Updated loading logic
Browse files- AstroM3Dataset.py +14 -20
AstroM3Dataset.py
CHANGED
@@ -112,21 +112,18 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
112 |
"val": f"splits/{sub}/{seed}/val.csv",
|
113 |
"test": f"splits/{sub}/{seed}/test.csv",
|
114 |
"info": f"splits/{sub}/{seed}/info.json",
|
115 |
-
"spectra": "spectra.zip"
|
116 |
}
|
|
|
117 |
|
118 |
-
|
|
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
# spectra_urls = {}
|
127 |
-
# for _, row in df_combined.iterrows():
|
128 |
-
# spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
|
129 |
-
# spectra_files = dl_manager.download(spectra_urls)
|
130 |
|
131 |
# Load photometry and init reader
|
132 |
photometry_path = dl_manager.download(f"photometry.zip")
|
@@ -136,27 +133,24 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
136 |
datasets.SplitGenerator(
|
137 |
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
|
138 |
"info_path": extracted_path["info"],
|
139 |
-
|
140 |
-
"spectra_path": extracted_path["spectra"],
|
141 |
"split": "train"}
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
|
145 |
"info_path": extracted_path["info"],
|
146 |
-
|
147 |
-
"spectra_path": extracted_path["spectra"],
|
148 |
"split": "val"}
|
149 |
),
|
150 |
datasets.SplitGenerator(
|
151 |
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
|
152 |
"info_path": extracted_path["info"],
|
153 |
-
|
154 |
-
"spectra_path": extracted_path["spectra"],
|
155 |
"split": "test"}
|
156 |
),
|
157 |
]
|
158 |
|
159 |
-
def _generate_examples(self, csv_path, info_path,
|
160 |
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
|
161 |
|
162 |
df = pd.read_csv(csv_path)
|
@@ -166,7 +160,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
166 |
|
167 |
for idx, row in df.iterrows():
|
168 |
photometry = self._get_photometry(row["name"])
|
169 |
-
spectra = self._get_spectra(
|
170 |
|
171 |
yield idx, {
|
172 |
"photometry": photometry,
|
|
|
112 |
"val": f"splits/{sub}/{seed}/val.csv",
|
113 |
"test": f"splits/{sub}/{seed}/test.csv",
|
114 |
"info": f"splits/{sub}/{seed}/info.json",
|
|
|
115 |
}
|
116 |
+
extracted_path = dl_manager.download(urls)
|
117 |
|
118 |
+
# Load all spectra files
|
119 |
+
spectra_urls = {}
|
120 |
|
121 |
+
for split in ("train", "val", "test"):
|
122 |
+
df = pd.read_csv(extracted_path[split])
|
123 |
+
for _, row in df.iterrows():
|
124 |
+
spectra_urls[row["spec_filename"]] = f"spectra/{row['target']}/{row['spec_filename']}"
|
125 |
+
|
126 |
+
spectra_files = dl_manager.download(spectra_urls)
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Load photometry and init reader
|
129 |
photometry_path = dl_manager.download(f"photometry.zip")
|
|
|
133 |
datasets.SplitGenerator(
|
134 |
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
|
135 |
"info_path": extracted_path["info"],
|
136 |
+
"spectra_files": spectra_files,
|
|
|
137 |
"split": "train"}
|
138 |
),
|
139 |
datasets.SplitGenerator(
|
140 |
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
|
141 |
"info_path": extracted_path["info"],
|
142 |
+
"spectra_files": spectra_files,
|
|
|
143 |
"split": "val"}
|
144 |
),
|
145 |
datasets.SplitGenerator(
|
146 |
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
|
147 |
"info_path": extracted_path["info"],
|
148 |
+
"spectra_files": spectra_files,
|
|
|
149 |
"split": "test"}
|
150 |
),
|
151 |
]
|
152 |
|
153 |
+
def _generate_examples(self, csv_path, info_path, spectra_files, split):
|
154 |
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
|
155 |
|
156 |
df = pd.read_csv(csv_path)
|
|
|
160 |
|
161 |
for idx, row in df.iterrows():
|
162 |
photometry = self._get_photometry(row["name"])
|
163 |
+
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
164 |
|
165 |
yield idx, {
|
166 |
"photometry": photometry,
|