text
stringlengths
105
4.44k
label
int64
0
9
label_text
stringclasses
10 values
Many carboxylic acids are produced industrially on a large scale. They are also frequently found in nature. Esters of fatty acids are the main components of lipids and polyamides of aminocarboxylic acids are the main components of proteins. Carboxylic acids are used in the production of polymers, pharmaceuticals, solvents, and food additives. Industrially important carboxylic acids include acetic acid (component of vinegar, precursor to solvents and coatings), acrylic and methacrylic acids (precursors to polymers, adhesives), adipic acid (polymers), citric acid (a flavor and preservative in food and beverages), ethylenediaminetetraacetic acid (chelating agent), fatty acids (coatings), maleic acid (polymers), propionic acid (food preservative), terephthalic acid (polymers). Important carboxylate salts are soaps.
0
Organic Chemistry
General Control Non-Derepressible 5 (Gcn5) –related N-Acetyltransferases (GNATs) is one of the many studied families with acetylation abilities. This superfamily includes the factors Gcn5 which is included in the SAGA, SLIK, STAGA, ADA, and A2 complexes, Gcn5L, p300/CREB-binding protein associated factor (PCAF), Elp3, HPA2 and HAT1. Major features of the GNAT family include HAT domains approximately 160 residues in length and a conserved bromodomain that has been found to be an acetyl-lysine targeting motif. Gcn5 has been shown to acetylate substrates when it is part of a complex. Recombinant Gcn5 has been found to be involved in the acetylation of the H3 histones of the nucleosome. To a lesser extent, it has been found to also acetylate H2B and H4 histones when involved with other complexes. PCAF has the ability to act as a HAT protein and acetylate histones, it can acetylate non-histone proteins related to transcription, as well as act as a coactivator in many processes including myogenesis, nuclear-receptor-mediated activation and growth-factor-signaled activation. Elp3 has the ability to acetylate all histone subunits and also shows involvement in the RNA polymerase II holoenzyme.
0
Organic Chemistry
Liebig and Wöhler observed in 1832 in an investigation of benzoin resin (benzoic acid) that the compounds almond oil (benzaldehyde), "Benzoestoff" (benzyl alcohol), benzoyl chloride and benzamide all share a common CHO fragment and that these compounds could all be synthesized from almond oil by simple substitutions. The CHO fragment was considered a "radical of benzoic acid" and called benzoyl. Organic radicals were thus placed on the same level as the inorganic elements. Just like the inorganic elements (simple radicals) the organic radicals (compound radicals) were indivisible. The theory was developed thanks to improvements in elemental analysis by von Liebig. Laurent contributed to the theory by reporting the isolation of benzoyl itself in 1835, however the isolated chemical is today recognised at its dimer dibenzoyl. Raffaele Piria reported the salicyl radical as the base for salicylic acid. Liebig published a definition of a radical in 1838 Berzelius and Robert Bunsen investigated the radical cacodyl (reaction of cacodyl chloride with zinc) around 1841, now also known as a dimer species (CH)As—As(CH). Edward Frankland and Hermann Kolbe contributed to the radical theory by investigating the ethyl and the methyl radicals. Frankland first reported diethylzinc in 1848. Frankland and Kolbe together investigated the reaction of ethyl cyanide and zinc in 1849 reporting the isolation of not the ethyl radical but the methyl radical (CH) which in fact was ethane. Kolbe also investigated the electrolysis of potassium salts of some fatty acids. Acetic acid was regarded as the combination of the methyl radical and oxalic acid and electrolysis of the salt yielded as gas again ethane misidentified as the liberated methyl radical. In 1850 Frankland investigated ethyl radicals. In the course of this work butane formed by reaction of ethyl iodide and zinc was mistakenly identified as the ethyl radical.
0
Organic Chemistry
Ethyl diazoacetate (N=N=CHC(O)OCH) is a diazo compound and a reagent in organic chemistry. It was discovered by Theodor Curtius in 1883. The compound can be prepared by reaction of the ethyl ester of glycine with sodium nitrite and sodium acetate in water. As a carbene precursor, it is used in the cyclopropanation of alkenes. Although the compound is hazardous, it is used in chemical industry as a precursor to trovafloxacin. Procedures for safe industrial handling have been published. Another location where EDA was used is in the production of BI-4752, a recently invented 5-HT agonist that is even superior to lorcaserin.
0
Organic Chemistry
In 1978, David J. Galas and Albert Schmitz developed the DNA footprinting technique to study the binding specificity of the lac repressor protein. It was originally a modification of the Maxam-Gilbert chemical sequencing technique.
1
Biochemistry
In the United States, an environmental site assessment is a report prepared for a real estate holding that identifies potential or existing environmental contamination liabilities. The analysis, often called an ESA, typically addresses both the underlying land as well as physical improvements to the property. A proportion of contaminated sites are "brownfield sites." In severe cases, brownfield sites may be added to the National Priorities List where they will be subject to the U.S. Environmental Protection Agency's Superfund program. The actual sampling of soil, air, groundwater and/or building materials is typically not conducted during a Phase I ESA. The Phase I ESA is generally considered the first step in the process of environmental due diligence. Standards for performing a Phase I site assessment have been promulgated by the US EPA and are based in part on ASTM in Standard E1527-13. If a site is considered contaminated, a Phase II environmental site assessment may be conducted, ASTM test E1903, a more detailed investigation involving chemical analysis for hazardous substances and/or petroleum hydrocarbons.
2
Environmental Chemistry
The Stokes-Einstein equation describes a frictional force on a sphere of diameter as where is the viscosity of the solution. Inserting this into 9 gives an estimate for as , where R is the gas constant, and is given in centipoise. For the following molecules, an estimate for is given:
7
Physical Chemistry
Silicon carbide was the first commercially important semiconductor material. A crystal radio "carborundum" (synthetic silicon carbide) detector diode was patented by Henry Harrison Chase Dunwoody in 1906. It found much early use in shipboard receivers.
8
Metallurgy
Lipid microdomains are formed when lipids undergo lateral phase separations yielding stable coexisting lamellar domains. These phase separations can be induced by changes in temperature, pressure, ionic strength or by the addition of divalent cations or proteins. The question of whether such lipid microdomains observed in model lipid systems also exist in biomembranes had motivated considerable research efforts. Lipid domains are not readily isolated and examined as unique species, in contrast to the examples of lateral heterogeneity. One can disrupt the membrane and demonstrate a heterogeneous range of composition in the population of the resulting vesicles or fragments. Electron microscopy can also be used to demonstrate lateral inhomogeneities in biomembranes. Often, lateral heterogeneity has been inferred from biophysical techniques where the observed signal indicates multiple populations rather than the expected homogeneous population. An example of this is the measurement of the diffusion coefficient of a fluorescent lipid analog in soybean protoplasts. Membrane microheterogeneity is sometimes inferred from the behavior of enzymes, where the enzymatic activity does not appear to be correlated with the average lipid physical state exhibited by the bulk of the membrane. Often, the methods suggest regions with different lipid fluidity, as would be expected of coexisting gel and liquid crystalline phases within the biomembrane. This is also the conclusion of a series of studies where differential effects of perturbation caused by cis and trans fatty acids are interpreted in terms of preferential partitioning of the two liquid crystalline and gel-like domains.
1
Biochemistry
A primary antibody can be very useful for the detection of biomarkers for diseases such as cancer, diabetes, Parkinson’s and Alzheimer’s disease and they are used for the study of absorption, distribution, metabolism, and excretion (ADME) and multi-drug resistance (MDR) of therapeutic agents.
1
Biochemistry
Although anthocyanins have been shown to have antioxidant properties in vitro, there is no evidence for antioxidant effects in humans after consuming foods rich in anthocyanins. Unlike controlled test-tube conditions, the fate of anthocyanins in vivo shows they are poorly conserved (less than 5%), with most of what is absorbed existing as chemically modified metabolites that are excreted rapidly. The increase in antioxidant capacity of blood seen after the consumption of anthocyanin-rich foods may not be caused directly by the anthocyanins in the food, but instead by increased uric acid levels derived from metabolizing flavonoids (anthocyanin parent compounds) in the food. It is possible that metabolites of ingested anthocyanins are reabsorbed in the gastrointestinal tract from where they may enter the blood for systemic distribution and have effects as smaller molecules. In a 2010 review of scientific evidence concerning the possible health benefits of eating foods claimed to have "antioxidant properties" due to anthocyanins, the European Food Safety Authority concluded that 1) there was no basis for a beneficial antioxidant effect from dietary anthocyanins in humans, 2) there was no evidence of a cause-and-effect relationship between the consumption of anthocyanin-rich foods and protection of DNA, proteins, and lipids from oxidative damage, and 3) there was no evidence generally for consumption of anthocyanin-rich foods having any "antioxidant", "anti-cancer", "anti-aging", or "healthy aging" effects.
3
Analytical Chemistry
Creosote is a category of carbonaceous chemicals formed by the distillation of various tars and pyrolysis of plant-derived material, such as wood, or fossil fuel. They are typically used as preservatives or antiseptics. Some creosote types were used historically as a treatment for components of seagoing and outdoor wood structures to prevent rot (e.g., bridgework and railroad ties, see image). Samples may be found commonly inside chimney flues, where the coal or wood burns under variable conditions, producing soot and tarry smoke. Creosotes are the principal chemicals responsible for the stability, scent, and flavor characteristic of smoked meat; the name is derived . The two main kinds recognized in industry are coal-tar creosote and wood-tar creosote. The coal-tar variety, having stronger and more toxic properties, has chiefly been used as a preservative for wood; coal-tar creosote was also formerly used as an escharotic, to burn malignant skin tissue, and in dentistry, to prevent necrosis, before its carcinogenic properties became known. The wood-tar variety has been used for meat preservation, ship treatment, and such medical purposes as an anaesthetic, antiseptic, astringent, expectorant, and laxative, though these have mostly been replaced by modern formulations. Varieties of creosote have also been made from both oil shale and petroleum, and are known as oil-tar creosote when derived from oil tar, and as water-gas-tar creosote when derived from the tar of water gas. Creosote also has been made from pre-coal formations such as lignite, yielding lignite-tar creosote, and peat, yielding peat-tar creosote.
7
Physical Chemistry
Examples of tetrazol-5-ylidenes based on tetrazole have been prepared by Araki. The N1 and N3 positions are substituted with alkyl or aryl groups. Transition metal complexes of these carbenes have been generated in situ. Mesoionic carbenes based on isoxazole and thiazole have been reported by Albrecht and Bertrand respectively. The isoxazol-4-ylidenes are trisubstituted in the N2, C3, and C5 positions with alkyl groups. The thiazol-5-ylidenes are trisubstituted in the C2, N3, and C4 positions with aryl groups. Transition metal complexes of both types of carbenes have been generated in situ. Bertrand also reported a 1,3-dithiol-5-ylidene based on 1,3-dithiolane, but it can only be isolated as a transition metal complex.
0
Organic Chemistry
The HEC-Meeting dates back to an initiative in the year 1998 of Manfred Weiss and Rolf Hilgenfeld, who were researchers at the Institute for Molecular Biotechnology (IMB) in Jena and intended to establish a meeting format similar to the [http://regiomeeting.eu/ Rhine-Knee Regional Meeting on Structural Biology] in the New Länder. Both conferences are regional meetings of German scientists together with scientific research groups of the neighbouring countries. Nine groups from Germany (the new states and West-Berlin), Poland and Czech Republic participated in the first HEC-Meeting from 8 to 10 October 1998. Later also groups from Austria and the Old Federal States participated. Due to the Covid-19 pandemic, no meeting was organized in 2020 and HEC-23 took place as an online meeting. Former HEC-Meetings:
1
Biochemistry
Applying standard diffraction techniques to crystal powders or polycrystals is tantamount to collapsing the 3D reciprocal space, as obtained via single-crystal diffraction, onto a 1D axis. The resulting partial-to-total overlap of symmetry-independent reflections renders the structure determination process more difficult, if not impossible. Powder diffraction data can be plotted as diffracted intensity (I) versus reciprocal lattice spacing (1/d). Reflection positions and intensities of known crystal phases, mostly from X-ray diffraction data, are stored, as d-I data pairs, in the Powder Diffraction File (PDF) database. The list of d-I data pairs is highly characteristic of a crystal phase and, thus, suitable for the identification, also called ‘fingerprinting’, of crystal phases. Search-match algorithms compare selected test reflections of an unknown crystal phase with entries in the database. Intensity-driven algorithms utilize the three most intense lines (so-called ‘Hanawalt search’), while d-spacing-driven algorithms are based on the eight to ten largest d-spacings (so-called ‘Fink search’). X-ray powder diffraction fingerprinting has become the standard tool for the identification of single or multiple crystal phases and is widely used in such fields as metallurgy, mineralogy, forensic science, archeology, condensed matter physics, and the biological and pharmaceutical sciences.
7
Physical Chemistry
The S-matrix is defined to be the inner product of the ath and bth Heisenberg picture asymptotic states. One may obtain a formula relating the S-matrix to the potential V using the above contour integral strategy, but this time switching the roles of and . As a result, the contour now does pick up the energy pole. This can be related to the s if one uses the S-matrix to swap the two s. Identifying the coefficients of the s on both sides of the equation one finds the desired formula relating S' to the potential In the Born approximation, corresponding to first order perturbation theory, one replaces this last with the corresponding eigenfunction of the free Hamiltonian , yielding which expresses the S-matrix entirely in terms of V and free Hamiltonian eigenfunctions. These formulas may in turn be used to calculate the reaction rate of the process , which is equal to
7
Physical Chemistry
The kinetic process of destabilization can be rather long – up to several months, or even years for some products. Often the formulator must accelerate this process in order to test products in a reasonable time during product design. Thermal methods are the most commonly used – these consist of increasing the emulsion temperature to accelerate destabilization (if below critical temperatures for phase inversion or chemical degradation). Temperature affects not only the viscosity but also the interfacial tension in the case of non-ionic surfactants or, on a broader scope, interactions between droplets within the system. Storing an emulsion at high temperatures enables the simulation of realistic conditions for a product (e.g., a tube of sunscreen emulsion in a car in the summer heat), but also accelerates destabilization processes up to 200 times. Mechanical methods of acceleration, including vibration, centrifugation, and agitation, can also be used. These methods are almost always empirical, without a sound scientific basis.
7
Physical Chemistry
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.
7
Physical Chemistry
Reflectance difference spectroscopy (RDS) is a spectroscopic technique which measures the difference in reflectance of two beams of light that are shone in normal incident on a surface with different linear polarizations. It is also known as reflectance anisotropy spectroscopy (RAS). It is calculated as: and are the reflectance in two different polarizations. The method was introduced in 1985 for the study optical properties of the cubic semiconductors silicon and germanium. Due to its high surface sensitivity and independence of ultra-high vacuum, its use has been expanded to in situ monitoring of epitaxial growth or the interaction of surfaces with adsorbates. To assign specific features in the signal to their origin in morphology and electronic structure, theoretical modelling by density functional theory is required.
3
Analytical Chemistry
Hyperspectral surveillance is the implementation of hyperspectral scanning technology for surveillance purposes. Hyperspectral imaging is particularly useful in military surveillance because of countermeasures that military entities now take to avoid airborne surveillance. The idea that drives hyperspectral surveillance is that hyperspectral scanning draws information from such a large portion of the light spectrum that any given object should have a unique spectral signature in at least a few of the many bands that are scanned. Hyperspectral imaging has also shown potential to be used in facial recognition purposes. Facial recognition algorithms using hyperspectral imaging have been shown to perform better than algorithms using traditional imaging. Traditionally, commercially available thermal infrared hyperspectral imaging systems have needed liquid nitrogen or helium cooling, which has made them impractical for most surveillance applications. In 2010, Specim introduced a thermal infrared hyperspectral camera that can be used for outdoor surveillance and UAV applications without an external light source such as the sun or the moon.
7
Physical Chemistry
In the BGIT, we assumed that a CH always makes a constant contribution to ΔH° values for cyclic system. H° values for a number of structures and represents an average value that gives the best agreement with the range of experimental data. In contrast, the strain energy of cyclobutane is specific to the parent compound, with their new corrections, it is now possible to predict ΔH° values for strained ring system by first adding up all the basic group increments and then adding appropriate ring-strain correction values. The same as ring system, corrections have been made to other situations such as gauche alkane with a 0.8 kcal/mol correction and cis- alkene with a 1.0 kcal/mol correction. Also, the BGIT fails when conjugation and interactions between functional groups exist, such as intermolecular and intramolecular hydrogen bonding, which limits its accuracy and usage in some cases.
7
Physical Chemistry
Launched in the 1940s by the Shirley Institute, the Shirley Togmeter is the standard apparatus for rating thermal resistance of textiles, commonly known as the Tog Test. This apparatus, described in BS 4745:2005, measures a sample of textile, either between two metal plates (for underclothing) or between a metal plate and free air (for outer layers). Each industry has its own specifications and methods for measuring thermal properties.
7
Physical Chemistry
Crude oil and refined fuel spills from tanker ship accidents have damaged natural ecosystems and human livelihoods in Alaska, the Gulf of Mexico, the Galápagos Islands, France and many other places. The quantity of oil spilled during accidents has ranged from a few hundred tons to several hundred thousand tons (e.g., Deepwater Horizon oil spill, SS Atlantic Empress, Amoco Cadiz). Smaller spills have already proven to have a great impact on ecosystems, such as the Exxon Valdez oil spill. Oil spills at sea are generally much more damaging than those on land, since they can spread for hundreds of nautical miles in a thin oil slick which can cover beaches with a thin coating of oil. This can kill sea birds, mammals, shellfish and other organisms it coats. Oil spills on land are more readily containable if a makeshift earth dam can be rapidly bulldozed around the spill site before most of the oil escapes, and land animals can avoid the oil more easily. Control of oil spills is difficult, requires ad hoc methods, and often a large amount of manpower. The dropping of bombs and incendiary devices from aircraft on the wreck produced poor results; modern techniques would include pumping the oil from the wreck, like in the Prestige oil spill or the Erika oil spill. Though crude oil is predominantly composed of various hydrocarbons, certain nitrogen heterocyclic compounds, such as pyridine, picoline, and quinoline are reported as contaminants associated with crude oil, as well as facilities processing oil shale or coal, and have also been found at legacy wood treatment sites. These compounds have a very high water solubility, and thus tend to dissolve and move with water. Certain naturally occurring bacteria, such as Micrococcus, Arthrobacter, and Rhodococcus have been shown to degrade these contaminants. Because petroleum is a naturally occurring substance, its presence in the environment need not be the result of human causes such as accidents and routine activities (seismic exploration, drilling, extraction, refining and combustion). Phenomena such as seeps and tar pits are examples of areas that petroleum affects without man's involvement.
7
Physical Chemistry
In chromatography, the retardation factor, R, is the fraction of the sample in the mobile phase at equilibrium, defined as:
3
Analytical Chemistry
The high sensitivity of DESI in the lipid range makes it a powerful technique for the detection and mapping of lipids abundances within tissue specimens. Recent developments in MALDI methods have enabled direct detection of lipids in-situ. Abundant lipid-related ions are produced from the direct analysis of thin tissue slices when sequential spectra are acquired across a tissue surface that has been coated with a MALDI matrix. Collisional activation of the molecular ions can be used to determine the lipid family and often structurally define the molecular species. These techniques enable detection of phospholipids, sphingolipids and glycerolipids in tissues such as heart, kidney and brain. Furthermore, distribution of many different lipid molecular species often define anatomical regions within these tissues.
1
Biochemistry
Historically, the mechanisms of carboxypeptidases and endoprotease have been much more well-studied and understood by researchers (Ref #6 Lipscomb 1990). Work within the past two decades has provided vital knowledge regarding the mechanisms of aminopeptidases. The mechanism of bovine lens LAP and PepA have been elucidated (Ref 1 and 2), however, the exact mechanism of tomato LAP-A is unknown at this time. A search of current literature does not indicate that new research is underway to determine the exact mechanism of LAP-A. Based on the biochemical similarities of the LAPs between kingdoms, the mechanism of LAP-A may be similar to bovine lens LAP and PepA.
1
Biochemistry
Additional materials are added to the iron ore (pellet feed) to meet the requirements of the final pellets. This is done by placing the mixture in the pelletizer, which can hold different types of ores and additives, and mixing to adjust the chemical composition and the metallurgic properties of the pellets. In general, the following stages are included in this period of processing: concentration / separation, homogenization of the substance ratios, milling, classification, increasing thickness, homogenization of the pulp and filtering.
8
Metallurgy
DNA is a relatively rigid polymer, typically modelled as a worm-like chain. It has three significant degrees of freedom; bending, twisting, and compression, each of which cause certain limits on what is possible with DNA within a cell. Twisting-torsional stiffness is important for the circularisation of DNA and the orientation of DNA bound proteins relative to each other and bending-axial stiffness is important for DNA wrapping and circularisation and protein interactions. Compression-extension is relatively unimportant in the absence of high tension.
4
Stereochemistry
Following his completion of his PhD, Schoell began working for the German Geological Survey focusing on hyper saline hydrothermal vents in the Red Sea. From 1984 to 2001, Schoell worked for Chevron Oil Field Research Company in La Habra. During this time, he published his most cited paper, "Biogenic methane formation in marine and freshwater environments: CO reduction vs. acetate fermentation—Isotope evidence". In this paper, Schoell et al. discussed how hydrogen and carbon isotope composition analysis can be used to identify different biogenic methane production pathways from its water and CO precursors.  This paper went on to win the 1995 AAPG Best Paper Award.  In addition to this, while working for Chevron in 1984 Schoell requested funding from Chevron to fund John Hayes of Indiana University to develop continuous-flow compound-specific isotope analysis. This development allowed Schoell to make a variety of discoveries including the ability of steranes and hopanes in the Lacustrine Green River Formation could be used as a proxy for water paleo-depths. During his time with Chevron, Schoell introduced Mudgas isotope analysis to Chevron and the natural gas industry, and worked in a variety of international locations including locations throughout the Americas, Southeast Asia and Africa as well as parts of Oceania. In 2001, Schoell went on to establish a natural gas consulting company, GasConsult International, Inc. of which he was the CEO and president of until 2015. GasConsult specializes in ZR-LNG (zero-refrigeration liquified natural gas), LH2 (liquid hydrogen) and OHL (optimized liquid hydrogen) technologies and offers clients opportunities to transition to these technologies, and is now under the direction of Bill Howe. In 2019, Schoell founded GasXpse which applies geochemical fundamentals to provide natural gas related consulting services and provide scientific advising for natural gas-related subjects. Further, Schoell has co-authored 76 publications in the field of geochemistry.
9
Geochemistry
Latent heat storage can be achieved through changes in the state of matter from liquid→solid, solid→liquid, solid→gas and liquid→gas. However, only solid→liquid and liquid→solid phase changes are practical for PCMs. Although liquid–gas transitions have a higher heat of transformation than solid–liquid transitions, liquid→gas phase changes are impractical for thermal storage because large volumes or high pressures are required to store the materials in their gas phase. Solid–solid phase changes are typically very slow and have a relatively low heat of transformation. Initially, solid–liquid PCMs behave like sensible heat storage (SHS) materials; their temperature rises as they absorb heat. Unlike conventional SHS materials, however, when PCMs reach their phase change temperature (their melting point) they absorb large amounts of heat at an almost constant temperature until all the material is melted. When the ambient temperature around a liquid material falls, the PCM solidifies, releasing its stored latent heat. A large number of PCMs are available in any required temperature range from −5 up to 190 °C. Within the human comfort range between 20 and 30 °C, some PCMs are very effective, storing over 200 kJ/kg of latent heat, as against a specific heat capacity of around one kJ/(kg*°C) for masonry. The storage density can therefore be 20 times greater than masonry per kg if an temperature swing of 10 °C is allowed. However, since the mass of the masonry is far higher than that of PCM this specific (per mass) heat capacity is somewhat offset. A masonry wall might have a mass of 200 kg/m, so to double the heat capacity one would require additional 10 kg/m of PCM.
7
Physical Chemistry
The Beer–Lambert law can be applied to the analysis of a mixture by spectrophotometry, without the need for extensive pre-processing of the sample. An example is the determination of bilirubin in blood plasma samples. The spectrum of pure bilirubin is known, so the molar attenuation coefficient is known. Measurements of decadic attenuation coefficient are made at one wavelength that is nearly unique for bilirubin and at a second wavelength in order to correct for possible interferences. The amount concentration is then given by For a more complicated example, consider a mixture in solution containing two species at amount concentrations and . The decadic attenuation coefficient at any wavelength is, given by Therefore, measurements at two wavelengths yields two equations in two unknowns and will suffice to determine the amount concentrations and as long as the molar attenuation coefficients of the two components, and are known at both wavelengths. This two system equation can be solved using Cramer's rule. In practice it is better to use linear least squares to determine the two amount concentrations from measurements made at more than two wavelengths. Mixtures containing more than two components can be analyzed in the same way, using a minimum of wavelengths for a mixture containing components. The law is used widely in infra-red spectroscopy and near-infrared spectroscopy for analysis of polymer degradation and oxidation (also in biological tissue) as well as to measure the concentration of various compounds in different food samples. The carbonyl group attenuation at about 6 micrometres can be detected quite easily, and degree of oxidation of the polymer calculated.
7
Physical Chemistry
At ambient conditions calcium disilicide exists in two polymorphs, hR9 and hR18; in the hR18 structure the hR9 unit cell is stacked twice along the c axis. Upon heating to 1000 °C at a pressure of ca. 40 kBar, calcium disilicide converts to a (semi-stable) tetragonal phase. The tetragonal phase is a superconductor with a transition temperature of 1.37 K to 1.58 K. Although there is no observable superconducting transition temperature for the trigonal/rhombohedral (i.e. hR9 and hR18 unit cells) at ambient pressure, under high pressure (>12 GPa/120 kbar) this phase has been observed exhibit superconducting transition. When the trigonal phase is placed under pressures exceeding 16 GPa, there is a phase transition to an AlB-like phase.
8
Metallurgy
A repeat polymorphism of cytosines and adenines (CA) was found to be near BCYRN1 and was used as a reference for mapping the gene. Linkage mapping and radiation hybrid mapping localized the BCYRN1 gene to chromosome 2p16. As a long non-coding cytoplasmic RNA, BC200 RNA is a part of the largest group of non-coding transcripts in the human genome, which is more prevalent than protein coding genes. The 5' region (left arm) of monomeric Alu short interspersed repetitive elements (SINEs) allows for BC200 RNA transposition and has been evolutionarily conserved in other primates. Of this group of SINEs, BC200 is one of few that are transcriptionally active. In humans, it is found in neuropil areas which are composed of predominantly unmyelinated dendrites, axons, and glial cells. Similarly, the functional analog of BC200 RNA in rodents (BC1 RNA) is expressed largely in somatodendritic domains of the nervous system, making it an ideal model for experimentation. One large difference is in origin; BC200 emerged from retrotransposed Alu domain, while BC1 originated from retrotransposed tRNA. Although they evolved separately, both are not usually expressed in non-neural somatic cells, with the exception of tumors.
1
Biochemistry
Spectral directional transmittance in frequency and spectral directional transmittance in wavelength of a surface, denoted T and T respectively, are defined as where *L is the spectral radiance in frequency transmitted by that surface; *L is the spectral radiance received by that surface; *L is the spectral radiance in wavelength transmitted by that surface; *L is the spectral radiance in wavelength received by that surface.
7
Physical Chemistry
Quark–gluon plasma (QGP or quark soup) is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power () and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP. In the Big Bang theory, quark–gluon plasma filled the entire Universe before matter as we know it was created. Theories predicting the existence of quark–gluon plasma were developed in the late 1970s and early 1980s. Discussions around heavy ion experimentation followed suit and the first experiment proposals were put forward at CERN and BNL in the following years. Quark–gluon plasma was detected for the first time in the laboratory at CERN in the year 2000.
7
Physical Chemistry
Alexander Lyman Holley contributed significantly to the success of Bessemer steel in the United States. His A Treatise on Ordnance and Armor is an important work on contemporary weapons manufacturing and steel-making practices. In 1862, he visited Bessemers Sheffield works, and became interested in licensing the process for use in the US. Upon returning to the US, Holley met with two iron producers from Troy, New York, John F. Winslow and John Augustus Griswold, who asked him to return to the United Kingdom and negotiate with the Bank of England on their behalf. Holley secured a license for Griswold and Winslow to use Bessemers patented processes and returned to the United States in late 1863. The trio began setting up a mill in Troy, New York in 1865. The factory contained a number of Holleys innovations that greatly improved productivity over Bessemers factory in Sheffield, and the owners gave a successful public exhibition in 1867. The Troy factory attracted the attention of the Pennsylvania Railroad, which wanted to use the new process to manufacture steel rail. It funded Holley's second mill as part of its Pennsylvania Steel subsidiary. Between 1866 and 1877, the partners were able to license a total of 11 Bessemer steel mills. One of the investors they attracted was Andrew Carnegie, who saw great promise in the new steel technology after a visit to Bessemer in 1872, and saw it as a useful adjunct to his existing businesses, the Keystone Bridge Company and the Union Iron Works. Holley built the new steel mill for Carnegie, and continued to improve and refine the process. The new mill, known as the Edgar Thomson Steel Works, opened in 1875, and started the growth of the United States as a major world steel producer. Using the Bessemer process, Carnegie Steel was able to reduce the costs of steel railroad rails from $100 per ton to $50 per ton between 1873 and 1875. The price of steel continued to fall until Carnegie was selling rails for $18 per ton by the 1890s. Prior to the opening of Carnegie's Thomson Works, steel output in the United States totaled around 157,000 tons per year. By 1910, American companies were producing 26 million tons of steel annually. William Walker Scranton, manager and owner of the Lackawanna Iron & Coal Company in Scranton, Pennsylvania, had also investigated the process in Europe. He built a mill in 1876 using the Bessemer process for steel rails and quadrupled his production. Bessemer steel was used in the United States primarily for railroad rails. During the construction of the Brooklyn Bridge, a major dispute arose over whether crucible steel should be used instead of the cheaper Bessemer steel. In 1877, Abram Hewitt wrote a letter urging against the use of Bessemer steel in the construction of the Brooklyn Bridge. Bids had been submitted for both crucible steel and Bessemer steel; John A. Roeblings Sons submitted the lowest bid for Bessemer steel, but at Hewitts direction, the contract was awarded to J. Lloyd Haigh Co.
8
Metallurgy
Her awards and honours include: * 2003 National Science Foundation CAREER Award * 2004 University of Delaware Francis Alison Young Scholar Award * 2010 University of Minnesota Etter Memorial Lectureship in Chemistry * 2012 University of Delaware Trabant Award for Women's Equity * 2014 University of Southern Mississippi Bayer Distinguished Lectureship * 2014 Elected a fellow of the American Chemical Society (ACS) * 2014 Elected a fellow of the American Institute for Medical and Biological Engineering (AIMBE) * 2015 University of Southern Mississippi Covestro Distinguished Lectureship * 2019 Fulbright Program Scholar * 2019 Elected a fellow of the National Academy of Inventors
6
Supramolecular Chemistry
Organotantalum chemistry is the chemistry of chemical compounds containing a carbon-to-tantalum chemical bond. A wide variety of compound have been reported, initially with cyclopentadienyl and CO ligands. Oxidation states vary from Ta(V) to Ta(-I).
0
Organic Chemistry
Within the field of microbial ecology, oligonucleotide probes are used in order to determine the presence of microbial species, genera, or microorganisms classified on a more broad level, such as bacteria, archaea, and eukaryotes via fluorescence in situ hybridization (FISH). rRNA probes have enabled scientists to visualize microorganisms, yet to be cultured in laboratory settings, by retrieval of rRNA sequences directly from the environment. Examples of these types of microorganisms include: *Nevskia ramosa: N. ramosa is a neuston bacterium that forms typical, dichotomically-branching rosettes on the surface of shallow freshwater habitats. *Achromatium oxaliferum: This huge bacterium (cell length up to >100 µm, diameter up to 50 µm) contains sulfur globules and massive calcite inclusions and inhabits the upper layers of freshwater sediments. It is visible to the naked eye and has, by its resistance to cultivation, puzzled generations of microbiologists.
1
Biochemistry
HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid) is a compound with an affinity for the GHB receptor 39 times greater than that of GHB itself.
1
Biochemistry
Podocin is a membrane protein of the band-7-stomatin family, consisting of 383 amino acids. It has a transmembrane domain forming a hairpin structure, with two cytoplasmic ends at the N- and C-terminus, the latter of which interacts with the cytosolic tail of nephrin, with CD2AP serving as an adaptor.
1
Biochemistry
The C=S bond length of thiobenzophenone is 1.63 Å, which is comparable to 1.64 Å, the C=S bond length of thioformaldehyde, measured in the gas phase. Due to steric interactions, the phenyl groups are not coplanar and the dihedral angle SC-CC is 36°. Unhindered dialkylthiones polymerize or oligomerize but thiocamphor is well characterized red solid. Consistent with the double bond rule, most alkyl thioketones are unstable with respect to dimerization. The energy difference between the p orbitals of sulfur and carbon is greater than that between oxygen and carbon in ketones. The relative difference in energy and diffusity of the atomic orbitals of sulfur compared with carbon results in poor overlap of the atomic orbitals and the energy gap between the HOMO and LUMO is thus reduced for C=S molecular orbitals relative to C=O. The striking blue appearance of thiobenzophenone is attributed to π→ π* transitions upon the absorption of red light. Thiocamphor is red.
0
Organic Chemistry
The dynamic reciprocity theory states that a cell’s fate depends on the exchange of chemical signals between the extracellular matrix and the nucleus of the cell. Focussing on connections between laminin-111 and other proteins involved in cell-to-cell communication could spark further research that may help to further our current understanding of cancer and how to slow down or stop its process. Actin plays a role in nuclear activity which is an important process with regard to cell signalling influencing cell differentiation and replication. It has been suggested that actin interactions directly influence gene transcription as it interacts with chromatin remodeling complexes as well as RNA polymerases I, II and III. However, the exact role that actin plays in transcription has not yet been determined.
0
Organic Chemistry
Urey created the names protium, deuterium, and tritium in an article published in 1934. The name is based in part on advice from Gilbert N. Lewis who had proposed the name "deutium". The name comes from Greek deuteros second, and the nucleus was to be called a "deuteron" or "deuton". Isotopes and new elements were traditionally given the name that their discoverer decided. Some British scientists, such as Ernest Rutherford, wanted to call the isotope "diplogen", from Greek diploos double, and the nucleus to be called "diplon". The amount inferred for normal abundance of deuterium was so small (only about 1 atom in 6400 hydrogen atoms in seawater [156 parts per million]) that it had not noticeably affected previous measurements of (average) hydrogen atomic mass. This explained why it hadnt been suspected before. Urey was able to concentrate water to show partial enrichment of deuterium. Lewis, Ureys graduate advisor at Berkeley, had prepared and characterized the first samples of pure heavy water in 1933. The discovery of deuterium, coming before the discovery of the neutron in 1932, was an experimental shock to theory; but when the neutron was reported, making deuteriums existence more explicable, Urey was awarded the Nobel Prize in Chemistry only three years after the isotopes isolation. Lewis was deeply disappointed by the Nobel Committee's decision in 1934 and several high-ranking administrators at Berkeley believed this disappointment played a central role in his suicide a decade later.
9
Geochemistry
Analytical thermal desorption originated in the mid-1970s as an adaptation to the injection procedure for GC. Injector liners were packed with a compound able to adsorb organic compounds, used to sample air or gas, and then dropped into the inlet of the GC. This principle was first widely employed for occupational monitoring, in the form of personal badge-type monitors containing a removable charcoal strip. These offered the advantage of being amenable to analysis without a separate solvent-extraction step. Also developed in the 1970s was a method by which volatiles in the air were collected by diffusion onto tubes packed with a sorbent, which was then heated to release the volatiles into the GC system. These were first introduced for monitoring sulfur dioxide and nitrogen dioxide, but the analyte scope later widened as the sorbents became more advanced. Another early method (closely related to the modern purge-and-trap procedure) involved passing a stream of gas through a water sample to release the volatiles, which were again collected on a sorbent-packed tube. Such axial-type samplers, which later became known as sorbent tubes, were laid out as an industry standard in the late 1970s, by Working Group 5 (WG5) of the UK Health & Safetys Committee on Analytical Requirements (HSE CAR). The tubes they outlined were inches long with an outer diameter of inch, and were first employed in Perkin Elmers ATD-50 instrument. At the same time, WG5 specified various basic functionality requirements for thermal desorption, and in the years since then, a number of improvements have been made to instrumentation for thermal desorption, including two-stage operation (see below), splitting and re-collection of samples, improved trap-cooling technology, standard system checks, and automation.
3
Analytical Chemistry
An adparticle is an atom, molecule, or cluster of atoms or molecules that lies on a crystal surface. The term is used in surface chemistry. The word is a contraction of "adsorbed particle". An adparticle that is a single atom may be referred to as an "adatom".
7
Physical Chemistry
Enantioselective catalysis (known traditionally as "asymmetric catalysis") is performed using chiral catalysts, which are typically chiral coordination complexes. Catalysis is effective for a broader range of transformations than any other method of enantioselective synthesis. The chiral metal catalysts are almost invariably rendered chiral by using chiral ligands, but it is possible to generate chiral-at-metal complexes composed entirely of achiral ligands. Most enantioselective catalysts are effective at low substrate/catalyst ratios. Given their high efficiencies, they are often suitable for industrial scale synthesis, even with expensive catalysts. A versatile example of enantioselective synthesis is asymmetric hydrogenation, which is used to reduce a wide variety of functional groups. The design of new catalysts is dominated by the development of new classes of ligands. Certain ligands, often referred to as "privileged ligands", are effective in a wide range of reactions; examples include BINOL, Salen, and BOX. Most catalysts are effective for only one type of asymmetric reaction. For example, Noyori asymmetric hydrogenation with BINAP/Ru requires a β-ketone, although another catalyst, BINAP/diamine-Ru, widens the scope to α,β-alkenes and aromatic chemicals.
4
Stereochemistry
IUPAC rules are often not followed for simple ethers. The trivial names for simple ethers (i.e., those with none or few other functional groups) are a composite of the two substituents followed by "ether". For example, ethyl methyl ether (CHOCH), diphenylether (CHOCH). As for other organic compounds, very common ethers acquired names before rules for nomenclature were formalized. Diethyl ether is simply called ether, but was once called sweet oil of vitriol. Methyl phenyl ether is anisole, because it was originally found in aniseed. The aromatic ethers include furans. Acetals (α-alkoxy ethers R–CH(–OR)–O–R) are another class of ethers with characteristic properties.
0
Organic Chemistry
Sandra Pizzarello, D.Bi.Sc. was a Venetian biochemist known for her co-discovery of amino acid enantiomeric excess in carbonaceous chondrite meteorites. Her research interests concerned the characterization of meteoritic organic compounds in elucidating the evolution of planetary homochirality. Pizzarello was a project collaborator and co-investigator for the NASA Astrobiology Institute (NAI), the president of the International Society for the Study of the Origin of Life (2014-2017), and an emerita professor at Arizona State University (ASU).
1
Biochemistry
Transcription factor II H (TFH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFH in 1992. TFH consists of ten subunits, 7 of which (ERCC2/XPD, ERCC3/XPB, GTF2H1/p62, GTF2H4/p52, GTF2H2/p44, GTF2H3/p34 and GTF2H5/TTDA) form the core complex. The cyclin-activating kinase-subcomplex (CDK7, MAT1, and cyclin H) is linked to the core via the XPD protein. Two of the subunits, ERCC2/XPD and ERCC3/XPB, have helicase and ATPase activities and help create the transcription bubble. In a test tube, these subunits are only required for transcription if the DNA template is not already denatured or if it is supercoiled. Two other TFH subunits, CDK7 and cyclin H, phosphorylate serine amino acids on the RNA polymerase II C-terminal domain and possibly other proteins involved in the cell cycle. Next to a vital function in transcription initiation, TFH is also involved in nucleotide excision repair.
1
Biochemistry
X-ray spectroscopy methods can be used for genuine operando analyses of catalysts and other functional materials. The redox dynamics of sulfur with Ni/GDC anode during solid oxide fuel cell (SOFC) operation at mid- and low-range temperatures in an operando S K-edge XANES have been studied. Ni is a typical catalyst material for the anode in high temperature SOFCs. The operando spectro-electrochemical cell for this high temperature gas-solid reaction study under electrochemical conditions was based on a typical high temperature heterogeneous catalysis cell, which was further equipped with electric terminals. Very early method development for operando studies on PEM-FC fuel cells was done by Haubold et al. at Forschungszentrum Jülich and HASYLAB. Specifically they developed plexiglas spectro-electrochemical cells for XANES, EXAFS and SAXS and ASAXS studies with control of the electrochemical potential of the fuel cell. Under operation of the fuel cell they determined the change of the particle size of and oxidation state and shell formation of the platinum electrocatalyst. In contrast to the SOFC operation conditions, this was a PEM-FC study in liquid environment under ambient temperature. The same operando method is applied to battery research and yields information on the changes of the oxidation state of electrochemically active elements in a cathode such as Mn via XANES, information on coronation shell and bond length via EXAFS, and information on microstructure changes during battery operation via ASAXS. Since lithium ion batteries are intercalation batteries, information on the chemistry and electronic structure going on in the bulk during operation are of interest. For this, soft x-ray information can be obtained using hard X-ray Raman scattering. Fixed energy methods (FEXRAV) have been developed and applied to the study of the catalytic cycle for the oxygen evolution reaction on iridium oxide. FEXRAV consists of recording the absorption coefficient at a fixed energy while varying at will the electrode potential in an electrochemical cell during the course of an electrochemical reaction. It allows to obtain a rapid screening of several systems under different experimental conditions (e.g., nature of the electrolyte, potential window), preliminary to deeper XAS experiments. The soft X-Ray regime (i.e. with photon energy < 1000 eV) can be profitably used for investigating heterogeneous solid-gas reaction. In this case, it is proved that XAS can be sensitive both to the gas phase and to the solid surface states.
7
Physical Chemistry
Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. The direct method avoids the formation of stable intermediates, typically using acid catalysts. In the indirect method, the alkene is converted to the sulfate ester, which is subsequently hydrolyzed. The direct hydration using ethylene (ethylene hydration) or other alkenes from cracking of fractions of distilled crude oil. Hydration is also used industrially to produce the diol ethylene glycol from ethylene oxide.
0
Organic Chemistry
While a universally accepted definition of sustainability remains elusive, the Brundtland Commission of the United Nations defined sustainable development as development that meets the needs of the present without compromising the ability of future generations to meet their own needs. Sustainability, the long-term maintenance of responsibility, requires the reconciliation of environmental, social equity and economic demands. These "three pillars" of sustainability encompass the responsible management of resource use. Also, it can mean that we can use a resource which won't cease to be abundant despite increasing intake. Copper is a sustainable material. Its durability offers long service with little maintenance. Its high electrical and thermal energy efficiencies reduce the waste of electrical energy. Its antimicrobial properties destroy pathogenic microorganisms that cause disease. And its high scrap value and ability to be continuously recycled without any loss in performance ensure its responsible management as a valuable resource. Life cycle inventory (LCI) information on copper tube, sheet, and wire products, using ISO standards and covering the mining and primary copper production sectors (i.e., smelting and refining) is available. Used in life cycle assessments (LCAs), particularly in the building and construction sector, LCI datasets assist manufacturers of copper-containing products with compliance and voluntary improvement initiatives. They also support policy makers in the development of environmental guidelines and regulations with the aim of fostering sustainable development. The long lifetime of copper roofing and cladding has a significant positive effect on whole life assessments of copper versus other materials in terms of embodied energy consumption (i.e., the total energy consumed during every phase of each lifecycle in MJ/m), CO generation, and cost.
8
Metallurgy
Mars is differentiated, which—for a terrestrial planet—implies that it has a central core made up of high density matter (mainly metallic iron and nickel) surrounded by a less dense, silicate mantle and crust. Like Earth, Mars appears to have a molten iron core, or at least a molten outer core. However, there does not appear to be convection in the mantle. Presently Mars shows little geological activity. The elemental composition of Mars is different from Earths in several significant ways. First, Martian meteorite analysis suggests that the planets mantle is about twice as rich in iron as the Earths mantle. The planets distinctive red color is due to iron oxides on its surface. Second, its core is richer in sulphur. Third, the Martian mantle is richer in potassium and phosphorus than Earths and fourth, the Martian crust contains a higher percentage of volatile elements such as sulphur and chlorine than the Earths crust does. Many of these conclusions are supported by in situ analyses of rocks and soils on the Martian surface. Much of what we know about the elemental composition of Mars comes from orbiting spacecraft and landers. (See Exploration of Mars for list.) Most of these spacecraft carry spectrometers and other instruments to measure the surface composition of Mars by either remote sensing from orbit or in situ analyses on the surface. We also have many actual samples of Mars in the form of meteorites that have made their way to Earth. Martian meteorites (often called SNCs, for Shergottites, Nakhlites, and Chassignites—the groups of meteorites first shown to have a martian origin) provide data on the chemical composition of Mars crust and interior that would not otherwise be available except through a sample return mission. Based on these data sources, scientists think that the most abundant chemical elements in the Martian crust are silicon, oxygen, iron, magnesium, aluminium, calcium, and potassium. These elements are major components of the minerals comprising igneous rocks. The elements titanium, chromium, manganese, sulfur, phosphorus, sodium, and chlorine are less abundant but are still important components of many accessory minerals in rocks and of secondary minerals (weathering products) in the dust and soils (the regolith). On September 5, 2017, scientists reported that the Curiosity rover detected boron, an essential ingredient for life on Earth, on the planet Mars. Such a finding, along with previous discoveries that water may have been present on ancient Mars, further supports the possible early habitability of Gale Crater on Mars. Hydrogen is present as water (HO) ice and in hydrated minerals. Carbon occurs as carbon dioxide (CO) in the atmosphere and sometimes as dry ice at the poles. An unknown amount of carbon is also stored in carbonates. Molecular nitrogen (N) makes up 2.7 percent of the atmosphere. As far as we know, organic compounds are absent except for a trace of methane detected in the atmosphere. On 16 December 2014, NASA reported the Curiosity rover detected a "tenfold spike", likely localized, in the amount of methane in the Martian atmosphere. Sample measurements taken "a dozen times over 20 months" showed increases in late 2013 and early 2014, averaging "7 parts of methane per billion in the atmosphere." Before and after that, readings averaged around one-tenth that level. On 25 October 2023, scientists, helped by information from the InSight lander, reported that the planet Mars has a radioactive magma ocean under its crust.
9
Geochemistry
Sensitizers absorb light to give redox-active excited states. For many metal-based sensitizers, excitation is realized as a metal-to-ligand charge transfer, whereby an electron moves from the metal (e.g., a d orbital) to an orbital localized on the ligands (e.g. the π* orbital of an aromatic ligand). The initial excited electronic state relaxes to the lowest energy singlet excited state through internal conversion, a process where energy is dissipated as vibrational energy rather than as electromagnetic radiation. This singlet excited state can relax further by two distinct processes: the catalyst may fluoresce, radiating a photon and returning to the singlet ground state, or it can move to the lowest energy triplet excited state (a state where two unpaired electrons have the same spin) by a second non-radiative process termed intersystem crossing. Direct relaxation of the excited triplet to the ground state, termed phosphorescence, requires both emission of a photon and inversion of the spin of the excited electron. This pathway is slow because it is spin-forbidden so the triplet excited state has a substantial average lifetime. For the common photosensitizer, tris-(2,2’-bipyridyl)ruthenium (abbreviated as [Ru(bipy)] or [Ru(bpy)]), the lifetime of the triplet excited state is approximately 1100 ns. This lifetime is sufficient for other relaxation pathways (specifically, electron-transfer pathways) to occur before decay of the catalyst to its ground state. The long-lived triplet excited state accessible by photoexcitation is both a more potent reducing agent and a more potent oxidizing agent than the ground state of the catalyst. Since sensitizer is coordinatively saturated, electron transfer must occur by an outer sphere process, where the electron tunnels between the catalyst and the substrate.
5
Photochemistry
Electrofusion welding is characterized by four distinct stages that occur during the welding process: # Incubation period # Joint formation and consolidation # Plateau region # Cooling period During the incubation period, heat is introduced into the joint as current is passed through the coil. Although there is no joint strength at this point, the polymer expands and the joint gap is filled. During joint formation and consolidation, melting begins. Melt pressure has begun to build, and the majority of the joint's strength is developed during this stage. The strength increase is due primarily to the constraint of the increasing molten material by the cold zones in the surrounding fitting. The plateau region signals the stabilization of the joint strength. Despite this, the heat of the joint is still increasing with time during this stage. The cooling period occurs after current is no longer applied to the coils. The molten polymer material solidifies and forms the joint.
7
Physical Chemistry
According to the U.S. Department of Agriculture, the Dietary Reference Intakes, which is the "highest level of daily nutrient intake that is likely to pose no risk of adverse health effects" specify 10 mg/day for most people, corresponding to 10 L of fluoridated water with no risk. For young children the values are smaller, ranging from 0.7 mg/d to 2.2 mg/d for infants. Water and food sources of fluoride include community water fluoridation, seafood, tea, and gelatin. Soluble fluoride salts, of which sodium fluoride is the most common, are toxic, and have resulted in both accidental and self-inflicted deaths from acute poisoning. The lethal dose for most adult humans is estimated at 5 to 10 g (which is equivalent to 32 to 64 mg elemental fluoride per kg body weight). A case of a fatal poisoning of an adult with 4 grams of sodium fluoride is documented, and a dose of 120 g sodium fluoride has been survived. For sodium fluorosilicate (NaSiF), the median lethal dose (LD) orally in rats is 125 mg/kg, corresponding to 12.5 g for a 100 kg adult. Treatment may involve oral administration of dilute calcium hydroxide or calcium chloride to prevent further absorption, and injection of calcium gluconate to increase the calcium levels in the blood. Hydrogen fluoride is more dangerous than salts such as NaF because it is corrosive and volatile, and can result in fatal exposure through inhalation or upon contact with the skin; calcium gluconate gel is the usual antidote. In the higher doses used to treat osteoporosis, sodium fluoride can cause pain in the legs and incomplete stress fractures when the doses are too high; it also irritates the stomach, sometimes so severely as to cause ulcers. Slow-release and enteric-coated versions of sodium fluoride do not have gastric side effects in any significant way, and have milder and less frequent complications in the bones. In the lower doses used for water fluoridation, the only clear adverse effect is dental fluorosis, which can alter the appearance of children's teeth during tooth development; this is mostly mild and is unlikely to represent any real effect on aesthetic appearance or on public health. Fluoride was known to enhance the measurement of bone mineral density at the lumbar spine, but it was not effective for vertebral fractures and provoked more non vertebral fractures. In areas that have naturally occurring high levels of fluoride in groundwater which is used for drinking water, both dental and skeletal fluorosis can be prevalent and severe. A popular urban myth claims that the Nazis used fluoride in concentration camps, but there is no historical evidence to prove this claim.
1
Biochemistry
The traditional method of gel extraction involves creating a folded pocket of Parafilm wax paper and placing the agarose fragment inside. The agarose is physically compressed with a finger into a corner of the pocket, partially liquifying the gel and its contents. The liquid droplets can then be directed out of the pocket onto an exterior piece of Parafilm, where they are pipetted into a small tube. A butanol extraction removes the ethidium bromide stain, followed by a phenol/chloroform extraction of the cleaned DNA fragment. The disadvantage of gel isolation is that background can only be removed if it can be physically identified using the UV light. If two bands are very close together, it can be hard to separate them without some contamination. In order to clearly identify the band of interest, further restriction digests may be necessary. Restriction sites unique to unwanted bands of similar size can aid in breaking up these potential contaminants.
1
Biochemistry
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially uniform and temporally constant. Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as change in internal energy but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.
7
Physical Chemistry
There are two types of continuous cooling diagrams drawn for practical purposes. * Type 1: This is the plot beginning with the transformation start point, cooling with a specific transformation fraction and ending with a transformation finish temperature for all products against transformation time for each cooling curve. * Type 2: This is the plot beginning with the transformation start point, cooling with specific transformation fraction and ending with a transformation finish temperature for all products against cooling rate or bar diameter of the specimen for each type of cooling medium..
8
Metallurgy
With the insurgence in the usage of PPA during the past few years for various applications, the need to ameliorate the transient properties and enhance the mechanical features of this polymer has come to surface. PPA is known to be brittle; it possesses a large storage modulus, and a glass transition temperature that is above its thermal degradation point, which renders the polymer unsuitable for a broad range of applications. One way to ameliorate its intrinsic properties is via the addition of a plasticizing agent that can disrupt the polymer's intermolecular packing, and thus making it more flexible, decreasing its storage modulus, depressing its glass transition temperature, and increasing its shear strength. A few examples of plasticizers that have been used with PPA include dimethyl phthalate, bis(2-ethylhexyl) phthalate, diethyl adipate, and tri-isononyl trimellitate (TINTM). In a recent study, the effect of two ether-ester plasticizers on the mechanical flexibility and photo-transience speed of cyclic PPA was investigated. The authors were able to show that the addition of these additives broadened the storage modulus range and decreased it from 2300 MPa in the case of pure PPA down to 19 MPa in the PPA/plasticizer mixture, hence making the polymer more flexible and in need of less energy to be distorted. In another study published by the same research group, the effect of diethyl adipate (DEA) plasticizer on the glass transition temperature of cyclic PPA was investigated. After determining the glass transition temperature of pure PPA to be 187 °C, PPA films with various DEA concentrations were prepared. By varying DEA concentration, the authors were able depress T to 12.5 °C demonstrating the importance of plasticizers in enhancing the mechanical flexibility and thermal properties of PPA. Similar results were previously observed where the thermal transitions were depressed from 95 °C for cPPA to 24 °C for diethyl phthalate (DEP)-plasticized cPPA. Among the few studies that have been reported on the usage of plasticizers with PPA, it has been noted that the usage of plasticizers results in a decrease in the tensile stress of the polymers which indicate that PPA is becoming more flexible and hence the film can fold more easily. Nevertheless, a control on the amount of plasticizer used is important. For instance, in the study discussed above, it has been reported that the usage of a large amount of plasticizer (more than 50% w/w in comparison with PPA polymer) results in phase segregation and a decrease in the flexibility of the PPA film. Furthermore, the nature of the used solvent can highly affect the mechanical properties of PPA as well. In particular, in another study published in 2019, both the elastic modulus and tensile strength increase when dichloromethane was used as a solvent to drop-cast PPA in comparison to dioxane and chloroform.
7
Physical Chemistry
In most industrial fermentations, the organisms or eukaryotic cells are submerged in a liquid medium; in others, such as the fermentation of cocoa beans, coffee cherries, and miso, fermentation takes place on the moist surface of the medium. There are also industrial considerations related to the fermentation process. For instance, to avoid biological process contamination, the fermentation medium, air, and equipment are sterilized. Foam control can be achieved by either mechanical foam destruction or chemical anti-foaming agents. Several other factors must be measured and controlled such as pressure, temperature, agitator shaft power, and viscosity. An important element for industrial fermentations is scale up. This is the conversion of a laboratory procedure to an industrial process. It is well established in the field of industrial microbiology that what works well at the laboratory scale may work poorly or not at all when first attempted at large scale. It is generally not possible to take fermentation conditions that have worked in the laboratory and blindly apply them to industrial scale equipment. Although many parameters have been tested for use as scale up criteria, there is no general formula because of the variation in fermentation processes. The most important methods are the maintenance of constant power consumption per unit of broth and the maintenance of constant volumetric transfer rate.
1
Biochemistry
One major use of genomic libraries is hierarchichal shotgun sequencing, which is also called top-down, map-based or clone-by-clone sequencing. This strategy was developed in the 1980s for sequencing whole genomes before high throughput techniques for sequencing were available. Individual clones from genomic libraries can be sheared into smaller fragments, usually 500bp to 1000bp, which are more manageable for sequencing. Once a clone from a genomic library is sequenced, the sequence can be used to screen the library for other clones containing inserts which overlap with the sequenced clone. Any new overlapping clones can then be sequenced forming a contig. This technique, called chromosome walking, can be exploited to sequence entire chromosomes. Whole genome shotgun sequencing is another method of genome sequencing that does not require a library of high-capacity vectors. Rather, it uses computer algorithms to assemble short sequence reads to cover the entire genome. Genomic libraries are often used in combination with whole genome shotgun sequencing for this reason. A high resolution map can be created by sequencing both ends of inserts from several clones in a genomic library. This map provides sequences of known distances apart, which can be used to help with the assembly of sequence reads acquired through shotgun sequencing. The human genome sequence, which was declared complete in 2003, was assembled using both a BAC library and shotgun sequencing.
1
Biochemistry
Weakly dissociated acids yield sharp thermometric endpoints when titrated with a strong base. For instance, bicarbonate can be unequivocally determined in the company of carbonate by titrating with hydroxyl (ΔH=-40.9 kJ/mol).
3
Analytical Chemistry
The Russian Journal of Physical Chemistry B () is an English-language translation of the eponymous Russian-language peer-reviewed scientific journal published by MAIK Nauka/Interperiodica and Springer Science+Business Media. The journal covers all aspects of chemical physics and combustion. The editor-in-chief is Anatoly L. Buchachenko (Russian Academy of Sciences).
7
Physical Chemistry
The peritrich nuclear code (translation table 30) is a genetic code used by the nuclear genome of the peritrich ciliates Vorticella and Opisthonecta.
1
Biochemistry
Hammond's postulate can be used to examine the structure of the transition states of a SN1 reaction. In particular, the dissociation of the leaving group is the first transition state in a S1 reaction. The stabilities of the carbocations formed by this dissociation are known to follow the trend tertiary > secondary > primary > methyl. Therefore, since the tertiary carbocation is relatively stable and therefore close in energy to the R-X reactant, then the tertiary transition state will have a structure that is fairly similar to the R-X reactant. In terms of the graph of reaction coordinate versus energy, this is shown by the fact that the tertiary transition state is further to the left than the other transition states. In contrast, the energy of a methyl carbocation is very high, and therefore the structure of the transition state is more similar to the intermediate carbocation than to the R-X reactant. Accordingly, the methyl transition state is very far to the right.
7
Physical Chemistry
Often referred to as a bearing heater, the mains frequency unit employs standard transformer principles for its operation. An internal winding is wound around a laminated core similar to a standard mains transformer. The core is then passed through the work-piece and when the primary coil is energised, a magnetic flux is created around the core. The work-piece acts as a short circuit secondary of the transformer created, and due to the laws of induction, a current flows in the work-piece and heat is generated. The core is normally hinged or clamped in some way to allow loading or unloading, which is usually a manual operation. To cover variations in part diameter, the majority of units will have spare cores available which help to optimise performance. Once the part is heated to the correct temperature, assembly can take place either by hand or in the relevant jig or machine press.
8
Metallurgy
The nitrogen vacancy defect in diamond consists of a single substitutional nitrogen atom (replacing one carbon atom) and an adjacent gap, or vacancy, in the lattice where normally a carbon atom would be located. The nitrogen vacancy occurs in three possible charge states: positive (NV), neutral (NV) and negative (NV). As NV is the only one of these charge states which has shown to be ODMR active, it is often referred to simply as the NV. The energy level structure of the NV consists of a triplet ground state, a triplet excited state and two singlet states. Under resonant optical excitation, the NV may be raised from the triplet ground state to the triplet excited state. The centre may then return to the ground state via two routes; by the emission of a photon of 637 nm in the zero phonon line (ZPL) (or longer wavelength from the phonon sideband) or alternatively via the aforementioned singlet states through intersystem crossing and the emission of a 1042 nm photon. A return to the ground state via the latter route will preferentially result in the state. Relaxation to the state necessarily results in a decrease in visible wavelength fluorescence (as the emitted photon is in the infrared range). Microwave pumping at a resonant frequency of places the centre in the degenerate state. The application of a magnetic field lifts this degeneracy, causing Zeeman splitting and the decrease of fluorescence at two resonant frequencies, given by , where is the Planck constant, is the electron g-factor and is the Bohr magneton. Sweeping the microwave field through these frequencies results in two characteristic dips in the observed fluorescence, the separation between which enables determination of the strength of the magnetic field .
7
Physical Chemistry
The aniline point of an oil is defined as the minimum temperature at which equal volumes of aniline () and lubricant oil are miscible, i.e. form a single phase upon mixing. The value gives an approximation for the content of aromatic compounds in the oil, since the miscibility of aniline, which is also an aromatic compound suggests the presence of similar (i.e. aromatic) compounds in the oil. The lower the aniline point, the greater is the content of aromatic compounds in the oil. The aniline point serves as a reasonable proxy for aromaticity of oils consisting mostly of saturated hydrocarbons (i.e. alkanes, paraffins) or unsaturated compounds (mostly aromatics). Significant chemical functionalization of the oil (chlorination, sulfonation, etc.) can interfere with the measurement, due to changes to the solvency of the functionalized oil. Aniline point indicates if an oil is likely to damage elastomers (rubber compounds) that come in contact with the oil.
0
Organic Chemistry
Dioxiranes are derivatives of this parent in which the hydrogens are replaced by other groups. Difluorodioxirane, which boils at about –80 to –90 °C, is one of the very few dioxirane derivatives that is stable in pure form at room temperature and is thermodynamically stable (ΔH° = –104 kcal/mol). Dimesityldioxirane is another relatively stable derivative which has been characterized by X-ray crystallography. Dimethyldioxirane (DMDO) and the still more reactive methyl(trifluoromethyl)dioxirane have seen some use in organic synthesis, Dioxiranes are intermediate in the Shi epoxidation reaction.
0
Organic Chemistry
Between 1915 and 1993, 235 sightings of milky seas were documented, most of which are concentrated in the northwestern Indian Ocean near to Somalia. The luminescent glow is concentrated on the surface of the ocean and does not mix evenly throughout the water column. In 1985, a research vessel in the Arabian Sea took water samples during milky seas. Their conclusions were that the effect was caused by the bacterium Vibrio harveyi. Mareel is typically caused by Noctiluca scintillans (popularly known as "sea sparkle"), a dinoflagellate that glows when disturbed and is found in oceans throughout much of the world. In July 2015, at Alleppey, Kerala, India, the phenomenon occurred and the National Institute of Oceanography and Kerala Fisheries Department researched it, finding that the glittering waves were the result of Noctiluca scintillans. In 2005, Steven Miller of the Naval Research Laboratory in Monterey, California, was able to match 1995 satellite images with a first-hand account of a merchant ship. U.S. Defense Meteorological Satellite Program showed the milky area to be approximately (roughly the size of Connecticut). The luminescent field was observed to glow over three consecutive nights. While monochromatic photos make this effect appear white, Monterey Bay Aquarium Research Institute scientist Steven Haddock (an author of a milky seas effect study) has commented, "the light produced by the bacteria is actually blue, not white. It is white in the graphic because of the monochromatic sensor we used, and it can appear white to the eye because the rods in our eye (used for night vision) dont discriminate color." In Shetland (where generally caused by Noctiluca scintillans'), mareel has sometimes been described as being green, rather than the traditional blue or white milky seas effect seen by the rest of the world. It is not known whether this difference depends on the area, or simply a perception of a cyanic colour as being green.
1
Biochemistry
A more accurate approach as claimed by Grunenberg is to exploit compliance constants as means for describing chemical bonds as shown below. All the calculated compliance constants above are given in N unit. For both n-butane and cyclobutane, the results are the same regardless of the choice of the coordinate systems. One aspect of compliance constants that proves more powerful than force constants in cyclobutane is because of less coupling. This compliance coupling constants are the off-diagonal elements in the inverted Hessian matrix and altogether with the compliance constants, they physically describe the relaxed distortion of a molecule closely through a minimum energy path. Moreover, the values of the compliance constants yield the same results for all the C-C bonds and the values are less compared to those obtained for n-butane. Compliance constants, thus, give results that are in accordance to what are generally known about the ring strain of cyclobutane.
6
Supramolecular Chemistry
RHEED is an extremely popular technique for monitoring the growth of thin films. In particular, RHEED is well suited for use with molecular beam epitaxy (MBE), a process used to form high quality, ultrapure thin films under ultrahigh vacuum growth conditions. The intensities of individual spots on the RHEED pattern fluctuate in a periodic manner as a result of the relative surface coverage of the growing thin film. Figure 8 shows an example of the intensity fluctuating at a single RHEED point during MBE growth. Each full period corresponds to formation of a single atomic layer thin film. The oscillation period is highly dependent on the material system, electron energy and incident angle, so researchers obtain empirical data to correlate the intensity oscillations and film coverage before using RHEED for monitoring film growth. Video 1 depicts a metrology instrument recording the RHEED intensity oscillations and deposition rate for process control and analysis.
3
Analytical Chemistry
It has been shown in previous studies that the only types of RNA editing seen in the plants mitochondria and plastids are conversion of C-to-U and U-to-C (very rare). RNA-editing sites are found mainly in the coding regions of mRNA, introns, and other non-translated regions. In fact, RNA editing can restore the functionality of tRNA molecules. The editing sites are found primarily upstream of mitochondrial or plastid RNAs. While the specific positions for C to U RNA editing events have been fairly well studied in both the mitochondrion and plastid, the identity and organization of all proteins comprising the editosome have yet to be established. Members of the expansive PPR protein family have been shown to function as trans'-acting factors for RNA sequence recognition. Specific members of the MORF (Multiple Organellar RNA editing Factor) family are also required for proper editing at several sites. As some of these MORF proteins have been shown to interact with members of the PPR family, it is possible MORF proteins are components of the editosome complex. An enzyme responsible for the trans- or deamination of the RNA transcript remains elusive, though it has been proposed that the PPR proteins may serve this function as well. RNA editing is essential for the normal functioning of the plant's translation and respiration activity. Editing can restore the essential base-pairing sequences of tRNAs, restoring functionality. It has also been linked to the production of RNA-edited proteins that are incorporated into the polypeptide complexes of the respiration pathway. Therefore, it is highly probable that polypeptides synthesized from unedited RNAs would not function properly and hinder the activity of both mitochondria and plastids. C-to-U RNA editing can create start and stop codons, but it cannot destroy existing start and stop codons. A cryptic start codon is created when the codon ACG is edited to be AUG.
1
Biochemistry
Two staff members from ABC Radio also joined the expedition: * Colin Simpson * Raymond Frank Giles - Sound Recorder
1
Biochemistry
If no force acts normal to a tensioned surface, the surface must remain flat. But if the pressure on one side of the surface differs from pressure on the other side, the pressure difference times surface area results in a normal force. In order for the surface tension forces to cancel the force due to pressure, the surface must be curved. The diagram shows how surface curvature of a tiny patch of surface leads to a net component of surface tension forces acting normal to the center of the patch. When all the forces are balanced, the resulting equation is known as the Young–Laplace equation: where: * is the pressure difference, known as the Laplace pressure. * is surface tension. * and are radii of curvature in each of the axes that are parallel to the surface. The quantity in parentheses on the right hand side is in fact (twice) the mean curvature of the surface (depending on normalisation). Solutions to this equation determine the shape of water drops, puddles, menisci, soap bubbles, and all other shapes determined by surface tension (such as the shape of the impressions that a water strider's feet make on the surface of a pond). The table below shows how the internal pressure of a water droplet increases with decreasing radius. For not very small drops the effect is subtle, but the pressure difference becomes enormous when the drop sizes approach the molecular size. (In the limit of a single molecule the concept becomes meaningless.)
6
Supramolecular Chemistry
Lecithinase is a type of phospholipase that acts upon lecithin. It can be produced by Clostridium perfringens, Staphylococcus aureus, Pseudomonas aeruginosa or Listeria monocytogenes. C. perfringens alpha toxin (lecithinase) causes myonecrosis and hemolysis. The lecithinase of S. aureus is used in detection of coagulase-positive strains, because of high link between lecithinase activity and coagulase activity.
1
Biochemistry
Named after its inventor, biologist Edwin Southern, the Southern blot is a method for probing for the presence of a specific DNA sequence within a DNA sample. DNA samples before or after restriction enzyme (restriction endonuclease) digestion are separated by gel electrophoresis and then transferred to a membrane by blotting via capillary action. The membrane is then exposed to a labeled DNA probe that has a complement base sequence to the sequence on the DNA of interest. Southern blotting is less commonly used in laboratory science due to the capacity of other techniques, such as PCR, to detect specific DNA sequences from DNA samples. These blots are still used for some applications, however, such as measuring transgene copy number in transgenic mice or in the engineering of gene knockout embryonic stem cell lines.
1
Biochemistry
LOV-domains are a sub-class of PAS domains and were first identified in plants as part of Phototropin, which plays an essential role in the plant's growth towards light. They noncovalently bind Flavin mononucleotide (FMN) as coenzyme. Due to the bound FMN LOV-domains exhibit an intrinsic fluorescence, which is however very weak. Upon illumination with blue light, LOV-domains undergo a photocyle, during which a covalent bond is formed between a conserved cysteine-residue and the FMN. This causes a conformational change in the protein that is necessary for signal propagation and also leads to the loss of fluorescence. The covalent bond is energetically unfavorable and is cleaved with a protein specific time constant ranging from seconds to hours. In order to make better use of the fluorescence properties of these proteins, the natural photocycle of these LOV-domains was abolished by exchanging the conserved cysteine against an alanine on a genetic level. Thus, upon blue light irradiation, the protein remains in the fluorescent state and also exhibits a brighter fluorescence. The first FbFPs that were generated in this fashion were subsequently further optimized using different methods of mutagenesis. Especially the brightness but also the photostability of the proteins were enhanced and their spectral characteristics altered.
1
Biochemistry
By protecting the diol group in triol 4.1 (scheme 4) as the phenyl boronic ester 4.2, the remaining alcohol group could be protected as the TBS ether 4.3. After deprotecting the diol group (hydrogen peroxide, sodium bicarbonate) again in 4.4 it was possible to oxidize the C19 alcohol to the ketone 4.5 with Dess-Martin periodinane. In a new round of protections the C7 alcohol was converted to the 2-methoxy-2-propyl (MOP) ether 4.6 with 2-propenylmethylether and PPTS and the C7 ketone was converted to its enolate 4.7 by reaction with KHMDS and N,N-bis(trifluoromethylsulfonyl)aniline. These preambles facilitated the introduction of the final missing C20 fragment as the Grignard reagent trimethylsilylmethylmagnesium bromide which coupled with the triflate in a tetrakis(triphenylphosphine)palladium(0) catalysed reaction to the silane 4.8. The trimethylsilyl group eliminated on addition of NCS to organochloride 4.9. Prior to ring-closing the D ring there was some unfinished business in ring C. A C10 alcohol was introduced by MoOPH oxidation to 4.10 but with the wrong stereochemistry. After acetylation to 4.11 and inversion of configuration with added base DBN this problem was remedied in compound 4.12. Next dihydroxylation with Osmium(VIII) oxide formed the diol 4.13 with the primary alcohol on addition of base DBU displacing the chlorine atom in a nucleophilic aliphatic substitution to oxetane 4.14.
0
Organic Chemistry
In 1968, Lusk described the limitation of bacterial (Escherichia coli) growth on Mg-poor media, suggesting that bacteria required Mg and were likely to actively take this ion from the environment. The following year, the same group and another group, Silver, independently described the uptake and efflux of Mg in metabolically active E. coli cells using Mg. By the end of 1971, two papers had been published describing the interference of Co, Ni and Mn on the transport of Mg in E. coli and in Aerobacter aerogenes and Bacillus megaterium. In the last major development before the cloning of the genes encoding the transporters, it was discovered that there was a second Mg uptake system that showed similar affinity and transport kinetics to the first system, but had a different range of sensitivities to interfering cations. This system was also repressible by high extracellular concentrations of Mg
1
Biochemistry
Schmiegel worked for Eli Lilly until his retirement in 1993. Though Schmiegel is retired, he still lives in Indianapolis near the Eli Lilly headquarters.
0
Organic Chemistry
The specific gas constant of a gas or a mixture of gases (R) is given by the molar gas constant divided by the molar mass (M) of the gas or mixture: Just as the molar gas constant can be related to the Boltzmann constant, so can the specific gas constant by dividing the Boltzmann constant by the molecular mass of the gas: Another important relationship comes from thermodynamics. Mayer's relation relates the specific gas constant to the specific heat capacities for a calorically perfect gas and a thermally perfect gas: where c is the specific heat capacity for a constant pressure and c is the specific heat capacity for a constant volume. It is common, especially in engineering applications, to represent the specific gas constant by the symbol R. In such cases, the universal gas constant is usually given a different symbol such as to distinguish it. In any case, the context and/or unit of the gas constant should make it clear as to whether the universal or specific gas constant is being referred to. In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ = 1.225 kg/m, temperature T = 288.15 K and pressure p = ), we have that R = P/(ρT) = . Then the molar mass of air is computed by M = R/R = .
7
Physical Chemistry
In materials with a large exciton binding energy, it is possible for a photon to have just barely enough energy to create an exciton (bound electron–hole pair), but not enough energy to separate the electron and hole (which are electrically attracted to each other). In this situation, there is a distinction between "optical band gap" and "electronic band gap" (or "transport gap"). The optical bandgap is the threshold for photons to be absorbed, while the transport gap is the threshold for creating an electron–hole pair that is not bound together. The optical bandgap is at lower energy than the transport gap. In almost all inorganic semiconductors, such as silicon, gallium arsenide, etc., there is very little interaction between electrons and holes (very small exciton binding energy), and therefore the optical and electronic bandgap are essentially identical, and the distinction between them is ignored. However, in some systems, including organic semiconductors and single-walled carbon nanotubes, the distinction may be significant.
7
Physical Chemistry
Metal-alkene complexes are uncommon in nature, with one exception. Ethene affects the ripening of fruit and flowers by complexation to a Cu(I) center in a transcription factor.
0
Organic Chemistry
The N- terminal domain consists of amino acids 1-56 and is an amino terminal responsible DNA-binding and is a key mediator in the linkage between the C-terminal domain of the opposite dimer. The dimer interface II has its I255 side chain located in the N-terminal.
1
Biochemistry
In organic chemistry, a semicarbazone is a derivative of imines formed by a condensation reaction between a ketone or aldehyde and semicarbazide. They are classified as imine derivatives because they are formed from the reaction of an aldehyde or ketone with the terminal -NH group of semicarbazide, which behaves very similarly to primary amines.
0
Organic Chemistry
One way to visualize the internal standard method is to create one calibration curve that doesn't use the method and one calibration curve that does. Suppose there are known concentrations of nickel in a set of calibration solutions: 0 ppm, 1.6 ppm, 3.2 ppm, 4.8 ppm, 6.4 ppm, and 8 ppm. Each solution also has 5 ppm yttrium to act as an internal standard. If these solutions are measured using ICP-OES, the intensity of the yttrium signal should be consistent across all solutions. If not, the intensity of the nickel signal is likely imprecise as well. The calibration curve that does not use the internal standard method ignores the uncertainty between measurements. The coefficient of determination (R) for this plot is 0.9985. In the calibration curve that uses the internal standard, the y-axis is the ratio of the nickel signal to the yttrium signal. This ratio is unaffected by uncertainty in the nickel measurements, as it should affect the yttrium measurements in the same way. This results in a higher R, 0.9993.
3
Analytical Chemistry
The most common type of mass spectrometer (MS) associated with a gas chromatograph (GC) is the quadrupole mass spectrometer, sometimes referred to by the Hewlett-Packard (now Agilent) trade name "Mass Selective Detector" (MSD). Another relatively common detector is the ion trap mass spectrometer. Additionally one may find a magnetic sector mass spectrometer, however these particular instruments are expensive and bulky and not typically found in high-throughput service laboratories. Other detectors may be encountered such as time of flight (TOF), tandem quadrupoles (MS-MS) (see below), or in the case of an ion trap MS where n indicates the number mass spectrometry stages.
3
Analytical Chemistry
The integration of knowledge concerning the molecular and cellular actions of a drug within the brain circuitry leads to an overall understanding of a neurological drug's action mechanisms. This understanding of drug action in turn can be extrapolated to account for system-wide or clinical manifestations which are observed as symptoms. The clinical effects of a neural drug are due to both immediate changes in homeostasis and long-term neural adaptations characterized by the phenomena neural plasticity. The most basic and fundamental neurological phenomena in neuropharmacology is the binding of a drug or neurologically active substance to a cellular target. One assay to determine the extent at which a ligand binds to its receptor is the radioligand binding assay (RBA), in which specific binding of a radioactively-labeled ligand is denoted by the difference between saturated and non-saturated tissue samples. While the RBA assay assumes that the tissue prepared has just one molecular target per ligand, in actuality this may not be the case. For example, serotonin binds to many diverse serotonin receptors which makes the RIA assay quite difficult to interpret. Because many receptors are essentially enzymes, the field of pharmakinetics utilizes the Michaelis–Menten equation to describe drug affinity (dissociation constant K) and total binding (B). Although K and B can be determined pictorially in a normal or logarithmic plot of ligand binding vs drug concentration, Scatchard plots allow for mathematical representation of several ligand binding sites, each with its own K. Drug potency is the measure of binding strength between a drug and a specific molecular target, whereas drug efficacy describes the biological effect exerted by the drug itself, at either a cellular or organismal level. Because drugs range widely in their potency and efficacy, drugs have been categorized on the spectrum of agonists and antagonists. Agonists bind to receptors and elicit the same effects as an endogenous neurotransmitter. For example, morphine is an agonist of the opioid receptor family. Conversely, antagonists bind to a receptor and elicit no cellular change. Naloxone, an antagonist of the opioid receptors, exerts a biological effect only be interfering with endogenous neurotransmitter (morphine) binding. Inverse agonists bind to receptors and elicit the opposite effect that an agonist would. The spectrum of drug continuum also includes partial agonists and partial inverse agonists, which comprise the wide majority of neurological clinical treatments. The ultimate clinical effect of a drug can be analyzed with a dose-response curve.
1
Biochemistry
Several kinds of coating process are available: pack cementation process, gas phase coating (both are a type of chemical vapor deposition (CVD)), thermal spraying, and physical vapor deposition. In most cases, after the coating process, near-surface regions of parts are enriched with aluminium in a matrix of the nickel aluminide.
8
Metallurgy
Active metabolism of glucose with production of bicarbonate has been demonstrated by Pettersson and Cohen. Pettersson studies were on the metabolism of glucose and fatty acids by kidneys during 6 day hypothermic perfusion storage and he found that the kidneys consumed glucose at 4.4 μmol/g/day and fatty acids at 5.8 μmol/g/day. In Cohens study the best 8 day stored kidneys consumed glucose at the rate of 2.3 μmol/g/day and 4.9 μmol/g/day respectively which made it likely that they were using fatty acids at similar rates to Petterssons dogs' kidneys. The constancy of both the glucose consumption rate and the rate of bicarbonate production implied that no injury was affecting the glycolytic enzyme or carbonic anhydrase enzyme systems. Lee showed that fatty acids were the preferred substrate of the rabbits kidney cortex at normothermic temperatures, and glucose the preferred substrate for the medullary cells which normally metabolise anaerobically. Abodeely showed that both fatty acids and glucose could be utilised by the outer medulla of the rabbits kidney but that glucose was used preferentially. At hypothermia the metabolic needs of the kidney are much reduced but measurable consumption of glucose, fatty acids and ketone bodies occurs. Horsburgh showed that lipid is utilised by hypothermic kidneys, with palmitate consumption being 0-15% of normal in the rat kidney cortex at 15 °C. Pettersson showed that, on a molar basis, glucose and fatty acids were metabolised by hypothermically perfused kidneys at about the same rates. The cortex of the hypothermic dog kidney was shown by Huang to lose lipid (35% loss of total lipid after 24 hours) unless oleate was added to the kidney perfusate. Huang commented that this loss could affect the structure of the cell and that the loss also suggested that the kidney was utilising fatty acid. In a later publication Huang showed that dog kidney cortex slices metabolised fatty acids, but not glucose, at 10 °C. Even if the correct nutrients are provided, they may be lost by absorption into the tubing of the preservation system. Lee demonstrated that silicone rubber (a material used extensively in kidney preservation systems) absorbed 46% of a perfusate's oleic acid after 4 hours of perfusion.
1
Biochemistry
Vicinal difunctionalization reactions, most generally, lead to new bonds at two adjacent carbon atoms. Often this takes place in a stereocontrolled fashion, particularly if both bonds are formed simultaneously, as in the Diels-Alder reaction. Activated double bonds represent a useful handle for vicinal difunctionalization because they can act as both nucleophiles and electrophiles—one carbon is necessarily electron poor, and the other electron rich. In the presence of a nucleophile and an electrophile, then, the two carbons of a double bond can act as a "relay," mediating electron flow from the nucleophile to the electrophile with the formation of two, rather than the usual one, chemical bonds. Most often, the nucleophile employed in this context is an organometallic compound and the electrophile is an alkyl halide.
0
Organic Chemistry
In organic chemistry, a sulfonanilide group is a functional group found in certain organosulfur compounds. It possesses the chemical structure , and consists of a sulfonamide group () where one of the two nitrogen substituents (R' or R") is a phenyl group (). It can be viewed as a derivative of aniline ().
0
Organic Chemistry
Epothilone B is a 16-membered polyketide macrolactone with a methylthiazole group connected to the macrocycle by an olefinic bond. The polyketide backbone was synthesized by type I polyketide synthase (PKS) and the thiazole ring was derived from a cysteine incorporated by a nonribosomal peptide synthetase (NRPS). In this biosynthesis, both PKS and NRPS use carrier proteins, which have been post-translationally modified by phosphopantetheine groups, to join the growing chain. PKS uses coenzyme-A thioester to catalyze the reaction and modify the substrates by selectively reducing the β carbonyl to the hydroxyl (Ketoreductase, KR), the alkene (Dehydratase, DH), and the alkane (Enoyl Reductase, ER). PKS-I can also methylate the α carbon of the substrate. NRPS, on the other hand, uses amino acids activated on the enzyme as aminoacyl adenylates. Unlike PKS, epimerization, N-methylation, and heterocycle formation occurs in the NRPS enzyme. Epothilone B starts with a 2-methyl-4-carboxythiazole starter unit, which was formed through the translational coupling between PKS, EPOS A (epoA) module, and NRPS, EPOS P(epoP) module. The EPOS A contains a modified β-ketoacyl-synthase (malonyl-ACP decarboxylase, KSQ), an acyltransferase (AT), an enoyl reductase (ER), and an acyl carrier protein domain (ACP). The EPOS P however, contains a heterocylization, an adenylation, an oxidase, and a thiolation domain. These domains are important because they are involved in the formation of the five-membered heterocyclic ring of thiazole. As seen in Figure 4, the EPOS P activates the cysteine and binds the activated cysteine as an aminoacyl-S-PCP. Once the cysteine has been bound, EPOS A loads an acetate unit onto the EPOS P complex, thus initiating the formation of the thiazoline ring by intramolecular cyclodehydration. Once the 2-methylthiazole ring has been made, it is then transferred to the PKS EPOS B (epoB), EPOS C (epoC), EPOS D (epoD), EPOS E (epoE), and EPOS F (epoF) for subsequent elongation and modification to generate the olefinic bond, the 16-membered ring, and the epoxide, as seen in Figure 5. One important thing to note is the synthesis of the gem-dimethyl unit in module 7. These two dimethyls were not synthesized by two successive C-methylations. Instead, one of the methyl groups was derived from the propionate extender unit, while the second methyl group was integrated by a C-methyl-transferase domain.
0
Organic Chemistry
There are various methods of introducing foreign DNA into a eukaryotic cell: some rely on physical treatment (electroporation, cell squeezing, nanoparticles, magnetofection); others rely on chemical materials or biological particles (viruses) that are used as carriers. There are many different methods of gene delivery developed for various types of cells and tissues, from bacterial to mammalian. Generally, the methods can be divided into three categories: physical, chemical, and biological. Physical methods include electroporation, microinjection, gene gun, impalefection, hydrostatic pressure, continuous infusion, and sonication. Chemicals include methods such as lipofection, which is a lipid-mediated DNA-transfection process utilizing liposome vectors. It can also include the use of polymeric gene carriers (polyplexes). Biological transfection is typically mediated by viruses, utilizing the ability of a virus to inject its DNA inside a host cell. A gene that is intended for delivery is packaged into a replication-deficient viral particle. Viruses used to date include retrovirus, lentivirus, adenovirus, adeno-associated virus, and herpes simplex virus.
1
Biochemistry
To date, iron is one of the most widely studied trace metals, and iron isotope compositions are relatively well-documented. Based on measurements, iron isotopes exhibit minimal variation (±3‰) in the terrestrial environment. A list of iron isotopic values of different materials from different environments is presented below.
9
Geochemistry
Certain azo dyes can break down under reductive conditions to release any of a group of defined aromatic amines. Consumer goods which contain listed aromatic amines originating from azo dyes were prohibited from manufacture and sale in European Union countries in September 2003. As only a small number of dyes contained an equally small number of amines, relatively few products were affected.
0
Organic Chemistry
Low-energy electrons are produced from a tungsten filament, a lanthanum hexaboride crystal cathode or a field emission electron source and accelerated by a positively biased anode plate to 3 to 30 thousand electron volts (keV). The anode plate has central aperture and electrons that pass through it are collimated and focused by a series of magnetic lenses and apertures. The resulting electron beam (approximately 5 nm to 10 μm diameter) may be rastered across the sample or used in spot mode to produce excitation of various effects in the sample. Among these effects are: phonon excitation (heat), cathodoluminescence (visible light fluorescence), continuum X-ray radiation (bremsstrahlung), characteristic X-ray radiation, secondary electrons (plasmon production), backscattered electron production, and Auger electron production. When the beam electrons (and scattered electrons from the sample) interact with bound electrons in the innermost electron shells of the atoms of the various elements in the sample, they can scatter the bound electrons from the electron shell producing a vacancy in that shell (ionization of the atom). This vacancy is unstable and must be filled by an electron from either a higher energy bound shell in the atom (producing another vacancy which is in turn filled by electrons from yet higher energy bound shells) or by unbound electrons of low energy. The difference in binding energy between the electron shell in which the vacancy was produced and the shell from which the electron comes to fill the vacancy is emitted as a photon. The energy of the photon is in the X-ray region of the electromagnetic spectrum. As the electron structure of each element is unique, the series X-ray line energies produced by vacancies in the innermost shells is characteristic of that element, although lines from different elements may overlap. As the innermost shells are involved, the X-ray line energies are generally not affected by chemical effects produced by bonding between elements in compounds except in low atomic number (Z) elements ( B, C, N, O and F for K and Al to Cl for K) where line energies may be shifted as a result of the involvement of the electron shell from which vacancies are filled in chemical bonding. The characteristic X-rays are used for chemical analysis. Specific X-ray wavelengths or energies are selected and counted, either by wavelength dispersive X-ray spectroscopy (WDS) or energy dispersive X-ray spectroscopy (EDS). WDS utilizes Bragg diffraction from crystals to select X-ray wavelengths of interest and direct them to gas-flow or sealed proportional detectors. In contrast, EDS uses a solid state semiconductor detector to accumulate X-rays of all wavelengths produced from the sample. While EDS yields more information and typically requires a much shorter counting time, WDS is generally more precise with lower limits of detection due to its superior X-ray peak resolution and greater peak to background ratio. Chemical composition is determined by comparing the intensities of characteristic X-rays from the sample with intensities from standards of known composition. Counts from the sample must be corrected for matrix effects (depth of production of the X-rays, absorption and secondary fluorescence) to yield quantitative chemical compositions. The resulting chemical data is gathered in textural context. Variations in chemical composition within a material (zoning), such as a mineral grain or metal, can be readily determined. Volume from which chemical information is gathered (volume of X-rays generated) is 0.3 – 3 cubic micrometers.
3
Analytical Chemistry