Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 396298199
num_examples: 55000
- name: test
num_bytes: 59593199
num_examples: 5000
download_size: 189778506
dataset_size: 455891398
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: 'null'
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 420
num_examples: 21
download_size: 2970
dataset_size: 420
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- en
eurlex
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
eurlex = Dataset.from_datasets("AutoIntent/eurlex")
Source
This dataset is taken from coastalcph/multi_eurlex
and formatted with our AutoIntent Library:
from datasets import load_dataset
from autointent import Dataset
eurlex = load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
labels = []
def transform(example: dict):
for intent in example["labels"]:
labels.append(intent)
return {"utterance": example["text"], "label": example["labels"]}
labels = [{"id": label, "name": None} for label in set(labels)]
multilabel_eurlex_train = eurlex["train"].map(transform, remove_columns=eurlex["train"].features.keys())
multilabel_eurlex_test = eurlex["test"].map(transform, remove_columns=eurlex["test"].features.keys())
eurlex_converted = Dataset.from_dict({
"intents": labels,
"test": multilabel_eurlex_test.to_list(),
"train": multilabel_eurlex_train.to_list()
})