Updated loading logic
Browse files- AstroM3Dataset.py +25 -20
AstroM3Dataset.py
CHANGED
@@ -108,50 +108,55 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
108 |
|
109 |
# Load the splits and info files
|
110 |
urls = {
|
111 |
-
"train": f"
|
112 |
-
"val": f"
|
113 |
-
"test": f"
|
114 |
-
"info": f"
|
|
|
115 |
}
|
116 |
-
extracted_path = dl_manager.download(urls)
|
117 |
|
118 |
-
|
119 |
-
df2 = pd.read_csv(extracted_path["val"])
|
120 |
-
df3 = pd.read_csv(extracted_path["test"])
|
121 |
-
df_combined = pd.concat([df1, df2, df3], ignore_index=True)
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# Load photometry and init reader
|
130 |
-
photometry_path = dl_manager.download(f"
|
131 |
self.reader_v = ParallelZipFile(photometry_path)
|
132 |
|
133 |
return [
|
134 |
datasets.SplitGenerator(
|
135 |
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
|
136 |
"info_path": extracted_path["info"],
|
137 |
-
"spectra_files": spectra_files,
|
|
|
138 |
"split": "train"}
|
139 |
),
|
140 |
datasets.SplitGenerator(
|
141 |
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
|
142 |
"info_path": extracted_path["info"],
|
143 |
-
"spectra_files": spectra_files,
|
|
|
144 |
"split": "val"}
|
145 |
),
|
146 |
datasets.SplitGenerator(
|
147 |
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
|
148 |
"info_path": extracted_path["info"],
|
149 |
-
"spectra_files": spectra_files,
|
|
|
150 |
"split": "test"}
|
151 |
),
|
152 |
]
|
153 |
|
154 |
-
def _generate_examples(self, csv_path, info_path,
|
155 |
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
|
156 |
|
157 |
df = pd.read_csv(csv_path)
|
@@ -161,7 +166,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
161 |
|
162 |
for idx, row in df.iterrows():
|
163 |
photometry = self._get_photometry(row["name"])
|
164 |
-
spectra = self._get_spectra(
|
165 |
|
166 |
yield idx, {
|
167 |
"photometry": photometry,
|
|
|
108 |
|
109 |
# Load the splits and info files
|
110 |
urls = {
|
111 |
+
"train": f"splits/{sub}/{seed}/train.csv",
|
112 |
+
"val": f"splits/{sub}/{seed}/val.csv",
|
113 |
+
"test": f"splits/{sub}/{seed}/test.csv",
|
114 |
+
"info": f"splits/{sub}/{seed}/info.json",
|
115 |
+
"spectra": "spectra.zip"
|
116 |
}
|
|
|
117 |
|
118 |
+
extracted_path = dl_manager.download_and_extract(urls)
|
|
|
|
|
|
|
119 |
|
120 |
+
# df1 = pd.read_csv(extracted_path["train"])
|
121 |
+
# df2 = pd.read_csv(extracted_path["val"])
|
122 |
+
# df3 = pd.read_csv(extracted_path["test"])
|
123 |
+
# df_combined = pd.concat([df1, df2, df3], ignore_index=True)
|
124 |
+
#
|
125 |
+
# # Load all spectra files
|
126 |
+
# spectra_urls = {}
|
127 |
+
# for _, row in df_combined.iterrows():
|
128 |
+
# spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
|
129 |
+
# spectra_files = dl_manager.download(spectra_urls)
|
130 |
|
131 |
# Load photometry and init reader
|
132 |
+
photometry_path = dl_manager.download(f"photometry.zip")
|
133 |
self.reader_v = ParallelZipFile(photometry_path)
|
134 |
|
135 |
return [
|
136 |
datasets.SplitGenerator(
|
137 |
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
|
138 |
"info_path": extracted_path["info"],
|
139 |
+
# "spectra_files": spectra_files,
|
140 |
+
"spectra_path": extracted_path["spectra"],
|
141 |
"split": "train"}
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
|
145 |
"info_path": extracted_path["info"],
|
146 |
+
# "spectra_files": spectra_files,
|
147 |
+
"spectra_path": extracted_path["spectra"],
|
148 |
"split": "val"}
|
149 |
),
|
150 |
datasets.SplitGenerator(
|
151 |
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
|
152 |
"info_path": extracted_path["info"],
|
153 |
+
# "spectra_files": spectra_files,
|
154 |
+
"spectra_path": extracted_path["spectra"],
|
155 |
"split": "test"}
|
156 |
),
|
157 |
]
|
158 |
|
159 |
+
def _generate_examples(self, csv_path, info_path, spectra_path, split):
|
160 |
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
|
161 |
|
162 |
df = pd.read_csv(csv_path)
|
|
|
166 |
|
167 |
for idx, row in df.iterrows():
|
168 |
photometry = self._get_photometry(row["name"])
|
169 |
+
spectra = self._get_spectra(os.path.join(spectra_path, row["target"], row["spec_filename"]))
|
170 |
|
171 |
yield idx, {
|
172 |
"photometry": photometry,
|