Updated loading logic
Browse files- AstroM3Dataset.py +100 -26
AstroM3Dataset.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
from io import BytesIO
|
3 |
import datasets
|
4 |
import pandas as pd
|
@@ -9,14 +8,16 @@ from astropy.io import fits
|
|
9 |
from .utils import ParallelZipFile
|
10 |
|
11 |
_DESCRIPTION = (
|
12 |
-
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
|
13 |
-
"and metadata features for variable stars. The dataset
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"- **Photometry**:
|
17 |
-
"
|
18 |
-
"- **
|
19 |
-
"- **
|
|
|
|
|
20 |
)
|
21 |
|
22 |
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
|
@@ -25,33 +26,69 @@ _URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main"
|
|
25 |
_VERSION = datasets.Version("1.0.0")
|
26 |
|
27 |
_CITATION = """
|
28 |
-
@article{
|
29 |
-
title={
|
30 |
-
author={
|
31 |
-
|
32 |
-
|
33 |
}
|
34 |
"""
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
38 |
-
"""Hugging Face dataset for AstroM3
|
39 |
|
|
|
40 |
DEFAULT_CONFIG_NAME = "full_42"
|
|
|
|
|
41 |
BUILDER_CONFIGS = [
|
42 |
-
datasets.BuilderConfig(name=f"{sub}_{seed}", version=_VERSION
|
43 |
for sub in ["full", "sub10", "sub25", "sub50"]
|
44 |
for seed in [42, 66, 0, 12, 123]
|
|
|
45 |
]
|
46 |
|
47 |
def _info(self):
|
|
|
|
|
48 |
return datasets.DatasetInfo(
|
49 |
description=_DESCRIPTION,
|
50 |
features=datasets.Features(
|
51 |
{
|
52 |
-
"photometry": datasets.
|
53 |
-
"spectra": datasets.
|
54 |
-
"metadata":
|
|
|
|
|
|
|
55 |
"label": datasets.Value("string"),
|
56 |
}
|
57 |
),
|
@@ -61,13 +98,17 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
61 |
)
|
62 |
|
63 |
def _get_photometry(self, file_name):
|
|
|
|
|
64 |
csv = BytesIO()
|
65 |
-
file_name = file_name.replace(' ', '')
|
66 |
data_path = f'vardb_files/{file_name}.dat'
|
67 |
|
|
|
68 |
csv.write(self.reader_v.read(data_path))
|
69 |
csv.seek(0)
|
70 |
|
|
|
71 |
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
|
72 |
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})
|
73 |
|
@@ -75,6 +116,8 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
75 |
|
76 |
@staticmethod
|
77 |
def _get_spectra(file_name):
|
|
|
|
|
78 |
hdulist = fits.open(file_name)
|
79 |
len_list = len(hdulist)
|
80 |
|
@@ -100,11 +143,32 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
100 |
|
101 |
return np.vstack((wavelength, specflux, ivar)).T
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def _split_generators(self, dl_manager):
|
104 |
-
"""
|
105 |
|
106 |
# Get subset and seed info from the name
|
107 |
-
|
|
|
108 |
|
109 |
# Load the splits and info files
|
110 |
urls = {
|
@@ -115,7 +179,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
115 |
}
|
116 |
extracted_path = dl_manager.download(urls)
|
117 |
|
118 |
-
#
|
119 |
spectra_urls = {}
|
120 |
|
121 |
for split in ("train", "val", "test"):
|
@@ -125,7 +189,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
125 |
|
126 |
spectra_files = dl_manager.download(spectra_urls)
|
127 |
|
128 |
-
#
|
129 |
photometry_path = dl_manager.download(f"photometry.zip")
|
130 |
self.reader_v = ParallelZipFile(photometry_path)
|
131 |
|
@@ -151,13 +215,20 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
151 |
]
|
152 |
|
153 |
def _generate_examples(self, csv_path, info_path, spectra_files, split):
|
154 |
-
"""Yields
|
155 |
|
156 |
df = pd.read_csv(csv_path)
|
157 |
|
158 |
with open(info_path) as f:
|
159 |
info = json.loads(f.read())
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
for idx, row in df.iterrows():
|
162 |
photometry = self._get_photometry(row["name"])
|
163 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
@@ -165,6 +236,9 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
165 |
yield idx, {
|
166 |
"photometry": photometry,
|
167 |
"spectra": spectra,
|
168 |
-
"metadata":
|
|
|
|
|
|
|
169 |
"label": row["target"],
|
170 |
}
|
|
|
|
|
1 |
from io import BytesIO
|
2 |
import datasets
|
3 |
import pandas as pd
|
|
|
8 |
from .utils import ParallelZipFile
|
9 |
|
10 |
_DESCRIPTION = (
|
11 |
+
"AstroM3 is a multi-modal time-series astronomy dataset containing photometry, spectra, "
|
12 |
+
"and metadata features for variable stars. The dataset consists of multiple subsets "
|
13 |
+
"('full', 'sub10', 'sub25', 'sub50') and supports different random seeds (42, 66, 0, 12, 123). "
|
14 |
+
"\n\nEach sample includes:\n"
|
15 |
+
"- **Photometry**: Time-series light curve data with shape `(N, 3)` representing time, flux, "
|
16 |
+
"and flux uncertainty.\n"
|
17 |
+
"- **Spectra**: Spectral observations with shape `(M, 3)` containing wavelength, flux, and flux uncertainty.\n"
|
18 |
+
"- **Metadata**: Auxiliary astrophysical and photometric parameters (e.g., magnitudes, parallax, motion data) "
|
19 |
+
"stored as a dictionary.\n"
|
20 |
+
"- **Label**: The classification of the star as a string."
|
21 |
)
|
22 |
|
23 |
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
|
|
|
26 |
_VERSION = datasets.Version("1.0.0")
|
27 |
|
28 |
_CITATION = """
|
29 |
+
@article{rizhko2024astrom,
|
30 |
+
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
|
31 |
+
author={Rizhko, Mariia and Bloom, Joshua S},
|
32 |
+
journal={arXiv preprint arXiv:2411.08842},
|
33 |
+
year={2024}
|
34 |
}
|
35 |
"""
|
36 |
|
37 |
+
_PHOTO_COLS = ['amplitude', 'period', 'lksl_statistic', 'rfr_score']
|
38 |
+
_METADATA_COLS = [
|
39 |
+
'mean_vmag', 'phot_g_mean_mag', 'e_phot_g_mean_mag', 'phot_bp_mean_mag', 'e_phot_bp_mean_mag', 'phot_rp_mean_mag',
|
40 |
+
'e_phot_rp_mean_mag', 'bp_rp', 'parallax', 'parallax_error', 'parallax_over_error', 'pmra', 'pmra_error', 'pmdec',
|
41 |
+
'pmdec_error', 'j_mag', 'e_j_mag', 'h_mag', 'e_h_mag', 'k_mag', 'e_k_mag', 'w1_mag', 'e_w1_mag',
|
42 |
+
'w2_mag', 'e_w2_mag', 'w3_mag', 'w4_mag', 'j_k', 'w1_w2', 'w3_w4', 'pm', 'ruwe', 'l', 'b'
|
43 |
+
]
|
44 |
+
_ALL_COLS = _PHOTO_COLS + _METADATA_COLS
|
45 |
+
_METADATA_FUNC = {
|
46 |
+
"abs": [
|
47 |
+
"mean_vmag",
|
48 |
+
"phot_g_mean_mag",
|
49 |
+
"phot_bp_mean_mag",
|
50 |
+
"phot_rp_mean_mag",
|
51 |
+
"j_mag",
|
52 |
+
"h_mag",
|
53 |
+
"k_mag",
|
54 |
+
"w1_mag",
|
55 |
+
"w2_mag",
|
56 |
+
"w3_mag",
|
57 |
+
"w4_mag",
|
58 |
+
],
|
59 |
+
"cos": ["l"],
|
60 |
+
"sin": ["b"],
|
61 |
+
"log": ["period"]
|
62 |
+
}
|
63 |
+
|
64 |
|
65 |
class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
66 |
+
"""Hugging Face dataset for AstroM3, a multi-modal variable star dataset."""
|
67 |
|
68 |
+
# Default configuration (used if no config is specified)
|
69 |
DEFAULT_CONFIG_NAME = "full_42"
|
70 |
+
|
71 |
+
# Define dataset configurations (subsets, seeds, and normalization variants)
|
72 |
BUILDER_CONFIGS = [
|
73 |
+
datasets.BuilderConfig(name=f"{sub}_{seed}{norm}", version=_VERSION)
|
74 |
for sub in ["full", "sub10", "sub25", "sub50"]
|
75 |
for seed in [42, 66, 0, 12, 123]
|
76 |
+
for norm in ["", "_norm"]
|
77 |
]
|
78 |
|
79 |
def _info(self):
|
80 |
+
"""Defines the dataset schema, including features and metadata."""
|
81 |
+
|
82 |
return datasets.DatasetInfo(
|
83 |
description=_DESCRIPTION,
|
84 |
features=datasets.Features(
|
85 |
{
|
86 |
+
"photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
87 |
+
"spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
88 |
+
"metadata": {
|
89 |
+
"meta_cols": {el: datasets.Value("float32") for el in _METADATA_COLS},
|
90 |
+
"photo_cols": {el: datasets.Value("float32") for el in _PHOTO_COLS},
|
91 |
+
},
|
92 |
"label": datasets.Value("string"),
|
93 |
}
|
94 |
),
|
|
|
98 |
)
|
99 |
|
100 |
def _get_photometry(self, file_name):
|
101 |
+
"""Loads photometric light curve data from a compressed file."""
|
102 |
+
|
103 |
csv = BytesIO()
|
104 |
+
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
|
105 |
data_path = f'vardb_files/{file_name}.dat'
|
106 |
|
107 |
+
# Read the photometry file from the compressed ZIP
|
108 |
csv.write(self.reader_v.read(data_path))
|
109 |
csv.seek(0)
|
110 |
|
111 |
+
# Read light curve data
|
112 |
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
|
113 |
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})
|
114 |
|
|
|
116 |
|
117 |
@staticmethod
|
118 |
def _get_spectra(file_name):
|
119 |
+
"""Loads spectral data from a FITS file."""
|
120 |
+
|
121 |
hdulist = fits.open(file_name)
|
122 |
len_list = len(hdulist)
|
123 |
|
|
|
143 |
|
144 |
return np.vstack((wavelength, specflux, ivar)).T
|
145 |
|
146 |
+
@staticmethod
|
147 |
+
def transform(df):
|
148 |
+
"""Applies transformations to metadata."""
|
149 |
+
|
150 |
+
for transformation_type, value in _METADATA_FUNC.items():
|
151 |
+
if transformation_type == "abs":
|
152 |
+
for col in value:
|
153 |
+
df[col] = (
|
154 |
+
df[col] - 10 + 5 * np.log10(np.where(df["parallax"] <= 0, 1, df["parallax"]))
|
155 |
+
)
|
156 |
+
elif transformation_type == "cos":
|
157 |
+
for col in value:
|
158 |
+
df[col] = np.cos(np.radians(df[col]))
|
159 |
+
elif transformation_type == "sin":
|
160 |
+
for col in value:
|
161 |
+
df[col] = np.sin(np.radians(df[col]))
|
162 |
+
elif transformation_type == "log":
|
163 |
+
for col in value:
|
164 |
+
df[col] = np.log10(df[col])
|
165 |
+
|
166 |
def _split_generators(self, dl_manager):
|
167 |
+
"""Defines dataset splits and downloads required files."""
|
168 |
|
169 |
# Get subset and seed info from the name
|
170 |
+
name = self.config.name.split("_")
|
171 |
+
sub, seed = name[0], name[1]
|
172 |
|
173 |
# Load the splits and info files
|
174 |
urls = {
|
|
|
179 |
}
|
180 |
extracted_path = dl_manager.download(urls)
|
181 |
|
182 |
+
# Download all spectra files
|
183 |
spectra_urls = {}
|
184 |
|
185 |
for split in ("train", "val", "test"):
|
|
|
189 |
|
190 |
spectra_files = dl_manager.download(spectra_urls)
|
191 |
|
192 |
+
# Download photometry data and initialize ZIP reader
|
193 |
photometry_path = dl_manager.download(f"photometry.zip")
|
194 |
self.reader_v = ParallelZipFile(photometry_path)
|
195 |
|
|
|
215 |
]
|
216 |
|
217 |
def _generate_examples(self, csv_path, info_path, spectra_files, split):
|
218 |
+
"""Yields individual dataset examples."""
|
219 |
|
220 |
df = pd.read_csv(csv_path)
|
221 |
|
222 |
with open(info_path) as f:
|
223 |
info = json.loads(f.read())
|
224 |
|
225 |
+
if "norm" in self.config.name:
|
226 |
+
# Apply metadata transformations
|
227 |
+
self.transform(df)
|
228 |
+
|
229 |
+
# Normalize using precomputed mean and standard deviation
|
230 |
+
df[_ALL_COLS] = (df[_ALL_COLS] - info["mean"]) / info["std"]
|
231 |
+
|
232 |
for idx, row in df.iterrows():
|
233 |
photometry = self._get_photometry(row["name"])
|
234 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
|
|
236 |
yield idx, {
|
237 |
"photometry": photometry,
|
238 |
"spectra": spectra,
|
239 |
+
"metadata": {
|
240 |
+
"meta_cols": {el: row[el] for el in _METADATA_COLS},
|
241 |
+
"photo_cols": {el: row[el] for el in _PHOTO_COLS},
|
242 |
+
},
|
243 |
"label": row["target"],
|
244 |
}
|