|
--- |
|
license: mit |
|
pretty_name: AstroM3Dataset |
|
size_categories: |
|
- 10K<n<100K |
|
tags: |
|
- astronomy |
|
- multimodal |
|
- classification |
|
arxiv: |
|
- arXiv:2411.08842 |
|
--- |
|
|
|
# AstroM3Dataset |
|
|
|
## Description |
|
|
|
AstroM3Dataset is a time-series astronomy dataset containing photometry, spectra, and metadata features for variable stars. |
|
The dataset was constructed by cross-matching publicly available astronomical datasets, |
|
primarily from the ASAS-SN (Shappee et al. 2014) variable star catalog (Jayasinghe et al. 2019) |
|
and LAMOST spectroscopic survey (Cui et al. 2012), along with data from |
|
WISE (Wright et al. 2010), GALEX (Morrissey et al. 2007), 2MASS (Skrutskie et al. 2006) and Gaia EDR3 (Gaia Collaboration et al. 2021). |
|
|
|
The dataset includes multiple subsets (`full`, `sub10`, `sub25`, `sub50`) and supports different random seeds (`42`, `66`, `0`, `12`, `123`). |
|
Each sample consists of: |
|
|
|
- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux\_error). |
|
- **Spectra**: Spectra observations of shape `(M, 3)` (wavelength, flux, flux\_error). |
|
- **Metadata**: |
|
- `meta_cols`: Dictionary of metadata feature names and values. |
|
- `photo_cols`: Dictionary of photometric feature names and values. |
|
- **Label**: The class name as a string. |
|
|
|
## Corresponding paper and code |
|
|
|
- Paper: [AstroM<sup>3</sup>: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842) |
|
- Code Repository: [GitHub: AstroM<sup>3</sup>](https://github.com/MeriDK/AstroM3/) |
|
- Processed Data: [AstroMLCore/AstroM3Processed](https://huggingface.co/datasets/AstroMLCore/AstroM3Processed/) |
|
|
|
**Note:** The processed dataset `AstroM3Processed` is created from the original dataset `AstroM3Dataset` |
|
by using [preprocess.py](https://huggingface.co/datasets/AstroMLCore/AstroM3Dataset/blob/main/preprocess.py) |
|
|
|
--- |
|
|
|
## Subsets and Seeds |
|
AstroM3Dataset is available in different subset sizes: |
|
|
|
- `full`: Entire dataset |
|
- `sub50`: 50% subset |
|
- `sub25`: 25% subset |
|
- `sub10`: 10% subset |
|
|
|
Each subset is sampled from the respective train, validation, and test splits of the full dataset. |
|
For reproducibility, each subset is provided with different random seeds: |
|
|
|
- `42`, `66`, `0`, `12`, `123` |
|
|
|
|
|
## Data Organization |
|
The dataset is organized as follows: |
|
``` |
|
AstroM3Dataset/ |
|
βββ photometry.zip # Contains all photometry light curves |
|
βββ utils/ |
|
β βββ parallelzipfile.py # Zip file reader to open photometry.zip |
|
βββ spectra/ # Spectra files organized by class |
|
β βββ EA/ |
|
β β βββ file1.dat |
|
β β βββ file2.dat |
|
β β βββ ... |
|
β βββ EW/ |
|
β βββ SR/ |
|
β βββ ... |
|
βββ splits/ # Train/val/test splits for each subset and seed |
|
β βββ full/ |
|
β β βββ 42/ |
|
β β β βββ train.csv |
|
β β β βββ val.csv |
|
β β β βββ test.csv |
|
β β β βββ info.json # Contains feature descriptions and preprocessing info |
|
β β βββ 66/ |
|
β β βββ 0/ |
|
β β βββ 12/ |
|
β β βββ 123/ |
|
β βββ sub10/ |
|
β βββ sub25/ |
|
β βββ sub50/ |
|
βββ AstroM3Dataset.py # Hugging Face dataset script |
|
``` |
|
|
|
## Usage |
|
To load the dataset using the Hugging Face `datasets` library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the default full dataset with seed 42 |
|
dataset = load_dataset("AstroMLCore/AstroM3Dataset", trust_remote_code=True) |
|
``` |
|
|
|
The default configuration is **full_42** (entire dataset with seed 42). |
|
To load a specific subset and seed, use {subset}_{seed} as the name: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the 25% subset sampled using seed 123 |
|
dataset = load_dataset("AstroMLCore/AstroM3Dataset", name="sub25_123", trust_remote_code=True) |
|
``` |
|
|
|
--- |
|
|
|
## Citation |
|
π€ If you find this dataset usefull, please cite our paper π€ |
|
```bibtex |
|
@article{rizhko2024astrom, |
|
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy}, |
|
author={Rizhko, Mariia and Bloom, Joshua S}, |
|
journal={arXiv preprint arXiv:2411.08842}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## References |
|
1. Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48, doi: 10.1088/0004-637X/788/1/48 |
|
2. Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019, MNRAS, 486, 1907, doi: 10.1093/mnras/stz844 |
|
3. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197, doi: 10.1088/1674-4527/12/9/003 |
|
4. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868 |
|
5. Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007, ApJS, 173, 682, doi: 10.1086/520512 |
|
6. Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708 |
|
7. Gaia Collaboration, Brown, A. G. A., et al. 2021, AAP, 649, A1, doi: 10.1051/0004-6361/202039657 |