, 224, 224 ] `--shape IMAGE:3,224,224`. """ import argparse import csv import os import sys from pathlib import Path from typing import Dict, List, Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.warmup import warmup def calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def update_performance_data(results: List, batch_size: int, performance_partial_file: str): row: Dict = {"batch_size": batch_size} with open(performance_partial_file, "r") as csvfile: reader = csv.DictReader(csvfile) for r in reader: avg_latency = calculate_average_latency(r) row = {**row, **r, "avg latency": avg_latency} results.append(row) def _parse_batch_sizes(batch_sizes: str): batches = batch_sizes.split(sep=",") return list(map(lambda x: int(x.strip()), batches)) def offline_performance( model_name: str, batch_sizes: List[int], result_path: str, input_shapes: Optional[List[str]] = None, profiling_data: str = "random", triton_instances: int = 1, server_url: str = "localhost", measurement_window: int = 10000, shared_memory: bool = False ): print("\n") print(f"==== Static batching analysis start ====") print("\n") input_shapes = " ".join(map(lambda shape: f" --shape {shape}", input_shapes)) if input_shapes else "" results: List[Dict] = list() for batch_size in batch_sizes: print(f"Running performance tests for batch size: {batch_size}") performance_partial_file = f"triton_performance_partial_{batch_size}.csv" exec_args = f"""-max-threads {triton_instances} \ -m {model_name} \ -x 1 \ -c {triton_instances} \ -t {triton_instances} \ -p {measurement_window} \ -v \ -i http \ -u {server_url}:8000 \ -b {batch_size} \ -f {performance_partial_file} \ --input-data {profiling_data} {input_shapes}""" if shared_memory: exec_args += " --shared-memory=cuda" result = os.system(f"perf_client {exec_args}") if result != 0: print(f"Failed running performance tests. Perf client failed with exit code {result}") sys.exit(1) update_performance_data(results, batch_size, performance_partial_file) os.remove(performance_partial_file) results = sort_results(results=results) save_results(filename=result_path, data=results) show_results(results=results) print("Performance results for static batching stored in: {0}".format(result_path)) print("\n") print(f"==== Analysis done ====") print("\n") def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, required=True, help="Name of the model to test") parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling." ) parser.add_argument( "--input-shape", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument("--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.") parser.add_argument("--result-path", type=str, required=True, help="Path where result file is going to be stored.") parser.add_argument("--triton-instances", type=int, default=1, help="Number of Triton Server instances") parser.add_argument("--server-url", type=str, required=False, default="localhost", help="Url to Triton server") parser.add_argument( "--measurement-window", required=False, help="Time which perf_analyzer will wait for results", default=10000 ) parser.add_argument("--shared-memory", help="Use shared memory for communication with Triton", action="store_true", default=False) args = parser.parse_args() warmup( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, profiling_data=args.input_data, input_shapes=args.input_shape, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) offline_performance( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, profiling_data=args.input_data, input_shapes=args.input_shape, result_path=args.result_path, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) if __name__ == "__main__": main()
Tools/DGLPyTorch/SyntheticGraphGeneration/scripts
scripts
get_datasets
#Note: Each user is responsible for checking the content of datasets and the applicable licenses and determining if suitable for the intended use if [ ! "$(ls | grep -c ^scripts$)" -eq 1 ]; then echo "Run this script from root directory. Usage: bash ./scripts/get_datasets.sh" exit 1 fi mkdir -p data cd data || exit 1 # Lastfm echo "Processing lastfm ..." echo "@inproceedings{feather, title={{Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models}}, author={Benedek Rozemberczki and Rik Sarkar}, year={2020}, pages = {1325–1334}, booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)}, organization={ACM}, }" if [ "$(ls | grep -c "^lasftm_asia$")" -ge 1 ]; then echo "Lastfm directory already exists, skipping ..." else wget https://snap.stanford.edu/data/lastfm_asia.zip unzip lastfm_asia.zip rm lastfm_asia.zip fi # Twitch echo "Processing Twitch ..." echo "@misc{rozemberczki2019multiscale, title={Multi-scale Attributed Node Embedding}, author={Benedek Rozemberczki and Carl Allen and Rik Sarkar}, year={2019}, eprint={1909.13021}, archivePrefix={arXiv}, primaryClass={cs.LG} }" if [ "$(ls | grep -c "^twitch$")" -ge 1 ]; then echo "Twitch directory already exists, skipping ..." else mkdir -p twitch && cd twitch || exit 1 wget https://snap.stanford.edu/data/twitch_gamers.zip && unzip twitch_gamers.zip rm twitch_gamers.zip cd .. fi # Orkut echo "Processing Orkut ..." echo "@inproceedings{yang2012defining, title={Defining and evaluating network communities based on ground-truth}, author={Yang, Jaewon and Leskovec, Jure}, booktitle={Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics}, pages={1--8}, year={2012} }" if [ "$(ls | grep -c "^orkut$")" -ge 1 ]; then echo "Orkut directory already exists, skipping ..." else mkdir -p orkut && cd orkut || exit 1 wget https://snap.stanford.edu/data/bigdata/communities/com-orkut.ungraph.txt.gz && gzip -d com-orkut.ungraph.txt.gz rm com-orkut.ungraph.txt.gz cd .. fi # Tabformer echo "Processing tabformer ..." echo "@inproceedings{padhi2021tabular, title={Tabular transformers for modeling multivariate time series}, author={Padhi, Inkit and Schiff, Yair and Melnyk, Igor and Rigotti, Mattia and Mroueh, Youssef and Dognin, Pierre and Ross, Jerret and Nair, Ravi and Altman, Erik}, booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={3565--3569}, year={2021}, organization={IEEE}, url={https://ieeexplore.ieee.org/document/9414142} }" if [ "$(ls | grep -c "^tabformer$")" -ge 1 ]; then echo "Tabformer directory already exists, skipping ..." else if [ "$(ls | grep -c "^transactions.tgz$")" -eq 0 ]; then echo "transactions.tgz not found, skipping ..." echo "Download tabformer manually - https://github.com/IBM/TabFormer/tree/main/data/credit_card/ and store it as ./data/transactions.tgz" else mkdir -p tabformer && mv transactions.tgz tabformer && cd tabformer || exit 1 tar zxvf transactions.tgz mv transactions.tgz .. python ../../scripts/time_filter_tabformer.py ./card_transaction.v1.csv rm card_transaction.v1.csv cd .. fi fi # IEEE echo "Processing IEEE ..." # kaggle competitions download -c ieee-fraud-detection if [ "$(ls | grep -c "^ieee-fraud$")" -ge 1 ]; then echo "IEEE directory already exists, skipping ..." else if [ "$(ls | grep -c "^ieee-fraud-detection.zip$")" -eq 0 ]; then echo "ieee-fraud-detection.zip not found, skipping ..." echo "Download IEEE manually from https://www.kaggle.com/competitions/ieee-fraud-detection/data and store it as ./data/ieee-fraud-detection.zip" # kaggle competitions download -c ieee-fraud-detection // exemplary command to download else mkdir -p ieee-fraud && mv ieee-fraud-detection.zip ieee-fraud && cd ieee-fraud || exit 1 unzip ieee-fraud-detection.zip "*_transaction.csv" mv ieee-fraud-detection.zip .. python ../../scripts/ieee_fraud.py . rm *_transaction.csv cd .. fi fi # Paysim echo "Processing Paysim ..." if [ "$(ls | grep -c "^paysim$")" -ge 1 ]; then echo "Paysim directory already exists, skipping ..." else if [ "$(ls | grep -c "^paysim.zip$")" -eq 0 ]; then echo "paysim.zip not found, skipping ..." echo "Download paysim manually from https://www.kaggle.com/datasets/ealaxi/paysim1/download?datasetVersionNumber=2 and store it as ./data/paysim.zip" #kaggle datasets download -d ealaxi/paysim1 #exemplary command to download else mkdir -p paysim && mv paysim.zip paysim && cd paysim || exit 1 unzip paysim.zip mv paysim.zip .. cd .. fi fi # credit echo "Processing credit ..." if [ "$(ls | grep "^credit$")" -ge 1 ]; then echo "credit directory already exists, skipping ..." else if [ "$(ls | grep -c "^credit.zip$")" -eq 0 ]; then echo "credit.zip not found, skipping ..." echo "Download credit manually from https://www.kaggle.com/datasets/kartik2112/fraud-detection/download?datasetVersionNumber=1 and store it as ./data/credit.zip" # kaggle datasets download -d kartik2112/fraud-detection // exemplary command to download else mkdir -p credit && mv credit.zip credit && cd credit || exit 1 unzip credit.zip "fraudTrain.csv" mv credit.zip .. python ../../scripts/time_filter_credit.py ./fraudTrain.csv rm "fraudTrain.csv" cd .. fi fi # CORA echo "Processing CORA ..." echo "@article{sen:aim08, title = {Collective Classification in Network Data}, author = {Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad}, journal = {AI Magazine}, year = {2008}, publisher = {AAAI}, pages = {93--106}, volume = {29}, number = {3}, }" if [ "$(ls | grep -c "^cora$")" -ge 1 ]; then echo "CORA directory already exists, skipping ..." else python -m syngen preprocess --source-path=./cora --dataset=cora --download fi # Rating echo "Processing Rating ..." if [ "$(ls | grep -c "^epinions$")" -ge 1 ]; then echo "Rating file already exists, skipping ..." else python -m syngen preprocess --source-path=./epinions --dataset=epinions --download fi
TensorFlow2/Segmentation/nnUNet/models
models
layers
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nv_norms import tensorflow as tf import tensorflow_addons as tfa convolutions = { "Conv2d": tf.keras.layers.Conv2D, "Conv3d": tf.keras.layers.Conv3D, "ConvTranspose2d": tf.keras.layers.Conv2DTranspose, "ConvTranspose3d": tf.keras.layers.Conv3DTranspose, } class KaimingNormal(tf.keras.initializers.VarianceScaling): def __init__(self, negative_slope, seed=None): super().__init__( scale=2.0 / (1 + negative_slope**2), mode="fan_in", distribution="untruncated_normal", seed=seed ) def get_config(self): return {"seed": self.seed} def get_norm(name): if "group" in name: return tfa.layers.GroupNormalization(32, axis=-1, center=True, scale=True) elif "batch" in name: return tf.keras.layers.BatchNormalization(axis=-1, center=True, scale=True) elif "atex_instance" in name: return nv_norms.InstanceNormalization(axis=-1) elif "instance" in name: return tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True) elif "none" in name: return tf.identity else: raise ValueError("Invalid normalization layer") def extract_args(kwargs): args = {} if "input_shape" in kwargs: args["input_shape"] = kwargs["input_shape"] return args def get_conv(filters, kernel_size, stride, dim, use_bias=False, **kwargs): conv = convolutions[f"Conv{dim}d"] return conv( filters=filters, kernel_size=kernel_size, strides=stride, padding="same", use_bias=use_bias, kernel_initializer=KaimingNormal(kwargs["negative_slope"]), data_format="channels_last", **extract_args(kwargs), ) def get_transp_conv(filters, kernel_size, stride, dim, **kwargs): conv = convolutions[f"ConvTranspose{dim}d"] return conv( filters=filters, kernel_size=kernel_size, strides=stride, padding="same", use_bias=True, data_format="channels_last", **extract_args(kwargs), ) class ConvLayer(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.conv = get_conv(filters, kernel_size, stride, **kwargs) self.norm = get_norm(kwargs["norm"]) self.lrelu = tf.keras.layers.LeakyReLU(alpha=kwargs["negative_slope"]) def call(self, data): out = self.conv(data) out = self.norm(out) out = self.lrelu(out) return out class ConvBlock(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.conv1 = ConvLayer(filters, kernel_size, stride, **kwargs) kwargs.pop("input_shape", None) self.conv2 = ConvLayer(filters, kernel_size, 1, **kwargs) def call(self, input_data): out = self.conv1(input_data) out = self.conv2(out) return out class UpsampleBlock(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.transp_conv = get_transp_conv(filters, stride, stride, **kwargs) self.conv_block = ConvBlock(filters, kernel_size, 1, **kwargs) def call(self, input_data, skip_data): out = self.transp_conv(input_data) out = tf.concat((out, skip_data), axis=-1) out = self.conv_block(out) return out class OutputBlock(tf.keras.layers.Layer): def __init__(self, filters, dim, negative_slope): super().__init__() self.conv = get_conv( filters, kernel_size=1, stride=1, dim=dim, use_bias=True, negative_slope=negative_slope, ) def call(self, data): return self.conv(data)
PyTorch/Classification/GPUNet/triton/runner/maintainer/docker
docker
maintainer
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Any, Dict, List, Optional, Union import docker if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ...logger import LOGGER from ..maintainer import Maintainer from .container import DockerContainer from .containers import TritonServerContainer class DockerMaintainer(Maintainer): def triton_container( self, command: str, image: str, devices: List, volumes: Dict, environment: Dict, log_file: Union[pathlib.Path, str] ) -> DockerContainer: """ Return triton container Args: command: Triton Server command that has to be executed image: Container image devices: List of device ids which has to be available in container volumes: Volumes mapping environment: Environment variables set in container log_file: File path where server logs has to be saved Returns: DockerContainer object """ return TritonServerContainer( name="triton-server", command=command, image=image, devices=devices, volumes=volumes, environment=environment, log_file=log_file, ) def build_image( self, *, image_file_path: pathlib.Path, image_name: str, workdir_path: Optional[pathlib.Path] = None, build_args: Optional[Dict[str, Any]] = None, ) -> None: workdir_path = workdir_path or image_file_path.parent build_args = build_args or {} LOGGER.info(f"Building {image_name} docker image.") LOGGER.debug(f" Using workdir: {workdir_path}") LOGGER.debug(f" Dockerfile: {image_file_path}") LOGGER.debug(f" Build args: {build_args}") build_logs = list() try: docker_client = docker.from_env() _, build_logs = docker_client.images.build( path=workdir_path.resolve().as_posix(), dockerfile=image_file_path.resolve().as_posix(), tag=image_name, buildargs=build_args, network_mode="host", rm=True, ) except docker.errors.BuildError as e: build_logs = e.build_log raise e finally: for chunk in build_logs: log = chunk.get("stream") if log: LOGGER.debug(log.rstrip())
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/synthesizer
synthesizer
configuration_graph_synthesizer
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import logging import json import os import shutil import warnings from typing import Optional, Literal import pandas as pd from syngen.configuration import SynGenDatasetFeatureSpec, SynGenConfiguration from syngen.generator.tabular import tabular_generators_classes from syngen.graph_aligner import aligner_classes from syngen.generator.graph import get_structural_generator_class from syngen.generator.tabular.utils import tabular_chunk_sample_generation from syngen.utils.io_utils import ( dump_generated_graph, load_graph, load_dataframe, merge_dataframe_files, dump_dataframe, ) from syngen.utils.types import DataFrameType, MetaData, DataSourceInputType from syngen.utils.utils import CustomTimer, dynamic_import, get_object_path, to_ndarray, df_to_pandas, ensure_path logger = logging.getLogger(__name__) log = logger warnings.filterwarnings('ignore') class ConfigurationGraphSynthesizer(object): """A configuration graph synthesizer. Supports generating graph datasets based on the provided configuration. This synthesizer requires a dataset to be fit on prior to generating graphs of similar properties. Args: configuration (SynGenConfiguration): configuration to be used during generation timer_path (srt): path to the file where the generation process timings will be saved num_workers (int): number of workers to speed up generation. save_path (str): path to the directory where the results will be saved gpu (bool): flag to use GPU graph generator (default: True ), if set to False CPU will be used. verbose (bool): print intermediate results (default: False) """ def __init__( self, configuration: SynGenConfiguration, timer_path: Optional[str] = None, num_workers: int = 1, save_path: str = './', gpu: bool = True, verbose: bool = False, **kwargs, ): self.configuration = configuration self.num_workers = num_workers self.verbose = verbose self.timer = CustomTimer(timer_path, verbose=self.verbose) self.gpu = gpu self.save_path = save_path if not os.path.exists(self.save_path): os.makedirs(self.save_path) self.structure_generators = None self.tabular_generators = None self.aligners = None def _fit_tabular_generators(self, tab_gen_configs, feature_info_list, part: Literal[MetaData.NODES, MetaData.EDGES], features_to_return=()): tabular_generators = [] feature_info_dict = {feature[MetaData.NAME]: feature for feature in feature_info_list} feature_data_cache = {} for tab_gen_cfg in tab_gen_configs: gen_info = {'feature_file': tab_gen_cfg.get('feature_file')} tab_gen_class = tabular_generators_classes[tab_gen_cfg[MetaData.TYPE]] tab_gen_cfg[MetaData.PARAMS]['gpu'] = tab_gen_cfg[MetaData.PARAMS].get('gpu', self.gpu) tab_gen_cfg[MetaData.PARAMS]['verbose'] = tab_gen_cfg[MetaData.PARAMS].get('verbose', self.verbose) perform_fit = True enforce_fit = tab_gen_cfg.get('perform_fit', False) generator_dump_path = tab_gen_cfg.get(MetaData.DUMP_PATH, None) if generator_dump_path and os.path.exists(generator_dump_path) and not enforce_fit: tab_gen = tab_gen_class.load(generator_dump_path) perform_fit = False else: tab_gen = tab_gen_class(**tab_gen_cfg[MetaData.PARAMS]) if tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.TYPE] == DataSourceInputType.RANDOM: if perform_fit: tab_gen.fit(columns=tab_gen_cfg[MetaData.FEATURES_LIST]) if generator_dump_path and perform_fit: tab_gen.save(generator_dump_path) tabular_generators.append((tab_gen, gen_info)) continue categorical_features = [] data_source_feature_info_list = None if not perform_fit: pass elif tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.TYPE] == DataSourceInputType.DATASET: data_source_path = tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.PATH] elif tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.TYPE] == DataSourceInputType.CONFIGURATION: cfg = SynGenDatasetFeatureSpec.instantiate_from_preprocessed( tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.PATH]) data_source_info = cfg.get_info(part, tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.NAME]) data_source_feature_info_list = data_source_info[MetaData.FEATURES] data_source_path = os.path.join(tab_gen_cfg[MetaData.DATA_SOURCE][MetaData.PATH], data_source_info[MetaData.FEATURES_PATH]) else: raise ValueError("unsupported data_source type") for feature_name in tab_gen_cfg[MetaData.FEATURES_LIST]: if feature_info_dict[feature_name][MetaData.FEATURE_TYPE] == MetaData.CATEGORICAL: categorical_features.append(feature_name) if not perform_fit and len(features_to_return) == 0: pass elif data_source_path in feature_data_cache: data = feature_data_cache[data_source_path] else: # FORCE_CPU_MEM_TRANSFER data = load_dataframe(data_source_path, feature_info=data_source_feature_info_list) feature_data_cache[data_source_path] = data if perform_fit: tab_gen.fit(data, categorical_columns=categorical_features, columns=tab_gen_cfg[MetaData.FEATURES_LIST], verbose=self.verbose) if generator_dump_path and perform_fit: tab_gen.save(ensure_path(generator_dump_path)) tabular_generators.append((tab_gen, gen_info)) if features_to_return: return_dataframe = pd.DataFrame() for _, cache_data in feature_data_cache.items(): columns_intersect = list(set(features_to_return) & set(cache_data.columns)) return_dataframe[columns_intersect] = cache_data[columns_intersect] del feature_data_cache return_categorical_features = [] for feature_name in features_to_return: if feature_info_dict[feature_name][MetaData.FEATURE_TYPE] == MetaData.CATEGORICAL: return_categorical_features.append(feature_name) return tabular_generators, (return_dataframe, return_categorical_features) del feature_data_cache return tabular_generators def _fit_structural_generator(self, edge_type, return_graph=False): structure_gen_cfg = edge_type[MetaData.STRUCTURE_GENERATOR] is_bipartite = edge_type[MetaData.SRC_NODE_TYPE] != edge_type[MetaData.DST_NODE_TYPE] is_directed = edge_type[MetaData.DIRECTED] data_source_cfg = structure_gen_cfg[MetaData.DATA_SOURCE] is_random = data_source_cfg[MetaData.TYPE] == DataSourceInputType.RANDOM generator_class = get_structural_generator_class( structure_gen_cfg[MetaData.TYPE], is_bipartite=is_bipartite, is_random=is_random, ) gen_info = dict(is_bipartite=is_bipartite, is_directed=is_directed, num_edges=edge_type[MetaData.COUNT], noise=structure_gen_cfg[MetaData.PARAMS].get('noise', 0.5)) structure_gen_cfg[MetaData.PARAMS]['gpu'] = structure_gen_cfg[MetaData.PARAMS].get('gpu', self.gpu) structure_gen_cfg[MetaData.PARAMS]['verbose'] = structure_gen_cfg[MetaData.PARAMS].get('verbose', self.verbose) perform_fit = True enforce_fit = structure_gen_cfg.get('perform_fit', False) generator_dump_path = structure_gen_cfg.get(MetaData.DUMP_PATH, None) if generator_dump_path and os.path.exists(generator_dump_path) and not enforce_fit: generator = generator_class.load(generator_dump_path) generator.gpu = structure_gen_cfg[MetaData.PARAMS]['gpu'] generator.verbose = structure_gen_cfg[MetaData.PARAMS]['verbose'] perform_fit = False else: generator = generator_class( **structure_gen_cfg[MetaData.PARAMS] ) if not perform_fit and not return_graph: pass elif data_source_cfg[MetaData.TYPE] == DataSourceInputType.RANDOM: graph = None elif data_source_cfg[MetaData.TYPE] == DataSourceInputType.CONFIGURATION: cfg = SynGenDatasetFeatureSpec.instantiate_from_preprocessed(data_source_cfg[MetaData.PATH]) data_source_edge_info = cfg.get_edge_info(data_source_cfg[MetaData.NAME]) graph_src_set = cfg.get_node_info(data_source_edge_info[MetaData.SRC_NODE_TYPE])[MetaData.COUNT] graph_path = os.path.join(data_source_cfg[MetaData.PATH], data_source_edge_info[MetaData.STRUCTURE_PATH]) graph = load_graph(graph_path) else: raise ValueError("unsupported data_source type") if is_bipartite: gen_info['is_directed'] = False gen_info['num_nodes_src_set'] = self.configuration.get_node_info( edge_type[MetaData.SRC_NODE_TYPE])[MetaData.COUNT] gen_info['num_nodes_dst_set'] = self.configuration.get_node_info( edge_type[MetaData.DST_NODE_TYPE])[MetaData.COUNT] if perform_fit: generator.fit(graph, src_set=None, dst_set=None, is_directed=False, transform_graph=False) else: gen_info['num_nodes'] = self.configuration.get_node_info(edge_type[MetaData.SRC_NODE_TYPE])[MetaData.COUNT] gen_info['has_self_loop'] = structure_gen_cfg[MetaData.PARAMS].get('has_self_loop', False) if perform_fit: generator.fit(graph, is_directed=is_directed) if generator_dump_path and perform_fit: generator.save(generator_dump_path) if return_graph: return (generator, gen_info), graph, graph_src_set return generator, gen_info def _fit_aligners(self, aligner_cfgs, graphs_to_process, features_to_align): aligners = [] for aligner_cfg in aligner_cfgs: aligner_class = aligner_classes[aligner_cfg[MetaData.TYPE]] aligner_graphs = {graph_name: graphs_to_process[graph_name] for graph_name in aligner_cfg[MetaData.GRAPHS]} aligner_node_features = {feature_name: features_to_align[MetaData.NODES][feature_name] for feature_name in aligner_cfg[MetaData.NODES]} aligner_edge_features = {feature_name: features_to_align[MetaData.EDGES][feature_name] for feature_name in aligner_cfg[MetaData.EDGES]} aligner = aligner_class(**aligner_cfg[MetaData.PARAMS]) aligner.fit(aligner_graphs, aligner_node_features, aligner_edge_features) aligners.append(( aligner, { graph_name: { MetaData.SRC_NODE_TYPE: graph_info[MetaData.SRC_NODE_TYPE], MetaData.DST_NODE_TYPE: graph_info[MetaData.DST_NODE_TYPE] } for graph_name, graph_info in aligner_graphs.items() } )) del features_to_align del graphs_to_process return aligners def fit( self, ): """Fit the synthesizer on graph. """ self.structure_generators = {} self.tabular_generators = {MetaData.NODES: {}, MetaData.EDGES: {}} self.aligners = [] graphs_to_process = {} features_to_align = {MetaData.NODES: {}, MetaData.EDGES: {}} if MetaData.ALIGNERS in self.configuration: for aligner_cfg in self.configuration[MetaData.ALIGNERS]: for graph_name in aligner_cfg[MetaData.GRAPHS]: graphs_to_process[graph_name] = None for part in [MetaData.NODES, MetaData.EDGES]: if aligner_cfg[part]: for part_name, feature_names in aligner_cfg[part].items(): if part_name not in features_to_align[part]: features_to_align[part][part_name] = { MetaData.FEATURES_LIST: set(), } features_to_align[part][part_name][MetaData.FEATURES_LIST] |= set(feature_names) self.timer.start_counter('fit') self.timer.start_counter('fit_nodes') for node_type in self.configuration[MetaData.NODES]: node_name = node_type[MetaData.NAME] if MetaData.TABULAR_GENERATORS in node_type: self.timer.start_counter(f'fit_node_{node_name}') if node_name in features_to_align[MetaData.NODES]: self.tabular_generators[MetaData.NODES][node_name], (features_data, cat_cols) = \ self._fit_tabular_generators( node_type[MetaData.TABULAR_GENERATORS], node_type[MetaData.FEATURES], MetaData.NODES, features_to_return=list(features_to_align[MetaData.NODES][node_name][MetaData.FEATURES_LIST]) ) features_to_align[MetaData.NODES][node_name][MetaData.FEATURES_DATA] = features_data features_to_align[MetaData.NODES][node_name][MetaData.CATEGORICAL_COLUMNS] = cat_cols else: self.tabular_generators[MetaData.NODES][node_name] = self._fit_tabular_generators( node_type[MetaData.TABULAR_GENERATORS], node_type[MetaData.FEATURES], MetaData.NODES ) self.timer.end_counter(f'fit_node_{node_name}', f'NODE {node_name} FIT TOOK') self.timer.end_counter('fit_nodes', 'FIT NODES TOOK') self.timer.start_counter('fit_edges') for edge_type in self.configuration[MetaData.EDGES]: edge_name = edge_type[MetaData.NAME] if MetaData.STRUCTURE_GENERATOR in edge_type: self.timer.start_counter(f'fit_edges_struct_{edge_name}') if edge_name in graphs_to_process: graphs_to_process[edge_name] = { MetaData.SRC_NODE_TYPE: edge_type[MetaData.SRC_NODE_TYPE], MetaData.DST_NODE_TYPE: edge_type[MetaData.DST_NODE_TYPE], } self.structure_generators[edge_name], \ graphs_to_process[edge_name][MetaData.STRUCTURE_DATA], \ graphs_to_process[edge_name]['src_size'] = self._fit_structural_generator(edge_type, return_graph=True) else: self.structure_generators[edge_name] = self._fit_structural_generator(edge_type) self.timer.end_counter(f'fit_edges_struct_{edge_name}', f'EDGE {edge_name} STRUCTURAL FIT TOOK') if MetaData.TABULAR_GENERATORS in edge_type: self.timer.start_counter(f'fit_edges_tabular_{edge_name}') if edge_name in features_to_align[MetaData.EDGES]: self.tabular_generators[MetaData.EDGES][edge_name], (features_data, cat_cols) = \ self._fit_tabular_generators( edge_type[MetaData.TABULAR_GENERATORS], edge_type[MetaData.FEATURES], MetaData.EDGES, features_to_return=list(features_to_align[MetaData.EDGES][edge_name][MetaData.FEATURES_LIST]) ) features_to_align[MetaData.EDGES][edge_name][MetaData.FEATURES_DATA] = features_data features_to_align[MetaData.EDGES][edge_name][MetaData.CATEGORICAL_COLUMNS] = cat_cols else: self.tabular_generators[MetaData.EDGES][edge_name] = self._fit_tabular_generators( edge_type[MetaData.TABULAR_GENERATORS], edge_type[MetaData.FEATURES], MetaData.EDGES ) self.timer.end_counter(f'fit_edges_tabular_{edge_name}', f'EDGE {edge_name} TABULAR FIT TOOK') if MetaData.ALIGNERS in self.configuration: self.aligners = self._fit_aligners(self.configuration[MetaData.ALIGNERS], graphs_to_process, features_to_align) self.timer.end_counter('fit_edges', 'FIT EDGES TOOK') self.timer.end_counter('fit', 'FIT TOOK') def _generate_tabular_data(self, tabular_generators, num_samples, features_path, name): merge_data = features_path.endswith('.csv') or features_path.endswith('.parquet') if self.aligners: assert merge_data generated_dfs = [] for tab_gen_id, (tab_gen, gen_info) in enumerate(tabular_generators): use_memmap = False if merge_data: save_path = os.path.join(self.save_path, 'temp_tab_gen_dir') fname = f"{name}_{tab_gen_id}" if len(tabular_generators) > 1 else name else: save_path = os.path.join(self.save_path, features_path) fname = 'chunk' os.makedirs(save_path, exist_ok=True) if gen_info['feature_file'] and gen_info['feature_file'].endswith('.npy') and tab_gen.supports_memmap: use_memmap = True fname = gen_info['feature_file'] feature_files = tabular_chunk_sample_generation( tab_gen, n_samples=num_samples, save_path=save_path, fname=fname, num_workers=self.num_workers, use_memmap=use_memmap, verbose=self.verbose ) if merge_data: generated_df = merge_dataframe_files(feature_files, format='parquet') generated_dfs.append(generated_df) shutil.rmtree(save_path) if merge_data: generated_dfs = pd.concat(generated_dfs, axis=1) dump_dataframe(generated_dfs, os.path.join(self.save_path, features_path), format=None) gc.collect() def generate( self, return_data=False, **kwargs, ): """ Generates graph Args: return_data(bool): if true load the generated data into the output configuration """ node_type_to_node_counts = {node_type[MetaData.NAME]: node_type[MetaData.COUNT] for node_type in self.configuration[MetaData.NODES]} edge_type_to_edge_info = {edge_type[MetaData.NAME]: edge_type for edge_type in self.configuration[MetaData.EDGES]} output_config = self.configuration.copy() edge_type_name_to_idx = {edge_info[MetaData.NAME]: idx for idx, edge_info in enumerate(output_config[MetaData.EDGES])} node_type_name_to_idx = {node_info[MetaData.NAME]: idx for idx, node_info in enumerate(output_config[MetaData.NODES])} self.timer.start_counter("gen_s") for edge_type_name, (structure_generator, gen_info) in self.structure_generators.items(): self.timer.start_counter(f'gen_edges_struct_{edge_type_name}') edge_info = edge_type_to_edge_info[edge_type_name] generated_graph_path = ensure_path(os.path.join(self.save_path, edge_info[MetaData.STRUCTURE_PATH])) merge_data = generated_graph_path.endswith('.csv') or \ generated_graph_path.endswith('.parquet') use_memmap = generated_graph_path.endswith('.npy') if not merge_data and not use_memmap: os.makedirs(generated_graph_path, exist_ok=True) if gen_info['is_bipartite']: num_nodes_src_set = node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] \ if node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] > -1 \ else gen_info['num_nodes_src_set'] num_nodes_dst_set = node_type_to_node_counts[edge_info[MetaData.DST_NODE_TYPE]] \ if node_type_to_node_counts[edge_info[MetaData.DST_NODE_TYPE]] > -1 \ else gen_info['num_nodes_dst_set'] graph, src_nodes, dst_nodes = structure_generator.generate( num_edges_dst_src=gen_info['num_edges'], num_edges_src_dst=gen_info['num_edges'], num_nodes_src_set=num_nodes_src_set, num_nodes_dst_set=num_nodes_dst_set, is_directed=gen_info['is_directed'], noise=gen_info.get('noise', 0.5), return_node_ids=True, apply_edge_mirroring=False, transform_graph=False, save_path=None if merge_data else generated_graph_path, ) node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] = max( node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]], src_nodes.max() + 1 ) node_type_to_node_counts[edge_info[MetaData.DST_NODE_TYPE]] = max( node_type_to_node_counts[edge_info[MetaData.DST_NODE_TYPE]], dst_nodes.max() + 1 ) else: num_nodes = node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] \ if node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] > -1 \ else gen_info['num_nodes'] graph, node_ids = structure_generator.generate( num_nodes=num_nodes, num_edges=gen_info['num_edges'], is_directed=gen_info['is_directed'], has_self_loop=gen_info.get('has_self_loop', False), noise=gen_info.get('noise', 0.5), return_node_ids=True, save_path=None if merge_data else generated_graph_path ) node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]] = max( node_type_to_node_counts[edge_info[MetaData.SRC_NODE_TYPE]], node_ids.max() + 1 ) if merge_data or not self.gpu: dump_generated_graph(generated_graph_path, graph) output_config[MetaData.EDGES][edge_type_name_to_idx[edge_type_name]][MetaData.COUNT] = \ len(graph) if merge_data or use_memmap else int(graph) del graph gc.collect() self.timer.end_counter(f'gen_edges_struct_{edge_type_name}', f'EDGE {edge_type_name} STRUCT GEN TOOK') self.timer.end_counter("gen_s", "GEN STRUCT TOOK") for node_type_name, counts in node_type_to_node_counts.items(): output_config[MetaData.NODES][node_type_name_to_idx[node_type_name]][MetaData.COUNT] = int(counts) self.timer.start_counter("gen_t_nodes") for node_type_name, tabular_generators in self.tabular_generators[MetaData.NODES].items(): num_nodes = node_type_to_node_counts[node_type_name] features_path = output_config[MetaData.NODES][node_type_name_to_idx[node_type_name]][MetaData.FEATURES_PATH] self._generate_tabular_data(tabular_generators, num_nodes, features_path, node_type_name) self.timer.end_counter("gen_t_nodes", "GEN TABULAR NODE FEATURES TOOK") self.timer.start_counter("gen_t_edges") for edge_type_name, tabular_generators in self.tabular_generators[MetaData.EDGES].items(): num_edges = output_config[MetaData.EDGES][edge_type_name_to_idx[edge_type_name]][MetaData.COUNT] features_path = output_config[MetaData.EDGES][edge_type_name_to_idx[edge_type_name]][MetaData.FEATURES_PATH] self._generate_tabular_data(tabular_generators, num_edges, features_path, edge_type_name) self.timer.end_counter("gen_t_edges", "GEN TABULAR EDGE FEATURES TOOK") self.timer.start_counter("gen_alignment") if self.aligners: for aligner, graphs_info in self.aligners: graphs_data = {} for graph_name, graph_info in graphs_info.items(): graphs_data[graph_name] = graph_info.copy() if graph_info[MetaData.SRC_NODE_TYPE] != graph_info[MetaData.DST_NODE_TYPE]: graphs_data[graph_name]['src_size'] = \ output_config[MetaData.NODES][node_type_name_to_idx[graph_info[MetaData.SRC_NODE_TYPE]]][ MetaData.COUNT] graphs_data[graph_name][MetaData.STRUCTURE_DATA] = load_graph(os.path.join( self.save_path, output_config[MetaData.EDGES][edge_type_name_to_idx[graph_name]][MetaData.STRUCTURE_PATH] )) node_features_data = { node_name: load_dataframe(os.path.join( self.save_path, output_config[MetaData.NODES][node_type_name_to_idx[node_name]][MetaData.FEATURES_PATH]), feature_info=output_config[MetaData.NODES][node_type_name_to_idx[node_name]][MetaData.FEATURES] ) for node_name in aligner.features_to_correlate_node } edge_features_data = { edge_name: load_dataframe(os.path.join( self.save_path, output_config[MetaData.EDGES][edge_type_name_to_idx[edge_name]][MetaData.FEATURES_PATH]), feature_info=output_config[MetaData.EDGES][edge_type_name_to_idx[edge_name]][MetaData.FEATURES] ) for edge_name in aligner.features_to_correlate_edge } aligned_data = aligner.align( graphs_data, node_features_data, edge_features_data, ) for node_name, tab_data in aligned_data[MetaData.NODES].items(): dump_dataframe(tab_data, os.path.join( self.save_path, output_config[MetaData.NODES][node_type_name_to_idx[node_name]][MetaData.FEATURES_PATH] ), format=None ) for edge_name, tab_data in aligned_data[MetaData.EDGES].items(): dump_dataframe(tab_data, os.path.join( self.save_path, output_config[MetaData.EDGES][edge_type_name_to_idx[edge_name]][MetaData.FEATURES_PATH] ), format=None ) self.timer.end_counter("gen_alignment", "GEN ALIGNMENT TAKE") with open(os.path.join(self.save_path, 'graph_metadata.json'), 'w') as f: json.dump(output_config, f, indent=4) output_config[MetaData.PATH] = self.save_path if return_data: for node_info in output_config[MetaData.NODES]: if node_info[MetaData.FEATURES_PATH]: node_info[MetaData.FEATURES_DATA] = load_dataframe(os.path.join( self.save_path, node_info[MetaData.FEATURES_PATH] )) for edge_info in output_config[MetaData.EDGES]: if edge_info[MetaData.FEATURES_PATH]: edge_info[MetaData.FEATURES_DATA] = load_dataframe(os.path.join( self.save_path, edge_info[MetaData.FEATURES_PATH] )) if edge_info[MetaData.STRUCTURE_PATH]: edge_info[MetaData.STRUCTURE_DATA] = load_graph(os.path.join( self.save_path, edge_info[MetaData.STRUCTURE_PATH], )) return output_config return output_config def save(self, path): """ saves the synthesizer to disk Args: path (str): The path to save the synthesizer to """ meta_data = { "configuration": self.configuration.copy(), "timer_path": self.timer.path, "num_workers": self.num_workers, "save_path": self.save_path, "gpu": self.gpu, "verbose": self.verbose, } if not os.path.exists(path): os.makedirs(path) if self.structure_generators: meta_data['struct_gens'] = {} for edge_name, (struct_gen, gen_info) in self.structure_generators.items(): struct_gen.save(os.path.join(path, f'struct_gen_{edge_name}')) meta_data['struct_gens'][edge_name] = { 'gen_info': gen_info, 'object_path': get_object_path(struct_gen) } if self.tabular_generators: meta_data['tab_gens'] = {} for part, part_gens in self.tabular_generators.items(): meta_data['tab_gens'][part] = {} for part_name, tab_gens in part_gens.items(): meta_data['tab_gens'][part][part_name] = [] for idx, (tab_gen, gen_info) in enumerate(tab_gens): tab_gen.save(os.path.join(path, f'tab_gen_{part}_{part_name}_{idx}')) meta_data['tab_gens'][part][part_name].append({ 'gen_info': gen_info, 'object_path': get_object_path(tab_gen) }) if self.aligners: meta_data['aligners'] = [] for idx, (aligner, graphs_info) in enumerate(self.aligners): aligner.save(os.path.join(path, f'aligner_{idx}')) meta_data['aligners'].append( { 'object_path': get_object_path(aligner), 'graphs_info': graphs_info, } ) with open(os.path.join(path, "synthesizer_metadata.json"), "w") as fp: json.dump(meta_data, fp, indent=4) @classmethod def load(cls, path): """ load up a saved synthesizer object from disk. Args: path (str): The path to load the synthesizer from """ with open(os.path.join(path, "synthesizer_metadata.json"), 'r') as f: meta_data = json.load(f) struct_gens = meta_data.pop('struct_gens', {}) tab_gens = meta_data.pop('tab_gens', {}) aligners = meta_data.pop('aligners', {}) instance = cls(**meta_data) if struct_gens: instance.structure_generators = { edge_name: ( dynamic_import(data['object_path']).load( os.path.join(path, f'struct_gen_{edge_name}') ), data['gen_info'], ) for edge_name, data in struct_gens.items() } if tab_gens: instance.tabular_generators = { part: { part_name: [ ( dynamic_import(data['object_path']).load( os.path.join(path, f'tab_gen_{part}_{part_name}_{idx}') ), data['gen_info'], ) for idx, data in enumerate(part_gens) ] for part_name, part_gens in part_data.items() } for part, part_data in tab_gens.items() } if aligners: instance.aligners = [ ( dynamic_import(data['object_path']).load( os.path.join(path, f'aligner_{idx}') ), data['graphs_info'], ) for idx, data in enumerate(aligners) ] return instance
PyTorch/LanguageModeling/BERT/lamb_amp_opt/csrc
csrc
multi_tensor_lamb_out
#include <ATen/ATen.h> #include <ATen/AccumulateType.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/Exceptions.h> // Another possibility: // #include <torch/all.h> #include <assert.h> #include "type_shim.h" #include "multi_tensor_apply.cuh" #define BLOCK_SIZE 512 #define ILP 4 std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda( int chunk_size, at::Tensor noop_flag, std::vector<std::vector<at::Tensor>> tensor_lists, at::optional<bool> per_tensor_python, at::Tensor found_inf, at::Tensor inv_scale); template<typename T> __device__ __forceinline__ bool is_aligned(T* p){ return ((uint64_t)p) % (ILP*sizeof(T)) == 0; } template<typename T1, typename T2> __device__ __forceinline__ void load_store_with_cast(T1* dst, T2* src, int dst_offset, int src_offset) { for (size_t i = 0; i < ILP; ++i) { dst[dst_offset + i] = static_cast<T1>(src[src_offset + i]); } } template<typename T> __device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){ typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT; ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset]; } typedef enum{ MOMENT_MODE_0 =0, // L2 regularization mode MOMENT_MODE_1 =1 // Decoupled weight decay mode } adamMode_t; using MATH_T = float; template<typename grad_t, typename param_t> struct LAMBStage1Functor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<4>& tl, const float beta1, const float beta2, const float beta3, const float beta1_correction, const float beta2_correction, const float epsilon, adamMode_t mode, const float decay, const float* global_grad_norm, const float max_global_grad_norm, const float* found_inf, const float* inv_scale) { if (*found_inf) { return; } int tensor_loc = tl.block_to_tensor[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; float clipped_global_grad_norm = (*global_grad_norm) > max_global_grad_norm ? (*global_grad_norm) / max_global_grad_norm : 1.0f; grad_t* g = (grad_t*)tl.addresses[0][tensor_loc]; g += chunk_idx*chunk_size; param_t* p = (param_t*)tl.addresses[1][tensor_loc]; p += chunk_idx*chunk_size; param_t* m = (param_t*)tl.addresses[2][tensor_loc]; m += chunk_idx*chunk_size; param_t* v = (param_t*)tl.addresses[3][tensor_loc]; v += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; MATH_T r_g[ILP]; MATH_T r_p[ILP]; MATH_T r_m[ILP]; MATH_T r_v[ILP]; // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(g) && is_aligned(p) && is_aligned(m) && is_aligned(v)) { grad_t l_g[ILP]; param_t l_p[ILP]; param_t l_m[ILP]; param_t l_v[ILP]; for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(l_g, g, 0, i_start); if (decay != 0) load_store(l_p, p, 0, i_start); load_store(l_m, m, 0, i_start); load_store(l_v, v, 0, i_start); // unpack #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_g[ii] = l_g[ii] * (*inv_scale); if (decay == 0) { r_p[ii] = MATH_T(0); } else { r_p[ii] = l_p[ii]; } r_m[ii] = l_m[ii]; r_v[ii] = l_v[ii]; } #pragma unroll for(int ii = 0; ii < ILP; ii++) { if (mode == MOMENT_MODE_0) { MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; // L2 on scaled grad scaled_grad = scaled_grad + decay*r_p[ii]; r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; r_p[ii] = next_m_unbiased / denom; } else { MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]); } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { l_p[ii] = r_p[ii]; l_m[ii] = r_m[ii]; l_v[ii] = r_v[ii]; } // store load_store_with_cast<grad_t, MATH_T>(g, l_p, i_start, 0); load_store(m, l_m, i_start, 0); load_store(v, l_v, i_start, 0); } } else { // see note in multi_tensor_scale_kernel.cu for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { MATH_T r_g[ILP]; MATH_T r_p[ILP]; MATH_T r_m[ILP]; MATH_T r_v[ILP]; #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { r_g[ii] = g[i]; // special ?optimization? for lamb stage 1 if (decay == 0) { r_p[ii] = MATH_T(0); } else { r_p[ii] = p[i]; } r_m[ii] = m[i]; r_v[ii] = v[i]; } else { r_g[ii] = MATH_T(0); r_p[ii] = MATH_T(0); r_m[ii] = MATH_T(0); r_v[ii] = MATH_T(0); } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { if (mode == MOMENT_MODE_0) { MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; // L2 on scaled grad scaled_grad = scaled_grad + decay*r_p[ii]; r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; r_p[ii] = next_m_unbiased / denom; } else { MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]); } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { g[i] = r_p[ii]; m[i] = r_m[ii]; v[i] = r_v[ii]; } } } } } }; // Step 2 reads in 'update' value and per-tensor param_norm and update_norm. // It computes new parameter value. template<typename T, typename master_param_t> struct LAMBStage2Functor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<3>& tl, const float* per_tensor_param_norm, const float* per_tensor_update_norm, const float learning_rate, const float decay, bool use_nvlamb, float* found_inf, float* inv_scale) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; if (*found_inf) { return; } int tensor_loc = tl.block_to_tensor[blockIdx.x]; int tensor_num = tl.start_tensor_this_launch + tensor_loc; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; MATH_T ratio = learning_rate; // nvlamb: apply adaptive learning rate to all parameters // otherwise, only apply to those with non-zero weight decay if (use_nvlamb || (decay != 0.0)) { float param_norm = per_tensor_param_norm[tensor_num]; float update_norm = per_tensor_update_norm[tensor_num]; ratio = (update_norm != 0.0f && param_norm != 0.0f) ? learning_rate * (param_norm / update_norm) : learning_rate; } T* update = (T*)tl.addresses[0][tensor_loc]; update += chunk_idx*chunk_size; master_param_t* master_p = (master_param_t*)tl.addresses[1][tensor_loc]; master_p += chunk_idx*chunk_size; T* p = (T*)tl.addresses[2][tensor_loc]; p += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(p) && is_aligned(update)) { T r_p[ILP]; T r_update[ILP]; master_param_t r_master_p[ILP]; for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(r_p, p, 0, i_start); load_store(r_update, update, 0, i_start); load_store(r_master_p, master_p, 0, i_start); #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_master_p[ii] = static_cast<MATH_T>(r_p[ii]) - (ratio * static_cast<MATH_T>(r_update[ii])); r_p[ii] = static_cast<T>(r_master_p[ii]); } load_store(p, r_p, i_start, 0); load_store(master_p, r_master_p, i_start, 0); } } else { for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { MATH_T r_p[ILP]; MATH_T r_update[ILP]; MATH_T r_master_p[ILP]; #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { r_p[ii] = p[i]; r_update[ii] = update[i]; r_master_p[ii] = master_p[i]; } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_master_p[ii] = r_master_p[ii] - (ratio * r_update[ii]); r_p[ii] = r_master_p[ii]; } #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { master_p[i] = r_master_p[ii]; p[i] = r_p[ii]; } } } } } }; void multi_tensor_lamb_out_cuda( int chunk_size, at::Tensor noop_flag, std::vector<std::vector<at::Tensor>> tensor_lists, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int bias_correction, const float weight_decay, const int grad_averaging, const int mode, at::Tensor global_grad_norm, const float max_grad_norm, at::optional<bool> use_nvlamb_python, at::Tensor found_inf, at::Tensor inv_scale) { assert(tensor_lists.size() == 5); using namespace at; // Master weight and 32bit momentum(potentially changing) is not handled by this // So we assume every tensor are all in the same type bool use_nvlamb = use_nvlamb_python.has_value() ? use_nvlamb_python.value() : false; // Handle bias correction mode float bias_correction1 = 1.0f, bias_correction2 = 1.0f; if (bias_correction == 1) { bias_correction1 = 1 - std::pow(beta1, step); bias_correction2 = 1 - std::pow(beta2, step); } // Handle grad averaging mode float beta3 = 1.0f; if (grad_averaging == 1) beta3 = 1 - beta1; std::vector<std::vector<at::Tensor>> stage1_tensor_lists{ tensor_lists[0], tensor_lists[1], tensor_lists[2], tensor_lists[3], }; std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1); std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin()+1, tensor_lists.begin()+2); // Compute per tensor param norm auto param_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, param_list, true, found_inf, inv_scale); // We now in-place modify grad to store update before compute its norm // Generally this is not a issue since people modify grad in step() method all the time // We can also grab list of empty tensor to avoid this, but I'd like to save space/cpu code DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1", multi_tensor_apply<4>( BLOCK_SIZE, chunk_size, noop_flag, stage1_tensor_lists, LAMBStage1Functor<scalar_t_0, float>(), beta1, beta2, beta3, // 1-beta1 or 1 depends on averaging mode bias_correction1, bias_correction2, epsilon, (adamMode_t) mode, weight_decay, global_grad_norm.data_ptr<float>(), max_grad_norm, found_inf.data_ptr<float>(), inv_scale.data_ptr<float>()); ) // Compute update norms auto update_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, true, found_inf, inv_scale); std::vector<std::vector<at::Tensor>> grad_param_list{ tensor_lists[0], tensor_lists[1], tensor_lists[4] }; DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2", multi_tensor_apply<3>( BLOCK_SIZE, chunk_size, noop_flag, grad_param_list, LAMBStage2Functor<scalar_t_0, float>(), std::get<1>(param_norm_tuple).data_ptr<float>(), std::get<1>(update_norm_tuple).data_ptr<float>(), lr, weight_decay, use_nvlamb, found_inf.data_ptr<float>(), inv_scale.data_ptr<float>()); ) AT_CUDA_CHECK(cudaGetLastError()); }
TensorFlow/Classification/ConvNets/dataprep
dataprep
build_imagewoof_data
#!/usr/bin/python # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts ImageNet data to TFRecords file format with Example protos. The raw ImageNet data set is expected to reside in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG ... where 'n01440764' is the unique synset label associated with these images. The training data set consists of 1000 sub-directories (i.e. labels) each containing 1200 JPEG images for a total of 1.2M JPEG images. The evaluation data set consists of 1000 sub-directories (i.e. labels) each containing 50 JPEG images for a total of 50K JPEG images. This TensorFlow script converts the training and evaluation data into a sharded data set consisting of 1024 and 128 TFRecord files, respectively. train_directory/train-00000-of-01024 train_directory/train-00001-of-01024 ... train_directory/train-01023-of-01024 and validation_directory/validation-00000-of-00128 validation_directory/validation-00001-of-00128 ... validation_directory/validation-00127-of-00128 Each validation TFRecord file contains ~390 records. Each training TFREcord file contains ~1250 records. Each record within the TFRecord file is a serialized Example proto. The Example proto contains the following fields: image/encoded: string containing JPEG encoded image in RGB colorspace image/height: integer, image height in pixels image/width: integer, image width in pixels image/colorspace: string, specifying the colorspace, always 'RGB' image/channels: integer, specifying the number of channels, always 3 image/format: string, specifying the format, always 'JPEG' image/filename: string containing the basename of the image file e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' image/class/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. image/class/synset: string specifying the unique ID of the label, e.g. 'n01440764' image/class/text: string specifying the human-readable version of the label e.g. 'red fox, Vulpes vulpes' image/object/bbox/xmin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/xmax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. Note this is always identical to the image label. Note that the length of xmin is identical to the length of xmax, ymin and ymax for each example. Running this script using 16 threads may take around ~2.5 hours on an HP Z420. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import random import sys import threading import numpy as np import six import tensorflow as tf tf.app.flags.DEFINE_string('train_directory', '/tmp/', 'Training data directory') tf.app.flags.DEFINE_string('validation_directory', '/tmp/', 'Validation data directory') tf.app.flags.DEFINE_string('output_directory', '/tmp/', 'Output data directory') tf.app.flags.DEFINE_integer('train_shards', 1024, 'Number of shards in training TFRecord files.') tf.app.flags.DEFINE_integer('validation_shards', 128, 'Number of shards in validation TFRecord files.') tf.app.flags.DEFINE_integer('num_threads', 8, 'Number of threads to preprocess the images.') # The labels file contains a list of valid labels are held in this file. # Assumes that the file contains entries as such: # n01440764 # n01443537 # n01484850 # where each line corresponds to a label expressed as a synset. We map # each synset contained in the file to an integer (based on the alphabetical # ordering). See below for details. tf.app.flags.DEFINE_string('labels_file', 'imagenet_lsvrc_2015_synsets.txt', 'Labels file') # This file containing mapping from synset to human-readable label. # Assumes each line of the file looks like: # # n02119247 black fox # n02119359 silver fox # n02119477 red fox, Vulpes fulva # # where each line corresponds to a unique mapping. Note that each line is # formatted as <synset>\t<human readable label>. tf.app.flags.DEFINE_string('imagenet_metadata_file', 'imagenet_metadata.txt', 'ImageNet metadata file') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" if six.PY3 and isinstance(value, six.text_type): value = six.binary_type(value, encoding='utf-8') return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width): """Build an Example proto for an example. Args: filename: string, path to an image file, e.g., '/path/to/example.JPG' image_buffer: string, JPEG encoding of RGB image label: integer, identifier for the ground truth for the network synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' bbox: list of bounding boxes; each box is a list of integers specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to the same label as the image label. height: integer, image height in pixels width: integer, image width in pixels Returns: Example proto """ xmin = [] ymin = [] xmax = [] ymax = [] for b in bbox: assert len(b) == 4 # pylint: disable=expression-not-assigned [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] # pylint: enable=expression-not-assigned colorspace = 'RGB' channels = 3 image_format = 'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': _int64_feature(height), 'image/width': _int64_feature(width), 'image/colorspace': _bytes_feature(colorspace), 'image/channels': _int64_feature(channels), 'image/class/label': _int64_feature(label), 'image/class/synset': _bytes_feature(synset), 'image/class/text': _bytes_feature(human), 'image/object/bbox/xmin': _float_feature(xmin), 'image/object/bbox/xmax': _float_feature(xmax), 'image/object/bbox/ymin': _float_feature(ymin), 'image/object/bbox/ymax': _float_feature(ymax), 'image/object/bbox/label': _int64_feature([label] * len(xmin)), 'image/format': _bytes_feature(image_format), 'image/filename': _bytes_feature(os.path.basename(filename)), 'image/encoded': _bytes_feature(image_buffer)})) return example class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that converts CMYK JPEG data to RGB JPEG data. self._cmyk_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_jpeg(self._cmyk_data, channels=0) self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def png_to_jpeg(self, image_data): return self._sess.run(self._png_to_jpeg, feed_dict={self._png_data: image_data}) def cmyk_to_rgb(self, image_data): return self._sess.run(self._cmyk_to_rgb, feed_dict={self._cmyk_data: image_data}) def decode_jpeg(self, image_data): image = self._sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _is_png(filename): """Determine if a file contains a PNG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a PNG. """ # File list from: # https://groups.google.com/forum/embed/?place=forum/torch7#!topic/torch7/fOSTXHIESSU return 'n02105855_2933.JPEG' in filename def _is_cmyk(filename): """Determine if file contains a CMYK JPEG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a JPEG encoded with CMYK color space. """ # File list from: # https://github.com/cytsai/ilsvrc-cmyk-image-list blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG', 'n02447366_23489.JPEG', 'n02492035_15739.JPEG', 'n02747177_10752.JPEG', 'n03018349_4028.JPEG', 'n03062245_4620.JPEG', 'n03347037_9675.JPEG', 'n03467068_12171.JPEG', 'n03529860_11437.JPEG', 'n03544143_17228.JPEG', 'n03633091_5218.JPEG', 'n03710637_5125.JPEG', 'n03961711_5286.JPEG', 'n04033995_2932.JPEG', 'n04258138_17003.JPEG', 'n04264628_27969.JPEG', 'n04336792_7448.JPEG', 'n04371774_5854.JPEG', 'n04596742_4225.JPEG', 'n07583066_647.JPEG', 'n13037406_4650.JPEG'] return filename.split('/')[-1] in blacklist def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. with tf.gfile.FastGFile(filename, 'rb') as f: image_data = f.read() # Clean the dirty data. if _is_png(filename): # 1 image is a PNG. print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) elif _is_cmyk(filename): # 22 JPEG images are in CMYK colorspace. print('Converting CMYK to RGB for %s' % filename) image_data = coder.cmyk_to_rgb(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width def _process_image_files_batch(coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards): """Processes and saves list of images as TFRecord in 1 thread. Args: coder: instance of ImageCoder to provide TensorFlow image coding utils. thread_index: integer, unique batch to run index is within [0, len(ranges)). ranges: list of pairs of integers specifying ranges of each batches to analyze in parallel. name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ # Each thread produces N shards where N = int(num_shards / num_threads). # For instance, if num_shards = 128, and the num_threads = 2, then the first # thread would produce shards [0, 64). num_threads = len(ranges) assert not num_shards % num_threads num_shards_per_batch = int(num_shards / num_threads) shard_ranges = np.linspace(ranges[thread_index][0], ranges[thread_index][1], num_shards_per_batch + 1).astype(int) num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] counter = 0 for s in range(num_shards_per_batch): # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' shard = thread_index * num_shards_per_batch + s output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) output_file = os.path.join(FLAGS.output_directory, output_filename) writer = tf.python_io.TFRecordWriter(output_file) shard_counter = 0 files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) for i in files_in_shard: filename = filenames[i] label = labels[i] synset = synsets[i] human = humans[i] #bbox = bboxes[i] image_buffer, height, width = _process_image(filename, coder) example = _convert_to_example(filename, image_buffer, label, synset, human, [[0, 0, 1, 1]], height, width) writer.write(example.SerializeToString()) shard_counter += 1 counter += 1 if not counter % 1000: print('%s [thread %d]: Processed %d of %d images in thread batch.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() writer.close() print('%s [thread %d]: Wrote %d images to %s' % (datetime.now(), thread_index, shard_counter, output_file)) sys.stdout.flush() shard_counter = 0 print('%s [thread %d]: Wrote %d images to %d shards.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() def _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ assert len(filenames) == len(synsets) assert len(filenames) == len(labels) assert len(filenames) == len(humans) #assert len(filenames) == len(bboxes) # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int) ranges = [] threads = [] for i in range(len(spacing) - 1): ranges.append([spacing[i], spacing[i + 1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in range(len(ranges)): args = (coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush() def _find_image_files(data_dir, labels_file): """Build a list of all images files and labels in the data set. Args: data_dir: string, path to the root directory of images. Assumes that the ImageNet data set resides in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG where 'n01440764' is the unique synset label associated with these images. labels_file: string, path to the labels file. The list of valid labels are held in this file. Assumes that the file contains entries as such: n01440764 n01443537 n01484850 where each line corresponds to a label expressed as a synset. We map each synset contained in the file to an integer (based on the alphabetical ordering) starting with the integer 1 corresponding to the synset contained in the first line. The reason we start the integer labels at 1 is to reserve label 0 as an unused background class. Returns: filenames: list of strings; each string is a path to an image file. synsets: list of strings; each string is a unique WordNet ID. labels: list of integer; each integer identifies the ground truth. """ print('Determining list of input files and labels from %s.' % data_dir) challenge_synsets = [l.strip() for l in tf.gfile.FastGFile(labels_file, 'r').readlines()] labels = [] filenames = [] synsets = [] # Leave label index 0 empty as a background class. label_index = 1 # Construct the list of JPEG files and labels. for synset in challenge_synsets: jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) matching_files = tf.gfile.Glob(jpeg_file_path) labels.extend([label_index] * len(matching_files)) synsets.extend([synset] * len(matching_files)) filenames.extend(matching_files) if not label_index % 100: print('Finished finding files in %d of %d classes.' % ( label_index, len(challenge_synsets))) label_index += 1 # Shuffle the ordering of all image files in order to guarantee # random ordering of the images with respect to label in the # saved TFRecord files. Make the randomization repeatable. shuffled_index = list(range(len(filenames))) random.seed(12345) random.shuffle(shuffled_index) filenames = [filenames[i] for i in shuffled_index] synsets = [synsets[i] for i in shuffled_index] labels = [labels[i] for i in shuffled_index] print('Found %d JPEG files across %d labels inside %s.' % (len(filenames), len(challenge_synsets), data_dir)) return filenames, synsets, labels def _find_human_readable_labels(synsets, synset_to_human): """Build a list of human-readable labels. Args: synsets: list of strings; each string is a unique WordNet ID. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' Returns: List of human-readable strings corresponding to each synset. """ humans = [] for s in synsets: assert s in synset_to_human, ('Failed to find: %s' % s) humans.append(synset_to_human[s]) return humans def _process_dataset(name, directory, num_shards, synset_to_human, image_to_bboxes): """Process a complete data set and save it as a TFRecord. Args: name: string, unique identifier specifying the data set. directory: string, root path to the data set. num_shards: integer number of shards for this data set. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ filenames, synsets, labels = _find_image_files(directory, FLAGS.labels_file) humans = _find_human_readable_labels(synsets, synset_to_human) #bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) bboxes = [] _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards) def _build_synset_lookup(imagenet_metadata_file): """Build lookup for synset to human-readable label. Args: imagenet_metadata_file: string, path to file containing mapping from synset to human-readable label. Assumes each line of the file looks like: n02119247 black fox n02119359 silver fox n02119477 red fox, Vulpes fulva where each line corresponds to a unique mapping. Note that each line is formatted as <synset>\t<human readable label>. Returns: Dictionary of synset to human labels, such as: 'n02119022' --> 'red fox, Vulpes vulpes' """ lines = tf.gfile.FastGFile(imagenet_metadata_file, 'r').readlines() synset_to_human = {} for l in lines: if l: parts = l.strip().split('\t') assert len(parts) == 2 synset = parts[0] human = parts[1] synset_to_human[synset] = human return synset_to_human def main(unused_argv): assert not FLAGS.train_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards') assert not FLAGS.validation_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with ' 'FLAGS.validation_shards') print('Saving results to %s' % FLAGS.output_directory) # Build a map from synset to human-readable label. synset_to_human = _build_synset_lookup(FLAGS.imagenet_metadata_file) # Run it! _process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, synset_to_human, None) _process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, synset_to_human, None) if __name__ == '__main__': tf.app.run()
PyTorch/Detection/Efficientdet
Efficientdet
README
# EfficientDet For PyTorch This repository provides a script and recipe to train and infer on EfficientDet to achieve state-of-the-art accuracy and is tested and maintained by NVIDIA. ## Table Of Contents * [Model overview](#model-overview) * [Model Architecture](#model-architecture) * [Default configuration](#default-configuration) * [Feature support matrix](#feature-support-matrix) * [Features](#features) * [Mixed precision training](#mixed-precision-training) * [Enabling mixed precision](#enabling-mixed-precision) * [Enabling TF32](#enabling-tf32) * [Setup](#setup) * [Requirements](#requirements) * [Quick start guide](#quick-start-guide) * [Advanced](#advanced) * [Command-line arguments](#command-line-arguments) * [Getting the data](#getting-the-data) * [Dataset guidelines](#dataset-guidelines) * [Training process](#training-process) * [Performance](#performance) * [Benchmarking](#benchmarking) * [Training performance benchmark](#training-performance-benchmark) * [Inference performance benchmark](#inference-performance-benchmark) * [Results](#results) * [Training accuracy results](#training-accuracy-results) * [Training accuracy: NVIDIA DGX A100 (8x A100 40GB)](#training-accuracy-nvidia-dgx-a100-8x-a100-40gb) * [Training accuracy: NVIDIA DGX-1 (8x V100 32GB)](#training-accuracy-nvidia-dgx-1-8x-v100-32gb) * [Training accuracy: NVIDIA DGX-1 (32x V100 32GB)](#training-accuracy-nvidia-dgx-1-32x-v100-32gb) * [Training loss curves](#training-loss-curves) * [Training stability test](#training-stability-test) * [Training performance results](#training-performance-results) * [Training performance: NVIDIA DGX A100 (8x A100 40GB)](#training-performance-nvidia-dgx-a100-8x-a100-40gb) * [Training performance: NVIDIA DGX-1 (8x V100 16GB)](#training-performance-nvidia-dgx-1-8x-v100-16gb) * [Training performance: NVIDIA DGX-2 (16x V100 32GB)](#training-performance-nvidia-dgx-2-16x-v100-32gb) * [Inference performance results](#inference-performance-results) * [Inference performance: NVIDIA DGX A100 (1x A100 40GB)](#inference-performance-nvidia-dgx-a100-1x-a100-40gb) * [Inference performance: NVIDIA DGX-1 (1x V100 16GB)](#inference-performance-nvidia-dgx-1-1x-v100-16gb) * [Inference performance: NVIDIA DGX-2 (1x V100 32GB)](#inference-performance-nvidia-dgx-1-1x-v100-16gb) * [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) ## Model overview EfficientDet is a convolution-based neural network for the task of object detection. This model is based on [EfficientDet: Scalable and Efficient Object Detection](https://arxiv.org/abs/1911.09070). NVIDIA's implementation of EfficientDet PyTorch is an optimized version of [TensorFlow Model Garden](https://github.com/tensorflow/models/tree/master/research/object_detection) implementation, leveraging mixed precision arithmetic on NVIDIA Volta, NVIDIA Turing, and the NVIDIA Ampere GPU architectures for faster training times while maintaining target accuracy. The repository also contains scripts to launch training, benchmarking, and inference routines in a Docker container interactively. The major differences between the official implementation of the paper and our version of EfficientDet are as follows: - Mixed precision support with [PyTorch AMP](https://github.com/NVIDIA/apex). - Multi-node training support. - Custom fused CUDA kernels for faster computations. - Lightweight logging using [dllogger](https://github.com/NVIDIA/dllogger) - PyTorch multi-tensor ops for faster computation. These techniques/optimizations improve model performance and reduce training time by a factor of 1.3x, allowing you to perform more efficient object detection with no additional effort. Other publicly available implementations of EfficientDet include: - [Yet-Another-EfficientDet-Pytorch](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch) - [rwightman](https://github.com/rwightman/efficientdet-pytorch) ### Model architecture EfficientDet is a one-stage detector with the following architecture components: - ImageNet-pretrained EfficientNet backbone - Weighted bi-directional feature pyramid network (BiFPN) - Bounding and classification box head - A compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time ### Default Configuration The default configuration of this model can be found at `train.py`. The default hyper-parameters are as follows: - General: - Base Global Learning Rate set to 0.01 - Epochs set to 300 - Local train batch size - 32 - Local test batch size - 32 - Backbone: - Backend network set to EfficientNet-B0 This repository implements multi-gpu to support larger batches and mixed precision support. This implementation also includes the following optimizations. - Custom CUDA kernels for Focal Loss and NMS. - Custom optimized implementation of EMA. The source files can be found under `effdet/csrc`. ### Feature support matrix The model supports the following features. | **Feature** | **EfficientDet** | |:---------:|:----------:| |PyTorch native AMP|Yes| |PyTorch native DDP|Yes| |Custom Fused CUDA kernels|Yes| #### Features [PyTorch native AMP](https://pytorch.org/docs/stable/amp.html) is part of PyTorch, which provides convenience methods for mixed precision. [DDP](https://pytorch.org/tutorials/beginner/dist_overview.html) stands for DistributedDataParallel and is used for multi-GPU training. ### Mixed precision training Mixed precision is the combined use of different numerical precisions in a computational method. [Mixed precision](https://arxiv.org/abs/1710.03740) training offers significant computational speedup by performing operations in half-precision format while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. Since the introduction of [tensor cores](https://developer.nvidia.com/tensor-cores) in NVIDIA Volta, and following with both the NVIDIA Turing and NVIDIA Ampere Architectures, significant training speedups are observed by switching to mixed precision—up to 3x overall speedup on the most arithmetically intense model architectures. Using mixed precision training requires two steps: 1. Porting the model to use the FP16 data type where appropriate. 2. Adding loss scaling to preserve small gradient values. For information about: - How to train using mixed precision, refer to the [Mixed Precision Training](https://arxiv.org/abs/1710.03740) paper and [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html) documentation. - Techniques used for mixed precision training, refer to the [Mixed-Precision Training of Deep Neural Networks](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) blog. NVIDIA Apex tools for mixed precision training, refer to the [NVIDIA Apex: Tools for Easy Mixed-Precision Training in PyTorch](https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/). #### Enabling mixed precision In this repository, mixed precision training is enabled by the [PyTorch native AMP](https://pytorch.org/docs/stable/amp.html) library. PyTorch has an automatic mixed precision module that allows mixed precision to be enabled with minimal code changes. Automatic mixed precision can be enabled with the following code changes: ``` # Create gradient scaler scaler = torch.cuda.amp.GradScaler(enabled=args.amp) # Wrap the forward pass and loss in torch.cuda.amp.autocast with torch.cuda.amp.autocast(enabled=args.amp): output = model(input, target) loss = output['loss'] ``` Where `args.amp` is the flag to turn on or off AMP. Shell scripts all have a positional argument `--amp` available to enable mixed precision training. #### Enabling TF32 TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math, also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on NVIDIA Volta GPUs. TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models that require a high dynamic range for weights or activations. For more information, refer to the [TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) blog post. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default. ## Setup The following sections list the requirements in order to start training the EfficientDet model. ### Requirements This repository contains `Dockerfile` which extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components: - [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) - [PyTorch 21.06-py3 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch) - Supported GPUs: - [NVIDIA Volta architecture](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) - [NVIDIA Turing architecture](https://www.nvidia.com/en-us/geforce/turing/) - [NVIDIA Ampere architecture](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/) For more information about how to get started with NGC containers, refer to the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning Documentation: - [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html) - [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#accessing_registry) - [Running PyTorch](https://docs.nvidia.com/deeplearning/dgx/pytorch-release-notes/running.html#running) For those unable to use the [Pytorch](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) NGC container, to set up the required environment or create your own container, refer to the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). ## Quick Start Guide To train your model using mixed or TF32 precision with Tensor Cores or using FP32, perform the following steps using the default parameters of the EfficientDet on the COCO 2017 dataset. For the specifics concerning training and inference, refer to the [Advanced](#advanced) section. ### 1. Clone the repository. ``` git clone https://github.com/NVIDIA/DeepLearningExamples.git cd DeepLearningExamples/PyTorch/Detection/EfficientDet ``` ### 2. Download and preprocess the dataset. This repository provides scripts to download and extract the COCO 2017 dataset. Data will be downloaded to the `current working` directory on the host and extracted to a user-defined directory To download, verify, and extract the COCO dataset, use the following scripts: ``` ./download_dataset.sh <data/dir> ``` By default, the data is organized into the following structure: ``` <data/dir> annotations/ instances_train2017.json instances_val2017.json train2017/ COCO_train2017_*.jpg val2017/ COCO_val2017_*.jpg ``` ### 3. Build the EfficientDet PyTorch NGC container. ``` bash scripts/docker/build.sh ``` ### 4. Start an interactive session in the NGC container to run training/inference. After you build the container image, you can start an interactive CLI session with ``` bash scripts/docker/launch.sh ``` The `launch.sh` script requires that the location on the dataset is specified in the script. ### 5. Start training. ``` bash ./scripts/D0/train_{AMP, FP32, TF32}_8x{V100-32G, A100-80G}.sh ``` The training scripts train an EfficientDet-D0 model and performs evaluation on the COCO 2017 dataset. By default, the training script run training on standard configuration (DGX A100/DGX-1 V100, AMP/FP32/TF32, 300 epochs). Run one of the scripts in `./scripts/D0` directory using `bash ./scripts/D0/train_{AMP, FP32, TF32}_8x{V100-32G, A100-80G}.sh`. Ensure COCO-2017 is mounted in `/workspace/object_detection/datasets/coco` and EfficientNet-B0 backbone weights are mounted in `/backbone_checkpoints`. The backbone checkpoint can be downloaded from [this](https://ngc.nvidia.com/catalog/models/nvidia:efficientdet_backbone_efficientnet_b0_pyt_amp_ckpt) location. ### 6. Start validation/evaluation. To run validation/evaluation for a standard configuration (DGX A100/DGX-1 V100, AMP/TF32/FP32, EfficientDet-D0), run one of the scripts in the `./scripts/D0` directory using `bash ./scripts/D0/validation_{AMP, FP32, TF32}_8x{A100-80G, V100-16G, V100-32G}.sh`. Ensure COCO-2017 is mounted in `/workspace/object_detection/datasets/coco`. (Optional) Mount the checkpoint in the `/checkpoints` location to evaluate on a checkpoint and in the script add the path to the checkpoint as `--checkpoint /checkpoints/<NAME OF CHECKPOINT>`. ### 7. Start inference/predictions. Model predictions can be obtained on a test dataset and a model checkpoint by running the `scripts/D0/inference_{AMP, FP32, TF32}_{A100-80G, V100-32G}.sh` script. The script requires: - the location of the checkpoint folder and dataset to be specified and present within/mounted to the container. - number of GPUs to run inference on. For example: ``` NUM_PROC=<number_of_processes> CKPT_PATH=<checkpoint_path> BATCH_SIZE=<batch_size> bash scripts/inference_{AMP, FP32, TF32}_{A100-80G, V100-32G}.sh ``` Model prediction files get saved in the `--results` path if provided; otherwise, they will be saved in the current working directory. To perform just inference and skip computation of mAP scores, use the `--inference` flag. ## Advanced The following sections provide greater details of the dataset, running training and inference, and the training results. ### Scripts and sample code Descriptions of the key scripts and folders are provided below. - effdet - Contains code to build individual components of the model such as backbone, FPN, RPN, classification and bbox heads, and so on. - data - Contains code to build the data pipeline such as dataloader, transforms, dataset builder. - download_dataset.sh - Launches download and processing of required datasets. `dtrx` package needs to be installed for this script to run without errors. - scripts/ - Contains shell scripts to launch training and evaluation of the model and perform inferences. - D0/train_{AMP, TF32, FP32}_8x{V100-32G, A100-80G}.sh - Launches model training - D0/evaluation_{AMP, FP32, TF32}_8x{A100-80G, V100-16G, V100-32G}.sh - Performs inference and computes mAP of predictions. - docker/ - Scripts to build the docker image and to start an interactive session. - utils/ - Contains utility components like samplers, EMA, optimizers, schedulers, and so on. - train.py - End to end to script to load data, build and train the model. - validate.py - End to end script to load data, checkpoint and perform inference and compute mAP score. ### Parameters #### train.py script parameters Important parameters for training are listed below with defaults. ### Command-line options To display the full list of available options and their descriptions, use the -h or --help command-line option, for example: - `data` - Path to coco dataset - `model` - Name of the model to train (default: "efficientdet_d0") - `lr` - Learning rate - `epochs` - Maximum number of epochs to train for - `warmup-epochs` - Epochs to warmup LR, if scheduler supports - `batch-size` - Input batch size `python train.py --help` will give all the command-line parameters specific to `train.py`: ``` --model MODEL Name of the model to train (default: "countception" --redundant-bias Override model config for redundant bias --no-redundant-bias Override model config for redundant bias --pretrained Start with the pretrained version of a specified network (if avail) --pretrained-backbone-path PATH Start from pre-trained backbone weights. --initial-checkpoint PATH Initialize model from this checkpoint (default: none) --resume Resume full model and optimizer state from checkpoint (default: False) --no-resume-opt Prevent resume of optimizer state when resuming model --interpolation NAME Image resize interpolation type (overrides model) --fill-color NAME Image augmentation fill (background) color ("mean" or int) -b N, --batch-size N input batch size for training (default: 32) -vb N, --validation-batch-size-multiplier N ratio of validation batch size to training batch size (default: 1) --input_size PCT Image size (default: None) if this is not set default model image size is taken --drop PCT Dropout rate (default: 0.) --clip-grad NORM Clip gradient norm (default: 10.0) --opt OPTIMIZER Optimizer (default: "momentum" --opt-eps EPSILON Optimizer Epsilon (default: 1e-3) --momentum M SGD momentum (default: 0.9) --weight-decay WEIGHT_DECAY weight decay (default: 0.00004) --sched SCHEDULER LR scheduler (default: "step" --lr LR learning rate (default: 0.01) --lr-noise pct, pct [pct, pct ...] learning rate noise on/off epoch percentages --lr-noise-pct PERCENT learning rate noise limit percent (default: 0.67) --lr-noise-std STDDEV learning rate noise std-dev (default: 1.0) --lr-cycle-mul MULT learning rate cycle len multiplier (default: 1.0) --lr-cycle-limit N learning rate cycle limit --warmup-lr LR warmup learning rate (default: 0.0001) --min-lr LR lower lr bound for cyclic schedulers that hit 0 (1e-5) --epochs N number of epochs to train (default: 2) --start-epoch N manual epoch number (useful on restarts) --decay-epochs N epoch interval to decay LR --warmup-epochs N epochs to warmup LR, if scheduler supports --cooldown-epochs N epochs to cooldown LR at min_lr, after cyclic schedule ends --patience-epochs N patience epochs for Plateau LR scheduler (default: 10 --decay-rate RATE, --dr RATE LR decay rate (default: 0.1) --mixup MIXUP mixup alpha, mixup enabled if > 0. (default: 0.) --mixup-off-epoch N turn off mixup after this epoch, disabled if 0 (default: 0) --smoothing SMOOTHING label smoothing (default: 0.0) --train-interpolation TRAIN_INTERPOLATION Training interpolation (random, bilinear, bicubic default: "random") --sync-bn Enable NVIDIA Apex or Torch synchronized BatchNorm. --dist-bn DIST_BN Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "") --model-ema Enable tracking moving average of model weights --model-ema-decay MODEL_EMA_DECAY decay factor for model weights moving average (default: 0.9998) --dist-group-size DIST_GROUP_SIZE Group size for sync-bn --seed S random seed (default: 42) --log-interval N how many batches to wait before logging training status --eval-after N Start evaluating after eval-after epochs --benchmark Turn this on when measuring performance --benchmark-steps N Run training for this number of steps for performance measurement --dllogger-file PATH File name of dllogger json file (default: log.json, current dir) --save-checkpoint-interval N Save checkpoints after so many epochs -j N, --workers N how many training processes to use (default: 1) --amp use NVIDIA amp for mixed precision training --no-pin-mem Disable pin CPU memory in DataLoader. --no-prefetcher disable fast prefetcher --output PATH path to the output folder (default: none, current dir) --eval-metric EVAL_METRIC Best metric (default: "map" --local_rank LOCAL_RANK --memory-format {nchw,nhwc} memory layout, nchw or nhwc --fused-focal-loss Use fused focal loss for better performance. --waymo Train on Waymo dataset or COCO dataset. Default: False (COCO dataset) --num_classes PCT Number of classes the model needs to be trained for (default: None) --remove-weights [REMOVE_WEIGHTS [REMOVE_WEIGHTS ...]] Remove these weights from the state dict before loading checkpoint (use case can be not loading heads) --freeze-layers [FREEZE_LAYERS [FREEZE_LAYERS ...]] Freeze these layers --waymo-train-annotation WAYMO_TRAIN_ANNOTATION Absolute Path to waymo training annotation (default: "None") --waymo-val-annotation WAYMO_VAL_ANNOTATION Absolute Path to waymo validation annotation (default: "None") --waymo-train WAYMO_TRAIN Path to waymo training relative to waymo data (default: "None") --waymo-val WAYMO_VAL Path to waymo validation relative to waymo data (default: "None") ``` ### Getting the data By default, the EfficientDet model is trained on the [COCO 2017](http://cocodataset.org/#download) dataset. This dataset comes with a training and validation set. This repository contains the `./download_dataset.sh` scripts that automatically downloads and preprocesses the training and validation sets. #### Dataset guidelines This repository contains the `./download_dataset.sh` scripts that automatically downloads and preprocesses the training and validation sets. This repository also provides support for fine-tuning and evaluating on Waymo dataset. In order to run on the Waymo dataset, ensure your dataset is present/mounted to the Docker container and the dataset is in COCO format. For that, this repository has scripts to download, preprocess and convert Waymo dataset into COCO format, which is ingestible by EfficientDet. - `waymo_tool/waymo_data_converter.py` - downloads and converts the data into COCO format Since the original Waymo dataset is in TFRecords format, to convert it into COCO format, Tensorflow needs to be installed. ### Training Process Training is performed using the `train.py` script. The default parameters can be overridden by command-line arguments. The training process can start from scratch or resume from a checkpoint. By default, bash script `scripts/D0/train_{AMP, FP32, TF32}_8x{A100-80G, V100-32G}.sh` will start the training process from scratch with the following settings. - Use 8 GPUs - Saves checkpoints after every 10 epochs to `/workspace/output/` folder - AMP or FP32 or TF32 based on the folder `scripts/D0/train_{AMP, FP32, TF32}_8x{A100-80G, V100-32G}.sh` To resume from a checkpoint, include `--resume` in the command-line and place the checkpoint into `/workspace/output/`. #### Multi-node Multi-node runs can be launched on a Pyxis/enroot Slurm cluster (see [Requirements](#requirements)) with the `./scripts/D0/train_{AMP, FP32}_32xV100-32G.sub` script with the following command for a 4-node NVIDIA DGX V100 example: ``` sbatch N 4 --ntasks-per-node=8 ./scripts/D0/train_{AMP, FP32}_32xV100-32G.sub ``` Note that the `./scripts/D0/train_{AMP, FP32}_32xV100-32G.sub` script is a starting point that has to be adapted depending on the environment. In particular, variables such as `--container-image` handle the container image to train using, and `datadir` handle the location of the COCO-2017 data. The backbone (EfficientNet) weights need to be put in `/backbone_checkpoints`. Refer to the files contents to view the full list of variables to adjust for your system. ## Performance ### Benchmarking Benchmarking can be performed for both training and inference. Both the scripts run the EfficientDet model. You can specify whether benchmarking is performed in AMP, TF32, or FP32 by specifying it as an argument to the benchmarking scripts. #### Training performance benchmark Training benchmarking can be performed by running the script: ``` scripts/D0/train-benchmark_{AMP, TF32, FP32}_{V100-32G, A100-80G}.sh ``` #### Inference performance benchmark Inference benchmarking can be performed by running the script: ``` scripts/D0/inference_{AMP, FP32, TF32}_{A100-80G, V100-32G}.sh ``` ### Results The following sections provide details on how we achieved our performance and accuracy in training and inference. #### Training Accuracy Results ##### Training accuracy: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `scripts/D0/train_{AMP, TF32}_8xA100-80G.sh` training script in the 21.06-py3 NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs with no intermediate evaluation. | GPUs | BBOX mAP - TF32 | BBOX mAP - FP16| Time to train - TF32 | Time to train - mixed precision | Time to train - speedup (TF32 to mixed precision) | --| --| -- | -- | -- | -- | 8 | 0.3399 | 0.3407 | 8.57 | 6.5 | 1.318 ##### Training accuracy: NVIDIA DGX-1 (8x V100 32GB) Our results were obtained by running the `scripts/D0/train_{AMP, FP32}_8xV100-32G.sh` training script in the PyTorch 21.06-py3 NGC container on NVIDIA DGX-1 with 8x V100 32GB GPUs with no intermediate evaluation. | GPUs | BBOX mAP - FP32| BBOX mAP - FP16| Time to train - FP32 | Time to train - mixed precision | Time to train - speedup (FP32 to mixed precision) | --| -- | -- | -- | -- | -- | 8 | 0.3410 | 0.3413 | 16 | 10.5 | 1.52 ##### Training accuracy: NVIDIA DGX-1 (32x V100 32GB) Our results were obtained by running the `scripts/D0/train_{AMP, FP32}_32xV100-32G.sh` training script in the PyTorch 21.06-py3 NGC container on NVIDIA DGX-1 with 32x V100 32GB GPUs with no intermediate evaluation. | GPUs | BBOX mAP - FP32| BBOX mAP - FP16| Time to train - FP32 | Time to train - mixed precision | Time to train - speedup (FP32 to mixed precision) | --| -- | -- | -- | -- | -- | 32 | 0.3418 | 0.3373 | 6 | 4.95 | 1.22 ##### Training accuracy on Waymo dataset: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `scripts/waymo/train_waymo_AMP_8xA100-80G.sh` training script in the 21.06-py3 NGC container on the Waymo dataset on NVIDIA DGX A100 (8x A100 80GB) GPUs with no intermediate evaluation. These results were obtained by training the EfficientDet-D0 model with a frozen backbone. | category | mAP | category | AP @ IoU 0.7 | category | AP @ IoU 0.5 | category | AP @ IoU 0.5 | |:-----------|:-------|:-----------|:---------------|:-----------|:---------------|:-----------|:---------------| | L2_ALL_NS | 50.377 | Vehicle | 50.271 | Pedestrian | 61.788 | Cyclist | 39.072 | The following results were obtained by training the EfficientDet-D0 model without freezing any part of the architecture. This can be done by removing the `--freeze_layer` argument from the script. | category | mAP | category | AP @ IoU 0.7 | category | AP @ IoU 0.5 | category | AP @ IoU 0.5 | |:-----------|:-------|:-----------|:---------------|:-----------|:---------------|:-----------|:---------------| | L2_ALL_NS | 51.249 | Vehicle | 51.091 | Pedestrian | 62.816 | Cyclist | 39.841 | ##### Training loss curves ![Loss Curve](./img/loss.png) Here, multihead loss is simply the weighted sum of losses on the classification head and the bounding box head. ##### Training Stability Test The following tables compare mAP scores across five different training runs with different seeds. The runs showcase consistent convergence on all five seeds with very little deviation. | **Config** | **Seed 1** | **Seed 2** | **Seed 3** | **Seed 4** | **Seed 5** | **Mean** | **Standard Deviation** | | --- | --- | ----- | ----- | --- | --- | ----- | ----- | | 8 GPUs, final AP BBox | 0.3422 | 0.3379 | 0.3437 | 0.3424 | 0.3402 | 0.3412 | 0.002 | #### Training Performance Results ##### Training performance: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `scripts/D0/train_benchmark_{AMP, TP32}_8xA100-80G.sh` training script in the 21.06-py3 NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs. Performance numbers in images per second were averaged over an entire training epoch. | GPUs | Throughput - TF32 | Throughput - mixed precision | Throughput speedup (TF32 - mixed precision) | Weak scaling - TF32 | Weak scaling - mixed precision | --- | ----- | ----- | --- | --- | ----- | | 1 | 170 | 255 | 1.5 | 1 | 1 | | 4 | 616 | 866 | 1.4 | 3.62 | 3.39 | | 8 | 1213 | 1835 | 1.5 | 7.05 | 7.05 | ##### Training performance: NVIDIA DGX-1 (8x V100 32GB) Our results were obtained by running the `scripts/D0/train_benchmark_{AMP, FP32}_8xV100-32G.sh` training script in the 21.06-py3 NGC container on NVIDIA DGX-1 with (8x V100 32GB) GPUs. Performance numbers in images per second were averaged over an entire training epoch. | GPUs | Throughput - FP32 | Throughput - mixed precision | Throughput speedup (FP32 - mixed precision) | Weak scaling - FP32 | Weak scaling - mixed precision | | --- | ----- | ----- | --- | --- | ----- | | 1 | 110 | 186 | 1.69 | 1 | 1 | | 4 | 367 | 610 | 1.66 | 3.33 | 3.28 | | 8 | 613 | 1040 | 1.69 | 5.57 | 5.59 | To achieve similar results, follow the steps in the [Quick Start Guide](#quick-start-guide). #### Inference performance results ##### Inference performance: NVIDIA DGX A100 (1x A100 40GB) Our results were obtained by running the `scripts/inference_{AMP, TF32}_A100-80G.sh` training script in the PyTorch 21.06-py3 NGC container on NVIDIA DGX A100 (1x A100 80GB) GPU. | GPUs | Batch size / GPU | Throughput - TF32 | Throughput - mixed precision | Throughput speedup (TF32 - mixed precision) | --- | --- | ----- | ----- | ----- | | 1 | 8 | 45.61 | 50.23 | 1.101 | To achieve similar results, follow the steps in the [Quick Start Guide](#quick-start-guide). ##### Inference performance: NVIDIA DGX-1 (1x V100 32GB) Our results were obtained by running the `scripts/inference_{AMP, FP32}_V100-32G.sh` training script in the PyTorch 21.06-py3 NGC container on NVIDIA DGX-1 with 1x V100 32GB GPUs. Performance numbers (in items/images per second) were averaged over an entire training epoch. | GPUs | Batch size / GPU | Throughput - FP32 | Throughput - mixed precision | Throughput speedup (FP32 - mixed precision) | --- | --- | ----- | ----- | ----- | | 1 | 8 | 38.81 | 42.25 | 1.08 | To achieve these same results, follow the steps in the [Quick Start Guide](#quick-start-guide). ## Release notes ### Changelog July 2021 - Initial Release ### Known Issues There are no known issues with this model.
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2DenoiseTransformPlugin
taco2DenoiseTransformPlugin
taco2DenoiseTransformKernel
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_DENOISETRANSFORMKERNEL_H #define TT2I_DENOISETRANSFORMKERNEL_H #include "cuda_runtime.h" namespace nvinfer1 { namespace plugin { class Taco2DenoiseTransformKernel { public: /** * @brief Compute the reduced noise version of signal with real and imaginary * components. * * @param batchSize The size of the batch. * @param inputDevice The input tensor, with the first half containing the * real component, and the second half containing the imaginary component. * @param noiseDevice The magnitude of the noise. * @param outputDevice The output tensor, with the first half containing the * real component, and the second half containing the imaginary component. * @param width The width of the components. * @param inputLength The length of each half of the input. * @param stream The stream to operate on. */ static void compute(const int batchSize, const float* const inputDevice, const float* const noiseDevice, float* const outputDevice, const int width, const int inputLength, cudaStream_t stream); }; } // namespace plugin } // namespace nvinfer1 #endif
TensorFlow/Detection/SSD/models/research/object_detection/core
core
prefetcher_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.prefetcher.""" import tensorflow as tf from object_detection.core import prefetcher slim = tf.contrib.slim class PrefetcherTest(tf.test.TestCase): def test_prefetch_tensors_with_fully_defined_shapes(self): with self.test_session() as sess: batch_size = 10 image_size = 32 num_batches = 5 examples = tf.Variable(tf.constant(0, dtype=tf.int64)) counter = examples.count_up_to(num_batches) image = tf.random_normal([batch_size, image_size, image_size, 3], dtype=tf.float32, name='images') label = tf.random_uniform([batch_size, 1], 0, 10, dtype=tf.int32, name='labels') prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter, 'image': image, 'label': label}, capacity=100) tensor_dict = prefetch_queue.dequeue() self.assertAllEqual(tensor_dict['image'].get_shape().as_list(), [batch_size, image_size, image_size, 3]) self.assertAllEqual(tensor_dict['label'].get_shape().as_list(), [batch_size, 1]) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): for _ in range(num_batches): results = sess.run(tensor_dict) self.assertEquals(results['image'].shape, (batch_size, image_size, image_size, 3)) self.assertEquals(results['label'].shape, (batch_size, 1)) with self.assertRaises(tf.errors.OutOfRangeError): sess.run(tensor_dict) def test_prefetch_tensors_with_partially_defined_shapes(self): with self.test_session() as sess: batch_size = 10 image_size = 32 num_batches = 5 examples = tf.Variable(tf.constant(0, dtype=tf.int64)) counter = examples.count_up_to(num_batches) image = tf.random_normal([batch_size, tf.Variable(image_size), tf.Variable(image_size), 3], dtype=tf.float32, name='image') image.set_shape([batch_size, None, None, 3]) label = tf.random_uniform([batch_size, tf.Variable(1)], 0, 10, dtype=tf.int32, name='label') label.set_shape([batch_size, None]) prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter, 'image': image, 'label': label}, capacity=100) tensor_dict = prefetch_queue.dequeue() self.assertAllEqual(tensor_dict['image'].get_shape().as_list(), [batch_size, None, None, 3]) self.assertAllEqual(tensor_dict['label'].get_shape().as_list(), [batch_size, None]) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): for _ in range(num_batches): results = sess.run(tensor_dict) self.assertEquals(results['image'].shape, (batch_size, image_size, image_size, 3)) self.assertEquals(results['label'].shape, (batch_size, 1)) with self.assertRaises(tf.errors.OutOfRangeError): sess.run(tensor_dict) if __name__ == '__main__': tf.test.main()
PaddlePaddle/LanguageModeling/BERT/vocab
vocab
bert-base-cased-vocab
[PAD] [unused1] [unused2] [unused3] [unused4] [unused5] [unused6] [unused7] [unused8] [unused9] [unused10] [unused11] [unused12] [unused13] [unused14] [unused15] [unused16] [unused17] [unused18] [unused19] [unused20] [unused21] [unused22] [unused23] [unused24] [unused25] [unused26] [unused27] [unused28] [unused29] [unused30] [unused31] [unused32] [unused33] [unused34] [unused35] [unused36] [unused37] [unused38] [unused39] [unused40] [unused41] [unused42] [unused43] [unused44] [unused45] [unused46] [unused47] [unused48] [unused49] [unused50] [unused51] [unused52] [unused53] [unused54] [unused55] [unused56] [unused57] [unused58] [unused59] [unused60] [unused61] [unused62] [unused63] [unused64] [unused65] [unused66] [unused67] [unused68] [unused69] [unused70] [unused71] [unused72] [unused73] [unused74] [unused75] [unused76] [unused77] [unused78] [unused79] [unused80] [unused81] [unused82] [unused83] [unused84] [unused85] [unused86] [unused87] [unused88] [unused89] [unused90] [unused91] [unused92] [unused93] [unused94] [unused95] [unused96] [unused97] [unused98] [unused99] [UNK] [CLS] [SEP] [MASK] [unused100] [unused101] ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ ¡ ¢ £ ¥ § ¨ © ª « ¬ ® ° ± ² ³ ´ µ ¶ · ¹ º » ¼ ½ ¾ ¿ À Á Â Ä Å Æ Ç È É Í Î Ñ Ó Ö × Ø Ú Ü Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ Ā ā ă ą Ć ć Č č ď Đ đ ē ė ę ě ğ ġ Ħ ħ ĩ Ī ī İ ı ļ Ľ ľ Ł ł ń ņ ň ŋ Ō ō ŏ ő Œ œ ř Ś ś Ş ş Š š Ţ ţ ť ũ ū ŭ ů ű ų ŵ ŷ ź Ż ż Ž ž Ə ƒ ơ ư ǎ ǐ ǒ ǔ ǫ Ș ș Ț ț ɐ ɑ ɔ ɕ ə ɛ ɡ ɣ ɨ ɪ ɲ ɾ ʀ ʁ ʂ ʃ ʊ ʋ ʌ ʐ ʑ ʒ ʔ ʰ ʲ ʳ ʷ ʻ ʼ ʾ ʿ ˈ ː ˡ ˢ ˣ ́ ̃ ̍ ̯ ͡ Α Β Γ Δ Ε Η Θ Ι Κ Λ Μ Ν Ο Π Σ Τ Φ Χ Ψ Ω ά έ ή ί α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω ό ύ ώ І Ј А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я ё і ї ј њ ћ Ա Հ ա ե ի կ մ յ ն ո ս տ ր ւ ְ ִ ֵ ֶ ַ ָ ֹ ּ א ב ג ד ה ו ז ח ט י כ ל ם מ ן נ ס ע פ צ ק ר ש ת ، ء آ أ إ ئ ا ب ة ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع غ ف ق ك ل م ن ه و ى ي َ ِ ٹ پ چ ک گ ہ ی ے ं आ क ग च ज ण त द ध न प ब भ म य र ल व श ष स ह ा ि ी ु े ो ् । ॥ আ ই এ ও ক খ গ চ ছ জ ট ত থ দ ধ ন প ব ম য র ল শ স হ ় া ি ী ু ে ো ্ য় க த ப ம ய ர ல வ ா ி ு ் ร ་ ག ང ད ན བ མ ར ལ ས ི ུ ེ ོ ა ე ი ლ ნ ო რ ს ᴬ ᴵ ᵀ ᵃ ᵇ ᵈ ᵉ ᵍ ᵏ ᵐ ᵒ ᵖ ᵗ ᵘ ᵢ ᵣ ᵤ ᵥ ᶜ ᶠ ḍ Ḥ ḥ Ḩ ḩ ḳ ṃ ṅ ṇ ṛ ṣ ṭ ạ ả ấ ầ ẩ ậ ắ ế ề ể ễ ệ ị ọ ố ồ ổ ộ ớ ờ ợ ụ ủ ứ ừ ử ữ ự ỳ ỹ ἀ ἐ ὁ ὐ ὰ ὶ ὸ ῆ ῖ ῦ ῶ ‐ ‑ ‒ – — ― ‖ ‘ ’ ‚ “ ” „ † ‡ • … ‰ ′ ″ ⁄ ⁰ ⁱ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁿ ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₍ ₎ ₐ ₑ ₒ ₓ ₕ ₖ ₘ ₙ ₚ ₛ ₜ ₤ € ₱ ₹ ℓ № ℝ ⅓ ← ↑ → ↔ ⇌ ⇒ ∂ ∈ − ∗ ∘ √ ∞ ∧ ∨ ∩ ∪ ≈ ≠ ≡ ≤ ≥ ⊂ ⊆ ⊕ ⋅ ─ │ ■ ● ★ ☆ ☉ ♠ ♣ ♥ ♦ ♭ ♯ ⟨ ⟩ ⱼ 、 。 《 》 「 」 『 』 〜 い う え お か き く け こ さ し す せ そ た ち つ て と な に の は ひ ま み む め も や ゆ よ ら り る れ ん ア ィ イ ウ エ オ カ ガ キ ク グ コ サ シ ジ ス ズ タ ダ ッ テ デ ト ド ナ ニ ハ バ パ フ ブ プ マ ミ ム ャ ュ ラ リ ル レ ロ ン ・ ー 一 三 上 下 中 事 二 井 京 人 亻 仁 佐 侍 光 公 力 北 十 南 原 口 史 司 吉 同 和 囗 国 國 土 城 士 大 天 太 夫 女 子 宀 安 宮 宿 小 尚 山 島 川 州 平 年 心 愛 戸 文 新 方 日 明 星 書 月 木 本 李 村 東 松 林 正 武 氏 水 氵 江 河 海 版 犬 王 生 田 白 皇 省 真 石 社 神 竹 美 義 花 藤 西 谷 車 辶 道 郎 郡 部 野 金 長 門 陽 青 食 馬 高 龍 龸 사 씨 의 이 한 fi fl ! ( ) , - / : the of and to in was The is for as on with that ##s his by he at from it her He had an were you be In she are but which It not or have my him one this me has also up their first out who been they She into all would its ##ing time two ##a ##e said about when over more other can after back them then ##ed there like so only ##n could ##d ##i ##y what no ##o where This made than if You ##ly through we before ##r just some ##er years do New ##t down between new now will three most On around year used such being well during They know against under later did part known off while His re ... ##l people until way American didn University your both many get United became head There second As work any But still again born even eyes After including de took And long team season family see right same called name because film don 10 found much school ##es going won place away We day left John 000 hand since World these how make number each life area man four go No here very National ##m played released never began States album home last too held several May own ##on take end School ##h ll series What want use another city When 2010 side At may That came face June think game those high March early September ##al 2011 looked July state small thought went January October ##u based August ##us world good April York us 12 2012 2008 For 2009 group along few South little ##k following November something 2013 December set 2007 old 2006 2014 located ##an music County City former ##in room ve next All ##man got father house ##g body 15 20 18 started If 2015 town our line War large population named British company member five My single ##en age State moved February 11 Her should century government built come best show However within look men door without need wasn 2016 water One system knew every died League turned asked North St wanted building received song served though felt ##ia station band ##ers local public himself different death say ##1 30 ##2 2005 16 night behind children English members near saw together son 14 voice village 13 hands help ##3 due French London top told open published third 2017 play across During put final often include 25 ##le main having 2004 once ever let book led gave late front find club ##4 German included species College form opened mother women enough West must 2000 power really 17 making half ##6 order might ##is given million times days point full service With km major ##7 original become seen II north six ##te love ##0 national International ##5 24 So District lost run couldn career always ##9 2003 ##th country ##z House air tell south worked woman player ##A almost war River ##ic married continued Then James close black short ##8 ##na using history returned light car ##ra sure William things General ##ry 2002 better support 100 among From feet King anything 21 19 established district 2001 feel great ##ton level Cup These written games others already title story ##p law thing US record role however By students England white control least inside land ##C 22 give community hard ##ie non ##c produced George round period Park business various ##ne does present wife far taken per reached David able version working young live created joined East living appeared case High done 23 important President Award France position office looking total general class To production ##S football party brother keep mind free Street hair announced development either nothing moment Church followed wrote why India San election 1999 lead How ##ch ##rs words European course considered America arms Army political ##la 28 26 west east ground further church less site First Not Australia toward California ##ness described works An Council heart past military 27 ##or heard field human soon founded 1998 playing trying ##x ##ist ##ta television mouth although taking win fire Division ##ity Party Royal program Some Don Association According tried TV Paul outside daughter Best While someone match recorded Canada closed region Air above months elected ##da ##ian road ##ar brought move 1997 leave ##um Thomas 1996 am low Robert formed person services points Mr miles ##b stop rest doing needed international release floor start sound call killed real dark research finished language Michael professional change sent 50 upon 29 track hit event 2018 term example Germany similar return ##ism fact pulled stood says ran information yet result developed girl ##re God 1995 areas signed decided ##ment Company seemed ##el co turn race common video Charles Indian ##ation blood art red ##able added rather 1994 met director addition design average minutes ##ies ##ted available bed coming friend idea kind Union Road remained ##ting everything ##ma running care finally Chinese appointed 1992 Australian ##ley popular mean teams probably ##land usually project social Championship possible word Russian instead mi herself ##T Peter Hall Center seat style money 1993 else Department table Music current 31 features special events character Two square sold debut ##v process Although Since ##ka 40 Central currently education placed lot China quickly forward seven ##ling Europe arm performed Japanese 1991 Henry Now Dr ##ion week Group myself big UK Washington ten deep 1990 Club Japan space La directed smile episode hours whole ##de ##less Why wouldn designed strong training changed Society stage involved hadn towards leading police eight kept Institute study largest child eventually private modern Court throughout getting originally attack ##E talk Great longer songs alone ##ine wide dead walked shot ##ri Oh force ##st Art today friends Island Richard 1989 center construction believe size White ship completed ##B gone Just rock sat ##R radio below entire families league includes type lived official range hold featured Most ##ter president passed means ##f forces lips Mary Do guitar ##ce food wall Of spent Its performance hear ##P Western reported sister ##et morning ##M especially ##ive Minister itself post bit groups 1988 ##tion Black ##ng Well raised sometimes Canadian Paris Spanish replaced schools Academy leaving central female Christian Jack whose college onto provided ##D ##ville players actually stopped ##son Museum doesn ##ts books fight allowed ##ur beginning Records awarded parents coach ##os Red saying ##ck Smith Yes Lake ##L aircraft 1987 ##ble previous ft action Italian African happened vocals Act future court ##ge 1986 degree phone ##ro Is countries winning breath Love river matter Lord Other list self parts ##ate provide cut shows plan 1st interest ##ized Africa stated Sir fell owned earlier ended competition attention 1985 lower nearly bad older stay Saint ##se certain 1984 fingers blue try fourth Grand ##as king ##nt makes chest movement states moving data introduced model date section Los deal ##I skin entered middle success Texas ##w summer island ##N Republic length husband 1980 ##ey reason anyone forced via base 500 job covered Festival Roman successful rights cover Man writing Ireland ##F related goal takes buildings true weeks 1983 Because opening novel ISBN meet gold ##ous mid km² standing Football Chicago shook whom ##ki 1982 Day feeling scored boy higher Force leader heavy fall question sense army Second energy meeting themselves kill ##am board census ##ya ##ns mine meant market required battle campaign attended approximately Kingdom runs active ##ha contract clear previously health 1979 Arts complete Catholic couple units ##ll ##ty Committee shoulder sea systems listed ##O caught tournament ##G northern author Film Your ##men holding offered personal 1981 southern artist traditional studio 200 capital ##ful regular ask giving organization month news Are read managed helped studied student defeated natural industry Year noted decision Government quite ##id smiled 1972 Maybe tracks ##ke Mark al media engine hour Their relationship plays property structure 1976 ago Hill Martin 1978 ready Many Like Bay immediately generally Italy Greek practice caused division significant Joseph speed Let thinking completely 1974 primary mostly ##field ##K 1975 ##to Even writer ##led dropped magazine collection understand route highest particular films lines network Science loss carried direction green 1977 location producer according Women Queen neck thus independent view 1970 Angeles Soviet distance problem Board tour western income appearance access Mexico nodded street surface arrived believed Old 1968 1973 becoming whether 1945 figure singer stand Following issue window wrong pain everyone lives issues park slowly la act ##va bring Lee operations key comes fine cold famous Navy 1971 Me additional individual ##ner Zealand goals county contains Service minute 2nd reach talking particularly ##ham movie Director glass paper studies ##co railway standard Education 45 represented Chief Louis launched Star terms 60 1969 experience watched Another Press Tom staff starting subject break Virginia nine eye ##age evidence foot ##est companies Prince ##V gun create Big People guy Green simply numerous ##line increased twenty ##ga ##do 1967 award officer stone Before material Northern grew male plant Life legs step Al unit 35 except answer ##U report response Edward commercial edition trade science ##ca Irish Law shown rate failed ##ni remains changes mm limited larger Later cause waiting Time ##wood cost Bill manager activities likely allow operated retired ##ping 65 directly Who associated effect hell Florida straight hot Valley management girls expected eastern Mike chance cast centre chair hurt problems ##li walk programs Team characters Battle edge pay maybe corner majority medical Joe Summer ##io attempt Pacific command Radio ##by names municipality 1964 train economic Brown feature sex source agreed remember Three 1966 1965 Pennsylvania victory senior annual III Southern results Sam serving religious Jones appears ##der despite claimed Both musical matches fast security selected Young double complex hospital chief Times ##ve Championships filled Public Despite beautiful Research plans Province ##ally Wales ##ko artists metal nearby Spain ##il 32 houses supported piece ##no stared recording nature legal Russia ##ization remaining looks ##sh bridge closer cases scene marriage Little ##é uses Earth specific Frank theory Good discovered referred bass culture university presented Congress ##go metres continue 1960 isn Awards meaning cell composed separate Series forms Blue cross ##tor increase test computer slightly Where Jewish Town tree status 1944 variety responsible pretty initially ##way realized pass provides Captain Alexander recent score broke Scott drive financial showed Line stories ordered soldiers genus operation gaze sitting society Only hope actor follow Empire Yeah technology happy focus policy spread situation ##ford ##ba Mrs watch Can 1963 Commission touch earned troops Under 1962 individuals cannot 19th ##lin mile expression exactly suddenly weight dance stepped places appear difficult Railway anti numbers kilometres star ##ier department ice Britain removed Once ##lo Boston value ##ant mission trees Order sports join serve Major poor Poland mainly Theatre pushed Station ##it Lady federal silver ##ler foreign ##ard Eastern ##den box hall subsequently lies acquired 1942 ancient CD History Jean beyond ##ger El ##les growing championship native Parliament Williams watching direct overall offer Also 80 Secretary spoke Latin ability ##ated safe presence ##ial headed regional planned 1961 Johnson throat consists ##W extended Or bar walls Chris stations politician Olympics influence share fighting speak hundred Carolina die stars ##tic color Chapter ##ish fear sleep goes Francisco oil Bank sign physical ##berg Dutch seasons ##rd Games Governor sorry lack Centre memory baby smaller charge Did multiple ships shirt Assembly amount leaves 3rd Foundation conditions 1943 Rock Democratic Daniel ##at winner products ##ina store latter Professor civil prior host 1956 soft vote needs Each rules 1958 pressure letter normal proposed levels records 1959 paid intended Victoria purpose okay historical issued 1980s broadcast rule simple picked firm Sea 1941 Elizabeth 1940 serious featuring highly graduated mentioned choice 1948 replied percent Scotland ##hi females constructed 1957 settled Steve recognized cities crew glanced kiss competed flight knowledge editor More Conference ##H fifth elements ##ee ##tes function newspaper recently Miss cultural brown twice Office 1939 truth Creek 1946 households USA 1950 quality ##tt border seconds destroyed pre wait ahead build image 90 cars ##mi 33 promoted professor et bank medal text broken Middle revealed sides wing seems channel 1970s Ben loved effort officers Will ##ff 70 Israel Jim upper fully label Jr assistant powerful pair positive ##ary gives 1955 20th races remain kitchen primarily ##ti Sydney easy Tour whispered buried 300 News Polish 1952 Duke Columbia produce accepted 00 approach minor 1947 Special 44 Asian basis visit Fort Civil finish formerly beside leaned ##ite median rose coast effects supposed Cross ##hip Corps residents Jackson ##ir Bob basketball 36 Asia seem Bishop Book ##ber ring ##ze owner BBC ##ja transferred acting De appearances walking Le press grabbed 1954 officially 1953 ##pe risk taught review ##X lay ##well council Avenue seeing losing Ohio Super province ones travel ##sa projects equipment spot Berlin administrative heat potential shut capacity elections growth fought Republican mixed Andrew teacher turning strength shoulders beat wind 1949 Health follows camp suggested perhaps Alex mountain contact divided candidate fellow 34 Show necessary workers ball horse ways questions protect gas activity younger bottom founder Scottish screen treatment easily com ##house dedicated Master warm Night Georgia Long von ##me perfect website 1960s piano efforts ##ide Tony sort offers Development Simon executive ##nd save Over Senate 1951 1990s draw master Police ##ius renamed boys initial prominent damage Co ##ov ##za online begin occurred captured youth Top account tells Justice conducted forest ##town bought teeth Jersey ##di purchased agreement Michigan ##ure campus prison becomes product secret guess Route huge types drums 64 split defeat estate housing ##ot brothers Coast declared happen titled therefore sun commonly alongside Stadium library Home article steps telling slow assigned refused laughed wants Nick wearing Rome Open ##ah Hospital pointed Taylor lifted escape participated ##j drama parish Santa ##per organized mass pick Airport gets Library unable pull Live ##ging surrounding ##ries focused Adam facilities ##ning ##ny 38 ##ring notable era connected gained operating laid Regiment branch defined Christmas machine Four academic Iran adopted concept Men compared search traffic Max Maria greater ##ding widely ##burg serves 1938 37 Go hotel shared typically scale 1936 leg suffered yards pieces Ministry Wilson episodes empty 1918 safety continues yellow historic settlement 400 Come Corporation enemy content picture evening territory method trial solo driver Here ##ls entrance Prize spring whatever ##ent 75 ##ji reading Arthur ##cy Our clothes Prime Illinois Kong code ##ria sit Harry Federal chosen administration bodies begins stomach Though seats Hong density Sun leaders Field museum chart platform languages ##ron birth holds Gold ##un fish combined ##ps 4th 1937 largely captain trust Game van boat Oxford basic beneath Islands painting nice Toronto path males sources block conference parties murder clubs crowd calling About Business peace knows lake speaking stayed Brazil allowing Born unique thick Technology ##que receive des semi alive noticed format ##ped coffee digital ##ned handed guard tall faced setting plants partner claim reduced temple animals determined classes ##out estimated ##ad Olympic providing Massachusetts learned Inc Philadelphia Social carry 42 possibly hosted tonight respectively Today shape Mount roles designated brain etc Korea thoughts Brian Highway doors background drew models footballer tone turns 1935 quiet tower wood bus write software weapons flat marked 1920 newly tight Eric finger Journal FC Van rise critical Atlantic granted returning communities humans quick 39 48 ranked sight pop Swedish Stephen card analysis attacked ##wa Sunday identified Jason champion situated 1930 expanded tears ##nce reaching Davis protection Emperor positions nominated Bridge tax dress allows avoid leadership killing actress guest steel knowing electric cells disease grade unknown ##ium resulted Pakistan confirmed ##ged tongue covers ##Y roof entirely applied votes drink interview exchange Township reasons ##ised page calls dog agent nose teaching ##ds ##ists advanced wish Golden existing vehicle del 1919 develop attacks pressed Sports planning resulting facility Sarah notes 1933 Class Historic winter ##mo audience Community household Netherlands creation ##ize keeping 1914 claims dry guys opposite ##ak explained Ontario secondary difference Francis actions organizations yard animal Up Lewis titles Several 1934 Ryan 55 Supreme rolled 1917 distribution figures afraid rural yourself ##rt sets barely Instead passing awards 41 silence authority occupied environment windows engineering surprised flying crime reports Mountain powers driving succeeded reviews 1929 Head missing Song Jesus opportunity inspired ends albums conversation impact injury surprise billion learning heavily oldest union creating ##ky festival literature letters sexual ##tte apartment Final comedy nation orders ##sen contemporary Power drawn existence connection ##ating Post Junior remembered message Medal castle note engineer sounds Beach crossed ##dy ear scientific sales ##ai theme starts clearly ##ut trouble ##gan bag ##han BC sons 1928 silent versions daily Studies ending Rose guns 1932 headquarters reference obtained Squadron concert none du Among ##don prevent Member answered staring Between ##lla portion drug liked association performances Nations formation Castle lose learn scoring relatively quarter 47 Premier ##ors Sweden baseball attempted trip worth perform airport fields enter honor Medical rear commander officials condition supply materials 52 Anna volume threw Persian 43 interested Gallery achieved visited laws relief Area Matt singles Lieutenant Country fans Cambridge sky Miller effective tradition Port ##ana minister extra entitled System sites authorities acres committee racing 1931 desk trains ass weren Family farm ##ance industrial ##head iron 49 abandoned Out Holy chairman waited frequently display Light transport starring Patrick Engineering eat FM judge reaction centuries price ##tive Korean defense Get arrested 1927 send urban ##ss pilot Okay Media reality arts soul thirty ##be catch generation ##nes apart Anne drop See ##ving sixth trained Management magic cm height Fox Ian resources vampire principal Was haven ##au Walter Albert rich 1922 causing entry ##ell shortly 46 worry doctor composer rank Network bright showing regions 1924 wave carrying kissed finding missed Earl lying target vehicles Military controlled dinner ##board briefly lyrics motion duty strange attempts invited kg villages 5th Land ##mer Christ prepared twelve check thousand earth copies en transfer citizens Americans politics nor theatre Project ##bo clean rooms laugh ##ran application contained anyway containing Sciences 1925 rare speech exist 1950s falling passenger ##im stands 51 ##ol ##ow phase governor kids details methods Vice employed performing counter Jane heads Channel wine opposition aged 1912 Every 1926 highway ##ura 1921 aired 978 permanent Forest finds joint approved ##pur brief doubt acts brand wild closely Ford Kevin chose shall port sweet fun asking Be ##bury sought Dave Mexican mom Right Howard Moscow Charlie Stone ##mann admitted ##ver wooden 1923 Officer relations Hot combat publication chain shop inhabitants proved ideas address 1915 Memorial explain increasing conflict Anthony Melbourne narrow temperature slid 1916 worse selling documentary Ali Ray opposed vision dad extensive Infantry commissioned Doctor offices programming core respect storm ##pa ##ay ##om promotion der struck anymore shit Region receiving DVD alternative ##ue ride maximum 1910 ##ious Third Affairs cancer Executive ##op dream 18th Due ##ker ##worth economy IV Billboard identity subsequent statement skills ##back funding ##ons Round Foreign truck Please lights wondered ##ms frame yes Still districts fiction Colonel converted 150 grown accident critics fit Information architecture Point Five armed Billy poet functions consisted suit Turkish Band object desire ##ities sounded flow Norwegian articles Marie pulling thin singing Hunter Human Battalion Federation Kim origin represent dangerous weather fuel ex ##sing Last bedroom aid knees Alan angry assumed plane Something founding concerned global Fire di please Portuguese touched Roger nuclear Register Jeff fixed royal lie finals NFL Manchester towns handle shaped Chairman Dean launch understanding Children violence failure sector Brigade wrapped fired sharp tiny developing expansion Free institutions technical Nothing otherwise Main inch Saturday wore Senior attached cheek representing Kansas ##chi ##kin actual advantage Dan Austria ##dale hoped multi squad Norway streets 1913 Services hired grow pp wear painted Minnesota stuff Building 54 Philippines 1900 ##ties educational Khan Magazine ##port Cape signal Gordon sword Anderson cool engaged Commander images Upon tied Security cup rail Vietnam successfully ##red Muslim gain bringing Native hers occurs negative Philip Kelly Colorado category ##lan 600 Have supporting wet 56 stairs Grace observed ##ung funds restaurant 1911 Jews ##ments ##che Jake Back 53 asks journalist accept bands bronze helping ##ice decades mayor survived usual influenced Douglas Hey ##izing surrounded retirement Temple derived Pope registered producing ##ral structures Johnny contributed finishing buy specifically ##king patients Jordan internal regarding Samuel Clark ##q afternoon Finally scenes notice refers quietly threat Water Those Hamilton promise freedom Turkey breaking maintained device lap ultimately Champion Tim Bureau expressed investigation extremely capable qualified recognition items ##up Indiana adult rain greatest architect Morgan dressed equal Antonio collected drove occur Grant graduate anger Sri worried standards ##ore injured somewhere damn Singapore Jimmy pocket homes stock religion aware regarded Wisconsin ##tra passes fresh ##ea argued Ltd EP Diego importance Census incident Egypt Missouri domestic leads ceremony Early camera Father challenge Switzerland lands familiar hearing spend educated Tennessee Thank ##ram Thus concern putting inches map classical Allen crazy valley Space softly ##my pool worldwide climate experienced neighborhood scheduled neither fleet 1908 Girl ##J Part engines locations darkness Revolution establishment lawyer objects apparently Queensland Entertainment bill mark Television ##ong pale demand Hotel selection ##rn ##ino Labour Liberal burned Mom merged Arizona request ##lia ##light hole employees ##ical incorporated 95 independence Walker covering joining ##ica task papers backing sell biggest 6th strike establish ##ō gently 59 Orchestra Winter protein Juan locked dates Boy aren shooting Luke solid charged Prior resigned interior garden spoken improve wonder promote hidden ##med combination Hollywood Swiss consider ##ks Lincoln literary drawing Marine weapon Victor Trust Maryland properties ##ara exhibition understood hung Tell installed loud fashion affected junior landing flowers ##he Internet beach Heart tries Mayor programme 800 wins noise ##ster ##ory 58 contain fair delivered ##ul wedding Square advance behavior Program Oregon ##rk residence realize certainly hill Houston 57 indicated ##water wounded Village massive Moore thousands personnel dating opera poetry ##her causes feelings Frederick applications push approached foundation pleasure sale fly gotten northeast costs raise paintings ##ney views horses formal Arab hockey typical representative rising ##des clock stadium shifted Dad peak Fame vice disappeared users Way Naval prize hoping values evil Bell consisting ##ón Regional ##ics improved circle carefully broad ##ini Fine maintain operate offering mention Death stupid Through Princess attend interests ruled somewhat wings roads grounds ##ual Greece Champions facing hide voted require Dark Matthew credit sighed separated manner ##ile Boys 1905 committed impossible lip candidates 7th Bruce arranged Islamic courses criminal ##ened smell ##bed 08 consecutive ##ening proper purchase weak Prix 1906 aside introduction Look ##ku changing budget resistance factory Forces agency ##tone northwest user 1907 stating ##one sport Design environmental cards concluded Carl 250 accused ##ology Girls sick intelligence Margaret responsibility Guard ##tus 17th sq goods 1909 hate ##ek capture stores Gray comic Modern Silver Andy electronic wheel ##ied Deputy ##bs Czech zone choose constant reserve ##lle Tokyo spirit sub degrees flew pattern compete Dance ##ik secretary Imperial 99 reduce Hungarian confused ##rin Pierre describes regularly Rachel 85 landed passengers ##ise ##sis historian meters Youth ##ud participate ##cing arrival tired Mother ##gy jumped Kentucky faces feed Israeli Ocean ##Q ##án plus snow techniques plate sections falls jazz ##ris tank loan repeated opinion ##res unless rugby journal Lawrence moments shock distributed ##ded adjacent Argentina crossing uncle ##ric Detroit communication mental tomorrow session Emma Without ##gen Miami charges Administration hits coat protected Cole invasion priest 09 Gary enjoyed plot measure bound friendly throw musician ##lon ##ins Age knife damaged birds driven lit ears breathing Arabic Jan faster Jonathan ##gate Independent starred Harris teachers Alice sequence mph file translated decide determine Review documents sudden threatened ##ft bear distinct decade burning ##sky 1930s replace begun extension ##time 1904 equivalent accompanied Christopher Danish ##ye Besides ##more persons fallen Rural roughly saved willing ensure Belgium 05 musicians ##ang giant Six Retrieved worst purposes ##bly mountains seventh slipped brick 07 ##py somehow Carter Iraq cousin favor islands journey FIFA contrast planet vs calm ##ings concrete branches gray profit Russell ##ae ##ux ##ens philosophy businesses talked parking ##ming owners Place ##tle agricultural Kate 06 southeast draft Eddie earliest forget Dallas Commonwealth edited 66 inner ed operates 16th Harvard assistance ##si designs Take bathroom indicate CEO Command Louisiana 1902 Dublin Books 1901 tropical 1903 ##tors Places tie progress forming solution 62 letting ##ery studying ##jo duties Baseball taste Reserve ##ru Ann ##gh visible ##vi notably link NCAA southwest Never storage mobile writers favorite Pro pages truly count ##tta string kid 98 Ross row ##idae Kennedy ##tan Hockey hip waist grandfather listen ##ho feels busy 72 stream obvious cycle shaking Knight ##ren Carlos painter trail web linked 04 Palace existed ##ira responded closing End examples Marshall weekend jaw Denmark lady township medium chin Story option fifteen Moon represents makeup investment jump childhood Oklahoma roll normally Ten Operation Graham Seattle Atlanta paused promised rejected treated returns flag ##ita Hungary danger glad movements visual subjects credited soldier Norman ill translation José Quebec medicine warning theater praised municipal 01 commune churches acid folk 8th testing add survive Sound devices residential severe presidential Mississippi Austin Perhaps Charlotte hanging Montreal grin ##ten racial partnership shoot shift ##nie Les downtown Brothers Garden matters restored mirror forever winners rapidly poverty ##ible Until DC faith hundreds Real Ukraine Nelson balance Adams contest relative ethnic Edinburgh composition ##nts emergency ##van marine reputation Down pack 12th Communist Mountains pro stages measures ##ld ABC Li victims benefit Iowa Broadway gathered rating Defense classic ##ily ceiling ##ions snapped Everything constituency Franklin Thompson Stewart entering Judge forth ##sk wanting smiling moves tunnel premiered grass unusual Ukrainian bird Friday tail Portugal coal element Fred guards Senator collaboration beauty Wood chemical beer justice signs ##Z sees ##zi Puerto ##zed 96 smooth Bowl gift limit 97 heading Source wake requires Ed Constitution factor Lane factors adding Note cleared pictures pink ##ola Kent Local Singh moth Ty ##ture courts Seven temporary involving Vienna emerged fishing agree defensive stuck secure Tamil ##ick bottle 03 Player instruments Spring patient flesh contributions cry Malaysia 120 Global da Alabama Within ##work debuted expect Cleveland concerns retained horror 10th spending Peace Transport grand Crown instance institution acted Hills mounted Campbell shouldn 1898 ##ably chamber soil 88 Ethan sand cheeks ##gi marry 61 weekly classification DNA Elementary Roy definitely Soon Rights gate suggests aspects imagine golden beating Studios Warren differences significantly glance occasionally ##od clothing Assistant depth sending possibility mode prisoners requirements daughters dated Representatives prove guilty interesting smoke cricket 93 ##ates rescue Connecticut underground Opera 13th reign ##ski thanks leather equipped routes fan ##ans script Wright bishop Welsh jobs faculty eleven Railroad appearing anniversary Upper ##down anywhere Rugby Metropolitan Meanwhile Nicholas champions forehead mining drinking 76 Jerry membership Brazilian Wild Rio scheme Unlike strongly ##bility fill ##rian easier MP Hell ##sha Stanley banks Baron ##ique Robinson 67 Gabriel Austrian Wayne exposed ##wan Alfred 1899 manage mix visitors eating ##rate Sean commission Cemetery policies Camp parallel traveled guitarist 02 supplies couples poem blocks Rick Training Energy achieve appointment Wing Jamie 63 novels ##em 1890 songwriter Base Jay ##gar naval scared miss labor technique crisis Additionally backed destroy seriously tools tennis 91 god ##ington continuing steam obviously Bobby adapted fifty enjoy Jacob publishing column ##ular Baltimore Donald Liverpool 92 drugs movies ##ock Heritage ##je ##istic vocal strategy gene advice ##bi Ottoman riding ##side Agency Indonesia 11th laughing sleeping und muttered listening deck tip 77 ownership grey Claire deeply provincial popularity Cooper ##á Emily ##sed designer Murray describe Danny Around Parker ##dae 68 rates suffering considerable 78 nervous powered tons circumstances wished belonged Pittsburgh flows 9th ##use belt 81 useful 15th context List Dead Iron seek Season worn frequency legislation replacement memories Tournament Again Barry organisation copy Gulf waters meets struggle Oliver 1895 Susan protest kick Alliance components 1896 Tower Windows demanded regiment sentence Woman Logan Referee hosts debate knee Blood ##oo universities practices Ward ranking correct happening Vincent attracted classified ##stic processes immediate waste increasingly Helen ##po Lucas Phil organ 1897 tea suicide actors lb crash approval waves ##ered hated grip 700 amongst 69 74 hunting dying lasted illegal ##rum stare defeating ##gs shrugged °C Jon Count Orleans 94 affairs formally ##and ##ves criticized Disney Vol successor tests scholars palace Would celebrated rounds grant Schools Such commanded demon Romania ##all Karl 71 ##yn 84 Daily totally Medicine fruit Die upset Lower Conservative 14th Mitchell escaped shoes Morris ##tz queen harder prime Thanks indeed Sky authors rocks definition Nazi accounts printed experiences ##ters divisions Cathedral denied depending Express ##let 73 appeal loose colors filed ##isation gender ##ew throne forests Finland domain boats Baker squadron shore remove ##ification careful wound railroad 82 seeking agents ##ved Blues ##off customers ignored net ##ction hiding Originally declined ##ess franchise eliminated NBA merely pure appropriate visiting forty markets offensive coverage cave ##nia spell ##lar Benjamin ##ire Convention filmed Trade ##sy ##ct Having palm 1889 Evans intense plastic Julia document jeans vessel SR ##fully proposal Birmingham le ##ative assembly 89 fund lock 1893 AD meetings occupation modified Years odd aimed reform Mission Works shake cat exception convinced executed pushing dollars replacing soccer manufacturing ##ros expensive kicked minimum Josh coastal Chase ha Thailand publications deputy Sometimes Angel effectively ##illa criticism conduct Serbian landscape NY absence passage ##ula Blake Indians 1892 admit Trophy ##ball Next ##rated ##ians charts kW orchestra 79 heritage 1894 rough exists boundary Bible Legislative moon medieval ##over cutting print ##ett birthday ##hood destruction Julian injuries influential sisters raising statue colour dancing characteristics orange ##ok ##aries Ken colonial twin Larry surviving ##shi Barbara personality entertainment assault ##ering talent happens license 86 couch Century soundtrack shower swimming cash Staff bent 1885 bay lunch ##lus dozen vessels CBS greatly critic Test symbol panel shell output reaches 87 Front motor ocean ##era ##ala maintenance violent scent Limited Las Hope Theater Which survey Robin recordings compilation ##ward bomb insurance Authority sponsored satellite Jazz refer stronger blow whilst Wrestling suggest ##rie climbed ##els voices shopping 1891 Neil discovery ##vo ##ations burst Baby peaked Brooklyn knocked lift ##try false nations Hugh Catherine preserved distinguished terminal resolution ratio pants cited competitions completion DJ bone uniform schedule shouted 83 1920s rarely Basketball Taiwan artistic bare vampires arrest Utah Marcus assist gradually qualifying Victorian vast rival Warner Terry Economic ##cia losses boss versus audio runner apply surgery Play twisted comfortable ##cs Everyone guests ##lt Harrison UEFA lowered occasions ##lly ##cher chapter youngest eighth Culture ##room ##stone 1888 Songs Seth Digital involvement expedition relationships signing 1000 fault annually circuit afterwards meat creature ##ou cable Bush ##net Hispanic rapid gonna figured extent considering cried ##tin sigh dynasty ##ration cabinet Richmond stable ##zo 1864 Admiral Unit occasion shares badly longest ##ify Connor extreme wondering girlfriend Studio ##tions 1865 tribe exact muscles hat Luis Orthodox decisions amateur description ##lis hips kingdom ##ute Portland whereas Bachelor outer discussion partly Arkansas 1880 dreams perfectly Lloyd ##bridge asleep ##tti Greg permission trading pitch mill Stage liquid Keith ##tal wolf processing stick Jerusalem profile rushed spiritual argument Ice Guy till Delhi roots Section missions Glasgow penalty NBC encouraged identify keyboards ##zing ##ston disc plain informed Bernard thinks fled Justin ##day newspapers ##wick Ralph ##zer unlike Stars artillery ##ified recovered arrangement searching ##pers ##tory ##rus deaths Egyptian diameter ##í marketing corporate teach marks Turner staying hallway Sebastian chapel naked mistake possession 1887 dominated jacket creative Fellow Falls Defence suspended employment ##rry Hebrew Hudson Week Wars recognize Natural controversial Tommy thank Athletic benefits decline intention ##ets Lost Wall participation elevation supports parliament 1861 concentration Movement ##IS competing stops behalf ##mm limits funded discuss Collins departure obtain woods latest universe alcohol Laura rush blade funny Dennis forgotten Amy Symphony apparent graduating 1862 Rob Grey collections Mason emotions ##ugh literally Any counties 1863 nomination fighter habitat respond external Capital exit Video carbon sharing Bad opportunities Perry photo ##mus Orange posted remainder transportation portrayed Labor recommended percussion rated Grade rivers partially suspected strip adults button struggled intersection Canal ##ability poems claiming Madrid 1886 Together ##our Much Vancouver instrument instrumental 1870 mad angle Control Phoenix Leo Communications mail ##ette ##ev preferred adaptation alleged discussed deeper ##ane Yet Monday volumes thrown Zane ##logy displayed rolling dogs Along Todd ##ivity withdrew representation belief ##sia crown Late Short hardly grinned romantic Pete ##ken networks enemies Colin Eventually Side donated ##su steady grab guide Finnish Milan pregnant controversy reminded 1884 Stuart ##bach ##ade Race Belgian LP Production Zone lieutenant infantry Child confusion sang resident ##ez victim 1881 channels Ron businessman ##gle Dick colony pace producers ##ese agencies Craig Lucy Very centers Yorkshire photography ##ched Album championships Metro substantial Standard terrible directors contribution advertising emotional ##its layer segment sir folded Roberts ceased Hampshire ##ray detailed partners m² ##pt Beth genre commented generated remote aim Hans credits concerts periods breakfast gay shadow defence Too Had transition Afghanistan ##book eggs defend ##lli writes Systems bones mess seed scientists Shortly Romanian ##zy Freedom muscle hero parent agriculture checked Islam Bristol Freyja Arena cabin Germans electricity ranks viewed medals Wolf associate Madison Sorry fort Chile detail widespread attorney boyfriend ##nan Students Spencer ##ig bite Maine demolished Lisa erected Someone operational Commissioner NHL Coach Bar forcing Dream Rico cargo Murphy ##fish ##ase distant ##master ##ora Organization doorway Steven traded electrical frequent ##wn Branch Sure 1882 placing Manhattan attending attributed excellent pounds ruling principles component Mediterranean Vegas machines percentage infrastructure throwing affiliated Kings secured Caribbean Track Ted honour opponent Virgin Construction grave produces Challenge stretched paying murmured ##ata integrated waved Nathan ##ator transmission videos ##yan ##hu Nova descent AM Harold conservative Therefore venue competitive ##ui conclusion funeral confidence releases scholar ##sson Treaty stress mood ##sm Mac residing Action Fund ##ship animated fitted ##kar defending voting tend ##berry answers believes ##ci helps Aaron ##tis themes ##lay populations Players stroke Trinity electoral paint abroad charity keys Fair ##pes interrupted participants murdered Days supporters ##ab expert borders mate ##llo solar architectural tension ##bling Parish tape operator Cultural Clinton indicates publisher ordinary sugar arrive rifle acoustic ##uring assets ##shire SS sufficient options HMS Classic bars rebuilt governments Beijing reporter screamed Abbey crying mechanical instantly communications Political cemetery Cameron Stop representatives USS texts mathematics innings civilian Serbia ##hill practical patterns dust Faculty debt ##end ##cus junction suppose experimental Computer Food wrist abuse dealing bigger cap principle ##pin Muhammad Fleet Collection attempting dismissed ##burn regime Herbert ##ua shadows 1883 Eve Lanka 1878 Performance fictional ##lock Noah Run Voivodeship exercise broadcasting ##fer RAF Magic Bangladesh suitable ##low ##del styles toured Code identical links insisted 110 flash Model slave Derek Rev fairly Greater sole ##lands connecting zero bench ##ome switched Fall Owen yours Electric shocked convention ##bra climb memorial swept Racing decides belong ##nk parliamentary ##und ages proof ##dan delivery 1860 ##ów sad publicly leaning Archbishop dirt ##ose categories 1876 burn ##bing requested Guinea Historical rhythm relation ##heim ye pursue merchant ##mes lists continuous frowned colored tool gods involves Duncan photographs Cricket slight Gregory atmosphere wider Cook ##tar essential Being FA emperor wealthy nights ##bar licensed Hawaii viewers Language load nearest milk kilometers platforms ##ys territories Rogers sheet Rangers contested ##lation isolated assisted swallowed Small Contemporary Technical Edwards express Volume endemic ##ei tightly Whatever indigenous Colombia ##ulation hp characterized ##ida Nigeria Professional duo Soccer slaves Farm smart Attorney Attendance Common salt ##vin tribes nod sentenced bid sample Drive switch instant 21st Cuba drunk Alaska proud awareness hitting sessions Thai locally elsewhere Dragon gentle touching ##lee Springs Universal Latino spin 1871 Chart recalled Type pointing ##ii lowest ##ser grandmother Adelaide Jacques spotted Buffalo restoration Son Joan farmers Lily 1879 lucky ##dal luck eldest ##rant Market drummer deployed warned prince sing amazing sailed ##oon 1875 Primary traveling Masters Sara cattle Trail gang Further desert relocated ##tch ##ord Flight illness Munich ninth repair Singles ##lated Tyler tossed boots Work sized earning shoved magazines housed dam researchers Former spun premiere spaces organised wealth crimes devoted stones Urban automatic hop affect outstanding tanks mechanism Muslims Ms shots argue Jeremy connections Armenian increases rubbed 1867 retail gear Pan bonus jurisdiction weird concerning whisper ##gal Microsoft tenure hills www Gmina porch files reportedly venture Storm ##ence Nature killer panic fate Secret Wang scream drivers belongs Chamber clan monument mixing Peru bet Riley Friends Isaac submarine 1877 130 judges harm ranging affair prepare pupils householder Policy decorated Nation slammed activist implemented Room qualify Publishing establishing Baptist touring subsidiary ##nal legend 1872 laughter PC Athens settlers ties dual dear Draft strategic Ivan reveal closest dominant Ah ##ult Denver bond boundaries drafted tables ##TV eyed Edition ##ena 1868 belonging 1874 Industrial cream Ridge Hindu scholarship Ma opens initiated ##ith yelled compound random Throughout grades physics sank grows exclusively settle Saints brings Amsterdam Make Hart walks battery violin ##born explanation ##ware 1873 ##har provinces thrust exclusive sculpture shops ##fire VI constitution Barcelona monster Devon Jefferson Sullivan bow ##din desperate ##ć Julie ##mon ##ising terminus Jesse abilities golf ##ple ##via ##away Raymond measured jury firing revenue suburb Bulgarian 1866 ##cha timber Things ##weight Morning spots Alberta Data explains Kyle friendship raw tube demonstrated aboard immigrants reply breathe Manager ease ##ban ##dia Diocese ##vy ##ía pit ongoing ##lie Gilbert Costa 1940s Report voters cloud traditions ##MS gallery Jennifer swung Broadcasting Does diverse reveals arriving initiative ##ani Give Allied Pat Outstanding monastery blind Currently ##war bloody stopping focuses managing Florence Harvey creatures 900 breast internet Artillery purple ##mate alliance excited fee Brisbane lifetime Private ##aw ##nis ##gue ##ika phrase regulations reflected manufactured conventional pleased client ##ix ##ncy Pedro reduction ##con welcome jail comfort Iranian Norfolk Dakota ##tein evolution everywhere Initially sensitive Olivia Oscar implementation sits stolen demands slide grandson ##ich merger ##mic Spirit ##° ticket root difficulty Nevada ##als lined Dylan Original Call biological EU dramatic ##hn Operations treaty gap ##list Am Romanized moral Butler perspective Furthermore Manuel absolutely unsuccessful disaster dispute preparation tested discover ##ach shield squeezed brushed battalion Arnold ##ras superior treat clinical ##so Apple Syria Cincinnati package flights editions Leader minority wonderful hang Pop Philippine telephone bell honorary ##mar balls Democrat dirty thereafter collapsed Inside slip wrestling ##ín listened regard bowl None Sport completing trapped ##view copper Wallace Honor blame Peninsula ##ert ##oy Anglo bearing simultaneously honest ##ias Mix Got speaker voiced impressed prices error 1869 ##feld trials Nine Industry substitute Municipal departed slept ##ama Junction Socialist flower dropping comment fantasy ##ress arrangements travelled furniture fist relieved ##tics Leonard linear earn expand Soul Plan Leeds Sierra accessible innocent Winner Fighter Range winds vertical Pictures 101 charter cooperation prisoner interviews recognised sung manufacturer exposure submitted Mars leaf gauge screaming likes eligible ##ac gathering columns ##dra belly UN maps messages speakers ##ants garage unincorporated Number Watson sixteen lots beaten Could Municipality ##ano Horse talks Drake scores Venice genetic ##mal ##ère Cold Jose nurse traditionally ##bus Territory Key Nancy ##win thumb São index dependent carries controls Comics coalition physician referring Ruth Based restricted inherited internationally stretch THE plates margin Holland knock significance valuable Kenya carved emotion conservation municipalities overseas resumed Finance graduation blinked temperatures constantly productions scientist ghost cuts permitted ##ches firmly ##bert patrol ##yo Croatian attacking 1850 portrait promoting sink conversion ##kov locomotives Guide ##val nephew relevant Marc drum originated Chair visits dragged Price favour corridor properly respective Caroline reporting inaugural 1848 industries ##ching edges Christianity Maurice Trent Economics carrier Reed ##gon tribute Pradesh ##ale extend attitude Yale ##lu settlements glasses taxes targets ##ids quarters ##ological connect hence metre collapse underneath banned Future clients alternate explosion kinds Commons hungry dragon Chapel Buddhist lover depression pulls ##ges ##uk origins computers crosses kissing assume emphasis lighting ##ites personally crashed beam touchdown lane comparison ##mont Hitler ##las execution ##ene acre sum Pearl ray ##point essentially worker convicted tear Clay recovery Literature Unfortunately ##row partial Petersburg Bulgaria coaching evolved reception enters narrowed elevator therapy defended pairs ##lam breaks Bennett Uncle cylinder ##ison passion bases Actor cancelled battles extensively oxygen Ancient specialized negotiations ##rat acquisition convince interpretation ##00 photos aspect colleges Artist keeps ##wing Croatia ##ona Hughes Otto comments ##du Ph Sweet adventure describing Student Shakespeare scattered objective Aviation Phillips Fourth athletes ##hal ##tered Guitar intensity née dining curve Obama topics legislative Mill Cruz ##ars Members recipient Derby inspiration corresponding fed YouTube coins pressing intent Karen cinema Delta destination shorter Christians imagined canal Newcastle Shah Adrian super Males 160 liberal lord bat supplied Claude meal worship ##atic Han wire °F ##tha punishment thirteen fighters ##ibility 1859 Ball gardens ##ari Ottawa pole indicating Twenty Higher Bass Ivy farming ##urs certified Saudi plenty ##ces restaurants Representative Miles payment ##inger ##rit Confederate festivals references ##ić Mario PhD playoffs witness rice mask saving opponents enforcement automatically relegated ##oe radar whenever Financial imperial uncredited influences Abraham skull Guardian Haven Bengal impressive input mixture Warsaw altitude distinction 1857 collective Annie ##ean ##bal directions Flying ##nic faded ##ella contributing ##ó employee ##lum ##yl ruler oriented conductor focusing ##die Giants Mills mines Deep curled Jessica guitars Louise procedure Machine failing attendance Nepal Brad Liam tourist exhibited Sophie depicted Shaw Chuck ##can expecting challenges ##nda equally resignation ##logical Tigers loop pitched outdoor reviewed hopes True temporarily Borough torn jerked collect Berkeley Independence cotton retreat campaigns participating Intelligence Heaven ##ked situations borough Democrats Harbor ##len Liga serial circles fourteen ##lot seized filling departments finance absolute Roland Nate floors raced struggling deliver protests ##tel Exchange efficient experiments ##dar faint 3D binding Lions lightly skill proteins difficulties ##cal monthly camps flood loves Amanda Commerce ##oid ##lies elementary ##tre organic ##stein ##ph receives Tech enormous distinctive Joint experiment Circuit citizen ##hy shelter ideal practically formula addressed Foster Productions ##ax variable punk Voice fastest concentrated ##oma ##yer stored surrender vary Sergeant Wells ward Wait ##ven playoff reducing cavalry ##dle Venezuela tissue amounts sweat ##we Non ##nik beetle ##bu ##tu Jared Hunt ##₂ fat Sultan Living Circle Secondary Suddenly reverse ##min Travel ##bin Lebanon ##mas virus Wind dissolved enrolled holiday Keep helicopter Clarke constitutional technologies doubles instructions ##ace Azerbaijan ##ill occasional frozen trick wiped writings Shanghai preparing challenged mainstream summit 180 ##arian ##rating designation ##ada revenge filming tightened Miguel Montana reflect celebration bitch flashed signals rounded peoples ##tation renowned Google characteristic Campaign sliding ##rman usage Record Using woke solutions holes theories logo Protestant relaxed brow nickname Reading marble ##tro symptoms Overall capita ##ila outbreak revolution deemed Principal Hannah approaches inducted Wellington vulnerable Environmental Drama incumbent Dame 1854 travels samples accurate physically Sony Nashville ##sville ##lic ##og Producer Lucky tough Stanford resort repeatedly eyebrows Far choir commenced ##ep ##ridge rage swing sequel heir buses ad Grove ##late ##rick updated ##SA Delaware ##fa Athletics warmth Off excitement verse Protection Villa corruption intellectual Jenny ##lyn mystery prayer healthy ##ologist Bear lab Ernest Remix register basement Montgomery consistent tier 1855 Preston Brooks ##maker vocalist laboratory delayed wheels rope bachelor pitcher Block Nevertheless suspect efficiency Nebraska siege FBI planted ##AC Newton breeding ##ain eighteen Argentine encounter servant 1858 elder Shadow Episode fabric doctors survival removal chemistry volunteers Kane variant arrives Eagle Left ##fe Jo divorce ##ret yesterday Bryan handling diseases customer Sheriff Tiger Harper ##oi resting Linda Sheffield gasped sexy economics alien tale footage Liberty yeah fundamental Ground flames Actress photographer Maggie Additional joke custom Survey Abu silk consumption Ellis bread ##uous engagement puts Dog ##hr poured guilt CDP boxes hardware clenched ##cio stem arena extending ##com examination Steel encountered revised 140 picking Car hasn Minor pride Roosevelt boards ##mia blocked curious drag narrative brigade Prefecture mysterious namely connects Devil historians CHAPTER quit installation Golf empire elevated ##eo releasing Bond ##uri harsh ban ##BA contracts cloth presents stake chorus ##eau swear ##mp allies generations Motor meter pen warrior veteran ##EC comprehensive missile interaction instruction Renaissance rested Dale fix fluid les investigate loaded widow exhibit artificial select rushing tasks signature nowhere Engineer feared Prague bother extinct gates Bird climbing heels striking artwork hunt awake ##hin Formula thereby commitment imprisoned Beyond ##MA transformed Agriculture Low Movie radical complicated Yellow Auckland mansion tenth Trevor predecessor ##eer disbanded sucked circular witch gaining lean Behind illustrated rang celebrate bike consist framework ##cent Shane owns 350 comprises collaborated colleagues ##cast engage fewer ##ave 1856 observation diplomatic legislature improvements Interstate craft MTV martial administered jet approaching permanently attraction manuscript numbered Happy Andrea shallow Gothic Anti ##bad improvement trace preserve regardless rode dies achievement maintaining Hamburg spine ##air flowing encourage widened posts ##bound 125 Southeast Santiago ##bles impression receiver Single closure ##unt communist honors Northwest 105 ##ulated cared un hug magnetic seeds topic perceived prey prevented Marvel Eight Michel Transportation rings Gate ##gne Byzantine accommodate floating ##dor equation ministry ##ito ##gled Rules earthquake revealing Brother Celtic blew chairs Panama Leon attractive descendants Care Ambassador tours breathed threatening ##cho smiles Lt Beginning ##iness fake assists fame strings Mobile Liu parks http 1852 brush Aunt bullet consciousness ##sta ##ther consequences gather dug 1851 bridges Doug ##sion Artists ignore Carol brilliant radiation temples basin clouds ##cted Stevens spite soap consumer Damn Snow recruited ##craft Advanced tournaments Quinn undergraduate questioned Palmer Annual Others feeding Spider printing ##orn cameras functional Chester readers Alpha universal Faith Brandon François authored Ring el aims athletic possessed Vermont programmes ##uck bore Fisher statements shed saxophone neighboring pronounced barrel bags ##dge organisations pilots casualties Kenneth ##brook silently Malcolm span Essex anchor ##hl virtual lessons Henri Trump Page pile locomotive wounds uncomfortable sustained Diana Eagles ##pi 2000s documented ##bel Cassie delay kisses ##ines variation ##ag growled ##mark ##ways Leslie studios Friedrich aunt actively armor eaten historically Better purse honey ratings ##ée naturally 1840 peer Kenny Cardinal database Looking runners handsome Double PA ##boat ##sted protecting ##jan Diamond concepts interface ##aki Watch Article Columbus dialogue pause ##rio extends blanket pulse 1853 affiliate ladies Ronald counted kills demons ##zation Airlines Marco Cat companion mere Yugoslavia Forum Allan pioneer Competition Methodist patent nobody Stockholm ##ien regulation ##ois accomplished ##itive washed sake Vladimir crops prestigious humor Sally labour tributary trap altered examined Mumbai bombing Ash noble suspension ruins ##bank spare displays guided dimensional Iraqi ##hon sciences Franz relating fence followers Palestine invented proceeded Batman Bradley ##yard ##ova crystal Kerala ##ima shipping handled Want abolished Drew ##tter Powell Half ##table ##cker exhibitions Were assignment assured ##rine Indonesian Grammy acknowledged Kylie coaches structural clearing stationed Say Total Rail besides glow threats afford Tree Musical ##pp elite centered explore Engineers Stakes Hello tourism severely assessment ##tly crack politicians ##rrow sheets volunteer ##borough ##hold announcement recover contribute lungs ##ille mainland presentation Johann Writing 1849 ##bird Study Boulevard coached fail airline Congo Plus Syrian introduce ridge Casey manages ##fi searched Support succession progressive coup cultures ##lessly sensation Cork Elena Sofia Philosophy mini trunk academy Mass Liz practiced Reid ##ule satisfied experts Wilhelm Woods invitation Angels calendar joy Sr Dam packed ##uan bastard Workers broadcasts logic cooking backward ##ack Chen creates enzyme ##xi Davies aviation VII Conservation fucking Knights ##kan requiring hectares wars ate ##box Mind desired oak absorbed Really Vietnamese Paulo athlete ##car ##eth Talk Wu ##cks survivors Yang Joel Almost Holmes Armed Joshua priests discontinued ##sey blond Rolling suggesting CA clay exterior Scientific ##sive Giovanni Hi farther contents Winners animation neutral mall Notes layers professionals Armstrong Against Piano involve monitor angel parked bears seated feat beliefs ##kers Version suffer ##ceae guidance ##eur honored raid alarm Glen Ellen Jamaica trio enabled ##ils procedures ##hus moderate upstairs ##ses torture Georgian rebellion Fernando Nice ##are Aires Campus beast ##hing 1847 ##FA Isle ##logist Princeton cathedral Oakland Solomon ##tto Milwaukee upcoming midfielder Neither sacred Eyes appreciate Brunswick secrets Rice Somerset Chancellor Curtis ##gel Rich separation grid ##los ##bon urge ##ees ##ree freight towers psychology requirement dollar ##fall ##sman exile tomb Salt Stefan Buenos Revival Porter tender diesel chocolate Eugene Legion Laboratory sheep arched hospitals orbit Full ##hall drinks ripped ##RS tense Hank leagues ##nberg PlayStation fool Punjab relatives Comedy sur 1846 Tonight Sox ##if Rabbi org speaks institute defender painful wishes Weekly literacy portions snake item deals ##tum autumn sharply reforms thighs prototype ##ition argues disorder Physics terror provisions refugees predominantly independently march ##graphy Arabia Andrews Bus Money drops ##zar pistol matrix revolutionary ##ust Starting ##ptic Oak Monica ##ides servants ##hed archaeological divorced rocket enjoying fires ##nel assembled qualification retiring ##fied Distinguished handful infection Durham ##itz fortune renewed Chelsea ##sley curved gesture retain exhausted ##ifying Perth jumping Palestinian Simpson colonies steal ##chy corners Finn arguing Martha ##var Betty emerging Heights Hindi Manila pianist founders regret Napoleon elbow overhead bold praise humanity ##ori Revolutionary ##ere fur ##ole Ashley Official ##rm lovely Architecture ##sch Baronet virtually ##OS descended immigration ##das ##kes Holly Wednesday maintains theatrical Evan Gardens citing ##gia segments Bailey Ghost ##city governing graphics ##ined privately potentially transformation Crystal Cabinet sacrifice hesitated mud Apollo Desert bin victories Editor Railways Web Case tourists Brussels Franco compiled topped Gene engineers commentary egg escort nerve arch necessarily frustration Michelle democracy genes Facebook halfway ##ient 102 flipped Won ##mit NASA Lynn Provincial ambassador Inspector glared Change McDonald developments tucked noting Gibson circulation dubbed armies resource Headquarters ##iest Mia Albanian Oil Albums excuse intervention Grande Hugo integration civilians depends reserves Dee compositions identification restrictions quarterback Miranda Universe favourite ranges hint loyal Op entity Manual quoted dealt specialist Zhang download Westminster Rebecca streams Anglican variations Mine detective Films reserved ##oke ##key sailing ##gger expanding recall discovers particles behaviour Gavin blank permit Java Fraser Pass ##non ##TA panels statistics notion courage dare venues ##roy Box Newport travelling Thursday warriors Glenn criteria 360 mutual restore varied bitter Katherine ##lant ritual bits ##à Henderson trips Richardson Detective curse psychological Il midnight streak facts Dawn Indies Edmund roster Gen ##nation 1830 congregation shaft ##ically ##mination Indianapolis Sussex loving ##bit sounding horrible Continental Griffin advised magical millions ##date 1845 Safety lifting determination valid dialect Penn Know triple avoided dancer judgment sixty farmer lakes blast aggressive Abby tag chains inscription ##nn conducting Scout buying ##wich spreading ##OC array hurried Environment improving prompted fierce Taking Away tune pissed Bull catching ##ying eyebrow metropolitan terrain ##rel Lodge manufacturers creator ##etic happiness ports ##ners Relations fortress targeted ##ST allegedly blues ##osa Bosnia ##dom burial similarly stranger pursued symbols rebels reflection routine traced indoor eventual ##ska ##ão ##una MD ##phone oh grants Reynolds rid operators ##nus Joey vital siblings keyboard br removing societies drives solely princess lighter Various Cavalry believing SC underwent relay smelled syndrome welfare authorized seemingly Hard chicken ##rina Ages Bo democratic barn Eye shorts ##coming ##hand disappointed unexpected centres Exhibition Stories Site banking accidentally Agent conjunction André Chloe resist width Queens provision ##art Melissa Honorary Del prefer abruptly duration ##vis Glass enlisted ##ado discipline Sisters carriage ##ctor ##sburg Lancashire log fuck ##iz closet collecting holy rape trusted cleaning inhabited Rocky 104 editorial ##yu ##ju succeed strict Cuban ##iya Bronze outcome ##ifies ##set corps Hero barrier Kumar groaned Nina Burton enable stability Milton knots ##ination slavery ##borg curriculum trailer warfare Dante Edgar revival Copenhagen define advocate Garrett Luther overcome pipe 750 construct Scotia kings flooding ##hard Ferdinand Felix forgot Fish Kurt elaborate ##BC graphic gripped colonel Sophia Advisory Self ##uff ##lio monitoring seal senses rises peaceful journals 1837 checking legendary Ghana ##power ammunition Rosa Richards nineteenth ferry aggregate Troy inter ##wall Triple steep tent Cyprus 1844 ##woman commanding farms doi navy specified na cricketer transported Think comprising grateful solve ##core beings clerk grain vector discrimination ##TC Katie reasonable drawings veins consideration Monroe repeat breed dried witnessed ordained Current spirits remarkable consultant urged Remember anime singers phenomenon Rhode Carlo demanding findings manual varying Fellowship generate safely heated withdrawn ##ao headquartered ##zon ##lav ##ency Col Memphis imposed rivals Planet healing ##hs ensemble Warriors ##bone cult Frankfurt ##HL diversity Gerald intermediate ##izes reactions Sister ##ously ##lica quantum awkward mentions pursuit ##ography varies profession molecular consequence lectures cracked 103 slowed ##tsu cheese upgraded suite substance Kingston 1800 Idaho Theory ##een ain Carson Molly ##OR configuration Whitney reads audiences ##tie Geneva Outside ##nen ##had transit volleyball Randy Chad rubber motorcycle respected eager Level coin ##lets neighbouring ##wski confident ##cious poll uncertain punch thesis Tucker IATA Alec ##ographic ##law 1841 desperately 1812 Lithuania accent Cox lightning skirt ##load Burns Dynasty ##ug chapters Working dense Morocco ##kins casting Set activated oral Brien horn HIV dawn stumbled altar tore considerably Nicole interchange registration biography Hull Stan bulk consent Pierce ##ER Fifth marched terrorist ##piece ##itt Presidential Heather staged Plant relegation sporting joins ##ced Pakistani dynamic Heat ##lf ourselves Except Elliott nationally goddess investors Burke Jackie ##ā ##RA Tristan Associate Tuesday scope Near bunch ##abad ##ben sunlight ##aire manga Willie trucks boarding Lion lawsuit Learning Der pounding awful ##mine IT Legend romance Serie AC gut precious Robertson hometown realm Guards Tag batting ##vre halt conscious 1838 acquire collar ##gg ##ops Herald nationwide citizenship Aircraft decrease em Fiction Female corporation Located ##ip fights unconscious Tampa Poetry lobby Malta ##sar ##bie layout Tate reader stained ##bre ##rst ##ulate loudly Eva Cohen exploded Merit Maya ##rable Rovers ##IC Morrison Should vinyl ##mie onwards ##gie vicinity Wildlife probability Mar Barnes ##ook spinning Moses ##vie Surrey Planning conferences protective Plaza deny Canterbury manor Estate tilted comics IBM destroying server Dorothy ##horn Oslo lesser heaven Marshal scales strikes ##ath firms attract ##BS controlling Bradford southeastern Amazon Travis Janet governed 1842 Train Holden bleeding gifts rent 1839 palms ##ū judicial Ho Finals conflicts unlikely draws ##cies compensation adds elderly Anton lasting Nintendo codes ministers pot associations capabilities ##cht libraries ##sie chances performers runway ##af ##nder Mid Vocals ##uch ##eon interpreted priority Uganda ruined Mathematics cook AFL Lutheran AIDS Capitol chase axis Moreover María Saxon storyline ##ffed Tears Kid cent colours Sex ##long pm blonde Edwin CE diocese ##ents ##boy Inn ##ller Saskatchewan ##kh stepping Windsor ##oka ##eri Xavier Resources 1843 ##top ##rad ##lls Testament poorly 1836 drifted slope CIA remix Lords mature hosting diamond beds ##ncies luxury trigger ##lier preliminary hybrid journalists Enterprise proven expelled insects Beautiful lifestyle vanished ##ake ##ander matching surfaces Dominican Kids referendum Orlando Truth Sandy privacy Calgary Speaker sts Nobody shifting ##gers Roll Armenia Hand ##ES 106 ##ont Guild larvae Stock flame gravity enhanced Marion surely ##tering Tales algorithm Emmy darker VIII ##lash hamlet deliberately occurring choices Gage fees settling ridiculous ##ela Sons cop custody ##ID proclaimed Cardinals ##pm Metal Ana 1835 clue Cardiff riders observations MA sometime ##och performer intact Points allegations rotation Tennis tenor Directors ##ats Transit thigh Complex ##works twentieth Factory doctrine Daddy ##ished pretend Winston cigarette ##IA specimens hydrogen smoking mathematical arguments openly developer ##iro fists somebody ##san Standing Caleb intelligent Stay Interior echoed Valentine varieties Brady cluster Ever voyage ##of deposits ultimate Hayes horizontal proximity ##ás estates exploration NATO Classical ##most bills condemned 1832 hunger ##ato planes deserve offense sequences rendered acceptance ##ony manufacture Plymouth innovative predicted ##RC Fantasy ##une supporter absent Picture bassist rescued ##MC Ahmed Monte ##sts ##rius insane novelist ##és agrees Antarctic Lancaster Hopkins calculated startled ##star tribal Amendment ##hoe invisible patron deer Walk tracking Lyon tickets ##ED philosopher compounds chuckled ##wi pound loyalty Academic petition refuses marking Mercury northeastern dimensions scandal Canyon patch publish ##oning Peak minds ##boro Presbyterian Hardy theoretical magnitude bombs cage ##ders ##kai measuring explaining avoiding touchdowns Card theology ##ured Popular export suspicious Probably photograph Lou Parks Arms compact Apparently excess Banks lied stunned territorial Filipino spectrum learns wash imprisonment ugly ##rose Albany Erik sends ##hara ##rid consumed ##gling Belgrade Da opposing Magnus footsteps glowing delicate Alexandria Ludwig gorgeous Bros Index ##PA customs preservation bonds ##mond environments ##nto instructed parted adoption locality workshops goalkeeper ##rik ##uma Brighton Slovenia ##ulating ##tical towel hugged stripped Bears upright Wagner ##aux secretly Adventures nest Course Lauren Boeing Abdul Lakes 450 ##cu USSR caps Chan ##nna conceived Actually Belfast Lithuanian concentrate possess militia pine protagonist Helena ##PS ##band Belle Clara Reform currency pregnancy 1500 ##rim Isabella hull Name trend journalism diet ##mel Recording acclaimed Tang Jace steering vacant suggestion costume laser ##š ##ink ##pan ##vić integral achievements wise classroom unions southwestern ##uer Garcia toss Tara Large ##tate evident responsibilities populated satisfaction ##bia casual Ecuador ##ght arose ##ović Cornwall embrace refuse Heavyweight XI Eden activists ##uation biology ##shan fraud Fuck matched legacy Rivers missionary extraordinary Didn holder wickets crucial Writers Hurricane Iceland gross trumpet accordance hurry flooded doctorate Albania ##yi united deceased jealous grief flute portraits ##а pleasant Founded Face crowned Raja advisor Salem ##ec Achievement admission freely minimal Sudan developers estimate disabled ##lane downstairs Bruno ##pus pinyin ##ude lecture deadly underlying optical witnesses Combat Julius tapped variants ##like Colonial Critics Similarly mouse voltage sculptor Concert salary Frances ##ground hook premises Software instructor nominee ##ited fog slopes ##zu vegetation sail ##rch Body Apart atop View utility ribs cab migration ##wyn bounded 2019 pillow trails ##ub Halifax shade Rush ##lah ##dian Notre interviewed Alexandra Springfield Indeed rubbing dozens amusement legally ##lers Jill Cinema ignoring Choice ##ures pockets ##nell laying Blair tackles separately ##teen Criminal performs theorem Communication suburbs ##iel competitors rows ##hai Manitoba Eleanor interactions nominations assassination ##dis Edmonton diving ##dine essay ##tas AFC Edge directing imagination sunk implement Theodore trembling sealed ##rock Nobel ##ancy ##dorf ##chen genuine apartments Nicolas AA Bach Globe Store 220 ##10 Rochester ##ño alert 107 Beck ##nin Naples Basin Crawford fears Tracy ##hen disk ##pped seventeen Lead backup reconstruction ##lines terrified sleeve nicknamed popped ##making ##ern Holiday Gospel ibn ##ime convert divine resolved ##quet ski realizing ##RT Legislature reservoir Rain sinking rainfall elimination challenging tobacco ##outs Given smallest Commercial pin rebel comedian exchanged airing dish Salvador promising ##wl relax presenter toll aerial ##eh Fletcher brass disappear zones adjusted contacts ##lk sensed Walt mild toes flies shame considers wildlife Hanna Arsenal Ladies naming ##ishing anxiety discussions cute undertaken Cash strain Wyoming dishes precise Angela ##ided hostile twins 115 Built ##pel Online tactics Newman ##bourne unclear repairs embarrassed listing tugged Vale ##gin Meredith bout ##cle velocity tips froze evaluation demonstrate ##card criticised Nash lineup Rao monks bacteria lease ##lish frightened den revived finale ##rance flee Letters decreased ##oh Sounds wrap Sharon incidents renovated everybody stole Bath boxing 1815 withdraw backs interim react murders Rhodes Copa framed flown Estonia Heavy explored ##rra ##GA ##ali Istanbul 1834 ##rite ##aging ##ues Episcopal arc orientation Maxwell infected ##rot BCE Brook grasp Roberto Excellence 108 withdrawal Marines rider Lo ##sin ##run Subsequently garrison hurricane facade Prussia crushed enterprise ##mber Twitter Generation Physical Sugar editing communicate Ellie ##hurst Ernst wagon promotional conquest Parliamentary courtyard lawyers Superman email Prussian lately lecturer Singer Majesty Paradise sooner Heath slot curves convoy ##vian induced synonym breeze ##plane ##ox peered Coalition ##hia odds ##esh ##lina Tomorrow Nadu ##ico ##rah damp autonomous console Victory counts Luxembourg intimate Archived Carroll spy Zero habit Always faction teenager Johnston chaos ruin commerce blog ##shed ##the reliable Word Yu Norton parade Catholics damned ##iling surgeon ##tia Allison Jonas remarked ##ès idiot Making proposals Industries strategies artifacts batteries reward ##vers Agricultural distinguish lengths Jeffrey Progressive kicking Patricia ##gio ballot ##ios skilled ##gation Colt limestone ##AS peninsula ##itis LA hotels shapes Crime depicting northwestern HD silly Das ##² ##ws ##ash ##matic thermal Has forgive surrendered Palm Nacional drank haired Mercedes ##foot loading Timothy ##roll mechanisms traces digging discussing Natalie ##zhou Forbes landmark Anyway Manor conspiracy gym knocking viewing Formation Pink Beauty limbs Phillip sponsor Joy granite Harbour ##ero payments Ballet conviction ##dam Hood estimates lacked Mad Jorge ##wen refuge ##LA invaded Kat suburban ##fold investigated Ari complained creek Georges ##uts powder accepting deserved carpet Thunder molecules Legal cliff strictly enrollment ranch ##rg ##mba proportion renovation crop grabbing ##liga finest entries receptor helmet blown Listen flagship workshop resolve nails Shannon portal jointly shining Violet overwhelming upward Mick proceedings ##dies ##aring Laurence Churchill ##rice commit 170 inclusion Examples ##verse ##rma fury paths ##SC ankle nerves Chemistry rectangular sworn screenplay cake Mann Seoul Animal sizes Speed vol Population Southwest Hold continuously Qualified wishing Fighting Made disappointment Portsmouth Thirty ##beck Ahmad teammate MLB graph Charleston realizes ##dium exhibits preventing ##int fever rivalry Male mentally dull ##lor ##rich consistently ##igan Madame certificate suited Krishna accuracy Webb Budapest Rex 1831 Cornell OK surveillance ##gated habitats Adventure Conrad Superior Gay sofa aka boot Statistics Jessie Liberation ##lip ##rier brands saint Heinrich Christine bath Rhine ballet Jin consensus chess Arctic stack furious cheap toy ##yre ##face ##gging gastropod ##nne Romans membrane answering 25th architects sustainable ##yne Hon 1814 Baldwin dome ##awa ##zen celebrity enclosed ##uit ##mmer Electronic locals ##CE supervision mineral Chemical Slovakia alley hub ##az heroes Creative ##AM incredible politically ESPN yanked halls Aboriginal Greatest yield ##20 congressional robot Kiss welcomed MS speeds proceed Sherman eased Greene Walsh Geoffrey variables rocky ##print acclaim Reverend Wonder tonnes recurring Dawson continent finite AP continental ID facilitate essays Rafael Neal 1833 ancestors ##met ##gic Especially teenage frustrated Jules cock expense ##oli ##old blocking Notable prohibited ca dock organize ##wald Burma Gloria dimension aftermath choosing Mickey torpedo pub ##used manuscripts laps Ulster staircase sphere Insurance Contest lens risks investigations ERA glare ##play Graduate auction Chronicle ##tric ##50 Coming seating Wade seeks inland Thames Rather butterfly contracted positioned consumers contestants fragments Yankees Santos administrator hypothesis retire Denis agreements Winnipeg ##rill 1820 trophy crap shakes Jenkins ##rium ya twist labels Maritime ##lings ##iv 111 ##ensis Cairo Anything ##fort opinions crowded ##nian abandon ##iff drained imported ##rr tended ##rain Going introducing sculptures bankruptcy danced demonstration stance settings gazed abstract pet Calvin stiff strongest wrestler ##dre Republicans grace allocated cursed snail advancing Return errors Mall presenting eliminate Amateur Institution counting ##wind warehouse ##nde Ethiopia trailed hollow ##press Literary capability nursing preceding lamp Thomson Morton ##ctic Crew Close composers boom Clare missiles 112 hunter snap ##oni ##tail Us declaration ##cock rally huh lion straightened Philippe Sutton alpha valued maker navigation detected favorable perception Charter ##ña Ricky rebounds tunnels slapped Emergency supposedly ##act deployment socialist tubes anybody corn ##NA Seminary heating pump ##AA achieving souls ##ass Link ##ele ##smith greeted Bates Americas Elder cure contestant 240 fold Runner Uh licked Politics committees neighbors fairy Silva Leipzig tipped correctly exciting electronics foundations cottage governmental ##hat allied claws presidency cruel Agreement slender accompanying precisely ##pass driveway swim Stand crews ##mission rely everyday Wings demo ##hic recreational min nationality ##duction Easter ##hole canvas Kay Leicester talented Discovery shells ##ech Kerry Ferguson Leave ##place altogether adopt butt wolves ##nsis ##ania modest soprano Boris ##ught electron depicts hid cruise differ treasure ##nch Gun Mama Bengali trainer merchants innovation presumably Shirley bottles proceeds Fear invested Pirates particle Dominic blamed Fight Daisy ##pper ##graphic nods knight Doyle tales Carnegie Evil Inter Shore Nixon transform Savannah ##gas Baltic stretching worlds protocol Percy Toby Heroes brave dancers ##aria backwards responses Chi Gaelic Berry crush embarked promises Madonna researcher realised inaugurated Cherry Mikhail Nottingham reinforced subspecies rapper ##kie Dreams Re Damon Minneapolis monsters suspicion Tel surroundings afterward complaints OF sectors Algeria lanes Sabha objectives Donna bothered distracted deciding ##ives ##CA ##onia bishops Strange machinery Voiced synthesis reflects interference ##TS ##ury keen ##ign frown freestyle ton Dixon Sacred Ruby Prison ##ión 1825 outfit ##tain curiosity ##ight frames steadily emigrated horizon ##erly Doc philosophical Table UTC Marina ##DA secular ##eed Zimbabwe cops Mack sheriff Sanskrit Francesco catches questioning streaming Kill testimony hissed tackle countryside copyright ##IP Buddhism ##rator ladder ##ON Past rookie depths ##yama ##ister ##HS Samantha Dana Educational brows Hammond raids envelope ##sco ##hart ##ulus epic detection Streets Potter statistical für ni accounting ##pot employer Sidney Depression commands Tracks averaged lets Ram longtime suits branded chip Shield loans ought Said sip ##rome requests Vernon bordered veterans ##ament Marsh Herzegovina Pine ##igo mills anticipation reconnaissance ##ef expectations protested arrow guessed depot maternal weakness ##ap projected pour Carmen provider newer remind freed ##rily ##wal ##tones intentions Fiji timing Match managers Kosovo Herman Wesley Chang 135 semifinals shouting Indo Janeiro Chess Macedonia Buck ##onies rulers Mail ##vas ##sel MHz Programme Task commercially subtle propaganda spelled bowling basically Raven 1828 Colony 109 ##ingham ##wara anticipated 1829 ##iers graduates ##rton ##fication endangered ISO diagnosed ##tage exercises Battery bolt poison cartoon ##ción hood bowed heal Meyer Reagan ##wed subfamily ##gent momentum infant detect ##sse Chapman Darwin mechanics NSW Cancer Brooke Nuclear comprised hire sanctuary wingspan contrary remembering surprising Basic stealing OS hatred ##lled masters violation Rule ##nger assuming conquered louder robe Beatles legitimate ##vation massacre Rica unsuccessfully poets ##enberg careers doubled premier battalions Dubai Paper Louisville gestured dressing successive mumbled Vic referee pupil ##cated ##rre ceremonies picks ##IN diplomat alike geographical rays ##HA ##read harbour factories pastor playwright Ultimate nationalist uniforms obtaining kit Amber ##pling screenwriter ancestry ##cott Fields PR Coleman rat Bavaria squeeze highlighted Adult reflecting Mel 1824 bicycle organizing sided Previously Underground Prof athletics coupled mortal Hampton worthy immune Ava ##gun encouraging simplified ##ssa ##nte ##ann Providence entities Pablo Strong Housing ##ista ##ators kidnapped mosque Kirk whispers fruits shattered fossil Empress Johns Webster Thing refusing differently specimen Ha ##EN ##tina ##elle ##night Horn neighbourhood Bolivia ##rth genres Pre ##vich Amelia swallow Tribune Forever Psychology Use ##bers Gazette ash ##usa Monster ##cular delegation blowing Oblast retreated automobile ##ex profits shirts devil Treasury ##backs Drums Ronnie gameplay expertise Evening resides Caesar unity Crazy linking Vision donations Isabel valve Sue WWE logical availability fitting revolt ##mill Linux taxi Access pollution statues Augustus ##pen cello ##some lacking ##ati Gwen ##aka ##ovich 1821 Wow initiatives Uruguay Cain stroked examine ##ī mentor moist disorders buttons ##tica ##anna Species Lynch museums scorer Poor eligibility op unveiled cats Title wheat critically Syracuse ##osis marketed enhance Ryder ##NG ##ull ##rna embedded throws foods happily ##ami lesson formats punched ##rno expressions qualities ##sal Gods ##lity elect wives ##lling jungle Toyota reversed Grammar Cloud Agnes ##ules disputed verses Lucien threshold ##rea scanned ##bled ##dley ##lice Kazakhstan Gardner Freeman ##rz inspection Rita accommodation advances chill Elliot thriller Constantinople ##mos debris whoever 1810 Santo Carey remnants Guatemala ##irs carriers equations mandatory ##WA anxious measurement Summit Terminal Erin ##zes LLC ##uo glancing sin ##₃ Downtown flowering Euro Leigh Lance warn decent recommendations ##ote Quartet ##rrell Clarence colleague guarantee 230 Clayton Beast addresses prospect destroyer vegetables Leadership fatal prints 190 ##makers Hyde persuaded illustrations Southampton Joyce beats editors mount ##grave Malaysian Bombay endorsed ##sian ##bee applying Religion nautical bomber Na airfield gravel ##rew Cave bye dig decree burden Election Hawk Fe ##iled reunited ##tland liver Teams Put delegates Ella ##fect Cal invention Castro bored ##kawa ##ail Trinidad NASCAR pond develops ##pton expenses Zoe Released ##rf organs beta parameters Neill ##lene lateral Beat blades Either ##hale Mitch ##ET ##vous Rod burnt phones Rising ##front investigating ##dent Stephanie ##keeper screening ##uro Swan Sinclair modes bullets Nigerian melody ##ques Rifle ##12 128 ##jin charm Venus ##tian fusion advocated visitor pinned genera 3000 Ferry Solo quantity regained platinum shoots narrowly preceded update ##ichi equality unaware regiments ally ##tos transmitter locks Seeing outlets feast reopened ##ows struggles Buddy 1826 bark elegant amused Pretty themed schemes Lisbon Te patted terrorism Mystery ##croft ##imo Madagascar Journey dealer contacted ##quez ITV vacation Wong Sacramento organisms ##pts balcony coloured sheer defines MC abortion forbidden accredited Newfoundland tendency entrepreneur Benny Tanzania needing finalist mythology weakened gown sentences Guest websites Tibetan UFC voluntary annoyed Welcome honestly correspondence geometry Deutsche Biology Help ##aya Lines Hector ##ael reluctant ##ages wears inquiry ##dell Holocaust Tourism Wei volcanic ##mates Visual sorts neighborhoods Running apple shy Laws bend Northeast feminist Speedway Murder visa stuffed fangs transmitted fiscal Ain enlarged ##ndi Cecil Peterson Benson Bedford acceptable ##CC ##wer purely triangle foster Alberto educator Highland acute LGBT Tina Mi adventures Davidson Honda translator monk enacted summoned ##ional collector Genesis Un liner Di Statistical ##CS filter Knox Religious Stella Estonian Turn ##ots primitive parishes ##lles complexity autobiography rigid cannon pursuing exploring ##gram ##mme freshman caves Expedition Traditional iTunes certification cooling ##ort ##gna ##IT ##lman ##VA Motion explosive licence boxer shrine loosely Brigadier Savage Brett MVP heavier ##elli ##gged Buddha Easy spells fails incredibly Georg stern compatible Perfect applies cognitive excessive nightmare neighbor Sicily appealed static ##₁ Aberdeen ##leigh slipping bride ##guard Um Clyde 1818 ##gible Hal Frost Sanders interactive Hour ##vor hurting bull termed shelf capturing ##pace rolls 113 ##bor Chilean teaches ##rey exam shipped Twin borrowed ##lift Shit ##hot Lindsay Below Kiev Lin leased ##sto Eli Diane Val subtropical shoe Bolton Dragons ##rification Vatican ##pathy Crisis dramatically talents babies ##ores surname ##AP ##cology cubic opted Archer sweep tends Karnataka Judy stint Similar ##nut explicitly ##nga interact Mae portfolio clinic abbreviated Counties ##iko hearts ##ı providers screams Individual ##etti Monument ##iana accessed encounters gasp ##rge defunct Avery ##rne nobility useless Phase Vince senator ##FL 1813 surprisingly ##illo ##chin Boyd rumors equity Gone Hearts chassis overnight Trek wrists submit civic designers ##rity prominence decorative derives starter ##AF wisdom Powers reluctantly measurements doctoral Noel Gideon Baden Cologne lawn Hawaiian anthology ##rov Raiders embassy Sterling ##pal Telugu troubled ##FC ##bian fountain observe ore ##uru ##gence spelling Border grinning sketch Benedict Xbox dialects readily immigrant Constitutional aided nevertheless SE tragedy ##ager ##rden Flash ##MP Europa emissions ##ield panties Beverly Homer curtain ##oto toilet Isn Jerome Chiefs Hermann supernatural juice integrity Scots auto Patriots Strategic engaging prosecution cleaned Byron investments adequate vacuum laughs ##inus ##nge Usually Roth Cities Brand corpse ##ffy Gas rifles Plains sponsorship Levi tray owed della commanders ##ead tactical ##rion García harbor discharge ##hausen gentleman endless highways ##itarian pleaded ##eta archive Midnight exceptions instances Gibraltar cart ##NS Darren Bonnie ##yle ##iva OCLC bra Jess ##EA consulting Archives Chance distances commissioner ##AR LL sailors ##sters enthusiasm Lang ##zia Yugoslav confirm possibilities Suffolk ##eman banner 1822 Supporting fingertips civilization ##gos technically 1827 Hastings sidewalk strained monuments Floyd Chennai Elvis villagers Cumberland strode albeit Believe planets combining Mohammad container ##mouth ##tures verb BA Tank Midland screened Gang Democracy Helsinki screens thread charitable ##version swiftly ma rational combine ##SS ##antly dragging Cliff Tasmania quest professionally ##aj rap ##lion livestock ##hua informal specially lonely Matthews Dictionary 1816 Observatory correspondent constitute homeless waving appreciated Analysis Meeting dagger ##AL Gandhi flank Giant Choir ##not glimpse toe Writer teasing springs ##dt Glory healthcare regulated complaint math Publications makers ##hips cement Need apologize disputes finishes Partners boring ups gains 1793 Congressional clergy Folk ##made ##nza Waters stays encoded spider betrayed Applied inception ##urt ##zzo wards bells UCLA Worth bombers Mo trademark Piper ##vel incorporates 1801 ##cial dim Twelve ##word Appeals tighter spacecraft ##tine coordinates ##iac mistakes Zach laptop Teresa ##llar ##yr favored Nora sophisticated Irving hammer División corporations niece ##rley Patterson UNESCO trafficking Ming balanced plaque Latvia broader ##owed Save confined ##vable Dalton tide ##right ##ural ##num swords caring ##eg IX Acting paved ##moto launching Antoine substantially Pride Philharmonic grammar Indoor Ensemble enabling 114 resided Angelo publicity chaired crawled Maharashtra Telegraph lengthy preference differential anonymous Honey ##itation wage ##iki consecrated Bryant regulatory Carr ##én functioning watches ##ú shifts diagnosis Search app Peters ##SE ##cat Andreas honours temper counsel Urdu Anniversary maritime ##uka harmony ##unk essence Lorenzo choked Quarter indie ##oll loses ##prints amendment Adolf scenario similarities ##rade ##LC technological metric Russians thoroughly ##tead cruiser 1806 ##nier 1823 Teddy ##psy au progressed exceptional broadcaster partnered fitness irregular placement mothers unofficial Garion Johannes 1817 regain Solar publishes Gates Broken thirds conversations dive Raj contributor quantities Worcester governance ##flow generating pretending Belarus ##voy radius skating Marathon 1819 affection undertook ##wright los ##bro locate PS excluded recreation tortured jewelry moaned ##logue ##cut Complete ##rop 117 ##II plantation whipped slower crater ##drome Volunteer attributes celebrations regards Publishers oath utilized Robbie Giuseppe fiber indication melted archives Damien storey affecting identifying dances alumni comparable upgrade rented sprint ##kle Marty ##lous treating railways Lebanese erupted occupy sympathy Jude Darling Qatar drainage McCarthy heel Klein computing wireless flip Du Bella ##ast ##ssen narrator mist sings alignment 121 2020 securing ##rail Progress missionaries brutal mercy ##shing Hip ##ache ##olo switching ##here Malay ##ob constituted Mohammed Often standings surge teachings ink detached systematic Trial Myanmar ##wo offs Reyes decoration translations wherever reviewer speculation Bangkok terminated ##ester beard RCA Aidan Associated Emerson Charity 1803 generous Dudley ATP ##haven prizes toxic gloves ##iles ##dos Turning myth Parade ##building Hits ##eva teamed Above Duchess Holt ##oth Sub Ace atomic inform Ship depend Jun ##bes Norwich globe Baroque Christina Cotton Tunnel kidding Concerto Brittany tasted phases stems angles ##TE ##nam ##40 charted Alison intensive Willis glory ##lit Bergen est taller ##dicate labeled ##ido commentator Warrior Viscount shortened aisle Aria Spike spectators goodbye overlooking mammals ##lude wholly Barrett ##gus accompany seventy employ ##mb ambitious beloved basket ##mma ##lding halted descendant pad exclaimed cloak ##pet Strait Bang Aviv sadness ##ffer Donovan 1880s agenda swinging ##quin jerk Boat ##rist nervously Silence Echo shout implies ##iser ##cking Shiva Weston damages ##tist effectiveness Horace cycling Rey ache Photography PDF Dear leans Lea ##vision booth attained disbelief ##eus ##ution Hop pension toys Eurovision faithful ##heads Andre owe default Atlas Megan highlights lovers Constantine Sixth masses ##garh emerge Auto Slovak ##oa ##vert Superintendent flicked inventor Chambers Frankie Romeo pottery companions Rudolf ##liers diary Unless tap alter Randall ##ddle ##eal limitations ##boards utterly knelt guaranteed Cowboys Islander horns ##ike Wendy sexually Smart breasts ##cian compromise Duchy AT Galaxy analog Style ##aking weighed Nigel optional Czechoslovakia practicing Ham ##0s feedback batted uprising operative applicable criminals classrooms Somehow ##ode ##OM Naomi Winchester ##pping Bart Regina competitor Recorded Yuan Vera lust Confederation ##test suck 1809 Lambert 175 Friend ##ppa Slowly ##⁺ Wake Dec ##aneous chambers Color Gus ##site Alternative ##world Exeter Omaha celebrities striker 210 dwarf meals Oriental Pearson financing revenues underwater Steele screw Feeling Mt acids badge swore theaters Moving admired lung knot penalties 116 fork ##cribed Afghan outskirts Cambodia oval wool fossils Ned Countess Darkness delicious ##nica Evelyn Recordings guidelines ##CP Sandra meantime Antarctica modeling granddaughter ##rial Roma Seventh Sunshine Gabe ##nton Shop Turks prolific soup parody ##nta Judith disciplines resign Companies Libya Jets inserted Mile retrieve filmmaker ##rand realistic unhappy ##30 sandstone ##nas ##lent ##ush ##rous Brent trash Rescue ##unted Autumn disgust flexible infinite sideways ##oss ##vik trailing disturbed 50th Newark posthumously ##rol Schmidt Josef ##eous determining menu Pole Anita Luc peaks 118 Yard warrant generic deserted Walking stamp tracked ##berger paired surveyed sued Rainbow ##isk Carpenter submarines realization touches sweeping Fritz module Whether resembles ##form ##lop unsure hunters Zagreb unemployment Senators Georgetown ##onic Barker foul commercials Dresden Words collision Carlton Fashion doubted ##ril precision MIT Jacobs mob Monk retaining gotta ##rod remake Fast chips ##pled sufficiently ##lights delivering ##enburg Dancing Barton Officers metals ##lake religions ##ré motivated differs dorsal ##birds ##rts Priest polished ##aling Saxony Wyatt knockout ##hor Lopez RNA ##link metallic ##kas daylight Montenegro ##lining wrapping resemble Jam Viking uncertainty angels enables ##fy Stuttgart tricks tattoo 127 wicked asset breach ##yman MW breaths Jung im 1798 noon vowel ##qua calmly seasonal chat ingredients cooled Randolph ensuring ##ib ##idal flashing 1808 Macedonian Cool councils ##lick advantages Immediately Madras ##cked Pain fancy chronic Malayalam begged ##nese Inner feathers ##vey Names dedication Sing pan Fischer nurses Sharp inning stamps Meg ##ello edged motioned Jacksonville ##ffle ##dic ##US divide garnered Ranking chasing modifications ##oc clever midst flushed ##DP void ##sby ambulance beaches groan isolation strengthen prevention ##ffs Scouts reformed geographic squadrons Fiona Kai Consequently ##uss overtime ##yas Fr ##BL Papua Mixed glances Haiti Sporting sandy confronted René Tanner 1811 ##IM advisory trim ##ibe González gambling Jupiter ##ility ##owski ##nar 122 apology teased Pool feminine wicket eagle shiny ##lator blend peaking nasty nodding fraction tech Noble Kuwait brushing Italia Canberra duet Johan 1805 Written cameo Stalin pig cord ##zio Surely SA owing holidays 123 Ranger lighthouse ##ige miners 1804 ##ë ##gren ##ried crashing ##atory wartime highlight inclined Torres Tax ##zel ##oud Own ##corn Divine EMI Relief Northwestern ethics BMW click plasma Christie coordinator Shepherd washing cooked ##dio ##eat Cerambycidae algebra Engine costumes Vampire vault submission virtue assumption ##rell Toledo ##oting ##rva crept emphasized ##lton ##ood Greeks surgical crest Patrol Beta Tessa ##GS pizza traits rats Iris spray ##GC Lightning binary escapes ##take Clary crowds ##zong hauled maid ##fen Manning ##yang Nielsen aesthetic sympathetic affiliation soaked Mozart personalities begging ##iga clip Raphael yearly Lima abundant ##lm 1794 strips Initiative reporters ##vsky consolidated ##itated Civic rankings mandate symbolic ##ively 1807 rental duck nave complications ##nor Irene Nazis haunted scholarly Pratt Gran Embassy Wave pity genius bats canton Tropical marker ##cos escorted Climate ##posed appreciation freezing puzzle Internal pools Shawn pathway Daniels Fitzgerald extant olive Vanessa marriages cocked ##dging prone chemicals doll drawer ##HF Stark Property ##tai flowed Sheridan ##uated Less Omar remarks catalogue Seymour wreck Carrie ##bby Mercer displaced sovereignty rip Flynn Archie Quarterfinals Hassan ##ards vein Osaka pouring wages Romance ##cript ##phere 550 ##eil ##stown Documentary ancestor CNN Panthers publishers Rise ##mu biting Bright String succeeding 119 loaned Warwick Sheikh Von Afterwards Jax Camden helicopters Hence Laurel ##ddy transaction Corp clause ##owing ##kel Investment cups Lucia Moss Giles chef López decisive 30th distress linguistic surveys Ready maiden Touch frontier incorporate exotic mollusk Leopold Ride ##wain ##ndo teammates tones drift ordering Feb Penny Normandy Present Flag pipes ##rro delight motto Tibet leap Eliza Produced teenagers sitcom Try Hansen Cody wandered terrestrial frog scare resisted employers coined ##DS resistant Fly captive dissolution judged associates defining ##court Hale ##mbo raises clusters twelfth ##metric Roads ##itude satisfy Android Reds Gloucester Category Valencia Daemon stabbed Luna Churches Canton ##eller Attack Kashmir annexed grabs asteroid Hartford recommendation Rodriguez handing stressed frequencies delegate Bones Erie Weber Hands Acts millimetres 24th Fat Howe casually ##SL convent 1790 IF ##sity 1795 yelling ##ises drain addressing amino Marcel Sylvia Paramount Gerard Volleyball butter 124 Albion ##GB triggered 1792 folding accepts ##ße preparations Wimbledon dose ##grass escaping ##tling import charging ##dation 280 Nolan ##fried Calcutta ##pool Cove examining minded heartbeat twisting domains bush Tunisia Purple Leone ##code evacuated battlefield tiger Electrical ##ared chased ##cre cultivated Jet solved shrug ringing Impact ##iant kilometre ##log commemorate migrated singular designing promptly Higgins ##own ##aves freshwater Marketing Payne beg locker pray implied AAA corrected Trans Europeans Ashe acknowledge Introduction ##writer ##llen Munster auxiliary growl Hours Poems ##AT reduces Plain plague canceled detention polite necklace Gustav ##gu ##lance En Angola ##bb dwelling ##hea 5000 Qing Dodgers rim ##ored ##haus spilled Elisabeth Viktor backpack 1802 amended ##worthy Phantom ##ctive keeper ##loom Vikings ##gua employs Tehran specialty ##bate Marx Mirror Jenna rides needle prayers clarinet forewings ##walk Midlands convincing advocacy Cao Birds cycles Clement Gil bubble Maximum humanitarian Tan cries ##SI Parsons Trio offshore Innovation clutched 260 ##mund ##duct Prairie relied Falcon ##ste Kolkata Gill Swift Negro Zoo valleys ##OL Opening beams MPs outline Bermuda Personal exceed productive ##MT republic forum ##sty tornado Known dipped Edith folks mathematician watershed Ricardo synthetic ##dication deity ##₄ gaming subjected suspects Foot swollen Motors ##tty ##ý aloud ceremonial es nuts intend Carlisle tasked hesitation sponsors unified inmates ##ctions ##stan tiles jokes whereby outcomes Lights scary Stoke Portrait Blind sergeant violations cultivation fuselage Mister Alfonso candy sticks teen agony Enough invite Perkins Appeal mapping undergo Glacier Melanie affects incomplete ##dd Colombian ##nate CBC purchasing bypass Drug Electronics Frontier Coventry ##aan autonomy scrambled Recent bounced cow experiencing Rouge cuisine Elite disability Ji inheritance wildly Into ##wig confrontation Wheeler shiver Performing aligned consequently Alexis Sin woodland executives Stevenson Ferrari inevitable ##cist ##dha ##base Corner comeback León ##eck ##urus MacDonald pioneering breakdown landscapes Veterans Rican Theological stirred participant Credit Hyderabad snails Claudia ##ocene compliance ##MI Flags Middlesex storms winding asserted er ##ault ##kal waking ##rates abbey Augusta tooth trustees Commodore ##uded Cunningham NC Witch marching Sword Same spiral Harley ##ahan Zack Audio 1890s ##fit Simmons Kara Veronica negotiated Speaking FIBA Conservatory formations constituencies explicit facial eleventh ##ilt villain ##dog ##case ##hol armored tin hairs ##umi ##rai mattress Angus cease verbal Recreation savings Aurora peers Monastery Airways drowned additions downstream sticking Shi mice skiing ##CD Raw Riverside warming hooked boost memorable posed treatments 320 ##dai celebrating blink helpless circa Flowers PM uncommon Oct Hawks overwhelmed Sparhawk repaired Mercy pose counterpart compare survives ##½ ##eum coordinate Lil grandchildren notorious Yi Judaism Juliet accusations 1789 floated marathon roar fortified reunion 145 Nov Paula ##fare ##toria tearing Cedar disappearance Si gifted scar 270 PBS Technologies Marvin 650 roller cupped negotiate ##erman passport tram miracle styled ##tier necessity Des rehabilitation Lara USD psychic wipe ##lem mistaken ##lov charming Rider pageant dynamics Cassidy ##icus defenses ##tadt ##vant aging ##inal declare mistress supervised ##alis ##rest Ashton submerged sack Dodge grocery ramp Teacher lineage imagery arrange inscriptions Organisation Siege combines pounded Fleming legends columnist Apostolic prose insight Arabian expired ##uses ##nos Alone elbows ##asis ##adi ##combe Step Waterloo Alternate interval Sonny plains Goals incorporating recruit adjoining Cheshire excluding marrying ducked Cherokee par ##inate hiking Coal ##bow natives ribbon Allies con descriptions positively ##lal defendant 22nd Vivian ##beat Weather possessions Date sweetheart inability Salisbury adviser ideology Nordic ##eu Cubs IP Administrative ##nick facto liberation Burnett Javier fashioned Electoral Turin theft unanimous Per 1799 Clan Hawkins Teachers ##wes Cameroon Parkway ##gment demolition atoms nucleus ##thi recovering ##yte ##vice lifts Must deposit Hancock Semi darkened Declaration moan muscular Myers attractions sauce simulation ##weed Alps barriers ##baum Barack galleries Min holders Greenwich donation Everybody Wolfgang sandwich Kendra Collegiate casino Slavic ensuing Porto ##grapher Jesuit suppressed tires Ibrahim protesters Ibn Amos 1796 phenomena Hayden Paraguay Squad Reilly complement aluminum ##eers doubts decay demise Practice patience fireplace transparent monarchy ##person Rodney mattered rotating Clifford disposal Standards paced ##llie arise tallest tug documentation node freeway Nikolai ##cite clicked imaging Lorraine Tactical Different Regular Holding 165 Pilot guarded ##polis Classics Mongolia Brock monarch cellular receptors Mini Chandler financed financially Lives erection Fuller unnamed Kannada cc passive plateau ##arity freak ##rde retrieved transactions ##sus 23rd swimmer beef fulfill Arlington offspring reasoning Rhys saves pseudonym centimetres shivered shuddered ##ME Feel ##otic professors Blackburn ##eng ##life ##haw interred lodge fragile Della guardian ##bbled catalog clad observer tract declaring ##headed Lok dean Isabelle 1776 irrigation spectacular shuttle mastering ##aro Nathaniel Retired ##lves Brennan ##kha dick ##dated ##hler Rookie leapt televised weekends Baghdad Yemen ##fo factions ion Lab mortality passionate Hammer encompasses confluence demonstrations Ki derivative soils ##unch Ranch Universities conventions outright aiming hierarchy reside illusion graves rituals 126 Antwerp Dover ##ema campuses Hobart lifelong aliens ##vity Memory coordination alphabet ##mina Titans pushes Flanders ##holder Normal excellence capped profound Taipei portrayal sparked scratch se ##eas ##hir Mackenzie ##cation Neo Shin ##lined magnificent poster batsman ##rgent persuade ##ement Icelandic miserable collegiate Feature geography ##mura Comic Circus processor barracks Tale ##11 Bulls ##rap strengthened ##bell injection miniature broadly Letter fare hostage traders ##nium ##mere Fortune Rivera Lu triumph Browns Bangalore cooperative Basel announcing Sawyer ##him ##cco ##kara darted ##AD ##nova sucking ##position perimeter flung Holdings ##NP Basque sketches Augustine Silk Elijah analyst armour riots acquiring ghosts ##ems 132 Pioneer Colleges Simone Economy Author semester Soldier il ##unting ##bid freaking Vista tumor ##bat murderer ##eda unreleased ##grove ##sser ##té edit statute sovereign ##gawa Killer stares Fury comply ##lord ##nant barrels Andhra Maple generator mascot unusually eds ##ante ##runner rod ##tles Historically Jennings dumped Established resemblance ##lium ##cise ##body ##voke Lydia ##hou ##iring nonetheless 1797 corrupt patrons physicist sneak Livingston Citizens Architects Werner trends Melody eighty markings brakes ##titled oversaw processed mock Midwest intervals ##EF stretches werewolf ##MG Pack controller ##dition Honours cane Griffith vague repertoire Courtney orgasm Abdullah dominance occupies Ya introduces Lester instinct collaborative Indigenous refusal ##rank outlet debts spear 155 ##keeping ##ulu Catalan ##osh tensions ##OT bred crude Dunn abdomen accurately ##fu ##lough accidents Row Audrey rude Getting promotes replies Paolo merge ##nock trans Evangelical automated Canon ##wear ##ggy ##gma Broncos foolish icy Voices knives Aside dreamed generals molecule AG rejection insufficient ##nagar deposited sacked Landing arches helpful devotion intake Flower PGA dragons evolutionary ##mail 330 GM tissues ##tree arcade composite lid Across implications lacks theological assessed concentrations Den ##mans ##ulous Fu homeland ##stream Harriet ecclesiastical troop ecological winked ##xed eighteenth Casino specializing ##sworth unlocked supreme devastated snatched trauma GDP Nord saddle Wes convenient competes ##nu ##iss Marian subway ##rri successes umbrella ##far ##ually Dundee ##cence spark ##rix ##я Quality Geological cockpit rpm Cam Bucharest riot ##PM Leah ##dad ##pose Ka m³ Bundesliga Wolfe grim textile quartet expressing fantastic destroyers eternal picnic ##oro contractor 1775 spanning declining ##cating Lowe Sutherland Emirates downward nineteen violently scout viral melting enterprises ##cer Crosby Jubilee antenna urgent Rory ##uin ##sure wandering ##gler ##vent Suzuki Lifetime Dirty occupying ##quent Disc Guru mound Lennon Humanities listeners Walton uh Braves Bologna ##bis ##gra Dwight crawl flags memoir Thorne Archdiocese dairy ##uz ##tery roared adjust patches inn Knowing ##bbed ##zan scan Papa precipitation angrily passages postal Phi embraced blacks economist triangular Sen shooter punished Millennium Swimming confessed Aston defeats Era cousins Williamson ##rer daytime dumb ##rek underway specification Buchanan prayed concealed activation ##issa canon awesome Starr plural summers ##fields Slam unnecessary 1791 resume trilogy compression ##rough selective dignity Yan ##xton immense ##yun lone seeded hiatus lightweight summary Yo approve Galway rejoined Elise garbage burns speeches 129 Honduras ##liness inventory jersey FK assure slumped Lionel Suite ##sbury Lena continuation ##AN brightly ##nti GT Knowledge ##park ##lius lethal ##tribution ##sions Certificate Mara ##lby algorithms Jade blows pirates fleeing wheelchair Stein sophomore Alt Territorial diploma snakes ##olic ##tham Tiffany Pius flush urging Hanover Reich ##olate Unity Pike collectively Theme ballad kindergarten rocked zoo ##page whip Rodríguez strokes checks Becky Stern upstream ##uta Silent volunteered Sigma ##ingen ##tract ##ede Gujarat screwed entertaining ##action ##ryn defenders innocence lesbian que Richie nodes Lie juvenile Jakarta safer confront Bert breakthrough gospel Cable ##zie institutional Archive brake liquor feeds ##iate chancellor Encyclopedia Animation scanning teens ##mother Core Rear Wine ##flower reactor Ave cardinal sodium strands Olivier crouched Vaughan Sammy Image scars Emmanuel flour bias nipple revelation ##ucci Denny ##ssy Form Runners admits Rama violated Burmese feud underwear Mohamed Named swift statewide Door Recently comparing Hundred ##idge ##nity ##rds Rally Reginald Auburn solving waitress Treasurer ##ilization Halloween Ministers Boss Shut ##listic Rahman demonstrating ##pies Gaza Yuri installations Math schooling ##bble Bronx exiled gasoline 133 bundle humid FCC proportional relate VFL ##dez continuity ##cene syndicated atmospheric arrows Wanderers reinforcements Willow Lexington Rotten ##yon discovering Serena portable ##lysis targeting £1 Goodman Steam sensors detachment Malik ##erie attitudes Goes Kendall Read Sleep beans Nikki modification Jeanne knuckles Eleven ##iously Gross Jaime dioxide moisture Stones UCI displacement Metacritic Jury lace rendering elephant Sergei ##quire GP Abbott ##type projection Mouse Bishops whispering Kathleen Rams ##jar whites ##oran assess dispatched ##hire kin ##mir Nursing advocates tremendous sweater assisting ##bil Farmer prominently reddish Hague cyclone ##SD Sage Lawson Sanctuary discharged retains ##ube shotgun wilderness Reformed similarity Entry Watts Bahá Quest Looks visions Reservoir Arabs curls Blu dripping accomplish Verlag drill sensor Dillon physicians smashed ##dir painters Renault straw fading Directorate lounge commissions Brain ##graph neo ##urg plug coordinated ##houses Critical lamps illustrator Returning erosion Crow ##ciation blessing Thought Wife medalist synthesizer Pam Thornton Esther HBO fond Associates ##raz pirate permits Wide tire ##PC Ernie Nassau transferring RFC ##ntly um spit AS ##mps Mining polar villa anchored ##zzi embarrassment relates ##ă Rupert counterparts 131 Baxter ##18 Igor recognizes Clive ##hane ##eries ##ibly occurrence ##scope fin colorful Rapids banker tile ##rative ##dus delays destinations ##llis Pond Dane grandparents rewarded socially motorway ##hof ##lying ##human modeled Dayton Forward conscience Sharma whistle Mayer Sasha ##pical circuits Zhou ##ça Latvian finalists predators Lafayette closes obligations Resolution ##vier Trustees reminiscent ##hos Highlands Protected asylum evacuation ##acy Chevrolet confession Somalia emergence separating ##rica alright calcium Laurent Welfare Leonardo ashes dental Deal minerals ##lump ##mount accounted staggered slogan photographic builder ##imes ##raft tragic 144 SEC Hit tailed ##ples ##rring ##rson ethical wrestlers concludes lunar ##ept nitrogen Aid cyclist quarterfinals ##ه harvest ##hem Pasha IL ##mis continually ##forth Intel bucket ##ended witches pretended dresses viewer peculiar lowering volcano Marilyn Qualifier clung ##sher Cut modules Bowie ##lded onset transcription residences ##pie ##itor scrapped ##bic Monaco Mayo eternity Strike uncovered skeleton ##wicz Isles bug Promoted ##rush Mechanical XII ##ivo gripping stubborn velvet TD decommissioned operas spatial unstable Congressman wasted ##aga ##ume advertisements ##nya obliged Cannes Conway bricks ##gnant ##mity ##uise jumps Clear ##cine ##sche chord utter Su podium spokesman Royce assassin confirmation licensing liberty ##rata Geographic individually detained ##ffe Saturn crushing airplane bushes knights ##PD Lilly hurts unexpectedly Conservatives pumping Forty candle Pérez peasants supplement Sundays ##ggs ##rries risen enthusiastic corresponds pending ##IF Owens floods Painter inflation presumed inscribed Chamberlain bizarre 1200 liability reacted tub Legacy ##eds ##pted shone ##litz ##NC Tiny genome bays Eduardo robbery stall hatch Depot Variety Flora reprinted trembled outlined CR Theresa spans ##plication Jensen ##eering posting ##rky pays ##ost Marcos fortifications inferior ##ential Devi despair Talbot ##chus updates ego Booth Darius tops ##lau Scene ##DC Harlem Trey Generally candles ##α Neville Admiralty ##hong iconic victorious 1600 Rowan abundance miniseries clutching sanctioned ##words obscure ##ision ##rle ##EM disappearing Resort Obviously ##eb exceeded 1870s Adults ##cts Cry Kerr ragged selfish ##lson circled pillars galaxy ##asco ##mental rebuild caution Resistance Start bind splitting Baba Hogan ps partnerships slam Peggy courthouse ##OD organizational packages Angie ##nds possesses ##rp Expressway Gould Terror Him Geoff nobles ##ope shark ##nh identifies ##oor testified Playing ##ump ##isa stool Idol ##pice ##tana Byrne Gerry grunted 26th observing habits privilege immortal wagons ##thy dot Bring ##lian ##witz newest ##uga constraints Screen Issue ##RNA ##vil reminder ##gles addiction piercing stunning var ##rita Signal accumulated ##wide float devastating viable cartoons Uttar flared ##encies Theology patents ##bahn privileges ##ava ##CO 137 ##oped ##NT orchestral medication 225 erect Nadia École fried Sales scripts ##rease airs Cage inadequate structured countless Avengers Kathy disguise mirrors Investigation reservation ##nson Legends humorous Mona decorations attachment Via motivation Browne strangers ##ński Shadows Twins ##pressed Alma Nominated ##ott Sergio canopy 152 Semifinals devised ##irk upwards Traffic Goddess Move beetles 138 spat ##anne holdings ##SP tangled Whilst Fowler anthem ##ING ##ogy snarled moonlight songwriting tolerance Worlds exams ##pia notices sensitivity poetic Stephens Boone insect reconstructed Fresh 27th balloon ##ables Brendan mug ##gee 1780 apex exports slides Lahore hiring Shell electorate sexuality poker nonprofit ##imate cone ##uce Okinawa superintendent ##HC referenced turret Sprint Citizen equilibrium Stafford curb Driver Valerie ##rona aching impacts ##bol observers Downs Shri ##uth airports ##uda assignments curtains solitary icon patrols substances Jasper mountainous Published ached ##ingly announce dove damaging ##tism Primera Dexter limiting batch ##uli undergoing refugee Ye admiral pavement ##WR ##reed pipeline desires Ramsey Sheila thickness Brotherhood Tea instituted Belt Break plots ##ais masculine ##where Theo ##aged ##mined Experience scratched Ethiopian Teaching ##nov Aiden Abe Samoa conditioning ##mous Otherwise fade Jenks ##encing Nat ##lain Anyone ##kis smirk Riding ##nny Bavarian blessed potatoes Hook ##wise likewise hardened Merry amid persecution ##sten Elections Hoffman Pitt ##vering distraction exploitation infamous quote averaging healed Rhythm Germanic Mormon illuminated guides ##ische interfere ##ilized rector perennial ##ival Everett courtesy ##nham Kirby Mk ##vic Medieval ##tale Luigi limp ##diction Alive greeting shove ##force ##fly Jasmine Bend Capt Suzanne ditch 134 ##nning Host fathers rebuilding Vocal wires ##manship tan Factor fixture ##LS Māori Plate pyramid ##umble slap Schneider yell ##ulture ##tional Goodbye sore ##pher depressed ##dox pitching Find Lotus ##wang strand Teen debates prevalent ##bilities exposing hears billed ##rse reorganized compelled disturbing displaying ##tock Clinical emotionally ##iah Derbyshire grouped ##quel Bahrain Journalism IN persistent blankets Crane camping Direct proving Lola ##dding Corporate birthplace ##boats ##ender Figure dared Assam precursor ##nched Tribe Restoration slate Meyrick hunted stroking Earlier Kind polls appeals monetary ##reate Kira Langdon explores GPS extensions squares Results draped announcer merit ##ennial ##tral ##roved ##cion robots supervisor snorted ##group Cannon procession monkey freeze sleeves Nile verdict ropes firearms extraction tensed EC Saunders ##tches diamonds Marriage ##amble curling Amazing ##haling unrelated ##roads Daughter cum discarded kidney cliffs forested Candy ##lap authentic tablet notation ##nburg Bulldogs Callum Meet mouths coated ##xe Truman combinations ##mation Steelers Fan Than paternal ##father ##uti Rebellion inviting Fun theatres ##ي ##rom curator ##cision networking Oz drought ##ssel granting MBA Shelby Elaine jealousy Kyoto shores signaling tenants debated Intermediate Wise ##hes ##pu Havana duke vicious exited servers Nonetheless Reports explode ##beth Nationals offerings Oval conferred eponymous folklore ##NR Shire planting 1783 Zeus accelerated Constable consuming troubles McCartney texture bust Immigration excavated hopefully ##cession ##coe ##name ##ully lining Einstein Venezuelan reissued minorities Beatrice crystals ##nies circus lava Beirut extinction ##shu Becker ##uke issuing Zurich extract ##esta ##rred regulate progression hut alcoholic plea AB Norse Hubert Mansfield ashamed ##put Bombardment stripes electrons Denise horrified Nor arranger Hay Koch ##ddling ##iner Birthday Josie deliberate explorer ##jiang ##signed Arrow wiping satellites baritone mobility ##rals Dorset turbine Coffee 185 ##lder Cara Colts pits Crossing coral ##birth Tai zombie smoothly ##hp mates ##ady Marguerite ##tary puzzled tapes overly Sonic Prayer Thinking ##uf IEEE obligation ##cliffe Basil redesignated ##mmy nostrils Barney XIII ##phones vacated unused Berg ##roid Towards viola 136 Event subdivided rabbit recruiting ##nery Namibia ##16 ##ilation recruits Famous Francesca ##hari Goa ##lat Karachi haul biblical ##cible MGM ##rta horsepower profitable Grandma importantly Martinez incoming ##kill beneficial nominal praying ##isch gable nail noises ##ttle Polytechnic rub ##cope Thor audition erotic ##ending ##iano Ultimately armoured ##mum presently pedestrian ##tled Ipswich offence ##ffin ##borne Flemish ##hman echo ##cting auditorium gentlemen winged ##tched Nicaragua Unknown prosperity exhaust pie Peruvian compartment heights disabilities ##pole Harding Humphrey postponed moths Mathematical Mets posters axe ##nett Nights Typically chuckle councillors alternating 141 Norris ##ately ##etus deficit dreaming cooler oppose Beethoven ##esis Marquis flashlight headache investor responding appointments ##shore Elias ideals shades torch lingering ##real pier fertile Diploma currents Snake ##horse ##15 Briggs ##ota ##hima ##romatic Coastal Kuala ankles Rae slice Hilton locking Approximately Workshop Niagara strangely ##scence functionality advertisement Rapid Anders ho Soviets packing basal Sunderland Permanent ##fting rack tying Lowell ##ncing Wizard mighty tertiary pencil dismissal torso grasped ##yev Sand gossip ##nae Beer implementing ##19 ##riya Fork Bee ##eria Win ##cid sailor pressures ##oping speculated Freddie originating ##DF ##SR ##outh 28th melt Brenda lump Burlington USC marginal ##bine Dogs swamp cu Ex uranium metro spill Pietro seize Chorus partition ##dock ##media engineered ##oria conclusions subdivision ##uid Illustrated Leading ##hora Berkshire definite ##books ##cin ##suke noun winced Doris dissertation Wilderness ##quest braced arbitrary kidnapping Kurdish ##but clearance excavations wanna Allmusic insult presided yacht ##SM Honour Tin attracting explosives Gore Bride ##ience Packers Devils Observer ##course Loser ##erry ##hardt ##mble Cyrillic undefeated ##stra subordinate ##ame Wigan compulsory Pauline Cruise Opposition ##ods Period dispersed expose ##60 ##has Certain Clerk Wolves ##hibition apparatus allegiance orbital justified thanked ##ević Biblical Carolyn Graves ##tton Hercules backgrounds replica 1788 aquatic Mega Stirling obstacles filing Founder vowels Deborah Rotterdam surpassed Belarusian ##ologists Zambia Ren Olga Alpine bi councillor Oaks Animals eliminating digit Managing ##GE laundry ##rdo presses slamming Tudor thief posterior ##bas Rodgers smells ##ining Hole SUV trombone numbering representations Domingo Paralympics cartridge ##rash Combined shelves Kraków revision ##frame Sánchez ##tracted ##bler Alain townships sic trousers Gibbs anterior symmetry vaguely Castile IRA resembling Penguin ##ulent infections ##stant raped ##pressive worrying brains bending JR Evidence Venetian complexes Jonah 850 exported Ambrose Gap philanthropist ##atus Marxist weighing ##KO ##nath Soldiers chiefs reject repeating shaky Zürich preserving ##xin cigarettes ##break mortar ##fin Already reproduction socks Waiting amazed ##aca dash ##path Airborne ##harf ##get descending OBE Sant Tess Lucius enjoys ##ttered ##ivation ##ete Leinster Phillies execute geological unfinished Courts SP Beaver Duck motions Platinum friction ##aud ##bet Parts Stade entirety sprang Smithsonian coffin prolonged Borneo ##vise unanimously ##uchi Cars Cassandra Australians ##CT ##rgen Louisa spur Constance ##lities Patent racism tempo ##ssion ##chard ##nology ##claim Million Nichols ##dah Numerous ing Pure plantations donor ##EP ##rip convenience ##plate dots indirect ##written Dong failures adapt wizard unfortunately ##gion practitioners economically Enrique unchanged kingdoms refined definitions lazy worries railing ##nay Kaiser ##lug cracks sells ninety ##WC Directed denotes developmental papal unfortunate disappointing sixteenth Jen ##urier NWA drifting Horror ##chemical behaviors bury surfaced foreigners slick AND ##rene ##ditions ##teral scrap kicks comprise buddy ##anda Mental ##ype Dom wines Limerick Luca Rand ##won Tomatoes homage geometric ##nted telescope Shelley poles ##fan shareholders Autonomous cope intensified Genoa Reformation grazing ##tern Zhao provisional ##bies Con ##riel Cynthia Raleigh vivid threaten Length subscription roses Müller ##isms robin ##tial Laos Stanton nationalism ##clave ##ND ##17 ##zz staging Busch Cindy relieve ##spective packs neglected CBE alpine Evolution uneasy coastline Destiny Barber Julio ##tted informs unprecedented Pavilion ##bei ##ference betrayal awaiting leaked V8 puppet adverse Bourne Sunset collectors ##glass ##sque copied Demon conceded resembled Rafe Levy prosecutor ##ject flora manned deaf Mosque reminds Lizzie Products Funny cassette congress ##rong Rover tossing prompting chooses Satellite cautiously Reese ##UT Huang Gloucestershire giggled Kitty ##å Pleasant Aye ##ond judging 1860s intentionally Hurling aggression ##xy transfers employing ##fies ##oda Archibald Blessed Ski flavor Rosie ##burgh sunset Scholarship WC surround ranged ##jay Degree Houses squeezing limb premium Leningrad steals ##inated ##ssie madness vacancy hydraulic Northampton ##prise Marks Boxing ##fying academics ##lich ##TY CDs ##lma hardcore monitors paperback cables Dimitri upside advent Ra ##clusive Aug Christchurch objected stalked Simple colonists ##laid CT discusses fellowship Carnival cares Miracle pastoral rooted shortage borne Quentin meditation tapping Novel ##ades Alicia Burn famed residency Fernández Johannesburg Zhu offended Mao outward ##inas XV denial noticing ##ís quarry ##hound ##amo Bernie Bentley Joanna mortgage ##rdi ##sumption lenses extracted depiction ##RE Networks Broad Revenue flickered virgin flanked ##о Enterprises probable Liberals Falcons drowning phrases loads assumes inhaled awe logs slightest spiders waterfall ##pate rocking shrub ##uil roofs ##gard prehistoric wary ##rak TO clips sustain treason microphone voter Lamb psychologist wrinkled ##ères mating Carrier 340 ##lbert sensing ##rino destiny distract weaker UC Nearly neurons spends Apache ##rem genuinely wells ##lanted stereo ##girl Lois Leaving consul fungi Pier Cyril 80s Jungle ##tani illustration Split ##hana Abigail ##patrick 1787 diminished Selected packaging ##EG Martínez communal Manufacturing sentiment 143 unwilling praising Citation pills ##iti ##rax muffled neatly workforce Yep leisure Tu ##nding Wakefield ancestral ##uki destructive seas Passion showcase ##ceptive heroic 142 exhaustion Customs ##aker Scholar sliced ##inian Direction ##OW Swansea aluminium ##eep ceramic McCoy Career Sector chartered Damascus pictured Interest stiffened Plateau obsolete ##tant irritated inappropriate overs ##nko bail Talent Sur ours ##nah barred legged sociology Bud dictionary ##luk Cover obey ##oring annoying ##dong apprentice Cyrus Role ##GP ##uns ##bag Greenland Porsche Rocket ##32 organism ##ntary reliability ##vocation ##й Found ##hine motors promoter unfair ##oms ##note distribute eminent rails appealing chiefly meaningful Stephan ##rehension Consumer psychiatric bowler saints ##iful ##н 1777 Pol Dorian Townsend hastily ##jima Quincy Sol fascinated Scarlet alto Avon certainty ##eding Keys ##chu Chu ##VE ions tributaries Thanksgiving ##fusion astronomer oxide pavilion Supply Casa Bollywood sadly mutations Keller ##wave nationals ##rgo ##ym predict Catholicism Vega ##eration ##ums Mali tuned Lankan Plans radial Bosnian Lexi ##14 ##ü sacks unpleasant Empty handles ##taking Bon switches intently tuition antique ##jk fraternity notebook Desmond ##sei prostitution ##how deed ##OP 501 Somewhere Rocks ##mons campaigned frigate gases suppress ##hang Merlin Northumberland dominate expeditions thunder ##ups ##rical Cap thorough Ariel ##kind renewable constructing pacing terrorists Bowen documentaries westward ##lass ##nage Merchant ##ued Beaumont Din ##hian Danube peasant Garrison encourages gratitude reminding stormed ##ouse pronunciation ##ailed Weekend suggestions ##ffing ##DI Active Colombo ##logists Merrill ##cens Archaeological Medina captained ##yk duel cracking Wilkinson Guam pickup renovations ##ël ##izer delighted ##iri Weaver ##ctional tens ##hab Clint ##usion ##each petals Farrell ##sable caste ##will Ezra ##qi ##standing thrilled ambush exhaled ##SU Resource blur forearm specifications contingent cafe ##iology Antony fundraising grape ##rgy turnout ##udi Clifton laboratories Irvine ##opus ##lid Monthly Bihar statutory Roses Emil ##rig lumber optimal ##DR pumps plaster Mozambique ##aco nightclub propelled ##hun ked surplus wax ##urai pioneered Sunny imprint Forget Eliot approximate patronage ##bek ##ely ##mbe Partnership curl snapping 29th Patriarch ##jord seldom ##ature astronomy Bremen XIV airborne 205 1778 recognizing stranded arrogant bombardment destined ensured 146 robust Davenport Interactive Offensive Fi prevents probe propeller sorrow Blade mounting automotive ##dged wallet 201 lashes Forrest ##ift Cell Younger shouts ##cki folds ##chet Epic yields homosexual tunes ##minate ##text Manny chemist hindwings ##urn pilgrimage ##sfield ##riff MLS ##rive Huntington translates Path slim ##ndra ##oz climax commuter desperation ##reet denying ##rious daring seminary polo ##clamation Teatro Torah Cats identities Poles photographed fiery popularly ##cross winters Hesse ##vio Nurse Senegal Salon prescribed justify ##gues ##и ##orted HQ ##hiro evaluated momentarily ##unts Debbie ##licity ##TP Mighty Rabbit ##chal Events Savoy ##ht Brandenburg Bordeaux ##laus Release ##IE ##kowski 1900s SK Strauss ##aly Sonia Updated synagogue McKay flattened 370 clutch contests toast evaluate pope heirs jam tutor reverted ##ading nonsense hesitate Lars Ceylon Laurie ##guchi accordingly customary 148 Ethics Multiple instincts IGN ##ä bullshit ##hit ##par desirable ##ducing ##yam alias ashore licenses ##lification misery 147 Cola assassinated fiercely ##aft las goat substrate lords Cass Bridges ICC lasts sights reproductive ##asi Ivory Clean fixing ##lace seeming aide 1850s harassment ##FF ##LE reasonably ##coat ##cano NYC 1784 Fifty immunity Canadians Cheng comforting meanwhile ##tera ##blin breeds glowed ##vour Aden ##verted ##aded ##oral neat enforced poisoning ##ews ##hone enforce predecessors survivor Month unfamiliar pierced waived dump responds Mai Declan angular Doesn interpretations ##yar invest Dhaka policeman Congregation Eighth painfully ##este ##vior Württemberg ##cles blockade encouragement ##fie Caucasus Malone Universidad utilize Nissan inherent 151 agreeing syllable determines Protocol conclude ##gara 40th Xu Taiwanese ##ather boiler printer Lacey titular Klaus Fallon Wembley fox Chandra Governorate obsessed ##Ps micro ##25 Cooke gymnasium weaving Shall Hussein glaring softball Reader Dominion Trouble varsity Cooperation Chaos Kang Kramer Eisenhower proves Connie consortium governors Bethany opener Normally Willy linebacker Regent Used AllMusic Twilight ##shaw Companion Tribunal simpler ##gam Experimental Slovenian cellar deadline trout Hubbard ads idol ##hetto Granada clues salmon 1700 Omega Caldwell softened Bills Honolulu ##gn Terrace suitcase ##IL frantic ##oons Abbot Sitting Fortress Riders sickness enzymes trustee Bern forged ##13 ##ruff ##rl ##versity inspector champagne ##held ##FI hereditary Taliban handball ##wine Sioux ##dicated honoured 139 ##tude Skye meanings ##rkin cardiac analyzed vegetable ##FS Royals dial freelance ##fest partisan petroleum ridden Lincolnshire panting ##comb presidents Haley ##chs contributes Jew discoveries panicked Woody eyelids Fate Tulsa mg whiskey zombies Wii ##udge investigators ##bull centred ##screen Bone Lana ##oise forts ##ske Conan Lyons ##writing SH ##ride rhythmic 154 ##llah pioneers ##bright captivity Sanchez Oman ##mith Flint Platform ##ioned emission packet Persia ##formed takeover tempted Vance Few Toni receptions ##ن exchanges Camille whale Chronicles ##rent ##ushing ##rift Alto Genus ##asing onward foremost longing Rockefeller containers ##cribe intercepted ##olt pleading Bye bee ##umbling 153 undertake Izzy cheaper Ultra validity ##pse Sa hovering ##pert vintage engraved ##rise farmland ##ever ##ifier Atlantis propose Catalonia plunged ##edly demonstrates gig ##cover 156 Osborne cowboy herd investigator loops Burning rests Instrumental embarrassing focal install readings swirling Chatham parameter ##zin ##holders Mandarin Moody converting Escape warnings ##chester incarnation ##ophone adopting ##lins Cromwell ##laws Axis Verde Kappa Schwartz Serbs caliber Wanna Chung ##ality nursery principally Bulletin likelihood logging ##erty Boyle supportive twitched ##usive builds Marseille omitted motif Lands ##lusion ##ssed Barrow Airfield Harmony WWF endured merging convey branding examinations 167 Italians ##dh dude 1781 ##teau crawling thoughtful clasped concluding brewery Moldova Wan Towers Heidelberg 202 ##ict Lagos imposing ##eval ##serve Bacon frowning thirteenth conception calculations ##ович ##mile ##ivated mutation strap ##lund demographic nude perfection stocks ##renched ##dit Alejandro bites fragment ##hack ##rchy GB Surgery Berger punish boiling consume Elle Sid Dome relies Crescent treasurer Bloody 1758 upheld Guess Restaurant signatures font millennium mural stakes Abel hailed insists Alumni Breton ##jun digits ##FM ##thal Talking motive reigning babe masks ##ø Shaun potato sour whitish Somali ##derman ##rab ##wy chancel telecommunications Noise messenger tidal grinding ##ogenic Rebel constituent peripheral recruitment ##ograph ##tler pumped Ravi poked ##gley Olive diabetes discs liking sting fits stir Mari Sega creativity weights Macau mandated Bohemia disastrous Katrina Baku Rajasthan waiter ##psis Siberia verbs ##truction patented 1782 ##ndon Relegated Hunters Greenwood Shock accusing skipped Sessions markers subset monumental Viola comparative Alright Barbados setup Session standardized ##ík ##sket appoint AFB Nationalist ##WS Troop leaped Treasure goodness weary originates 100th compassion expresses recommend 168 composing seventeenth Tex Atlético bald Finding Presidency Sharks favoured inactive ##lter suffix princes brighter ##ctus classics defendants culminated terribly Strategy evenings ##ção ##iver ##urance absorb ##rner Territories RBI soothing Martín concurrently ##tr Nicholson fibers swam ##oney Allie Algerian Dartmouth Mafia ##bos ##tts Councillor vocabulary ##bla ##lé intending ##dler Guerrero sunshine pedal ##TO administrators periodic scholarships Loop Madeline exaggerated ##ressed Regan ##cellular Explorer ##oids Alexandre vows Reporter Unable Average absorption ##bedience Fortunately Auxiliary Grandpa ##HP ##ovo potent temporal adrenaline ##udo confusing guiding Dry qualifications joking wherein heavyweight ##ices nightmares pharmaceutical Commanding ##aled ##ove Gregor ##UP censorship degradation glorious Austro ##rench 380 Miriam sped ##orous offset ##KA fined specialists Pune João ##dina propped fungus ##ς frantically Gabrielle Hare committing ##plied Ask Wilmington stunt numb warmer preacher earnings ##lating integer ##ija federation homosexuality ##cademia epidemic grumbled shoving Milk Satan Tobias innovations ##dington geology memoirs ##IR spared culminating Daphne Focus severed stricken Paige Mans flats Russo communes litigation strengthening ##powered Staffordshire Wiltshire Painting Watkins ##د specializes Select ##rane ##aver Fulton playable ##VN openings sampling ##coon ##21 Allah travelers allocation ##arily Loch ##hm commentators fulfilled ##troke Emeritus Vanderbilt Vijay pledged ##tative diagram drilling ##MD ##plain Edison productivity 31st ##rying ##ption ##gano ##oration ##bara posture bothering platoon politely ##inating redevelopment Job ##vale stark incorrect Mansion renewal threatens Bahamas fridge ##tata Uzbekistan ##edia Sainte ##mio gaps neural ##storm overturned Preservation shields ##ngo ##physics ah gradual killings ##anza consultation premiership Felipe coincidence ##ène ##any Handbook ##loaded Edit Guns arguably ##ş compressed depict seller ##qui Kilkenny ##kling Olympia librarian ##acles dramas JP Kit Maj ##lists proprietary ##nged ##ettes ##tok exceeding Lock induction numerical ##vist Straight foyer imaginary ##pop violinist Carla bouncing ##ashi abolition ##uction restoring scenic ##č Doom overthrow para ##vid ##ughty Concord HC cocaine deputies ##aul visibility ##wart Kapoor Hutchinson ##agan flashes kn decreasing ##ronology quotes vain satisfying ##iam ##linger 310 Hanson fauna ##zawa ##rrel Trenton ##VB Employment vocational Exactly bartender butterflies tow ##chers ##ocks pigs merchandise ##game ##pine Shea ##gration Connell Josephine monopoly ##dled Cobb warships cancellation someday stove ##Cs candidacy superhero unrest Toulouse admiration undergone whirled Reconnaissance costly ##ships 290 Cafe amber Tory ##mpt definitive ##dress proposes redesigned acceleration ##asa ##raphy Presley exits Languages ##cel Mode spokesperson ##tius Ban forthcoming grounded ACC compelling logistics retailers abused ##gating soda ##yland ##lution Landmark XVI blush ##tem hurling dread Tobago Foley ##uad scenarios ##mentation ##rks Score fatigue hairy correspond ##iard defences confiscated ##rudence 1785 Formerly Shot advertised 460 Text ridges Promise Dev exclusion NHS tuberculosis rockets ##offs sparkling 256 disappears mankind ##hore HP ##omo taxation Multi DS Virgil ##ams Dell stacked guessing Jump Nope cheer hates ballots overlooked analyses Prevention maturity dos ##cards ##lect Mare ##yssa Petty ##wning differing iOS ##ior Joachim Sentinel ##nstein 90s Pamela 480 Asher ##lary Vicente landings portray ##rda ##xley Virtual ##uary finances Jain Somebody Tri behave Michele ##ider dwellings FAA Gallagher ##lide Monkey 195 aforementioned ##rism ##bey ##kim ##puted Mesa hopped unopposed recipients Reality Been gritted 149 playground pillar ##rone Guinness ##tad Théâtre depended Tipperary Reuben frightening wooded Target globally ##uted Morales Baptiste drunken Institut characterised ##chemistry Strip discrete Premiership ##zzling gazing Outer ##quisition Sikh Booker ##yal contemporaries Jericho ##chan ##physical ##witch Militia ##rez ##zard dangers ##utter ##₀ Programs darling participates railroads ##ienne behavioral bureau ##rook 161 Hicks ##rises Comes inflicted bees kindness norm ##ković generators ##pard ##omy ##ili methodology Alvin façade latitude ##plified DE Morse ##mered educate intersects ##MF ##cz ##vated AL ##graded ##fill constitutes artery feudal avant cautious ##ogue immigrated ##chenko Saul Clinic Fang choke Cornelius flexibility temperate pins ##erson oddly inequality 157 Natasha Sal ##uter 215 aft blinking ##ntino northward Exposition cookies Wedding impulse Overseas terrifying ##ough Mortimer ##see 440 https og imagining ##cars Nicola exceptionally threads ##cup Oswald Provisional dismantled deserves 1786 Fairy discourse Counsel departing Arc guarding ##orse 420 alterations vibrant Em squinted terrace rowing Led accessories SF Sgt cheating Atomic ##raj Blackpool ##iary boarded substituted bestowed lime kernel ##jah Belmont shaken sticky retrospective Louie migrants weigh sunglasses thumbs ##hoff excavation ##nks Extra Polo motives Drum infrared tastes berth verge ##stand programmed warmed Shankar Titan chromosome cafeteria dividing pepper CPU Stevie satirical Nagar scowled Died backyard ##gata ##reath ##bir Governors portraying ##yah Revenge ##acing 1772 margins Bahn OH lowland ##razed catcher replay ##yoshi Seriously ##licit Aristotle ##ald Habsburg weekday Secretariat CO ##dly ##joy ##stad litre ultra ##cke Mongol Tucson correlation compose traps Groups Hai Salvatore ##dea cents ##eese concession clash Trip Panzer Moroccan cruisers torque Ba grossed ##arate restriction concentrating FDA ##Leod ##ones Scholars ##esi throbbing specialised ##heses Chicken ##fia ##ificant Erich Residence ##trate manipulation namesake ##tom Hoover cue Lindsey Lonely 275 ##HT combustion subscribers Punjabi respects Jeremiah penned ##gor ##rilla suppression ##tration Crimson piston Derry crimson lyrical oversee portrays CF Districts Lenin Cora searches clans VHS ##hel Jacqueline Redskins Clubs desktop indirectly alternatives marijuana suffrage ##smos Irwin ##liff Process ##hawks Sloane ##bson Sonata yielded Flores ##ares armament adaptations integrate neighbours shelters ##tour Skinner ##jet ##tations 1774 Peterborough ##elles ripping Liang Dickinson charities Rwanda monasteries crossover racist barked guerrilla ##ivate Grayson ##iques ##vious ##got Rolls denominations atom affinity ##delity Wish ##inted ##inae interrogation ##cey ##erina ##lifting 192 Sands 1779 mast Likewise ##hyl ##oft contempt ##por assaulted fills establishments Mal consulted ##omi ##sight greet ##roma ##egan Pulitzer ##rried ##dius ##ractical ##voked Hasan CB ##zzy Romanesque Panic wheeled recorder ##tters ##warm ##gly botanist Balkan Lockheed Polly farewell suffers purchases Eaton ##80 Quick commenting Saga beasts hides motifs ##icks Alonso Springer Wikipedia circulated encoding jurisdictions snout UAE Integrated unmarried Heinz ##lein ##figured deleted ##tley Zen Cycling Fuel Scandinavian ##rants Conner reef Marino curiously lingered Gina manners activism Mines Expo Micah promotions Server booked derivatives eastward detailing reelection ##chase 182 Campeonato Po 158 Peel winger ##itch canyon ##pit LDS A1 ##shin Giorgio pathetic ##rga ##mist Aren ##lag confronts motel textbook shine turbines 1770 Darcy ##cot Southeastern ##lessness Banner recognise stray Kitchen paperwork realism Chrysler filmmakers fishermen ##hetic variously Vishnu fiddle Eddy Origin ##tec ##ulin Flames Rs bankrupt Extreme Pomeranian ##emption ratified ##iu jockey Stratford ##ivating ##oire Babylon pardon AI affordable deities disturbance Trying ##sai Ida Papers advancement 70s archbishop Luftwaffe announces tugging ##lphin ##sistence ##eel ##ishes ambition aura ##fled ##lected ##vue Prasad boiled clarity Violin investigative routing Yankee ##uckle McMahon bugs eruption ##rooms Minutes relics ##ckle ##nse sipped valves weakly ##ital Middleton collided ##quer bamboo insignia Tyne exercised Ninth echoing polynomial considerations lunged ##bius objections complain disguised plaza ##VC institutes Judicial ascent imminent Waterford hello Lumpur Niger Goldman vendors Kensington Wren browser ##bner ##tri ##mize ##pis ##lea Cheyenne Bold Settlement Hollow Paralympic axle ##toire ##actic impose perched utilizing slips Benz Michaels manipulate Chiang ##mian Dolphins prohibition attacker ecology Estadio ##SB ##uild attracts recalls glacier lad ##rima Barlow kHz melodic ##aby ##iracy assumptions Cornish ##aru DOS Maddie ##mers lyric Luton nm ##tron Reno Fin YOU Broadcast Finch sensory ##bent Jeep ##uman additionally Buildings businessmen treaties 235 Stranger gateway Charlton accomplishments Diary apologized zinc histories supplier ##tting 162 asphalt Treatment Abbas ##pating ##yres Bloom sedan soloist ##cum antagonist denounced Fairfax ##aving ##enko noticeable Budget Buckingham Snyder retreating Jai spoon invading giggle woven gunfire arrests ##vered ##come respiratory violet ##aws Byrd shocking tenant Jamaican Ottomans Seal theirs ##isse ##48 cooperate peering ##nius 163 Composer organist Mongolian Bauer Spy collects prophecy congregations ##moor Brick calculation fixtures exempt ##dden Ada Thousand ##lue tracing ##achi bodyguard vicar supplying Łódź interception monitored ##heart Paso overlap annoyance ##dice yellowish stables elders illegally honesty ##oar skinny spinal ##puram Bourbon ##cor flourished Medium ##stics ##aba Follow ##ckey stationary ##scription dresser scrutiny Buckley Clearly ##SF Lyrics ##heimer drying Oracle internally rains ##last Enemy ##oes McLean Ole phosphate Rosario Rifles ##mium battered Pepper Presidents conquer Château castles ##aldo ##ulf Depending Lesser Boom trades Peyton 164 emphasize accustomed SM Ai Classification ##mins ##35 ##rons leak piled deeds lush ##self beginnings breathless 1660 McGill ##ago ##chaft ##gies humour Bomb securities Might ##zone ##eves Matthias Movies Levine vengeance ##ads Challenger Misty Traditionally constellation ##rass deepest workplace ##oof ##vina impatient ##ML Mughal Alessandro scenery Slater postseason troupe ##ń Volunteers Facility militants Reggie sanctions Expeditionary Nam countered interpret Basilica coding expectation Duffy def Tong wakes Bowling Vehicle Adler salad intricate stronghold medley ##uries ##bur joints ##rac ##yx ##IO Ordnance Welch distributor Ark cavern trench Weiss Mauritius decreases docks eagerly irritation Matilda biographer Visiting ##marked ##iter ##ear ##gong Moreno attendant Bury instrumentation theologian clit nuns symphony translate 375 loser ##user ##VR ##meter ##orious harmful ##yuki Commissioners Mendoza sniffed Hulk ##dded ##ulator ##nz Donnell ##eka deported Met SD Aerospace ##cultural ##odes Fantastic cavity remark emblem fearing ##iance ICAO Liberia stab ##yd Pac Gymnasium IS Everton ##vanna mantle ##ief Ramon ##genic Shooting Smoke Random Africans MB tavern bargain voluntarily Ion Peoples Rusty attackers Patton sins ##cake Hat moderately ##hala ##alia requesting mechanic ##eae Seine Robbins ##ulum susceptible Bravo Slade Strasbourg rubble entrusted Creation ##amp smoothed ##uintet evenly reviewers skip Sculpture 177 Rough ##rrie Reeves ##cede Administrator garde minus carriages grenade Ninja fuscous ##kley Punk contributors Aragon Tottenham ##cca ##sir VA laced dealers ##sonic crisp harmonica Artistic Butch Andes Farmers corridors unseen ##tium Countries Lone envisioned Katy ##lang ##cc Quarterly ##neck consort ##aceae bidding Corey concurrent ##acts ##gum Highness ##lient ##rators arising ##unta pathways 49ers bolted complaining ecosystem libretto Ser narrated 212 Soft influx ##dder incorporation plagued tents ##ddled 1750 Risk citation Tomas hostilities seals Bruins Dominique attic competent ##UR ##cci hugging Breuning bacterial Shrewsbury vowed eh elongated hangs render centimeters ##ficient Mu turtle besieged ##gaard grapes bravery collaborations deprived ##amine ##using ##gins arid ##uve coats hanged ##sting Pa prefix ##ranged Exit Chain Flood Materials suspicions ##ö hovered Hidden ##state Malawi ##24 Mandy norms fascinating airlines delivers ##rust Cretaceous spanned pillows ##onomy jar ##kka regent fireworks morality discomfort lure uneven ##jack Lucian 171 archaeology ##til mornings Billie Marquess impending spilling tombs ##volved Celia Coke underside ##bation Vaughn Daytona Godfrey Pascal Alien ##sign 172 ##lage iPhone Gonna genocide ##rber oven endure dashed simultaneous ##phism Wally ##rō ants predator reissue ##aper Speech funk Rudy claw Hindus Numbers Bing lantern ##aurus scattering poisoned ##active Andrei algebraic baseman ##ritz Gregg ##cola selections ##putation lick Laguna ##IX Sumatra Warning turf buyers Burgess Oldham exploit worm initiate strapped tuning filters haze ##е ##ledge ##ydro ##culture amendments Promotion ##union Clair ##uria petty shutting ##eveloped Phoebe Zeke conducts grains clashes ##latter illegitimate willingly Deer Lakers Reference chaplain commitments interrupt salvation Panther Qualifying Assessment cancel efficiently attorneys Dynamo impress accession clinging randomly reviewing Romero Cathy charting clapped rebranded Azerbaijani coma indicator punches ##tons Sami monastic prospects Pastor ##rville electrified ##CI ##utical tumbled Chef muzzle selecting UP Wheel protocols ##tat Extended beautifully nests ##stal Andersen ##anu ##³ ##rini kneeling ##reis ##xia anatomy dusty Safe turmoil Bianca ##elo analyze ##ر ##eran podcast Slovene Locke Rue ##retta ##uni Person Prophet crooked disagreed Versailles Sarajevo Utrecht ##ogen chewing ##ception ##iidae Missile attribute majors Arch intellectuals ##andra ideological Cory Salzburg ##fair Lot electromagnetic Distribution ##oper ##pered Russ Terra repeats fluttered Riga ##ific ##gt cows Hair labelled protects Gale Personnel Düsseldorf Moran rematch ##OE Slow forgiveness ##ssi proudly Macmillan insist undoubtedly Québec Violence ##yuan ##aine mourning linen accidental ##iol ##arium grossing lattice maneuver ##marine prestige petrol gradient invasive militant Galerie widening ##aman ##quist disagreement ##ales creepy remembers buzz ##erial Exempt Dirk mon Addison ##inen deposed ##agon fifteenth Hang ornate slab ##lades Fountain contractors das Warwickshire 1763 ##rc Carly Essays Indy Ligue greenhouse slit ##sea chewed wink ##azi Playhouse ##kon Gram Ko Samson creators revive ##rians spawned seminars Craft Tall diverted assistants computational enclosure ##acity Coca ##eve databases Drop ##loading ##hage Greco Privy entrances pork prospective Memories robes ##market transporting ##lik Rudolph Horton visually ##uay ##nja Centro Tor Howell ##rsey admitting postgraduate herbs ##att Chin Rutherford ##bot ##etta Seasons explanations ##bery Friedman heap ##ryl ##sberg jaws ##agh Choi Killing Fanny ##suming ##hawk hopeful ##aid Monty gum remarkably Secrets disco harp advise ##avia Marathi ##cycle Truck abbot sincere urine ##mology masked bathing ##tun Fellows ##TM ##gnetic owl ##jon hymn ##leton 208 hostility ##cée baked Bottom ##AB shudder ##ater ##von ##hee reorganization Cycle ##phs Lex ##style ##rms Translation ##erick ##imeter ##ière attested Hillary ##DM gal wander Salle ##laming Perez Pit ##LP USAF contexts Disease blazing aroused razor walled Danielle Mont Funk royalty thee 203 donors ##erton famously processors reassigned welcoming Goldberg ##quities undisclosed Orient Patty vaccine refrigerator Cypriot consonant ##waters 176 sober ##lement Racecourse ##uate Luckily Selection conceptual vines Breaking wa lions oversight sheltered Dancer ponds borrow ##BB ##pulsion Daly ##eek fertility spontaneous Worldwide gasping ##tino 169 ABS Vickers ambient energetic prisons ##eson Stacy ##roach GmbH Afro Marin farmhouse pinched ##cursion ##sp Sabine ##pire 181 nak swelling humble perfume ##balls Rai cannons ##taker Married Maltese canals interceptions hats lever slowing ##ppy Nike Silas Scarborough skirts 166 inauguration Shuttle alloy beads belts Compton Cause battling critique surf Dock roommate ##ulet invade Garland ##slow nutrition persona ##zam Wichita acquaintance coincided ##cate Dracula clamped ##gau overhaul ##broken ##rrier melodies ventures Paz convex Roots ##holding Tribute transgender ##ò chimney ##riad Ajax Thereafter messed nowadays pH ##100 ##alog Pomerania ##yra Rossi glove ##TL Races ##asily tablets Jase ##ttes diner ##rns Hu Mohan anytime weighted remixes Dove cherry imports ##urity GA ##TT ##iated ##sford Clarkson evidently rugged Dust siding ##ometer acquitted choral ##mite infants Domenico gallons Atkinson gestures slated ##xa Archaeology unwanted ##ibes ##duced premise Colby Geelong disqualified ##pf ##voking simplicity Walkover Qaeda Warden ##bourg ##ān Invasion Babe harness 183 ##tated maze Burt bedrooms ##nsley Horizon ##oast minimize peeked MLA Trains tractor nudged ##iform Growth Benton separates ##about ##kari buffer anthropology brigades foil ##wu Domain licking whore ##rage ##sham Initial Courthouse Rutgers dams villains supermarket ##brush Brunei Palermo arises Passenger outreach ##gill Labrador McLaren ##uy Lori ##fires Heads magistrate ¹⁄₂ Weapons ##wai ##roke projecting ##ulates bordering McKenzie Pavel midway Guangzhou streamed racer ##lished eccentric spectral 206 ##mism Wilde Grange preparatory lent ##tam starving Gertrude ##cea ##ricted Breakfast Mira blurted derive ##lair blunt sob Cheltenham Henrik reinstated intends ##istan unite ##ector playful sparks mapped Cadet luggage prosperous ##ein salon ##utes Biological ##rland Tyrone buyer ##lose amounted Saw smirked Ronan Reviews Adele trait ##proof Bhutan Ginger ##junct digitally stirring ##isted coconut Hamlet Dinner Scale pledge ##RP Wrong Goal Panel therapeutic elevations infectious priesthood ##inda Guyana diagnostic ##mbre Blackwell sails ##arm literal periodically gleaming Robot Rector ##abulous ##tres Reaching Romantic CP Wonderful ##tur ornamental ##nges traitor ##zilla genetics mentioning ##eim resonance Areas Shopping ##nard Gail Solid ##rito ##mara Willem Chip Matches Volkswagen obstacle Organ invites Coral attain ##anus ##dates Midway shuffled Cecilia dessert Gateway Ch Napoleonic Petroleum jets goose striped bowls vibration Sims nickel Thirteen problematic intervene ##grading ##unds Mum semifinal Radical ##izations refurbished ##sation ##harine Maximilian cites Advocate Potomac surged preserves Curry angled ordination ##pad Cade ##DE ##sko researched torpedoes Resident wetlands hay applicants depart Bernstein ##pic ##ario ##rae favourable ##wari ##р metabolism nobleman Defaulted calculate ignition Celebrity Belize sulfur Flat Sc USB flicker Hertfordshire Sept CFL Pasadena Saturdays Titus ##nir Canary Computing Isaiah ##mler formidable pulp orchid Called Solutions kilograms steamer ##hil Doncaster successors Stokes Holstein ##sius sperm API Rogue instability Acoustic ##rag 159 undercover Wouldn ##pra ##medical Eliminated honorable ##chel denomination abrupt Buffy blouse fi Regardless Subsequent ##rdes Lover ##tford bacon ##emia carving ##cripts Massacre Ramos Latter ##ulp ballroom ##gement richest bruises Rest Wiley ##aster explosions ##lastic Edo ##LD Mir choking disgusted faintly Barracks blasted headlights Tours ensued presentations ##cale wrought ##oat ##coa Quaker ##sdale recipe ##gny corpses ##liance comfortably ##wat Landscape niche catalyst ##leader Securities messy ##RL Rodrigo backdrop ##opping treats Emilio Anand bilateral meadow VC socialism ##grad clinics ##itating ##ppe ##ymphonic seniors Advisor Armoured Method Alley ##orio Sad fueled raided Axel NH rushes Dixie Otis wrecked ##22 capitalism café ##bbe ##pion ##forcing Aubrey Lublin Whenever Sears Scheme ##lana Meadows treatise ##RI ##ustic sacrifices sustainability Biography mystical Wanted multiplayer Applications disliked ##tisfied impaired empirical forgetting Fairfield Sunni blurred Growing Avalon coil Camera Skin bruised terminals ##fted ##roving Commando ##hya ##sper reservations needles dangling ##rsch ##rsten ##spect ##mbs yoga regretted Bliss Orion Rufus glucose Olsen autobiographical ##dened 222 humidity Shan ##ifiable supper ##rou flare ##MO campaigning descend socio declares Mounted Gracie Arte endurance ##ety Copper costa airplay ##MB Proceedings dislike grimaced occupants births glacial oblivious cans installment muddy ##ł captains pneumonia Quiet Sloan Excuse ##nine Geography gymnastics multimedia drains Anthology Gear cylindrical Fry undertaking ##pler ##tility Nan ##recht Dub philosophers piss Atari ##pha Galicia México ##nking Continuing bump graveyard persisted Shrine ##erapy defects Advance Bomber ##oil ##ffling cheerful ##lix scrub ##eto awkwardly collaborator fencing ##alo prophet Croix coughed ##lication roadway slaughter elephants ##erated Simpsons vulnerability ivory Birth lizard scarce cylinders fortunes ##NL Hate Priory ##lai McBride ##copy Lenny liaison Triangle coronation sampled savage amidst Grady whatsoever instinctively Reconstruction insides seizure Drawing ##rlin Antioch Gao Díaz 1760 Sparks ##tien ##bidae rehearsal ##bbs botanical ##hers compensate wholesale Seville shareholder prediction astronomical Reddy hardest circling whereabouts termination Rep Assistance Dramatic Herb ##ghter climbs 188 Poole 301 ##pable wit ##istice Walters relying Jakob ##redo proceeding Langley affiliates ou ##allo ##holm Samsung ##ishi Missing Xi vertices Claus foam restless ##uating ##sso ##ttering Philips delta bombed Catalogue coaster Ling Willard satire 410 Composition Net Orioles ##ldon fins Palatinate Woodward tease tilt brightness ##70 ##bbling ##loss ##dhi ##uilt Whoever ##yers hitter Elton Extension ace Affair restructuring ##loping Paterson hi ##rya spouse Shay Himself piles preaching ##gical bikes Brave expulsion Mirza stride Trees commemorated famine masonry Selena Watt Banking Rancho Stockton dip tattoos Vlad acquainted Flyers ruthless fourteenth illustrate ##akes EPA ##rows ##uiz bumped Designed Leaders mastered Manfred swirled McCain ##rout Artemis rabbi flinched upgrades penetrate shipyard transforming caretaker ##eiro Maureen tightening ##founded RAM ##icular ##mper ##rung Fifteen exploited consistency interstate ##ynn Bridget contamination Mistress ##rup coating ##FP ##jective Libyan 211 Gemma dependence shrubs ##ggled Germain retaliation traction ##PP Dangerous terminology psychiatrist ##garten hurdles Natal wasting Weir revolves stripe ##reased preferences ##entation ##lde ##áil ##otherapy Flame ##ologies viruses Label Pandora veil ##ogical Coliseum Cottage creeping Jong lectured ##çaise shoreline ##fference ##hra Shade Clock Faye bilingual Humboldt Operating ##fter ##was algae towed amphibious Parma impacted smacked Piedmont Monsters ##omb Moor ##lberg sinister Postal 178 Drummond Sign textbooks hazardous Brass Rosemary Pick Sit Architect transverse Centennial confess polling ##aia Julien ##mand consolidation Ethel ##ulse severity Yorker choreographer 1840s ##ltry softer versa ##geny ##quila ##jō Caledonia Friendship Visa rogue ##zzle bait feather incidence Foods Ships ##uto ##stead arousal ##rote Hazel ##bolic Swing ##ej ##cule ##jana ##metry ##uity Valuable ##ₙ Shropshire ##nect 365 Ones realise Café Albuquerque ##grown ##stadt 209 ##ᵢ prefers withstand Lillian MacArthur Hara ##fulness domination ##VO ##school Freddy ethnicity ##while adorned hormone Calder Domestic Freud Shields ##phus ##rgan BP Segunda Mustang ##GI Bonn patiently remarried ##umbria Crete Elephant Nuremberg tolerate Tyson ##evich Programming ##lander Bethlehem segregation Constituency quarterly blushed photographers Sheldon porcelain Blanche goddamn lively ##fused bumps ##eli curated coherent provoked ##vet Madeleine ##isco rainy Bethel accusation ponytail gag ##lington quicker scroll ##vate Bow Gender Ira crashes ACT Maintenance ##aton ##ieu bitterly strains rattled vectors ##arina ##ishly 173 parole ##nx amusing Gonzalez ##erative Caucus sensual Penelope coefficient Mateo ##mani proposition Duty lacrosse proportions Plato profiles Botswana Brandt reins mandolin encompassing ##gens Kahn prop summon ##MR ##yrian ##zaki Falling conditional thy ##bao ##ych radioactive ##nics Newspaper ##people ##nded Gaming sunny ##look Sherwood crafted NJ awoke 187 timeline giants possessing ##ycle Cheryl ng Ruiz polymer potassium Ramsay relocation ##leen Sociology ##bana Franciscan propulsion denote ##erjee registers headline Tests emerges Articles Mint livery breakup kits Rap Browning Bunny ##mington ##watch Anastasia Zachary arranging biographical Erica Nippon ##membrance Carmel ##sport ##xes Paddy ##holes Issues Spears compliment ##stro ##graphs Castillo ##MU ##space Corporal ##nent 174 Gentlemen ##ilize ##vage convinces Carmine Crash ##hashi Files Doctors brownish sweating goats ##conductor rendition ##bt NL ##spiration generates ##cans obsession ##noy Danger Diaz heats Realm priorities ##phon 1300 initiation pagan bursts archipelago chloride Screenplay Hewitt Khmer bang judgement negotiating ##ait Mabel densely Boulder knob 430 Alfredo ##kt pitches ##ées ##ان Macdonald ##llum imply ##mot Smile spherical ##tura Derrick Kelley Nico cortex launches differed parallels Navigation ##child ##rming canoe forestry reinforce ##mote confirming tasting scaled ##resh ##eting Understanding prevailing Pearce CW earnest Gaius asserts denoted landmarks Chargers warns ##flies Judges jagged ##dain tails Historian Millie ##sler 221 ##uard absurd Dion ##ially makeshift Specifically ignorance Eat ##ieri comparisons forensic 186 Giro skeptical disciplinary battleship ##45 Libby 520 Odyssey ledge ##post Eternal Missionary deficiency settler wonders ##gai raging ##cis Romney Ulrich annexation boxers sect 204 ARIA dei Hitchcock te Varsity ##fic CC lending ##nial ##tag ##rdy ##obe Defensive ##dson ##pore stellar Lam Trials contention Sung ##uminous Poe superiority ##plicate 325 bitten conspicuous ##olly Lila Pub Petit distorted ISIL distinctly ##family Cowboy mutant ##cats ##week Changes Sinatra epithet neglect Innocent gamma thrill reggae ##adia ##ational ##due landlord ##leaf visibly ##ì Darlington Gomez ##iting scarf ##lade Hinduism Fever scouts ##roi convened ##oki 184 Lao boycott unemployed ##lore ##ß ##hammer Curran disciples odor ##ygiene Lighthouse Played whales discretion Yves ##ceived pauses coincide ##nji dizzy ##scopic routed Guardians Kellan carnival nasal 224 ##awed Mitsubishi 640 Cast silky Projects joked Huddersfield Rothschild zu ##olar Divisions mildly ##eni ##lge Appalachian Sahara pinch ##roon wardrobe ##dham ##etal Bubba ##lini ##rumbling Communities Poznań unification Beau Kris SV Rowing Minh reconciliation ##saki ##sor taped ##reck certificates gubernatorial rainbow ##uing litter ##lique ##oted Butterfly benefited Images induce Balkans Velvet ##90 ##xon Bowman ##breaker penis ##nitz ##oint ##otive crust ##pps organizers Outdoor nominees ##rika TX ##ucks Protestants ##imation appetite Baja awaited ##points windshield ##igh ##zled Brody Buster stylized Bryce ##sz Dollar vest mold ounce ok receivers ##uza Purdue Harrington Hodges captures ##ggio Reservation ##ssin ##tman cosmic straightforward flipping remixed ##athed Gómez Lim motorcycles economies owning Dani ##rosis myths sire kindly 1768 Bean graphs ##mee ##RO ##geon puppy Stephenson notified ##jer Watching ##rama Sino urgency Islanders ##mash Plata fumble ##chev ##stance ##rack ##she facilitated swings akin enduring payload ##phine Deputies murals ##tooth 610 Jays eyeing ##quito transparency ##cote Timor negatively ##isan battled ##fected thankful Rage hospitality incorrectly 207 entrepreneurs ##cula ##wley hedge ##cratic Corpus Odessa Whereas ##ln fetch happier Amherst bullying graceful Height Bartholomew willingness qualifier 191 Syed Wesleyan Layla ##rrence Webber ##hum Rat ##cket ##herence Monterey contaminated Beside Mustafa Nana 213 ##pruce Reason ##spense spike ##gé AU disciple charcoal ##lean formulated Diesel Mariners accreditation glossy 1800s ##ih Mainz unison Marianne shear overseeing vernacular bowled ##lett unpopular ##ckoned ##monia Gaston ##TI ##oters Cups ##bones ##ports Museo minors 1773 Dickens ##EL ##NBC Presents ambitions axes Río Yukon bedside Ribbon Units faults conceal ##lani prevailed 214 Goodwin Jaguar crumpled Cullen Wireless ceded remotely Bin mocking straps ceramics ##avi ##uding ##ader Taft twenties ##aked Problem quasi Lamar ##ntes ##avan Barr ##eral hooks sa ##ône 194 ##ross Nero Caine trance Homeland benches Guthrie dismiss ##lex César foliage ##oot ##alty Assyrian Ahead Murdoch dictatorship wraps ##ntal Corridor Mackay respectable jewels understands ##pathic Bryn ##tep ON capsule intrigued Sleeping communists ##chayat ##current ##vez doubling booklet ##uche Creed ##NU spies ##sef adjusting 197 Imam heaved Tanya canonical restraint senators stainless ##gnate Matter cache restrained conflicting stung ##ool Sustainable antiquity 193 heavens inclusive ##ador fluent 303 911 archaeologist superseded ##plex Tammy inspire ##passing ##lub Lama Mixing ##activated ##yote parlor tactic 198 Stefano prostitute recycling sorted banana Stacey Musée aristocratic cough ##rting authorised gangs runoff thoughtfully ##nish Fisheries Provence detector hum ##zhen pill ##árez Map Leaves Peabody skater vent ##color 390 cerebral hostages mare Jurassic swell ##isans Knoxville Naked Malaya scowl Cobra ##anga Sexual ##dron ##iae 196 ##drick Ravens Blaine ##throp Ismail symmetric ##lossom Leicestershire Sylvester glazed ##tended Radar fused Families Blacks Sale Zion foothills microwave slain Collingwood ##pants ##dling killers routinely Janice hearings ##chanted ##ltration continents ##iving ##yster ##shot ##yna injected Guillaume ##ibi kinda Confederacy Barnett disasters incapable ##grating rhythms betting draining ##hak Callie Glover ##iliated Sherlock hearted punching Wolverhampton Leaf Pi builders furnished knighted Photo ##zle Touring fumbled pads ##ий Bartlett Gunner eerie Marius Bonus pots ##hino ##pta Bray Frey Ortiz stalls belongings Subway fascination metaphor Bat Boer Colchester sway ##gro rhetoric ##dheim Fool PMID admire ##hsil Strand TNA ##roth Nottinghamshire ##mat ##yler Oxfordshire ##nacle ##roner BS ##nces stimulus transports Sabbath ##postle Richter 4000 ##grim ##shima ##lette deteriorated analogous ##ratic UHF energies inspiring Yiddish Activities ##quential ##boe Melville ##ilton Judd consonants labs smuggling ##fari avid ##uc truce undead ##raith Mostly bracelet Connection Hussain awhile ##UC ##vention liable genetically ##phic Important Wildcats daddy transmit ##cas conserved Yesterday ##lite Nicky Guys Wilder Lay skinned Communists Garfield Nearby organizer Loss crafts walkway Chocolate Sundance Synod ##enham modify swayed Surface analysts brackets drone parachute smelling Andrés filthy frogs vertically ##OK localities marries AHL 35th ##pian Palazzo cube dismay relocate ##на Hear ##digo ##oxide prefecture converts hangar ##oya ##ucking Spectrum deepened spoiled Keeping ##phobic Verona outrage Improvement ##UI masterpiece slung Calling chant Haute mediated manipulated affirmed ##hesis Hangul skies ##llan Worcestershire ##kos mosaic ##bage ##wned Putnam folder ##LM guts noteworthy ##rada AJ sculpted ##iselle ##rang recognizable ##pent dolls lobbying impatiently Se staple Serb tandem Hiroshima thieves ##ynx faculties Norte ##alle ##trusion chords ##ylon Gareth ##lops ##escu FIA Levin auspices groin Hui nun Listed Honourable Larsen rigorous ##erer Tonga ##pment ##rave ##track ##aa ##enary 540 clone sediment esteem sighted cruelty ##boa inverse violating Amtrak Status amalgamated vertex AR harmless Amir mounts Coronation counseling Audi CO₂ splits ##eyer Humans Salmon ##have ##rado ##čić 216 takeoff classmates psychedelic ##gni Gypsy 231 Anger GAA ME ##nist ##tals Lissa Odd baptized Fiat fringe ##hren 179 elevators perspectives ##TF ##ngle Question frontal 950 thicker Molecular ##nological Sixteen Baton Hearing commemorative dorm Architectural purity ##erse risky Georgie relaxing ##ugs downed ##rar Slim ##phy IUCN ##thorpe Parkinson 217 Marley Shipping sweaty Jesuits Sindh Janata implying Armenians intercept Ankara commissioners ascended sniper Grass Walls salvage Dewey generalized learnt PT ##fighter ##tech DR ##itrus ##zza mercenaries slots ##burst ##finger ##nsky Princes Rhodesia ##munication ##strom Fremantle homework ins ##Os ##hao ##uffed Thorpe Xiao exquisite firstly liberated technician Oilers Phyllis herb sharks MBE ##stock Product banjo ##morandum ##than Visitors unavailable unpublished oxidation Vogue ##copic ##etics Yates ##ppard Leiden Trading cottages Principles ##Millan ##wife ##hiva Vicar nouns strolled ##eorological ##eton ##science precedent Armand Guido rewards ##ilis ##tise clipped chick ##endra averages tentatively 1830s ##vos Certainly 305 Société Commandant ##crats ##dified ##nka marsh angered ventilation Hutton Ritchie ##having Eclipse flick motionless Amor Fest Loire lays ##icit ##sband Guggenheim Luck disrupted ##ncia Disco ##vigator criticisms grins ##lons ##vial ##ody salute Coaches junk saxophonist ##eology Uprising Diet ##marks chronicles robbed ##iet ##ahi Bohemian magician wavelength Kenyan augmented fashionable ##ogies Luce F1 Monmouth ##jos ##loop enjoyment exemption Centers ##visor Soundtrack blinding practitioner solidarity sacrificed ##oso ##cture ##riated blended Abd Copyright ##nob 34th ##reak Claudio hectare rotor testify ##ends ##iably ##sume landowner ##cess ##ckman Eduard Silesian backseat mutually ##abe Mallory bounds Collective Poet Winkler pertaining scraped Phelps crane flickering Proto bubbles popularized removes ##86 Cadillac Warfare audible rites shivering ##sist ##nst ##biotic Mon fascist Bali Kathryn ambiguous furiously morale patio Sang inconsistent topology Greens monkeys Köppen 189 Toy vow ##ías bombings ##culus improvised lodged subsidiaries garment startling practised Hume Thorn categorized Till Eileen wedge ##64 Federico patriotic unlock ##oshi badminton Compared Vilnius ##KE Crimean Kemp decks spaced resolutions sighs ##mind Imagine Cartoon huddled policemen forwards ##rouch equals ##nter inspected Charley MG ##rte pamphlet Arturo dans scarcely ##ulton ##rvin parental unconstitutional watts Susannah Dare ##sitive Rowland Valle invalid ##ué Detachment acronym Yokohama verified ##lsson groove Liza clarified compromised 265 ##rgon ##orf hesitant Fruit Application Mathias icons ##cell Qin interventions ##uron punt remnant ##rien Ames manifold spines floral ##zable comrades Fallen orbits Annals hobby Auditorium implicated researching Pueblo Ta terminate ##pella Rings approximation fuzzy ##ús thriving ##ket Conor alarmed etched Cary ##rdon Ally ##rington Pay mint ##hasa ##unity ##dman ##itate Oceania furrowed trams ##aq Wentworth ventured choreography prototypes Patel mouthed trenches ##licing ##yya Lies deception ##erve ##vations Bertrand earthquakes ##tography Southwestern ##aja token Gupta ##yō Beckett initials ironic Tsar subdued shootout sobbing liar Scandinavia Souls ch therapist trader Regulation Kali busiest ##pation 32nd Telephone Vargas ##moky ##nose ##uge Favorite abducted bonding 219 255 correction mat drown fl unbeaten Pocket Summers Quite rods Percussion ##ndy buzzing cadet Wilkes attire directory utilities naive populous Hendrix ##actor disadvantage 1400 Landon Underworld ##ense Occasionally mercury Davey Morley spa wrestled ##vender eclipse Sienna supplemented thou Stream liturgical ##gall ##berries ##piration 1769 Bucks abandoning ##jutant ##nac 232 venom ##31 Roche dotted Currie Córdoba Milo Sharif divides justification prejudice fortunate ##vide ##ābād Rowe inflammatory ##eld avenue Sources ##rimal Messenger Blanco advocating formulation ##pute emphasizes nut Armored ##ented nutrients ##tment insistence Martins landowners ##RB comparatively headlines snaps ##qing Celebration ##mad republican ##NE Trace ##500 1771 proclamation NRL Rubin Buzz Weimar ##AG 199 posthumous ##ental ##deacon Distance intensely overheard Arcade diagonal hazard Giving weekdays ##ù Verdi actresses ##hare Pulling ##erries ##pores catering shortest ##ctors ##cure ##restle ##reta ##runch ##brecht ##uddin Moments senate Feng Prescott ##thest 218 divisional Bertie sparse surrounds coupling gravitational werewolves ##lax Rankings ##mated ##tries Shia ##mart ##23 ##vocative interfaces morphology newscast ##bide inputs solicitor Olaf cabinets puzzles ##tains Unified ##firmed WA solemn ##opy Tito Jaenelle Neolithic horseback ##ires pharmacy prevalence ##lint Swami ##bush ##tudes Philipp mythical divers Scouting aperture progressively ##bay ##nio bounce Floor ##elf Lucan adulthood helm Bluff Passage Salvation lemon napkin scheduling ##gets Elements Mina Novak stalled ##llister Infrastructure ##nky ##tania ##uished Katz Norma sucks trusting 1765 boilers Accordingly ##hered 223 Crowley ##fight ##ulo Henrietta ##hani pounder surprises ##chor ##glia Dukes ##cracy ##zier ##fs Patriot silicon ##VP simulcast telegraph Mysore cardboard Len ##QL Auguste accordion analytical specify ineffective hunched abnormal Transylvania ##dn ##tending Emilia glittering Maddy ##wana 1762 External Lecture endorsement Hernández Anaheim Ware offences ##phorus Plantation popping Bonaparte disgusting neared ##notes Identity heroin nicely ##raverse apron congestion ##PR padded ##fts invaders ##came freshly Halle endowed fracture ROM ##max sediments diffusion dryly ##tara Tam Draw Spin Talon Anthropology ##lify nausea ##shirt insert Fresno capitalist indefinitely apples Gift scooped 60s Cooperative mistakenly ##lover murmur ##iger Equipment abusive orphanage ##9th ##lterweight ##unda Baird ant saloon 33rd Chesapeake ##chair ##sound ##tend chaotic pornography brace ##aret heiress SSR resentment Arbor headmaster ##uren unlimited ##with ##jn Bram Ely Pokémon pivotal ##guous Database Marta Shine stumbling ##ovsky ##skin Henley Polk functioned ##layer ##pas ##udd ##MX blackness cadets feral Damian ##actions 2D ##yla Apocalypse ##aic inactivated ##china ##kovic ##bres destroys nap Macy sums Madhya Wisdom rejects ##amel 60th Cho bandwidth ##sons ##obbing ##orama Mutual shafts ##estone ##rsen accord replaces waterfront ##gonal ##rida convictions ##ays calmed suppliers Cummings GMA fearful Scientist Sinai examines experimented Netflix Enforcement Scarlett ##lasia Healthcare ##onte Dude inverted ##36 ##regation ##lidae Munro ##angay Airbus overlapping Drivers lawsuits bodily ##udder Wanda Effects Fathers ##finery ##islav Ridley observatory pod ##utrition Electricity landslide ##mable ##zoic ##imator ##uration Estates sleepy Nickelodeon steaming irony schedules snack spikes Hmm ##nesia ##bella ##hibit Greenville plucked Harald ##ono Gamma infringement roaring deposition ##pol ##orum 660 seminal passports engagements Akbar rotated ##bina ##gart Hartley ##lown ##truct uttered traumatic Dex ##ôme Holloway MV apartheid ##nee Counter Colton OR 245 Spaniards Regency Schedule scratching squads verify ##alk keyboardist rotten Forestry aids commemorating ##yed ##érie Sting ##elly Dai ##fers ##berley ##ducted Melvin cannabis glider ##enbach ##rban Costello Skating cartoonist AN audit ##pectator distributing 226 312 interpreter header Alternatively ##ases smug ##kumar cabins remastered Connolly Kelsey LED tentative Check Sichuan shaved ##42 Gerhard Harvest inward ##rque Hopefully hem ##34 Typical binds wrath Woodstock forcibly Fergus ##charged ##tured prepares amenities penetration ##ghan coarse ##oned enthusiasts ##av ##twined fielded ##cky Kiel ##obia 470 beers tremble youths attendees ##cademies ##sex Macon communism dir ##abi Lennox Wen differentiate jewel ##SO activate assert laden unto Gillespie Guillermo accumulation ##GM NGO Rosenberg calculating drastically ##omorphic peeled Liège insurgents outdoors ##enia Aspen Sep awakened ##eye Consul Maiden insanity ##brian furnace Colours distributions longitudinal syllables ##scent Martian accountant Atkins husbands sewage zur collaborate highlighting ##rites ##PI colonization nearer ##XT dunes positioning Ku multitude luxurious Volvo linguistics plotting squared ##inder outstretched ##uds Fuji ji ##feit ##ahu ##loat ##gado ##luster ##oku América ##iza Residents vine Pieces DD Vampires ##ová smoked harshly spreads ##turn ##zhi betray electors ##settled Considering exploits stamped Dusty enraged Nairobi ##38 intervened ##luck orchestras ##lda Hereford Jarvis calf ##itzer ##CH salesman Lovers cigar Angelica doomed heroine ##tible Sanford offenders ##ulously articulated ##oam Emanuel Gardiner Edna Shu gigantic ##stable Tallinn coasts Maker ale stalking ##oga ##smus lucrative southbound ##changing Reg ##lants Schleswig discount grouping physiological ##OH ##sun Galen assurance reconcile rib scarlet Thatcher anarchist ##oom Turnpike ##ceding cocktail Sweeney Allegheny concessions oppression reassuring ##poli ##ticus ##TR ##VI ##uca ##zione directional strikeouts Beneath Couldn Kabul ##national hydroelectric ##jit Desire ##riot enhancing northbound ##PO Ok Routledge volatile Bernardo Python 333 ample chestnut automobiles ##innamon ##care ##hering BWF salaries Turbo acquisitions ##stituting strengths pilgrims Ponce Pig Actors Beard sanitation ##RD ##mett Telecommunications worms ##idas Juno Larson Ventura Northeastern weighs Houghton collaborating lottery ##rano Wonderland gigs ##lmer ##zano ##edd ##nife mixtape predominant tripped ##ruly Alexei investing Belgarath Brasil hiss ##crat ##xham Côte 560 kilometer ##cological analyzing ##As engined listener ##cakes negotiation ##hisky Santana ##lemma IAAF Seneca skeletal Covenant Steiner ##lev ##uen Neptune retention ##upon Closing Czechoslovak chalk Navarre NZ ##IG ##hop ##oly ##quatorial ##sad Brewery Conflict Them renew turrets disagree Petra Slave ##reole adjustment ##dela ##regard ##sner framing stature ##rca ##sies ##46 ##mata Logic inadvertently naturalist spheres towering heightened Dodd rink ##fle Keyboards bulb diver ul ##tsk Exodus Deacon España Canadiens oblique thud reigned rug Whitman Dash ##iens Haifa pets ##arland manually dart ##bial Sven textiles subgroup Napier graffiti revolver humming Babu protector typed Provinces Sparta Wills subjective ##rella temptation ##liest FL Sadie manifest Guangdong Transfer entertain eve recipes ##33 Benedictine retailer ##dence establishes ##cluded ##rked Ursula ##ltz ##lars ##rena qualifiers ##curement colt depictions ##oit Spiritual differentiation staffed transitional ##lew 1761 fatalities ##oan Bayern Northamptonshire Weeks ##CU Fife capacities hoarse ##latt ##ة evidenced ##HD ##ographer assessing evolve hints 42nd streaked ##lve Yahoo ##estive ##rned ##zas baggage Elected secrecy ##champ Character Pen Decca cape Bernardino vapor Dolly counselor ##isers Benin ##khar ##CR notch ##thus ##racy bounty lend grassland ##chtenstein ##dating pseudo golfer simplest ##ceive Lucivar Triumph dinosaur dinosaurs ##šić Seahawks ##nco resorts reelected 1766 reproduce universally ##OA ER tendencies Consolidated Massey Tasmanian reckless ##icz ##ricks 1755 questionable Audience ##lates preseason Quran trivial Haitian Freeway dialed Appointed Heard ecosystems ##bula hormones Carbon Rd ##arney ##working Christoph presiding pu ##athy Morrow Dar ensures posing remedy EA disclosed ##hui ##rten rumours surveying ##ficiency Aziz Jewel Plays ##smatic Bernhard Christi ##eanut ##friend jailed ##dr govern neighbour butler Acheron murdering oils mac Editorial detectives bolts ##ulon Guitars malaria 36th Pembroke Opened ##hium harmonic serum ##sio Franks fingernails ##gli culturally evolving scalp VP deploy uploaded mater ##evo Jammu Spa ##icker flirting ##cursions Heidi Majority sprawled ##alytic Zheng bunker ##lena ST ##tile Jiang ceilings ##ently ##ols Recovery dire ##good Manson Honestly Montréal 1764 227 quota Lakshmi incentive Accounting ##cilla Eureka Reaper buzzed ##uh courtroom dub ##mberg KC Gong Theodor Académie NPR criticizing protesting ##pired ##yric abuses fisheries ##minated 1767 yd Gemini Subcommittee ##fuse Duff Wasn Wight cleaner ##tite planetary Survivor Zionist mounds ##rary landfall disruption yielding ##yana bids unidentified Garry Ellison Elmer Fishing Hayward demos modelling ##anche ##stick caressed entertained ##hesion piers Crimea ##mass WHO boulder trunks 1640 Biennale Palestinians Pursuit ##udes Dora contender ##dridge Nanjing ##ezer ##former ##ibel Whole proliferation ##tide ##weiler fuels predictions ##ente ##onium Filming absorbing Ramón strangled conveyed inhabit prostitutes recession bonded clinched ##eak ##iji ##edar Pleasure Rite Christy Therapy sarcasm ##collegiate hilt probation Sarawak coefficients underworld biodiversity SBS groom brewing dungeon ##claiming Hari turnover ##ntina ##omer ##opped orthodox styling ##tars ##ulata priced Marjorie ##eley ##abar Yong ##tically Crambidae Hernandez ##ego ##rricular ##ark ##lamour ##llin ##augh ##tens Advancement Loyola ##4th ##hh goin marshes Sardinia ##ša Ljubljana Singing suspiciously ##hesive Félix Regarding flap stimulation ##raught Apr Yin gaping tighten skier ##itas ##lad ##rani 264 Ashes Olson Problems Tabitha ##rading balancing sunrise ##ease ##iture ##ritic Fringe ##iciency Inspired Linnaeus PBA disapproval ##kles ##rka ##tails ##urger Disaster Laboratories apps paradise Aero Came sneaking Gee Beacon ODI commodity Ellington graphical Gretchen spire ##skaya ##trine RTÉ efficacy plc tribunal ##ytic downhill flu medications ##kaya widen Sunrise ##nous distinguishing pawn ##BO ##irn ##ssing ##ν Easton ##vila Rhineland ##aque defect ##saurus Goose Ju ##classified Middlesbrough shaping preached 1759 ##erland Ein Hailey musicals ##altered Galileo Hilda Fighters Lac ##ometric 295 Leafs Milano ##lta ##VD ##ivist penetrated Mask Orchard plaintiff ##icorn Yvonne ##fred outfielder peek Collier Caracas repealed Bois dell restrict Dolores Hadley peacefully ##LL condom Granny Orders sabotage ##toon ##rings compass marshal gears brigadier dye Yunnan communicating donate emerald vitamin administer Fulham ##classical ##llas Buckinghamshire Held layered disclosure Akira programmer shrimp Crusade ##ximal Luzon bakery ##cute Garth Citadel uniquely Curling info mum Para ##ști sleek ##ione hey Lantern mesh ##lacing ##lizzard ##gade prosecuted Alba Gilles greedy twists ##ogged Viper ##kata Appearances Skyla hymns ##pelled curving predictable Grave Watford ##dford ##liptic ##vary Westwood fluids Models statutes ##ynamite 1740 ##culate Framework Johanna ##gression Vuelta imp ##otion ##raga ##thouse Ciudad festivities ##love Beyoncé italics ##vance DB ##haman outs Singers ##ueva ##urning ##51 ##ntiary ##mobile 285 Mimi emeritus nesting Keeper Ways ##onal ##oux Edmond MMA ##bark ##oop Hampson ##ñez ##rets Gladstone wreckage Pont Playboy reluctance ##ná apprenticeship preferring Value originate ##wei ##olio Alexia ##rog Parachute jammed stud Eton vols ##ganized 1745 straining creep indicators ##mán humiliation hinted alma tanker ##egation Haynes Penang amazement branched rumble ##ddington archaeologists paranoid expenditure Absolutely Musicians banished ##fining baptism Joker Persons hemisphere ##tieth ##ück flock ##xing lbs Kung crab ##dak ##tinent Regulations barrage parcel ##ós Tanaka ##rsa Natalia Voyage flaws stepfather ##aven ##eological Botanical Minsk ##ckers Cinderella Feast Loving Previous Shark ##took barrister collaborators ##nnes Croydon Graeme Juniors ##7th ##formation ##ulos ##ák £2 ##hwa ##rove ##ș Whig demeanor Otago ##TH ##ooster Faber instructors ##ahl ##bha emptied ##schen saga ##lora exploding ##rges Crusaders ##caster ##uations streaks CBN bows insights ka 1650 diversion LSU Wingspan ##liva Response sanity Producers imitation ##fine Lange Spokane splash weed Siberian magnet ##rocodile capitals ##rgus swelled Rani Bells Silesia arithmetic rumor ##hampton favors Weird marketplace ##orm tsunami unpredictable ##citation ##ferno Tradition postwar stench succeeds ##roup Anya Users oversized totaling pouch ##nat Tripoli leverage satin ##cline Bathurst Lund Niall thereof ##quid Bangor barge Animated ##53 ##alan Ballard utilizes Done ballistic NDP gatherings ##elin ##vening Rockets Sabrina Tamara Tribal WTA ##citing blinded flux Khalid Una prescription ##jee Parents ##otics ##food Silicon cured electro perpendicular intimacy ##rified Lots ##ceiving ##powder incentives McKenna ##arma ##ounced ##rinkled Alzheimer ##tarian 262 Seas ##cam Novi ##hout ##morphic ##hazar ##hul ##nington Huron Bahadur Pirate pursed Griffiths indicted swap refrain ##mulating Lal stomped ##Pad ##mamoto Reef disposed plastered weeping ##rato Minas hourly tumors ##ruising Lyle ##yper ##sol Odisha credibility ##Dowell Braun Graphic lurched muster ##nex ##ührer ##connected ##iek ##ruba Carthage Peck maple bursting ##lava Enrico rite ##jak Moment ##skar Styx poking Spartan ##urney Hepburn Mart Titanic newsletter waits Mecklenburg agitated eats ##dious Chow matrices Maud ##sexual sermon 234 ##sible ##lung Qi cemeteries mined sprinter ##ckett coward ##gable ##hell ##thin ##FB Contact ##hay rainforest 238 Hemisphere boasts ##nders ##verance ##kat Convent Dunedin Lecturer lyricist ##bject Iberian comune ##pphire chunk ##boo thrusting fore informing pistols echoes Tier battleships substitution ##belt moniker ##charya ##lland Thoroughbred 38th ##01 ##tah parting tongues Cale ##seau Unionist modular celebrates preview steamed Bismarck 302 737 vamp ##finity ##nbridge weaknesses husky ##berman absently ##icide Craven tailored Tokugawa VIP syntax Kazan captives doses filtered overview Cleopatra Conversely stallion Burger Suez Raoul th ##reaves Dickson Nell Rate anal colder ##sław Arm Semitic ##green reflective 1100 episcopal journeys ##ours ##pository ##dering residue Gunn ##27 ##ntial ##crates ##zig Astros Renee Emerald ##vili connectivity undrafted Sampson treasures ##kura ##theon ##vern Destroyer ##iable ##ener Frederic briefcase confinement Bree ##WD Athena 233 Padres Thom speeding ##hali Dental ducks Putin ##rcle ##lou Asylum ##usk dusk pasture Institutes ONE jack ##named diplomacy Intercontinental Leagues Towns comedic premature ##edic ##mona ##ories trimmed Charge Cream guarantees Dmitry splashed Philosophical tramway ##cape Maynard predatory redundant ##gratory ##wry sobs Burgundy edible outfits Handel dazed dangerously idle Operational organizes ##sional blackish broker weddings ##halt Becca McGee ##gman protagonists ##pelling Keynes aux stumble ##ordination Nokia reel sexes ##woods ##pheric ##quished ##voc ##oir ##pathian ##ptus ##sma ##tating ##ê fulfilling sheath ##ayne Mei Ordinary Collin Sharpe grasses interdisciplinary ##OX Background ##ignment Assault transforms Hamas Serge ratios ##sik swaying ##rcia Rosen ##gant ##versible cinematographer curly penny Kamal Mellon Sailor Spence phased Brewers amassed Societies ##ropriations ##buted mythological ##SN ##byss ##ired Sovereign preface Parry ##ife altitudes crossings ##28 Crewe southernmost taut McKinley ##owa ##tore 254 ##ckney compiling Shelton ##hiko 228 Poll Shepard Labs Pace Carlson grasping ##ов Delaney Winning robotic intentional shattering ##boarding ##git ##grade Editions Reserves ignorant proposing ##hanna cutter Mongols NW ##eux Codex Cristina Daughters Rees forecast ##hita NGOs Stations Beaux Erwin ##jected ##EX ##trom Schumacher ##hrill ##rophe Maharaja Oricon ##sul ##dynamic ##fighting Ce Ingrid rumbled Prospect stairwell Barnard applause complementary ##uba grunt ##mented Bloc Carleton loft noisy ##hey 490 contrasted ##inator ##rief ##centric ##fica Cantonese Blanc Lausanne License artifact ##ddin rot Amongst Prakash RF ##topia milestone ##vard Winters Mead churchyard Lulu estuary ##ind Cha Infinity Meadow subsidies ##valent CONCACAF Ching medicinal navigate Carver Twice abdominal regulating RB toilets Brewer weakening ambushed ##aut ##vignon Lansing unacceptable reliance stabbing ##mpo ##naire Interview ##ested ##imed bearings ##lts Rashid ##iation authenticity vigorous ##frey ##uel biologist NFC ##rmaid ##wash Makes ##aunt ##steries withdrawing ##qa Buccaneers bleed inclination stain ##ilo ##ppel Torre privileged cereal trailers alumnus neon Cochrane Mariana caress ##47 ##ients experimentation Window convict signaled ##YP rower Pharmacy interacting 241 Strings dominating kinase Dinamo Wire pains sensations ##suse Twenty20 ##39 spotlight ##hend elemental ##pura Jameson Swindon honoring pained ##ediatric ##lux Psychological assemblies ingredient Martial Penguins beverage Monitor mysteries ##ION emigration mused ##sique crore AMC Funding Chinatown Establishment Finalist enjoyable 1756 ##mada ##rams NO newborn CS comprehend Invisible Siemens ##acon 246 contraction ##volving ##moration ##rok montane ##ntation Galloway ##llow Verity directorial pearl Leaning ##rase Fernandez swallowing Automatic Madness haunting paddle ##UE ##rrows ##vies ##zuki ##bolt ##iber Fender emails paste ##lancing hind homestead hopeless ##dles Rockies garlic fatty shrieked ##ismic Gillian Inquiry Schultz XML ##cius ##uld Domesday grenades northernmost ##igi Tbilisi optimistic ##poon Refuge stacks Bose smash surreal Nah Straits Conquest ##roo ##weet ##kell Gladys CH ##lim ##vitation Doctorate NRHP knocks Bey Romano ##pile 242 Diamonds strides eclectic Betsy clade ##hady ##leashed dissolve moss Suburban silvery ##bria tally turtles ##uctive finely industrialist ##nary Ernesto oz pact loneliness ##hov Tomb multinational risked Layne USL ne ##quiries Ad Message Kamen Kristen reefs implements ##itative educators garments gunshot ##essed ##rve Montevideo vigorously Stamford assemble packaged ##same état Viva paragraph ##eter ##wire Stick Navajo MCA ##pressing ensembles ABA ##zor ##llus Partner raked ##BI Iona thump Celeste Kiran ##iscovered ##rith inflammation ##arel Features loosened ##yclic Deluxe Speak economical Frankenstein Picasso showcased ##zad ##eira ##planes ##linear ##overs monsoon prosecutors slack Horses ##urers Angry coughing ##truder Questions ##tō ##zak challenger clocks ##ieving Newmarket ##acle cursing stimuli ##mming ##qualified slapping ##vasive narration ##kini Advertising CSI alliances mixes ##yes covert amalgamation reproduced ##ardt ##gis 1648 id Annette Boots Champagne Brest Daryl ##emon ##jou ##llers Mean adaptive technicians ##pair ##usal Yoga fronts leaping Jul harvesting keel ##44 petitioned ##lved yells Endowment proponent ##spur ##tised ##zal Homes Includes ##ifer ##oodoo ##rvette awarding mirrored ransom Flute outlook ##ganj DVDs Sufi frontman Goddard barren ##astic Suicide hillside Harlow Lau notions Amnesty Homestead ##irt GE hooded umpire mustered Catch Masonic ##erd Dynamics Equity Oro Charts Mussolini populace muted accompaniment ##lour ##ndes ignited ##iferous ##laced ##atch anguish registry ##tub ##hards ##neer 251 Hooker uncomfortably ##6th ##ivers Catalina MiG giggling 1754 Dietrich Kaladin pricing ##quence Sabah ##lving ##nical Gettysburg Vita Telecom Worst Palais Pentagon ##brand ##chichte Graf unnatural 1715 bio ##26 Radcliffe ##utt chatting spices ##aus untouched ##eper Doll turkey Syndicate ##rlene ##JP ##roots Como clashed modernization 1757 fantasies ##iating dissipated Sicilian inspect sensible reputed ##final Milford poised RC metabolic Tobacco Mecca optimization ##heat lobe rabbits NAS geologist ##liner Kilda carpenter nationalists ##brae summarized ##venge Designer misleading beamed ##meyer Matrix excuses ##aines ##biology 401 Moose drafting Sai ##ggle Comprehensive dripped skate ##WI ##enan ##ruk narrower outgoing ##enter ##nounce overseen ##structure travellers banging scarred ##thing ##arra Ebert Sometime ##nated BAFTA Hurricanes configurations ##MLL immortality ##heus gothic ##mpest clergyman viewpoint Maxim Instituto emitted quantitative 1689 Consortium ##rsk Meat Tao swimmers Shaking Terence mainline ##linity Quantum ##rogate Nair banquet 39th reprised lagoon subdivisions synonymous incurred password sprung ##vere Credits Petersen Faces ##vu statesman Zombie gesturing ##going Sergey dormant possessive totals southward Ángel ##odies HM Mariano Ramirez Wicked impressions ##Net ##cap ##ème Transformers Poker RIAA Redesignated ##chuk Harcourt Peña spacious tinged alternatively narrowing Brigham authorization Membership Zeppelin ##amed Handball steer ##orium ##rnal ##rops Committees endings ##MM ##yung ejected grams ##relli Birch Hilary Stadion orphan clawed ##kner Motown Wilkins ballads outspoken ##ancipation ##bankment ##cheng Advances harvested novelty ineligible oversees ##´s obeyed inevitably Kingdoms burying Fabian relevance Tatiana ##MCA sarcastic ##onda Akron 229 sandwiches Adobe Maddox ##azar Hunting ##onized Smiling ##tology Juventus Leroy Poets attach lo ##rly ##film Structure ##igate olds projections SMS outnumbered ##tase judiciary paramilitary playfully ##rsing ##tras Chico Vin informally abandonment ##russ Baroness injuring octagonal deciduous ##nea ##olm Hz Norwood poses Marissa alerted willed ##KS Dino ##ddler ##vani Barbie Thankfully 625 bicycles shimmering ##tinuum ##wolf Chesterfield ##idy ##urgency Knowles sweetly Ventures ##ponents ##valence Darryl Powerplant RAAF ##pec Kingsley Parramatta penetrating spectacle ##inia Marlborough residual compatibility hike Underwood depleted ministries ##odus ##ropriation rotting Faso ##inn Happiness Lille Suns cookie rift warmly ##lvin Bugs Gotham Gothenburg Properties ##seller ##ubi Created MAC Noelle Requiem Ulysses ##ails franchises ##icious ##rwick celestial kinetic 720 STS transmissions amplitude forums freeing reptiles tumbling ##continent ##rising ##tropy physiology ##uster Loves bodied neutrality Neumann assessments Vicky ##hom hampered ##uku Custom timed ##eville ##xious elastic ##section rig stilled shipment 243 artworks boulders Bournemouth ##hly ##LF ##linary rumored ##bino ##drum Chun Freiburg ##dges Equality 252 Guadalajara ##sors ##taire Roach cramped ##ultural Logistics Punch fines Lai caravan ##55 lame Collector pausing 315 migrant hawk signalling ##erham ##oughs Demons surfing Rana insisting Wien adolescent ##jong ##rera ##umba Regis brushes ##iman residues storytelling Consider contrasting regeneration ##elling ##hlete afforded reactors costing ##biotics ##gat ##евич chanting secondly confesses ##ikos ##uang ##ronological ##− Giacomo ##eca vaudeville weeds rejecting revoked affluent fullback progresses geologic proprietor replication gliding recounted ##bah ##igma Flow ii newcomer ##lasp ##miya Candace fractured interiors confidential Inverness footing ##robe Coordinator Westphalia jumper ##chism dormitory ##gno 281 acknowledging leveled ##éra Algiers migrate Frog Rare ##iovascular ##urous DSO nomadic ##iera woken lifeless ##graphical ##ifications Dot Sachs crow nmi Tacoma Weight mushroom RS conditioned ##zine Tunisian altering ##mizing Handicap Patti Monsieur clicking gorge interrupting ##powerment drawers Serra ##icides Specialist ##itte connector worshipped ##ask consoles tags ##iler glued ##zac fences Bratislava honeymoon 313 A2 disposition Gentleman Gilmore glaciers ##scribed Calhoun convergence Aleppo shortages ##43 ##orax ##worm ##codes ##rmal neutron ##ossa Bloomberg Salford periodicals ##ryan Slayer ##ynasties credentials ##tista surveyor File stinging unnoticed Medici ecstasy espionage Jett Leary circulating bargaining concerto serviced 37th HK ##fueling Delilah Marcia graded ##join Kaplan feasible ##nale ##yt Burnley dreadful ministerial Brewster Judah ##ngled ##rrey recycled Iroquois backstage parchment ##numbered Kern Motorsports Organizations ##mini Seems Warrington Dunbar Ezio ##eor paralyzed Ara yeast ##olis cheated reappeared banged ##ymph ##dick Lyndon glide Mat ##natch Hotels Household parasite irrelevant youthful ##smic ##tero ##anti 2d Ignacio squash ##nets shale ##اد Abrams ##oese assaults ##dier ##otte Swamp 287 Spurs ##economic Fargo auditioned ##mé Haas une abbreviation Turkic ##tisfaction favorites specials ##lial Enlightenment Burkina ##vir Comparative Lacrosse elves ##lerical ##pear Borders controllers ##villa excelled ##acher ##varo camouflage perpetual ##ffles devoid schooner ##bered ##oris Gibbons Lia discouraged sue ##gnition Excellent Layton noir smack ##ivable ##evity ##lone Myra weaken weaponry ##azza Shake backbone Certified clown occupational caller enslaved soaking Wexford perceive shortlisted ##pid feminism Bari Indie ##avelin ##ldo Hellenic Hundreds Savings comedies Honors Mohawk Told coded Incorporated hideous trusts hose Calais Forster Gabon Internationale AK Colour ##UM ##heist McGregor localized ##tronomy Darrell ##iara squirrel freaked ##eking ##manned ##ungen radiated ##dua commence Donaldson ##iddle MR SAS Tavern Teenage admissions Instruments ##ilizer Konrad contemplated ##ductor Jing Reacher recalling Dhabi emphasizing illumination ##tony legitimacy Goethe Ritter McDonnell Polar Seconds aspiring derby tunic ##rmed outlines Changing distortion ##cter Mechanics ##urly ##vana Egg Wolverine Stupid centralized knit ##Ms Saratoga Ogden storylines ##vres lavish beverages ##grarian Kyrgyzstan forcefully superb Elm Thessaloniki follower Plants slang trajectory Nowadays Bengals Ingram perch coloring carvings doubtful ##aph ##gratulations ##41 Curse 253 nightstand Campo Meiji decomposition ##giri McCormick Yours ##amon ##bang Texans injunction organise periodical ##peculative oceans ##aley Success Lehigh ##guin 1730 Davy allowance obituary ##tov treasury ##wayne euros readiness systematically ##stered ##igor ##xen ##cliff ##lya Send ##umatic Celtics Judiciary 425 propagation rebellious ##ims ##lut Dal ##ayman ##cloth Boise pairing Waltz torment Hatch aspirations diaspora ##hame Rank 237 Including Muir chained toxicity Université ##aroo Mathews meadows ##bio Editing Khorasan ##them ##ahn ##bari ##umes evacuate ##sium gram kidnap pinning ##diation ##orms beacon organising McGrath ##ogist Qur Tango ##ceptor ##rud ##cend ##cie ##jas ##sided Tuscany Venture creations exhibiting ##rcerer ##tten Butcher Divinity Pet Whitehead falsely perished handy Moines cyclists synthesizers Mortal notoriety ##ronic Dialogue expressive uk Nightingale grimly vineyards Driving relentless compiler ##district ##tuated Hades medicines objection Answer Soap Chattanooga ##gogue Haryana Parties Turtle ##ferred explorers stakeholders ##aar ##rbonne tempered conjecture ##tee ##hur Reeve bumper stew ##church ##generate ##ilitating ##chanized ##elier ##enne translucent ##lows Publisher evangelical inherit ##rted 247 SmackDown bitterness lesions ##worked mosques wed ##lashes Ng Rebels booking ##nail Incident Sailing yo confirms Chaplin baths ##kled modernist pulsing Cicero slaughtered boasted ##losure zipper ##hales aristocracy halftime jolt unlawful Marching sustaining Yerevan bracket ram Markus ##zef butcher massage ##quisite Leisure Pizza collapsing ##lante commentaries scripted ##disciplinary ##sused eroded alleging vase Chichester Peacock commencement dice hotter poisonous executions ##occo frost fielding vendor Counts Troops maize Divisional analogue shadowy Nuevo Ville radiating worthless Adriatic Buy blaze brutally horizontally longed ##matical federally Rolf Root exclude rag agitation Lounge astonished ##wirl Impossible transformations ##IVE ##ceded ##slav downloaded fucked Egyptians Welles ##ffington U2 befriended radios ##jid archaic compares ##ccelerator ##imated ##tosis Hung Scientists Thousands geographically ##LR Macintosh fluorescent ##ipur Wehrmacht ##BR ##firmary Chao ##ague Boyer ##grounds ##hism ##mento ##taining infancy ##cton 510 Boca ##loy 1644 ben dong stresses Sweat expressway graders ochreous nets Lawn thirst Uruguayan satisfactory ##tracts baroque rusty ##ław Shen Gdańsk chickens ##graving Hodge Papal SAT bearer ##ogo ##rger merits Calendar Highest Skills ##ortex Roberta paradigm recounts frigates swamps unitary ##oker balloons Hawthorne Muse spurred advisors reclaimed stimulate fibre pat repeal ##dgson ##iar ##rana anthropologist descends flinch reared ##chang ##eric ##lithic commissioning ##cumenical ##lume ##rchen Wolff ##tsky Eurasian Nepali Nightmare ZIP playback ##latz ##vington Warm ##75 Martina Rollins Saetan Variations sorting ##م 530 Joaquin Ptolemy thinner ##iator ##pticism Cebu Highlanders Linden Vanguard ##SV ##mor ##ulge ISSN cartridges repression Étienne 311 Lauderdale commodities null ##rb 1720 gearbox ##reator Ang Forgotten dubious ##rls ##dicative ##phate Groove Herrera ##çais Collections Maximus ##published Fell Qualification filtering ##tized Roe hazards ##37 ##lative ##tröm Guadalupe Tajikistan Preliminary fronted glands ##paper ##iche ##iding Cairns rallies Location seduce ##mple BYU ##itic ##FT Carmichael Prentice songwriters forefront Physicians ##rille ##zee Preparatory ##cherous UV ##dized Navarro misses ##nney Inland resisting ##sect Hurt ##lino galaxies ##raze Institutions devote ##lamp ##ciating baron ##bracing Hess operatic ##CL ##ος Chevalier Guiana ##lattered Fed ##cuted ##smo Skull denies 236 Waller ##mah Sakura mole nominate sermons ##bering widowed ##röm Cavendish ##struction Nehru Revelation doom Gala baking Nr Yourself banning Individuals Sykes orchestrated 630 Phone steered 620 specialising starvation ##AV ##alet ##upation seductive ##jects ##zure Tolkien Benito Wizards Submarine dictator Duo Caden approx basins ##nc shrink ##icles ##sponsible 249 mit outpost ##bayashi ##rouse ##tl Jana Lombard RBIs finalized humanities ##function Honorable tomato ##iot Pie tee ##pect Beaufort Ferris bucks ##graduate ##ocytes Directory anxiously ##nating flanks ##Ds virtues ##believable Grades criterion manufactures sourced ##balt ##dance ##tano Ying ##BF ##sett adequately blacksmith totaled trapping expanse Historia Worker Sense ascending housekeeper ##oos Crafts Resurrection ##verty encryption ##aris ##vat ##pox ##runk ##iability gazes spying ##ths helmets wired ##zophrenia Cheung WR downloads stereotypes 239 Lucknow bleak Bragg hauling ##haft prohibit ##ermined ##castle barony ##hta Typhoon antibodies ##ascism Hawthorn Kurdistan Minority Gorge Herr appliances disrupt Drugs Lazarus ##ilia ##ryo ##tany Gotta Masovian Roxy choreographed ##rissa turbulent ##listed Anatomy exiting ##det ##isław 580 Kaufman sage ##apa Symposium ##rolls Kaye ##ptera ##rocław jerking ##menclature Guo M1 resurrected trophies ##lard Gathering nestled serpent Dow reservoirs Claremont arbitration chronicle eki ##arded ##zers ##mmoth Congregational Astronomical NE RA Robson Scotch modelled slashed ##imus exceeds ##roper ##utile Laughing vascular superficial ##arians Barclay Caucasian classmate sibling Kimberly Shreveport ##ilde ##liche Cheney Deportivo Veracruz berries ##lase Bed MI Anatolia Mindanao broadband ##olia ##arte ##wab darts ##immer ##uze believers ordinance violate ##wheel ##ynth Alongside Coupe Hobbs arrondissement earl townland ##dote ##lihood ##sla Ghosts midfield pulmonary ##eno cues ##gol ##zda 322 Siena Sultanate Bradshaw Pieter ##thical Raceway bared competence ##ssent Bet ##urer ##ła Alistair Göttingen appropriately forge ##osterone ##ugen DL 345 convoys inventions ##resses ##cturnal Fay Integration slash ##roats Widow barking ##fant 1A Hooper ##cona ##runched unreliable ##emont ##esign ##stabulary ##stop Journalists bony ##iba ##trata ##ège horrific ##bish Jocelyn ##rmon ##apon ##cier trainers ##ulatory 1753 BR corpus synthesized ##bidden ##rafford Elgin ##entry Doherty clockwise ##played spins ##ample ##bley Cope constructions seater warlord Voyager documenting fairies ##viator Lviv jewellery suites ##gold Maia NME ##eavor ##kus Eugène furnishings ##risto MCC Metropolis Older Telangana ##mpus amplifier supervising 1710 buffalo cushion terminating ##powering steak Quickly contracting dem sarcastically Elsa ##hein bastards narratives Takes 304 composure typing variance ##ifice Softball ##rations McLaughlin gaped shrines ##hogany Glamorgan ##icle ##nai ##ntin Fleetwood Woodland ##uxe fictitious shrugs ##iper BWV conform ##uckled Launch ##ductory ##mized Tad ##stituted ##free Bel Chávez messing quartz ##iculate ##folia ##lynn ushered ##29 ##ailing dictated Pony ##opsis precinct 802 Plastic ##ughter ##uno ##porated Denton Matters SPD hating ##rogen Essential Deck Dortmund obscured ##maging Earle ##bred ##ittle ##ropolis saturated ##fiction ##ression Pereira Vinci mute warehouses ##ún biographies ##icking sealing ##dered executing pendant ##wives murmurs ##oko substrates symmetrical Susie ##mare Yusuf analogy ##urage Lesley limitation ##rby ##ío disagreements ##mise embroidered nape unarmed Sumner Stores dwell Wilcox creditors ##rivatization ##shes ##amia directs recaptured scouting McGuire cradle ##onnell Sato insulin mercenary tolerant Macquarie transitions cradled ##berto ##ivism ##yotes FF Ke Reach ##dbury 680 ##bill ##oja ##sui prairie ##ogan reactive ##icient ##rits Cyclone Sirius Survival Pak ##coach ##trar halves Agatha Opus contrasts ##jection ominous ##iden Baylor Woodrow duct fortification intercourse ##rois Colbert envy ##isi Afterward geared ##flections accelerate ##lenching Witness ##rrer Angelina Material assertion misconduct Nix cringed tingling ##eti ##gned Everest disturb sturdy ##keepers ##vied Profile heavenly ##kova ##victed translating ##sses 316 Invitational Mention martyr ##uristic Barron hardness Nakamura 405 Genevieve reflections ##falls jurist ##LT Pyramid ##yme Shoot heck linguist ##tower Ives superiors ##leo Achilles ##phological Christophe Padma precedence grassy Oral resurrection ##itting clumsy ##lten ##rue huts ##stars Equal ##queduct Devin Gaga diocesan ##plating ##upe ##graphers Patch Scream hail moaning tracts ##hdi Examination outsider ##ergic ##oter Archipelago Havilland greenish tilting Aleksandr Konstantin warship ##emann ##gelist ##ought billionaire ##blivion 321 Hungarians transplant ##jured ##fters Corbin autism pitchers Garner thence Scientology transitioned integrating repetitive ##dant Rene vomit ##burne 1661 Researchers Wallis insulted wavy ##wati Ewing excitedly ##kor frescoes injustice ##achal ##lumber ##úl novella ##sca Liv ##enstein ##river monstrous topping downfall looming sinks trillion ##pont Effect ##phi ##urley Sites catchment ##H1 Hopper ##raiser 1642 Maccabi lance ##chia ##sboro NSA branching retorted tensor Immaculate drumming feeder ##mony Dyer homicide Temeraire fishes protruding skins orchards ##nso inlet ventral ##finder Asiatic Sul 1688 Melinda assigns paranormal gardening Tau calming ##inge ##crow regimental Nik fastened correlated ##gene ##rieve Sick ##minster ##politan hardwood hurled ##ssler Cinematography rhyme Montenegrin Packard debating ##itution Helens Trick Museums defiance encompassed ##EE ##TU ##nees ##uben ##ünster ##nosis 435 Hagen cinemas Corbett commended ##fines ##oman bosses ripe scraping ##loc filly Saddam pointless Faust Orléans Syriac ##♭ longitude ##ropic Alfa bliss gangster ##ckling SL blending ##eptide ##nner bends escorting ##bloid ##quis burials ##sle ##è Ambulance insults ##gth Antrim unfolded ##missible splendid Cure warily Saigon Waste astonishment boroughs ##VS ##dalgo ##reshing ##usage rue marital versatile unpaid allotted bacterium ##coil ##cue Dorothea IDF ##location ##yke RPG ##tropical devotees liter ##pree Johnstone astronaut attends pollen periphery doctrines meta showered ##tyn GO Huh laude 244 Amar Christensen Ping Pontifical Austen raiding realities ##dric urges ##dek Cambridgeshire ##otype Cascade Greenberg Pact ##cognition ##aran ##urion Riot mimic Eastwood ##imating reversal ##blast ##henian Pitchfork ##sunderstanding Staten WCW lieu ##bard ##sang experimenting Aquino ##lums TNT Hannibal catastrophic ##lsive 272 308 ##otypic 41st Highways aggregator ##fluenza Featured Reece dispatch simulated ##BE Communion Vinnie hardcover inexpensive til ##adores groundwater kicker blogs frenzy ##wala dealings erase Anglia ##umour Hapoel Marquette ##raphic ##tives consult atrocities concussion ##érard Decree ethanol ##aen Rooney ##chemist ##hoot 1620 menacing Schuster ##bearable laborers sultan Juliana erased onstage ##ync Eastman ##tick hushed ##yrinth Lexie Wharton Lev ##PL Testing Bangladeshi ##bba ##usions communicated integers internship societal ##odles Loki ET Ghent broadcasters Unix ##auer Kildare Yamaha ##quencing ##zman chilled ##rapped ##uant Duval sentiments Oliveira packets Horne ##rient Harlan Mirage invariant ##anger ##tensive flexed sweetness ##wson alleviate insulting limo Hahn ##llars ##hesia ##lapping buys ##oaming mocked pursuits scooted ##conscious ##ilian Ballad jackets ##kra hilly ##cane Scenic McGraw silhouette whipping ##roduced ##wark ##chess ##rump Lemon calculus demonic ##latine Bharatiya Govt Que Trilogy Ducks Suit stairway ##ceipt Isa regulator Automobile flatly ##buster ##lank Spartans topography Tavi usable Chartered Fairchild ##sance ##vyn Digest nuclei typhoon ##llon Alvarez DJs Grimm authoritative firearm ##chschule Origins lair unmistakable ##xial ##cribing Mouth ##genesis ##shū ##gaon ##ulter Jaya Neck ##UN ##oing ##static relativity ##mott ##utive ##esan ##uveau BT salts ##roa Dustin preoccupied Novgorod ##asus Magnum tempting ##histling ##ilated Musa ##ghty Ashland pubs routines ##etto Soto 257 Featuring Augsburg ##alaya Bit loomed expects ##abby ##ooby Auschwitz Pendleton vodka ##sent rescuing systemic ##inet ##leg Yun applicant revered ##nacht ##ndas Muller characterization ##patient ##roft Carole ##asperated Amiga disconnected gel ##cologist Patriotic rallied assign veterinary installing ##cedural 258 Jang Parisian incarcerated stalk ##iment Jamal McPherson Palma ##oken ##viation 512 Rourke irrational ##rippled Devlin erratic ##NI ##payers Ni engages Portal aesthetics ##rrogance Milne assassins ##rots 335 385 Cambodian Females fellows si ##block ##otes Jayne Toro flutter ##eera Burr ##lanche relaxation ##fra Fitzroy ##undy 1751 261 comb conglomerate ribbons veto ##Es casts ##ege 1748 Ares spears spirituality comet ##nado ##yeh Veterinary aquarium yer Councils ##oked ##ynamic Malmö remorse auditions drilled Hoffmann Moe Nagoya Yacht ##hakti ##race ##rrick Talmud coordinating ##EI ##bul ##his ##itors ##ligent ##uerra Narayan goaltender taxa ##asures Det ##mage Infinite Maid bean intriguing ##cription gasps socket ##mentary ##reus sewing transmitting ##different ##furbishment ##traction Grimsby sprawling Shipyard ##destine ##hropic ##icked trolley ##agi ##lesh Josiah invasions Content firefighters intro Lucifer subunit Sahib Myrtle inhibitor maneuvers ##teca Wrath slippery ##versing Shoes ##dial ##illiers ##luded ##mmal ##pack handkerchief ##edestal ##stones Fusion cumulative ##mell ##cacia ##rudge ##utz foe storing swiped ##meister ##orra batter strung ##venting ##kker Doo Taste immensely Fairbanks Jarrett Boogie 1746 mage Kick legislators medial ##ilon ##logies ##ranton Hybrid ##uters Tide deportation Metz ##secration ##virus UFO ##fell ##orage ##raction ##rrigan 1747 fabricated ##BM ##GR ##rter muttering theorist ##tamine BMG Kincaid solvent ##azed Thin adorable Wendell ta ##viour pulses ##pologies counters exposition sewer Luciano Clancy ##angelo ##riars Showtime observes frankly ##oppy Bergman lobes timetable ##bri ##uest FX ##dust ##genus Glad Helmut Meridian ##besity ##ontaine Revue miracles ##titis PP bluff syrup 307 Messiah ##erne interfering picturesque unconventional dipping hurriedly Kerman 248 Ethnic Toward acidic Harrisburg ##65 intimidating ##aal Jed Pontiac munitions ##nchen growling mausoleum ##ération ##wami Cy aerospace caucus Doing ##around ##miring Cuthbert ##poradic ##rovisation ##wth evaluating ##scraper Belinda owes ##sitic ##thermal ##fast economists ##lishing ##uerre ##ân credible ##koto Fourteen cones ##ebrates bookstore towels ##phony Appearance newscasts ##olin Karin Bingham ##elves 1680 306 disks ##lston ##secutor Levant ##vout Micro snuck ##ogel ##racker Exploration drastic ##kening Elsie endowment ##utnant Blaze ##rrosion leaking 45th ##rug ##uernsey 760 Shapiro cakes ##ehan ##mei ##ité ##kla repetition successively Friendly Île Koreans Au Tirana flourish Spirits Yao reasoned ##leam Consort cater marred ordeal supremacy ##ritable Paisley euro healer portico wetland ##kman restart ##habilitation ##zuka ##Script emptiness communion ##CF ##inhabited ##wamy Casablanca pulsed ##rrible ##safe 395 Dual Terrorism ##urge ##found ##gnolia Courage patriarch segregated intrinsic ##liography ##phe PD convection ##icidal Dharma Jimmie texted constituents twitch ##calated ##mitage ##ringing 415 milling ##geons Armagh Geometridae evergreen needy reflex template ##pina Schubert ##bruck ##icted ##scher ##wildered 1749 Joanne clearer ##narl 278 Print automation consciously flashback occupations ##ests Casimir differentiated policing repay ##aks ##gnesium Evaluation commotion ##CM ##smopolitan Clapton mitochondrial Kobe 1752 Ignoring Vincenzo Wet bandage ##rassed ##unate Maris ##eted ##hetical figuring ##eit ##nap leopard strategically ##reer Fen Iain ##ggins ##pipe Matteo McIntyre ##chord ##feng Romani asshole flopped reassure Founding Styles Torino patrolling ##erging ##ibrating ##ructural sincerity ##ät ##teacher Juliette ##cé ##hog ##idated ##span Winfield ##fender ##nast ##pliant 1690 Bai Je Saharan expands Bolshevik rotate ##root Britannia Severn ##cini ##gering ##say sly Steps insertion rooftop Piece cuffs plausible ##zai Provost semantic ##data ##vade ##cimal IPA indictment Libraries flaming highlands liberties ##pio Elders aggressively ##pecific Decision pigeon nominally descriptive adjustments equestrian heaving ##mour ##dives ##fty ##yton intermittent ##naming ##sets Calvert Casper Tarzan ##kot Ramírez ##IB ##erus Gustavo Roller vaulted ##solation ##formatics ##tip Hunger colloquially handwriting hearth launcher ##idian ##ilities ##lind ##locating Magdalena Soo clubhouse ##kushima ##ruit Bogotá Organic Worship ##Vs ##wold upbringing ##kick groundbreaking ##urable ##ván repulsed ##dira ##ditional ##ici melancholy ##bodied ##cchi 404 concurrency H₂O bouts ##gami 288 Leto troll ##lak advising bundled ##nden lipstick littered ##leading ##mogeneous Experiment Nikola grove ##ogram Mace ##jure cheat Annabelle Tori lurking Emery Walden ##riz paints Markets brutality overrun ##agu ##sat din ostensibly Fielding flees ##eron Pound ornaments tornadoes ##nikov ##organisation ##reen ##Works ##ldred ##olten ##stillery soluble Mata Grimes Léon ##NF coldly permitting ##inga ##reaked Agents hostess ##dl Dyke Kota avail orderly ##saur ##sities Arroyo ##ceps ##egro Hawke Noctuidae html seminar ##ggles ##wasaki Clube recited ##sace Ascension Fitness dough ##ixel Nationale ##solidate pulpit vassal 570 Annapolis bladder phylogenetic ##iname convertible ##ppan Comet paler ##definite Spot ##dices frequented Apostles slalom ##ivision ##mana ##runcated Trojan ##agger ##iq ##league Concept Controller ##barian ##curate ##spersed ##tring engulfed inquired ##hmann 286 ##dict ##osy ##raw MacKenzie su ##ienced ##iggs ##quitaine bisexual ##noon runways subsp ##! ##" ### ##$ ##% ##& ##' ##( ##) ##* ##+ ##, ##- ##. ##/ ##: ##; ##< ##= ##> ##? ##@ ##[ ##\ ##] ##^ ##_ ##` ##{ ##| ##} ##~ ##¡ ##¢ ##£ ##¥ ##§ ##¨ ##© ##ª ##« ##¬ ##® ##± ##´ ##µ ##¶ ##· ##¹ ##º ##» ##¼ ##¾ ##¿ ##À ##Á ## ##Ä ##Å ##Æ ##Ç ##È ##É ##Í ##Î ##Ñ ##Ó ##Ö ##× ##Ø ##Ú ##Ü ##Þ ##â ##ã ##æ ##ç ##î ##ï ##ð ##ñ ##ô ##õ ##÷ ##û ##þ ##ÿ ##Ā ##ą ##Ć ##Č ##ď ##Đ ##đ ##ē ##ė ##ę ##ě ##ğ ##ġ ##Ħ ##ħ ##ĩ ##Ī ##İ ##ļ ##Ľ ##ľ ##Ł ##ņ ##ň ##ŋ ##Ō ##ŏ ##ő ##Œ ##œ ##ř ##Ś ##ś ##Ş ##Š ##Ţ ##ţ ##ť ##ũ ##ŭ ##ů ##ű ##ų ##ŵ ##ŷ ##ź ##Ż ##ż ##Ž ##ž ##Ə ##ƒ ##ơ ##ư ##ǎ ##ǐ ##ǒ ##ǔ ##ǫ ##Ș ##Ț ##ț ##ɐ ##ɑ ##ɔ ##ɕ ##ə ##ɛ ##ɡ ##ɣ ##ɨ ##ɪ ##ɲ ##ɾ ##ʀ ##ʁ ##ʂ ##ʃ ##ʊ ##ʋ ##ʌ ##ʐ ##ʑ ##ʒ ##ʔ ##ʰ ##ʲ ##ʳ ##ʷ ##ʻ ##ʼ ##ʾ ##ʿ ##ˈ ##ː ##ˡ ##ˢ ##ˣ ##́ ##̃ ##̍ ##̯ ##͡ ##Α ##Β ##Γ ##Δ ##Ε ##Η ##Θ ##Ι ##Κ ##Λ ##Μ ##Ν ##Ο ##Π ##Σ ##Τ ##Φ ##Χ ##Ψ ##Ω ##ά ##έ ##ή ##ί ##β ##γ ##δ ##ε ##ζ ##η ##θ ##ι ##κ ##λ ##μ ##ξ ##ο ##π ##ρ ##σ ##τ ##υ ##φ ##χ ##ψ ##ω ##ό ##ύ ##ώ ##І ##Ј ##А ##Б ##В ##Г ##Д ##Е ##Ж ##З ##И ##К ##Л ##М ##Н ##О ##П ##Р ##С ##Т ##У ##Ф ##Х ##Ц ##Ч ##Ш ##Э ##Ю ##Я ##б ##в ##г ##д ##ж ##з ##к ##л ##м ##п ##с ##т ##у ##ф ##х ##ц ##ч ##ш ##щ ##ъ ##ы ##ь ##э ##ю ##ё ##і ##ї ##ј ##њ ##ћ ##Ա ##Հ ##ա ##ե ##ի ##կ ##մ ##յ ##ն ##ո ##ս ##տ ##ր ##ւ ##ְ ##ִ ##ֵ ##ֶ ##ַ ##ָ ##ֹ ##ּ ##א ##ב ##ג ##ד ##ה ##ו ##ז ##ח ##ט ##י ##כ ##ל ##ם ##מ ##ן ##נ ##ס ##ע ##פ ##צ ##ק ##ר ##ש ##ת ##، ##ء ##آ ##أ ##إ ##ئ ##ا ##ب ##ت ##ث ##ج ##ح ##خ ##ذ ##ز ##س ##ش ##ص ##ض ##ط ##ظ ##ع ##غ ##ف ##ق ##ك ##ل ##و ##ى ##َ ##ِ ##ٹ ##پ ##چ ##ک ##گ ##ہ ##ی ##ے ##ं ##आ ##क ##ग ##च ##ज ##ण ##त ##द ##ध ##न ##प ##ब ##भ ##म ##य ##र ##ल ##व ##श ##ष ##स ##ह ##ा ##ि ##ी ##ु ##े ##ो ##् ##। ##॥ ##আ ##ই ##এ ##ও ##ক ##খ ##গ ##চ ##ছ ##জ ##ট ##ত ##থ ##দ ##ধ ##ন ##প ##ব ##ম ##য ##র ##ল ##শ ##স ##হ ##় ##া ##ি ##ী ##ু ##ে ##ো ##্ ##য় ##க ##த ##ப ##ம ##ய ##ர ##ல ##வ ##ா ##ி ##ு ##் ##ร ##་ ##ག ##ང ##ད ##ན ##བ ##མ ##ར ##ལ ##ས ##ི ##ུ ##ེ ##ོ ##ა ##ე ##ი ##ლ ##ნ ##ო ##რ ##ს ##ᴬ ##ᴵ ##ᵀ ##ᵃ ##ᵇ ##ᵈ ##ᵉ ##ᵍ ##ᵏ ##ᵐ ##ᵒ ##ᵖ ##ᵗ ##ᵘ ##ᵣ ##ᵤ ##ᵥ ##ᶜ ##ᶠ ##ḍ ##Ḥ ##ḥ ##Ḩ ##ḩ ##ḳ ##ṃ ##ṅ ##ṇ ##ṛ ##ṣ ##ṭ ##ạ ##ả ##ấ ##ầ ##ẩ ##ậ ##ắ ##ế ##ề ##ể ##ễ ##ệ ##ị ##ọ ##ố ##ồ ##ổ ##ộ ##ớ ##ờ ##ợ ##ụ ##ủ ##ứ ##ừ ##ử ##ữ ##ự ##ỳ ##ỹ ##ἀ ##ἐ ##ὁ ##ὐ ##ὰ ##ὶ ##ὸ ##ῆ ##ῖ ##ῦ ##ῶ ##‐ ##‑ ##‒ ##– ##— ##― ##‖ ##‘ ##’ ##‚ ##“ ##” ##„ ##† ##‡ ##• ##… ##‰ ##′ ##″ ##⁄ ##⁰ ##ⁱ ##⁴ ##⁵ ##⁶ ##⁷ ##⁸ ##⁹ ##⁻ ##ⁿ ##₅ ##₆ ##₇ ##₈ ##₉ ##₊ ##₍ ##₎ ##ₐ ##ₑ ##ₒ ##ₓ ##ₕ ##ₖ ##ₘ ##ₚ ##ₛ ##ₜ ##₤ ##€ ##₱ ##₹ ##ℓ ##№ ##ℝ ##⅓ ##← ##↑ ##→ ##↔ ##⇌ ##⇒ ##∂ ##∈ ##∗ ##∘ ##√ ##∞ ##∧ ##∨ ##∩ ##∪ ##≈ ##≠ ##≡ ##≤ ##≥ ##⊂ ##⊆ ##⊕ ##⋅ ##─ ##│ ##■ ##● ##★ ##☆ ##☉ ##♠ ##♣ ##♥ ##♦ ##♯ ##⟨ ##⟩ ##ⱼ ##、 ##。 ##《 ##》 ##「 ##」 ##『 ##』 ##〜 ##い ##う ##え ##お ##か ##き ##く ##け ##こ ##さ ##し ##す ##せ ##そ ##た ##ち ##つ ##て ##と ##な ##に ##の ##は ##ひ ##ま ##み ##む ##め ##も ##や ##ゆ ##よ ##ら ##り ##る ##れ ##ん ##ア ##ィ ##イ ##ウ ##エ ##オ ##カ ##ガ ##キ ##ク ##グ ##コ ##サ ##シ ##ジ ##ス ##ズ ##タ ##ダ ##ッ ##テ ##デ ##ト ##ド ##ナ ##ニ ##ハ ##バ ##パ ##フ ##ブ ##プ ##マ ##ミ ##ム ##ャ ##ュ ##ラ ##リ ##ル ##レ ##ロ ##ン ##・ ##ー ##一 ##三 ##上 ##下 ##中 ##事 ##二 ##井 ##京 ##人 ##亻 ##仁 ##佐 ##侍 ##光 ##公 ##力 ##北 ##十 ##南 ##原 ##口 ##史 ##司 ##吉 ##同 ##和 ##囗 ##国 ##國 ##土 ##城 ##士 ##大 ##天 ##太 ##夫 ##女 ##子 ##宀 ##安 ##宮 ##宿 ##小 ##尚 ##山 ##島 ##川 ##州 ##平 ##年 ##心 ##愛 ##戸 ##文 ##新 ##方 ##日 ##明 ##星 ##書 ##月 ##木 ##本 ##李 ##村 ##東 ##松 ##林 ##正 ##武 ##氏 ##水 ##氵 ##江 ##河 ##海 ##版 ##犬 ##王 ##生 ##田 ##白 ##皇 ##省 ##真 ##石 ##社 ##神 ##竹 ##美 ##義 ##花 ##藤 ##西 ##谷 ##車 ##辶 ##道 ##郎 ##郡 ##部 ##野 ##金 ##長 ##門 ##陽 ##青 ##食 ##馬 ##高 ##龍 ##龸 ##사 ##씨 ##의 ##이 ##한 ##fi ##fl ##! ##( ##) ##, ##- ##/ ##:
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head
mask_head
mask_head
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList from .roi_mask_feature_extractors import make_roi_mask_feature_extractor from .roi_mask_predictors import make_roi_mask_predictor from .inference import make_roi_mask_post_processor from .loss import make_roi_mask_loss_evaluator def keep_only_positive_boxes(boxes): """ Given a set of BoxList containing the `labels` field, return a set of BoxList for which `labels > 0`. Arguments: boxes (list of BoxList) """ assert isinstance(boxes, (list, tuple)) assert isinstance(boxes[0], BoxList) assert boxes[0].has_field("labels") positive_boxes = [] positive_inds = [] num_boxes = 0 for boxes_per_image in boxes: labels = boxes_per_image.get_field("labels") inds_mask = labels > 0 inds = inds_mask.nonzero().squeeze(1) positive_boxes.append(boxes_per_image[inds]) positive_inds.append(inds_mask) return positive_boxes, positive_inds class ROIMaskHead(torch.nn.Module): def __init__(self, cfg): super(ROIMaskHead, self).__init__() self.cfg = cfg.clone() self.feature_extractor = make_roi_mask_feature_extractor(cfg) self.predictor = make_roi_mask_predictor(cfg) self.post_processor = make_roi_mask_post_processor(cfg) self.loss_evaluator = make_roi_mask_loss_evaluator(cfg) def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the original proposals are returned. During testing, the predicted boxlists are returned with the `mask` field set losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training: # during training, only focus on positive boxes all_proposals = proposals proposals, positive_inds = keep_only_positive_boxes(proposals) if self.training and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR: x = features x = x[torch.cat(positive_inds, dim=0)] else: x = self.feature_extractor(features, proposals) mask_logits = self.predictor(x) if not self.training: result = self.post_processor(mask_logits, proposals) return x, result, {} loss_mask = self.loss_evaluator(proposals, mask_logits, targets) return x, all_proposals, dict(loss_mask=loss_mask) def build_roi_mask_head(cfg): return ROIMaskHead(cfg)
PyTorch/SpeechSynthesis/FastPitch/platform
platform
DGX1_FastPitch_AMP_8GPU
#!/bin/bash set -a : ${NUM_GPUS:=8} : ${BATCH_SIZE:=16} : ${GRAD_ACCUMULATION:=2} : ${AMP:=true} bash scripts/train.sh "$@"
TensorFlow/Recommendation/WideAndDeep/utils
utils
metrics
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from trainer import features # rough approximation for MAP metric for measuring ad quality # roughness comes from batch sizes falling between groups of # display ids # hack because of name clashes. Probably makes sense to rename features DISPLAY_ID_COLUMN = features.DISPLAY_ID_COLUMN def map_custom_metric(features, labels, predictions): display_ids = tf.reshape(features[DISPLAY_ID_COLUMN], [-1]) predictions = predictions['probabilities'][:, 1] labels = labels[:, 0] # Processing unique display_ids, indexes and counts # Sorting needed in case the same display_id occurs in two different places sorted_ids = tf.argsort(display_ids) display_ids = tf.gather(display_ids, indices=sorted_ids) predictions = tf.gather(predictions, indices=sorted_ids) labels = tf.gather(labels, indices=sorted_ids) _, display_ids_idx, display_ids_ads_count = tf.unique_with_counts( display_ids, out_idx=tf.int64) pad_length = 30 - tf.reduce_max(display_ids_ads_count) pad_fn = lambda x: tf.pad(x, [(0, 0), (0, pad_length)]) preds = tf.RaggedTensor.from_value_rowids( predictions, display_ids_idx).to_tensor() labels = tf.RaggedTensor.from_value_rowids( labels, display_ids_idx).to_tensor() labels = tf.argmax(labels, axis=1) return { 'map': tf.compat.v1.metrics.average_precision_at_k( predictions=pad_fn(preds), labels=labels, k=12, name="streaming_map")} IS_LEAK_COLUMN = features.IS_LEAK_COLUMN def map_custom_metric_with_leak(features, labels, predictions): display_ids = features[DISPLAY_ID_COLUMN] display_ids = tf.reshape(display_ids, [-1]) is_leak_tf = features[IS_LEAK_COLUMN] is_leak_tf = tf.reshape(is_leak_tf, [-1]) predictions = predictions['probabilities'][:, 1] predictions = predictions + tf.cast(is_leak_tf, tf.float32) labels = labels[:, 0] # Processing unique display_ids, indexes and counts # Sorting needed in case the same display_id occurs in two different places sorted_ids = tf.argsort(display_ids) display_ids = tf.gather(display_ids, indices=sorted_ids) predictions = tf.gather(predictions, indices=sorted_ids) labels = tf.gather(labels, indices=sorted_ids) _, display_ids_idx, display_ids_ads_count = tf.unique_with_counts( display_ids, out_idx=tf.int64) pad_length = 30 - tf.reduce_max(display_ids_ads_count) pad_fn = lambda x: tf.pad(x, [(0, 0), (0, pad_length)]) preds = tf.RaggedTensor.from_value_rowids(predictions, display_ids_idx).to_tensor() labels = tf.RaggedTensor.from_value_rowids(labels, display_ids_idx).to_tensor() labels = tf.argmax(labels, axis=1) return { 'map_with_leak': tf.compat.v1.metrics.average_precision_at_k( predictions=pad_fn(preds), labels=labels, k=12, name="streaming_map_with_leak")}
CUDA-Optimized/FastSpeech
FastSpeech
README
# FastSpeech For PyTorch and TensorRT This repository provides a script and recipe to train the FastSpeech model to achieve state-of-the-art accuracy and is tested and maintained by NVIDIA. It also provides an optimization in TensorRT to accelerate inference performance without loss of accuracy. For more details, see this [talk](https://developer.nvidia.com/gtc/2020/video/s21420) and [slides](https://drive.google.com/file/d/1V-h5wBWAZpIpwg-qjwOuxZuOk4CLDRxy/view?usp=sharing) presented in GTC 2020. ## Table Of Contents - [Model overview](#model-overview) * [Model architecture](#model-architecture) * [Default configuration](#default-configuration) * [Feature support matrix](#feature-support-matrix) * [Features](#features) - [Setup](#setup) * [Requirements](#requirements) - [Quick Start Guide](#quick-start-guide) - [Advanced](#advanced) * [Scripts and sample code](#scripts-and-sample-code) * [Parameters](#parameters) * [Command-line options](#command-line-options) * [Getting the data](#getting-the-data) * [Dataset guidelines](#dataset-guidelines) * [Training process](#training-process) * [Inference process](#inference-process) - [Performance](#performance) * [Benchmarking](#benchmarking) * [Training performance benchmark](#training-performance-benchmark) * [Inference performance benchmark](#inference-performance-benchmark) * [Results](#results) * [Training performance results](#training-performance-results) * [Inference performance results](#inference-performance-results) * [Inference performance: NVIDIA DGX-1 (1x V100 16GB)](#inference-performance-nvidia-dgx-1-1x-v100-16gb) * [Inference performance: NVIDIA T4](#inference-performance-nvidia-t4) - [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) ## Model overview The [FastSpeech](https://arxiv.org/pdf/1905.09263.pdf) model is one of the state-of-the-art Text-to-Mel models, researched by Microsoft and its paper was published to NeurIPS 2019. This model uses the WaveGlow vocoder model to generate waveforms. One of the main points of this model is that the inference is disruptively fast. What make this possible is that it requires only single feed-forwarding, and no recurrence and auto-regression are required in the model. Another benefit of this model is that it’s robust to errors, meaning that it makes no repetitive words or skipped words. Our implementation of the FastSpeech model differs from the model described in the paper. Our implementation uses Tacotron2 instead of Transformer TTS as a teacher model to get alignments between texts and mel-spectrograms. This FastSpeech model is trained with mixed precision using Tensor Cores on NVIDIA Volta and Turing GPUs. Therefore, researchers can get results up to 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. Also, this model accelerates inference by running on TensorRT, up to 3x faster than running on PyTorch Framework on NVIDIA Volta and Turing GPUs. The models are tested against each NGC monthly container release to ensure consistent accuracy and performance over time. ### Model architecture Fastspeech is a Text-to-Mel model, not based on any recurrent blocks or autoregressive logic. It consists of three parts - Phoneme-Side blocks, Length Regulator, and Mel-Side blocks. Phoneme-Side blocks contain an embedding layer, 6 Feed Forward Transformer(FFT) blocks, and the positional encoding adding layer. Length regulator has a nested neural model inside, Duration Predictor. Mel-Side blocks is almost similar with Phoneme-Side blocks, except for a linear layer in the tail. The FFT Block is a variant of the Transformer block. It contains a multi-head attention layer with a residual connection, two layers of 1D-convolutional network with residual connections and two Layer Normalization layers. The Length Regulator is the key block in FastSpeech model. Dealing with TTS, one of the biggest difficulties, is handling variable length of data. That's why recently most of the deep neural TTS have required recurrent blocks or autoregressive logic in them. However, the way Length Regulator handles variable length of data is completely different. Basically, it controls the length by repeating elements of the sequence, by the predicted durations. The Duration Predictor in Length Regulator, predicts each phoneme’s duration. It is also a neural model that consists of two 1D-convolution and a Fully Connected layer. Finally, Length Regulator expands each element of the sequence by the predicted durations. ![](./materials/fastspeech_arch.png "FastSpeech architecture") Figure 1. Architecture of the FastSpeech model. Taken from the [FastSpeech](https://arxiv.org/pdf/1905.09263.pdf) paper. ### Default configuration This FastSpeech model supports multi-GPU and mixed precision training with dynamic loss scaling (see Apex code [here](https://github.com/NVIDIA/apex/blob/master/apex/fp16_utils/loss_scaler.py)), as well as mixed precision inference. To speed up FastSpeech training, reference mel-spectrograms and alignments between texts and mel-spectrograms are generated during a preprocessing step and read directly from disk during training, instead of being generated during training. Also, this model utilizes fused layer normalization supported by Apex (see [here](https://nvidia.github.io/apex/layernorm.html)) to get extra speed-up during training and inference. This model is accelerated during inference by our implementation using TensorRT Python API (see [here](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)). Custom CUDA/C++ plugins are provided for some layers, to implement complex operations in the model for TensorRT and for better performance during inference. Also, we provide implementation of multi-engine inference as an experimental feature for improving inference performance more, dealing with variable input lengths. For more details, refer to [running on TensorRT](fastspeech/trt/README.md) In summary, the following features were implemented in this model: * Data-parallel multi-GPU training * Dynamic loss scaling with backoff for Tensor Cores (mixed precision) training * Accelerated inference on TensorRT using custom plugins and multi-engines approach ### Feature support matrix The following features are supported by this model: | Feature | FastSpeech |----------------------------------|-------------------------- |Automatic mixed precision (AMP) | Yes |TensorRT inferencing | Yes #### Features Automatic Mixed Precision (AMP) - AMP is a tool that enables Tensor Core-accelerated training. For more information, refer to [APEX AMP docs](https://nvidia.github.io/apex/amp.html). TensorRT - a library for high-performance inference on NVIDIA GPUs, improving latency, throughput, power efficiency, and memory consumption. It builds optimized runtime engines by selecting the most performant kernels & algorithms, fusing layers, and using mixed precision. For more information, refer to [github.com/NVIDIA/TensorRT](https://github.com/NVIDIA/TensorRT). ## Setup The following section lists the requirements that you need to meet in order to start training the FastSpeech model. ### Requirements This repository contains Dockerfile which extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components: * [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) * [PyTorch 20.10-py3 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch) or newer * [NVIDIA Volta](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/), [Turing](https://www.nvidia.com/en-us/geforce/turing/)<!--, or [Ampere](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/) based GPU--> For more information about how to get started with NGC containers, see the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning Documentation: * [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html) * [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#accessing_registry) * [Running PyTorch](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/running.html#running) For those unable to use the PyTorch NGC container, to set up the required environment or create your own container, see the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). ## Quick Start Guide To train your model using mixed precision with Tensor Cores or using FP32, perform the following steps using the default parameters of the FastSpeech model on the LJSpeech(https://keithito.com/LJ-Speech-Dataset) dataset. For the specifics concerning training and inference, see the [Advanced](#advanced) section. 1. Clone the repository, ``` git clone https://github.com/NVIDIA/DeepLearningExamples.git cd DeepLearningExamples/CUDA-Optimized/FastSpeech ``` 2. Download and preprocess the dataset. Data is downloaded to the ./LJSpeech-1.1 directory (on the host). The ./LJSpeech-1.1 directory is mounted to the /workspace/fastspeech/LJSpeech-1.1 location in the NGC container. ``` bash scripts/prepare_dataset.sh ``` 3. Build the FastSpeech PyTorch NGC container. ``` bash scripts/docker/build.sh ``` 4. Start an interactive session in the NGC container to run training/inference. After you build the container image, you can start an interactive CLI session with: ``` bash scripts/docker/interactive.sh ``` 5. Start training. To preprocess mel-spectrograms for faster training, first run: ``` python fastspeech/dataset/ljspeech_dataset.py --dataset_path="./LJSpeech-1.1" --mels_path="./mels_ljspeech1.1" ``` The preprocessed mel-spectrograms are stored in the ./mels_ljspeech1.1 directory. Next, preprocess the alignments on LJSpeech dataset with feed-forwards to the teacher model. Download the Nvidia [pretrained Tacotron2 checkpoint](https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view) to get a pretrained teacher model. And set --tacotron2_path to the Tacotron2 checkpoint file path and the result alignments are stored in --aligns_path. ``` python fastspeech/align_tacotron2.py --dataset_path="./LJSpeech-1.1" --tacotron2_path="tacotron2_statedict.pt" --aligns_path="aligns_ljspeech1.1" ``` The preprocessed alignments are stored in the ./aligns_ljspeech1.1 directory. For more information, refer to the [training process section](#training-process). Finally, run the training script: ``` python fastspeech/train.py --dataset_path="./LJSpeech-1.1" --mels_path="./mels_ljspeech1.1" --aligns_path="./aligns_ljspeech1.1" --log_path="./logs" --checkpoint_path="./checkpoints" ``` The checkpoints and Tensorboard log files are stored in the ./checkpoints and ./logs, respectively. Additionally, to accelerate the training using AMP, run with --use_amp: ``` python fastspeech/train.py --dataset_path="./LJSpeech-1.1" --mels_path="./mels_ljspeech1.1" --aligns_path="./aligns_ljspeech1.1" --log_path="./logs" --checkpoint_path="./checkpoints" --use_amp ``` 6. Start generation. To generate waveforms with WaveGlow Vocoder, Get [pretrained WaveGlow model](https://ngc.nvidia.com/catalog/models/nvidia:waveglow_ckpt_amp_256/files?version=19.10.0) from NGC into the home directory, for example, ./nvidia_waveglow256pyt_fp16. After you have trained the FastSpeech model, you can perform generation using the checkpoint stored in ./checkpoints. Then run: ``` python generate.py --waveglow_path="./nvidia_waveglow256pyt_fp16" --checkpoint_path="./checkpoints" --text="./test_sentences.txt" ``` The script loads automatically the latest checkpoint (if any exists), or you can pass a checkpoint file through --ckpt_file. And it loads input texts in ./test_sentences.txt and stores the result in ./results directory. You can also set the result directory path with --results_path. You can also run with a sample text: ``` python generate.py --waveglow_path="./nvidia_waveglow256pyt_fp16" --checkpoint_path="./checkpoints" --text="The more you buy, the more you save." ``` 7. Accelerate generation(inferencing of FastSpeech and WaveGlow) with TensorRT. Set parameters config file with --hparam=trt.yaml to enable TensorRT inference mode. To prepare for running WaveGlow on TensorRT, first get an ONNX file via [DeepLearningExamples/PyTorch/SpeechSynthesis/Tacotron2/tensorrt](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2/tensorrt), convert it to an TensorRT engine using scripts/waveglow/convert_onnx2trt.py, and copy this in the home directory, for example, ./waveglow.fp16.trt. Then run with --waveglow_engine_path: ``` python generate.py --hparam=trt.yaml --waveglow_path="./nvidia_waveglow256pyt_fp16" --checkpoint_path="./checkpoints" --text="./test_sentences.txt" --waveglow_engine_path="waveglow.fp16.trt" ``` ## Advanced The following sections provide greater details of the dataset, running training and inference, and the training results. ### Scripts and sample code The ./fastspeech directory contains models and scripts for data processing, training/inference, and estimating performance. * train.py: the FastSpeech model training script. * infer.py: the FastSpeech model inference script. * perf_infer.py: the script for estimating inference performance. * align_tacotron2.py: the script for preprocessing alignments. The ./fastspeech/trt directory contains the FastSpeech TensorRT model, inferencer and plugins for TensorRT. And, ./generate.py is the script for generating waveforms with a vocoder. ### Parameters All parameters of the FastSpeech model and for training/inference are defined in parameters config files in ./fastspeech/hparams. The default config file, base.yaml, contains the most common parameters including paths, audio processing, and model hyperparams. The default config file for training, train.yaml, contains parameters used during training such as learning rate, batch size, and number of steps. And the default config file for inference, infer.yaml, contains parameters required for inference including batch size and usage of half precision. For more details, refer to the config files, i.e., base.yaml, train.yaml, and infer.yaml in ./fastspeech/hparams. You can also define a new config file by overriding the default config, and set the config file via a command-line option --hparam, for example: ```yaml # File name: ./fastspeech/hparams/my_train.yaml # Inherit all parameters from train.yaml. parent_yaml: "train.yaml" # Override the learning rate. learning_rate: 0.0005 ``` ``` python fastspeech/train.py --hparam=my_train.yaml ... ``` ### Command-line options To see the full list of available options and their descriptions, use the `-- -h` or `-- --help` command-line option, for example: ``` python fastspeech/train.py -- -h ``` Although it will not display all parameters defined in the config files, you can override any parameters in the config files, for example: ``` python fastspeech/train.py ... --batch_size=8 --final_steps=64000 ``` ### Getting the data The FastSpeech model was trained on the LJSpeech-1.1 dataset. This repository contains the ./scripts/prepare_dataset.sh script which will automatically download and extract the whole dataset. By default, data will be extracted to the ./LJSpeech-1.1 directory. The dataset directory contains a README file, a wavs directory with all audio samples, and a file metadata.csv that contains audio file names and the corresponding transcripts. #### Dataset guidelines The LJSpeech dataset has 13,100 clips that amount to about 24 hours of speech. Since the original dataset has all transcripts in the metadata.csv file, the ./scripts/prepare_dataset.sh script partitions the metadata.csv into sub-meta files for training/test set - metadata_train.csv and metadata_test.csv containing 13,000 and 100 transcripts respectively. ### Training process To accelerate the training performance, preprocessing of alignments between texts and mel-spectrograms is performed prior to the training iterations. The FastSpeech model requires reference alignments of texts and mel-spectrograms extracted from an auto-regressive TTS teacher model. As Tacotron2 is used as a teacher in our implementation, download the Nvidia [pretrained Tacotron2 checkpoint](https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view) to utilize this for the preprocessing of the alignments. Run ```align_tacotron2.py``` to get alignments on LJSpeech dataset with feed-forwards to the teacher model. --tacotron2_path is for setting Tacotron2 checkpoint file path and the result alignments are stored in --aligns_path. After that, the alignments are loaded during training. ``` python fastspeech/align_tacotron2.py --dataset_path="./LJSpeech-1.1" --tacotron2_path="tacotron2_statedict.pt" --aligns_path="aligns_ljspeech1.1" ``` You can also preprocess mel-spectrograms for faster training. The result mel-spectrograms are stored in --mels_path and loaded during training. If --mels_path is not set, mel-spectrograms are processed during training. Run ```ljspeech_dataset.py``` ``` python fastspeech/dataset/ljspeech_dataset.py --dataset_path="./LJSpeech-1.1" --mels_path="mels_ljspeech1.1" ``` #### Accelerated training NVIDIA [APEX](https://github.com/NVIDIA/apex) library supports a simple method to obtain up to 2x speed-up during training. The library provides easy-to-use APIs for using AMP and layer fusions. To use AMP during training, run with --use_amp ``` python fastspeech/train.py ... --use_amp ``` Another approach for extra speed-up during training is fusing operations. To use fused layer normalization, set --fused_layernorm. ``` python fastspeech/train.py ... --use_amp --fused_layernorm ``` ### Inference process ```infer.py``` is provided to test the FastSpeech model on the LJSpeech dataset. --n_iters is the number of batches to infer. To run in FP16, run with --use_fp16. ``` python fastspeech/infer.py --dataset_path="./LJSpeech-1.1" --checkpoint_path="./checkpoints" --n_iters=10 --use_fp16 ``` #### Accelerated inference To accelerate inference with TensorRT, set --hparam=trt.yaml. ``` python fastspeech/infer.py --hparam=trt.yaml --dataset_path="./LJSpeech-1.1" --checkpoint_path="./checkpoints" --n_iters=10 --use_fp16 ``` For more details, refer to [accelerating inference with TensorRT](fastspeech/trt/README.md). #### Generation To generate waveforms with WaveGlow Vocoder, get [pretrained WaveGlow model](https://ngc.nvidia.com/catalog/models/nvidia:waveglow_ckpt_amp_256/files?version=19.10.0) from NGC into the home directory, for example, ./nvidia_waveglow256pyt_fp16. Run generate.py with: * --text - an input text or the text file path. * --results_path - result waveforms directory path. (default=./results). * --ckpt_file - checkpoint file path. (default checkpoint file is the latest file in --checkpoint_path) ``` python generate.py --waveglow_path="./nvidia_waveglow256pyt_fp16" --text="The more you buy, the more you save." ``` or ``` python generate.py --waveglow_path="./nvidia_waveglow256pyt_fp16" --text=test_sentences.txt ``` Sample result waveforms are [here](samples). To generate waveforms with the whole pipeline of FastSpeech and WaveGlow with TensorRT, extract a WaveGlow TRT engine file through https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2/tensorrt and run generate.py with --hparam=trt.yaml and --waveglow_engine_path. ``` python generate.py --hparam=trt.yaml --waveglow_path="./nvidia_waveglow256pyt_fp16" --waveglow_engine_path="waveglow.fp16.trt" --text="The more you buy, the more you save." ``` Sample result waveforms are [FP32](fastspeech/trt/samples) and [FP16](fastspeech/trt/samples_fp16). ## Performance The performance measurements in this document were conducted at the time of publication and may not reflect the performance achieved from NVIDIA’s latest software release. For the most up-to-date performance measurements, go to [NVIDIA Data Center Deep Learning Product Performance](https://developer.nvidia.com/deep-learning-performance-training-inference). ### Benchmarking The following section shows how to run benchmarks measuring the model performance in training and inference modes. #### Training performance benchmark To benchmark the training performance, set CUDA_VISIBLE_DEVICES, depending on GPU count: * for 1 GPU, ``` export CUDA_VISIBLE_DEVICES=0 ``` * for 4 GPUs, ``` export CUDA_VISIBLE_DEVICES=0,1,2,3 ``` and run on a specific batch size: * in FP32 ``` python fastspeech/train.py --batch_size=BATCH_SIZE ``` * in mixed precision ``` python fastspeech/train.py --batch_size=BATCH_SIZE --use_amp ``` #### Inference performance benchmark Set CUDA_VISIBLE_DEVICES=0 to use single GPU, ``` export CUDA_VISIBLE_DEVICES=0 ``` and run on a specific batch size: * in FP32 ``` python fastspeech/perf_infer.py --batch_size=BATCH_SIZE ``` * in FP16 ``` python fastspeech/perf_infer.py --batch_size=BATCH_SIZE --use_fp16 ``` To benchmark the inference performance with vocoder, ``` python fastspeech/perf_infer.py --batch_size=BATCH_SIZE --with_vocoder --waveglow_path=WAVEGLOW_PATH ``` Finally, to benchmark the inference performance on TensorRT, ``` python fastspeech/perf_infer.py --hparam=trt.yaml --batch_size=BATCH_SIZE ``` * with vocoder ``` python fastspeech/perf_infer.py --hparam=trt.yaml --batch_size=BATCH_SIZE --with_vocoder --waveglow_path=WAVEGLOW_PATH ``` ### Results The following sections provide details on how we achieved our performance and accuracy in training and inference. #### Training performance results Our results were obtained by running the script in [training performance benchmark](#training-performance-benchmark) on <!--NVIDIA DGX A100 with 8x A100 40G GPUs and -->NVIDIA DGX-1 with 8x V100 16G GPUs. Performance numbers (in number of mels per second) were averaged over an entire training epoch. <!-- ##### Training performance: NVIDIA DGX A100 (8x A100 40GB) | GPUs | Batch size / GPU | Throughput(mels/s) - FP32 | Throughput(mels/s) - mixed precision | Throughput speedup (FP32 - mixed precision) | Multi-GPU Weak scaling - FP32 | Multi-GPU Weak scaling - mixed precision |---|----|--------|--------|------|-----|------| | 1 | 32 | | | | | 1 | | 4 | 32 | | | | | | | 8 | 32 | | | | | | --> ##### Training performance: NVIDIA DGX-1 (8x V100 16GB) | GPUs | Batch size / GPU | Throughput(mels/s) - FP32 | Throughput(mels/s) - mixed precision | Throughput speedup (FP32 - mixed precision) | Multi-GPU Weak scaling - FP32 | Multi-GPU Weak scaling - mixed precision |---|----|--------|--------|------|-----|------| | 1 | 32 | 31674 | 63431 | 2.00 | 1 | 1 | | 4 | 32 | 101115 | 162847 | 1.61 | 3.19| 2.57 | | 8 | 32 | 167650 | 188251 | 1.12 | 5.29| 2.97 | #### Inference performance results Our results were obtained by running the script in [inference performance benchmark](#inference-performance-benchmark) on NVIDIA DGX-1 with 1x V100 16GB GPU and a NVIDIA T4. The following tables show inference statistics for the FastSpeech and WaveGlow text-to-speech system on PyTorch and comparisons by framework with batch size 1 in FP16, gathered from 1000 inference runs. Latency is measured from the start of FastSpeech inference to the end of WaveGlow inference. The tables include average latency, latency standard deviation, and latency confidence intervals. Throughput is measured as the number of generated audio samples per second. RTF is the real-time factor which tells how many seconds of speech are generated in 1 second of compute. The used WaveGlow model is a 256-channel model. The numbers reported below were taken with a moderate length of 128 characters. ##### Inference performance: NVIDIA DGX-1 (1x V100 16GB) | Batch size | Precision | Avg latency (s) | Std latency(s) | Latency tolerance interval 90% (s) | Latency tolerance interval 95% (s) | Latency tolerance interval 99% (s) | Throughput (samples/s) | Avg RTF | Speed-up with mixed precision | |------------|-----------|-----------------|----------------|------------------------------------|------------------------------------|--------------------|---------------------|---------|-------------------------------| | 1 | FP16 | 0.2287 | 0.001 | 0.2295 | 0.2297 | 0.2303 | 681,773 | 30.92 | 1.50 | | 4 | FP16 | 0.5003 | 0.0016 | 0.502 | 0.5023 | 0.5032 | 1,244,466 | 14.11 | 2.57 | | 8 | FP16 | 0.9695 | 0.0023 | 0.9722 | 0.9732 | 0.9748 | 1,284,339 | 7.28 | 2.73 | | 1 | FP32 | 0.3428 | 0.0016 | 0.3445 | 0.3449 | 0.3458 | 454,833 | 20.63 | 1.00 | | 4 | FP32 | 1.287 | 0.0039 | 1.2916 | 1.2927 | 1.2954 | 484,558 | 5.50 | 1.00 | | 8 | FP32 | 2.6481 | 0.0041 | 2.6535 | 2.6549 | 2.657 | 470,992 | 2.67 | 1.00 | | Framework | Batch size | Precision | Avg latency (s) | Std latency(s) | Latency tolerance interval 90% (s) | Latency tolerance interval 95% (s) | Latency tolerance interval 99% (s) | Throughput (samples/s) | Avg RTF | Speed-up (PyT - PyT+TRT) | |-----------|------------|-----------|-----------------|----------------|------------------------------------|------------------------------------|--------------------|---------------------|---------|-------------------------------| | PyT | 1 | FP16 | 0.2287 | 0.001 | 0.2295 | 0.2297 | 0.2303 | 681,773 | 30.92 | 1 | | PyT+TRT | 1 | FP16 | 0.1115 | 0.0007 | 0.1122 | 0.1124 | 0.1135 | 1,398,343 | 63.42 | 2.05 | | PyT | 4 | FP16 | 0.5003 | 0.0016 | 0.502 | 0.5023 | 0.5032 | 1,244,466 | 14.11 | 1 | | PyT+TRT | 4 | FP16 | 0.3894 | 0.0019 | 0.3917 | 0.3925 | 0.3961 | 1,599,005 | 18.13 | 1.28 | ##### Inference performance: NVIDIA T4 | Batch size | Precision | Avg latency (s) | Std latency(s) | Latency tolerance interval 90% (s) | Latency tolerance interval 95% (s) | Latency tolerance interval 99% (s) | Throughput (samples/s) | Avg RTF | Speed-up with mixed precision | |------------|-----------|-----------------|----------------|------------------------------------|------------------------------------|--------------------|---------------------|---------|-------------------------------| | 1 | FP16 | 0.9345 | 0.0294 | 0.9662 | 0.9723 | 0.9806 | 167,003 | 7.57 | 1.28 | | 4 | FP16 | 3.7815 | 0.0877 | 3.9078 | 3.9393 | 3.9632 | 164,730 | 1.87 | 1.28 | | 8 | FP16 | 7.5722 | 0.1764 | 7.8273 | 7.8829 | 7.9286 | 164,530 | 0.93 | 1.21 | | 1 | FP32 | 1.1952 | 0.0368 | 1.2438 | 1.2487 | 1.2589 | 130,572 | 5.92 | 1.00 | | 4 | FP32 | 4.8578 | 0.1215 | 5.0343 | 5.0651 | 5.1027 | 128,453 | 1.46 | 1.00 | | 8 | FP32 | 9.1563 | 0.4114 | 9.4049 | 9.4571 | 9.5194 | 136,367 | 0.77 | 1.00 | | Framework | Batch size | Precision | Avg latency (s) | Std latency(s) | Latency tolerance interval 90% (s) | Latency tolerance interval 95% (s) | Latency tolerance interval 99% (s) | Throughput (samples/s) | Avg RTF | Speed-up (PyT - PyT+TRT) | |-----------|------------|-----------|-----------------|----------------|------------------------------------|------------------------------------|--------------------|---------------------|---------|-------------------------------| | PyT | 1 | FP16 | 0.9345 | 0.0294 | 0.9662 | 0.9723 | 0.9806 | 167,003 | 7.57 | 1 | | PyT+TRT | 1 | FP16 | 0.3234 | 0.0058 | 0.3304 | 0.3326 | 0.3358 | 482,286 | 21.87 | 2.89 | ## Release notes ### Changelog Oct 2020 - PyTorch 1.7, TensorRT 7.2 support <!--and Nvidia Ampere architecture support--> July 2020 - Initial release ### Known issues There are no known issues in this release.
PyTorch/Forecasting/TFT
TFT
inference
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import numpy as np import pickle import argparse import torch from torch.utils.data import DataLoader from torch.cuda import amp from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from modeling import TemporalFusionTransformer from configuration import ElectricityConfig from data_utils import TFTDataset from utils import PerformanceMeter from criterions import qrisk import dllogger from log_helper import setup_logger from torch.cuda import amp def _unscale_per_id(config, values, ids, scalers): num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) flat_values['id'] = ids df_list = [] for idx, group in flat_values.groupby('id'): scaler = scalers[idx] group_copy = group.copy() for col in group_copy.columns: if not 'id' in col: _col = np.expand_dims(group_copy[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] group_copy[col] = _t_col df_list.append(group_copy) flat_values = pd.concat(df_list, axis=0) flat_values = flat_values[[col for col in flat_values if not 'id' in col]] return flat_values.values def _unscale(config, values, scaler): num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) for col in flat_values.columns: if not 'id' in col: _col = np.expand_dims(flat_values[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] flat_values[col] = _t_col flat_values = flat_values[[col for col in flat_values if not 'id' in col]] return flat_values.values def predict(args, config, model, data_loader, scalers, cat_encodings, extend_targets=False): model.eval() predictions = [] targets = [] ids = [] perf_meter = PerformanceMeter(benchmark_mode=not args.disable_benchmark) n_workers = args.distributed_world_size if hasattr(args, 'distributed_world_size') else 1 with torch.jit.fuser("fuser2"): for step, batch in enumerate(data_loader): perf_meter.reset_current_lap() with torch.no_grad(): batch = {key: tensor.cuda() if tensor.numel() else None for key, tensor in batch.items()} ids.append(batch['id'][:,0,:]) targets.append(batch['target']) predictions.append(model(batch).float()) perf_meter.update(args.batch_size * n_workers, exclude_from_total=step in [0, 1, 2, len(data_loader)-1]) targets = torch.cat(targets, dim=0).cpu().numpy() if not extend_targets: targets = targets[:,config.encoder_length:,:] predictions = torch.cat(predictions, dim=0).cpu().numpy() if config.scale_per_id: ids = torch.cat(ids, dim=0).cpu().numpy() unscaled_predictions = np.stack( [_unscale_per_id(config, predictions[:,:,i], ids, scalers) for i in range(len(config.quantiles))], axis=-1) unscaled_targets = np.expand_dims(_unscale_per_id(config, targets[:,:,0], ids, scalers), axis=-1) else: ids = None unscaled_predictions = np.stack( [_unscale(config, predictions[:,:,i], scalers['']) for i in range(len(config.quantiles))], axis=-1) unscaled_targets = np.expand_dims(_unscale(config, targets[:,:,0], scalers['']), axis=-1) return unscaled_predictions, unscaled_targets, ids, perf_meter def visualize_v2(args, config, model, data_loader, scalers, cat_encodings): unscaled_predictions, unscaled_targets, ids, _ = predict(args, config, model, data_loader, scalers, cat_encodings, extend_targets=True) num_horizons = config.example_length - config.encoder_length + 1 pad = unscaled_predictions.new_full((unscaled_targets.shape[0], unscaled_targets.shape[1] - unscaled_predictions.shape[1], unscaled_predictions.shape[2]), fill_value=float('nan')) pad[:,-1,:] = unscaled_targets[:,-num_horizons,:] unscaled_predictions = torch.cat((pad, unscaled_predictions), dim=1) ids = torch.from_numpy(ids.squeeze()) joint_graphs = torch.cat([unscaled_targets, unscaled_predictions], dim=2) graphs = {i:joint_graphs[ids == i, :, :] for i in set(ids.tolist())} for key, g in graphs.items(): for i, ex in enumerate(g): df = pd.DataFrame(ex.numpy(), index=range(num_horizons - ex.shape[0], num_horizons), columns=['target'] + [f'P{int(q*100)}' for q in config.quantiles]) fig = df.plot().get_figure() ax = fig.get_axes()[0] _values = df.values[config.encoder_length-1:,:] ax.fill_between(range(num_horizons), _values[:,1], _values[:,-1], alpha=0.2, color='green') os.makedirs(os.path.join(args.results, 'single_example_vis', str(key)), exist_ok=True) fig.savefig(os.path.join(args.results, 'single_example_vis', str(key), f'{i}.pdf')) def inference(args, config, model, data_loader, scalers, cat_encodings): unscaled_predictions, unscaled_targets, ids, perf_meter = predict(args, config, model, data_loader, scalers, cat_encodings) if args.joint_visualization or args.save_predictions: ids = torch.from_numpy(ids.squeeze()) #ids = torch.cat([x['id'][0] for x in data_loader.dataset]) joint_graphs = torch.cat([unscaled_targets, unscaled_predictions], dim=2) graphs = {i:joint_graphs[ids == i, :, :] for i in set(ids.tolist())} for key, g in graphs.items(): #timeseries id, joint targets and predictions _g = {'targets': g[:,:,0]} _g.update({f'P{int(q*100)}':g[:,:,i+1] for i, q in enumerate(config.quantiles)}) if args.joint_visualization: summary_writer = SummaryWriter(log_dir=os.path.join(args.results, 'predictions_vis', str(key))) for q, t in _g.items(): # target and quantiles, timehorizon values if q == 'targets': targets = torch.cat([t[:,0], t[-1,1:]]) # WIP # We want to plot targets on the same graph as predictions. Probably could be written better. for i, val in enumerate(targets): summary_writer.add_scalars(str(key), {f'{q}':val}, i) continue # Tensor t contains different time horizons which are shifted in phase # Next lines realign them y = t.new_full((t.shape[0] + t.shape[1] -1, t.shape[1]), float('nan')) for i in range(y.shape[1]): y[i:i+t.shape[0], i] = t[:,i] for i, vals in enumerate(y): # timestep, timehorizon values value summary_writer.add_scalars(str(key), {f'{q}_t+{j+1}':v for j,v in enumerate(vals) if v == v}, i) summary_writer.close() if args.save_predictions: for q, t in _g.items(): df = pd.DataFrame(t.tolist()) df.columns = [f't+{i+1}' for i in range(len(df.columns))] os.makedirs(os.path.join(args.results, 'predictions', str(key)), exist_ok=True) df.to_csv(os.path.join(args.results, 'predictions', str(key), q+'.csv')) #losses = QuantileLoss(config)(torch.from_numpy(unscaled_predictions).contiguous(), # torch.from_numpy(unscaled_targets).contiguous()).numpy() #normalizer = np.mean(np.abs(unscaled_targets)) #q_risk = 2 * losses / normalizer risk = qrisk(unscaled_predictions, unscaled_targets, np.array(config.quantiles)) perf_dict = { 'throughput': perf_meter.avg, 'latency_avg': perf_meter.total_time/len(perf_meter.intervals), 'latency_p90': perf_meter.p(90), 'latency_p95': perf_meter.p(95), 'latency_p99': perf_meter.p(99), 'total_infernece_time': perf_meter.total_time, } return risk, perf_dict def main(args): setup_logger(args) # Set up model state_dict = torch.load(args.checkpoint) config = state_dict['config'] model = TemporalFusionTransformer(config).cuda() model.load_state_dict(state_dict['model']) model.eval() model.cuda() # Set up dataset test_split = TFTDataset(args.data, config) data_loader = DataLoader(test_split, batch_size=args.batch_size, num_workers=4) scalers = pickle.load(open(args.tgt_scalers, 'rb')) cat_encodings = pickle.load(open(args.cat_encodings, 'rb')) if args.visualize: # TODO: abstract away all forms of visualization. visualize_v2(args, config, model, data_loader, scalers, cat_encodings) quantiles, perf_dict = inference(args, config, model, data_loader, scalers, cat_encodings) quantiles = {'test_p10': quantiles[0].item(), 'test_p50': quantiles[1].item(), 'test_p90': quantiles[2].item(), 'sum':sum(quantiles).item()} finish_log = {**quantiles, **perf_dict} dllogger.log(step=(), data=finish_log, verbosity=1) print('Test q-risk: P10 {test_p10} | P50 {test_p50} | P90 {test_p90}'.format(**quantiles)) print('Latency:\n\tAverage {:.3f}s\n\tp90 {:.3f}s\n\tp95 {:.3f}s\n\tp99 {:.3f}s'.format( perf_dict['latency_avg'], perf_dict['latency_p90'], perf_dict['latency_p95'], perf_dict['latency_p99'])) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, help='Path to the checkpoint') parser.add_argument('--data', type=str, help='Path to the test split of the dataset') parser.add_argument('--tgt_scalers', type=str, help='Path to the tgt_scalers.bin file produced by the preprocessing') parser.add_argument('--cat_encodings', type=str, help='Path to the cat_encodings.bin file produced by the preprocessing') parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--visualize', action='store_true', help='Visualize predictions - each example on the separate plot') parser.add_argument('--joint_visualization', action='store_true', help='Visualize predictions - each timeseries on separate plot. Projections will be concatenated.') parser.add_argument('--save_predictions', action='store_true') parser.add_argument('--results', type=str, default='/results') parser.add_argument('--log_file', type=str, default='dllogger.json') parser.add_argument("--disable_benchmark", action='store_true', help='Disable benchmarking mode') ARGS = parser.parse_args() main(ARGS)
Tools/PyTorch/TimeSeriesPredictionPlatform
TimeSeriesPredictionPlatform
launch_triton_configure
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import hydra warnings.filterwarnings("ignore") @hydra.main(config_path="conf/", config_name="converter_config") def main(cfg): print(cfg) cfg.deployment.config.checkpoint=cfg.checkpoint hydra.utils.call(cfg, _recursive_=False) if __name__ == "__main__": main()
TensorFlow2/Recommendation/DLRM_and_DCNv2/tests
tests
test_fspecs
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash NAMES=${1:-'*.yaml'} COMMON_OPTS="--xla --amp" bash test_with_opts.sh "${NAMES}" "${COMMON_OPTS}" # # usage: # docker build . -t nvidia_dlrm_tf # docker run --security-opt seccomp=unconfined --runtime=nvidia -it --rm --ipc=host -v ${PWD}/data:/data nvidia_dlrm_tf bash # cd tests # bash test_fspecs.sh
PyTorch/Segmentation/nnUNet/triton/deployment_toolkit/bermuda
bermuda
utils
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from typing import Callable, Dict, List import networkx as nx from ..core import ShapeSpec def infer_precision( nx_graph: nx.Graph, input_names: List[str], output_names: List[str], get_node_dtype_fn: Callable, ): node_dtypes = [nx_graph.nodes[node_name].get("dtype", None) for node_name in nx_graph.nodes] node_dtypes = [dt for dt in node_dtypes if dt is None or dt.kind not in ["i", "b"]] dtypes_counter = Counter(node_dtypes) return dtypes_counter.most_common()[0][0] def get_shapes_with_dynamic_axes(dataloader, batch_size_dim=0): def _set_dynamic_shapes(t, shapes): for k, v in t.items(): shape = list(v.shape) for dim, s in enumerate(shape): if shapes[k][dim] != -1 and shapes[k][dim] != s: shapes[k][dim] = -1 ## get all shapes from input and output tensors input_shapes = {} output_shapes = {} for batch in dataloader: _, x, y = batch for k, v in x.items(): input_shapes[k] = list(v.shape) for k, v in y.items(): output_shapes[k] = list(v.shape) break # based on max <max_num_iters> iterations, check which # dimensions differ to determine dynamic_axes max_num_iters = 100 for idx, batch in enumerate(dataloader): if idx >= max_num_iters: break _, x, y = batch _set_dynamic_shapes(x, input_shapes) _set_dynamic_shapes(y, output_shapes) return input_shapes, output_shapes def get_dynamic_axes(dataloader, batch_size_dim=0): input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader, batch_size_dim) all_shapes = {**input_shapes, **output_shapes} dynamic_axes = {} for k, shape in all_shapes.items(): for idx, s in enumerate(shape): if s == -1: dynamic_axes[k] = {idx: k + "_" + str(idx)} for k, v in all_shapes.items(): if k in dynamic_axes: dynamic_axes[k].update({batch_size_dim: "batch_size_" + str(batch_size_dim)}) else: dynamic_axes[k] = {batch_size_dim: "batch_size_" + str(batch_size_dim)} return dynamic_axes def get_input_shapes(dataloader, max_batch_size=1) -> Dict[str, ShapeSpec]: def init_counters_and_shapes(x, counters, min_shapes, max_shapes): for k, v in x.items(): counters[k] = Counter() min_shapes[k] = [float("inf")] * v.ndim max_shapes[k] = [float("-inf")] * v.ndim counters = {} min_shapes: Dict[str, tuple] = {} max_shapes: Dict[str, tuple] = {} for idx, batch in enumerate(dataloader): ids, x, y = batch if idx == 0: init_counters_and_shapes(x, counters, min_shapes, max_shapes) for k, v in x.items(): shape = v.shape counters[k][shape] += 1 min_shapes[k] = tuple([min(a, b) for a, b in zip(min_shapes[k], shape)]) max_shapes[k] = tuple([max(a, b) for a, b in zip(max_shapes[k], shape)]) opt_shapes: Dict[str, tuple] = {} for k, v in counters.items(): opt_shapes[k] = v.most_common(1)[0][0] shapes = {} for k in opt_shapes.keys(): # same keys in min_shapes and max_shapes shapes[k] = ShapeSpec( min=(1,) + min_shapes[k][1:], max=(max_batch_size,) + max_shapes[k][1:], opt=(max_batch_size,) + opt_shapes[k][1:], ) return shapes
PyTorch/Forecasting/TFT/scripts
scripts
run_electricity
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. : ${SEED:=1} : ${LR:=1e-3} : ${NGPU:=8} : ${BATCH_SIZE:=1024} : ${EPOCHS:=30} python -m torch.distributed.run --nproc_per_node=${NGPU} train.py \ --dataset electricity \ --data_path /data/processed/electricity_bin \ --batch_size=${BATCH_SIZE} \ --sample 450000 50000 \ --lr ${LR} \ --epochs ${EPOCHS} \ --seed ${SEED} \ --use_amp \ --results /results/TFT_electricity_bs${NGPU}x${BATCH_SIZE}_lr${LR}/seed_${SEED}
PyTorch/Detection/SSD
SSD
README
# SSD300 v1.1 For PyTorch This repository provides a script and recipe to train the SSD300 v1.1 model to achieve state of the art accuracy, and is tested and maintained by NVIDIA. ## Table Of Contents - [Model overview](#model-overview) * [Model architecture](#model-architecture) * [Default configuration](#default-configuration) * [Feature support matrix](#feature-support-matrix) * [Features](#features) * [Mixed precision training](#mixed-precision-training) * [Enabling mixed precision](#enabling-mixed-precision) * [Enabling TF32](#enabling-tf32) - [Setup](#setup) * [Requirements](#requirements) - [Quick Start Guide](#quick-start-guide) - [Advanced](#advanced) * [Scripts and sample code](#scripts-and-sample-code) * [Parameters](#parameters) * [Command-line options](#command-line-options) * [Getting the data](#getting-the-data) * [Dataset guidelines](#dataset-guidelines) * [Data preprocessing](#data-preprocessing) * [Data augmentation](#data-augmentation) * [Training process](#training-process) * [Evaluation process](#evaluation-process) * [Inference process](#inference-process) - [Performance](#performance) * [Benchmarking](#benchmarking) * [Training performance benchmark](#training-performance-benchmark) * [Inference performance benchmark](#inference-performance-benchmark) * [Results](#results) * [Training accuracy results](#training-accuracy-results) * [Training accuracy: NVIDIA DGX A100 (8x A100 80GB)](#training-accuracy-nvidia-dgx-a100-8x-a100-80gb) * [Training accuracy: NVIDIA DGX-1 (8x V100 16GB)](#training-accuracy-nvidia-dgx-1-8x-v100-16gb) * [Training loss plot](#training-loss-plot) * [Training stability test](#training-stability-test) * [Training performance results](#training-performance-results) * [Training performance: NVIDIA DGX A100 (8x A100 80GB)](#training-performance-nvidia-dgx-a100-8x-a100-80gb) * [Training performance: NVIDIA DGX-1 (8x V100 16G)](#training-performance-nvidia-dgx-1-8x-v100-16gb) * [Inference performance results](#inference-performance-results) * [Inference performance: NVIDIA DGX A100 (1x A100 80GB)](#inference-performance-nvidia-dgx-a100-1x-a100-80gb) * [Inference performance: NVIDIA DGX-1 (1x V100 16GB)](#inference-performance-nvidia-dgx-1-1x-v100-16gb) - [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) ## Model overview The SSD300 v1.1 model is based on the [SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper, which describes SSD as “a method for detecting objects in images using a single deep neural network". The input size is fixed to 300x300. The main difference between this model and the one described in the paper is in the backbone. Specifically, the VGG model is obsolete and is replaced by the ResNet-50 model. From the [Speed/accuracy trade-offs for modern convolutional object detectors](https://arxiv.org/abs/1611.10012) paper, the following enhancements were made to the backbone: * The conv5_x, avgpool, fc and softmax layers were removed from the original classification model. * All strides in conv4_x are set to 1x1. Detector heads are similar to the ones referenced in the paper, however, they are enhanced by additional BatchNorm layers after each convolution. Additionally, we removed weight decay on every bias parameter and all the BatchNorm layer parameters as described in the [Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes](https://arxiv.org/abs/1807.11205) paper. Training of SSD requires computational costly augmentations. To fully utilize GPUs during training we are using the [NVIDIA DALI](https://github.com/NVIDIA/DALI) library to accelerate data preparation pipelines. This model is trained with mixed precision using Tensor Cores on Volta, Turing, and the NVIDIA Ampere GPU architectures. Therefore, researchers can get results 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time. ### Model architecture Despite the changes described in the previous section, the overall architecture, as described in the following diagram, has not changed. <p align="center"> <img width="90%" src="./img/ssd_diagram.png" /> <br> Figure 1. The architecture of a Single Shot MultiBox Detector model. Image has been taken from the <a href="https://arxiv.org/abs/1512.02325">Single Shot MultiBox Detector paper</a>. </p> The backbone is followed by 5 additional convolutional layers. In addition to the convolutional layers, we attached 6 detection heads: * The first detection head is attached to the last conv4_x layer. * The other five detection heads are attached to the corresponding 5 additional layers. ### Default configuration We trained the model for 65 epochs with the following setup: * SGD with momentum (0.9) * Learning rate = 2.6e-3 * number of GPUs * (batch_size / 32) * Learning rate decay – multiply by 0.1 before 43 and 54 epochs * We use linear warmup of the learning rate during the first epoch. For more information, see the [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677) paper. To enable warmup provide argument the `--warmup 300` * Weight decay: * 0 for BatchNorms and biases * 5e-4 for other layers **Note**: The learning rate is automatically scaled (in other words, multiplied by the number of GPUs and multiplied by the batch size divided by 32). ### Feature support matrix The following features are supported by this model. | **Feature** | **SSD300 v1.1 PyTorch** | |:---------:|:----------:| |[AMP](https://pytorch.org/docs/stable/amp.html) | Yes | |[APEX DDP](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) | Yes | |[NVIDIA DALI](https://docs.nvidia.com/deeplearning/sdk/dali-release-notes/index.html) | Yes | #### Features [AMP](https://pytorch.org/docs/stable/amp.html) is an abbreviation used for automatic mixed precision training. [DDP](https://nvidia.github.io/apex/parallel.html) stands for DistributedDataParallel and is used for multi-GPU training. [NVIDIA DALI](https://docs.nvidia.com/deeplearning/sdk/dali-release-notes/index.html) - DALI is a library accelerating data preparation pipeline. To accelerate your input pipeline, you only need to define your data loader with the DALI library. For details, see example sources in this repo or see the [DALI documentation](https://docs.nvidia.com/deeplearning/sdk/dali-developer-guide/docs/index.html) ### Mixed precision training Mixed precision is the combined use of different numerical precisions in a computational method. [Mixed precision](https://arxiv.org/abs/1710.03740) training offers significant computational speedup by performing operations in half-precision format, while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. Since the introduction of [Tensor Cores](https://developer.nvidia.com/tensor-cores) in Volta, and following with both the Turing and Ampere architectures, significant training speedups are experienced by switching to mixed precision -- up to 3x overall speedup on the most arithmetically intense model architectures. Using mixed precision training requires two steps: 1. Porting the model to use the FP16 data type where appropriate. 2. Adding loss scaling to preserve small gradient values. The ability to train deep learning networks with lower precision was introduced in the Pascal architecture and first supported in [CUDA 8](https://devblogs.nvidia.com/parallelforall/tag/fp16/) in the NVIDIA Deep Learning SDK. For information about: - How to train using mixed precision, see the [Mixed Precision Training](https://arxiv.org/abs/1710.03740) paper and [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html) documentation. - Techniques used for mixed precision training, see the [Mixed-Precision Training of Deep Neural Networks](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) blog. - PyTorch AMP, see the [PyTorch Automatic Mixed Precision package](https://pytorch.org/docs/stable/amp.html). #### Enabling mixed precision Mixed precision is enabled in PyTorch by using the Automatic Mixed Precision (AMP) autocast [torch.cuda.amp.autocast](https://pytorch.org/docs/stable/amp.html#autocasting) which casts variables to half-precision upon retrieval, while storing variables in single-precision format. Furthermore, to preserve small gradient magnitudes in backpropagation, a [gradient scaling](https://pytorch.org/docs/stable/amp.html#gradient-scaling) step must be included. For an in-depth walk through on AMP, check out sample usage [here](https://pytorch.org/docs/stable/amp.html). #### Enabling TF32 TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models which require high dynamic range for weights or activations. For more information, refer to the [TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) blog post. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default. ### Glossary backbone : a part of a many object detection architectures, usually pre-trained for a different, simpler task, like classification. input pipeline : set of operations performed for every item in input data before feeding the neural network. Especially for object detection task, the input pipeline can be complex and computationally significant. For that reason, solutions like NVIDIA DALI emerged. object detection : a subset of Computer Vision problem. The task of object detection is to localize possibly multiple objects on the image and classify them. The difference between Object Detection, Image Classification, and Localization are clearly explained in the video published as a part of the [C4W3L01 course](https://www.youtube.com/watch?v=GSwYGkTfOKk). SSD (Single Shot MultiBox Detector) : a name for the detection model described in a [paper authored by Liu at al.](https://arxiv.org/abs/1512.02325) ResNet (ResNet-50) : a name for the classification model described in a [paper authored by He et al.](https://arxiv.org/abs/1512.03385) In this repo, it is used as a backbone for SSD. ## Setup The following section lists the requirements in order to start training the SSD300 v1.1 model. ### Requirements This repository contains `Dockerfile` which extends the PyTorch 22.10 NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following software: * [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) * [PyTorch 22.10 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch) * GPU-based architecture: * [NVIDIA Volta](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) * [NVIDIA Turing](https://www.nvidia.com/en-us/geforce/turing/) * [NVIDIA Ampere architecture](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/) For more information about how to get started with NGC containers, see the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning Documentation: * [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html) * [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#accessing_registry) * [Running PyTorch](https://docs.nvidia.com/deeplearning/dgx/pytorch-release-notes/running.html#running) For those unable to use the [PyTorch 22.10 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch), to set up the required environment or create your own container, see the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). ## Quick Start Guide To train your model using mixed or TF32 precision with Tensor Cores or using FP32, perform the following steps using the default parameters of the SSD v1.1 model on the [COCO 2017](http://cocodataset.org/#download) dataset. For the specifics concerning training and inference, see the [Advanced](#advanced) section. 1. Clone the repository. ``` git clone https://github.com/NVIDIA/DeepLearningExamples cd DeepLearningExamples/PyTorch/Detection/SSD ``` 2. Download and preprocess the dataset. Extract the COCO 2017 dataset with `download_dataset.sh $COCO_DIR`. Data will be downloaded to the `$COCO_DIR` directory (on the host). 3. Build the SSD300 v1.1 PyTorch NGC container. ``` docker build . -t nvidia_ssd ``` 4. Start an interactive session in the NGC container to run training/inference. ``` docker run --rm -it --gpus=all --ipc=host -v $COCO_DIR:/coco nvidia_ssd ``` **Note**: the default mount point in the container is `/coco`. 5. Start training. The `./examples` directory provides several sample scripts for various GPU settings and act as wrappers around the `main.py` script. The example scripts need two arguments: - A path to the root SSD directory. - A path to the COCO 2017 dataset. Remaining arguments are passed to the `main.py` script. The `--save save_dir` flag, saves the model after each epoch in `save_dir` directory. The checkpoints are stored as `<save_dir>/epoch_*.pt`. Use `python main.py -h` to obtain the list of available options in the `main.py` script. For example, if you want to run 8 GPU training with Tensor Core acceleration and save checkpoints after each epoch, run: ``` bash ./examples/SSD300_FP16_8GPU.sh . /coco --save $SSD_CHECKPINT_PATH ``` 6. Start validation/evaluation. The `main.py` training script automatically runs validation during training. The results from the validation are printed to `stdout`. To evaluate a checkpointed model saved in the previous point, run: ``` python ./main.py --backbone resnet50 --mode evaluation --checkpoint ./models/epoch_*.pt --data /coco ``` 7. Optionally, resume training from a checkpointed model. ``` python ./main.py --backbone resnet50 --checkpoint ./models/epoch_*.pt --data /coco ``` 8. Start inference/predictions. You can check your trained model with a Jupyter notebook provided in the examples directory. Start with running a Docker container with a Jupyter notebook server: ``` docker run --rm -it --gpus=all --ipc=host -v $SSD_CHECKPOINT_PATH:/checkpoints/SSD300v1.1.pt -v $COCO_PATH:/datasets/coco2017 -p 8888:8888 nvidia_ssd jupyter-notebook --ip 0.0.0.0 --allow-root ``` ## Advanced The following sections provide greater details of the dataset, running training and inference, and the training results. ### Scripts and sample code In the root directory, the most important files are: - `main.py`: the script that controls the logic of training and validation of the SSD300 v1.1 model; - `Dockerfile`: Instructions for docker to build a container with the basic set of dependencies to run SSD300 v1.1; - `requirements.txt`: a set of extra Python requirements for running SSD300 v1.1; - `download_dataset.py`: automatically downloads the COCO dataset for training. The `ssd/` directory contains modules used to train and evaluate the SSD300 v1.1 model - `model.py`: the definition of SSD300 v1.1 model - `data.py`: definition of input pipelines used in training and evaluation - `train.py`: functions used to train the SSD300 v1.1 model - `evaluate.py`: functions used to evaluate the SSD300 v1.1 model - `coco_pipeline.py`: definition of input pipeline using NVIDIA DALI - `coco.py`: code specific for the COCO dataset - `logger.py`: utilities for logging - `utils.py`: extra utility functions The `examples/` directory contains scripts wrapping common scenarios. ### Parameters #### The script `main.py` The script for training end evaluating the SSD300 v1.1 model have a variety of parameters that control these processes. ##### Common parameters `--data` : use it to specify, where your dataset is. By default, the script will look for it under the `/coco` directory. `--checkpoint` : allows you to specify the path to the pre-trained model. `--save` : when the flag is turned on, the script will save the trained model checkpoints in the specified directory `--seed` : Use it to specify the seed for RNGs. `--amp` : when the flag is turned on, the AMP features will be enabled. ##### Training related `--epochs` : a number of times the model will see every example from the training dataset. `--evaluation` : after this parameter, list the number of epochs after which evaluation should be performed. `--learning-rate` : initial learning rate. `--multistep` : after this parameter, list the epochs after which learning rate should be decayed. `--warmup` : allows you to specify the number of iterations for which a linear learning-rate warmup will be performed. `--momentum` : momentum argument for SGD optimizer. `--weight-decay` : weight decay argument for SGD optimizer. `--batch-size` : a number of inputs processed at once for each iteration. `--backbone-path` : the path to the checkpointed backbone. When it is not provided, a pre-trained model from torchvision will be downloaded. ##### Evaluation related `--eval-batch-size` : a number of inputs processed at once for each iteration. ##### Utility parameters `--help` : displays a short description of all parameters accepted by the script. ### Command-line options All these parameters can be controlled by passing command-line arguments to the `main.py` script. To get a complete list of all command-line arguments with descriptions and default values you can run: ``` python main.py --help ``` ### Getting the data The SSD model was trained on the COCO 2017 dataset. The [val2017](http://cocodataset.org/#download) validation set was used as a validation dataset. PyTorch can work directly on JPEGs, therefore, preprocessing/augmentation is not needed. This repository contains the `download_dataset.sh` download script which will automatically download and preprocess the training, validation and test datasets. By default, data will be downloaded to the `/coco` directory. #### Dataset guidelines Our model expects input data aligned in a way a COCO dataset is aligned by the `download_dataset.sh` script. `train2017` and `val2017` directories should contain images in JPEG format. Annotation format is described in [the COCO documentation](http://cocodataset.org/#format-data). The preprocessing of the data is defined in the `ssd/coco_pipeline.py` module. ##### Data preprocessing Before we feed data to the model, both during training and inference, we perform: * JPEG decoding * normalization with a mean =` [0.485, 0.456, 0.406]` and std dev = `[0.229, 0.224, 0.225]` * encoding bounding boxes * resizing to 300x300 Additionally, during training, data is: * randomly shuffled * samples without annotations are skipped ##### Data augmentation During training we perform the following augmentation techniques: * Random crop using the algorithm described in the [SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper * Random horizontal flip * Color jitter ### Training process Training the SSD model is implemented in the `main.py` script. By default, training is running for 65 epochs. Because evaluation is relatively time consuming, it is not running every epoch. With default settings, evaluation is executed after epochs: 21, 31, 37, 42, 48, 53, 59, 64. The model is evaluated using pycocotools distributed with the COCO dataset. Which epochs should be evaluated can be reconfigured with the `--evaluation` argument. To run training with Tensor Cores, use the `--amp` flag when running the `main.py` script. The flag `--save ./models` flag enables storing checkpoints after each epoch under `./models/epoch_*.pt`. ### Evaluation process Pycocotools’ open-sourced scripts provides a consistent way to evaluate models on the COCO dataset. We are using these scripts during validation to measure a models performance in AP metric. Metrics below are evaluated using pycocotools’ methodology, in the following format: ``` Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.27205 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.45869 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.27884 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.08275 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.29840 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.42722 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.25092 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.36528 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.38262 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.13577 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.42287 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.57277 ``` The metric reported in our results is present in the first row. ### Inference process Our scripts for SSD300 v1.1 presents two ways to run inference. To get meaningful results, you need a pre-trained model checkpoint. One way is to run an interactive session on Jupyter notebook, as described in a 8th step of the [Quick Start Guide](#quick-start-guide). The container prints Jupyter notebook logs like this: ``` [I 16:17:58.935 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret [I 16:17:59.769 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab [I 16:17:59.769 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab [I 16:17:59.770 NotebookApp] Serving notebooks from local directory: /workspace [I 16:17:59.770 NotebookApp] The Jupyter Notebook is running at: [I 16:17:59.770 NotebookApp] http://(65935d756c71 or 127.0.0.1):8888/?token=04c78049c67f45a4d759c8f6ddd0b2c28ac4eab60d81be4e [I 16:17:59.770 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [W 16:17:59.774 NotebookApp] No web browser found: could not locate runnable browser. [C 16:17:59.774 NotebookApp] To access the notebook, open this file in a browser: file:///root/.local/share/jupyter/runtime/nbserver-1-open.html Or copy and paste one of these URLs: http://(65935d756c71 or 127.0.0.1):8888/?token=04c78049c67f45a4d759c8f6ddd0b2c28ac4eab60d81be4e ``` Use the token printed in the last line to start your notebook session. The notebook is in `examples/inference.ipynb`, for example: http://127.0.0.1:8888/notebooks/examples/inference.ipynb?token=04c78049c67f45a4d759c8f6ddd0b2c28ac4eab60d81be4e Another way is to run a script `examples/SSD300_inference.py`. It contains the logic from the notebook, wrapped into a Python script. The script contains sample usage. To use the inference example script in your own code, you can call the `main` function, providing input image URIs as an argument. The result will be a list of detections for each input image. ## Performance The performance measurements in this document were conducted at the time of publication and may not reflect the performance achieved from NVIDIA’s latest software release. For the most up-to-date performance measurements, go to [NVIDIA Data Center Deep Learning Product Performance](https://developer.nvidia.com/deep-learning-performance-training-inference). ### Benchmarking The following section shows how to run benchmarks measuring the model performance in training and inference modes. #### Training performance benchmark The training benchmark was run in various scenarios on A100 80GB and V100 16G GPUs. The benchmark does not require a checkpoint from a fully trained model. To benchmark training, run: ``` torchrun --nproc_per_node={NGPU} \ main.py --batch-size {bs} \ --mode benchmark-training \ --benchmark-warmup 100 \ --benchmark-iterations 200 \ {AMP} \ --data {data} ``` Where the `{NGPU}` selects number of GPUs used in benchmark, the `{bs}` is the desired batch size, the `{AMP}` is set to `--amp` if you want to benchmark training with Tensor Cores, and the `{data}` is the location of the COCO 2017 dataset. `--benchmark-warmup` is specified to omit the first iteration of the first epoch. `--benchmark-iterations` is a number of iterations used to measure performance. #### Inference performance benchmark Inference benchmark was run on 1x A100 80GB GPU and 1x V100 16G GPU. To benchmark inference, run: ``` python main.py --eval-batch-size {bs} \ --mode benchmark-inference \ --benchmark-warmup 100 \ --benchmark-iterations 200 \ {AMP} \ --data {data} ``` Where the `{bs}` is the desired batch size, the `{AMP}` is set to `--amp` if you want to benchmark inference with Tensor Cores, and the `{data}` is the location of the COCO 2017 dataset. `--benchmark-warmup` is specified to omit the first iterations of the first epoch. `--benchmark-iterations` is a number of iterations used to measure performance. ### Results The following sections provide details on how we achieved our performance and accuracy in training and inference. #### Training accuracy results ##### Training accuracy: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `./examples/SSD300_A100_{FP16,TF32}_{1,4,8}GPU.sh` script in the `pytorch-22.10-py3` NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs. |GPUs |Batch size / GPU|Accuracy - TF32|Accuracy - mixed precision|Time to train - TF32|Time to train - mixed precision|Time to train speedup (TF32 to mixed precision)| |-----------|----------------|---------------|---------------------------|--------------------|--------------------------------|------------------------------------------------| |1 |64 |0.271 |0.272 |03:19:59 |03:18:35 |100% | |4 |64 |0.270 |0.270 |00:51:22 |00:51:31 | 99% | |8 |64 |0.270 |0.269 |00:26:10 |00:26:10 | 99% | |1 |128 |0.274 |0.271 |03:03:56 |03:03:50 |100% | |4 |128 |0.272 |0.270 |00:46:51 |00:47:01 | 99% | |8 |128 |0.267 |0.267 |00:23:44 |00:23:46 | 99% | |1 |256 |0.272 |0.272 |02:56:37 |02:56:44 | 99% | |4 |256 |0.271 |0.267 |00:45:05 |00:45:07 | 99% | |8 |256 |0.260 |0.258 |00:22:49 |00:22:56 |100% | ##### Training accuracy: NVIDIA DGX-1 (8x V100 16GB) Our results were obtained by running the `./examples/SSD300_FP{16,32}_{1,4,8}GPU.sh` script in the `pytorch-22.10-py3` NGC container on NVIDIA DGX-1 with 8x V100 16GB GPUs. |GPUs |Batch size / GPU|Accuracy - FP32|Accuracy - mixed precision|Time to train - FP32|Time to train - mixed precision|Time to train speedup (FP32 to mixed precision)| |-----------|----------------|---------------|---------------------------|--------------------|--------------------------------|------------------------------------------------| |1 |32 |0.269 |0.271 |20:04:48 |07:25:27 |270% | |4 |32 |0.270 |0.269 |05:08:56 |01:58:41 |260% | |8 |32 |0.271 |0.269 |02:35:00 |01:00:27 |256% | |1 |64 |<N/A> |0.272 |<N/A> |06:47:58 |<N/A> | |4 |64 |<N/A> |0.270 |<N/A> |01:46:34 |<N/A> | |8 |64 |<N/A> |0.269 |<N/A> |00:53:52 |<N/A> | Due to smaller size, mixed precision models can be trained with bigger batches. In such cases mixed precision speedup is calculated versus FP32 training with maximum batch size for that precision ##### Training loss plot Here are example graphs of FP32, TF32 and AMP training on 8 GPU configuration: ![TrainingLoss](./img/training_loss.png) ##### Training stability test The SSD300 v1.1 model was trained for 65 epochs, starting from 15 different initial random seeds. The training was performed in the `pytorch-22.10-py3` NGC container on NVIDIA DGX A100 8x A100 80GB GPUs with batch size per GPU = 128. After training, the models were evaluated on the test dataset. The following table summarizes the final mAP on the test set. |**Precision**|**Average mAP**|**Standard deviation**|**Minimum**|**Maximum**|**Median**| |------------:|--------------:|---------------------:|----------:|----------:|---------:| | AMP | 0.2679503039 | 0.001360494012 | 0.26201 | 0.27013 | 0.26529 | | TF32 | 0.2670691823 | 0.001639394102 | 0.26181 | 0.27274 | 0.26492 | #### Training performance results ##### Training performance: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `main.py` script with the `--mode benchmark-training` flag in the `pytorch-22.10-py3` NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs. Performance numbers (in items/images per second) were averaged over an entire training epoch. |GPUs |Batch size / GPU|Throughput - TF32|Throughput - mixed precision|Throughput speedup (TF32 - mixed precision)|Weak scaling - TF32 |Weak scaling - mixed precision | |-----------|----------------|-----------------|-----------------------------|-------------------------------------------|--------------------------------|------------------------------------------------| |1 |64 | 364.27 | 662.91 |181% |100% |100% | |4 |64 |1432.73 |2581.24 |180% |393% |389% | |8 |64 |2838.76 |5252.84 |185% |779% |792% | |1 |128 | 377.18 | 724.41 |192% |100% |100% | |4 |128 |1493.13 |2885.55 |193% |395% |398% | |8 |128 |2967.23 |5733.98 |193% |786% |791% | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Training performance: NVIDIA DGX-1 (8x V100 16GB) Our results were obtained by running the `main.py` script with the `--mode benchmark-training` flag in the `pytorch-22.10-py3` NGC container on NVIDIA DGX-1 with 8x V100 16GB GPUs. Performance numbers (in items/images per second) were averaged over an entire training epoch. |GPUs |Batch size / GPU|Throughput - FP32|Throughput - mixed precision|Throughput speedup (FP32 - mixed precision)|Weak scaling - FP32 |Weak scaling - mixed precision | |-----------|----------------|-----------------|-----------------------------|-------------------------------------------|--------------------------------|------------------------------------------------| |1 |32 |107.22 | 296.80 |276% |100% |100% | |4 |32 |419.54 |1115.59 |265% |391% |375% | |8 |32 |840.35 |2153.96 |256% |783% |725% | |1 |64 |<N/A> | 322.81 |<N/A> |<N/A> |100% | |4 |64 |<N/A> |1238.27 |<N/A> |<N/A> |383% | |8 |64 |<N/A> |2520.50 |<N/A> |<N/A> |780% | Due to smaller size, mixed precision models can be trained with bigger batches. In such cases mixed precision speedup is calculated versus FP32 training with maximum batch size for that precision To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. #### Inference performance results ##### Inference performance: NVIDIA DGX A100 (1x A100 80GB) Our results were obtained by running the `main.py` script with `--mode benchmark-inference` flag in the pytorch-22.10-py3 NGC container on NVIDIA DGX A100 (1x A100 80GB) GPU. |Batch size |Throughput - TF32|Throughput - mixed precision|Throughput speedup (TF32 - mixed precision)|Weak scaling - TF32 |Weak scaling - mixed precision | |-----------|-----------------|-----------------------------|-------------------------------------------|--------------------|--------------------------------| |1 |158.83 | 142.67 | 89% |100% |100% | |2 |308.31 | 261.21 | 84% |194% |183% | |4 |481.69 | 454.95 | 94% |303% |318% | |8 |597.72 | 742.05 |124% |376% |520% | |16 |590.44 | 887.01 |150% |371% |621% | |32 |708.97 | 970.27 |136% |446% |680% | |64 |798.16 |1057.51 |132% |502% |741% | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Inference performance: NVIDIA DGX-1 (1x V100 16GB) Our results were obtained by running the `main.py` script with `--mode benchmark-inference` flag in the pytorch-22.10-py3 NGC container on NVIDIA DGX-1 with (1x V100 16GB) GPU. |Batch size |Throughput - FP32|Throughput - mixed precision|Throughput speedup (FP32 - mixed precision)|Weak scaling - FP32 |Weak scaling - mixed precision | |-----------|-----------------|-----------------------------|-------------------------------------------|--------------------|--------------------------------| |1 | 93.21 | 84.59 | 90% |100% |100% | |2 |148.61 |165.30 |111% |159% |195% | |4 |206.82 |304.77 |147% |221% |360% | |8 |242.55 |447.25 |184% |260% |528% | |16 |292.44 |541.05 |185% |313% |639% | |32 |311.61 |605.30 |194% |334% |715% | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ## Release notes ### Changelog October 2022 * upgrade the PyTorch container to 22.10 * switched to using torchvision IMAGENET1K_V2 backbone weights * added a flag to control for torchvision weight enums * added a flag to control TF32 computations * fixed various depreciation warnings * set `TORCH_CUDNN_V8_API_ENABLED` environment variable which replaces `CUDNN_V8_API_ENABLED` from older containers * updated [nv-cocoapi](https://github.com/NVIDIA/cocoapi/) from 0.6.0 to 0.7.3 * updated python dependencies June 2022 * upgrade the PyTorch container to 22.05 * fixed DALI depreciation warnings January 2022 * upgrade the PyTorch container to 22.01 * made AMP the default data precision * added --data-layout option (channels_first is the recommended layout with --no-amp) * updated README with new performance numbers November 2021 * upgrade the PyTorch container to 21.11 * switched data layout from NCHW (channels first) to NHWC (channels last) * replaced `torch.distributed.launch` with `torchrun` * updated README with new performance numbers May 2021 * upgrade the PyTorch container to 21.05 * replaced APEX AMP with native PyTorch AMP * updated [nv-cocoapi](https://github.com/NVIDIA/cocoapi/) from 0.4.0 to 0.6.0 * code updated to use DALI 1.2.0 April 2021 * upgrade the PyTorch container to 21.04 * changed python package naming March 2021 * upgrade the PyTorch container to 21.03 * code updated to use DALI 0.30.0 * use DALI [BoxEncoder](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/supported_ops.html#nvidia.dali.ops.BoxEncoder) instead of a CUDA extension * replaced [cocoapi](https://github.com/cocodataset/cocoapi) with [nv-cocoapi](https://github.com/NVIDIA/cocoapi/) June 2020 * upgrade the PyTorch container to 20.06 * update performance tables to include A100 results * update examples with A100 configs August 2019 * upgrade the PyTorch container to 19.08 * update Results section in the README * code updated to use DALI 0.12.0 * checkpoint loading fix * fixed links in the README July 2019 * script and notebook for inference * use AMP instead of hand-crafted FP16 support * README update * introduced a parameter with a path to the custom backbone checkpoint * minor enchantments of `example/*` scripts * alignment to changes in PyTorch 19.06 March 2019 * Initial release ## Known issues There are no known issues with this model.
TensorFlow/Detection/SSD
SSD
requirements
cython==0.29.24 pycocotools==2.0.2 contextlib2==21.6.0
PyTorch/SpeechRecognition/QuartzNet/scripts/docker
docker
launch
#!/bin/bash SCRIPT_DIR=$(cd $(dirname $0); pwd) QN_REPO=${QN_REPO:-"${SCRIPT_DIR}/../.."} DATA_DIR=${1:-${DATA_DIR-${QN_REPO}"/datasets"}} RESULT_DIR=${2:-${RESULT_DIR:-${QN_REPO}"/results"}} SCRIPT=${3:-${SCRIPT:-""}} MOUNTS="" MOUNTS+=" -v $DATA_DIR:/datasets" MOUNTS+=" -v $RESULT_DIR:/results" MOUNTS+=" -v ${QN_REPO}:/quartznet" docker run -it --rm --gpus all\ --env PYTHONDONTWRITEBYTECODE=1 \ --shm-size=4g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ $MOUNTS \ -w /quartznet \ quartznet:latest bash $SCRIPT
TensorFlow2/Classification/ConvNets/efficientnet_v1/B4/training/AMP
AMP
convergence_8xV100-32G
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. horovodrun -np 8 bash ./scripts/bind.sh --cpu=exclusive --ib=single -- python3 main.py \ --cfg config/efficientnet_v1/b4_cfg.py \ --mode train_and_eval \ --use_amp \ --use_xla \ --model_dir ./output \ --data_dir /data \ --log_steps 100 \ --max_epochs 500 \ --save_checkpoint_freq 5 \ --train_batch_size 64 \ --eval_batch_size 64 \ --train_img_size 380 \ --eval_img_size 380 \ --augmenter_name autoaugment \ --lr_decay cosine \ --mixup_alpha 0.2 \ --defer_img_mixing \ --moving_average_decay 0.9999 \ --lr_init 0.005
PyTorch/Forecasting/TFT
TFT
requirements
git+https://github.com/NVIDIA/[email protected]#egg=dllogger pandas==1.3.4 pynvml==11.0.0
PyTorch/SpeechSynthesis/Tacotron2/scripts
scripts
train_tacotron2
mkdir -p output python -m multiproc train.py -m Tacotron2 -o ./output/ -lr 1e-3 --epochs 1501 -bs 48 --weight-decay 1e-6 --grad-clip-thresh 1.0 --cudnn-enabled --log-file nvlog.json --anneal-steps 500 1000 1500 --anneal-factor 0.1
TensorFlow2/Recommendation/DLRM_and_DCNv2/deployment/hps
hps
triton_ensemble_wrapper
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: Tomasz Grel ([email protected]) import tritonclient.utils import tritonclient.http import numpy as np import deployment.hps.constants as c class NumpyToHpsInputConverter: def __init__(self, categorical_sizes, fused_embedding=True): self.offsets = np.cumsum([0] + categorical_sizes)[:-1] self.fused_embedding = fused_embedding def __call__(self, numerical_features, cat_features): batch_size = cat_features[0].shape[0] cat_features = [f.numpy().flatten() for f in cat_features] # add the offsets if self.fused_embedding: cat_features = [f + o for f, o in zip(cat_features, self.offsets)] key_tensor = np.concatenate(cat_features, axis=0).astype(np.int64).reshape([1, -1]) if self.fused_embedding: nkey_tensor = np.full(shape=(1, 1), fill_value=batch_size * len(cat_features), dtype=np.int32) else: nkey_tensor = np.full(shape=(1, len(cat_features)), fill_value=batch_size, dtype=np.int32) numerical_features = numerical_features.numpy().astype(np.float32).reshape([1, -1]) return key_tensor, nkey_tensor, numerical_features class RecsysTritonEnsemble: def __init__(self, model_name, num_tables, verbose, categorical_sizes, fused_embedding=True): self.input_converter = NumpyToHpsInputConverter(categorical_sizes, fused_embedding) self.model_name = model_name self.triton_client = tritonclient.http.InferenceServerClient(url="localhost:8000", verbose=verbose) if not self.triton_client.is_server_live(): raise ValueError('Triton server is not live!') print('triton model repo: ', self.triton_client.get_model_repository_index()) def __call__(self, inputs, sigmoid=False, training=False): numerical_features, cat_features = list(inputs.values()) batch_size = cat_features[0].shape[0] key_tensor, nkey_tensor, numerical_features = self.input_converter(numerical_features, cat_features) inputs = [ tritonclient.http.InferInput(c.key_global_prefix, key_tensor.shape, tritonclient.utils.np_to_triton_dtype(np.int64)), tritonclient.http.InferInput(c.numkey_global_prefix, nkey_tensor.shape, tritonclient.utils.np_to_triton_dtype(np.int32)), tritonclient.http.InferInput(c.ens_numerical_features_name, numerical_features.shape, tritonclient.utils.np_to_triton_dtype(np.float32)), ] inputs[0].set_data_from_numpy(key_tensor) inputs[1].set_data_from_numpy(nkey_tensor) inputs[2].set_data_from_numpy(numerical_features) outputs = [tritonclient.http.InferRequestedOutput(c.ens_output_name)] response = self.triton_client.infer(self.model_name, inputs, outputs=outputs) result_np = response.as_numpy(c.ens_output_name) result_np = result_np.reshape([batch_size]) return result_np
TensorFlow/Detection/SSD/models/research/slim/nets
nets
vgg
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains model definitions for versions of the Oxford VGG network. These model definitions were introduced in the following technical report: Very Deep Convolutional Networks For Large-Scale Image Recognition Karen Simonyan and Andrew Zisserman arXiv technical report, 2015 PDF: http://arxiv.org/pdf/1409.1556.pdf ILSVRC 2014 Slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf CC-BY-4.0 More information can be obtained from the VGG website: www.robots.ox.ac.uk/~vgg/research/very_deep/ Usage: with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_a(inputs) with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_16(inputs) @@vgg_a @@vgg_16 @@vgg_19 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc def vgg_a(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_a', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 11-Layers version A Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_a', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 1, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 1, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_a.default_image_size = 224 def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_16.default_image_size = 224 def vgg_19(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_19', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 19-Layers version E Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_19', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 4, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_19.default_image_size = 224 # Alias vgg_d = vgg_16 vgg_e = vgg_19
PyTorch/Detection/Efficientdet/effdet
effdet
efficientnet_test
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from efficientnet import EfficientNet, efficientnet_configs def test_feature_type(net, images): output, features = net(images, features_only=True) print("[ ... Test Type ... ] Type of output {} features {}".format(type(output), type(features))) def test_feature_dimensions(net, images): output, features = net(images, features_only=True) print("[ ... Test dimension ... ] Dim of output {} features {}".format(output.size(), len(features))) for i, x in enumerate(features): print("[ ... Test dimension ... ] Index {} features size {}".format(i, features[i].size())) def test_feature_info(net, images): feature_info = net.feature_info for i, f in enumerate(feature_info): print("[ ... Test Feature Info ... ] Index {} features info {}".format(i, f)) def main(): global_config = efficientnet_configs['fanout'] net = EfficientNet(width_coeff=1, depth_coeff=1, dropout=0.2, num_classes=1000, global_config=global_config, out_indices=[2,3,4]) images = torch.rand((2, 3, 512, 512)) test_feature_type(net, images) test_feature_dimensions(net, images) test_feature_info(net, images) print("Model Layer Names") for n, m in net.named_modules(): print(n) if __name__ == '__main__': main()
TensorFlow/Segmentation/UNet_Industrial/utils
utils
cmdline_helper
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== import argparse from datasets import known_datasets from model.unet import UNet_v1 from model.blocks.activation_blck import authorized_activation_fn def _add_bool_argument(parser, name=None, default=False, required=False, help=None): if not isinstance(default, bool): raise ValueError() feature_parser = parser.add_mutually_exclusive_group(required=required) feature_parser.add_argument('--' + name, dest=name, action='store_true', help=help, default=default) feature_parser.add_argument('--no' + name, dest=name, action='store_false') feature_parser.set_defaults(name=default) def parse_cmdline(): p = argparse.ArgumentParser(description="JoC-UNet_v1-TF") p.add_argument( '--unet_variant', default="tinyUNet", choices=UNet_v1.authorized_models_variants, type=str, required=False, help="""Which model size is used. This parameter control directly the size and the number of parameters""" ) p.add_argument( '--activation_fn', choices=authorized_activation_fn, type=str, default="relu", required=False, help="""Which activation function is used after the convolution layers""" ) p.add_argument( '--exec_mode', choices=['train', 'train_and_evaluate', 'evaluate', 'training_benchmark', 'inference_benchmark'], type=str, required=True, help="""Which execution mode to run the model into""" ) p.add_argument( '--iter_unit', choices=['epoch', 'batch'], type=str, required=True, help="""Will the model be run for X batches or X epochs ?""" ) p.add_argument('--num_iter', type=int, required=True, help="""Number of iterations to run.""") p.add_argument('--batch_size', type=int, required=True, help="""Size of each minibatch per GPU.""") p.add_argument( '--warmup_step', default=200, type=int, required=False, help="""Number of steps considered as warmup and not taken into account for performance measurements.""" ) p.add_argument( '--results_dir', type=str, required=True, help="""Directory in which to write training logs, summaries and checkpoints.""" ) p.add_argument( '--log_dir', type=str, required=False, default="dlloger_out.json", help="""Directory in which to write logs.""" ) _add_bool_argument( parser=p, name="save_eval_results_to_json", default=False, required=False, help="Whether to save evaluation results in JSON format." ) p.add_argument('--data_dir', required=False, default=None, type=str, help="Path to dataset directory") p.add_argument( '--dataset_name', choices=list(known_datasets.keys()), type=str, required=True, help="""Name of the dataset used in this run (only DAGM2007 is supported atm.)""" ) p.add_argument( '--dataset_classID', default=None, type=int, required=False, help="""ClassID to consider to train or evaluate the network (used for DAGM).""" ) p.add_argument( '--data_format', choices=['NHWC', 'NCHW'], type=str, default="NCHW", required=False, help="""Which Tensor format is used for computation inside the mode""" ) _add_bool_argument( parser=p, name="amp", default=False, required=False, help="Enable Automatic Mixed Precision to speedup FP32 computation using tensor cores" ) _add_bool_argument( parser=p, name="xla", default=False, required=False, help="Enable Tensorflow XLA to maximise performance." ) p.add_argument( '--weight_init_method', choices=UNet_v1.authorized_weight_init_methods, default="he_normal", type=str, required=False, help="""Which initialisation method is used to randomly intialize the model during training""" ) p.add_argument('--learning_rate', default=1e-4, type=float, required=False, help="""Learning rate value.""") p.add_argument( '--learning_rate_decay_factor', default=0.8, type=float, required=False, help="""Decay factor to decrease the learning rate.""" ) p.add_argument( '--learning_rate_decay_steps', default=500, type=int, required=False, help="""Decay factor to decrease the learning rate.""" ) p.add_argument('--rmsprop_decay', default=0.9, type=float, required=False, help="""RMSProp - Decay value.""") p.add_argument('--rmsprop_momentum', default=0.8, type=float, required=False, help="""RMSProp - Momentum value.""") p.add_argument('--weight_decay', default=1e-5, type=float, required=False, help="""Weight Decay scale factor""") _add_bool_argument( parser=p, name="use_auto_loss_scaling", default=False, required=False, help="Use AutoLossScaling with TF-AMP" ) p.add_argument( '--loss_fn_name', type=str, default="adaptive_loss", required=False, help="""Loss function Name to use to train the network""" ) _add_bool_argument( parser=p, name="augment_data", default=True, required=False, help="Choose whether to use data augmentation" ) p.add_argument( '--display_every', type=int, default=50, required=False, help="""How often (in batches) to print out debug information.""" ) p.add_argument( '--debug_verbosity', choices=[0, 1, 2], default=0, type=int, required=False, help="""Verbosity Level: 0 minimum, 1 with layer creation debug info, 2 with layer + var creation debug info.""" ) p.add_argument('--seed', type=int, default=None, help="""Random seed.""") FLAGS, unknown_args = p.parse_known_args() if len(unknown_args) > 0: for bad_arg in unknown_args: print("ERROR: Unknown command line arg: %s" % bad_arg) raise ValueError("Invalid command line arg(s)") return FLAGS
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/generator/tabular
tabular
gaussian_generator
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from typing import Optional, List import cupy as cp import numpy as np import pandas as pd from tqdm import tqdm from pandas.api.types import is_integer_dtype from sklearn.preprocessing import OrdinalEncoder from syngen.generator.tabular.chunked_tabular_generator import ChunkedBaseTabularGenerator from syngen.generator.utils import cuda_repeat class GaussianGenerator(ChunkedBaseTabularGenerator): def __init__(self, **kwargs): super().__init__(**kwargs) def ordinal_encoder(self, cat_col): encoder = OrdinalEncoder() encoder.fit(cat_col) return encoder def fit( self, data, categorical_columns=(), columns: Optional[List[str]] = None, verbose: bool = False, ): self.column_order = columns or list(data.columns) self.cat_fit = {} self.categorical_columns = set(categorical_columns) self.continuous_columns = set(self.column_order) - self.categorical_columns num_samples = len(data) # - multinomial distribution cat_cols = tqdm(self.categorical_columns) if verbose else self.categorical_columns for column in cat_cols: enc = self.ordinal_encoder(data[column].values.reshape(-1, 1)) pvals = data[column].value_counts() / num_samples pvals = pvals.values self.cat_fit[column] = { "encoder": enc, "pvals": pvals, 'dtype': data[column].dtype, } self.cont_fit = {} self.integer_continuous_columns = [] # - gaussian distribution cont_cols = tqdm(self.continuous_columns) if verbose else self.continuous_columns for column in cont_cols: mean, std = data[column].mean(), data[column].std() self.cont_fit[column] = { "mean": mean, "std": std, 'dtype': data[column].dtype, } if is_integer_dtype(data[column].dtype): self.integer_continuous_columns.append(column) self.fits = {**self.cat_fit, **self.cont_fit} def sample(self, n, gpu=False, memmap_kwargs=None, start_idx=0, end_idx=None, **kwargs): use_memmap = memmap_kwargs is not None if use_memmap: memmap_outfile = np.load(memmap_kwargs['filename'], mmap_mode='r+') if gpu: cont_means = [] cont_stds = [] for column in self.continuous_columns: cont_means.append(self.fits[column]['mean']) cont_stds.append(self.fits[column]['std']) cont_data = cp.random.normal( cp.array(cont_means), cp.array(cont_stds), size=(n, len(self.continuous_columns)), dtype=cp.float32 ) cont_data = cp.asnumpy(cont_data) df = pd.DataFrame(cont_data, columns=list(self.continuous_columns)) if self.integer_continuous_columns: df[self.integer_continuous_columns] = \ df[self.integer_continuous_columns].astype(np.int32) for column in self.categorical_columns: sampled_data = cp.random.multinomial(n, self.fits[column]["pvals"]) sampled_data = cuda_repeat(sampled_data) cp.random.shuffle(sampled_data) sampled_data = cp.asnumpy(sampled_data.reshape(-1, 1)) encoder = self.fits[column]["encoder"] sampled_data = encoder.inverse_transform(sampled_data) df[column] = sampled_data.reshape(-1).astype(self.fits[column]["dtype"]) else: df = pd.DataFrame() for column in self.column_order: if column in self.categorical_columns: sampled_data = np.random.multinomial(n, self.fits[column]["pvals"]) sampled_data = np.repeat(np.arange(len(sampled_data)), sampled_data) np.random.shuffle(sampled_data) sampled_data = sampled_data.reshape(-1, 1) encoder = self.fits[column]["encoder"] sampled_data = encoder.inverse_transform(sampled_data) else: sampled_data = np.random.normal( self.fits[column]['mean'], self.fits[column]['std'], n) df[column] = sampled_data.reshape(-1).astype(self.fits[column]["dtype"]) df = df[self.column_order] if use_memmap: memmap_outfile[start_idx:end_idx] = df.values return None return df def save(self, path): with open(path, 'wb') as file_handler: pickle.dump(self, file_handler, protocol=pickle.HIGHEST_PROTOCOL) @classmethod def load(cls, path): with open(path, 'rb') as file_handler: model = pickle.load(file_handler) return model
PyTorch/SpeechSynthesis/FastPitch/hifigan
hifigan
metrics
import timer from collections import defaultdict class Metrics(defaultdict): # TODO Where to measure - gpu:0 or all gpus? def __init__(self, tb_keys=[], benchmark_epochs=10): super().__init__(float) # dll_tb_keys=['loss_gen', 'loss_discrim', 'loss_mel', 'took']: self.tb_keys = tb_keys #_ = {'dll': dll_keys, 'tb': tb_keys, 'dll+tb': dll_tb_keys} self.iter_start_time = None self.iter_metrics = defaultdict(float) self.epoch_start_time = None self.epoch_metrics = defaultdict(float) self.benchmark_epochs = benchmark_epochs def start_epoch(self, epoch, start_timer=True): self.epoch = epoch if start_timer: self.epoch_start_time = time.time() def start_iter(self, iter, start_timer=True): self.iter = iter self.accum_steps = 0 self.step_metrics.clear() if start_timer: self.iter_start_time = time.time() def update_iter(self, ...): # do stuff pass def accumulate(self, scope='step'): tgt = {'step': self.step_metrics, 'epoch': self.epoch_metrics}[scope] for k, v in self.items(): tgt[k] += v self.clear() def update_iter(self, metrics={}, stop_timer=True): is not self.started_iter: return self.accumulate(metrics) self.accumulate(self.iter_metrics, scope='epoch') if stop_timer: self.iter_metrics['took'] = time.time() - self.iter_time_start def update_epoch(self, stop_timer=True): # tb_total_steps=None, # subset='train_avg', # data=OrderedDict([ # ('loss', epoch_loss[-1]), # ('mel_loss', epoch_mel_loss[-1]), # ('frames/s', epoch_num_frames[-1] / epoch_time[-1]), # ('took', epoch_time[-1])]), # ) if stop_timer: self.['epoch_time'] = time.time() - self.epoch_time_start if steps % args.stdout_interval == 0: # with torch.no_grad(): # mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() took = time.time() - self.start_b self.sws['train'].add_scalar("gen_loss_total", loss_gen_all.item(), steps) self.sws['train'].add_scalar("mel_spec_error", mel_error.item(), steps) for key, val in meta.items(): sw_name = 'train' for name_ in keys_mpd + keys_msd: if name_ in key: sw_name = 'train_' + name_ key = key.replace('loss_', 'loss/') key = re.sub('mpd\d+', 'mpd-msd', key) key = re.sub('msd\d+', 'mpd-msd', key) self.sws[sw_name].add_scalar(key, val / h.batch_size, steps) def iter_metrics(self, target='dll+tb'): return {self.iter_metrics[k] for k in self.keys_[target]} def foo Steps : 40, Gen Loss Total : 57.993, Mel-Spec. Error : 47.374, s/b : 1.013 logger.log((epoch, epoch_iter, num_iters), tb_total_steps=total_iter, subset='train', data=OrderedDict([ ('loss', iter_loss), ('mel_loss', iter_mel_loss), ('frames/s', iter_num_frames / iter_time), ('took', iter_time), ('lrate', optimizer.param_groups[0]['lr'])]), ) class Meter: def __init__(self, sink_type, scope, downstream=None, end_points=None, verbosity=dllogger.Verbosity.DEFAULT): self.verbosity = verbosity self.sink_type = sink_type self.scope = scope self.downstream = downstream self.end_points = end_points or [] def start(self): ds = None if self.downstream is None else self.downstream.sink end_pt_fn = lambda x: list(map(lambda f: f(x), self.end_points)) # call all endpoint functions self.sink = self.sink_type(end_pt_fn, ds) def end(self): self.sink.close() def send(self, data): self.sink.send(data) def meters(self): if self.downstream is not None: downstream_meters = self.downstream.meters() else: downstream_meters = [] return [self] + downstream_meters def add_end_point(self, new_endpoint): self.end_points.append(new_endpoint) def __or__(self, other): """for easy chaining of meters""" if self.downstream is None: self.downstream = other else: self.downstream | other return self
PyTorch/LanguageModeling/BART/configs
configs
config_xsum
{ "_num_labels": 3, "activation_dropout": 0.0, "activation_function": "gelu", "add_bias_logits": false, "add_final_layer_norm": false, "architectures": [ "BartForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 0, "classif_dropout": 0.0, "d_model": 1024, "decoder_attention_heads": 16, "decoder_ffn_dim": 4096, "decoder_layerdrop": 0.0, "decoder_layers": 12, "decoder_start_token_id": 2, "dropout": 0.1, "early_stopping": true, "encoder_attention_heads": 16, "encoder_ffn_dim": 4096, "encoder_layerdrop": 0.0, "encoder_layers": 12, "eos_token_id": 2, "eos_token_ids": [ 2 ], "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2" }, "init_std": 0.02, "is_encoder_decoder": true, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2 }, "max_length": 62, "max_position_embeddings": 1024, "min_length": 11, "model_type": "bart", "no_repeat_ngram_size": 3, "normalize_before": false, "normalize_embedding": true, "num_beams": 6, "num_hidden_layers": 12, "output_past": true, "pad_token_id": 1, "prefix": " ", "replacing_rate": 0, "scale_embedding": false, "static_position_embeddings": false, "student_decoder_layers": null, "student_encoder_layers": null, "task_specific_params": {}, "vocab_size": 50265 }
TensorFlow/Detection/SSD/models/research/slim/nets/mobilenet
mobilenet
mobilenet_example
#!/usr/bin/env python # coding: utf-8 # >[Prerequisites (downloading tensorflow_models and checkpoints)](#scrollTo=T_cETKXHDTXu) # # >[Checkpoint based inference](#scrollTo=fxMe7_pkk_Vo) # # >[Frozen inference](#scrollTo=PlwvpK3ElBk6) # # # # Prerequisites (downloading tensorflow_models and checkpoints) # In[ ]: get_ipython().system('git clone https://github.com/tensorflow/models') # In[ ]: from __future__ import print_function from IPython import display checkpoint_name = 'mobilenet_v2_1.0_224' #@param url = 'https://storage.googleapis.com/mobilenet_v2/checkpoints/' + checkpoint_name + '.tgz' print('Downloading from ', url) get_ipython().system('wget {url}') print('Unpacking') get_ipython().system('tar -xvf {base_name}.tgz') checkpoint = base_name + '.ckpt' display.clear_output() print('Successfully downloaded checkpoint from ', url, '. It is available as', checkpoint) # In[ ]: get_ipython().system('wget https://upload.wikimedia.org/wikipedia/commons/f/fe/Giant_Panda_in_Beijing_Zoo_1.JPG -O panda.jpg') # In[ ]: # setup path import sys sys.path.append('/content/models/research/slim') # # Checkpoint based inference # In[ ]: import tensorflow as tf from nets.mobilenet import mobilenet_v2 tf.reset_default_graph() # For simplicity we just decode jpeg inside tensorflow. # But one can provide any input obviously. file_input = tf.placeholder(tf.string, ()) image = tf.image.decode_jpeg(tf.read_file(file_input)) images = tf.expand_dims(image, 0) images = tf.cast(images, tf.float32) / 128. - 1 images.set_shape((None, None, None, 3)) images = tf.image.resize_images(images, (224, 224)) # Note: arg_scope is optional for inference. with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope(is_training=False)): logits, endpoints = mobilenet_v2.mobilenet(images) # Restore using exponential moving average since it produces (1.5-2%) higher # accuracy ema = tf.train.ExponentialMovingAverage(0.999) vars = ema.variables_to_restore() saver = tf.train.Saver(vars) # In[ ]: from IPython import display import pylab from datasets import imagenet import PIL display.display(display.Image('panda.jpg')) with tf.Session() as sess: saver.restore(sess, checkpoint) x = endpoints['Predictions'].eval(feed_dict={file_input: 'panda.jpg'}) label_map = imagenet.create_readable_names_for_imagenet_labels() print("Top 1 prediction: ", x.argmax(),label_map[x.argmax()], x.max()) # # Frozen inference # In[ ]: import numpy as np img = np.array(PIL.Image.open('panda.jpg').resize((224, 224))).astype(np.float) / 128 - 1 gd = tf.GraphDef.FromString(open(base_name + '_frozen.pb', 'rb').read()) inp, predictions = tf.import_graph_def(gd, return_elements = ['input:0', 'MobilenetV2/Predictions/Reshape_1:0']) # In[ ]: with tf.Session(graph=inp.graph): x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)}) label_map = imagenet.create_readable_names_for_imagenet_labels() print("Top 1 Prediction: ", x.argmax(),label_map[x.argmax()], x.max()) # In[ ]:
CUDA-Optimized/FastSpeech/fastspeech
fastspeech
train
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pprint import fire import torch from torch.optim.lr_scheduler import LambdaLR from fastspeech import DEFAULT_DEVICE from fastspeech import hparam as hp from fastspeech.data_load import PadDataLoader from fastspeech.dataset.ljspeech_dataset import LJSpeechDataset from fastspeech.model.fastspeech import Fastspeech from fastspeech.trainer.fastspeech_trainer import FastspeechTrainer from fastspeech.utils.logging import tprint try: import apex except ImportError: ImportError('Required to install apex.') # import multiprocessing # multiprocessing.set_start_method('spawn', True) pp = pprint.PrettyPrinter(indent=4, width=1000) def train(hparam="train.yaml", device=DEFAULT_DEVICE, **kwargs): """ The FastSpeech model training script. By default, this script assumes to load parameters in the default config file, fastspeech/hparams/train.yaml. Besides the flags, you can also set parameters in the config file via the command-line. For examples, --dataset_path=DATASET_PATH Path to dataset directory. --tacotron2_path=TACOTRON2_PATH Path to tacotron2 checkpoint file. --mels_path=MELS_PATH Path to preprocessed mels directory. --aligns_path=ALIGNS_PATH Path to preprocessed alignments directory. --log_path=LOG_PATH Path to log directory. --checkpoint_path=CHECKPOINT_PATH Path to checkpoint directory. The latest checkpoint will be loaded. --batch_size=BATCH_SIZE Batch size to use. Defaults to 16. Refer to fastspeech/hparams/train.yaml to see more parameters. Args: hparam (str, optional): Path to default config file. Defaults to "train.yaml". device (str, optional): Device to use. Defaults to "cuda" if avaiable, or "cpu". """ hp.set_hparam(hparam, kwargs) tprint("Hparams:\n{}".format(pp.pformat(hp))) tprint("Device count: {}".format(torch.cuda.device_count())) # model model = Fastspeech( max_seq_len=hp.max_seq_len, d_model=hp.d_model, phoneme_side_n_layer=hp.phoneme_side_n_layer, phoneme_side_head=hp.phoneme_side_head, phoneme_side_conv1d_filter_size=hp.phoneme_side_conv1d_filter_size, phoneme_side_output_size=hp.phoneme_side_output_size, mel_side_n_layer=hp.mel_side_n_layer, mel_side_head=hp.mel_side_head, mel_side_conv1d_filter_size=hp.mel_side_conv1d_filter_size, mel_side_output_size=hp.mel_side_output_size, duration_predictor_filter_size=hp.duration_predictor_filter_size, duration_predictor_kernel_size=hp.duration_predictor_kernel_size, fft_conv1d_kernel=hp.fft_conv1d_kernel, fft_conv1d_padding=hp.fft_conv1d_padding, dropout=hp.dropout, n_mels=hp.num_mels, fused_layernorm=hp.fused_layernorm ) # dataset dataset = LJSpeechDataset(root_path=hp.dataset_path, meta_file=hp.meta_file, mels_path=hp.mels_path, aligns_path=hp.aligns_path, sr=hp.sr, n_fft=hp.n_fft, win_len=hp.win_len, hop_len=hp.hop_len, n_mels=hp.num_mels, mel_fmin=hp.mel_fmin, mel_fmax=hp.mel_fmax, ) tprint("Dataset size: {}".format(len(dataset))) # data loader data_loader = PadDataLoader(dataset, batch_size=hp.batch_size, num_workers=hp.n_workers, drop_last=True, ) # optimizer def get_optimizer(model): optimizer = torch.optim.Adam( model.parameters(), lr=hp.learning_rate, betas=(0.9, 0.98), eps=1e-9) return optimizer def get_warmup_lr_scheduler(optimizer): d_model = hp.d_model warmup_steps = hp.warmup_steps lr = lambda step: d_model ** -0.5 * min((step + 1) ** -0.5, (step + 1) * warmup_steps ** -1.5) / hp.learning_rate scheduler = LambdaLR(optimizer, lr_lambda=[lr]) return scheduler # trainer trainer = FastspeechTrainer(data_loader, 'fastspeech', model, optimizer_fn=get_optimizer, final_steps=hp.final_steps, log_steps=hp.log_step, ckpt_path=hp.checkpoint_path, save_steps=hp.save_step, log_path=hp.log_path, lr_scheduler_fn=get_warmup_lr_scheduler, pre_aligns=True if hp.aligns_path else False, device=device, use_amp=hp.use_amp, nvprof_iter_start=hp.nvprof_iter_start, nvprof_iter_end=hp.nvprof_iter_end, pyprof_enabled=hp.pyprof_enabled, ) trainer.train() if __name__ == '__main__': torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False fire.Fire(train)
PyTorch/Segmentation/nnUNet/triton/scripts/docker
docker
interactive
#Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. docker run -it --rm \ --gpus "device=all" \ --net=host \ --shm-size=1g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ -e WORKDIR="$(pwd)" \ -e PYTHONPATH=$(pwd) \ -v $(pwd):$(pwd) \ -v /mnt/nvdl/usr/jzarzycki/nnunet_pyt/results:/data \ -v /mnt/nvdl/usr/jzarzycki/nnunet_pyt/results:/results \ -w $(pwd) \ nnunet:latest bash
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/scripts/import_utils
import_utils
waveglow
#!/usr/bin/env python3 ## # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import pickle import torch from waveglow.model import WaveGlow def split_cond_layers(model): for WN in model.WN: if hasattr(WN, "cond_layer"): n_layers = len(WN.res_skip_layers) conv_weights = WN.cond_layer.weight conv_bias = WN.cond_layer.bias conv_stride = WN.cond_layer.stride conv_dilation = WN.cond_layer.dilation conv_padding = WN.cond_layer.padding num_in_channels = conv_weights.size(1) num_out_channels = conv_weights.size(0)//n_layers kernel_size = conv_weights.size(2) WN.cond_layers = [] for i in range(n_layers): layer = torch.nn.Conv1d( in_channels=num_in_channels, out_channels=num_out_channels, kernel_size=kernel_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation) layer.weight.data[:, :, :] = conv_weights.data[ i*num_out_channels:(i+1)*num_out_channels, :, :] layer.bias.data[:] = conv_bias.data[ i*num_out_channels:(i+1)*num_out_channels] layer = torch.nn.utils.weight_norm(layer, name='weight') WN.cond_layers.append(layer) return model def load_waveglow(filename, waveglow_config): class RenamingUnpickler(pickle.Unpickler): def find_class(self, module, name): if module == 'glow': module = 'waveglow.model' return super().find_class(module, name) class RenamingPickleModule: def load(self, f, *args, **kw_args): return self.Unpickler(f, *args, **kw_args).load() def Unpickler(self, f, **pickle_load_args): return RenamingUnpickler(f, **pickle_load_args) pickle_module = RenamingPickleModule() blob = torch.load(filename, pickle_module=pickle_module) if 'state_dict' in blob: waveglow = WaveGlow(**waveglow_config).cuda() state_dict = {} for key, value in blob["state_dict"].items(): newKey = key if key.startswith("module."): newKey = key[len("module."):] state_dict[newKey] = value waveglow.load_state_dict(state_dict) else: waveglow = blob['model'] waveglow = split_cond_layers(waveglow) waveglow = waveglow.remove_weightnorm(waveglow) waveglow.cuda().eval() return waveglow
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/triton_performance_runner/model_analyzer
model_analyzer
model_analyzer
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import subprocess from subprocess import CalledProcessError from .exceptions import ModelAnalyzerException SERVER_OUTPUT_TIMEOUT_SECS = 5 LOGGER = logging.getLogger(__name__) class ModelAnalyzerMode: PROFILE = "profile" ANALYZE = "analyze" REPORT = "report" class ModelAnalyzerReportMode: OFFLINE = "offline" ONLINE = "online" class ModelAnalyzer: """ Concrete Implementation of Model Analyzer interface that runs analyzer locally as as subprocess. """ _analyzer_path = "model-analyzer" def __init__(self, config, timeout: int = None): """ Parameters ---------- config : AnalyzerConfig the config object containing arguments for this server instance """ self._analyzer_process = None self._analyzer_config = config self._log = None self._timeout = timeout def run(self, mode: str, verbose: bool = False, quiet: bool = False, report_mode: str = None): """ Starts the model analyzer locally """ if self._analyzer_path: cmd = [] if self._timeout: cmd = ["timeout", str(self._timeout)] cmd += [self._analyzer_path] if verbose: cmd += ["--verbose"] if quiet: cmd += ["--quiet"] if report_mode: cmd += ["-m"] cmd += [report_mode] cmd += [mode] cmd += self._analyzer_config.to_cli_string().split() LOGGER.debug(f"Model Analyze command: {cmd}") try: subprocess.run(cmd, check=True, start_new_session=True) except CalledProcessError as e: raise ModelAnalyzerException( f"Running {self._analyzer_path} with {e.cmd} failed with" f" exit status {e.returncode} : {e.output}" )
PyTorch/LanguageModeling/BERT/triton/runner
runner
summary
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import pathlib from typing import Dict, List, Union # method from PEP-366 to support relative import in executed modules import yaml if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ..deployment_toolkit.report import save_results, sort_results from .logger import LOGGER def save_summary(result_type: str, results: List, summary_dir: pathlib.Path) -> None: """ Create file with summary for results of given type Args: result_type: Type of results to dump results: Results data summary_dir: Path where results should be stored Returns: None """ if len(results) == 0: LOGGER.warning(f"No {result_type} results found.") return results = sort_results(results=results) kind_file = summary_dir / f"{result_type}_summary.csv" save_results(filename=kind_file.as_posix(), data=results, formatted=True) LOGGER.info(f"Summary for {result_type} stored in {kind_file}") def load_results(*, results_path: Union[pathlib.Path, str], result_type: str, parameters: Dict) -> List: """ Update results Args: results_path: Path to file or directory from which data should be read result_type: type of results parameters: Parameters used in experiment which generated results Returns: List of result rows """ LOGGER.debug(f"Loading {result_type} from {results_path} for summary") results_path = pathlib.Path(results_path) if results_path.is_file(): files = [results_path] elif results_path.is_dir(): files = list(results_path.iterdir()) else: LOGGER.debug(f"Unable to load file: {results_path}. Generating empty rows.") data = [{}] return data if any([file.name.endswith(".ckpt") for file in files]): model_analyzer_metrics = results_path / "metrics-model-inference.csv" files = [model_analyzer_metrics] else: files = [file for file in files if file.name.endswith(".csv")] results = list() parameters_cpy = {key: value for key, value in parameters.items() if key != "batch"} for file in files: if file.suffix == ".csv": data = _generate_data_from_csv(file=file) elif file.suffix == ".json": data = _generate_data_from_json(file=file) elif file.suffix == ".yaml": data = _generate_data_from_yaml(file=file) else: raise ValueError(f"Unsupported file extension: {file.suffix}") for item in data: result = {**parameters_cpy, **item} results.append(result) LOGGER.debug(f"Loading done. Collected {len(results)} results.") return results def _normalize_key(*, key: str) -> str: """ Normalize key Args: key: Key to normalize Returns: Normalized string """ key = "_".join(key.split(sep=" ")) key = key.lower() return key def _normalize_keys(*, data: Dict) -> Dict: """ Normalize keys in dictionary Args: data: Dictionary to normalize Returns: Normalized dictionary """ keys = {_normalize_key(key=key): value for key, value in data.items()} return keys def _generate_data_from_csv(*, file: Union[pathlib.Path, str]) -> List[Dict]: """ Generate result rows from CSV file Args: file: CSV file path Returns: List of rows """ LOGGER.debug(f"Reading data from {file}") filtered_rows: List[Dict] = [] with open(file, "r") as csvfile: reader = csv.DictReader(csvfile) for r in reader: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.debug("done") return filtered_rows def _generate_data_from_json(file: pathlib.Path) -> List[Dict]: LOGGER.info(f"Reading data from {file}") filtered_rows: List[Dict] = list() with open(file, "r") as json_file: file_data = json.load(json_file) if not isinstance(file_data, list): file_data = [file_data] for r in file_data: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.info("done") return filtered_rows def _generate_data_from_yaml(file: pathlib.Path) -> List[Dict]: LOGGER.info(f"Reading data from {file}") filtered_rows: List[Dict] = list() with open(file, "r") as yaml_file: file_data = yaml.safe_load(yaml_file) if not isinstance(file_data, list): file_data = [file_data] for r in file_data: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.info("done") return filtered_rows
PyTorch/Classification/GPUNet/triton/scripts/docker
docker
triton_inference_server
#!/usr/bin/env bash # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES:=0} WORKDIR="${WORKDIR:=$(pwd)}" export WORKSPACE_DIR=${WORKDIR}/runner_workspace export MODEL_REPOSITORY_PATH=${WORKSPACE_DIR}/model_store docker run --rm -d \ -p 8000:8000 \ -p 8001:8001 \ -p 8002:8002 \ --runtime=nvidia \ -e NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES} \ -e ORT_TENSORRT_FP16_ENABLE=1 \ -v ${MODEL_REPOSITORY_PATH}:${MODEL_REPOSITORY_PATH} \ --shm-size=1g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ --ipc=host \ nvcr.io/nvidia/tritonserver:21.12-py3 tritonserver \ --model-store=${MODEL_REPOSITORY_PATH} \ --strict-model-config=false \ --exit-on-error=true \ --model-control-mode=explicit
TensorFlow2/Recommendation/WideAndDeep/triton/runner/maintainer/docker
docker
__init__
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/benchmark/models
models
__init__
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa from .gat_ec import GATEC from .gcn_ec import GCNEC MODELS = { "gat_ec": GATEC, "gcn_ec": GCNEC, }
PyTorch/SpeechRecognition/Jasper/triton/scripts
scripts
prepare_model_repository
#!/bin/bash # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Create folder deploy/model_repo that will be used by TRITON SCRIPT_DIR=$(cd $(dirname $0); pwd) PROJECT_DIR=${SCRIPT_DIR}/.. DEPLOY_DIR=${PROJECT_DIR}/deploy HOST_REPO=${DEPLOY_DIR}/model_repo MODELS_TENSORRT=${MODELS_TENSORRT:-"jasper-tensorrt jasper-tensorrt-ensemble"} MODELS_TS_TRACE=${MODELS_TS_TRACE:-"jasper-ts-trace jasper-ts-trace-ensemble"} MODELS_ONNX=${MODELS_ONNX:-"jasper-onnx jasper-onnx-ensemble"} DECODERS="decoder-ts-script" EXTRACTORS="feature-extractor-ts-trace" MODELS=${MODELS:-"${MODELS_ONNX} ${MODELS_TENSORRT} ${MODELS_TS_TRACE}"} PRECISION=${PRECISION:-"fp16" "fp32"} # only link working models to install directory rm -fr ${HOST_REPO} && mkdir -p ${HOST_REPO} if [ -f /.dockerenv ]; then # inside docker chmod -R a+w ${HOST_REPO} fi echo "Setting up model repo at ${HOST_REPO}, models: ${MODELS} ..." for m in ${EXTRACTORS} ${DECODERS} ${MODELS}; do mkdir -p ${HOST_REPO}/$m cp ${PROJECT_DIR}/model_repo_configs/${PRECISION}/$m/config.pbtxt ${HOST_REPO}/$m/ if [ -d "${PROJECT_DIR}/model_repo/${PRECISION}/$m/1" ]; then echo "Creating symlink ls -sf /model_repo/${PRECISION}/$m/1 ${HOST_REPO}/$m" ln -sf /model_repo/${PRECISION}/$m/1 ${HOST_REPO}/$m else mkdir -p ${HOST_REPO}/$m/1 fi if [ -f /.dockerenv ]; then # inside docker chmod -R a+w ${HOST_REPO}/$m fi done
PyTorch/Translation/Transformer/scripts
scripts
build_sym_alignment
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # """ Use this script in order to build symmetric alignments for your translation dataset. This script depends on fast_align and mosesdecoder tools. You will need to build those before running the script. fast_align: github: http://github.com/clab/fast_align instructions: follow the instructions in README.md mosesdecoder: github: http://github.com/moses-smt/mosesdecoder instructions: http://www.statmt.org/moses/?n=Development.GetStarted The script produces the following files under --output_dir: text.joined - concatenation of lines from the source_file and the target_file. align.forward - forward pass of fast_align. align.backward - backward pass of fast_align. aligned.sym_heuristic - symmetrized alignment. """ import argparse import os from itertools import zip_longest def main(): parser = argparse.ArgumentParser(description='symmetric alignment builer') parser.add_argument('--fast_align_dir', help='path to fast_align build directory') parser.add_argument('--mosesdecoder_dir', help='path to mosesdecoder root directory') parser.add_argument('--sym_heuristic', help='heuristic to use for symmetrization', default='grow-diag-final-and') parser.add_argument('--source_file', help='path to a file with sentences ' 'in the source language') parser.add_argument('--target_file', help='path to a file with sentences ' 'in the target language') parser.add_argument('--output_dir', help='output directory') args = parser.parse_args() fast_align_bin = os.path.join(args.fast_align_dir, 'fast_align') symal_bin = os.path.join(args.mosesdecoder_dir, 'bin', 'symal') sym_fast_align_bin = os.path.join( args.mosesdecoder_dir, 'scripts', 'ems', 'support', 'symmetrize-fast-align.perl') # create joined file joined_file = os.path.join(args.output_dir, 'text.joined') with open(args.source_file, 'r') as src, open(args.target_file, 'r') as tgt: with open(joined_file, 'w') as joined: for s, t in zip_longest(src, tgt): print('{} ||| {}'.format(s.strip(), t.strip()), file=joined) bwd_align_file = os.path.join(args.output_dir, 'align.backward') # run forward alignment fwd_align_file = os.path.join(args.output_dir, 'align.forward') fwd_fast_align_cmd = '{FASTALIGN} -i {JOINED} -d -o -v > {FWD}'.format( FASTALIGN=fast_align_bin, JOINED=joined_file, FWD=fwd_align_file) assert os.system(fwd_fast_align_cmd) == 0 # run backward alignment bwd_align_file = os.path.join(args.output_dir, 'align.backward') bwd_fast_align_cmd = '{FASTALIGN} -i {JOINED} -d -o -v -r > {BWD}'.format( FASTALIGN=fast_align_bin, JOINED=joined_file, BWD=bwd_align_file) assert os.system(bwd_fast_align_cmd) == 0 # run symmetrization sym_out_file = os.path.join(args.output_dir, 'aligned') sym_cmd = '{SYMFASTALIGN} {FWD} {BWD} {SRC} {TGT} {OUT} {HEURISTIC} {SYMAL}'.format( SYMFASTALIGN=sym_fast_align_bin, FWD=fwd_align_file, BWD=bwd_align_file, SRC=args.source_file, TGT=args.target_file, OUT=sym_out_file, HEURISTIC=args.sym_heuristic, SYMAL=symal_bin ) assert os.system(sym_cmd) == 0 if __name__ == '__main__': main()
CUDA-Optimized/FastSpeech/tacotron2
tacotron2
audio_processing
# BSD 3-Clause License # Copyright (c) 2018-2020, NVIDIA Corporation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """https://github.com/NVIDIA/tacotron2""" import torch import numpy as np from scipy.signal import get_window import librosa.util as librosa_util def window_sumsquare(window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None): """ # from librosa 0.6 Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function """ if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=norm)**2 win_sq = librosa_util.pad_center(win_sq, n_fft) # Fill the envelope for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft) ] += win_sq[:max(0, min(n_fft, n - sample))] return x def griffin_lim(magnitudes, stft_fn, n_iters=30): """ PARAMS ------ magnitudes: spectrogram magnitudes stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods """ angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) angles = angles.astype(np.float32) angles = torch.autograd.Variable(torch.from_numpy(angles)) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) for i in range(n_iters): _, angles = stft_fn.transform(signal) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) return signal def dynamic_range_compression(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C
DGLPyTorch/DrugDiscovery/SE3Transformer
SE3Transformer
.gitignore
data/ .DS_Store *wandb/ *.pt *.swp # added by FAFU .idea/ cache/ downloaded/ *.lprof # Byte-compiled / optimized / DLL files __pycache__/ *.py[cod] *$py.class # C extensions *.so # Distribution / packaging .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ *.egg-info/ .installed.cfg *.egg MANIFEST # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec # Installer logs pip-log.txt pip-delete-this-directory.txt # Unit test / coverage reports htmlcov/ .tox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover .hypothesis/ .pytest_cache/ # Translations *.mo *.pot # Django stuff: *.log local_settings.py db.sqlite3 # Flask stuff: instance/ .webassets-cache # Scrapy stuff: .scrapy # Sphinx documentation docs/_build/ # PyBuilder target/ # Jupyter Notebook .ipynb_checkpoints # pyenv .python-version # celery beat schedule file celerybeat-schedule # SageMath parsed files *.sage.py # Environments .env .venv env/ venv/ ENV/ env.bak/ venv.bak/ # Spyder project settings .spyderproject .spyproject # Rope project settings .ropeproject # mkdocs documentation /site # mypy .mypy_cache/ **/benchmark **/results *.pkl *.log
TensorFlow2/Classification/ConvNets/efficientnet_v1/B0/training/AMP
AMP
convergence_8xA100-80G
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. horovodrun -np 8 bash ./scripts/bind.sh --cpu=exclusive --ib=single -- python3 main.py \ --cfg config/efficientnet_v1/b0_cfg.py \ --mode train_and_eval \ --use_amp \ --use_xla \ --model_dir ./output \ --data_dir /data \ --log_steps 100 \ --max_epochs 500 \ --save_checkpoint_freq 5 \ --train_batch_size 1024 \ --eval_batch_size 1024 \ --augmenter_name autoaugment \ --lr_decay cosine \ --memory_limit 81000 \ --defer_img_mixing \ --moving_average_decay 0.9999 \ --lr_init 0.005
PyTorch/SpeechSynthesis/Tacotron2
Tacotron2
config
{ "audio": { "max-wav-value": 32768.0, "sampling-rate": 22050, "filter-length": 1024, "hop-length": 256, "win-length": 1024, "mel-fmin": 0.0, "mel-fmax": 7000.0 } }
TensorFlow/Detection/SSD/models/research/slim/datasets
datasets
preprocess_imagenet_validation_data
#!/usr/bin/python # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Process the ImageNet Challenge bounding boxes for TensorFlow model training. Associate the ImageNet 2012 Challenge validation data set with labels. The raw ImageNet validation data set is expected to reside in JPEG files located in the following directory structure. data_dir/ILSVRC2012_val_00000001.JPEG data_dir/ILSVRC2012_val_00000002.JPEG ... data_dir/ILSVRC2012_val_00050000.JPEG This script moves the files into a directory structure like such: data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG ... where 'n01440764' is the unique synset label associated with these images. This directory reorganization requires a mapping from validation image number (i.e. suffix of the original file) to the associated label. This is provided in the ImageNet development kit via a Matlab file. In order to make life easier and divorce ourselves from Matlab, we instead supply a custom text file that provides this mapping for us. Sample usage: ./preprocess_imagenet_validation_data.py ILSVRC2012_img_val \ imagenet_2012_validation_synset_labels.txt """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from six.moves import xrange # pylint: disable=redefined-builtin if __name__ == '__main__': if len(sys.argv) < 3: print('Invalid usage\n' 'usage: preprocess_imagenet_validation_data.py ' '<validation data dir> <validation labels file>') sys.exit(-1) data_dir = sys.argv[1] validation_labels_file = sys.argv[2] # Read in the 50000 synsets associated with the validation data set. labels = [l.strip() for l in open(validation_labels_file).readlines()] unique_labels = set(labels) # Make all sub-directories in the validation data dir. for label in unique_labels: labeled_data_dir = os.path.join(data_dir, label) os.makedirs(labeled_data_dir) # Move all of the image to the appropriate sub-directory. for i in xrange(len(labels)): basename = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1) original_filename = os.path.join(data_dir, basename) if not os.path.exists(original_filename): print('Failed to find: ', original_filename) sys.exit(-1) new_filename = os.path.join(data_dir, labels[i], basename) os.rename(original_filename, new_filename)
TensorFlow/Segmentation/UNet_Industrial/utils
utils
__init__
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== from utils import hooks from utils import cmdline_helper from utils import hvd_utils from utils import image_processing from utils import logging from utils import losses from utils import metrics
Tools/PyTorch/TimeSeriesPredictionPlatform/conf/trainer/callbacks/callbacks
callbacks
throughput_benchmark
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _target_: callbacks.ctl_callbacks.ThroughputBenchmark warmup_epochs: 0
PyTorch/LanguageModeling/BERT/data
data
Downloader
# Copyright (c) 2019-2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from GooglePretrainedWeightDownloader import GooglePretrainedWeightDownloader from NVIDIAPretrainedWeightDownloader import NVIDIAPretrainedWeightDownloader from WikiDownloader import WikiDownloader from BooksDownloader import BooksDownloader from GLUEDownloader import GLUEDownloader from SquadDownloader import SquadDownloader class Downloader: def __init__(self, dataset_name, save_path): self.dataset_name = dataset_name self.save_path = save_path def download(self): if self.dataset_name == 'bookscorpus': self.download_bookscorpus() elif self.dataset_name == 'wikicorpus_en': self.download_wikicorpus('en') elif self.dataset_name == 'wikicorpus_zh': self.download_wikicorpus('zh') elif self.dataset_name == 'google_pretrained_weights': self.download_google_pretrained_weights() elif self.dataset_name == 'nvidia_pretrained_weights': self.download_nvidia_pretrained_weights() elif self.dataset_name in {'mrpc', 'sst-2'}: self.download_glue(self.dataset_name) elif self.dataset_name == 'squad': self.download_squad() elif self.dataset_name == 'all': self.download_bookscorpus() self.download_wikicorpus('en') self.download_wikicorpus('zh') self.download_google_pretrained_weights() self.download_nvidia_pretrained_weights() self.download_glue('mrpc') self.download_glue('sst-2') self.download_squad() else: print(self.dataset_name) assert False, 'Unknown dataset_name provided to downloader' def download_bookscorpus(self): downloader = BooksDownloader(self.save_path) downloader.download() def download_wikicorpus(self, language): downloader = WikiDownloader(language, self.save_path) downloader.download() def download_google_pretrained_weights(self): downloader = GooglePretrainedWeightDownloader(self.save_path) downloader.download() def download_nvidia_pretrained_weights(self): downloader = NVIDIAPretrainedWeightDownloader(self.save_path) downloader.download() def download_glue(self, task_name): downloader = GLUEDownloader(self.save_path) downloader.download(task_name) def download_squad(self): downloader = SquadDownloader(self.save_path) downloader.download()