MeriDK commited on
Commit
ca06ac5
·
1 Parent(s): 18edf24

Updated loading logic

Browse files
Files changed (1) hide show
  1. AstroM3Dataset.py +25 -20
AstroM3Dataset.py CHANGED
@@ -108,50 +108,55 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
108
 
109
  # Load the splits and info files
110
  urls = {
111
- "train": f"{_URL}/splits/{sub}/{seed}/train.csv",
112
- "val": f"{_URL}/splits/{sub}/{seed}/val.csv",
113
- "test": f"{_URL}/splits/{sub}/{seed}/test.csv",
114
- "info": f"{_URL}/splits/{sub}/{seed}/info.json",
 
115
  }
116
- extracted_path = dl_manager.download(urls)
117
 
118
- df1 = pd.read_csv(extracted_path["train"])
119
- df2 = pd.read_csv(extracted_path["val"])
120
- df3 = pd.read_csv(extracted_path["test"])
121
- df_combined = pd.concat([df1, df2, df3], ignore_index=True)
122
 
123
- # Load all spectra files
124
- spectra_urls = {}
125
- for _, row in df_combined.iterrows():
126
- spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
127
- spectra_files = dl_manager.download(spectra_urls)
 
 
 
 
 
128
 
129
  # Load photometry and init reader
130
- photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
131
  self.reader_v = ParallelZipFile(photometry_path)
132
 
133
  return [
134
  datasets.SplitGenerator(
135
  name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
136
  "info_path": extracted_path["info"],
137
- "spectra_files": spectra_files,
 
138
  "split": "train"}
139
  ),
140
  datasets.SplitGenerator(
141
  name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
142
  "info_path": extracted_path["info"],
143
- "spectra_files": spectra_files,
 
144
  "split": "val"}
145
  ),
146
  datasets.SplitGenerator(
147
  name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
148
  "info_path": extracted_path["info"],
149
- "spectra_files": spectra_files,
 
150
  "split": "test"}
151
  ),
152
  ]
153
 
154
- def _generate_examples(self, csv_path, info_path, spectra_files, split):
155
  """Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
156
 
157
  df = pd.read_csv(csv_path)
@@ -161,7 +166,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
161
 
162
  for idx, row in df.iterrows():
163
  photometry = self._get_photometry(row["name"])
164
- spectra = self._get_spectra(spectra_files[row["spec_filename"]])
165
 
166
  yield idx, {
167
  "photometry": photometry,
 
108
 
109
  # Load the splits and info files
110
  urls = {
111
+ "train": f"splits/{sub}/{seed}/train.csv",
112
+ "val": f"splits/{sub}/{seed}/val.csv",
113
+ "test": f"splits/{sub}/{seed}/test.csv",
114
+ "info": f"splits/{sub}/{seed}/info.json",
115
+ "spectra": "spectra.zip"
116
  }
 
117
 
118
+ extracted_path = dl_manager.download_and_extract(urls)
 
 
 
119
 
120
+ # df1 = pd.read_csv(extracted_path["train"])
121
+ # df2 = pd.read_csv(extracted_path["val"])
122
+ # df3 = pd.read_csv(extracted_path["test"])
123
+ # df_combined = pd.concat([df1, df2, df3], ignore_index=True)
124
+ #
125
+ # # Load all spectra files
126
+ # spectra_urls = {}
127
+ # for _, row in df_combined.iterrows():
128
+ # spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
129
+ # spectra_files = dl_manager.download(spectra_urls)
130
 
131
  # Load photometry and init reader
132
+ photometry_path = dl_manager.download(f"photometry.zip")
133
  self.reader_v = ParallelZipFile(photometry_path)
134
 
135
  return [
136
  datasets.SplitGenerator(
137
  name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
138
  "info_path": extracted_path["info"],
139
+ # "spectra_files": spectra_files,
140
+ "spectra_path": extracted_path["spectra"],
141
  "split": "train"}
142
  ),
143
  datasets.SplitGenerator(
144
  name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
145
  "info_path": extracted_path["info"],
146
+ # "spectra_files": spectra_files,
147
+ "spectra_path": extracted_path["spectra"],
148
  "split": "val"}
149
  ),
150
  datasets.SplitGenerator(
151
  name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
152
  "info_path": extracted_path["info"],
153
+ # "spectra_files": spectra_files,
154
+ "spectra_path": extracted_path["spectra"],
155
  "split": "test"}
156
  ),
157
  ]
158
 
159
+ def _generate_examples(self, csv_path, info_path, spectra_path, split):
160
  """Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
161
 
162
  df = pd.read_csv(csv_path)
 
166
 
167
  for idx, row in df.iterrows():
168
  photometry = self._get_photometry(row["name"])
169
+ spectra = self._get_spectra(os.path.join(spectra_path, row["target"], row["spec_filename"]))
170
 
171
  yield idx, {
172
  "photometry": photometry,